Hood River Production Master Plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Toole, Patty
1991-07-01
The Northwest Power Planning Council's 1987 Columbia River Fish and Wildlife Program authorizes the development of artificial production facilities to raise chinook salmon and steelhead for enhancement in the Hood, Umatilla, Walla Walla, Grande Ronde and Imnaha rivers and elsewhere. On February 26, 1991 the Council agreed to disaggregate Hood River from the Northeast Oregon Hatchery Project, and instead, link the Hood River Master Plan (now the Hood River Production Plan) to the Pelton Ladder Project (Pelton Ladder Master Plan 1991).
Adrian Ares; Thomas A. Terry; Kathryn B. Piatek; Robert B. Harrison; Richard E. Miller; Barry L. Flaming; ChristopherW Licata; Brian D. Strahm; Constance A. Harrington; Rodney Meade; Harry W. Anderson; Leslie C. Brodie; Joseph M. Kraft
2007-01-01
The Fall River research site in coastal Washington is an affiliate installation of the North American Long-Term Soil Productivity (LTSP) network, which constitutes one of the worldâs largest coordinated research programs addressing forest management impacts on sustained productivity. Overall goals of the Fall River study are to assess effects of biomass removals, soil...
Hood River and Pelton Ladder Evaluation Studies : Annual Report 1994.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Erik A.; French, Rod A.; Ritchey, Alan D.
1995-09-01
In 1992, the Northwest Power Planning Council approved the Hood River and Pelton ladder master plans within the framework of the Columbia River Basin Fish and Wildlife Program. The master plans define an approach for implementing a hatchery supplementation program in the Hood River subbasin. The hatchery program as defined in the master plans is called the Hood River Hatchery Production Program (HRPP). The HRPP will be phased in over several years and will be jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and the Confederated Tribes of the Warm Springs (CTWS) Reservation. In December 1991, amore » monitoring and evaluation program was implemented in the Hood River subbasin to collect life history and production information on stocks of anadromous salmonids returning to the Hood River subbasin. The program was implemented to provide the baseline information needed to: (1) evaluate various management options for implementing the HRPP and (2) determine any post-project impacts the HRPP has on indigenous populations of resident fish. Information collected during the 1992-94 fiscal years will also be used to prepare an environmental impact statement (EIS) evaluating the program`s impact on the human environment. To begin construction on project facilities, it was proposed that the HRPP be implemented in two phases. Phase I would include work that would fall under a {open_quotes}categorical exclusion{close_quotes} from NEPA, and Phase II would include work requiring an EIS prior to implementation. This report summarizes the life history and escapement data collected in the Hood River subbasin and the status work of implemented under Phase I of the HR Life history and escapement data will be used to: (1) test the assumptions on which harvest and escapement goals for the Hood River and Pelton ladder master plans are based and (2) develop biologically based management recommendations for implementing the HRPP.« less
Columbia River Basin Fish and Wildlife Program Annual Implementation Work Plan for Fiscal Year 1994.
DOE Office of Scientific and Technical Information (OSTI.GOV)
United States. Bonneville Power Administration; Northwest Power Planning Council; Columbia Basin Fish and Wildlife Authority
1994-02-01
This document is part of Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The Fiscal Year 1994 (FY 1994) Annual Implementation Work Plan (AIWP) presents Bonneville Power Administration`s (BPA`s) plan for implementation of the Columbia River Basin Fish and Wildlife Program (Program). The purpose of the Program is to guide BPA and other federal agencies in carrying out their responsibilities to protect, mitigate, and enhance fish and wildlife in the Columbia River Basin. Phase I began the work of salmonmore » recovery with certain fast-track measures completed in August 1991. Phase II dealt with Snake and Columbia river flow and salmon harvest and was completed in December 1991. Phase III dealt with system-wide habitat and salmon production issues and was completed in September 1992. Phase IV planning, focusing on resident fish and wildlife, began in August 1993, and was finished and adopted in November 1993. This report provides summaries of the ongoing and new projects for FY 1994 within the areas of juvenile migration, adult migration, salmon harvest, production and habitat, coordinated implementation, monitoring and evaluation, resident fish, and wildlife.« less
ERIC Educational Resources Information Center
Heuristics, Inc., Dedham, MA.
This report presents the evaluation of the 1973-1974 Fall River Middle School Research and Development Center, a project funded by ESEA Title VII as a model demonstration bilingual program beginning in 1972-1973. The evaluation focused on the assessment of the degree of accomplishment of product objectives for each component of the program. The…
Grande Ronde Endemic Spring Chinook Project - ODFW, 2008 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, Scott
2009-04-10
Core activities of the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCSP) are funded through the authority of the Lower Snake River Fish and Wildlife Compensation Plan (LSRCP). The LSRCP program was approved by the Water Resources Development Act of 1976, PL 94-587, Section 102, 94th Congress substantially in accordance with the Special Report, LSRCP, June 1975 on file with the Chief of Engineers. The LSRCP was prepared and submitted in compliance with the Fish and Wildlife Coordination Act of 1958, PL 85-624, 85th Congress, August 12, 1958 to mitigate for the losses of fish and wildlife caused by themore » construction of dams on lower Snake River. The GRESCSP is an artificial propagation program that was initiated by Bonneville Power Administrations Fish and Wildlife program in the mid 1990's. The intent of this program was to change the mitigation aspect of the LSRCP program (harvest mitigation) to an integrated supplementation program; inasmuch as, hatchery produced fish could be experimentally used as a recovery tool and fish surplus to mitigation would be available for in-place and in-kind harvest. Fish production is still authorized by the LSRCP with the original mitigation return goal of 5,860 adult spring Chinook to the project area. The GRESCSP was developed with two primary components: (1) conventional broodstock (projects 199800702; 199800703; 199800704) and (2) captive brood (projects 199801001; 199801006). The GRESCSP relies on cooperative M&E efforts from the LSRCP including setting aside the Wenaha and Minam tributaries as natural production reserves components used for reference streams. The GRESCSP, coordinated with federal and tribal partners, identifies production levels for both propagation components and weir management strategies for each of the three supplemented tributary areas within the Grande Ronde Sub-basin. The three supplemented areas are Catherine Creek, Lostine River, and upper Grande Ronde River. Lookingglass Creek, an extirpated area, will be stocked (smolts and adults) with Catherine Creek origin salmon to initiate natural production in unseeded habitat, and to initiate future harvest opportunities. The current production levels have been incorporated into the U.S. v. Oregon Interim Management Agreement. The purpose of this contract is to integrate Bonneville Power Administration (BPA) efforts with the Lower Snake River Compensation Plan (LSRCP) program utilizing Lookingglass Hatchery as the primary rearing facility. BPA constructed an adult holding and spawning structure on the hatchery grounds; however, maintenance of this infrastructure was discontinued due to funding limitation and transferred to the LSRCP program in 2007. These integrated efforts focus on holding and spawning adults, rearing juveniles, fish health, and monitoring natural production (Redd counts) for Catherine Creek, Lostine River, and Upper Grande Ronde stocks.« less
Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallinat, Michael P.; Bumgarner, Joseph D.
2002-05-01
This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood during 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination withmore » the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program will collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2001 BY fish have been selected. As of Jan 1, 2002, WDFW has 17 BY 1997, 159 BY 1998, 316 BY 1999, 448 BY 2000, and approximately 1,200 BY 2001 fish on hand at LFH. The 2001 eggtake from the 1997 brood year (Age 4) was 233,894 eggs from 125 ripe females. Egg survival was 69%. Mean fecundity based on the 105 fully spawned females was 1,990 eggs/female. The 2001 eggtake from the 1998 brood year (Age 3) was 47,409 eggs from 41 ripe females. Egg survival was 81%. Mean fecundity based on the 39 fully spawned females was 1,160 eggs/female. The total 2001 eggtake from the captive brood program was 281,303 eggs. As of May 1, 2002 we have 171,495 BY 2001 captive brood progeny on hand. A total of 20,592 excess fish were marked as parr (AD/CWT) and will be released during early May, 2002 into the Tucannon River (rkm 40-45). This will allow us to stay within our maximum allowed number (150,000) of smolts released. During April 2002, WDFW volitionally released 3,055 BY 2000 captive broodstock progeny from Curl Lake Acclimation Pond into the Tucannon River. These fish were marked with agency-only wire tags and no fin clips in order to differentiate them from the supplementation fish (CWT/Right Red VI/No Finclip). Monitoring their survival and future releases to adult returns, along with future natural production levels, will determine the success or failure of this captive broodstock program.« less
Umatilla Hatchery Monitoring and Evaluation, 1998-1999 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stonecypher, R. Wess; Groberg, Jr., Warren J.; Farman, Brett M.
2001-07-01
The Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program authorized construction of Umatilla Fish Hatchery (UFH) in 1986. Measure 703 of the program amended the original authorization for the hatchery and specified evaluation of the Michigan (MI) raceways using oxygen supplementation to reach production goals of 290,000 lb of chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss). The hatchery was completed in fall 1991. Partial justification for the hatchery was to evaluate new production and supplementation techniques. MI raceways at UFH increase smolt production with a limited water supply. Test results for MI raceways will have systematicmore » application in the Columbia River basin. The UFH is the foundation for rehabilitating chinook salmon and enhancing steelhead in the Umatilla River (CTUIR and ODFW 1990) and is expected to contribute significantly to the Northwest Power Planning Council's goal of doubling salmon production in the Columbia Basin. Hatchery production goals and a comprehensive monitoring and evaluation plan were presented in the Umatilla Hatchery Master Plan (CTUIR and ODFW 1990). The Comprehensive Plan for Monitoring and Evaluation of Umatilla Hatchery (Carmichael 1990) was approved by the Northwest Power Planning Council as a critical adaptive management guide for fisheries rehabilitation in the Umatilla River. Monitoring and evaluation will be used to increase knowledge about uncertainties inherent in the fisheries rehabilitation and will complement the developing systematic monitoring and evaluation program. The monitoring and evaluation goals are: (1) Provide information and recommendations for the culture and release of hatchery fish, harvest regulations, and natural escapement to accomplish long-term natural and hatchery production goals in the Umatilla River basin that are consistent with provisions of the Council's Columbia River Basin Fish and Wildlife Program. (2) Assess the success of achieving the management objectives in the Umatilla River basin that are presented in the Master Plan and the Comprehensive Rehabilitation Plan. A substantial proportion of the production at UFH is reared in MI raceways. This system has not been thoroughly evaluated to determine the effects on Smolt-to-adult survival (SAS). In addition, the rearing strategies proposed for spring chinook salmon require an unusually extensive period of incubation in chilled well water. Extensive background and justification for UFH monitoring and evaluation is presented in Carmichael (1990). In this report, we present findings for the UFH Monitoring and Evaluation Project from 1 November 1998 to 31 October 1999. We designed our program to evaluate fish cultural practices, conduct rearing and survival studies, assess sport fisheries, and provide information for planning and coordination. Additional studies have been designed for fall chinook salmon to evaluate straying and the effects of tagging. We monitored the culture and performance of more than 3.2 million chinook salmon and steelhead produced at UFH in 1997-98 (Appendix Tables A1-8). Individual stock profiles, release, performance, and return data of previously released groups are presented in the following sections.« less
Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, A. A.; Peeler, D. K.; Kim, D. S.
2015-11-23
The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurow, T.L.; Large, R.M.; Allman, D.W.
1982-04-01
A groundwater monitoring program has been established on the Raft River Geothermal Site since 1978. The objective of this program is to document possible impacts that may be caused by geothermal production and injection on the shallow aquifers used for culinary and irrigation purposes. This annual progress report summarizes data from 12 monitor wells during 1981. These data are compared with long-term trends and are correlated with seasonal patterns, irrigation water use and geothermal production and testing. These results provide a basis for predicting long-term impacts of sustained geothermal production and testing. To date, there has been no effect onmore » the water quality of the shallow aquifers.« less
Northern Rivers Ecosystem Initiative: nutrients and dissolved oxygen - issues and impacts.
Chambers, Patricia A; Culp, Joseph M; Glozier, Nancy E; Cash, Kevin J; Wrona, Fred J; Noton, Leigh
2006-02-01
Anthropogenic inputs of nitrogen (N), phosphorus (P) and oxygen-consuming material to aquatic ecosystems can change nutrient dynamics, deplete oxygen, and change abundance and diversity of aquatic plants and animals. The Northern Rivers Ecosystem Initiative required a research and assessment program to establish the contribution of pulp mill and sewage discharges to eutrophication and depressions in dissolved oxygen (DO) in the Athabasca and Wapiti rivers of northern Alberta, Canada and examine the adequacy of existing guidelines for protecting these systems. Analysis of long-term data showed that total N (TN) and total P (TP) concentrations in exposed river reaches exceeded concentrations in reference reaches by < or = 2 times for the Athabasca River, and by 9.6 (TP) and 2.6 (TN) times for the Wapiti River. Results from nutrient limitation experiments conducted in situ and in mesocosms showed that benthic algal production was nutrient sufficient downstream of pulp mill discharges but constrained in upper river reaches by insufficient P (Athabasca River) or N + P (Wapiti River). Dissolved oxygen (DO) concentrations in both rivers declined during winter such that median concentrations in the Athabasca River 945 km downstream of the headwaters were approximately 8 mg L(-1) in mid-February. Although water column DO rarely approached the guideline of 6.5 mg L(-1), DO studies undertaken in the Wapiti River showed that pore water DO often failed to meet this guideline and could not be predicted from water column DO. Results from this integrated program of monitoring and experimentation have improved understanding of the interactions between nutrients, DO and aquatic ecosystem productivity and resulted in recommendations for revisions to nutrient and DO guidelines for these northern rivers.
Shaffer, Terry L.; Sherfy, Mark H.; Anteau, Michael J.; Stucker, Jennifer H.; Sovada, Marsha A.; Roche, Erin A.; Wiltermuth, Mark T.; Buhl, Thomas K.; Dovichin, Colin M.
2013-01-01
The upper Missouri River system provides nesting and foraging habitat for federally endangered least terns (Sternula antillarum; hereafter “terns”) and threatened piping plovers (Charadrius melodus; hereafter “plovers”). These species are the subject of substantial management interest on the Missouri River for several reasons. First, ecosystem recovery is a goal for management agencies that seek to maintain or restore natural functions and native biological communities for the Missouri River system. Terns and plovers are recognized as important ecosystem components that are linked with the river’s ecological functions. Second, although both species breed beyond the Missouri River system, the Missouri River is one of the principal breeding areas in the Northern Great Plains; thus, the river system is a focal area for recovery actions targeted at regional population goals. Third, a Biological Opinion for Missouri River operations established annual productivity goals for terns and plovers, and the recovery plan for each species established annual population goals. Meeting these goals is a key motivation in management decision making and implementation with regard to both species. A myriad of conservation and management interests necessitate understanding numbers, distribution, and productivity of terns and plovers on the Missouri River system. To this end, a Tern and Plover Monitoring Program (TPMP) was implemented by the U.S. Army Corps of Engineers (hereafter “Corps”) in 1986, and has since provided annual estimates of tern and plover numbers and productivity for five Missouri River reservoirs and four river reaches (U.S. Army Corps of Engineers, 1993). The TPMP has served as the primary source of information about the status of terns and plovers on the Missouri River, and TPMP data have been used for a wide variety of purposes. In 2005, the U.S. Geological Survey (USGS) Northern Prairie Wildlife Research Center (NPWRC) was tasked by the Corps to evaluate the accuracy of the TPMP and provide guidance on revising the program to assess tern and plover numbers and reproductive success. Accordingly, NPWRC studied terns and plovers on two river reaches and one reservoir (hereafter “the evaluation”), and used the results of those studies to help understand properties and potential limitations of TPMP data and to provide guidance for TPMP revisions. The purpose of this report is to present an overview and evaluation of the TPMP data, the results of our intensive monitoring, and propose an alternative idea that provides a framework for making decisions about how to monitor terns and plovers.
Annual Coded Wire Tag Program; Oregon Missing Production Groups, 1995 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrison, Robert L.; Mallette, Christine; Lewis, Mark A.
1995-12-01
Bonneville Power Administration is the funding source for the Oregon Department of Fish and Wildlife`s Annual Coded Wire Tag Program - Oregon Missing Production Groups Project. Tule brood fall chinook were caught primarily in the British Columbia, Washington and northern Oregon ocean commercial fisheries. The up-river bright fall chinook contributed primarily to the Alaska and British Columbia ocean commercial fisheries and the Columbia River gillnet fishery. Contribution of Rogue fall chinook released in the lower Columbia River system occurred primarily in the Oregon ocean commercial and Columbia river gillnet fisheries Willamette spring chinook salmon contributed primarily to the Alaska andmore » British Columbia ocean commercial, Oregon freshwater sport and Columbia River gillnet fisheries. Restricted ocean sport and commercial fisheries limited contribution of the Columbia coho released in the Umatilla River that survived at an average rate of 1.05% and contributed primarily to the Washington, Oregon and California ocean sport and commercial fisheries and the Columbia River gillnet fishery. The 1987 to 1991 brood years of coho released in the Yakima River survived at an average rate of 0.64% and contributed primarily to the Washington, Oregon and California ocean sport and commercial fisheries and the Columbia River gillnet fishery. Survival rates of salmon and steelhead are influenced, not only by factors in the hatchery, disease, density, diet and size and time of release, but also by environmental factors in the river and ocean. These environmental factors are controlled by large scale weather patterns such as El Nino over which man has no influence. Man could have some influence over river flow conditions, but political and economic pressures generally out weigh the biological needs of the fish.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerstenberger, Ryan
2009-07-27
This progress report describes work performed by the Confederated Tribes of Warm Springs (CTWSRO) portion of the Hood River Production Program Monitoring and Evaluation Project (HRPP) during the 2008 fiscal year. A total of 64,736 hatchery winter steelhead, 12,108 hatchery summer steelhead, and 68,426 hatchery spring Chinook salmon smolts were acclimated and released in the Hood River basin during the spring. The HRPP exceeded program goals for a release of and 50,000 winter steelhead but fell short of the steelhead release goals of 30,000 summer steelhead and 75,000 spring Chinook in 2008. Passive Integrated Transponders (PIT) tags were implanted inmore » 6,652 hatchery winter steelhead, and 1,196 hatchery summer steelhead, to compare migratory attributes and survival rates of hatchery fish released into the Hood River. Water temperatures were recorded at six locations within the Hood River subbasin to monitor for compliance with Oregon Department of Environmental Quality water quality standards. A preseason spring Chinook salmon adult run forecast was generated, which predicted an abundant return adequate to meet escapement goal and brood stock needs. As a result the tribal and sport fisheries were opened. A tribal creel was conducted from May 22 to July 18 during which an estimated 172 spring Chinook were harvested. One hundred sixteen Spring Chinook salmon redds were observed and 72 carcasses were inspected on 19.4 miles of spawning grounds throughout the Hood River Basin during 2008. Annual salvage operations were completed in two irrigation canals resulting in the liberation of 1,641 fish back to the Hood River.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie
2004-01-01
Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of constructionmore » and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks in future artificial propagation programs. The GRESCSSP was implemented in three Grande Ronde River basin tributaries; the Lostine and upper Grande Ronde rivers and Catherine Creek. The GRESCSSP employs two broodstock strategies utilizing captive and conventional brood sources. The captive brood program began in 1995, with the collection of parr from the three tributary areas. The conventional broodstock component of the program began in 1997 with the collection of natural adults returning to these tributary areas. Although LGH was available as the primary production facility for spring chinook programs in the Grande Ronde Basin, there were never any adult or juvenile satellite facilities developed in the tributary areas that were to be supplemented. An essential part of the GRESCSSP was the construction of adult traps and juvenile acclimation facilities in these tributary areas. Weirs were installed in 1997 for the collection of adult broodstock for the conventional component of the program. Juvenile facilities were built in 2000 for acclimation of the smolts produced by the captive and conventional broodstock programs and as release sites within the natural production areas of their natal streams. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operate both the juvenile acclimation and adult trapping facilities located on Catherine Creek and the upper Grande Ronde River under this project. The Nez Perce Tribe (NPT) operate the facilities on the Lostine River under a sister project. Hatcheries were also built in Oregon, Washington and Idaho under the LSRCP to compensate for losses of summer steelhead due to the construction and operation of the lowest four Snake River dams. Despite these harvest-driven hatchery programs, natural summer steelhead populations continued to decline as evidenced by declining counts at Lower Granite Dam since 1995 (Columbia River Data Access in Real Time, DART) and low steelhead redd counts on index streams in the Grande Ronde Basin. Because of low escapement the Snake River summer steelhead were listed as threatened under the Endangered Species Act of 1973 by the National Marine Fisheries Service (NMFS) on 18 August, 1997. Co-managers have also discontinued off-station releases of juvenile Wallowa stock (non-endemic) hatchery summer steelhead into Catherine Creek in 1998 and the upper Grande Ronde River in 1999. Data are lacking on adult return numbers and the genetic make-up of populations that return to tributaries of the Grande Ronde River basin, Catherine Creek and the upper Grande Ronde River specifically. Adult fish weirs are in place on Catherine Creek and the upper Grande Ronde River and data on summer steelhead populations in those areas are collected.« less
Stark, James R.
1996-01-01
Physical and aquatic biological conditions differ among the Mississippi River and its major tributaries (the St. Croix and Minnesota Rivers) in Minnesota and Wisconsin. The quality of surface water and the ecological condition of rivers affect the ways in which we use them. The St. Croix River is used for recreation; the Mississippi River is used for recreation and is a corridor for commerce; and the Minnesota River primarily drains agricultural lands. Analysis of the environmental framework of the basins and water-quality and ecological information by the National Water-Quality Assessment (NAWQA) Program shows that the conditions of the rivers are a product of a combination of factors including climate, hydrology, geology, soils, land use, land cover, water management, and water use.
Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onjukka, Sam T.; Harbeck, Jim
2003-03-01
The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the studymore » of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.« less
Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onjukka, Sam T.; Harbeck, Jim
2003-03-01
The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the studymore » of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zollman, Richard L.; Eschler, Russell; Sealey, Shawn
2009-03-31
The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of Lostine River spring Chinook salmon smolts occurred from March 3, 2003 through to April 14, 2003 and a total of 242,776 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2001 egg source and included captive broodstock (141,860) and conventional broodstock (100,916) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2003 began April 30th, the first Chinook was captured on May 16, 2003 and the last Chinook was captured on September 21, 2003. The weir and trap were removed on October 1, 2003. A total of 464 adult Chinook, including jacks, were captured during the season. The composition of the run included 239 natural origin fish and 225 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 45 natural and 4 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning, 366 adult Chinook were passed or transported above the weir to spawn naturally, and 49 hatchery origin adult jack Chinook were transported and outplanted in the Wallowa River and Bear Creek to spawn in underseeded habitat. Of the 49 adults retained for broodstock at Lookingglass Hatchery, 21 natural females and no hatchery origin females were represented in spawning. These females produced a total of 106,609 eggs at fertilization. Eye-up was 95.50% which yielded a total of 101,811 conventional program eyed eggs. The fecundity averaged 5,077 eggs per female. These eggs were incubated and at Lookingglass Hatchery until eyed stage. At eye they were transferred to Oxbow Hatchery where they were reared to the fingerling state at which time they were transported back to LGH until they were smolts in the spring of 2005. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2005.« less
Kootenai River Resident Fish Assessment, FY2008 KTOI Progress Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holderman, Charles
The overarching goal of project 1994-049-00 is to recover a productive, healthy and biologically diverse Kootenai River ecosystem, with emphasis on native fish species rehabilitation. It is especially designed to aid the recovery of important fish stocks, i.e. white sturgeon, burbot, bull trout, kokanee and several other salmonids important to the Kootenai Tribe of Idaho and regional sport-fisheries. The objectives of the project have been to address factors limiting key fish species within an ecosystem perspective. Major objectives include: establishment of a comprehensive and thorough biomonitoring program, investigate ecosystem--level in-river productivity, test the feasibility of a large-scale Kootenai River nutrientmore » addition experiment (completed), to evaluate and rehabilitate key Kootenai River tributaries important to the health of the lower Kootenai River ecosystem, to provide funding for Canadian implementation of nutrient addition and monitoring in the Kootenai River ecosystem (Kootenay Lake) due to lost system productivity created by construction and operation of Libby Dam, mitigate the cost of monitoring nutrient additions in Arrow Lakes due to lost system productivity created by the Libby-Arrow water swap, provide written summaries of all research and activities of the project, and, hold a yearly workshop to convene with other agencies and institutions to discuss management, research, and monitoring strategies for this project and to provide a forum to coordinate and disseminate data with other projects involved in the Kootenai River basin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.
This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Wastemore » and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.« less
Ning, Su; Yong-Jie, Xu
2016-12-13
Relevant projects carried out within the Yangtze River economic belt on the impact of schistosomiasis epidemic and transmission are important issues for "ecological priority" in the process of implementing the strategy. The key problems of schistosomiasis epidemic risk, epidemic happening repeatedly, difficulty of rehabilitating Oncomelania hupensis snail control and schistosomiasis prevention forest, lag of evaluation system and platform construction, lack of basic research, et al. were analyzed in the Yangtze River economic belt taking "ecological priority" as the basis in this paper. Then corresponding countermeasures to these challenges were put forward so as to provide the reference for the national forestry schistosomiasis control programs, which include: execution of the comprehensive prevention and control strategy, scheming of the new round of forestry schistosomiasis control programs, strengthening schistosomiasis prevention and control, promoting productivity in existing forestry to consolidate and improve the achievements of previous forestry schistosomiasis control programs, and promoting the intensity of technological innovation to improve the technological level of forestry schistosomiasis control programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zollman, Richard L.; Eschler, Russell; Sealey, Shawn
2009-03-31
The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006, acclimation of Lostine River spring Chinook salmon smolts occurred from February 27, 2006 through to April 10, 2006 and a total of 240,568 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2004 egg source and included captive brood (40,982) and conventional (199,586) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2006 began May 15th, the first Chinook was captured on June 14, 2006 and the last Chinook was captured on September 27, 2006. The weir and trap were removed on October 1, 2006. A total of 534 adult Chinook, including jacks, were captured during the season. The composition of the run included 205 natural origin fish and 329 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 33 natural and 120 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning and 397 adult Chinook were passed or transported above the weir to spawn naturally. In 2006, no hatchery origin adult Chinook were transported and out planted in the Wallowa River and Bear Creek to spawn in under seeded habitat. In order to meet egg take goals for the conventional portion of the program, a determination was made that approximately 147 adults were needed for broodstock. As a result 16 (8 males and 8 females) of the 153 fish collected for broodstock were returned to the Lostine River to spawn naturally. Females that were spawned and provided the brood source were made up of 12 natural females and 45 supplementation females. One of these females tested positive for high levels of Bacterial Kidney Disease and consequently this females eggs were destroyed. The remaining females produced a total of 241,372 eggs at fertilization. Eye-up was 85.47% which yielded a total of 206,309 conventional program eyed eggs. The fecundity averaged 4,162 eggs per female. The brood year 2006 eggs will be incubated and reared at Lookingglass Hatchery until they are smolts in the spring of 2008. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2008.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zollman, Richard L.; Eschler, Russell; Sealey, Shawn
2009-03-31
The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007, acclimation of Lostine River spring Chinook salmon smolts occurred from 3/5/07 through to 4/17/07 and a total of 230,010 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2005 egg source and included captive brood (24,604) and conventional (205,406) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2007 began May 14th. The first Chinook was captured on June 2, 2007 and the last Chinook was captured on September 25, 2007. The weir and trap were removed on October 1, 2007. A total of 637 adult Chinook, including jacks, were captured during the season. The composition of the run included 240 natural origin fish and 397 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 41 natural and 81 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning, 403 adult Chinook were passed or transported above the weir to spawn naturally, and only hatchery origin jack Chinook were transported and outplanted in the Wallowa River and Bear Creek in underseeded habitat. Of the 122 adult fish retained for broodstock, 20 natural females and 40 supplementation females were represented in spawning. The eggs from these females produced a total of 267,350 eggs at fertilization. Eye-up was 86.73% which yielded a total of 231,882 conventional program eyed eggs. The fecundity averaged 4,456 eggs per female. These eggs will be incubated and reared at Lookingglass Hatchery until they are smolts in the spring of 2009. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2009. Due to the success of the 2007 egg collection, the number of fish produced exceeded program needs and facility capabilities. As a result, there are plans to outplant fry in 2008 and parr in early 2009 to underseeded habitat in the Wallowa River.« less
Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallinat, Michael; Varney, Michelle
2003-05-01
This report summarizes the objectives, tasks, and accomplishments of the Tucannon River Spring Chinook Captive Broodstock Program during 2002. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combinationmore » with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program collected fish from five (1997-2001) brood years (BY). As of January 1, 2003, WDFW has approximately 11 BY 1998, 194 BY 1999, 314 BY 2000, 447 BY 2001, and 300 BY 2002 (for extra males) fish on hand at LFH. The 2002 eggtake from the 1997 brood year (Age 5) was 13,176 eggs from 10 ripe females. Egg survival was 22%. Mean fecundity based on the 5 fully spawned females was 1,803 eggs/female. The 2002 eggtake from the 1998 brood year (Age 4) was 143,709 eggs from 93 ripe females. Egg survival was 29%. Mean fecundity based on the 81 fully spawned females was 1,650 eggs/female. The 2002 eggtake from the 1999 brood year (Age 3) was 19,659 eggs from 18 ripe females. Egg survival was 55%. Mean fecundity based on the 18 fully spawned fish was 1,092 eggs/female. The total 2002 eggtake from the captive brood program was 176,544 eggs. A total of 120,833 dead eggs (68%) were removed with 55,711 live eggs remaining for the program. As of May 1, 2003 we had 46,417 BY 2002 captive brood progeny on hand A total of 20,592 excess BY 01 fish were marked as parr (AD/CWT) and released during May 2002 into the Tucannon River (rkm 40-45). This allowed us to stay within our maximum allowed number (150,000) of smolts released. On August 20, 97 (21 1998 BY and 76 1999 BY) adult captive broodstock were determined to be in excess of eggtake goals and were outplanted into the Tucannon River at Panjab Bridge (rkm 74.5). Released fish were tagged with Monel jaw tags and radio transmitters were inserted into ten females for tracking and monitoring. Due to the low frequency of natural spawning by released fish, high mortality due to predation and illegal harvest, and high egg mortality in the hatchery during 2002, priority will be to release excess progeny as parr to stay within smolt release goals rather than release excess captive broodstock as adults. During April 2003, WDFW volitionally released 140,396 BY 2001 captive broodstock progeny smolts from Curl Lake Acclimation Pond into the Tucannon River. These fish were marked with agency-only wire tags and no fin clips in order to differentiate them from the supplementation fish (CWT/Right Red VIE/No Finclip). A total of 1,007 captive brood progeny smolts were PIT tagged to compare their outmigration with smolts from the supplementation program (1,010 tagged). Monitoring their survival and future releases to adult returns, along with future natural production levels, will determine the success or failure of this captive broodstock program.« less
ENERGY PRODUCTION AND RESIDENTIAL HEATING: TAXATION, SUBSIDIES, AND COMPARATIVE COSTS
This analysis is in support of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. It examines the effect of economic incentives on public and private decisions affecting energy production and us...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zollman, Richard L.; Eschler, Russell; Sealey, Shawn
2009-03-31
The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004, acclimation of Lostine River spring Chinook salmon smolts occurred from March 1, 2004 through to April 14, 2004 and a total of 250,249 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2002 egg source and included captive brood (133,781) and conventional (116,468) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2004 began May 10, the first Chinook was captured on May 19, 2004 and the last Chinook was captured on September 16, 2004. The weir and trap were removed on October 1, 2004. A total of 1,091 adult Chinook, including jacks, were captured during the season. The composition of the run included 299 natural origin fish and 792 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 46 natural and 69 hatchery supplementation adults were retained for broodstock and transported to Lookingglass Hatchery for holding and spawning, 537 adult Chinook were passed or transported above the weir to spawn naturally, and 447 hatchery origin adult Chinook were transported and outplanted in the Wallowa River and Bear Creek to spawn in underseeded habitat. Of the 107 adults retained (eight additional hatchery females were collected and then later returned to the Lostine River to spawn naturally) for broodstock at Lookingglass Hatchery, 22 natural females and 30 supplementation females were represented in spawning. These females produced a total of 221,889 eggs at fertilization. Eye-up was 94.9% which yielded a total of 210,661 conventional program eyed eggs. The fecundity averaged 4,267 eggs per female. These eggs were incubated and at Lookingglass Hatchery until eyed stage and then transferred to Oxbow Hatchery where they will be reared to the fingerling stage. They will then be transported back to LGH and reared to the smolt stage and then transported to the Lostine acclimation facility for release in the spring of 2006. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2006.« less
NASA Astrophysics Data System (ADS)
Noviandi, T. U. Z.; Kaswanto, R. L.; Arifin, H. S.
2017-10-01
Nowadays, Ciliwung River is facing problem of the settlement occupation in its riparian zones. This phenomenon caused ecological damage in riparian, so it can aggravate the disaster of annual flooding in Jakarta. As an effort to control this catastrophe, riparian landscape management of Ciliwung River is needed. Based on its topography, Ciliwung River is divided into three segments, there are the upstream, the midstream, and the downstream. Data shows that riparian in the midstream is the largest area, it covers more than 60% of the total riparian area. This segment is very important to be managed in order to reduce runoff towards the downstream. The method used was comparing many standards to get the ideal riparian width in the midstream, which is 50 m for urban areas and 100 m for outside the urban areas. Next method was analyzing spatially to get riparian landscape characteristic of Ciliwung River. The result showed that 37.11% of riparian zones in the midstream had occupied by settlement. Analysis of riparian function and utilization had held by using Analytical Hierarchy Process. Priority of riparian function in the midstream of Ciliwung River is production. This can be realized with the plan of community garden or inland fisheries. Riparian landscape management in the midstream aims to support the food consumption diversification, and maximize the function of water catchment and water retention in order to support the program of Water Sensitive Cities.
Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 1995-2002 Summary Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffnagle, Timothy; Carmichael, Richard; Noll, William
2003-12-01
The Grande Ronde Basin once supported large runs of chinook salmon Oncorhynchus tshawytscha and estimated peak escapements in excess of 10,000 occurred as recently as the late 1950's (U.S. Army Corps of Engineers 1975). Natural escapement declines in the Grande Ronde Basin have been severe and parallel those of other Snake River populations. Reduced productivity has primarily been attributed to increased mortality associated with downstream and upstream migration past eight dams and reservoirs in the Snake and Columbia rivers. Reduced spawner numbers, combined with human manipulation of previously important spawning and rearing habitat in the Grande Ronde Basin, have resultedmore » in decreased spawning distribution and population fragmentation of chinook salmon in the Grande Ronde Basin (Figure 1; Table 1). Escapement of spring/summer chinook salmon in the Snake River basin included 1,799 adults in 1995, less than half of the previous record low of 3,913 adults in 1994. Catherine Creek, Grande Ronde River and Lostine River were historically three of the most productive populations in the Grande Ronde Basin (Carmichael and Boyce 1986). However, productivity of these populations has been poor for recent brood years. Escapement (based on total redd counts) in Catherine Creek and Grande Ronde and Lostine rivers dropped to alarmingly low levels in 1994 and 1995. A total of 11, 3 and 16 redds were observed in 1994 in Catherine Creek, upper Grande Ronde River and Lostine River, respectively, and 14, 6 and 11 redds were observed in those same streams in 1995. In contrast, the maximum number of redds observed in the past was 505 in Catherine Creek (1971), 304 in the Grande Ronde River (1968) and 261 in 1956 in the Lostine River (Tranquilli et al 2003). Redd counts for index count areas (a standardized portion of the total stream) have also decreased dramatically for most Grande Ronde Basin streams from 1964-2002, dropping to as low as 37 redds in the 119.5 km in the index survey areas in 1995 from as high as 1,205 redds in the same area in 1969 (Table 1). All streams reached low points (0-6 redds in the index areas) in the 1990's, except those in which no redds were found for several years and surveys were discontinued, such as Spring, Sheep and Indian creeks which had a total of 109 redds in 1969. The Minam and Wenaha rivers are tributaries of the Grande Ronde River located primarily in wilderness areas. Chinook salmon numbers in these two streams (based on redd counts) also decreased dramatically beginning in the early 1970's (Table 1). Since then there have been a few years of increasing numbers of redds but counts have generally been 25-40% of the number seen in the 1960's. No hatchery fish have been released into either of these streams and we monitor them during spawning ground surveys for the presence of hatchery strays. These populations will be used as a type of control for evaluating our supplementation efforts in Catherine Creek, upper Grande Ronde River and Lostine River. In this way, we can attempt to filter out the effects of downstream variables, over which we have no control, when we interpret the results of the captive broodstock program as the F1 and F2 generations spawn and complete their life cycles in the wild. The Grande Ronde Basin Captive Broodstock Program was initiated because these chinook salmon populations had reached critical levels where dramatic and unprecedented efforts were needed to prevent extinction and preserve any future options for use of endemic fish for artificial propagation programs for recovery and mitigation. This program was designed to quickly increase numbers of returning adults, while maintaining the genetic integrity of each endemic population.« less
What is the real price of hydroelectric production on the Senegal River?
NASA Astrophysics Data System (ADS)
Raso, Luciano; Bader, Jean-Claude; Malaterre, Pierre-Olivier
2014-05-01
Manantali is an annual reservoir on the Senegal River, located in Mali and serving Senegal and Mauritania. The reservoir is used to regulate the flow for hydroelectric production, in the face of the extremely variable seasonal climate of the region. Manantali has been operative for about 10 years now, exceeding the planned production capacity. The economic benefit comes at a price. Before the dam's construction, the annual flood was the basis of flood recession agriculture, traditionally practiced by the local population. Hydroelectric production requires a more regular flow; therefore flow peaks that used to create the flood are now dumped in the reservoir. Floods are reduced because the current reservoir management privileges hydroelectric production to flood recession agriculture. Moreover, the local water authority is evaluating the construction of 6 more reservoirs, which will enhance even further the controllability of the river flow. This study assesses the externalities of energy production for the agricultural production, quantifying the reduction of flooded surface when energy production is maximized, or alternatively, the loss energy production to maintain a minimum sustainable flood. In addition, we examine the system reliability against extreme events, and how a better use of hydrological information can improve the present reservoir management, in order to find a win-win solution. In this study we employ Stochastic Dual Dynamic Programming (SDDP) methodology. SDDP is a leaner version of Stochastic Dynamic Programming (SDP). SDDP does not suffer of the "curse of dimensionality", and therefore it can be applied to larger systems. In this application we include in the model: i) A semi-distributed hydrological model, ii) the reservoir, iii) the hydraulic routing process within the catchment and from the reservoir to the floodplain.
NASA Astrophysics Data System (ADS)
Tremblay, J.-É.; Raimbault, P.; Garcia, N.; Lansard, B.; Babin, M.; Gagnon, J.
2014-09-01
The concentrations and elemental stoichiometry of particulate and dissolved pools of carbon (C), nitrogen (N), phosphorus (P) and silicon (Si) on the Canadian Beaufort Shelf during summer 2009 (MALINA program) were assessed and compared with those of surface waters provided by the Mackenzie river as well as by winter mixing and upwelling of upper halocline waters at the shelf break. Neritic surface waters showed a clear enrichment in dissolved and particulate organic carbon (DOC and POC, respectively), nitrate, total particulate nitrogen (TPN) and dissolved organic nitrogen (DON) originating from the river. Silicate as well as bulk DON and DOC declined in a near-conservative manner away from the delta's outlet, whereas nitrate dropped non-conservatively to very low background concentrations inside the brackish zone. By contrast, the excess of soluble reactive P (SRP) present in oceanic waters declined in a non-conservative manner toward the river outlet, where concentrations were very low and consistent with P shortage in the Mackenzie River. These opposite gradients imply that the admixture of Pacific-derived, SRP-rich water is necessary to allow phytoplankton to use river-derived nitrate and to a lesser extent DON. A coarse budget based on concurrent estimates of primary production shows that river N deliveries support a modest fraction of primary production when considering the entire shelf, due to the ability of phytoplankton to thrive in the subsurface chlorophyll maximum beneath the thin, nitrate-depleted river plume. Away from shallow coastal bays, local elevations in the concentration of primary production and dissolved organic constituents were consistent with upwelling at the shelf break. By contrast with shallow winter mixing, nutrient deliveries by North American rivers and upwelling relax surface communities from N limitation and permit a more extant utilization of the excess SRP entering through the Bering Strait. In this context, increased nitrogen supply by rivers and upwelling potentially alters the vertical distribution of the excess P exported into the North Atlantic.
JPSS Support to the Arctic Testbed
NASA Astrophysics Data System (ADS)
Layns, A. L.
2017-12-01
The Joint Polar Satellite System (JPSS) Proving Ground and Risk Reduction (PGRR) program facilitates initiatives to increase or improve the use and value of JPSS data products in user products, services, and application or service areas. Building on the success of the Fire and Smoke, River Ice and Flooding, and Sounding initiatives, the JPSS Arctic Initiative is the latest endeavor of the JPSS PGRR program to increase of the use of JPSS atmospheric and cryosphere products to improve NOAA's products and services in the Arctic. The major participants in the Arctic Initiative to date are the JPSS program office, National Ice Center (NIC), National Weather Service (NWS) Alaska Sea Ice Program (ASIP), and the National Environmental Satellite, Data, and Information Service (NESDIS) Center for Satellite Applications and Research (STAR). This paper will outline the initiative, the potential benefits of the JPSS data products in the Arctic, and the plans for a product demonstration in 2018 within the NOAA Arctic Testbed.
Publications - DDS 10 | Alaska Division of Geological & Geophysical Surveys
Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Alaska Products Interactive Interactive Map Alaska Tsunami Inundation Maps Keywords Coastal and River; Geologic
Umatilla Basin Natural Production Monitoring and Evaluation; 2003-2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Jesse D.M.; Contor, Craig C.; Hoverson, Eric
2005-10-01
The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). UBNPMEP is coordinated with two ODFW research projects that also monitor and evaluatemore » the success of the Umatilla Fisheries Restoration Plan. Our project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 19000500, Umatilla Hatchery M & E) and smolt outmigration (project No. 198902401, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects comprehensively monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. Table 1 outlines relationships with other BPA supported projects. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan (ODFW and CTUIR 2004), the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (Schwartz & Cameron Under Revision). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPPC 2004). The need for monitoring the natural production of salmonids in the Umatilla River Basin developed with the efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha) coho salmon and (O. kisutch) and enhance summer steelhead (O. mykiss). The need for restoration began with agricultural development in the early 1900's that extirpated salmon and reduced steelhead runs (BOR 1988). The most notable development was the construction and operation of Three-Mile Falls Dam (3MD) and other irrigation projects that dewatered the Umatilla River during salmon migrations. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and the Oregon Department of Fish and Wildlife (ODFW) developed the Umatilla Hatchery Master Plan to restore the historical fisheries in the basin. The plan was completed in 1990 and included the following objectives: (1) Establish hatchery and natural runs of Chinook and coho salmon. (2) Enhance existing summer steelhead populations through a hatchery program. (3) Provide sustainable tribal and non-tribal harvest of salmon and steelhead. (4) Maintain the genetic characteristics of salmonids in the Umatilla River Basin. (5) Produce almost 48,000 adult returns to Three-Mile Falls Dam. The goals were reviewed in 1999 and were changed to 31,500 adult salmon and steelhead returns (Table 2). We conduct core long-term monitoring activities each year as well as two and three-year projects that address special needs for adaptive management. Examples of these projects include adult passage evaluations (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998), genetic monitoring (Currens & Schreck 1995, Narum et al. 2004), and habitat assessment surveys (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998). Our project goal is to provide quality information to managers and researchers working to restore anadromous salmonids to the Umatilla River Basin. This is the only project that monitors the restoration of naturally producing salmon and steelhead in the basin.« less
Organic compounds in White River water used for public supply near Indianapolis, Indiana, 2002-05
Lathrop, Tim; Moran, Dan
2011-01-01
The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) characterized the occurrence of 277 organic compounds in source water (stream water collected before treatment) and finished water (treated water before distribution) from the White River North treatment plant, one of several community water systems that use the White River as its primary water supply (fig. 1). Samples were collected at least monthly during 2002-05 and included 30 source- and 13 finished-water samples. The samples were analyzed for pesticides and selected pesticide degradates (or 'breakdown products'), solvents, gasoline hydrocarbons, disinfection by-products, personal-care and domestic-use products, and other organic compounds. Community water systems are required to monitor for compounds regulated under the Safe Drinking Water Act. Most of the compounds tested in this study are not regulated under U.S. Environmental Protection Agency (USEPA) federal drinking-water standards (U.S. Environmental Protection Agency, 2007a). The White River study is part of the ongoing Source Water-Quality Assessment (SWQA) investigation of community water systems that withdraw from rivers across the United States. More detailed information and references on the sampling-design methodology, specific compounds monitored, and the national study are described by Carter and others (2007).
NASA Astrophysics Data System (ADS)
Enloe, Stephanie K.; Schulte, Lisa A.; Tyndall, John C.
2017-10-01
In recognition that Iowa agriculture must maintain long-term production of food, fiber, clean water, healthy soil, and robust rural economies, Iowa recently devised a nutrient reduction strategy to set objectives for water quality improvements. To demonstrate how watershed programs and farmers can reduce nutrient and sediment pollution in Iowa waters, the Iowa Water Quality Initiative selected the Boone River Watershed Nutrient Management Initiative as one of eight demonstration projects. For over a decade, diverse public, private, and non-profit partner organizations have worked in the Boone River Watershed to engage farmers in water quality management efforts. To evaluate social dynamics in the Boone River Watershed and provide partners with actionable recommendations, we conducted and analyzed semi-structured interviews with 33 program leaders, farmers, and local agronomists. We triangulated primary interview data with formal analysis of Boone River Watershed documents such as grant applications, progress reports, and outreach materials. Our evaluation suggests that while multi-stakeholder collaboration has enabled partners to overcome many of the traditional barriers to watershed programming, scale mismatches caused by external socio-economic and ecological forces still present substantial obstacles to programmatic resilience. Public funding restrictions and timeframes, for example, often cause interruptions to adaptive management of water quality monitoring and farmer engagement. We present our findings within a resilience framework to demonstrate how multi-stakeholder collaboration can help sustain adaptive watershed programs to improve socio-ecological function in agricultural watersheds such as the Boone River Watershed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, Richard W.
2003-03-01
Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, Richard W.
2003-03-01
Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, Richard W.
2003-07-01
Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2002.more » The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Project is designed to rapidly increase numbers of salmon in stocks that are in imminent danger of extirpation. Parr are captured in Catherine Creek, upper Grande Ronde River and Lostine River and reared to adulthood in captivity. Upon maturation, they are spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, the Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation.« less
Spokane Tribal Hatchery, 2005 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peone, Tim L.
2006-03-01
Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting harvestable fisheries for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). The Spokane Tribe, Washington Department of Fish and Wildlife, Colville Confederated Tribes and Lake Roosevelt Development Association/Lake Roosevelt Volunteer Net Pen Projectmore » are cooperating in a comprehensive artificial production program to produce kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) for annual releases into the project area. The program consists of the Spokane Tribal Hatchery, Sherman Creek Hatchery, Ford Trout Hatchery and Lake Roosevelt Rainbow Trout Net Pen Rearing Projects. The Lake Roosevelt and Banks Lake Fisheries Evaluation Program monitor and evaluates release strategies and production methods for the aforementioned projects. Between 1985 and 2005 the projects have collectively produced up to 800,000 rainbow trout and 4 million kokanee salmon for release into Lake Roosevelt and 1.4 million kokanee fry for Banks Lake annually. In 2005, the annual release goal included 3.3 million kokanee fry, 475,000 kokanee yearlings and 500,000 rainbow trout yearlings. Fish produced by this project in 2005 to meet collective fish production and release goals included: 3,446,438 kokanee fingerlings, 347,730 rainbow trout fingerlings and 525,721 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Meadow Creek and Lake Whatcom kokanee, diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2004 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to rainbow trout catch and harvest rates while the impact on the kokanee fishery was minimal. Success of the Lake Roosevelt kokanee artificial production program appears to be limited primarily owing to predation, precocity and high entrainment rates through Grand Coulee Dam. Recommendations for future hatchery/net pen operations include use of stocks compatible or native to the upper Columbia River, continue kokanee fry and post-smolt releases, 100% triploid hatchery stock rainbow trout used and adipose fin clip hatchery stock rainbow trout prior to release. The Spokane Tribal Hatchery is funded by the Bonneville Power Administration under directives by the Northwest Power Conservation Council Columbia River Basin Fish & Wildlife Program, Resident Fish Substitution Measures, 1987 to current (Subbasin Plan), as partial mitigation for anadromous and resident fish losses in the blocked areas above Chief Joseph and Grand Coulee Dams.« less
The key roles of four Experimental Forests in the LTSP International Research Program
Robert F. Powers; Robert Denner; John D. Elioff; Gary O. Fiddler; Deborah Page-Dumroese; Felix Ponder; Allan E. Tiarks; Peter E. Avers; Richard G. Cline; Nelson S. Loftus
2014-01-01
Four Experimental Forests were pivotal in piloting the long-term soil productivity (LTSP) cooperative research program - one of the most successful and extensive collaborative science efforts yet undertaken by the USDA Forest Service. Launched on the Palustris, Challenge, Marcell, and Priest River Experimental Forests, LTSP traces to a seminal discussion during a field...
2008-04-23
Kotler , P.M. (1997). Marketing management: Analysis, planning, implementation, and control. Upper Saddle River, NJ: Prentice Hall...needed to provide needed items. Production needed to be stable so suppliers could more easily meet demand ( Kotler , 1997, pp. 214-215). The Robotics
Agip oil discovery near Milan may fuel Italy's next expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-06-20
A promising crude oil discovery by Agip SpA just over 18 miles northwest of Milan could set Italy on course for another substantial expansion in oil production. Flow was boosted last year by the start-up of output from the country's biggest oil deposit, the Vega field offshore Sicily. Vega production is scheduled to reach a peak of 60,000 b/d, but the average production for 1988 is expected to be only 25,000 b/d because of water production problems. Italian crude-oil production averaged 80,137 b/d during 1987 with Agip contributing 47,260 b/d. This year output it projected to rise to more thanmore » 82,000 b/d. Development of Agip's new discovery is likely to be fraught with difficulties. The successful wildcat and the initial appraisal program was in a national park along the River Ticino, a tributary of the River Po.« less
Savannah River Laboratory quality assurance manual. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-02-01
The SRL quality assurance program is a management activity that verifies that the results of our research and development are adequate for their intended use and that our facilities function properly. The program is based on Savannah River Quality Assurance Plan (DPW-82-111-2, Rev 0) as applied through Quality Assurance Procedures and Divisional Plans (following section). The AED policy states that ''all activities shall be conducted to achieve a high quality of product and performance...'' The policy contains 18 considerations to be applied ''proportional to needs, based on the technical and professional judgment of responsible Du Pont employees.'' Quality is themore » responsibility of each individual and his line organization, as is safety. To ensure that quality is being considered for all SRL activities, all research programs are reviewed, and all facilities are assessed. These assessments and reviews are the nucleus of the Quality Assurance program.« less
Randell J. Rousseau; Emile S. Gardiner; Theodor D. Leininger
2012-01-01
Black willow (Salix nigra Marsh.) has the potential to be a significant feedstock source for bioenergy and biofuels production in the Lower Mississippi Alluvial Valley (LMAV). This potential is based on a number of primary factors including rapid growth, ease of vegetative propagation, excellent rooting, and the ability to regenerate from coppice...
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the average normalized atmospheric (wet) deposition, in kilograms, of Total Inorganic Nitrogen for the year 2002 compiled for every catchment of NHDPlus for the conterminous United States. Estimates of Total Inorganic Nitrogen deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the average normalized atmospheric (wet) deposition, in kilograms, of Ammonium (NH4) for the year 2002 compiled for every catchment of NHDPlus for the conterminous United States. Estimates of NH4 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the average normalized atmospheric (wet) deposition, in kilograms, of Nitrate (NO3) for the year 2002 compiled for every catchment of NHDPlus for the conterminous United States. Estimates of NO3 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Modeling the potential radionuclide transport by the Ob and Yenisey Rivers to the Kara Sea.
Paluszkiewicz, T; Hibler, L F; Richmond, M C; Bradley, D J; Thomas, S A
2001-01-01
A major portion of the former Soviet Union (FSU) nuclear program is located in the West Siberian Basin. Among the many nuclear facilities are three production reactors and the spent nuclear fuel reprocessing sites, Mayak, Tomsk-7, and Krasnoyarsk-26, which together are probably responsible for the majority of the radioactive contamination found in the Ob and Yenisey River systems that feed into the Arctic Ocean through the Kara Sea. This manuscript describes ongoing research to estimate radionuclide fluxes to the Kara Sea from these river systems. Our approach is to apply a hierarchy of simple models that use existing and forthcoming data to quantify the transport and fate of radionuclide contaminants via various environmental pathways. We present an initial quantification of the contaminant inventory, hydrology, meteorology, and sedimentology of the Ob River system and preliminary conclusions from portions of the Ob River model.
Web-Based 3D Technology for Scenario Authoring and Visualization: The Savage Project
2001-01-01
T. M., & Sadhu, P. (2001). XML How to Program . Upper Saddle River, New Jersey: Prentice Hall. Foley, J. D., van Dam, A., Feiner, S. K., & Hughes...Following graduation from NPS in September 2001, Major Nicklaus will be assigned to the Marine Air-Ground Task Force (MAGTF) Staff Training Program ...goal is to accelerate the worldwide demand for products based on these standards through the sponsorship of market and user education programs . The
Columbia River food webs: Developing a broader scientific foundation for river restoration
Alldredge, J. Richard; Beauchamp, David; Bisson, Peter A.; Congleton, James; Henny, Charles; Huntly, Nancy; Lamberson, Roland; Levings, Colin; Naiman, Robert J.; Pearcy, William; Rieman, Bruce; Ruggerone, Greg; Scarnecchia, Dennis; Smouse, Peter; Wood, Chris C.
2011-01-01
The objectives of this report are to provide a fundamental understanding of aquatic food webs in the Columbia River Basin and to illustrate and summarize their influences on native fish restoration efforts. The spatial scope addresses tributaries, impoundments, the free-flowing Columbia and Snake rivers, as well as the estuary and plume. Achieving the Council's vision for the Columbia River Fish and Wildlife Program (NPCC 2009-09) of sustaining a "productive and diverse community" that provides "abundant" harvest, is best accomplished through a time-prioritized action plan, one that complements other approaches while addressing important challenges and uncertainties related to the Basin's food webs. Note that the oceanic food webs, although of immense importance in sustaining fish populations, are not considered beyond the plume since they involve an additional set of complex and rapidly evolving issues. An analysis of oceanic food webs of relevance to the Columbia River requires a separately focused effort (e.g., Hoegh- Guldberg and Bruno 2010).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boe, Stephen J.; Lofy, Peter T.
2002-11-01
This is the second annual report of a multi-year, multi-agency project to restore spring chinook salmon populations in the Grande Ronde River Basin (Grande Ronde Endemic Chinook Salmon Program--GRESCP). The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operates adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to increase natural production and restore fisheries in these two streams. Statement of Work Objectives formore » 1999: (1) Participate in development and continued implementation of the comprehensive multi year operations plan for the Grande Ronde Endemic Supplementation Program. (2) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (3) Monitor adult endemic spring chinook salmon populations and collect broodstock. (4) Plan detailed Monitoring and Evaluation for future years. (5) Monitor population abundance and characteristics and local environmental factors that may influence abundance and run timing of Grande Ronde River spring chinook populations. (6) Participate in Monitoring and Evaluation of the captive brood component of the Program to assure this component is contributing to the Program. (7) Participate in data collection for incidentally-caught bull trout and summer steelhead and planning for recovery of summer steelhead populations. (8) Document accomplishments and needs to permitters, comanagers, and funding agencies. (9) Communicate project results to the scientific community.« less
King, Sammy L.; Twedt, Daniel J.; Wilson, R. Randy
2006-01-01
The Mississippi River Alluvial Valley includes the floodplain of the Mississippi River from Cairo, Illinois, USA, to the Gulf of Mexico. Originally this region supported about 10 million ha of bottomland hardwood forests, but only about 2.8 million ha remain today. Furthermore, most of the remaining bottomland forest is highly fragmented with altered hydrologic processes. During the 1990s landscape-scale conservation planning efforts were initiated for migratory birds and the threatened Louisiana black bear (Ursus americanus luteolus). These plans call for large-scale reforestation and restoration efforts in the region, particularly on private lands. In 1990 the Food, Agriculture, Conservation and Trade Act authorized the Wetlands Reserve Program (WRP). The WRP is a voluntary program administered by the United States Department of Agriculture that provides eligible landowners with financial incentives to restore wetlands and retire marginal farmlands from agricultural production. As of 30 September 2005, over 275,700 ha have been enrolled in the program in the Mississippi River Alluvial Valley, with the greatest concentration in Louisiana, Arkansas, and Mississippi, USA. Hydrologic restoration is common on most sites, with open-water wetlands, such as moist-soil units and sloughs, constituting up to 30% of a given tract. Over 33,200 ha of open-water wetlands have been created, potentially providing over 115,000,000 duck-use days. Twenty-three of 87 forest-bird conservation areas have met or exceed core habitat goals for migratory songbirds and another 24 have met minimum area requirements. The WRP played an integral role in the fulfillment of these goals. Although some landscape goals have been attained, the young age of the program and forest stands, and the lack of monitoring, has limited evaluations of the program's impact on wildlife populations.
1989-02-01
use of such commercial products . The D-sernes of reports includes publications of the Environmental Effects of Dredging Programs Dredging Operations...many, toxic contaminants are now seen to be a more important factor limit- ing biological productivity than more conventional contaminants such as...principal product of the HydroQual WLA study was a mathematical WLA model of the GCR/IHC system. To collect data necessary for calibration and
Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon
Lindholm, G.F.
1993-01-01
The 15,600 sq mi Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. Quaternary basalt of the Snake River Group underlies most of the 10,800 square mile eastern plain and constitutes the most productive aquifers. Transmissivity of the upper 200 feet of the basalt aquifer commonly ranges from 100,000 to 1,000,000 square feet per day. Vertical hydraulic conductivity is several orders of magnitude lower than horizontal hydraulic conductivity and is related to the degree of jointing. Alluvial sand and gravel in the Boise River valley constitutes the most productive aquifers in the 4,800 square mile western plain. Along much of its length, the Snake River gains groundwater. Between Milner and King Hill, the river gained 4.7 million acre-ft in 1980, most as spring flow from the north side. The chemical composition of groundwater in the plain is essentially the same as that in streams and ground- water from tributary drainage basins. The use of surface water for irrigation for 100 years has caused major changes in the hydrologic system on the plain. During that time, recharge on the main part of the eastern plain increased about 70 percent, discharge about 80 percent. In 1980, about 8.9 million acre-ft of Snake River water was diverted and 2.3 million acre-ft of groundwater was pumped from 5,300 wells for irrigation.
Global knowledge, local implications: a community college's response
NASA Astrophysics Data System (ADS)
Valentin, Marjorie R.; Stroup, Margaret H.; Donnelly, Judith F.
2005-10-01
Three Rivers Community College (TRCC), with federal funding, provided a customized laser program for Joining Technologies in Connecticut, which offers world-class resources for welding and joining applications. This program addresses the shortage of skilled labor in the laser arena, lack of knowledge of fundamental science of applied light, and an increase in nonperforming product. Hiring and retraining a skilled workforce are important and costly issues facing today's small manufacturing companies.
Sobczak, W.V.; Cloern, J.E.; Jassby, A.D.; Cole, B.E.; Schraga, T.S.; Arnsberg, A.
2005-01-01
Detritus from terrestrial ecosystems is the major source of organic matter in many streams, rivers, and estuaries, yet the role of detritus in supporting pelagic food webs is debated. We examined the importance of detritus to secondary productivity in the Sacramento and San Joaquin River Delta (California, United States), a large complex of tidal freshwater habitats. The Delta ecosystem has low primary productivity but large detrital inputs, so we hypothesized that detritus is the primary energy source fueling production in pelagic food webs. We assessed the sources, quantity, composition, and bioavailability of organic matter among a diversity of habitats (e.g., marsh sloughs, floodplains, tidal lakes, and deep river channels) over two years to test this hypothesis. Our results support the emerging principle that detritus dominates riverine and estuarine organic matter supply and supports the majority of ecosystem metabolism. Yet in contrast to prevailing ideas, we found that detritus was weakly coupled to the Delta's pelagic food web. Results from independent approaches showed that phytoplankton production was the dominant source of organic matter for the Delta's pelagic food web, even though primary production accounts for a small fraction of the Delta's organic matter supply. If these results are general, they suggest that the value of organic matter to higher trophic levels, including species targeted by programs of ecosystem restoration, is a function of phytoplankton production. ?? 2005 Estuarine Research Federation.
Hood River and Pelton Ladder Evaluation Studies, Annual Report 2000-2001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Erik
The Bonneville Power Administration (BPA) funded the development of two master plans which outline the rationale, and general approach, for implementing a defined group of projects that are an integral part of a comprehensive watershed goal to 'Protect, enhance and restore wild and natural populations of anadromous and resident fish within the Hood River Subbasin'. The Hood River Production Master Plan and the Pelton Ladder Master Plan were completed in 1991 and subsequently approved by the Northwest Power Planning Council in 1992. Action items identified in the two master plans, as well as in a later document entitled 'Hood River/Peltonmore » Ladder Master Agreement' (ODFW and CTWSRO Undated), are designed to achieve two biological fish objectives: (1) to increase production of wild summer and winter steelhead (Oncorhynchus mykiss) to levels commensurate with the subbasins current carrying capacity and (2) re-establishing a self-sustaining population of spring chinook salmon (Oncorhynchus tshawytscha). Numerical fish objectives for subbasin escapement, spawner escapement, and subbasin harvest are defined for each of these species in Coccoli (2000). Several projects are presently funded by the BPA to achieve the Hood River subbasin's numerical fish objectives for summer and winter steelhead and spring chinook salmon. They include BPA project numbers 1998-021-00 (Hood River Fish Habitat), 1998-053-03 (Hood River Production Program - CTWSRO: M&E), 1998-053-07 (Parkdale Fish Facility), 1998-053-08 (Powerdale/Oak Springs O&M), and 1998-053-12 (Hood River Steelhead Genetics Study). Collectively, they are implemented under the umbrella of what has come to be defined as the Hood River Production Program (HRPP). The HRPP is jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and The Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO). Strategies for achieving the HRPP's biological fish objectives for the Hood River subbasin were initially devised based on various assumptions about (1) subbasin carrying capacity, (2) survival rates for selected life history stages, and (3) historic and current escapements of wild, natural, and hatchery stocks of anadromous salmonids to the Hood River subbasin. The Oregon Department of Fish and Wildlife began funding a monitoring and evaluation (M&E) project in December 1991 to collect the quantitative biological information needed to (1) more accurately assess the validity of these assumptions and (2) evaluate the proposed hatchery supplementation component of the HRPP. Bonneville Power Administration assumed funding of the M&E project in August 1992. The M&E project was initially confined to sampling anadromous salmonids escaping to an adult trapping facility operated at Powerdale Dam; which is located at River Mile (RM) 4.5 on the mainstem of the Hood River. Stock specific life history and biological data was collected to (1) monitor subbasin spawner escapements and (2) collect pre-implementation data critical to evaluating the newly proposed HRPP's potential biological impact on indigenous populations of resident fish. The scope of the M&E project was expanded in 1994 to collect the data needed to quantify (1) subbasin smolt production and carrying capacity, (2) smolt to adult survival rates, and (3) the spatial distribution of indigenous populations of summer and winter steelhead, spring and fall chinook salmon, and coho salmon. A creel was incorporated into the M&E project in December 1996 to evaluate the HRPP with respect to its defined subbasin and spawner escapement objectives for Hood River stocks of wild and hatchery summer and winter steelhead and for natural and Deschutes stock hatchery spring chinook salmon. In 1996, the M&E project also began monitoring streamflow at various locations in the Hood River subbasin. Streamflow data will be used to correlate subbasin smolt production with summer streamflows. Data collected from 1991-1999 is reported in the following annual progress reports: Olsen et al. (1994), Olsen et al. (1995), Olsen and French (1996), Olsen et al. (1996), Olsen and French (1999), and Olsen and French (2000). The annual progress reports document information collected on (1) rearing densities of indigenous fish, (2) subbasin steelhead smolt production, (3) post-release survival of acclimated and direct released hatchery summer and winter steelhead smolts, (4) smolt to adult anadromous salmonid survival rates, (5) jack and adult anadromous salmonid escapements and harvest, (6) spatial distribution of adult anadromous salmonid holding in the Hood River subbasin, (7) selected life history patterns and morphological and meristic characteristics of wild, natural, and hatchery resident and anadromous salmonids, and (8) summer streamflows.« less
[Development and Use of Hidrosig
NASA Technical Reports Server (NTRS)
Gupta, Vijay K.; Milne, Bruce T.
2003-01-01
The NASA portion of this joint NSF-NASA grant consists of objective 2 and a part of objective 3. A major effort was made on objective 2, and it consisted of developing a numerical GIs environment called Hidrosig. This major research tool is being developed by the University of Colorado for conducting river-network-based scaling analyses of coupled water-energy-landform-vegetation interactions including water and energy balances, and floods and droughts, at multiple space-time scales.Objective 2: To analyze the relevant remotely sensed products from satellites, radars and ground measurements to compute the transported water mass for each complete Strahler stream using an 'assimilated water balance equation' at daily and other appropriate time scales. This objective requires analysis of concurrent data sets for Precipitation (PPT), Evapotranspiration (ET) and stream flows (Q) on river networks. To solve this major problem, our decision was to develop Hidrosig, a new Open-Source GIs software. A research group in Colombia, South America, developed the first version of Hidrosig, and Ricardo Mantilla was part of this effort as an undergraduate student before joining the graduate program at the University of Colorado in 2001. Hydrosig automatically extracts river networks from large DEMs and creates a "link-based" data structure, which is required to conduct a variety of analyses under objective 2. It is programmed in Java, which is a multi-platform programming language freely distributed by SUN under a GPL license. Some existent commercial tools like Arc-Info, RiverTools and others are not suitable for our purpose for two reasons. First, the source code is not available that is needed to build on the network data structure. Second, these tools use different programming languages that are not most versatile for our purposes. For example, RiverTools uses an IDL platform that is not very efficient for organizing diverse data sets on river networks. Hidrosig establishes a clear data organization framework that allows a simultaneous analysis of spatial fields along river network structures involving Horton- Strahler framework. Software tools for network extraction from DEMs and network-based analysis of geomorphologic and topologic variables were developed during the first year and a part of second year.
Assessing river health in Europe and Switzerland
NASA Astrophysics Data System (ADS)
Milano, Marianne; Chèvre, Nathalie; Reynard, Emmanuel
2017-04-01
River conditions and welfare of aquatic ecosystems are threatened by anthropogenic and climatic changes. The release of personal-care products, pharmaceuticals and crop protection products is increasing and climate change is likely to cause significant changes in hydrological regimes affecting water resources' capacity to dissolve pollutants. Assessing river health, i.e. the ability of a river to support and maintain a balanced ecosystem close to the natural habitat, is thus of major concern to ensure the development of ecosystems and to provide enough clean useable water to users. Such studies involve physical, chemical and biological processes and characteristics. In Europe and Switzerland, standardized procedures have been developed to assess the hydromorphological, ecological and toxicological status of rivers. The European Water Framework Directive sets ecological requirements and chemical guidelines while the Swiss Modular Stepwise Procedure suggests methods to apprehend ecological deficits and promote water management plans. In this study, both procedures were applied and compared in order (i) to address their capacity to follow-up the spatial and temporal variability of the river's water quality and (ii) to identify challenges that still need to be addressed to assess river's health. Applied on the Boiron River (canton of Vaud, Switzerland) for a 11-year period (2005-2015), both frameworks highlight that no section of the river currently meets a good environmental state. This river flows through a diversified agricultural area causing a progressive deterioration of its chemical and biological quality. The two methods also identify two periods of time with significant changes of the river's water quality. The 2009-2011 period is characterized by a significant deterioration of the river's ecological and toxicological state due to severe low flows and an increased use of pesticides. However, since 2013, an improvement in water quality is identified in relationship with spatial planning and landscaping projects and the first Swiss pilot crop protection product control program developed by the canton of Vaud with the support of the Swiss Confederation. Therefore, the Swiss and EU frameworks are useful tools to address the annual evolution of watercourses' quality but major challenges remain. They relate to (i) experts' training and monitoring, (ii) environmental target values and evaluation rules, (iii) the relationships between modules and (iv) the incorporation of water uses.
River-Based Experiential Learning: the Bear River Fellows Program
NASA Astrophysics Data System (ADS)
Rosenberg, D. E.; Shirley, B.; Roark, M. F.
2012-12-01
The Department of Civil and Environmental Engineering, Outdoor Recreation, and Parks and Recreation programs at Utah State University (USU) have partnered to offer a new, unique river-based experiential learning opportunity for undergraduates called the Bear River Fellows Program. The program allows incoming freshmen Fellows to experience a river first hand during a 5-day/4-night river trip on the nearby Bear River two weeks before the start of their first Fall semester. As part of the program, Fellows will navigate the Bear River in canoes, camp along the banks, interact with local water and environmental managers, collect channel cross section, stream flow, vegetation cover, and topological complexity data, meet other incoming freshmen, interact with faculty and graduate students, develop boating and leadership skills, problem solve, and participate as full members of the trip team. Subsequently, Fellows will get paid as undergraduate researchers during their Fall and Spring Freshman semesters to analyze, synthesize, and present the field data they collect. The program is a collaborative effort between two USU academic units and the (non-academic) division of Student Services and supports a larger National Science Foundation funded environmental modelling and management project for the lower Bear River, Utah watershed. We have advertised the program via Facebook and emails to incoming USU freshmen, received 35 applications (60% women), and accepted 5 Fellows into the program (3 female and 2 male). The river trip departs August 14, 2012. The poster will overview the Bear River Fellows Program and present qualitative and preliminary outcomes emerging from the trip and Fellows' work through the Fall semester with the field data they collect. We will also undertake more rigorous and longer longitudinal quantitative evaluation of Program outcomes (for example, in problem-solving and leadership) both in Spring 2013 and in subsequent 2013 and 2014 offerings of the program.
Tritium program at Chalk River Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.M.; Workman, W.J.; Kotzer, T.G.
1993-01-01
Control of tritium dispersal within and around the research and power stations of the Canadian nuclear program has always been recognized as particularly important because of the high production of tritium in heavy-water-moderated reactors. At the Chalk River Labs, (CRL), two major research reactors have operated for more than 30 yr. Over the years, emissions have been from 300 to 700 TBq/yr (8 to 19 kCi/yr) to the atmosphere and from 100 to 200 TBq/yr (3 to 5 kCi/yr) to local water systems. This results in concentrations in atmospheric moisture of [approximately]600 Bq/[ell] water in the immediate reactor area, 80more » Bq/[ell] at the exclusion area boundary (7 km distant), and 50 Bq/[ell] at the nearest downwind community (12 km).« less
Peterson, David A.
2009-01-01
Streams of the Yellowstone River Basin in Montana and Wyoming were sampled as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Algal communities were sampled in 1999 in conjunction with other ecological sampling and in 2000 during synoptic sampling. Water-quality measurements related to the algal sampling included light attenuation and dissolved-oxygen concentrations. Sites were sampled on the main-stem Yellowstone River, major tributaries such as the Clarks Fork Yellowstone River and the Bighorn River, and selected minor tributaries. Some of the data collected, such as the phytoplankton chlorophyll-a data, were referenced or summarized in previous U.S. Geological Survey reports but were not previously published in tabular form, and therefore are presented in this report, prepared in cooperation with the Montana Department of Environmental Quality. Data presented in this report include chlorophyll-a concentrations in phytoplankton and periphyton samples, as well as light attenuation and dissolved-oxygen production data from 1999-2000.
Long-term fish monitoring in large rivers: Utility of “benchmarking” across basins
Ward, David L.; Casper, Andrew F.; Counihan, Timothy D.; Bayer, Jennifer M.; Waite, Ian R.; Kosovich, John J.; Chapman, Colin; Irwin, Elise R.; Sauer, Jennifer S.; Ickes, Brian; McKerrow, Alexa
2017-01-01
In business, benchmarking is a widely used practice of comparing your own business processes to those of other comparable companies and incorporating identified best practices to improve performance. Biologists and resource managers designing and conducting monitoring programs for fish in large river systems tend to focus on single river basins or segments of large rivers, missing opportunities to learn from those conducting fish monitoring in other rivers. We briefly examine five long-term fish monitoring programs in large rivers in the United States (Colorado, Columbia, Mississippi, Illinois, and Tallapoosa rivers) and identify opportunities for learning across programs by detailing best monitoring practices and why these practices were chosen. Although monitoring objectives, methods, and program maturity differ between each river system, examples from these five case studies illustrate the important role that long-term monitoring programs play in interpreting temporal and spatial shifts in fish populations for both established objectives and newly emerging questions. We suggest that deliberate efforts to develop a broader collaborative network through benchmarking will facilitate sharing of ideas and development of more effective monitoring programs.
Northeast Oregon Hatchery Project, Final Siting Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Montgomery
1995-03-01
This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and directmore » release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.« less
Biological surveys on the Savannah River in the vicinity of the Savannah River Plant (1951-1976)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, R. A.
In 1951, the Academy of Natural Sciences of Philadelphia was contracted by the Savannah River Plant to initiate a long-term monitoring program in the Savannah River. The purpose of this program was to determine the effect of the Savannah River Plant on the Savannah River aquatic ecosystem. The data from this monitoring program have been computerized by the Savannah River Laboratory, and are summarized in this report. During the period from 1951-1976, 16 major surveys were conducted by the Academy in the Savannah River. Water chemistry analyses were made, and all major biological communities were sampled qualitatively during the springmore » and fall of each survey year. In addition, quantitative diatom data have been collected quarterly since 1953. Major changes in the Savannah River basin, in the Savannah River Plant's activities, and in the Academy sampling patterns are discussed to provide a historical overview of the biomonitoring program. Appendices include a complete taxonomic listing of species collected from the Savannah River, and summaries of the entire biological and physicochemical data base.« less
Carlson, Carl S.; Mondazzi, Remo A.; Bjerklie, David M.; Brown, Craig J.
2010-01-01
A study of the groundwater and stream-aquifer interaction in the Pootatuck River Basin, Newtown, Connecticut, was conducted to analyze the effect of production wells on the groundwater levels and streamflow in the Pootatuck River as part of a cooperative program between the U.S. Geological Survey and Newtown, Connecticut. This study will help address concerns about the increasing competition for water for human uses and protection of aquatic habitat. The groundwater-flow model developed in the study was designed for use as a tool to assist planners in assessing the effects of potential future development, which will change the amount and distribution of recharge available to the groundwater system. Several different techniques were used to investigate the interconnection between the stream and the aquifer. Temperature, groundwater levels, stream stage, and stable-isotope data collected during aquifer tests at the principal production wells in the Pootatuck River Basin, as well as groundwater-flow simulations of the system, indicate that more than half of the water pumped from the wells comes from the Pootatuck River. This finding potentially has a large effect on approaches for protecting the water quality of the pumped water. Increases in the amount of impervious surface from future development will reduce and redistribute recharge to the groundwater system. The simulation of future development scenarios showed a decrease in the simulated base flow in the main stem of the Pootatuck River and in all of the 26 simulated subbasins, with some of the subbasins showing a decrease of more than 20 percent when new development had 85 percent impervious area. The groundwater-flow model and particle tracking were used to determine areas that contribute recharge to the five production wells available for use in the Pootatuck River Basin. These areas included narrow portions of the aquifer that extended beyond the immediate upgradient areas, probably because of deeper groundwater-flow paths.
Venson, Graziela R; Marenzi, Rosemeri C; Almeida, Tito César M; Deschamps-Schmidt, Alexandre; Testolin, Renan C; Rörig, Leonardo R; Radetski, Claudemir M
2017-03-01
River or alluvial sand mining is causing a variety of environmental problems in the Itajaí-açú river basin in Santa Catarina State (south of Brazil). When this type of commercial activity degrades areas around rivers, environmental restoration programs need to be executed. In this context, the aim of this study was to assess the evolution of a restored riparian forest based on data on the soil microbial activity and plant biomass growth. A reference site and three sites with soil degradation were studied over a 3-year period. Five campaigns were performed to determine the hydrolysis of the soil enzyme fluorescein diacetate (FDA), and the biomass productivity was determined at the end of the studied period. The variation in the enzyme activity for the different campaigns at each site was low, but this parameter did differ significantly according to the site. Well-managed sites showed the highest biomass productivity, and this, in turn, showed a strong positive correlation with soil enzyme activity. In conclusion, soil enzyme activity could form the basis for monitoring and the early prediction of the success of vegetal restoration programs, since responses at the higher level of biological organization take longer, inhibiting the assessment of the project within an acceptable time frame.
Computer Software for Forestry Technology Curricula. Final Report.
ERIC Educational Resources Information Center
Watson, Roy C.; Scobie, Walter R.
Since microcomputers are being used more and more frequently in the forest products industry in the Pacific Northwest, Green River Community College conducted a project to search for BASIC language computer programs pertaining to forestry, and when possible, to adapt such software for use in teaching forestry technology. The search for applicable…
Konstantinou, Ioannis K; Hela, Dimitra G; Albanis, Triantafyllos A
2006-06-01
This review evaluates and summarizes the results of long-term research projects, monitoring programs and published papers concerning the pollution of surface waters (rivers and lakes) of Greece by pesticides. Pesticide classes mostly detected involve herbicides used extensively in corn, cotton and rice production, organophosphorus insecticides as well as the banned organochlorines insecticides due to their persistence in the aquatic environment. The compounds most frequently detected were atrazine, simazine, alachlor, metolachlor and trifluralin of the herbicides, diazinon, parathion methyl of the insecticides and lindane, endosulfan and aldrin of the organochlorine pesticides. Rivers were found to be more polluted than lakes. The detected concentrations of most pesticides follow a seasonal variation, with maximum values occurring during the late spring and summer period followed by a decrease during winter. Nationwide, in many cases the reported concentrations ranged in low ppb levels. However, elevated concentrations were recorded in areas of high pesticide use and intense agricultural practices. Generally, similar trends and levels of pesticides were found in Greek rivers compared to pesticide contamination in other European rivers. Monitoring of the Greek water resources for pesticide residues must continue, especially in agricultural regions, because the nationwide patterns of pesticide use are constantly changing. Moreover, emphasis should be placed on degradation products not sufficiently studied so far.
Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillson, Todd D.
2009-06-12
The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of thismore » species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively monitored. Planners recommended that a combination of natural and hatchery production would be the most likely way to produce the most rapid sustainable improvement in chum runs. Specifically, it was assumed that improving habitat conditions would promote efficient natural production, and that the most rapid way to rebuild the run would be to combine releases of an appropriate stock into the improved habitat. WDFW's recovery strategy for LCR chum salmon, as outlined in the WDFW Grays River and Washougal Hatchery Genetic Management Plans (HGMP), is as follows. First, determine if remnant populations of chum salmon exist in LCR tributaries. Second, if such populations exist, develop stock-specific recovery plans involving habitat restoration that include the creation of spawning refugias, supplementation where necessary, and a habitat and fish monitoring and evaluation plan.« less
Downgrade of the Savannah River Sites FB-Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
SADOWSKI, ED; YOURCHAK, RANDY; PRETZELLO MARJI
2005-07-05
This paper will discuss the Safeguards & Security (S&S) activities that resulted in the downgrade of the Savannah River Site's FB-Line (FBL) from a Category I Material Balance Area (MBA) in a Material Access Area (MAA) to a Category IV MBA in a Property Protection Area (PPA). The Safeguards activities included measurement of final product items, transferal of nuclear material to other Savannah River Site (SRS) facilities, discard of excess nuclear material items, and final measurements of holdup material. The Security activities included relocation and destruction of classified documents and repositories, decertification of a classified computer, access control changes, updatesmore » to planning documents, deactivation and removal of security systems, Human Reliability Program (HRP) removals, and information security training for personnel that will remain in the FBL PPA.« less
Environmental Information Document: L-reactor reactivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, H.E. Jr.
1982-04-01
Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program.
Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohler, Andre E.; Taki, Doug; Griswold, Robert G.
2004-08-01
In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project ismore » two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; and (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less
Snake River Sockeye Salmon Habitat and Limnological Research; 1999 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griswold, Robert G.; Taki, Doug; Lewis, Bert
2001-01-15
In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 1999 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less
Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohler, Andre E.; Taki, Doug; Griswold, Robert G.
2004-08-01
In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less
Snake River Sockeye Salmon Habitat and Limnological Research; 2000 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohler, Andre E.; Griswold, Robert G.; Taki, Doug
2002-12-01
In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2000 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less
Tran, Chinh C; Yanagida, John F; Saksena, Sumeet; Fox, Jefferson
2016-02-06
This study addresses the tradeoff between Vietnam's national poultry vaccination program, which implemented an annual two-round HPAI H5N1 vaccination program for the entire geographical area of the Red River Delta during the period from 2005-2010, and an alternative vaccination program which would involve vaccination for every production cycle at the recommended poultry age in high risk areas within the Delta. The ex ante analysis framework was applied to identify the location of areas with high probability of HPAI H5N1 occurrence for the alternative vaccination program by using boosted regression trees (BRT) models, followed by weighted overlay operations. Cost-effectiveness of the vaccination programs was then estimated to measure the tradeoff between the past national poultry vaccination program and the alternative vaccination program. Ex ante analysis showed that the focus areas for the alternative vaccination program included 1137 communes, corresponding to 50.6% of total communes in the Delta, and located primarily in the coastal areas to the east and south of Hanoi. The cost-effectiveness analysis suggested that the alternative vaccination program would have been more successful in reducing the rate of disease occurrence and the total cost of vaccinations, as compared to the national poultry vaccination program.
Tran, Chinh C.; Yanagida, John F.; Saksena, Sumeet; Fox, Jefferson
2016-01-01
This study addresses the tradeoff between Vietnam’s national poultry vaccination program, which implemented an annual two-round HPAI H5N1 vaccination program for the entire geographical area of the Red River Delta during the period from 2005–2010, and an alternative vaccination program which would involve vaccination for every production cycle at the recommended poultry age in high risk areas within the Delta. The ex ante analysis framework was applied to identify the location of areas with high probability of HPAI H5N1 occurrence for the alternative vaccination program by using boosted regression trees (BRT) models, followed by weighted overlay operations. Cost-effectiveness of the vaccination programs was then estimated to measure the tradeoff between the past national poultry vaccination program and the alternative vaccination program. Ex ante analysis showed that the focus areas for the alternative vaccination program included 1137 communes, corresponding to 50.6% of total communes in the Delta, and located primarily in the coastal areas to the east and south of Hanoi. The cost-effectiveness analysis suggested that the alternative vaccination program would have been more successful in reducing the rate of disease occurrence and the total cost of vaccinations, as compared to the national poultry vaccination program. PMID:29056716
Integrated Risk Index of Chemical Aquatic Pollution (IRICAP): case studies in Iberian rivers.
Fàbrega, Francesc; Marquès, Montse; Ginebreda, Antoni; Kuzmanovic, Maja; Barceló, Damià; Schuhmacher, Marta; Domingo, José L; Nadal, Martí
2013-12-15
The hazard of chemical compounds can be prioritized according to their PBT (persistence, bioaccumulation, toxicity) properties by using Self-Organizing Maps (SOM). The objective of the present study was to develop an Integrated Risk Index of Chemical Aquatic Pollution (IRICAP), useful to evaluate the risk associated to the exposure of chemical mixtures contained in river waters. Four Spanish river basins were considered as case-studies: Llobregat, Ebro, Jucar and Guadalquivir. A SOM-based hazard index (HI) was estimated for 205 organic compounds. IRICAP was calculated as the product of the HI by the concentration of each pollutant, and the results of all substances were aggregated. Finally, Pareto distribution was applied to the ranked lists of compounds in each site to prioritize those chemicals with the most significant incidence on the IRICAP. According to the HI outcomes, perfluoroalkyl substances, as well as specific illicit drugs and UV filters, were among the most hazardous compounds. Xylazine was identified as one of the chemicals with the highest contribution to the total IRICAP value in the different river basins, together with other pharmaceutical products such as loratadine and azaperol. These organic compounds should be proposed as target chemicals in the implementation of monitoring programs by regulatory organizations. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, Curtis M.
2003-05-01
This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second in a series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturallymore » spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2002 and March 31, 2003. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2002) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. Each chapter of this report deals with monitoring phenotypic and demographic traits of Yakima River basin spring chinook comparing hatchery and wild returns in 2002; the second year of adult hatchery returns. The first chapter deals specifically with adult traits of American River, Naches basin (excluding the American River), and upper Yakima River spring chinook, excluding gametes. The second chapter examines the gametic traits and progeny produced by upper Yakima River wild and hatchery origin fish. In the third chapter, we describe work begun initially in 2002 to characterize and compare redds of naturally spawning wild and hatchery fish in the upper Yakima River.« less
Harvey E. Kennedy
1990-01-01
Hardwood forests are some of the most productive timber and wildlife habitat sites in the United States. Because of their tremendous agricultural potential, most hardwood forests have been cleared, especially in the lower Mississippi River Valley. Many of these soils are now classified as highly erodible or subject to periodic flooding. The Conservation Reserve...
Congenital Malformations in River Buffalo (Bubalus bubalis)
Albarella, Sara; Ciotola, Francesca; D’Anza, Emanuele; Coletta, Angelo; Zicarelli, Luigi; Peretti, Vincenzo
2017-01-01
Simple Summary Congenital malformations (due to genetic causes) represent a hidden danger for animal production, above all when genetic selection is undertaken for production improvements. These malformations are responsible for economic losses either because they reduce the productivity of the farm, or because their spread in the population would decrease the total productivity of that species/breed. River buffalo is a species of increasing interest all over the world for its production abilities, as proved by the buffalo genome project and the genetic selection plans that are currently performed in different countries. The aim of this review is to provide a general view of different models of congenital malformations in buffalo and their world distribution. This would be useful either for those who performed buffalo genetic selection or for researchers in genetic diseases, which would be an advantage to their studies with respect to the knowledge of gene mutations and interactions in this species. Abstract The world buffalo population is about 168 million, and it is still growing, in India, China, Brazil, and Italy. In these countries, buffalo genetic breeding programs have been performed for many decades. The occurrence of congenital malformations has caused a slowing of the genetic progress and economic loss for the breeders, due to the death of animals, or damage to their reproductive ability or failing of milk production. Moreover, they cause animal welfare reduction because they can imply foetal dystocia and because the affected animals have a reduced fitness with little chances of survival. This review depicts, in the river buffalo (Bubalus bubalis) world population, the present status of the congenital malformations, due to genetic causes, to identify their frequency and distribution in order to develop genetic breeding plans able to improve the productive and reproductive performance, and avoid the spreading of detrimental gene variants. Congenital malformations most frequently reported in literature or signaled by breeders to the Department of Veterinary Medicine and Animal Production of the University Federico II (Naples, Italy) in river buffalo are: musculoskeletal defects (transverse hemimelia, arthrogryposis, umbilical hernia) and disorders of sexual development. In conclusion this review put in evidence that river buffalo have a great variety of malformations due to genetic causes, and TH and omphalocele are the most frequent and that several cases are still not reported, leading to an underestimation of the real weight of genetic diseases in this species. PMID:28208595
Wulff, Marissa L.; Brown, Larry R.
2015-01-01
After more than 50 years of extensive water diversion for urban and agriculture use, a major settlement was reached among the U.S. Departments of the Interior and Commerce, the Natural Resources Defense Council, and the Friant Water Users Authority in an effort to restore the San Joaquin River. The settlement received Federal court approval in October 2006 and established the San Joaquin River Restoration Program, a multi-agency collaboration between State and Federal agencies to restore and maintain fish populations, including Chinook salmon, in the main stem of the river between Friant Dam and the confluence with the Merced River. This is to be done while avoiding or minimizing adverse water supply effects to all of the Friant Division contractors that could result from restoration flows required by the settlement. The settlement stipulates that water- and sediment-quality data be collected to help assess the restoration goals. This report summarizes and evaluates water-quality data collected in the main stem of the San Joaquin River between Friant Dam and the Merced River by the U.S. Bureau of Reclamation for the San Joaquin River Restoration Program during 2009-11. This summary and assessment consider sampling frequency for adequate characterization of variability, sampling locations for sufficient characterization of the San Joaquin River Restoration Program restoration reach, sampling methods for appropriate media (water and sediment), and constituent reporting limits. After reviewing the water- and sediment-quality results for the San Joaquin River Restoration Program, several suggestions were made to the Fisheries Management Work Group, a division of the San Joaquin River Restoration Program that focuses solely on the reintroduction strategies and health of salmon and other native fishes in the river. Water-quality results for lead and total organic carbon exceeded the Surface Water Ambient Monitoring Program Basin Plan Objectives for the San Joaquin Basin, and results for copper exceeded the U.S. Environmental Protection Agency Office of Pesticide Programs' aquatic-life chronic and acute benchmarks for invertebrates. One sediment sample contained detections of pyrethroid pesticides bifenthrin, lambda-cyhalothrin, and total permethrin at concentrations above published chronic toxicity thresholds.
Pollution Problem in River Kabul: Accumulation Estimates of Heavy Metals in Native Fish Species.
Ahmad, Habib; Yousafzai, Ali Muhammad; Siraj, Muhammad; Ahmad, Rashid; Ahmad, Israr; Nadeem, Muhammad Shahid; Ahmad, Waqar; Akbar, Nazia; Muhammad, Khushi
2015-01-01
The contamination of aquatic systems with heavy metals is affecting the fish population and hence results in a decline of productivity rate. River Kabul is a transcountry river originating at Paghman province in Afghanistan and inters in Khyber Pakhtunkhwa province of Pakistan and it is the major source of irrigation and more than 54 fish species have been reported in the river. Present study aimed at the estimation of heavy metals load in the fish living in River Kabul. Heavy metals including chromium, nickel, copper, zinc, cadmium, and lead were determined through atomic absorption spectrophotometer after tissue digestion by adopting standard procedures. Concentrations of these metals were recorded in muscles and liver of five native fish species, namely, Wallago attu, Aorichthys seenghala, Cyprinus carpio, Labeo dyocheilus, and Ompok bimaculatus. The concentrations of chromium, nickel, copper, zinc, and lead were higher in both of the tissues, whereas the concentration of cadmium was comparatively low. However, the concentration of metals was exceeding the RDA (Recommended Dietary Allowance of USA) limits. Hence, continuous fish consumption may create health problems for the consumers. The results of the present study are alarming and suggest implementing environmental laws and initiation of a biomonitoring program of the river.
Annual Coded Wire Tag Program; Oregon Missing Production Groups, 1996 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Mark A.; Mallette, Christine; Murray, William M.
1998-03-01
This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife's Annual Coded Wire Tag Program - Oregon Missing Production Groups Project. Tule stock fall chinook were caught primarily in British Columbia and Washington ocean, and Oregon freshwater fisheries. Up-river bright stock fall chinook contributed primarily to Alaska and British Columbia ocean commercial, and Columbia River gillnet and other freshwater fisheries. Contribution of Rogue stock fall chinook released in the lower Columbia River occurred primarily in Oregon ocean commercial and Columbia river gillnet fisheries. Willamettemore » stock spring chinook contributed primarily to Alaska and British Columbia ocean commercial, Oregon freshwater sport and Columbia River gillnet fisheries. Willamette stock spring chinook released by CEDC contributed to similar fisheries as the same stocks released in the Willamette system. Up-river stocks of spring chinook contributed almost exclusively to Columbia River sport fisheries and other freshwater recovery areas. The up-river stocks of Columbia River summer steelhead contributed primarily to the Columbia River gillnet and other freshwater fisheries. Coho ocean fisheries from Washington to California were closed or very limited in 1994 and 1995 (1991 and 1992 broods). This has resulted in a greater average percent of catch for other fishery areas. Coho stocks released by ODFW below Bonneville Dam contributed mainly to Oregon and Washington ocean, Columbia Gillnet and other freshwater fisheries. Coho stocks released in the Klaskanine River and Youngs Bay area had much higher contribution to gillnet fisheries than the other coho releases. Coho stocks released above Bonneville Dam contributed to the same fisheries as those released below Bonneville Dam. Survival rates of salmon and steelhead are influenced, not only by factors in the hatchery (disease, density, diet, size and time of release) but also by environmental factors in the river and ocean. These environmental factors are controlled by large scale weather patterns such as El Nino over which man has no influence. Changes in rearing conditions in the hatchery, over which man has some influence, do impact the survival rates. However, these impacts can be offset by impacts caused by environmental factors. Brood years of salmon and steelhead that were in the ocean during the 1983 El Nino event exhibited poor survival all along the Pacific coast of California, Oregon, and Washington. However, stocks of chinook and coho that entered the ocean in the fall of 1984 following the El Nino experienced remarkably improved survival rates. In some instances, tule fall chinook experienced survival rates almost ten times higher than for the previous brood years of the same stock. Coho salmon released in the Columbia River generally experience better survival rates when released later in the spring. However, for the 1990 brood year June releases of Columbia River coho had much lower survival than May releases, for all ODFW hatcheries. In general survival of ODFW Columbia River hatchery coho has declined to low levels since the 1989 brood year.« less
Growth and smolting in lower-mode Atlantic Salmon stocked into the Penobscot River, Maine
Zydlewski, Joseph D.; O'Malley, Andrew; Cox, Oliver; Ruksznis, Peter; Trial, Joan G.
2014-01-01
Restoration of Atlantic Salmon Salmo salar in Maine has relied on hatchery-produced fry and smolts for critical stocking strategies. Stocking fry minimizes domestication selection, but these fish have poor survival. Conversely, stocked smolts have little freshwater experience but provide higher adult returns. Lower-mode (LM) fish, those not growing fast enough to ensure smolting by the time of stocking, are a by-product of the smolt program and are an intermediate hatchery product. From 2002 to 2009, between 70,000 and 170,000 marked LM Atlantic Salmon were stocked into the Pleasant River (a tributary in the Penobscot River drainage, Maine) in late September to early October. These fish were recaptured as actively migrating smolts (screw trapping), as nonmigrants (electrofishing), and as returning adults to the Penobscot River (Veazie Dam trap). Fork length (FL) was measured and a scale sample was taken to retrospectively estimate FL at winter annulus one (FW1) using the intercept-corrected direct proportion model. The LM fish were observed to migrate as age-1, age-2, and infrequently as age-3 smolts. Those migrating as age-1 smolts had a distinctly larger estimated FL at FW1 (>112 mm) than those that remained in the river for at least one additional year. At the time of migration, age-2 and age-3 smolts were substantially larger than age-1 smolts. Returning adult Atlantic Salmon of LM origin had estimated FLs at FW1 that corresponded to smolt age (greater FL for age 1 than age 2). The LM product produces both age-1 and age-2 smolts that have greater freshwater experience than hatchery smolts and may have growth and fitness advantages. The data from this study will allow managers to better assess the probability of smolting age and manipulate hatchery growth rates to produce a targeted-size LM product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, Curtis
2004-05-01
This is the third in a series of annual reports that address reproductive ecological research and comparisons of hatchery and wild origin spring chinook in the Yakima River basin. Data have been collected prior to supplementation to characterize the baseline reproductive ecology, demographics and phenotypic traits of the unsupplemented upper Yakima population, however this report focuses on data collected on hatchery and wild spring chinook returning in 2003; the third year of hatchery adult returns. This report is organized into three chapters, with a general introduction preceding the first chapter and summarizes data collected between April 1, 2003 and Marchmore » 31, 2004 in the Yakima basin. Summaries of each of the chapters in this report are included below. A major component of determining supplementation success in the Yakima Klickitat Fishery Project's spring chinook (Oncorhynchus tshawytscha) program is an increase in natural production. Within this context, comparing upper Yakima River hatchery and wild origin fish across traits such as sex ratio, age composition, size-at-age, fecundity, run timing and gamete quality is important because these traits directly affect population productivity and individual fish fitness which determine a population's productivity.« less
Melis, Theodore S.; Hamill, John F.; Bennett, Glenn E.; Coggins,, Lewis G.; Grams, Paul E.; Kennedy, Theodore A.; Kubly, Dennis M.; Ralston, Barbara E.
2010-01-01
Since the 1980s, four major science and restoration programs have been developed for the Colorado River Basin to address primarily the conservation of native fish and other wildlife pursuant to the Endangered Species Act (ESA): (1) Recovery Implementation Program for Endangered Fish Species in the Upper Colorado River Basin (commonly called the Upper Colorado River Endangered Fish Recovery Program) (1988); (2) San Juan River Basin Recovery Implementation Program (1992); (3) Glen Canyon Dam Adaptive Management Program (1997); and (4) Lower Colorado River Multi-Species Conservation Program (2005). Today, these four programs, the efforts of which span the length of the Colorado River, have an increasingly important influence on water management and resource conservation in the basin. The four efforts involve scores of State, Federal, and local agencies; Native American Tribes; and diverse stakeholder representatives. The programs have many commonalities, including similar and overlapping goals and objectives; comparable resources and threats to those resources; and common monitoring, research, and restoration strategies. In spite of their commonalities, until recently there had been no formal opportunity for information exchange among the programs. To address this situation, the U.S. Geological Survey (USGS) worked in coordination with the four programs and numerous Federal and State agencies to organize the first Colorado River Basin Science and Resource Management Symposium, which took place in Scottsdale, AZ, in November 2008. The symposium's primary purpose was to promote an exchange of information on research and management activities related to the restoration and conservation of the Colorado River and its major tributaries. A total of 283 managers, scientists, and stakeholders attended the 3-day symposium, which included 87 presentations and 27 posters. The symposium featured plenary talks by experts on a variety of topics, including overviews of the four restoration programs, water-management actions aimed at restoring native fish habitat, climate change, assessments of the status of native and nonnative fish populations, and Native American perspectives. Intermixed with plenary talks were four concurrent technical sessions that addressed the following important topics: (1) effects of dam and reservoir operations on downstream physical and biological resources; (2) native fish propagation and genetic management and associated challenges in co-managing native and nonnative fish in the Colorado River; (3) monitoring program design, case studies, and links to management; and (4) riparian system restoration, monitoring, and exotic species control efforts.
Fernández-Gómez, Cristal; López-López, José Antonio; Matamoros, Victor; Díez, Sergi; García-Vargas, Manuel; Moreno, Carlos
2013-04-01
In the lower Guadalquivir river basin, a system stressed by a wide variety of anthropogenic activities, eight pesticides (four triazines, two chloroacetanilide herbicides, one organochlorine, and one organophosphorus insecticide); and four emerging pollutants (two personal care products, one organophosphorous flame retardant, and one xanthine alkaloid) were analyzed in river water during a 2-year monitoring program, and after rain episodes. Samples were extracted using the solid phase extraction (SPE) technique prior to determination of compounds using gas chromatograph coupled to a mass spectrometer detector. Except for caffeine, recoveries were mostly above 80 %, while limits of detection and quantification were in the low nanograms per liter level (except for dimethoate). Terbuthylazine, simazine (triazine herbicides), and dimethoate (organophosphorus insecticide), present in agrochemicals, were predominant in the river water, although concentrations were below the quality standards established by the EU Water-Framework-Directive. A general trend to increase concentration was observed after rain events, in particular for pesticides, possibly as a consequence of surface runoff.
From academic to applied: Operationalising resilience in river systems
NASA Astrophysics Data System (ADS)
Parsons, Melissa; Thoms, Martin C.
2018-03-01
The concept of resilience acknowledges the ability of societies to live and develop with dynamic environments. Given the recognition of the need to prepare for anticipated and unanticipated shocks, applications of resilience are increasing as the guiding principle of public policy and programs in areas such as disaster management, urban planning, natural resource management, and climate change adaptation. River science is an area in which the adoption of resilience is increasing, leading to the proposition that resilience may become a guiding principle of river policy and programs. Debate about the role of resilience in rivers is part of the scientific method, but disciplinary disunity about the ways to approach resilience application in policy and programs may leave river science out of the policy process. We propose six elements that need to be considered in the design and implementation of resilience-based river policy and programs: rivers as social-ecological systems; the science-policy interface; principles, capacities, and characteristics of resilience; cogeneration of knowledge; adaptive management; and the state of the science of resilience.
Instrumentation of the Red River Bridge at Boyce, Louisiana : final report.
DOT National Transportation Integrated Search
1991-01-01
The report describes the instrumentation program of Red River Bridge at Boyce, Louisiana. The objectives of the program were to measure and evaluate time-dependent deformations, deflections, and temperatures of the Red River Bridge superstructure. To...
Instrumentation of the Red River Bridge at Boyce, Louisiana : final report.
DOT National Transportation Integrated Search
1988-08-01
The report describes the instrumentation program of Red River Bridge at Boyce, Louisiana. The objectives of the program were to measure and evaluate time-dependent deformations, deflections, and temperatures of the Red River Bridge superstructure. To...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.
2008-12-17
Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangeredmore » under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997; Pravecek and Johnson 1997; Pravecek and Kline 1998; Kline and Heindel 1999; Hebdon et al. 2000; Flagg et al. 2001; Kline and Willard 2001; Frost et al. 2002; Hebdon et al. 2002; Hebdon et al. 2003; Kline et al. 2003a; Kline et al. 2003b; Willard et al. 2003a; Willard et al. 2003b; Baker et al. 2004; Baker et al. 2005; Willard et al. 2005; Baker et al. 2006; Plaster et al. 2006; Baker et al. 2007). The immediate goal of the program is to utilize captive broodstock technology to conserve the population's unique genetics. Long-term goals include increasing the number of individuals in the population to address delisting criteria and to provide sport and treaty harvest opportunity. (1) Develop captive broodstocks from Redfish Lake sockeye salmon, culture broodstocks and produce progeny for reintroduction. (2) Determine the contribution hatchery-produced sockeye salmon make toward avoiding population extinction and increasing population abundance. (3) Describe O. nerka population characteristics for Sawtooth Valley lakes in relation to carrying capacity and broodstock program reintroduction efforts. (4) Utilize genetic analysis to discern the origin of wild and broodstock sockeye salmon to provide maximum effectiveness in their utilization within the broodstock program. (5) Transfer technology through participation in the technical oversight committee process, provide written activity reports, and participate in essential program management and planning activities. Idaho Department of Fish and Game's participation in the Snake River Sockeye Salmon Captive Broodstock Program includes two areas of effort: (1) sockeye salmon captive broodstock culture, and (2) sockeye salmon research and evaluations. Although objectives and tasks from both components overlap and contribute to achieving the same goals, work directly related to sockeye salmon captive broodstock research and enhancement will appear under a separate cover. Research and enhancement activities associated with Snake River sockeye salmon are permitted under NOAA permit numbers 1120, 1124, and 1481. This report details fish culture information collected between January 1 and December 31, 2007.« less
The Airborne Ocean Color Imager - System description and image processing
NASA Technical Reports Server (NTRS)
Wrigley, Robert C.; Slye, Robert E.; Klooster, Steven A.; Freedman, Richard S.; Carle, Mark; Mcgregor, Lloyd F.
1992-01-01
The Airborne Ocean Color Imager was developed as an aircraft instrument to simulate the spectral and radiometric characteristics of the next generation of satellite ocean color instrumentation. Data processing programs have been developed as extensions of the Coastal Zone Color Scanner algorithms for atmospheric correction and bio-optical output products. The latter include several bio-optical algorithms for estimating phytoplankton pigment concentration, as well as one for the diffuse attenuation coefficient of the water. Additional programs have been developed to geolocate these products and remap them into a georeferenced data base, using data from the aircraft's inertial navigation system. Examples illustrate the sequential data products generated by the processing system, using data from flightlines near the mouth of the Mississippi River: from raw data to atmospherically corrected data, to bio-optical data, to geolocated data, and, finally, to georeferenced data.
Code of Federal Regulations, 2010 CFR
2010-10-01
... skins and fur skin products of bobcat, river otter, Canada lynx, gray wolf, and brown bear? 23.69... skins and fur skin products of bobcat, river otter, Canada lynx, gray wolf, and brown bear? (a) U.S. and...), river otter (Lontra canadensis), and Canada lynx (Lynx canadensis), and the Alaskan populations of gray...
Code of Federal Regulations, 2011 CFR
2011-10-01
... skins and fur skin products of bobcat, river otter, Canada lynx, gray wolf, and brown bear? 23.69... skins and fur skin products of bobcat, river otter, Canada lynx, gray wolf, and brown bear? (a) U.S. and...), river otter (Lontra canadensis), and Canada lynx (Lynx canadensis), and the Alaskan populations of gray...
Code of Federal Regulations, 2013 CFR
2013-10-01
... skins and fur skin products of bobcat, river otter, Canada lynx, gray wolf, and brown bear? 23.69... skins and fur skin products of bobcat, river otter, Canada lynx, gray wolf, and brown bear? (a) U.S. and...), river otter (Lontra canadensis), and Canada lynx (Lynx canadensis), and the Alaskan populations of gray...
Annual Coded Wire Tag Program; Oregon Missing Production Groups, 1997 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Mark A.; Mallette, Christine; Murray, William M.
1998-03-01
This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife's Annual Coded Wire Tag Program - Oregon Missing Production Groups Project. Tule stock fall chinook were caught primarily in British Columbia and Washington ocean, and Oregon freshwater fisheries. Up-river bright stock fall chinook contributed primarily to Alaska and British Columbia ocean commercial, and Columbia River gillnet and other freshwater fisheries. Contribution of Rogue stock fall chinook released in the lower Columbia River occurred primarily in Oregon ocean commercial and Columbia river gillnet fisheries. Willamettemore » stock spring chinook contributed primarily to Alaska and British Columbia ocean commercial, Oregon freshwater sport and Columbia River gillnet fisheries. Willamette stock spring chinook released by CEDC contributed to similar ocean fisheries, but had much higher catch in gillnet fisheries than the same stocks released in the Willamette system. Up-river stocks of spring chinook contributed almost exclusively to Columbia River sport fisheries and other freshwater recovery areas. The up-river stocks of Columbia River summer steelhead contributed primarily to the Columbia River gillnet and other freshwater fisheries. Coho ocean fisheries from Washington to California were closed or very limited from 1994 through 1997 (1991 through 1994 broods). This has resulted in a greater average percent of catch for other fishery areas. Coho stocks released by ODFW below Bonneville Dam contributed mainly to Oregon and Washington ocean, Columbia Gillnet and other freshwater fisheries. Coho stocks released in the Klaskanine River and Youngs Bay area had similar ocean catch, but much higher contribution to gillnet fisheries than the other coho releases. Coho stocks released above Bonneville Dam had similar contribution to ocean fisheries as other coho releases. However, they contributed more to gillnet fisheries above Bonneville Dam than coho released below the dam. Survival rates of salmon and steelhead are influenced, not only by factors in the hatchery (disease, density, diet, size and time of release) but also by environmental factors in the river and ocean. These environmental factors are influenced by large scale weather patterns such as El Nino over which man has no influence. Changes in rearing conditions in the hatchery, over which man has some influence, do impact the survival rates. However, these impacts can be offset by impacts caused by environmental factors. Coho salmon released in the Columbia River generally experience better survival rates when released later in the spring. However, for the 1990 brood year June releases of Columbia River coho had much lower survival than May releases, for all ODFW hatcheries. In general survival of ODFW Columbia River hatchery coho has declined to low levels since the 1989 brood year. In an effort to evaluate photonic marking as a tool to mass mark salmonids, two groups of 1995 brood juvenile coho salmon were marked at Sandy Hatchery. The first group (Group A) received a fluorescent red mark, adipose fin clip and coded-wire tag. The second group (Group B) received a cryptic blue mark, adipose fin clip and coded-wire tag. Both groups were released in the spring of 1997. No photonic marks were detected in the precocious males (jacks) returning to Sandy hatchery in the fall of 1997.« less
Egg deposition by lithophilic-spawning fishes in the Detroit and Saint Clair Rivers, 2005–14
Prichard, Carson G.; Craig, Jaquelyn M.; Roseman, Edward F.; Fischer, Jason L.; Manny, Bruce A.; Kennedy, Gregory W.
2017-03-14
A long-term, multiseason, fish egg sampling program conducted annually on the Detroit (2005–14) and Saint Clair (2010–14) Rivers was summarized to identify where productive fish spawning habitat currently exists. Egg mats were placed on the river bottom during the spring and fall at historic spawning areas and candidate fish spawning habitat restoration sites throughout both rivers. Widespread evidence was found of lithophilic spawning by numerous native fish species, including walleye (Sander vitreus), lake whitefish (Coregonus clupeaformis), lake sturgeon (Acipenser fulvescens), suckers (Catostomidae spp.), and trout-perch (Percopsis omiscomaycus). Walleye, lake whitefish, and suckers spp. spawned in nearly every region of each river in all years on both reef and nonreef substrates. Lake sturgeon eggs were collected almost exclusively over constructed reefs. Catch-per-unit effort of walleye, lake whitefish, and sucker eggs was much greater in the Detroit River than in the Saint Clair River, while Saint Clair River sites supported the greatest collections of lake sturgeon eggs. Collections during this study of lake sturgeon eggs on man-made spawning reefs suggest that artificial reefs may be an effective tool for restoring fish populations in the Detroit and Saint Clair Rivers; however, the quick response of lake sturgeon to spawn on newly constructed reefs and the fact that walleye, lake whitefish, and sucker eggs were often collected over substrate with little interstitial space to protect eggs from siltation and predators suggests that lack of suitable spawning habitat may continue to limit reproduction of lithophilic-spawning fish species in the Saint Clair-Detroit River System.
Pollution Problem in River Kabul: Accumulation Estimates of Heavy Metals in Native Fish Species
Ahmad, Habib; Yousafzai, Ali Muhammad; Siraj, Muhammad; Ahmad, Rashid; Ahmad, Israr; Nadeem, Muhammad Shahid; Ahmad, Waqar; Akbar, Nazia; Muhammad, Khushi
2015-01-01
The contamination of aquatic systems with heavy metals is affecting the fish population and hence results in a decline of productivity rate. River Kabul is a transcountry river originating at Paghman province in Afghanistan and inters in Khyber Pakhtunkhwa province of Pakistan and it is the major source of irrigation and more than 54 fish species have been reported in the river. Present study aimed at the estimation of heavy metals load in the fish living in River Kabul. Heavy metals including chromium, nickel, copper, zinc, cadmium, and lead were determined through atomic absorption spectrophotometer after tissue digestion by adopting standard procedures. Concentrations of these metals were recorded in muscles and liver of five native fish species, namely, Wallago attu, Aorichthys seenghala, Cyprinus carpio, Labeo dyocheilus, and Ompok bimaculatus. The concentrations of chromium, nickel, copper, zinc, and lead were higher in both of the tissues, whereas the concentration of cadmium was comparatively low. However, the concentration of metals was exceeding the RDA (Recommended Dietary Allowance of USA) limits. Hence, continuous fish consumption may create health problems for the consumers. The results of the present study are alarming and suggest implementing environmental laws and initiation of a biomonitoring program of the river. PMID:26339622
NASA Astrophysics Data System (ADS)
Douglas, M. M.; Bunn, S. E.; Davies, P. M.
2005-05-01
The tropical rivers of northern Australia are internationally recognised for their high ecological and cultural values. They have largely unmodified flow regimes and are comparatively free of the impacts associated with intensive land use. However, there is growing demand for agricultural development and existing pressures, such as weeds and feral animals, threaten their ecological integrity. Using the international literature to provide a conceptual framework and drawing on limited published and unpublished data on rivers in northern Australia, we have derived five general principles about food webs and related ecosystem processes that both characterise tropical rivers of northern Australia and have important implications for their management. These are: (1) Seasonal hydrology is a strong driver of ecosystem processes and food web structure; (2) Hydrological connectivity is largely intact and underpins important terrestrial-aquatic food web subsidies; (3) River and wetland food webs are strongly dependent on algal production; (4) A few common macroconsumers species have a strong influence on benthic food webs; (5) Omnivory is widespread and food chains are short. These principles have implications for the management and protection of tropical rivers and wetlands of northern Australia and provide a framework for the formation of testable hypotheses in future research programs.
Nonnative Fishes in the Upper Mississippi River System
Irons, Kevin S.; DeLain, Steven A.; Gittinger, Eric; Ickes, Brian S.; Kolar, Cindy S.; Ostendort, David; Ratcliff, Eric N.; Benson, Amy J.; Irons, Kevin S.
2009-01-01
The introduction, spread, and establishment of nonnative species is widely regarded as a leading threat to aquatic biodiversity and consequently is ranked among the most serious environmental problems facing the United States today. This report presents information on nonnative fish species observed by the Long Term Resource Monitoring Program on the Upper Mississippi River System a nexus of North American freshwater fish diversity for the Nation. The Long Term Resource Monitoring Program, as part of the U.S. Army Corps of Engineers' Environmental Management Plan, is the Nation's largest river monitoring program and stands as the primary source of standardized ecological information on the Upper Mississippi River System. The Long Term Resource Monitoring Program has been monitoring fish communities in six study areas on the Upper Mississippi River System since 1989. During this period, more than 3.5 million individual fish, consisting of 139 species, have been collected. Although fish monitoring activities of the Long Term Resource Monitoring Program focus principally on entire fish communities, data collected by the Program are useful for detecting and monitoring the establishment and spread of nonnative fish species within the Upper Mississippi River System Basin. Sixteen taxa of nonnative fishes, or hybrids thereof, have been observed by the Long Term Resource Monitoring Program since 1989, and several species are presently expanding their distribution and increasing in abundance. For example, in one of the six study areas monitored by the Long Term Resource Monitoring Program, the number of established nonnative species has increased from two to eight species in less than 10 years. Furthermore, contributions of those eight species can account for up to 60 percent of the total annual catch and greater than 80 percent of the observed biomass. These observations are critical because the Upper Mississippi River System stands as a nationally significant pathway for nonnative species expansion between the Mississippi River and the Great Lakes Basin. This report presents a synthesis of data on nonnative fish species observed during Long Term Resource Monitoring Program monitoring activities.
McCarthy, Peter M.
2006-01-01
The Yellowstone River is very important in a variety of ways to the residents of southeastern Montana; however, it is especially vulnerable to spilled contaminants. In 2004, the U.S. Geological Survey, in cooperation with Montana Department of Environmental Quality, initiated a study to develop a computer program to rapidly estimate instream travel times and concentrations of a potential contaminant in the Yellowstone River using regression equations developed in 1999 by the U.S. Geological Survey. The purpose of this report is to describe these equations and their limitations, describe the development of a computer program to apply the equations to the Yellowstone River, and provide detailed instructions on how to use the program. This program is available online at [http://pubs.water.usgs.gov/sir2006-5057/includes/ytot.xls]. The regression equations provide estimates of instream travel times and concentrations in rivers where little or no contaminant-transport data are available. Equations were developed and presented for the most probable flow velocity and the maximum probable flow velocity. These velocity estimates can then be used to calculate instream travel times and concentrations of a potential contaminant. The computer program was developed so estimation equations for instream travel times and concentrations can be solved quickly for sites along the Yellowstone River between Corwin Springs and Sidney, Montana. The basic types of data needed to run the program are spill data, streamflow data, and data for locations of interest along the Yellowstone River. Data output from the program includes spill location, river mileage at specified locations, instantaneous discharge, mean-annual discharge, drainage area, and channel slope. Travel times and concentrations are provided for estimates of the most probable velocity of the peak concentration and the maximum probable velocity of the peak concentration. Verification of estimates of instream travel times and concentrations for the Yellowstone River requires information about the flow velocity throughout the 520 mi of river in the study area. Dye-tracer studies would provide the best data about flow velocities and would provide the best verification of instream travel times and concentrations estimated from this computer program; however, data from such studies does not currently (2006) exist and new studies would be expensive and time-consuming. An alternative approach used in this study for verification of instream travel times is based on the use of flood-wave velocities determined from recorded streamflow hydrographs at selected mainstem streamflow-gaging stations along the Yellowstone River. The ratios of flood-wave velocity to the most probable velocity for the base flow estimated from the computer program are within the accepted range of 2.5 to 4.0 and indicate that flow velocities estimated from the computer program are reasonable for the Yellowstone River. The ratios of flood-wave velocity to the maximum probable velocity are within a range of 1.9 to 2.8 and indicate that the maximum probable flow velocities estimated from the computer program, which corresponds to the shortest travel times and maximum probable concentrations, are conservative and reasonable for the Yellowstone River.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prod'homme, A.; Drouvot, O.; Gregory, J.
In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) atmore » the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order to support the enhancement program in DWPF by providing unified metrics to measure plant performances, identify bottleneck location, and rank the most time consuming causes from objective data shared between the different groups belonging to the organization. Beyond OEE, the Visual Management tool adapted from the one used at La Hague were also provided in order to further enhance communication within the operating teams. As a result of all the initiatives implemented on DWPF, achieved production has been increased to record rates from FY10 to FY11. It is expected that thanks to the performance management tools now available within DWPF, these results will be sustained and even improved in the future to meet system plan targets. (authors)« less
Pesticides in surface water in the lower Illinois River basin, 1996-98
King, Robin B.
2003-01-01
Surface-water quality samples were collected from April 1996 to September 1998 from eight locations in the Lower Illinois River Basin, a study unit of the U.S. Geological Survey?s National Water-Quality Assessment program. The study area is approximately 15,600 square miles and encompasses most of central and western Illinois. The dominant land use is agricultural and most land is used for the production of corn and soybeans. About 6.9 million acres of corn and soybeans are planted annually in the lower Illinois River Basin. Conservation tillage, defined as mulch-till and no-till, is used on about 40 percent of the cropland in the study area, similar to the statewide average. Nearly 90 percent of the samples for pesticide analyses were collected at four sites: the Illinois River at Ottawa, the Illinois River at Valley City, the La Moine River at Colmar, and the Sangamon River at Monticello. Two hundred fifty-eight samples were collected and analyzed for various herbicides, insecticides, and herbicide transformation products (also referred to as degradates). Thirty-one pesticides were detected at concentrations above their respective method detection limit: 23 herbicides and 8 insecticides. An additional set of 34 samples was collected in the summer of 1998 for the analysis of herbicide transformation products. Nine herbicide transformation products were detected, all belonging to the chloroacetanilide or the triazine chemical class. Two herbicides, atrazine and cyanazine, exceeded the associated human health drinking-water criteria and the aquatic health-criteria. Atrazine was detected in all samples. Sixty percent of the samples (48 of 80) collected in the months of May and June had atrazine concentrations that exceeded the clean drinking- water standard of 3 micrograms per liter (mg/L). The average atrazine concentration in the May to June samples was about 7.0 mg/L. The maximum atrazine concentrations were 110 mg/L in the La Moine River at Colmar and 32 mg/L in the Sangamon River at Monticello. The maximum atrazine concentration in the lower Illinois River was 20 mg/L, measured at Valley City, although most of the relatively elevated concentrations in the Illinois River sites were in the range from 5 to 8 mg/L. The concentrations of the herbicide cyanazine exceeded the health advisory guideline of 1 mg/L in about 19 percent (15 of 80) of the May to June samples. The pesticides chlorpyrifos, diazinon, metolachlor, and 2,4-D exceeded aquatic health guidelines at various times from May to August. Three dominant factors that affect the presence of pesticides in streams are identified: the pesticide usage, the time-of-year (or season), and the flow condition. The pesticides with the highest usage--atrazine, metolachlor, cyanazine, and acetochlor--generally were the pesticides detected most frequently and at the highest concentrations. Notable exceptions to this general observation are alachlor and simazine, which did not have high usage but were detected frequently. The elevated pesticide concentrations were most affected by seasonality--most of these elevated concentrations were observed across all flow conditions during May to June. Flow conditions also affect pesticide concentrations, but not as much as seasonality. The maximum pesticide loads were observed between March and July on the Illinois River. The net contribution of pesticides applied in the study area to net increases in load indicates that only about 1-2 percent of the pesticides applied exit the basin through the Illinois River at Valley City. The chloroacetanilide-class transformation products observed in samples collected in summer 1998 persistently contained elevated concentrations relative to the associated parent pesticide compound at all locations and for all streamflow conditions. The concentration of the transformation product metolachlor ethane sulfonic acid (ESA) usually was about 10 times higher than the parent compound in the mainstem of the lower
Field trip guidebook to the hydrogeology of the Rock-Fox River basin of Southeastern Wisconsin
Holt, C. L. R.; Cotter, R.D.; Green, J.H.; Olcott, P.G.
1970-01-01
On this trip we will examine some hydrogeologic characteristics of glacial features and emphasize ground-water management within the Rock-Fox River basin. Field stops will include the hydrogeology of a classical glacial terrane--the Kettle moraine--and the management of ground-water resources for industrial, municipal, agricultural, and fish-culture purposes. Descriptions of the geology, soils, water availability and characteristics, water quality, water use, and water problems within the basin are given in the accompanying U.S. Geological Survey Hydrologic Atlas (HA-360). This atlas is a product of the cooperative program of University Extension--the University of Wisconsin Geological and Natural History Survey.
Simulation of blue and green water resources in the Wei River basin, China
NASA Astrophysics Data System (ADS)
Xu, Z.; Zuo, D.
2014-09-01
The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool), calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program) based on river discharge in the Wei River basin (WRB). Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit) scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain), one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.
Pfenning, K.S.; McMahon, P.B.
1997-01-01
A study conducted in 1994 as part of the US Geological Survey's National Water-Quality Assessment Program, South Platte River Basin investigation, examined the effect of certain environmental factors on potential denitrification rates in nitrate-rich riverbed sediments. The acetylene block technique was used to measure nitrous oxide (N2O) production rates in laboratory incubations of riverbed sediments to evaluate the effect of varying nitrate concentrations, organic carbon concentrations and type, and water temperature on potential denitrification rates. Sediment incubations amended with nitrate, at concentrations ranging from 357 to 2142 ??mol l-1 (as measured in the field), produced no significant increase (P > 0.05) in N2O production rates, indicating that the denitrification potential in these sediments was not nitrate limited. In contrast, incubations amended with acetate as a source of organic carbon, at concentrations ranging from 0 to 624 ??mol l-1, produced significant increases (P < 0.05) in N2O production rates with increased organic carbon concentration, indicating that the denitrification potential in these sediments was organic carbon limited. Furthermore, N2O production rates also were affected by the type of organic carbon available as an electron donor. Acetate and surface-water-derived fulvic acid supported higher N2O production rates than groundwater-derived fulvic acid or sedimentary organic carbon. Lowering incubation temperatures from 22 to 4??C resulted in about a 77% decrease in the N2O production rates. These results help to explain findings from previous studies indicating that only 15-30% of nitrate in groundwater was denitrified before discharging to the South Platte River and that nitrate concentrations in the river generally were higher in winter than in summer.
Duck Valley Resident Fish Stocking Program, 2000 Final Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson, Guy; Pero, Vincent
The Shoshone-Paiute Tribes fish-stocking program was begun in 1988 and is intended to provide a subsistence fishery for the tribal members. The program stocks catchable and fingerling size trout in Mt. View and Sheep Creek Reservoirs. Rainbow trout are purchased from only certified disease-free facilities to be stocked in our reservoirs. This project will help restore a fishery for tribal members that historically depended on wild salmon and steelhead in the Owyhee and Bruneau Rivers and their tributaries for their culture as well as for subsistence. This project is partial substitution for loss of anadromous fish production due to constructionmore » and operation of hydroelectric dams on the Columbia and Snake Rivers. Until anadromous fish can be returned to the Owyhee and Bruneau Rivers this project will continue indefinitely. As part of this project the Shoshone-Paiute Tribes will also receive income in the form of fees from non-tribal members who come to fish these reservoirs. Regular monitoring and evaluation of the fishery will include sampling for length/weight/condition and for signs of disease. A detailed Monitoring and evaluation plan has been put in place for this project. However due to budget limitations on this project only the fishery surveys and limited water quality work can be completed. A creel survey was initiated in 1998 and we are following the monitoring and evaluation schedule for this program (as budget allows) as well as managing the budget and personnel. This program has been very successful in the past decade and has provided enjoyment and sustenance for both tribal and non-tribal members. All biological data and stocking rates will be including in the Annual reports to Bonneville Power Administration (BPA).« less
1975-03-01
in the affected area ia moderate. Mlost losses of stream fishing would be replaced by reservoir fishing which would have much greater productivity ...cousidered positive. Projected needs make some allowance for technological changes but the relatively minor influence of water oln product ion (osts would...ieq and Ro.tri ng River Lake Projec t.; ~aro’ shown in labia’ S. Reddies River Lake. Plan A-2, with a benefit- ’ost rat lo of I .1 would product - net
PCB concentrations in Pere Marquette River and Muskegon River watersheds, 2002
Fogarty, Lisa R.
2005-01-01
Polychlorinated biphenyl compounds (PCBs) are a class of209 individual compounds (known as congeners) for which there are no known natural sources. PCBs are carcinogenic and bioaccumulative compounds. For over 40 years, PCBs were manufactured in the United States. The flame resistant property of PCBs made them ideal chemicals for use as flame-retardants, and as coolants and lubricants in transformers and other electrical equipment. PCBs were also used in heating coils, carbonless paper, degreasers, varnishes, lacquers, waterproofing material, and cereal boxes. In addition, they were frequently used in the manufacturing of plastics, adhesives, and paints.During the manufacturing period of PCBs, these chemicals entered the environment though atmospheric release during manufacturing and burning of PCB products, leaks and spills, and improper disposal. Although PCB manufacturing was banned over 20 years ago, PCBs still enter the environment from hazardous waste sites, improper disposals of PCB-containing products, weathering of asphalt and other substances containing PCBs, burning of PCB containing products, leakage from old equipment, leaching from landfills, and release from contaminated sediments. PCBs do not readily break down in the environment, thus remain there for long periods of time. A small amount may remain dissolved in water but most adhere to organic particles and bottom sediments.In sufficient concentrations, PCBs affect human, wildlife, and aquatic health. PCBs accumulate in fatty tissues of animals and fish and are passed on to those that eat them. PCBs are animal teratogens and potentially carcinogenic. They can cause death of animals, fish, and birds; death or low growth rate of plants; shortened lifespan; reproductive problems; and lower fertility. Women who are exposed to high levels of PCBs may have babies with slightly lower birth weights and transfer the PCBs through the breast milk, which may affect the immune system and motor development of the child. Rule 323.1057 (Toxic Substances) of the Part 4. Water Quality Standards gives procedure for calculating water-quality values to protect human, wildlife and aquatic life. For total PCB, the applicable Rule 57 water-quality value is the human cancer value (HCV=0.26 ng/L),In 2002, U. S. Geological Survey (USGS) and Michigan Department of Environmental Quality (MDEQ) cooperatively planned and executed a monitoring program for PCBs in water and sediment from the Pere Marquette River and Muskegon River watersheds. The Pere Marquette and Muskegon River are in the west central part of Michigan's Lower Peninsula (fig. 1). The Pere Marquette River watershed is about 750 square miles, and the Muskegon River is about 2700 square miles. Both rivers are popular recreational waters, and the Pere Marquette River is a Michigan designated Natural River (Part 305 of the Natural Rivers and Environmental Protection Act 451 of 1994).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... 1117-AB28 Schedules of Controlled Substances: Exempted Prescription Product; River Edge Pharmaceutical... new applications for exemption. DEA has received one new application for exemption for River Edge... application for exemption pursuant to the provisions of 21 CFR 1308.32 for: River Edge Pharmaceutical's...
NASA Astrophysics Data System (ADS)
Denaro, Simona; Dinh, Quang; Bizzi, Simone; Bernardi, Dario; Pavan, Sara; Castelletti, Andrea; Schippa, Leonardo; Soncini-Sessa, Rodolfo
2013-04-01
Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation, and flood risk mitigation. Reservoir operations are commonly planned in order to maximize these objectives. However reservoirs strongly influence river geomorphic processes causing sediment deficit downstream, altering the flow regime, leading, often, to process of river bed incision: for instance the variations of river cross sections over few years can notably affect hydropower production, flood mitigation, water supply strategies and eco-hydrological processes of the freshwater ecosystem. The river Po (a major Italian river) has experienced severe bed incision in the last decades. For this reason infrastructure stability has been negatively affected, and capacity to derive water decreased, navigation, fishing and tourism are suffering economic damages, not to mention the impact on the environment. Our case study analyzes the management of Isola Serafini hydropower plant located on the main Po river course. The plant has a major impact to the geomorphic river processes downstream, affecting sediment supply, connectivity (stopping sediment upstream the dam) and transport capacity (altering the flow regime). Current operation policy aims at maximizing hydropower production neglecting the effects in term of geomorphic processes. A new improved policy should also consider controlling downstream river bed incision. The aim of this research is to find suitable modeling framework to identify an operating policy for Isola Serafini reservoir able to provide an optimal trade-off between these two conflicting objectives: hydropower production and river bed incision downstream. A multi-objective simulation-based optimization framework is adopted. The operating policy is parameterized as a piecewise linear function and the parameters optimized using an interactive response surface approach. Global and local response surface are comparatively assessed. Preliminary results show that a range of potentially interesting trade-off policies exist able to better control river bed incision downstream without significantly decreasing hydropower production.
NASA Astrophysics Data System (ADS)
Domagalski, J. L.
2016-12-01
Drought or near drought conditions have occurred in California since 2012. Although some parts of the State received near normal precipitation in water year 2016, other locations were still below average. Extended drought can impact aquatic organisms in a variety of ways because of decreased flows and elevated water temperature. However, lower precipitation and availability of irrigation water may limit subsequent runoff, resulting in reduced concentrations and loads of certain environmental toxicants, such as pesticides and ammonia, thereby limiting their toxic effects. In this study, funded by the U.S. Geological Survey National Water Quality Program, the occurrence of 227 pesticides and degradation products, and nutrients was assessed before and during this current drought in the two largest rivers draining to the San Francisco Bay: the Sacramento and San Joaquin Rivers. The watersheds of both rivers include substantial agricultural and urban land use. Herbicides, insecticides, fungicides, and ammonia were detected throughout the study (2010 to 2016) and models of daily concentration using the seasonal wave model (rloadest) were formulated to assess the amount of time that concentrations may have exceeded benchmark levels known to be toxic to aquatic organisms. Frequently detected pesticides included the fungicide azoxystrobin, herbicides or their degradation products such as diuron, glyphosate, and metolachlor, and insecticides such as imidacloprid. Compounds that are transported primarily by surface runoff generally showed decreasing concentrations as the drought progressed, especially in the San Joaquin River. Compounds mainly transported by groundwater, as indicated by seasonal concentration profiles, had more stable concentrations in the rivers. Mass loads to the Bay all decreased, as expected, because of the lower river discharge. When compared to aquatic-life benchmarks, modeled concentrations indicated that individual compounds were not contributing to toxicity to zooplankton, non-vascular plants, or fish at these two locations where most of the fresh water inputs to this estuary occurs.
Domagalski, Joseph L.
1999-01-01
Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada, east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation are known to occur in stagnant wetland environments that have high dissolved carbon.Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation a
Counihan, Timothy D.; Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.
2018-01-01
Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers.
Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian S.; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.
2018-01-01
Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers. PMID:29364953
Risk assessment of nonylphenol and its ethoxylates in U.S. river water and sediment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, J.A.; Adams, W.J.; Guiney, P.D.
1994-12-31
A comprehensive program addressing the risks of nonylphenol (NP) and its ethoxylates (NPE) in aquatic environments of the United States has been undertaken by the Alkyl Phenol Ethoxylates Panel of the Chemical Manufacturers Association cooperating with EPA. Several hundred million pounds of NPE surfactants are used in the US each year. Nonylphenol can be an intermediate product of degradation of nonylphenol ethoxylates. A survey of those river reaches most likely to contain NPE and NP residues was conducted based on a random sample of a subset of the EPA River Reach File defined by certain selection criteria. Applying enhanced analyticalmore » techniques, little or no NP and NPE were found in river water at most locations, while low levels were usually detected in sediment. Acute and chronic toxicity tests using a variety of organisms have also been completed. New results are presented for shrimp, fish, tadpoles, midges, and algae. The risk of NP to the aquatic environment is examined by comparison of observed levels with toxicity benchmarks, and by application of equilibrium partitioning theory to calculate sediment interstitial chemical concentrations.« less
NASA Astrophysics Data System (ADS)
Bekri, Eleni; Yannopoulos, Panayotis; Disse, Markus
2014-05-01
The Alfeios River plays a vital role for Western Peloponnisos in Greece from natural, ecological, social and economic aspect. The main river and its six tributaries, forming the longest watercourse and the highest streamflow rate of Peloponnisose, represent a significant source of water supply for the region, aiming at delivering and satisfying the expected demands from a variety of water users, including irrigation, drinking water supply, hydropower production and recreation. In the previous EGU General Assembly, a fuzzy-boundary-interval linear programming methodology, based on Li et al. (2010) and Bekri et al. (2012), has been presented for optimal water allocation under uncertain and vague system conditions in the Alfeios River Basin. Uncertainties associated with the benefit and cost coefficient in the objective function of the main water uses (hydropower production and irrigation) were expressed as probability distributions and fuzzy boundary intervals derived by associated α-cut levels. The uncertainty of the monthly water inflows was not incorporated in the previous initial application and the analysis of all other sources of uncertainty has been applied to two extreme hydrologic years represented by a selected wet and dry year. To manage and operate the river system, decision makers should be able to analyze and evaluate the impact of various hydrologic scenarios. In the present work, the critical uncertain parameter of water inflows is analyzed and its incorporation as an additional type of uncertainty in the suggested methodology is investigated, in order to enable the assessment of optimal water allocation for hydrologic and socio-economic scenarios based both on historical data and projected climate change conditions. For this purpose, stochastic simulation analysis for a part of the Alfeios river system is undertaken, testing various stochastic models from simple stationary ones (AR and ARMA), Thomas-Fiering, ARIMA as well as more sophisticated and complete such as CASTALIA. A short description and comparison of their assumptions, the differences between them and the presentation of the results are included. Li, Y.P., Huang, G.H. and S.L., Nie, (2010), Planning water resources management systems using a fuzzy boundary interval-stochastic programming method, Elsevier Ltd, Advances in Water Resources, 33: 1105-1117. doi:10.1016/j.advwatres.2010.06.015 Bekri, E.S., Disse, M. and P.C.,Yannopoulos, (2012), Methodological framework for correction of quick river discharge measurements using quality characteristics, Session of Environmental Hydraulics - Hydrodynamics, 2nd Common Conference of Hellenic Hydrotechnical Association and Greek Committee for Water Resources Management, Volume: 546-557 (in Greek).
NASA Astrophysics Data System (ADS)
Si, Y.; Li, X.; Li, T.; Huang, Y.; Yin, D.
2016-12-01
The cascade reservoirs in Upper Yellow River (UYR), one of the largest hydropower bases in China, play a vital role in peak load and frequency regulation for Northwest China Power Grid. The joint operation of this system has been put forward for years whereas has not come into effect due to management difficulties and inflow uncertainties, and thus there is still considerable improvement room for hydropower production. This study presents a decision support framework incorporating long- and short-term operation of the reservoir system. For long-term operation, we maximize hydropower production of the reservoir system using historical hydrological data of multiple years, and derive operating rule curves for storage reservoirs. For short-term operation, we develop a program consisting of three modules, namely hydrologic forecast module, reservoir operation module and coordination module. The coordination module is responsible for calling the hydrologic forecast module to acquire predicted inflow within a short-term horizon, and transferring the information to the reservoir operation module to generate optimal release decision. With the hydrologic forecast information updated, the rolling short-term optimization is iterated until the end of operation period, where the long-term operating curves serve as the ending storage target. As an application, the Digital Yellow River Integrated Model (referred to as "DYRIM", which is specially designed for runoff-sediment simulation in the Yellow River basin by Tsinghua University) is used in the hydrologic forecast module, and the successive linear programming (SLP) in the reservoir operation module. The application in the reservoir system of UYR demonstrates that the framework can effectively support real-time decision making, and ensure both computational accuracy and speed. Furthermore, it is worth noting that the general framework can be extended to any other reservoir system with any or combination of hydrological model(s) to forecast and any solver to optimize the operation of reservoir system.
The Savannah River Site's Groundwater Monitoring Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.
Flow status of three transboundary rivers in Northern Greece as a tool for hydro-diplomacy
NASA Astrophysics Data System (ADS)
Hatzigiannakis, Eyaggelos; Hatzispiroglou, Ioannis; Arampatzis, Georgios; Ilia, Andreas; Pantelakis, Dimitrios; Filintas, Agathos; Panagopoulos, Andreas
2015-04-01
The aim of this paper is to examine how the river flow monitoring consists a tool for hydro-diplomacy. Management of transboundary catchments and the demand of common water resources, often comprise the cause of conflicts and tension threatening the peaceful coexistence of nations. The Water Framework Directive 2000/60/EU sets a base for water management contributing to common approaches, common goals, common principles as well as providing new definitions and measures for Europe's water resources. In northern Greece the main renewable resources are "imported" (over 25% of its water reserves) and for this reason the implementation of continuous flow measurements throughout the year is necessary, even though difficult to achieve. This paper focuses on the three largest transboundary rivers in Northern Greece. Axios and Strymonas river flow across the region of Central Macedonia in Northern Greece. Axios flows from FYROM to Greece, and Strymonas from Bulgaria to Greece. Nestos river flows from Bulgaria to Greece. The Greek part is in the region of Eastern Macedonia and Thrace in Northern Greece. Significant productive agricultural areas around these rivers are irrigated from them so they are very important for the local society. Measurements of the river flow velocity and the flow depth have been made at bridges. The frequency of the measurements is roughly monthly, because it is expected a significant change in the depth flow and discharge. A series of continuously flow measure-ments were performed during 2013 and 2014 using flowmeters (Valeport and OTT type). The cross-section characteristics, the river flow velocity of segments and the mean water flow velocity and discharge total profile were measured and calculated re-spectively. Measurements are conducted in the framework of the national water resources monitoring network, which is realised in compliance to the Water Framework Directive under the supervision and coordination of the Hellenic Ministry for the Environment and Climate Change. This project is elaborated in the framework of the operational program "Environment and Sustainable Development" which is co-funded by the National Strategic Reference Framework (NSRF) and the Public Investment Program (PIP).
The Savannah River Site`s Groundwater Monitoring Program. First quarter 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.
Montgomery Point Lock and Dam, White River, Arkansas
2016-01-01
ER D C/ CH L TR -1 6- 1 Monitoring Completed Navigation Projects (MCNP) Program Montgomery Point Lock and Dam, White River, Arkansas Co...Navigation Projects (MCNP) Program ERDC/CHL TR-16-1 January 2016 Montgomery Point Lock and Dam, White River, Arkansas Allen Hammack, Michael Winkler, and...20314-1000 Under MCNP Work Unit: Montgomery Point Lock and Dam, White River, Arkansas ERDC/CHL TR-16-1 ii Abstract Montgomery Point Lock and
Pfrimmer, Jarrett; Gigliotti, Larry M.; Stafford, Joshua; Schumann, David; Bertrand, Katie
2017-01-01
The Conservation Reserve Enhancement Program (CREP) targets high-priority conservation needs (e.g., water quality, wildlife habitat) by paying landowners an annual rental rate to remove environmentally sensitive or agriculturally unproductive lands from rowcrop production, and then implement conservation practices on these lands. This study examined motivations of South Dakota landowners for enrolling in the James River Basin CREP. All 517 newly enrolled landowners were mailed a questionnaire in 2014 measuring demographics, behaviors, opinions, and motivations (60% response rate). Cluster analysis of 10 motivations for enrolling identified three motivation groups (wildlife = 40%, financial = 35%, environmental = 25%). The financial group had the youngest mean age (62 years), followed by the wildlife (65) and environmental groups (68). Among respondents, 43% favored the public access requirement of this CREP with the environmental group most in favor. Understanding landowner enrollment motivations and decision criteria will assist in strategies (e.g., financial incentives, increasing yield via habitat restoration) for increasing future participation.
We applied an Index of Biotic Integrity (IBI) used on the Upper Mississippi River (UMR) to compare data from three sampling programs. Ability to use multiple sampling programs could greatly extend spatial and temporal coverage of river assessment and monitoring efforts. We an...
South Platte River Basin - Colorado, Nebraska, and Wyoming
Dennehy, Kevin F.; Litke, David W.; Tate, Cathy M.; Heiny, Janet S.
1993-01-01
The South Platte River Basin was one of 20 study units selected in 1991 for investigation under the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. One of the initial tasks undertaken by the study unit team was to review the environmental setting of the basin and assemble ancillary data on natural and anthropogenic factors in the basin. The physical, chemical, and biological quality of the water in the South Platte River Basin is explicitly tied to its environmental setting. The resulting water quality is the product of the natural conditions and human factors that make up the environmental setting of the basin.This description of the environmental setting of the South Platte River Basin and its implications to the water quality will help guide the design of the South Platte NAWQA study. Natural conditions such as physiography, climate, geology, and soils affect the ambient water quality while anthropogenic factors such as water use, population, land use and water-management practices can have a pronounced effect on water quality in the basin. The relative effects of mining, urban, and agricultural land- and water-uses on water-quality constituents are not well understood. The interrelation of the surface-water and ground-water systems and the chemical and biological processes that affect the transport of constituents needs to be addressed. Interactions between biological communities and the water resources also should be considered. The NAWQA program and the South Platte River Basin study will provide information to minimize existing knowledge gaps, so that we may better understand the effect these natural conditions and human factors have on the water-quality conditions in the basin, now and in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaels, Brian; Espinosa, Neal
2009-02-18
This report summarizes the Nez Perce Tribe (NPT) Department of Fisheries Resources Management (DFRM) results for the Lower Snake River Compensation Plan (LSRCP) Hatchery Evaluation studies and the Imnaha River Smolt Monitoring Program (SMP) for the 2007 smolt migration from the Imnaha River, Oregon. These studies are closely coordinated and provide information about juvenile natural and hatchery spring/summer Naco x (Chinook Salmon; Oncorhynchus tshawytscha) and Heeyey (steelhead; O. mykiss) biological characteristics, emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam (MCD) on the Columbia River. These studies provide information on listed Naco xmore » (Chinook salmon) and Heeyey (steelhead) for the Federal Columbia River Power System (FCRPS) Biological Opinion (NMFS 2000). The Lower Snake River Compensation Plan program's goal is to maintain a hatchery production program of 490,000 Naco x (Chinook salmon) and 330,000 Heeyey (steelhead) for annual release in the Imnaha River (Carmichael et al. 1998, Whitesel et al. 1998). These hatchery releases occur to compensate for fish losses due to the construction and operation of the four lower Snake River hydroelectric facilities. One of the aspects of the LSRCP hatchery evaluation studies in the Imnaha River is to determine natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolt performance, emigration characteristics and survival (Kucera and Blenden 1998). A long term monitoring effort was established to document smolt emigrant timing and post release survival within the Imnaha River, estimate smolt survival downstream to McNary Dam, compare natural and hatchery smolt performance, and collect smolt-to-adult return information. This project collects information for, and is part of, a larger effort entitled Smolt Monitoring by Federal and Non-Federal Agencies (BPA Project No. 198712700). This larger project provides data on movement of smolts out of major drainages and past dams on the Snake River and Columbia River. In season indices of migration strength and migration timing are provided for the run-at large at key monitoring sites. Marked smolts are utilized to measure travel time and estimate survival through key index reaches. Fish quality and descaling measures are recorded at each monitoring site and provide indicators of the health of the run. Co-managers in the Imnaha River subbasin (Ecovista 2004) have identified the need to collect information on life history, migration patterns, juvenile emigrant abundance, reach specific smolt survivals, and Smolt-to-Adult Return rates (SAR's) for both Heeyey (steelhead) and Naco x (Chinook salmon) smolts. The current study provides information related to the majority of the high priority data needs. Current funding does not allow for determination of a total (annual) juvenile emigrant abundance and lack of adult passive integrated transponder (PIT) tag detectors at the mouth of the Imnaha River results in the inability to calculate tributary specific SAR's. Information is shared with the Fish Passage Center (FPC) on a real time basis during the spring emigration period. The Bonneville Power Administration (BPA) and the United States Fish and Wildlife Service (USFWS) contracted the NPT to monitor emigration timing and tag up to 19,000 emigrating natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolts from the Imnaha River with passive integrated transponder (PIT) tags. The completion of trapping in the spring of 2007 marked the 16th year of emigration studies on the Imnaha River, and the 14th year of participating in the FPC smolt monitoring program. Monitoring and evaluation objectives were to: (1) Evaluate effects of flow, temperature and other environmental factors on juvenile migration timing. (2) Determine emigration timing, travel time, and in-river survival of PIT tagged hatchery Naco x (Chinook salmon) smolts released at the Imnaha River acclimation facility to the Imnaha River juvenile migration trap. (3) Monitor the daily catch and biological characteristics of juvenile Naco x (Chinook salmon) and Heeyey (steelhead) smolts collected at the Imnaha River screw trap. (4) Determine spring emigration timing of Naco x (Chinook salmon) and Heeyey (steelhead) smolts collected at the Imnaha River juvenile migration trap. (5) Compare emigration characteristics and survival rates of natural fall and spring tagged juvenile Naco x (Chinook salmon). (6) Determine arrival timing, travel time and estimated survival of PIT tagged natural and hatchery Naco x (Chinook salmon) and natural and hatchery Heeyey (steelhead) smolts from the Imnaha River to Snake and Columbia River dams.« less
Wang, Pei; Lu, Yonglong; Wang, Tieyu; Zhu, Zhaoyun; Li, Qifeng; Meng, Jing; Su, Hongqiao; Johnson, Andrew C; Sweetman, Andrew J
2016-11-01
Short chain perfluoroalkyl acids (PFAAs) have been developed since 2002 by the major manufacturers to replace the conventional C8 and higher homologues, with much of the world production shifted to China in recent years. In this study, we conducted a continuous monitoring program over the period 2011-2014 with seasonal monitoring in 2013 for PFAAs emitted from two rapidly developing fluorochemical industry parks located in the Daling River Basin, Northern China. The trend of PFAA contamination was identified, dominated by perfluorobutane sulfonic acid (PFBS), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA), with the maximum concentrations of 3.78 μg/L, 3.70 μg/L, and 1.95 μg/L, respectively. Seasonal monitoring uncovered the occasional emission of perfluorooctane sulfonic acid (PFOS). Construction trends of new facilities and associated manufacturing capacity of the main products were also analyzed to assess correlations with PFAA emissions. An assessment of the data over the period 2011-2014 found a positive correlation with fluorocarbon alcohol (FCA) production and emission of PFAAs. Groundwater and tap water around the main source indicated that the dominant PFAAs had different diffusion behaviors. PFBS levels were higher in surface water, while PFBA was dominant in groundwater and tap water, with PFOA levels being higher in downstream groundwater. Considering the continuous expansion and development of fluorochemical industry in the Daling River Basin, this study will provide abundant information on the effectiveness of risk assessment and management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Radiocesium in the Savannah River Site environment.
Carlton, W H; Murphy, C E; Evans, A G
1994-09-01
The Savannah River Site has produced plutonium, tritium, and other special nuclear materials for national defense, other government programs, and some civilian purposes. Radiocesium, a waste product, has been released to the environment during the operation of five reactors, two radio-chemical processing facilities, and a high-level waste storage system. During the period 1955-1989, 130 GBq of 137Cs was released to the atmosphere and 2.2 x 10(4) GBq was released to site streams and ponds. Approximately 65% of the latter remained on the site. The maximum individual effective dose equivalent at the site boundary was estimated to be 3.3 microSv from atmospheric releases and 600 microSv from liquid releases. The 80-km population dose was 1.6 person-Sv.
Review-Esso Resources Canada Ltd. , Norman Wells expansion project drilling program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaef, D.G.
Esso Resources Canada Limited has embarked on a project to increase production from its Norman Wells Oil field located 145 km south of the Arctic Circle, from 475 m/sup 3//D to 4000 m/sup 3//D of crude oil. This paper provides details on the development drilling portion of the project which is comprised of 150 wells to be drilled in 3 years utilizing 2 drilling rigs from July 1982 through September 1985. The majority of the wells will be directionally drilled from multiwell land pads and artificial islands to shallow reservoir targets underlying the Mackenzie River, a major river intersecting themore » field boundaries. Experience from the initial 27 wells completed is provided.« less
ERIC Educational Resources Information Center
Dyer, Kathleen; Martino, Gayle M.; Parvenski, Tom
2006-01-01
An urgent demand from Connecticut parents for behavioral intervention resulted in the development of the River Street Autism Program (RSAP). This research-to-practice program implements intervention service based on empirical research findings conducted with children diagnosed with autism and pervasive developmental disorders. RSAP is provided…
Kasprzyk-Hordern, Barbara; Dinsdale, Richard M; Guwy, Alan J
2009-02-01
A 5-month monitoring program was undertaken in South Wales in the UK to determine the fate of 55 pharmaceuticals, personal care products, endocrine disruptors and illicit drugs (PPCPs) in two contrasting wastewater plants utilising two different wastewater treatment technologies: activated sludge and trickling filter beds. The impact of treated wastewater effluent on the quality of receiving waters was also assessed. PPCPs were found to be present at high loads reaching 10kgday(-1) in the raw sewage. Concentrations of PPCPs in raw sewage were found to correlate with their usage/consumption patterns in Wales and their metabolism. The efficiency of the removal of PPCPs was found to be strongly dependent on the technology implemented in the wastewater treatment plant (WWTP). In general, the WWTP utilising trickling filter beds resulted in, on average, less than 70% removal of all 55 PPCPs studied, while the WWTP utilising activated sludge treatment gave a much higher removal efficiency of over 85%. The monitoring programme revealed that treated wastewater effluents were the main contributors to PPCPs concentrations (up to 3kg of PPCPsday(-1)) in the rivers studied. Bearing in mind that in the cases examined here the WWTP effluents were also major contributors to rivers' flows (dilution factor for the studied rivers did not exceed 23 times) the effect of WWTP effluent on the quality of river water is significant and cannot be underestimated.
,
2006-01-01
This study evaluates the sensitivity of aquatic life to sodium bicarbonate (NaHCO3), a major constituent of coal-bed natural gas-produced water. Excessive amounts of sodium bicarbonate in the wastewater from coal-bed methane natural gas production released to freshwater streams and rivers may adversely affect the ability of fish to regulate their ion uptake. The collaborative study focuses on the acute and chronic toxicity of sodium bicarbonate on select fish species in the Tongue and Powder River drainages in southeastern Montana and northeastern Wyoming. Sodium bicarbonate is not naturally present in appreciable concentrations within the surface waters of the Tongue and Powder River drainages; however, the coal-bed natural gas wastewater can reach levels over 1,000 milligrams per liter. Large concentrations have been shown to be acutely toxic to native fish (Mount and others, 1997). In 2003, with funding and guidance provided by the U.S. Environmental Protection Agency, the Montana Fish, Wildlife, and Parks and the U.S. Geological Survey initiated a collaborative study on the potential effects of coal-bed natural gas wastewater on aquatic life. A major goal of the study is to provide information to the State of Montana Water Quality Program needed to develop an aquatic life standard for sodium bicarbonate. The standard would allow the State, if necessary, to establish targets for sodium bicarbonate load reductions.
The Savannah River Site`s groundwater monitoring program. First quarter 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results.
Counihan, Timothy D.; Hardiman, Jill M.; Waste, Stephen
2013-01-01
Implementing an Integrated Status and Trends Monitoring program (ISTM) for the mainstem Columbia River will help identify trends in important natural resources and help us understand the long-term collective effects of management actions. In this report, we present progress towards the completion of a stepwise process that will facilitate the development of an ISTM for the mainstem Columbia River. We discuss planning and regulatory documents that can be used to identify monitoring goals and objectives and present existing monitoring and research activities that should be considered as the development of a Columbia River ISTM proceeds. We also report progress towards the development of sample frames for the Columbia and Snake Rivers and their floodplains. The sample frames were formulated using Digital Elevation Models (DEM’s) of the river channel and upland areas and a Generalized Random-Tessellation Stratified (GRTS) algorithm for an area based resource to generate “master sample(s).” Working with the Pacific Northwest Aquatic Monitoring Partnership (PNAMP) we facilitated the transfer of the sample frames to the PNAMP “Monitoring Sample Designer” tool. We then discuss aspects of response and survey designs as they pertain to the formulation of a mainstem Columbia River ISTM. As efforts to formulate an ISTM for the mainstem Columbia River proceed, practitioners should utilize the extensive literature describing the planning and implementation of fish and wildlife mitigation and recovery efforts in the Columbia River Basin. While we make progress towards establishing an ISTM framework, considerable work needs to be done to formulate an ISTM program for the mainstem Columbia River. Long-term monitoring programs have been established for other large rivers systems; scientists that have experience planning, implementing, and maintaining large river monitoring efforts such as those in the Colorado, Illinois, and Mississippi Rivers should be consulted and involved as efforts proceed.
Solomon, Levi E.; Pendleton, Richard M.; Chick, John H.; Casper, Andrew F.
2017-01-01
In the Mississippi River Basin of North America, invasive bigheaded carp (silver carp Hypophthalmichthys molitrix and bighead carp H. nobilis, also referred to as Asian carp) have spread rapidly over the past several decades. In the Illinois River, an important tributary of the Upper Mississippi River, reproduction appears to be sporadic and frequently unsuccessful, yet bigheaded carp densities in this river are among the highest recorded on the continent. Understanding the causative factors behind erratic recruitment in this commercially-harvested invasive species is important for both limiting their spread and managing their harvest. We analyzed weekly catch records from 15 years of a standardized monitoring program to document the emergence of age-0 bigheaded carp in relation to environmental conditions. The appearance of age-0 fish was generally linked to hydrographic attributes, which probably serve as a cue for spawning. However, we found profound differences in the number of age-0 fish among years, which varied by as much as five orders of magnitude in successive years. The strong link between summer flooding and age-0 fish production we observed emphasizes the importance of understanding the hydrologic context in which sustained invasions occur. Despite evidence of sporadic recruitment, bigheaded carp populations in the Illinois River appear to be consistent or increasing because of particularly strong, episodic year classes. PMID:28929010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luecke, C.; Wurtsbaugh, W.A.; Budy, P.
1996-06-01
This document examines the potential of employing a series of lake management strategies to enhance production of endangered Snake River sockeye salmon (Oncorhynchus nerka) in its historical nursery lakes in central Idaho. A combination of limnological sampling, experimentation, and simulation modeling was used to assess effects of lake fertilization and kokanee reduction on growth and survival of juvenile sockeye salmon. Juvenile sockeye salmon from a broodstock of this endangered species are being introduced into the lakes from 1995 to 1998. Results of our analyses indicated that several lakes were suitable for receiving broodstock progeny. Field experimentation and simulation modeling indicatedmore » that lake fertilization, coupled with a program of kokanee reduction, provided the management option most likely to enhance the survival of stocked juvenile sockeye salmon. Simulation models that encompass physiological requirements, ecological interactions, and life-history consequences could be used as templates to help develop recovery plans for other endangered fishes. 4 figs., 2 tabs.« less
Gila River Basin Native Fishes Conservation Program
Doug Duncan; Robert W. Clarkson
2013-01-01
The Gila River Basin Native Fishes Conservation Program was established to conserve native fishes and manage against nonnative fishes in response to several Endangered Species Act biological opinions between the Bureau of Reclamation and the U.S. Fish and Wildlife Service on Central Arizona Project (CAP) water transfers to the Gila River basin. Populations of some Gila...
Application of HEC-6 to ephemeral rivers of Arizona
DOT National Transportation Integrated Search
1986-01-01
The U.S. Army Corps of Engineers, computer program HEC-6--"Scour and Deposition in Rivers and Reservoirs" was applied to three ephemeral rivers of Arizona--Agua Fria River, Salt River, and Rillito Creek. The input data development techniques and resu...
A SEDIMENT TOXICITY EVALUATION OF THREE LARGE RIVER SYSTEMS
Sediment toxicity samples were collected from selected sites on the Ohio River, Missouri River and upper Mississippi River as part of the 2004 and 2005 Environmental Monitoring and Assessment Program-Great Rivers Ecosystems Study (EMAP-GRE). Samples were collected by compositing...
Ge, Jiwen; Wu, Shuyuan; Touré, Dado; Cheng, Lamei; Miao, Wenjie; Cao, Huafen; Pan, Xiaoying; Li, Jianfeng; Yao, Minmin; Feng, Liang
2017-12-01
The main purpose of this study conducted from August 2010 was to find biomass and productivity of epilithic algae and their relations to environmental factors and try to explore the restrictive factors affecting the growth of algae in the Gufu River, the one of the branches of Xiangxi River located in the Three Gorges Reservoir of the Yangtze River, Hubei Province, Central China. An improved method of in situ primary productivity measurement was utilized to estimate the primary production of the epilithic algae. It was shown that in rivers, lakes, and reservoirs, algae are the main primary producers and have a central role in the ecosystem. Chlorophyll a concentration and ash-free dry mass (AFDM) were estimated for epilithic algae of the Gufu River basin in Three Gorges Reservoir area. Environmental factors in the Gufu River ecosystem highlighted differences in periphyton chlorophyll a ranging from 1.49 mg m -2 (origin) to 69.58 mg m -2 (terminal point). The minimum and maximum gross primary productivity of epilithic algae were 96.12 and 1439.89 mg C m -2 day -1 , respectively. The mean net primary productivity was 290.24 mg C m -2 day -1 . The mean autotrophic index (AFDM:chlorophyll a) was 407.40. The net primary productivity, community respiration ratio (P/R ratio) ranged from 0.98 to 9.25 with a mean of 2.76, showed that autotrophic productivity was dominant in the river. Relationship between physicochemical characteristics and biomass was discussed through cluster and stepwise regression analysis which indicated that altitude, total nitrogen (TN), NO 3 - -N, and NH 4 + -N were significant environmental factors affecting the biomass of epilithic algae. However, a negative logarithmic relationship between altitude and the chlorophyll a of epilithic algae was high. The results also highlighted the importance of epilithic algae in maintaining the Gufu River basin ecosystems health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
The Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, manages archaeological resources on the Savannah River Site (SRS). An ongoing research program provides the theoretical, methodological, and empirical basis for assessing site significance within the compliance process specified by law. The SRARP maintains an active public education program for disseminating knowledge about prehistory and history, and for enhancing awareness of historic preservation. This report summarizes the management, research, and public education activities of the SRARP during Fiscal Year 1994.
1988-05-01
Engineer Water Resources Support Center, Fort Belvoir, Va. Conner, J. W., Pennington, C. H., and Bosley, T. R. 1983. "Larval Fish of Selected Aquatic ...Mississippi River Environmental Program; Report 13 6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Aquatic Ecosystem...Jenkins, Aquatic Ecosystem Analysts, PO Box 4188, Fayetteville, Ark. Mr. Stephen P. Cobb, MRC, Vicksburg, Miss., was the project officer and program manager
The economic-wide consequences of large-scale floods. How resilient is the European economy?
NASA Astrophysics Data System (ADS)
Koks, Elco; Thissen, Mark; De Moel, Hans; Aerts, Jeroen
2015-04-01
For a successful adaptation strategy, it is necessary to have an in-depth understanding of the economic consequences of a flood. To assess the economic consequences of large-scale river floods in Europe, we introduce an integrated direct and indirect risk model for the European economy as a whole. The proposed methodology consists of multiple steps. First, a direct loss assessment is conducted for the 50 largest river basin districts in Europe, based on simulated floods for several return periods. Second, the direct losses in capital and labour are translated into the loss in production per sector. Third, the recovery of this production shock is modelled using a hybrid interregional input-output model, combining non-linear programming and input-output modelling. This combination makes it possible to find (1) the possible production losses in the affected regions and other European regions, (2) the required production in Europe to satisfy additional reconstruction demands from the affected regions and (3) the required production in other regions that is necessary to take over lost production in the affected region. Consequently, when knowing how much production is lost (or gained) in each region, the economic consequences can be assessed. Finally, the model outcome is loss estimation expressed in terms of expected annual damage. To assess these consequences, interregional supply and use tables are used, consisting of 256 different European NUTS2 regions. This data makes it possible to model the indirect losses for both the affected regions and the rest of Europe in detail. By combining the outcomes of all floods in all the river basin districts, it is possible to determine the flood risk of each region in Europe, even when a region is not directly hit by a flood. Consequently, the overall consequences for the European Union are found to be positive for small-scale floods and negative for large-scale floods.
1980-03-01
STANDAROS-1963-A L ~.°.. o...... 1....MERRIMACK RIVER BASIN -!. WILMOT , NEW HAMPSHIRE ’,- CHASE POND DAM NH 00255 NHWRB NO. 253.02 r PHASE I...Continue on fewsorsp side #0 .o..oemay and Ientify by black Muthot) - DAMS, NSPECTION, PAM S’AFETY, Merrimack River Basin. * Wilmot , New Hampshire...MERRIMACK RIVER BASIN R WILMOT , NEW HAMPSHIRE - - PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM :: : I
The Savannah River Site's groundwater monitoring program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.
Automatic River Network Extraction from LIDAR Data
NASA Astrophysics Data System (ADS)
Maderal, E. N.; Valcarcel, N.; Delgado, J.; Sevilla, C.; Ojeda, J. C.
2016-06-01
National Geographic Institute of Spain (IGN-ES) has launched a new production system for automatic river network extraction for the Geospatial Reference Information (GRI) within hydrography theme. The goal is to get an accurate and updated river network, automatically extracted as possible. For this, IGN-ES has full LiDAR coverage for the whole Spanish territory with a density of 0.5 points per square meter. To implement this work, it has been validated the technical feasibility, developed a methodology to automate each production phase: hydrological terrain models generation with 2 meter grid size and river network extraction combining hydrographic criteria (topographic network) and hydrological criteria (flow accumulation river network), and finally the production was launched. The key points of this work has been managing a big data environment, more than 160,000 Lidar data files, the infrastructure to store (up to 40 Tb between results and intermediate files), and process; using local virtualization and the Amazon Web Service (AWS), which allowed to obtain this automatic production within 6 months, it also has been important the software stability (TerraScan-TerraSolid, GlobalMapper-Blue Marble , FME-Safe, ArcGIS-Esri) and finally, the human resources managing. The results of this production has been an accurate automatic river network extraction for the whole country with a significant improvement for the altimetric component of the 3D linear vector. This article presents the technical feasibility, the production methodology, the automatic river network extraction production and its advantages over traditional vector extraction systems.
Adams, Jean V.; Bergstedt, Roger A.; Christie, Gavin C.; Cuddy, Douglas W.; Fodale, Michael F.; Heinrich, John W.; Jones, Michael L.; McDonald, Rodney B.; Mullett, Katherine M.; Young, Robert J.
2003-01-01
In 1997 the Great Lakes Fishery Commission approved a 5-year (1998 to 2002) control strategy to reduce sea lamprey (Petromyzon marinus) production in the St. Marys River, the primary source of parasitic sea lampreys in northern Lake Huron. An assessment plan was developed to measure the success of the control strategy and decide on subsequent control efforts. The expected effects of the St. Marys River control strategy are described, the assessments in place to measure these effects are outlined, and the ability of these assessments to detect the expected effects are quantified. Several expected changes were predicted to be detectable: abundance of parasitic-phase sea lampreys and annual mortality of lake trout (Salvelinus namaycush) by 2001, abundance of spawning-phase sea lampreys by 2002, and relative return rates of lake trout and sea lamprey wounding rates on lake trout by 2005. Designing an effective assessment program to quantify the consequences of fishery management actions is a critical, but often overlooked ingredient of sound fisheries management.
1986-07-01
game species. Skunks (Mephitis and Spilogale spp.), raccoons (Procyon lotor), opossums (Dideiphis virginiana ), river otters (Lutra canadensis...cropland clearing, release cutting and pruning , fence repair, and clearing of fire lanes and openings (Burger 1973, Yoakum et al. 1980). General...apple (Malus spp.), basswood (Tilia spp.), and maple (Acer spp.) (Burger 1973). Such clippings will often be available as a by-product of pruning and
On the value of satellite-based river discharge and river flood data
NASA Astrophysics Data System (ADS)
Kettner, A. J.; Brakenridge, R.; van Praag, E.; Borrero, S.; Slayback, D. A.; Young, C.; Cohen, S.; Prades, L.; de Groeve, T.
2015-12-01
Flooding is the most common natural hazard worldwide. According to the World Resources Institute, floods impact 21 million people every year and affect the global GDP by $96 billion. Providing accurate flood maps in near-real time (NRT) is critical to their utility to first responders. Also, in times of flooding, river gauging stations on location, if any, are of less use to monitor stage height as an approximation for water surface area, as often the stations themselves get washed out or peak water levels reach much beyond their design measuring capacity. In a joint effort with NASA Goddard Space Flight Center, the European Commission Joint Research Centre and the University of Alabama, the Dartmouth Flood Observatory (DFO) measures NRT: 1) river discharges, and 2) water inundation extents, both with a global coverage on a daily basis. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations'. Once calibrated, daily discharge time series span from 1998 to the present. Also, the two MODIS instruments aboard the NASA Terra and Aqua satellites provide daily floodplain inundation extent with global coverage at a spatial resolution of 250m. DFO's mission is to provide easy access to NRT river and flood data products. Apart from the DFO web portal, several water extent products can be ingested by utilizing a Web Map Service (WMS), such as is established with for Latin America and the Caribbean (LAC) region through the GeoSUR program portal. This effort includes implementing over 100 satellite discharge stations showing in NRT if a river is flooding, normal, or in low flow. New collaborative efforts have resulted in flood hazard maps which display flood extent as well as exceedance probabilities. The record length of our sensors allows mapping the 1.5 year, 5 year and 25 year flood extent. These can provide key information to water management and disaster response entities.
MESA/MEP at American River College: Year One Evaluation Report.
ERIC Educational Resources Information Center
Lee, Beth S.; And Others
In 1989, the Mathematics, Engineering, and Science Achievement (MESA)/Minority Engineering Program (MEP) was initiated at American River College. The MESA/MEP program recruits Black, Hispanic, and Native American students and provides assistance, encouragement, and enrichment programs to help them succeed in the fields of mathematics, engineering,…
Code of Federal Regulations, 2014 CFR
2014-10-01
... skins and fur skin products of bobcat, river otter, Canada lynx, gray wolf, and brown bear harvested in... trade internationally in fur skins and fur skin products of bobcat, river otter, Canada lynx, gray wolf... lynx (Lynx canadensis), gray wolf (Canis lupus), and brown bear (Ursus arctos) harvested in the United...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagne-Maynard, William C.; Ward, Nicholas D.; Keil, Richard G.
The Amazon River outgasses nearly an equivalent amount of CO 2 as the rainforest sequesters on an annual basis due to microbial decomposition of terrigenous and aquatic organic matter. Most research performed in the Amazon has been focused on unraveling the mechanisms driving CO 2 production since the recognition of a persistent state of CO 2 supersaturation. However, although the river system is clearly net heterotrophic, the interplay between primary production and respiration is an essential aspect to understanding the overall metabolism of the ecosystem and potential transfer of energy up trophic levels. For example, an efficient ecosystem is capablemore » of both decomposing high amounts of organic matter at lower trophic levels, driving CO 2 emissions, and accumulating energy/biomass in higher trophic levels, stimulating fisheries production. Early studies found minimal evidence for primary production in the Amazon River mainstem and it has since been assumed that photosynthesis is strongly limited by low light penetration attributed to the high sediment load. Here, we test this assumption by measuring the stable isotopic composition of O 2 (δ 18O-O 2) and O 2 saturation levels in the lower Amazon River from Óbidos to the river mouth and its major tributaries, the Xingu and Tapajós rivers, during high and low water periods. An oxygen mass balance model was developed to estimate the input of photosynthetic oxygen in the discrete reach from Óbidos to Almeirim, midway to the river mouth. Based on the oxygen mass balance we estimate that primary production occurred at a rate of 0.39 ± 0.24 g O m 3 d -1 at high water and 1.02 ± 0.55 g O m 3 d -1 at low water. This translates to 41 ± 24% of the rate of O 2 drawdown via respiration during high water and 67 ± 33% during low water. These primary production rates are 2-7 times higher than past estimates for the Amazon River mainstem. In conclusion, it is possible that at high water much of this productivity signal is the result of legacy advection from floodplains, whereas limited floodplain connectivity during low water implies that most of this signal is the result of in situ primary production in the Amazon River mainstem.« less
Introduction to the Delaware River Port Authority's Smart Bridges initiative
NASA Astrophysics Data System (ADS)
Box, Robert A.; McCullough, Patrick J.; Bistline, Robert S.
2000-06-01
The Delaware River Port Authority, whose mission is to manage, plan and construct transportation facilities and provide transportation services to maximize the safe and efficient movement of people and freight within the Delaware River Valley, located in southwestern Pennsylvania and southern New Jersey, is a self-financing, bi-state Authority, formed by a compact between the Commonwealth of Pennsylvania and the State of New Jersey and approved by the Congress of the United States. The Delaware River Port Authority is firmly committed to the strategic and integrated use of advanced transportation technology to improve traffic flow, operational efficiency and safety on DRPA's four bridges. To this end, the Delaware River Port Authority has initiated a program, appropriately named 'Smart Bridges.' The Delaware River Port Authority has recognized that this type of program is essential to the advancement of the DRPA's mission as an efficient, customer- friendly transportation and regional development agency. Under the Smart Bridges program the Delaware River Port Authority is introducing new technology into its aging infrastructure and transportation systems to ensure that the facilities continue to serve the region into the 21st century and beyond. Initiatives introduced under this program include EZ Pass, video surveillance systems, computerized traffic control systems and partnering with local universities to investigate the application of various innovative technologies to assist in the maintenance of the bridge facilities.
C. Klamath Bird Observatory and USFS Pacific Southwest Research Station
2013-01-01
The Trinity River Restoration Program began in 2000 with the goal of restoring the Trinity River's salmon and steelhead fisheries, which were severely degraded during the last half-century as a result of dams, water diversions under the Central Valley Project, and land-use practices such as gold mining. The restoration program, as outlined in the U.S. Department...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowell, Jonathan; Franco, Joe
The discussion of Hanford's River Corridor will cover work that has already been completed plus the work remaining to be done. This includes the buildings, waste sites, and groundwater plumes in the 300 Area; large-scale burial ground remediation in the 600 Area; plutonium production reactor dismantling and 'cocooning' along the river; preservation of the world's first full-scale plutonium production reactor; removal of more than 14 million tons of contaminated soil and debris along the Columbia River shoreline and throughout the River Corridor; and the excavation of buried waste sites in the river shore area. It also includes operating an EPA-permittedmore » low-level waste disposal facility in the central portion of the site. At the completions of cleanup in 2015, Hanford's River Corridor will be the largest closure project ever completed by the Department of Energy. Cleanup of the River Corridor has been one of Hanford's top priorities since the early 1990's. This urgency has been due to the proximity of hundreds of waste sites to the Columbia River. In addition, removal of the sludge from K West Basin, near the river, remains a high priority. This 220-square-mile area of the Hanford Site sits on the edge of the last free-flowing stretch of the Columbia River. The River Corridor portion of the Hanford Site includes the 100 and 300 Areas along the south shore of the Columbia River. The 100 Areas contain nine retired plutonium production reactors. These areas are also the location of numerous support facilities and solid and liquid waste disposal sites that have contaminated groundwater and soil. The 300 Area, located just north of the city of Richland, contains fuel fabrication facilities, nuclear research and development facilities, and their associated solid and liquid waste disposal sites that have contaminated groundwater and soil. In order to ensure that cleanup actions address all threats to human health and the environment, the River Corridor includes the adjacent areas that extend from the 100 Area and 300 Area to the Central Plateau. For sites in the River Corridor, remedial actions are expected to restore groundwater to drinking water standards and ensure that aquatic life in the Columbia River is protected by achieving ambient water quality standards. It is intended that these objectives be achieved, unless technically impracticable, within a reasonable timeframe. In those instances where remedial action objectives are not achievable in a reasonable time frame, or are determined to be technically impracticable, programs are being implemented to contain the plume, prevent exposure to contaminated groundwater, and evaluate further risk reduction opportunities as new technologies become available. River Corridor cleanup work also removes potential sources of contamination, which are close to the Columbia River, and places them on the Central Plateau for final disposal. The intent is to shrink the footprint of active cleanup to within the 75-square- mile area of the Central Plateau by removing excess facilities and remediating waste sites. Cleanup actions are supporting anticipated future land uses consistent with the Hanford Reach National Monument, where applicable, and the Hanford Comprehensive Land- Use Plan (DOE 1999). The River Corridor has been divided into six geographic decision areas to achieve source and groundwater remedy decisions. These decisions will provide comprehensive coverage for all areas within the River Corridor and will incorporate ongoing interim action cleanup activities. Cleanup levels will be achieved in order to support anticipated future land uses of conservation and preservation for most of this area and industrial use for the 300 Area. At the conclusion of cleanup actions, the federal government will implement long-term stewardship activities to ensure protection of human health and the environment. (authors)« less
Red River of the North Reconnaissance Report: Ottertail River Subbasin.
1980-12-01
Excessive drainage in the future could diminish the ecological and recreational diversity of the subbasin. Water Quality Problems Some quality...manufacturing establishments are involved with agricultural or wood products. The two largest employers (between 750 and 1,250) are plants that process...RIVER SUBBASIN Estimated SIC Description Employment 20 Food and Kindred Products 1,850 23 Apparel made from fabrics 200 24 Lumber and Wood Products 600 25
NASA Astrophysics Data System (ADS)
Dorava, Joseph M.; Milner, Alexander M.
2000-10-01
Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation.Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, K.J.
1999-11-05
The Process Water System (primary coolant) piping of the nuclear production reactors constructed in the 1950''s at Savannah River Site is comprised primarily of Type 304 stainless steel with Type 308 stainless steel weld filler. A program to measure the mechanical properties of archival PWS piping and weld materials (having approximately six years of service at temperatures between 25 and 100 degrees C) has been completed. The results from the mechanical testing has been synthesized to provide a mechanical properties database for structural analyses of the SRS piping.
The Growth of River Kayaking and Its Indirect Effect on Institutional Whitewater Programs.
ERIC Educational Resources Information Center
Harrison, Geoff
Historically, whitewater kayaking has been a key component of some institutional outdoor programs, offering low-cost instruction that emphasizes safety, skill, and the spirit of down-river travel. Each year, several thousand students are introduced to the sport of kayaking through instructional seminars offered by university outdoor programs.…
NASA Astrophysics Data System (ADS)
Yang, Z. L.; McClelland, J. W.; Su, H.; Cai, X.; Lin, P.; Tavakoly, A. A.; Griffin, C. G.; Turner, E.; Maidment, D. R.; Montagna, P.
2014-12-01
This study seeks to improve our understanding of how upland landscapes and coastal waters, which are connected by watersheds, respond to changes in hydrological and biogeochemical cycles resulting from changes in climate, local weather patterns, and land use. This paper will report our progress in the following areas. (1) The Noah-MP land surface model is augmented to include the soil nitrogen leaching and plants fixation and uptake of nitrogen. (2) We have evaluated temperature, precipitation and runoff change (2039-2048 relative to 1989-1998) patterns in Texas under the A2 emission scenario using the North American Regional Climate Change Assessment Program (NARCCAP) product. (3) We have linked a GIS-based river routing model (RAPID) and a GIS-based nitrogen input dataset (TX-ANB). The modeling framework was conducted for total nitrogen (TN) load estimation in the San Antonio and Guadalupe basins. (4) Beginning in July 2011, the Colorado, Guadalupe, San Antonio, and Nueces rivers have been sampled on a monthly basis. Sampling continued until November 2013. We also have established an on-going citizen science sampling program. We have contacted the Lower Colorado River Authority and the Texas Stream Team at Texas State University to solicit participation in our program. (5) We have tested multiple scenarios of nutrient contribution to South Texas bays. We are modeling the behavior of these systems under stress due to climate change such as less overall freshwater inflow, increased inorganic nutrient loading, and more frequent large storms.
Martens, Kyle D.; Tibbits, Wesley T.; Watson, Grace A.; Newsom, Michael A.; Connolly, Patrick J.
2014-01-01
The U.S. Geological Survey (USGS) received funding from the Bureau of Reclamation (Reclamation) to provide monitoring and evaluation on the effectiveness of stream restoration efforts by Reclamation in the Methow River watershed. This monitoring and evaluation program is designed to partially fulfill Reclamation’s part of the 2008 Biological Opinion for the Federal Columbia River Power System that includes a Reasonable and Prudent Alternative (RPA) to protect listed salmon and steelhead across their life cycle. The target species in the Methow River for the restoration effort include Upper Columbia River (UCR) spring Chinook salmon (Oncorhynchus tshawytscha), UCR steelhead (Oncorhynchus mykiss), and bull trout (Salvelinus confluentus), which are listed as threatened or endangered under the Endangered Species Act. Since 2004, the USGS has completed two projects of monitoring and evaluation in the Methow River watershed. The first project focused on the evaluation of barrier removal and steelhead recolonization in Beaver Creek with Libby and Gold Creeks acting as controls. The majority of this work was completed by 2008, although some monitoring continued through 2012. The second project (2008–2012) evaluated the use and productivity of the middle Methow River reach (rkm 65–80) before the onset of multiple off-channel restoration projects planned by the Reclamation and Yakama Nation. The upper Methow River (upstream of rkm 80) and Chewuch River serve as reference reaches and the Methow River downstream of the Twisp River (downstream of rkm 65) serves as a control reach. Restoration of the M2 reach was initiated in 2012 and will be followed by a multi-year, intensive post-evaluation period. This report is comprised of three chapters covering different aspects of the work completed by the USGS. The first chapter is a review of data collection that documents the methods used and summarizes the work done by the USGS from 2008 through 2012. This data summary was designed to show some initial analysis and to disseminate summary information that could potentially be used in ongoing modeling efforts by USGS, Reclamation, and University of Idaho. The second chapter documents the database of fish and habitat data collected by USGS from 2004 through 2012 and compares USGS habitat protocols to the Columbia Habitat Monitoring Program (CHaMP) protocol. The third chapter is a survival analysis of fish moving through Passive Integrated Transponder (PIT) tag interrogation systems in the Methow and Columbia Rivers. It examines the effects of adding PIT tags and/or PIT tag interrogation systems on survival estimates of juvenile steelhead and Chinook salmon.
Zhao, Xueheng; Hwang, Huey-Min
2009-05-01
The degradation of selected organophosphorus pesticides (OPs), i.e., malathion and parathion, in river water, has been studied with solar simulator irradiation. The degradation of OPs and formation of degradation products were determined by chromatography coupled with mass spectrometry analysis. The effect of a photosensitizer, i.e., riboflavin, on the photolysis of OPs in a river-water environment was examined. There was no significant increase in the degradation rate in the presence of the photosensitizer. Degradation products of the OPs were identified with gas chromatography coupled with mass spectrometry (GC-MS) after derivatization by pentafluorobenzyl bromide (PFBB) and with high-performance liquid chromatography-mass spectrometry (HPLC-MS) with electrospray (ESI) or atomospheric pressure chemical ionization (APCI). Malaoxon, paraoxon, 4-nitrophenol, aminoparathion, O,O-dimethylthiophosphoric acid, and O,O-dimethyldithiophosphoric acid, have been separated and identified as the degradation products of malathion and parathion after photolysis in river water. Based on the identified transformation products, a rational degradation pathway in river water for both OPs is proposed. The identities of these products can be used to evaluate the toxic effects of the OPs and their transformation products on natural environments.
Summer habitat use by Columbia River redband trout in the Kootenai River drainage, Montana
Muhlfeld, Clint C.; Bennett, David H.
2001-01-01
The reported decline in the abundance, distribution, and genetic diversity of Columbia River redband trout Oncorhynchus mykiss gairdneri (a rainbow trout subspecies) has prompted fisheries managers to investigate their habitat requirements, identify critical habitat, and develop effective conservation and recovery programs. We analyzed the microhabitat, mesohabitat, and macrohabitat use and distribution of Columbia River redband trout by means of snorkel surveys in two watersheds in the Kootenai River drainage, Montana and Idaho, during the summers of 1997 and 1998. Juvenile (36–125 mm total length, TL) and adult (>=126 mm TL) fish preferred deep microhabitats (>=0.4 m) with low to moderate velocities (<=0.5 m/s) adjacent to the thalweg. Conversely, age-0 (<=35 mm) fish selected slow water (<=0.1 m/s) and shallow depths (<=0.2 m) located in lateral areas of the channel. Age-0, juvenile, and adult fish strongly selected pool mesohabitats and avoided riffles; juveniles and adults generally used runs in proportion to their availability. At the macrohabitat scale, density of Columbia River redband trout (35 mm) was positively related to the abundance of pools and negatively related to stream gradient. The pool: riffle ratio, gradient, and stream size combined accounted for 80% of the variation in density among 23 stream reaches in five streams. Our results demonstrate that low-gradient, medium-elevation reaches with an abundance of complex pools are critical areas for the production of Columbia River redband trout. These data will be useful in assessing the impacts of land-use practices on the remaining populations and may assist with habitat restoration or enhancement efforts.
2006-01-28
ISS012-E-16633 (28 Jan. 2006) --- Savannah River Site, South Carolina is featured in this image photographed by an Expedition 12 crew member on the International Space Station. Situated between the South Carolina piedmont and the Atlantic Ocean, the Savannah River Site is an important part of the US Department of Energys nuclear program. Construction of the site originally called the Savannah River Plant began in 1951 for the purpose of generating radioactive materials, primarily the hydrogen isotope tritium and plutonium-239, necessary for nuclear weapons production during the Cold War. A total of five nuclear reactors occupy the central portion of the site and operated throughout 1953-1992. Following the end of the Cold War in 1991 activities at the Savannah River Site are now focused on disposal of nuclear wastes, environmental cleanup of the site itself, and development of advanced remediation technologies. The Savannah River Site is located in the Sand Hills region of South Carolina and includes an area of 800 square kilometers (300 square miles). The southern half of the Site (building clusters with reflective white rooftops) is shown. The nearby Savannah River and its tributary creeks provided a ready source of water for the nuclear reactors; to this end, two artificial lakes (L Lake and Par Pond) were constructed. The meandering channel of the River and its floodplain, characterized by grey-brown sediments, extends from northwest to southeast across the left portion of the image. The proximity of the River, and the permeable nature of the geological materials under laying the site (sand, clay, gravel, and carbonate rocks), necessitate extensive and ongoing environmental monitoring and cleanup efforts to reduce potential contamination of local water sources. According to NASA scientists, final remediation of wastes posing threats to surface and groundwater is scheduled to occur by 2025.
Research Furthers Conservation of Grand Canyon Sandbars
Melis, Theodore S.; Topping, David J.; Rubin, David M.; Wright, Scott A.
2007-01-01
Grand Canyon National Park lies approximately 25 km (15 mi) down-river from Glen Canyon Dam, which was built on the Colorado River just south of the Arizona-Utah border in Glen Canyon National Recreation Area. Before the dam began to regulate the Colorado River in 1963, the river carried such large quantities of red sediment, for which the Southwest is famous, that the Spanish named the river the Rio Colorado, or 'red river'. Today, the Colorado River usually runs clear below Glen Canyon Dam because the dam nearly eliminates the main-channel sand supply. The daily and seasonal flows of the river were also altered by the dam. These changes have disrupted the sedimentary processes that create and maintain Grand Canyon sandbars. Throughout Grand Canyon, sandbars create habitat for native plants and animals, supply camping beaches for river runners and hikers, and provide sediment needed to protect archaeological resources from weathering and erosion. Maintenance of sandbars in the Colorado River ecosystem, the river corridor that stretches from the dam to the western boundary of Grand Canyon National Park, is a goal of the Glen Canyon Dam Adaptive Management Program. The program is a federally authorized initiative to ensure that the mandates of the Grand Canyon Protection Act of 1992 are met through advances in information and resource management. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center has responsibility for scientific monitoring and research efforts for the program. Extensive research and monitoring during the past decade have resulted in the identification of possible alternatives for operating Glen Canyon Dam that hold new potential for the conservation of sand resources.
Unwin, M.J.; Webb, M.; Barker, R.J.; Link, W.A.
2005-01-01
Diversion of out-imigrant juvenile salmon into unscreened irrigation and hydroelectric canals is thought to have contributed significantly to declining populations of anadromous salmonids in the Pacific Northwest but is seldom studied in detail. Here we describe a program to study the fate of Chinook salmon Oncorhynchus tshawytscha fry diverted into the unscreened Rangitata Diversion Race (RDR) on the Rangitata River, New Zealand, by trapping fish in a random sample of on-farm canals in irrigation schemes (systems) served by the RDR. The catch rate at a site 9 km below the intake was strongly related to Rangitata River flow, but catches further downstream were unrelated to flow. Most fish entering the RDR were fry or early postfry ( 70 mm FL), suggesting that many such fish became resident in the RDR for up to 3 months. Consequently, our estimate of the total number of fish leaving the RDR via on-farm canals (204,200 fish; 95% confidence limits = 127, 100 and 326,700) is a conservative measure of the number lost from the Rangitata River because it does not allow for mortality within the RDR. We did not quantify the proportion of Rangitata River out-migrants that entered the RDR, but our results suggest that this figure was at least 5% and that it may have been as high as 25%, depending on mortality rates within the Rangitata River main stem and the RDR itself.
Hupp, C.R.
2000-01-01
Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat. Copyright ?? 2000 John Wiley & Sons, Ltd.Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napier, Bruce A.
2014-01-01
Beginning in 1948, the Soviet Union initiated a program for production of nuclear materials for a weapons program. The first facility for production of plutonium was constructed in the central portion of the country east of the southern Ural Mountains, about halfway between the major industrial cities of Ekaterinburg and Chelyabinsk. The facility now known as the Mayak Production Association and its associated town, now known as Ozersk, were built to irradiate uranium in reactors, separate the resulting plutonium in reprocessing plants, and prepare plutonium metal. The rush to production, coupled with inexperience in handling radioactive materials, lead to largemore » radiation exposures, not only to the workers in the facilities, but also to the surrounding public. Fuel processing started with no controls on releases, and fuel dissolution and accidents in reactors resulted in release of about 37 PBq (1015 Bq) of 131I between 1948 and 1967. Designed disposals of low- and intermediate-level liquid radioactive wastes, and accidental releases via cooling water from tank farms of high-level liquid radioactive wastes, into the small Techa River caused significant contamination and exposures to residents of numerous small riverside villages downstream of the site. Discovery of the magnitude of the aquatic contamination in late 1951 caused revisions to the waste handling regimes, but not before over 200 PBq of radionuclides (with large contributions of 90Sr and 137Cs) were released. Liquid wastes were diverted to tiny Lake Karachay (which today holds over 4 EBq); cooling water was stopped in the tank farms. In 1957, one of the tanks in the tank farm overheated and exploded; over 70 PBq, disproportionately 90Sr, was blown over a large area to the northeast of the site; a large area was contaminated and many villages evacuated. This area today is known as the East Urals Radioactive Trace (EURT). Each of these releases was significant; together they have created a group of cohorts unrivaled in the world for their chronic, low-dose-rate radiation exposure. The 26,000 workers at Mayak were highly exposed to external gamma and inhaled plutonium. A cohort of individuals raised as children in Ozersk is under evaluation for their exposures to radioiodine. The Techa River Cohort consists of over 30,000 people who were born before the start of exposure in 1949 and lived along the Techa River. The Techa River Offspring Cohort consists of about 21,000 persons born to one or more exposed parents of this group - many of whom also lived along the contaminated river. The EURT Cohort consists of about 18,000 people who were evacuated from the EURT soon after the 1957 explosion and another 8000 who remained. These groups together are the focus of dose reconstruction and epidemiological studies funded by the US, Russia, and the European Union to address the question “Are doses delivered at low dose rates as effective in producing health effects as the same doses delivered at high dose rates?”« less
Safe, Cost Effective Management of Inactive Facilities at the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austin, W. E.; Yannitell, D. M.; Freeman, D. W.
The Savannah River Site is part of the U.S. Department of Energy complex. It was constructed during the early 1950s to produce basic materials (such as plutonium-239 and tritium) used in the production of nuclear weapons. The 310-square-mile site is located in South Carolina, about 12 miles south of Aiken, South Carolina, and about 15 miles southeast of Augusta, Georgia. Savannah River Site (SRS) has approximately 200 facilities identified as inactive. These facilities range in size and complexity from large nuclear reactors to small storage buildings. These facilities are located throughout the site including three reactor areas, the heavy watermore » plant area, the manufacturing area, and other research and support areas. Unlike DOE Closure Sites such as Hanford and Rocky Flats, SRS is a Project Completion Site with continuing missions. As facilities complete their defined mission, they are shutdown and transferred from operations to the facility disposition program. At the SRS, Facilities Decontamination and Decommissioning (FDD) personnel manage the disposition phase of a inactive facility's life cycle in a manner that minimizes life cycle cost without compromising (1) the health or safety of workers and the public or (2) the quality of the environment. The disposition phase begins upon completion of operations shutdown and extends through establishing the final end-state. FDD has developed innovative programs to manage their responsibilities within a constrained budget.« less
The purpose of the Mississippi River map series is to provide reference for ecological vulnerability throughout the entire Mississippi River Basin, which is a forthcoming product. This map series product consists of seven 32 inch x 40 inch posters, with a nominal scale of 1 inch ...
River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998
Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.
2001-01-01
The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake/ reservoir and river operations including diversion of Truckee River water to the Truckee Canal for transport to the Carson River Basin. In addition to the operations and streamflow-routing modules, the modeling system is structured to allow integration of other modules, such as water-quality and precipitation-runoff modules. The USGS Truckee River Basin operations model was designed to provide simulations that allow comparison of the effects of alternative management practices or allocations on streamflow or reservoir storages in the Truckee River Basin over long periods of time. Because the model was not intended to reproduce historical streamflow or reservoir storage values, a traditional calibration that includes statistical comparisons of observed and simulated values would be problematic with this model and database. This report describes a chronology and background of decrees, agreements, and laws that affect Truckee River operational practices; the construction of the Truckee River daily operations model; the simulation of Truckee River Basin operations, both current and proposed under the draft TROA and WQSA; and suggested model improvements and limitations. The daily operations model uses Hydrological Simulation Program?FORTRAN (HSPF) to simulate flow-routing and reservoir and river operations. The operations model simulates reservoir and river operations that govern streamflow in the Truckee River from Lake Tahoe to Pyramid Lake, including diversions through the Truckee Canal to Lahontan Reservoir in the Carson River Basin. A general overview is provided of daily operations and their simulation. Supplemental information that documents the extremely complex operating rules simulated by the model is available.
Covington, H.R.; Weaver, Jean N.
1991-01-01
The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig. 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer north of the Snake River underlies most of the eastern plain. The aquifer is composed of basaltic rocks that are interbedded with fluvial and lacustrine sedimentary rocks. The top of the aquifer (water table) is typically less than 500 ft below the land surface but is deeper than 1,000 ft in a few areas. The Snake River has excavated a canyon into the nearly flat lying basaltic and sedimentary rocks of the eastern Snake River Plain aquifer, which discharges from the northern canyon wall as springs of variable size, spacing, and altitude. Geologic controls on springs are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along the describes the geologic occurrence of springs along the northern wall of the Snake River canyon. This report is one of several that describes the geologic occurrence of springs along the northern wall of the Snake River canyon from Milner Dam to King Hill. To understand the local geologic controls on springs, the Water Resources Division of the U.S. Geological Survey initiated a geologic mapping project as part of their Snake River Plain Regional Aquifer System-Analysis Program. Objectives of the project were (1) to prepare a geologic map of a strip of land immediately north of the Snake River canyon, (2) to map the geology of the north canyon wall in profile, (3) to locate spring occurrences along the north side of the Snake River between Milner Sam and King Hill, and (4) to estimate spring discharge from the north wall of the canyon.
Covington, H.R.; Weaver, Jean N.
1990-01-01
The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig. 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer north of the Snaked River underlies the most of the eastern plain. The aquifer is composed of basaltic ricks that are interbedded with fluvial and lacustrine sedimentary rocks. The top of the aquifer (water table) is typically less than 500 ft below the land surface, but is deeper than 1,000 ft in few areas. The Snake River had excavated a canyon into the nearly flat-lying basaltic and sedimentary rocks of the eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon intersects the Snake River Plain aquifer, which discharges from the north canyon wall as springs of variable size, spacing, and altitude. Geologic controls on springs are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of several that describes the geologic occurrence of springs along the northern wall of the Snake River canyon from Milner Dam to King Hill. To understand the local geologic controls on springs, the Water Resources Division of the U.S. Geological Survey initiated a geologic mapping project as part of their Snake River Plain Regional Aquifer System-Analysis Program. Objectives of the project were (1) to prepare a geologic map of a strip of land immediately north of the Snake River canyon, (2) to map the geology of the north canyon wall in profile, (3) to locate spring occurrences along the north side of the Snake River between Milner Dam and King Hill, and (4) to estimate spring discharge from the north wall of the canyon.
Fish tissue contamination in the mid-continental great rivers of the United States
The great rivers of the central United States (Upper Mississippi, Missouri and Ohio rivers) are significant economic and cultural resources, but their ecological condition is not well quantified. The Environmental Monitoring and Assessment Program for Great River Ecosystems (EMAP...
23. VIEW SHOWING SALT RIVER PROJECT CREWS SLIPFORMING LATERAL DURING ...
23. VIEW SHOWING SALT RIVER PROJECT CREWS SLIPFORMING LATERAL DURING REHABILITATION AND BETTERMENT PROGRAM Photographer: unknown. April 1968 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ
The Software Maintenance Spectrum: Using More than Just New Toys
2000-04-01
Deitel & Deitel, How to Program Java, Prentice Hall, Upper Saddle River, NJ, 1998. Bjarne Stroustrup, The C++ Programming Language, ATT Bell Labs, New... to Program Java, Prentice Hall, Upper Saddle River, NJ, 1998. Dershem, Herbert L and Michael J. Jipping, Programming Languages: Structures and Models...Chikofsky, Elliot and James Cross. Reverse Engineering and Design Recovery: A Taxonomy. IEEE Software, 7(1):13-17 (Jan 1990). Deitel & Deitel, How
LOWER COLUMBIA RIVER ESTUARY PROGRAM COMPREHENSIVE CONSERVATION AND MANAGEMENT PLAN
An estuary is the area where the fresh water of a river meets the salt water of an ocean. In the Columbia River system, this occurs in the lower 46 river miles. In an estuary, the river has a direct, natural connection with the open sea. This transition from fresh to salt water c...
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the area of surficial geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the "Digital data set describing surficial geology in the conterminous US" (Clawges and Price, 1999). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?
Malison, Rachel L; Kuzishchin, Kirill V; Stanford, Jack A
2016-01-01
Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3-12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99-1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically could produce 2× the biomass (between June-August, 1,174 vs. 667 kg) and rear 3× the number of salmon (370,000 vs. 140,000) compared to the existing condition with dams present. The highly productive Kol river produces an order of magnitude more salmon biomass and rears 40× the individuals compared to the Kwethluk. If beavers were introduced to the Kol River, we estimate that off-channel habitats would produce half as much biomass (2,705 vs. 5,404 kg) and 3× fewer individuals (1,482,346 vs. 4,856,956) owing to conversion of inter-connected, productive springbrooks into inaccessible pond complexes. We concluded that beaver dams may limit the total amount of floodplain habitat available for salmon rearing in the Kwethluk river and that the introduction of beavers to the Kol river could be detrimental to salmon populations. The introduction of beavers to other large alluvial rivers like those found in Kamchatka could have negative consequences for salmon production.
Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?
Kuzishchin, Kirill V.; Stanford, Jack A.
2016-01-01
Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3–12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99–1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically could produce 2× the biomass (between June–August, 1,174 vs. 667 kg) and rear 3× the number of salmon (370,000 vs. 140,000) compared to the existing condition with dams present. The highly productive Kol river produces an order of magnitude more salmon biomass and rears 40× the individuals compared to the Kwethluk. If beavers were introduced to the Kol River, we estimate that off-channel habitats would produce half as much biomass (2,705 vs. 5,404 kg) and 3× fewer individuals (1,482,346 vs. 4,856,956) owing to conversion of inter-connected, productive springbrooks into inaccessible pond complexes. We concluded that beaver dams may limit the total amount of floodplain habitat available for salmon rearing in the Kwethluk river and that the introduction of beavers to the Kol river could be detrimental to salmon populations. The introduction of beavers to other large alluvial rivers like those found in Kamchatka could have negative consequences for salmon production. PMID:27635357
NASA Astrophysics Data System (ADS)
Lacey, H. F.; Phillips, F. M.; Tidwell, V.; Hogan, J.; Bastien, E.; Oelsner, G.
2005-12-01
Salinization of rivers is a problem in the southwestern United States as well as in other semiarid and arid regions of the world. Arid and semiarid rivers including the Rio Grande often exhibit increasing salinity with distance downstream, which is commonly attributed to irrigated agriculture. Increased river salinity causes economic losses by reducing crop productivity, rendering the water unsuitable for many municipal and industrial uses, and corroding or plugging pipes. Although most salinization of the Rio Grande takes place in the United States, many of the effects are felt in Mexico. Recent studies have found that salinization of the Rio Grande is geologically controlled by the addition of deep saline brines at several distinct locations. However, these additions of deep brine have not been well quantified. We have designed a model using a system dynamics software program to analyze Rio Grande chloride data. The model uses historical chloride and gaging station data and high-resolution synoptic chloride samples collected between 2000 and 2005 to characterize and quantify additions of deep brine to the river. The model has also been used to evaluate the effect of the construction of Elephant Butte Reservoir on the chloride balance of the river using chloride concentration data from 1905-1907. The model can also be used to evaluate future climatic and management scenarios in order to plan for the future water needs of the basin.
Changes in productivity and contaminants in bald eagles nesting along the lower Columbia River, USA
Buck, J.A.; Anthony, R.G.; Schuler, C.A.; Isaacs, F.B.; Tillitt, D.E.
2005-01-01
Previous studies documented poor productivity of bald eagles (Haliaeetus leucocephalus) in the lower Columbia River (LCR), USA, and elevated p,p???-dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCBs), dioxins, and furans in eagle eggs. From 1994 to 1995, we collected partially incubated eggs at 19 of 43 occupied territories along the LCR and compared productivity and egg contaminants to values obtained in the mid-1980s. We found higher productivity at new nesting sites along the river, yet productivity at 23 older breeding territories remained low and was not different (p = 0.713) between studies. Eggshell thickness at older territories had not improved (p = 0.404), and eggshells averaged 11% thinner than shells measured before dichlorodiphenyltrichloroethane use. Decreases in DDE (p = 0.022) and total PCBs (p = 0.0004) in eggs from older breeding areas occurred between study periods. Productivity was not correlated to contaminants, but DDE, PCBs, and dioxin-like chemicals exceeded estimated no-effect values. Some dioxin-like contaminants in eggs were correlated to nest location, with highest concentrations occurring toward the river's mouth where productivity was lowest. Although total productivity increased due to the success of new nesting pairs in the region, egg contaminants remain high enough to impair reproduction at older territories and, over time, may alter productivity of new pairs nesting near the river's mouth. ?? 2005 SETAC.
Topographic Structure from Motion
NASA Astrophysics Data System (ADS)
Fonstad, M. A.; Dietrich, J. T.; Courville, B. C.; Jensen, J.; Carbonneau, P.
2011-12-01
The production of high-resolution topographic datasets is of increasing concern and application throughout the geomorphic sciences, and river science is no exception. Consequently, a wide range of topographic measurement methods have evolved. Despite the range of available methods, the production of high resolution, high quality digital elevation models (DEMs) generally requires a significant investment in personnel time, hardware and/or software. However, image-based methods such as digital photogrammetry have steadily been decreasing in costs. Initially developed for the purpose of rapid, inexpensive and easy three dimensional surveys of buildings or small objects, the "structure from motion" photogrammetric approach (SfM) is a purely image based method which could deliver a step-change if transferred to river remote sensing, and requires very little training and is extremely inexpensive. Using the online SfM program Microsoft Photosynth, we have created high-resolution digital elevation models (DEM) of rivers from ordinary photographs produced from a multi-step workflow that takes advantage of free and open source software. This process reconstructs real world scenes from SfM algorithms based on the derived positions of the photographs in three-dimensional space. One of the products of the SfM process is a three-dimensional point cloud of features present in the input photographs. This point cloud can be georeferenced from a small number of ground control points collected via GPS in the field. The georeferenced point cloud can then be used to create a variety of digital elevation model products. Among several study sites, we examine the applicability of SfM in the Pedernales River in Texas (USA), where several hundred images taken from a hand-held helikite are used to produce DEMs of the fluvial topographic environment. This test shows that SfM and low-altitude platforms can produce point clouds with point densities considerably better than airborne LiDAR, with horizontal and vertical precision in the centimeter range, and with very low capital and labor costs and low expertise levels. Advanced structure from motion software (such as Bundler and OpenSynther) are currently under development and should increase the density of topographic points rivaling those of terrestrial laser scanning when using images shot from low altitude platforms such as helikites, poles, remote-controlled aircraft and rotocraft, and low-flying manned aircraft. Clearly, the development of this set of inexpensive and low-required-expertise tools has the potential to fundamentally shift the production of digital fluvial topography from a capital-intensive enterprise of a low number of researchers to a low-cost exercise of many river researchers.
NASA Astrophysics Data System (ADS)
Ferguson, John W.; Healey, Michael; Dugan, Patrick; Barlow, Chris
2011-01-01
We compared the effects of water resource development on migratory fish in two North American rivers using a descriptive approach based on four high-level indicators: (1) trends in abundance of Pacific salmon, (2) reliance on artificial production to maintain fisheries, (3) proportion of adult salmon that are wild- versus hatchery-origin, and (4) number of salmon populations needing federal protection to avoid extinction. The two rivers had similar biological and physical features but radically different levels of water resource development: the Fraser River has few dams and all are located in tributaries, whereas the Columbia River has more than 130 large mainstem and tributary dams. Not surprisingly, we found substantial effects of development on salmon in the Columbia River. We related the results to potential effects on migratory fish in the Mekong River where nearly 200 mainstem and tributary dams are installed, under construction, or planned and could have profound effects on its 135 migratory fish species. Impacts will vary with dam location due to differential fish production within the basin, with overall effects likely being greatest from 11 proposed mainstem dams. Minimizing impacts will require decades to design specialized fish passage facilities, dam operations, and artificial production, and is complicated by the Mekong's high diversity and productivity. Prompt action is needed by governments and fisheries managers to plan Mekong water resource development wisely to prevent impacts to the world's most productive inland fisheries, and food security and employment opportunities for millions of people in the region.
Viers, Jérôme; Barroux, Guénaël; Pinelli, Marcello; Seyler, Patrick; Oliva, Priscia; Dupré, Bernard; Boaventura, Geraldo Resende
2005-03-01
The purpose of this paper is to forecast the role of riverine wetlands in the transfer of trace elements. One of the largest riverine wetlands in the world is the floodplain (várzea) of the Amazon River and its tributaries (Junk and Piedade, 1997). The central Amazon wetlands are constituted by a complex network of lakes and floodplains, named várzeas, that extend over more than 300,000 km2 (Junk, W.J., The Amazon floodplain--a sink or source for organic carbon? In Transport of Carbon and Minerals in Major World Rivers, edited by E.T. Degens, S. Kempe, R. Herrera, SCOPE/UNEP; 267-283, 1985.) and are among the most productive ecosystems in the world due to the regular enrichment in nutrients by river waters In order to understand if the adjacent floodplain of Amazon River have a significant influence on the trace element concentrations and fluxes of the mainstem, the concentrations of selected elements (i.e., Al, Mn, Fe, Co, Cu, Mo, Rb, Sr, Ba, and U) have been measured in the Amazon River water (Manacapuru Station, Amazonas State, Brazil) and in lake waters and plants (leaves) from a várzea(Ilha de Marchantaria, Amazonas State, Brazil) during different periods of the hydrological cycle. Four plant species (two perennial species: Pseudobombax munguba and Salix humboldtiana, and two annual herbaceous plants: Echinochloa polystachya and Eichhornia crassipes) were selected to represent the ecological functioning of the site. Time series obtained for dissolved Mn and Cu (<0.20 microm) in Amazon River water could not be explained by tributary mixing or instream processes only. Therefore, the contribution of the waters transiting the floodplains should be considered. These results suggest that the chemical composition of the waters draining these floodplains is controlled by reactions occurring at sediment-water and plant-water interfaces. Trace elements concentrations in the plants (leaves) vary strongly with hydrological seasonality. Based on the concentration data and the biological productivity of floodplain ecosystems, a first order approximation of trace element storage (permanent or temporary) in the vegetation of these floodplains was made. It was found that floodplain-mainstem elemental fluxes make a significant contribution to the dissolved flux of the Amazon River. This study is part of the Brazilian_French joint research program Hybam (Hydrology and Geochemistry of the Amazonian Basin).
The EPA’s Environmental Monitoring and Assessment Program large-river assessment protocol was applied to assess the ecological condition, major stressors, and likely human disturbances of the mainstem Malheur River, OR. We used inflatable rafts to allow launching and retrieving ...
The great rivers of the central United States (Upper Mississippi, Missouri, and Ohio rivers) are significant economic and cultural resources, but their ecological condition is not well quantified. The Environmental Monitoring and Assessment Program for Great River Ecosystems (EMA...
The economic value of Trinity River water
Douglas, A.J.; Taylor, J.G.
1999-01-01
The Trinity River, largest tributary of the Klamath River, has its head-waters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the Sacramento River, and power production at three of these installations would diminish if no Trinity River water were diverted to the Sacramento River. After Trinity River water reaches the Sacramento River, it flows toward the Sacramento-San Joaquin Delta and San Francisco Bay. Trinity River water is pumped via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The social cost of putting more water down the Trinity River is the sum of the value of the foregone consumer surplus from hydropower production as well as the value of the foregone irrigation water. Sharply diminished instream flows have also severely affected the size and robustness of Trinity River salmon, steelhead, shad and sturgeon runs. Survey data were used to estimate the non-market benefits of augmenting Trinity River instream flows by letting more water flow down the Trinity and moving less water to the Sacramento River. Preservation benefits for Trinity River instream flows and fish runs are $803 million per annum for the scenario that returns the most water down the Trinity River, a value that greatly exceeds the social cost estimate.The Trinity River, largest tributary of the Klamath River, has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the Sacramento River, and power production at three of these installations would diminish if no Trinity River water were diverted to the Sacramento River. After Trinity River water reaches the Sacramento River, it flows toward the Sacramento-San Joaquin Delta and San Francisco Bay. Trinity River water is pumped via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The social cost of putting more water down the Trinity River is the sum of the value of the foregone consumer surplus from hydropower production as well as the value of the foregone irrigation water. Sharply diminished instream flows have also severely affected the size and robustness of Trinity River salmon, steelhead, shad and sturgeon runs. Survey data were used to estimate the non-market benefits of augmenting Trinity River instream flows by letting more water flow down the Trinity and moving less water to the Sacramento River. Preservation benefits for Trinity River instream flows and fish runs are $803 million per annum for the scenario that returns the most water down the Trinity River, a value that greatly exceeds the social cost estimate.
NASA Astrophysics Data System (ADS)
McKinnell, Skip
2008-05-01
In descending order of importance, artificial spawning channels, density-dependent mortality, carryover mortality, and climate have significant influences on the average productivity of Fraser River sockeye salmon ( Oncorhynchus nerka). When factors that are known or have been hypothesized to affect Fraser River sockeye salmon productivity are included in a single analytical framework, no significant change in average productivity occurred in 1976/1977, however, beginning in 1989 average productivity was significantly lower. In the one lake (Chilko) in the Fraser River basin where pre-smolt survival can be distinguished from post-smolt survival, this decline arose from freshwater causes. After accounting for other factors that have a greater influence, Fraser River sockeye salmon productivity tends to be slightly lower in years when the intensity of the Aleutian low pressure region is stormier in winter, although the effect is not strongly expressed in any particular population. A footnote to the study was the realization that estimates of Ricker’s density-dependent mortality parameter, β, are influenced by both the numerical properties of the equation and by population biology; density-dependent and density-independent influences on the estimates of the parameter are confounded.
Neuswanger, Jason R.; Wipfli, Mark S.; Evenson, Matthew J.; Hughes, Nicholas F.; Rosenberger, Amanda E.
2015-01-01
Yukon River Chinook salmon (Oncorhynchus tshawytscha) populations are declining for unknown reasons, creating hardship for thousands of stakeholders in subsistence and commercial fisheries. An informed response to this crisis requires understanding the major sources of variation in Chinook salmon productivity. However, simple stock–recruitment models leave much of the variation in this system’s productivity unexplained. We tested adding environmental predictors to stock–recruitment models for two Yukon drainage spawning streams in interior Alaska — the Chena and Salcha rivers. Low productivity was strongly associated with high stream discharge during the summer of freshwater residency for young-of-the-year Chinook salmon. This association was more consistent with the hypothesis that sustained high discharge negatively affects foraging conditions than with acute mortality during floods. Productivity may have also been reduced in years when incubating eggs experienced major floods or cold summers and falls. These freshwater effects — especially density dependence and high discharge — helped explain population declines in both rivers. They are plausible as contributors to the decline of Chinook salmon throughout the Yukon River drainage.
Hughes, W. Brian; Younker, Cristal L.
2011-01-01
An investigation by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program characterized the occurrence of 266 organic compounds in source water and finished water from the Chattahoochee River, which is the main water-supply source for the Atlanta metropolitan area. Source water is stream water collected at a surface-water intake prior to water treatment, and finished water is water that has passed through treatment processes prior to distribution. Samples were collected approximately monthly during 2004-05 and included 15 paired source-water and finished-water samples. Samples were collected during winter-spring high flow and summer-fall low flow, but storm events were not targeted during this Source Water-Quality Assessment (SWQA) study. Samples were analyzed for pesticides and degradates, gasoline hydrocarbons, solvents, disinfection by-products, personal care and domestic-use products, and other organic compounds. Community water systems are required to monitor regulated organic compounds under the Safe Drinking Water Act of 1996 (U.S. Environmental Protection Agency, 1998); however, most compounds included in this study are not regulated by Federal drinking-water standards (U.S. Environmental Protection Agency, 2007a). The Chattahoochee River study is part of an ongoing NAWQA investigation of community water systems across the United States. Additional details about the national study are given in Carter and others (2007).
27 CFR 9.57 - Green Valley of Russian River Valley.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...
27 CFR 9.66 - Russian River Valley.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...
27 CFR 9.66 - Russian River Valley.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...
27 CFR 9.66 - Russian River Valley.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...
27 CFR 9.66 - Russian River Valley.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...
27 CFR 9.57 - Green Valley of Russian River Valley.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...
27 CFR 9.57 - Green Valley of Russian River Valley.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...
27 CFR 9.66 - Russian River Valley.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Russian River Valley. 9.66 Section 9.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.66 Russian River Valley. (a) Name. The name of the...
27 CFR 9.57 - Green Valley of Russian River Valley.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...
27 CFR 9.57 - Green Valley of Russian River Valley.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...
ERIC Educational Resources Information Center
Uchendu, C. C.; Osim, R. O.; Odigwe, F. N.; Alade, F. N.
2014-01-01
This study examined lecturers' perception of research activities for knowledge production in universities in Cross River State, Nigeria. Two hypotheses were isolated to give direction to this investigation. 240 university lecturers were sampled from a population of 1,868 from the two universities in Cross River State, using stratified random…
The Savannah River Site's Groundwater Monitoring Program, third quarter 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.
Supplement Analysis for Yakima/Klickitat Fisheries Project, (DOE/EIS-0169-SA-05)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Patricia R.
2002-09-20
Yakima/Klickitat Fisheries Project – Under the Monitoring and Evaluation Program (M&E), the domestication selection research task would be modified to include a hatchery control line, maintained entirely by spawning hatchery-origin fish. The Bonneville Power Administration is funding ongoing studies, research, and artificial production of several salmonid species in the Yakima and Klickitat river basins. BPA analyzed environmental impacts of research and supplementation projects in the Yakima basin in an Environmental Impact Statement (EIS) completed in 1996 (USDOE/BPA 1996), and in the following Supplement Analyses: DOE/EIS-0169-SA-01, completed in May 1999; DOE/EIS-0169-SA-02, completed in August 1999; DOE/EIS-0169-SA-03, completed in 2000; DOE/EIS-0169-SA-04, completedmore » in November 2000. The purpose of this Supplement Analysis is to determine if a Supplemental EIS is needed to analyze the changes proposed in the Monitoring and Evaluation program (#199506325) of the Yakima Klickitat Fisheries Project (YKFP) as reviewed in the FY 2001 Project Proposals for the Columbia River Gorge and Inter-Mountain Provinces, ISRP 2000-9 (December 1, 2000). Modifications to the M&E program are in support of the experimental acclimation, rearing and incubating activities for spring chinook.« less
ERIC Educational Resources Information Center
Los Rios Community Coll. District, Sacramento, CA.
The components and present status of programs for ethnic minorities at American River, Sacramento City, and Cosumnes River Colleges of the Los Rios Community College District (California) are explained in this Part I of a larger study. The programs aim to enhance minority students' opportunities to succeed in college, provide equal opportunity for…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
... the reliability of water supplies for irrigation. FOR FURTHER INFORMATION CONTACT: Ms. Dawn Wiedmeier... River Basin Water Conservation Program. In consultation with the State, the Yakama Nation, Yakima River... nonstructural cost-effective water conservation measures in the Yakima River basin. Improvements in the...
This manual describes procedures for collecting samples and field measurements for biotic assemblages and abiotic characteristics of the Great Rivers of the Central Basin of the United States: the Missouri, Upper Mississippi, and Ohio Rivers. In addition to the technical and logi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-12-01
The symposium was focussed on the interrelationships of Savannah River Plant operations and the environment of the Savannah River area. Environmental programs at the Savannah River Plant site began with baseline measurements before plant startup and continued with data collection into the 1980's. (ACR)
Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 2008 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffnagle, Timothy L.; Hair, Donald; Gee, Sally
2009-03-31
The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program is designed to rapidly increase numbers of Chinook salmon in stocks that are in imminent danger of extirpation in Catherine Creek (CC), Lostine River (LR) and upper Grande Ronde River (GR). Natural parr are captured and reared to adulthood in captivity, spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation. Presmolt rearing was initially conducted at Lookingglass Fish Hatcherymore » (LFH) but parr collected in 2003 and later were reared at Wallowa Fish Hatchery (WFH). Post-smolt rearing is conducted at Bonneville Fish Hatchery (BOH - freshwater) and at Manchester Research Station (MRS - saltwater). The CC and LR programs are being terminated, as these populations have achieved the goal of a consistent return of 150 naturally spawning adults, so the 2005 brood year was the last brood year collected for theses populations. The Grande Ronde River program continued with 300 fish collected each year. Currently, we are attempting to collect 150 natural parr and incorporate 150 parr collected as eggs from females with low ELISA levels from the upper Grande Ronde River Conventional Hatchery Program. This is part of a comparison of two methods of obtaining fish for a captive broodstock program: natural fish vs. those spawned in captivity. In August 2007, we collected 152 parr (BY 2006) from the upper Grande Ronde River and also have 155 Grande Ronde River parr (BY 2006) that were hatched from eyed eggs at LFH. During 2008, we were unable to collect natural parr from the upper Grande Ronde River. Therefore, we obtained 300 fish from low ELISA females from the upper Grande Ronde River Conventional Program. In October 2008 we obtained 170 eyed eggs from the upper Grande Ronde river Conventional Hatchery Program. We will attempt to collect natural parr in August 2009. This year 752 fish were removed from the captive population: 629 fish survived to gamete production and 123 fish died from various causes prior to spawning. Growth of the Captive Broodstock fish was similar to previous years. The saltwater fish have grown more slowly than those reared in freshwater. A total of 720 fish were sorted as maturing and 629 (87.4%) of them survived to spawn. We collected gametes from 273 females and 350 males from the 2002-2006 brood years in 2008, using 111 spawning matrices and collected 474,187 green eggs (1,737 eggs/female). All ripe males were spawned and no semen was collected for cryo-preservation. Of the 474,187 eggs collected for the BY 2008 F1 generation, 448,373 (94.6%) survived to the eyed stage. 68,612 (15.3%) were culled from females with high ELISA OD values for BKD prevention. For BY 2007, we collected a total of 477,048 eggs from all three populations and 407,369 (85.4%) reached the eyed stage, while 95,024 eyed eggs (23.3%) were culled for BKD prevention. Eyed eggs were hatched at Lookingglass Fish Hatchery, producing 267,131 fry. As parr, 153,371 fish were coded-wire tagged (CWT). For the 2006 F1 brood year, we collected 177,890 eggs and 149,073 (83.8%) reached the eyed stage. 83,826 eyed eggs (56.2%) were culled at the eyed stage for BKD prevention. 61,044 fry were produced (93.6%), 53,688 (88 %) survived to smolt. There were 54 bacterial kidney disease (BKD) mortalities at BOH and MRS, combined in this reporting period. Overall, there were fewer BKD mortalities in 2008 due to a reduced number of fish coming into the Captive Broodstock Program and a shift away from collecting wild parr to using eyed eggs from low ELISA females from the Conventional Hatchery Program. Unknown causes of death accounted for 32 deaths at MRS and BOH, combined in 2008. We continually examine and modify the operations of the Captive Broodstock Program to make improvements wherever possible. We continue to have difficulty with prevention and treatment of BKD outbreaks and continue to use erythromycin and azithromycin to treat this disease. We are also continuing to investigate other possible treatments and prophylactic measures. To reduce the incidence of BKD in offspring of the Captive Broodstock Program, we continue to allow culling of eyed eggs from females with high BKD ELISA values (generally >0.800 OD units but the cull level varies annually, depending on the distribution of ELISA values, number of eggs collected, and management considerations). We are also using ultrasound to determine maturity and sex of fish early in the maturation process and are now able to determine maturity and sex of most maturing fish in early April. This allows us to transfer maturing fish from saltwater to freshwater at a more natural time, which should improve fecundity and egg quality of saltwater-reared fish.« less
Columbia River Basin Fish and Wildlife Program Annual Implementation Work Plan for Fiscal Year 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
United States. Bonneville Power Administration; Northwest Power Planning Council; Columbia Basin Fish and Wildlife Authority
1992-09-01
The Columbia River Basin Fish and Wildlife Program (Program) was developed by the Northwest Power Planning Council (Council) in accordance with Public Law 96-501, the Pacific Northwest Electric Power Planning and Conservation Act (Act). The purpose of the Program is to guide the Bonneville Power Administration (BPA) and other Federal agencies in carrying out their responsibilities to protect, mitigate, and enhance fish and wildlife of the Columbia River Basin. The Annual Implementation World Plan (AIWP) presents BPA`s plans for implementing the Program during fiscal year (FY) 1993. The FY 1993 AIWP emphasizes continuation of 143 ongoing or projecting ongoing Programmore » projects, tasks, or task orders, most of which involve protection, mitigation, or enhancement of anadromous fishery resources. The FY 1993 AIWP also contains three new Program projects or tasks that are planned to start in FY 1993.« less
Campo, Kimberly W.; Flanagan, Sarah M.; Robinson, Keith W.
2003-01-01
Nine rivers were monitored routinely for a variety of field conditions, dissolved ions, and nutrients during 1998-2000 as part of the New England Coastal Basins (NECB) study of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. The nine rivers, located primarily in the Boston metropolitan area, represented a gradient of increasing urbanization from 1 to 68 percent urban land use. Additional water samples were collected and analyzed for pesticides and volatile organic compounds at two of the nine rivers. Specific conductance data from all rivers were correlated with urban land use; specific conductance values increased during winter at some sites indicating the effect of road de-icing applications. In the more intensely urbanized basins, concentrations of sodium and chloride were high during winter and likely are attributed to road de-icing applications. Concentrations of total nitrogen and the various inorganic and organic nitrogen species were correlated with the percentage of urban land in the drainage basin. Total phosphorus concentrations also were correlated with urbanization in the drainage basin, but only for rivers draining less than 50 square miles. Preliminary U.S. Environmental Protection Agency total nitrogen and total phosphorus criteria for the rivers in the area were frequently exceeded at many of the rivers sampled. At the two sites monitored for pesticides and volatile organic compounds, the Aberjona and Charles Rivers near Boston, greater detection frequencies of pesticides were in samples from the spring and summer when pesticide usage was greatest. At both sites, herbicides were detected more commonly than insecticides. The herbicides prometon and atrazine and the insecticide diazinon were detected in over 50 percent of all samples collected from both rivers. No water samples contained pesticide concentrations exceeding any U.S. Environmental Protection Agency drinking-water standard or criteria for protecting freshwater aquatic life. The volatile organic compounds trichloroethylene, tetrachloroethylene, and cis-1,2- dichloroethylene--all solvents and de-greasers--were detected in all water samples from both rivers. The gasoline oxygenate methyl tert-butyl ether (MTBE) and the disinfection by-product chloroform were detected in all but one water sample from the two rivers. Two water samples from the Charles River had trichloroethylene concentrations that exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level of 5 micrograms per liter for drinking water. Selected water-quality data from two NCEB rivers in the Boston metropolitan area were compared to two similarly sized intensely urban rivers in another NAWQA study area in the New York City metropolitan area and to other urban rivers sampled as part of the NAWQA Program nationally. Nutrient total nitrogen and total phosphorus concentrations and yields were less in the NECB study area than in the other study areas. In addition, the pesticides atrazine, carbaryl, diazinon, and prometon were detected less frequently and at lower concentrations in the two NECB rivers than in the New York City area streams or in the other urban NAWQA streams. Concentrations of the insecticides diazinon and carbaryl were detected more frequently and at higher concentrations in the NECB study area than in the other urban rivers sampled by NAWQA nationally. Detection frequency and concentrations of volatile organic compounds generally were higher in the two NECB streams than in the New York City area streams or in other urban NAWQA streams.
Covington, H.R.; Weaver, Jean N.
1990-01-01
The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig. 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer north of the Snake River underlies most of the eastern plain. The aquifer is composed of basaltic rocks that are interbedded with fluvial and lacustrine sedimentary rocks. The top of the aquifer (water table) is typically less than 500 ft below the land surface, but is deeper than 1,000 ft in a few areas. The Snake River has excavated a canyon into the nearly flat-lying basaltic and sedimentary rocks of the eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon wall as springs of variable size, spacing, and altitude. Geologic controls on springs are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of several that describes the geologic occurrence of springs along the northern wall of the Snake River canyon from Milner Dam to King Hill (fig. 1). To understand the local geologic controls on springs, the Water Resources Division of the U.S. Geological Survey initiated a geologic mapping project as part of their Snake River Plain Regional Aquifer System-Analysis Program. Objectives of the project were (1) to prepare a geologic map of a strip of land immediately north of the Snake River canyon, (2) to map the geology of the north canyon wall in profile, (3) to locate spring occurrences along the north side of the Snake River between Milner Dam and King Hill, and (4) to estimate spring discharge from the north wall of the canyon.
Rosenbauer, R.J.; Bischoff, J.L.; Kharaka, Y.K.
1992-01-01
Brine seepage into the Dolores River from ground water in Paradox Valley, Colorado constitutes a major source of salt to the Colorado River. Plants are enderway to remove this source of salt by drawing down the Paradox Valley brine (PVB) and forcibly injecting it into a deep disposal well (4.8 km). Experiments were conducted to determine the effects of deep-well injection of PVB. The results show that PVB is near saturation with anhydrite at 25??C, and that heating results in anhydrite precipitation. The amount and the rate at which anhydrite forms is temperature, pressure, and substrate dependent. Paradox Valley brine heated in the presence of Precambrian rocks from the drill core produces the same amount of anhydrite as PVB heated alone, but at a greatly accelerated rate. A 30% dilution of PVB with Dolores River water completely eliminates anhydrite precipitation when the fluid is heated with the Precambrian rocks. Interaction of PVB and Leadville Limestone is characterized by dolomitization of calcite by brine Mg which releases Ca to solution. This added Ca reacts with SO4 to form increased amounts of anhydrite. A 20% dilution of PVB by Dolores River water has no effect on dolomitization and reduces the amount of anhydrite only slightly. A 65% dilution of PVB by Dolores River water still does not prevent dolomitization but does suppress anhydrite formation. Computer modeling of PVB by programs utilizing the Pitzer ion-interaction parameters is in general agreement with the experimental results. Ion-activity products calculated by both SOLMINEQ and PHRQPITZ are close to equilibrium with both anhydrite and dolomite whenever these phases are present experimentally, although the calculations over-estimate by a factor of 2 the degree of saturation. Some discrepancies in the calculated results between the two programs are due largely to differences in mineral solubility data. ?? 1992.
Nez Perce Tribal Hatchery Program : Draft Environmental Impact Statement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
United States. Bonneville Power Administration; Nez Perce Tribal Hatchery
1996-06-01
Bonneville Power Administration, the Bureau of Indian Affairs, the Nez Perce Tribe propose a supplementation program to restore chinook salmon to the Clearwater River Subbasin in Idaho. The Clearwater River is a tributary to the Snake River, which empties into the Columbia River. The Nez Perce Tribe would build and operate two central incubation and rearing hatcheries and six satellite facilities. Spring, summer and fall chinook salmon would be reared and acclimated to different areas in the Subbasin and released at the hatchery and satellite sites or in other watercourses throughout the Subbasin. The supplementation program differs from other hatcherymore » programs because the fish would be released at different sizes and would return to reproduce naturally in the areas where they are released. Several environmental issues were identified during scoping: the possibility that the project would fail if mainstem Columbia River juvenile and adult passage problems are not solved; genetic risks to fish listed as endangered or threatened; potential impacts to wild and resident fish stocks because of increase competition for food and space; and water quality. The Proposed Action would affect several important aspects of Nez Perce tribal life, primarily salmon harvest, employment, and fisheries management.« less
Sherfy, Mark H.; Stucker, Jennifer H.; Anteau, Michael J.
2009-01-01
Habitat conditions are one of the most important factors determining distribution and productivity of least terns (Sternula antillarum) and piping plovers (Charadrius melodus) in the upper Missouri River system (Ziewitz and others, 1992; Kruse and others, 2002). Habitat conditions are known to change within and among seasons in response to variation in river flows, weather conditions, and management actions targeted at providing for the needs of terns and plovers. Although these principles are generally agreed upon, there is little empirical information available on the quantity and quality of tern and plover habitats in this system, particularly with reference to the major life history events that must be supported (egg laying, incubation, and brood rearing). Habitat requirements for these events are composed of two major categories: nesting and foraging habitat. In the case of piping plovers, these two requirements must occur on the same area because plover chicks are constrained to foraging near nesting sites prior to fledging (Knetter and others, 2002; Haffner, 2005). In contrast, least terns chicks are fed by the adults, allowing food procurement for broods to occur outside the immediate nesting area; however, food resources must be close enough to nesting locations to minimize foraging time. The complexity and dynamics of the upper Missouri River system introduce considerable uncertainty into how best to manage tern and plover habitats, and how best to evaluate the effectiveness of this management. An extensive program of habitat monitoring will be needed to address this complexity and support the management of least terns and piping plovers under the Missouri River Recovery Program. These needs are being addressed, in part, through a program of habitat creation and management targeted at improving quality and quantity of habitats for terns and plovers. Given the momentum of these projects and their associated costs, it is imperative that the capacity be available to quantify changes in managed habitats for least terns and piping plovers, so that management effectiveness can be evaluated. Extremely high flows and flooding of the Missouri River in 1997 created and improved vast amounts of nesting habitat for least terns and piping plovers. Since 1998, there has been an apparent loss and/or degradation of habitat throughout the river system. However, during the same timeframe reservoir water levels have declined, exposing extensive piping plover breeding habitat. For example, 64 percent of adult piping plovers using the Missouri River in 2005 were observed on reservoir habitats, and 43 percent were observed on Lake Sakakawea (Threatened and Endangered Species Section, Omaha District, U.S. Army Corps of Engineers, unpub. data, 2006). Given the vast dynamics of this river and reservoir system, systemwide monitoring of habitat is clearly needed for the U.S. Army Corps of Engineers (USACE) to employ adaptive management (with respect to river operations) to provide most optimal conditions for the maintenance of breeding habitat of least terns and piping plovers. As a result of this need, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, began work on a habitat monitoring plan in 2005 as a conceptual framework for adaptive management.
The Savannah River Site`s Groundwater Monitoring Program, third quarter 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.
Student Experiments on the Effects of Dam Removal on the Elwha River
NASA Astrophysics Data System (ADS)
Sandland, T. O.; Grack Nelson, A. L.
2006-12-01
The National Center for Earth Surface Dynamics (NCED) is an NSF funded Science and Technology Center devoted to developing a quantitative, predictive science of the ecological and physical processes that define and shape rivers and river networks. The Science Museum of Minnesota's (SMM) Earthscapes River Restoration classes provide k-12 students, teachers, and the public opportunities to explore NCED concepts and, like NCED scientists, move from a qualitative to a quantitative-based understanding of river systems. During a series of classes, students work with an experimental model of the Elwha River in Washington State to gain an understanding of the processes that define and shape river systems. Currently, two large dams on the Elwha are scheduled for removal to restore salmon habitat. Students design different dam removal scenarios to test and make qualitative observations describing and comparing how the modeled system evolves over time. In a following session, after discussing the ambiguity of the previous session's qualitative data, student research teams conduct a quantitative experiment to collect detailed measurements of the system. Finally, students interpret, critique, and compare the data the groups collected and ultimately develop and advocate a recommendation for the "ideal" dam removal scenario. SMM is currently conducting a formative evaluation of River Restoration classes to improve their educational effectiveness and guide development of an educator's manual. As of August 2006, pre- and post-surveys have been administered to 167 students to gauge student learning and engagement. The surveys have found the program successful in teaching students why scientists use river models and what processes and phenomena are at work in river systems. Most notable is the increase in student awareness of sediment in river systems. A post-visit survey was also administered to 20 teachers who used the models in their classrooms. This survey provided feedback about teachers' experience with the program and will help inform the development of a future educator's manual. All teachers found the program to be effective at providing opportunities for students to make qualitative observations and most (95%) found the program effective at providing students opportunities to make quantitative measurements. A full summary of evaluation results will be shared at the meeting.
NASA Technical Reports Server (NTRS)
D'Sa, Eurico; Miller, Richard; DelCastillo, Carlos
2004-01-01
NASA's projects for the Mississippi River Coastal Margin Study include Mississippi River Interdisciplinary Research (MiRIR) and NASA Experimental Program to Stimulate Competitive Research (EPSCoR). These projects, undertaken with the help of Tulane University and the Louisiana Universities Marine Consortium (LUMCON) sampled water in the Gulf of Mexico to measure colored dissolved organic matter (CDOM). This viewgraph presentation contains images of each program's sampling strategy and equipment.
HIGHLIGHTS OF THE RUSSIAN HEALTH STUDIES PROGRAM AND UPDATED RESEARCH FINDINGS
Fountos, Barrett N.
2017-01-01
Abstract Recognized for conducting cutting-edge science in the field of radiation health effects research, the Department of Energy's (DOE) Russian Health Studies Program has continued to generate excitement and enthusiasm throughout its 23-year mission to assess worker and public health risks from radiation exposure resulting from nuclear weapons production activities in the former Soviet Union. The three goals of the Program are to: (1) clarify the relationship between health effects and chronic, low-to-medium dose radiation exposure; (2) estimate the cancer risks from exposure to gamma, neutron, and alpha radiation; and (3) provide information to the national and international organizations that determine radiation protection standards and practices. Research sponsored by DOE's Russian Health Studies Program is conducted under the authority of the Joint Coordinating Committee for Radiation Effects Research (JCCRER), a bi-national committee representing Federal agencies in the United States and the Russian Federation. Signed in 1994, the JCCRER Agreement established the legal basis for the collaborative research between USA and Russian scientists to determine the risks associated with working at or living near Russian former nuclear weapons production sites. The products of the Program are peer-reviewed publications on cancer risk estimates from worker and community exposure to ionizing radiation following the production of nuclear weapons in Russia. The scientific return on investment has been substantial. Through 31 December 2015, JCCRER researchers have published 299 peer-reviewed publications. To date, the research has focused on the Mayak Production Association (Mayak) in Ozersk, Russia, which is the site of the first Soviet nuclear weapons production facility, and people in surrounding communities along the Techa River. There are five current projects in the Russian Health Studies Program: two radiation epidemiology studies; two historical dose reconstruction studies and a worker biorepository. National and international standard-setting organizations use cancer risk estimates computed from epidemiological and historical dose reconstruction studies to validate or revise radiation protection standards. An overview of the most important research results will be presented. PMID:27885077
Arctic River Discharge and Sediment Loads --- an Overview
NASA Astrophysics Data System (ADS)
Syvitski, J. P.; Overeem, I.; Brakenridge, G. R.; Hudson, B.; Cohen, S.
2014-12-01
Evidence suggests that river discharge has been increasing (+10%) over the last 30 years (1977-2007) for most arctic rivers. The peak melt month occurs earlier in the season in 66% of the studied rivers. Cold season flow is also increasing. Satellite discharge estimates, daily, based on microwave radiometry, are now possible from 1998 onwards. Daily river discharge hindcasts over the last 60 years using the water balance model WBMsed at a 10km spatial resolution are now available. The WBMsed model can be used in forecast mode assuming valid input climatology. The challenge here has been the accuracy of sub-polar precipitation grids. While each of these three methods (gauging, orbital sensing, modeling) has temporal and spatial coverage limitations, the combination of all three methods provides for a realistic way forward for estimating local discharge across the pan arctic. Flood inundation products are routinely produced for the pan-arctic using automated mapping algorithms developed by the Dartmouth Flood Observatory. The determination of artic river sediment loads is less than ideal. Some rivers have only been monitored for a short number of years, and many have not been monitored at all. The WBMsed model is perhaps the best method of estimating the daily sediment flux to the Arctic Ocean, at least for rivers where the mean discharge is greater than 30 m3/s. Additionally there is limited-duration field monitoring by national surveys. New methods are being explored, including back calculating the delivery of sediment to the coastal ocean by plume dimensions observed from space (MODIS, LandSat). These methods have had moderate success when applied to plumes extending in the Greenland fjords. Canada maintains an active circa 7-y satellite program (ArcticNet) to track the Mackenzie discharge during the spring-summer runoff period when turbid river water is apt to flow under and over marginal sea ice in the Beaufort Sea.
NASA Astrophysics Data System (ADS)
SchläPfer, Felix; Witzig, Pieter-Jan
2006-12-01
In 1997, about 140,000 citizens in 388 voting districts in the Swiss canton of Bern passed a ballot initiative to allocate about 3 million Swiss Francs annually to a canton-wide river restoration program. Using the municipal voting returns and a detailed georeferenced data set on the ecomorphological status of the rivers, we estimate models of voter support in relation to local river ecomorphology, population density, mean income, cultural background, and recent flood damage. Support of the initiative increased with increasing population density and tended to increase with increasing mean income, in spite of progressive taxation. Furthermore, we found evidence that public support increased with decreasing "naturalness" of local rivers. The model estimates may be cautiously used to predict the public acceptance of similar restoration programs in comparable regions. Moreover, the voting-based insights into the distribution of river restoration benefits provide a useful starting point for debates about appropriate financing schemes.
Hood River Passive House, Hood River, Oregon (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2014-02-01
The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift Housemore » and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.« less
Rainwater Wildlife Area Management Plan : Executive Summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, Allen B.; Confederated Tribes of the Umatilla Indian Reservation in Oregon.
The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Northwest Power Actmore » directs the NPPC to develop a program to ''protect, mitigate, and enhance'' fish and wildlife of the Columbia River and its tributaries. The overarching goals include: A Columbia River ecosystem that sustains an abundant, productive, and diverse community of fish and wildlife; Mitigation across the basin for the adverse effects to fish and wildlife caused by the development and operation of the hydrosystem; Sufficient populations of fish and wildlife for abundant opportunities for tribal trust and treaty right harvest and for non-tribal harvest; and Recovery of the fish and wildlife affected by the development and operation of the hydrosystem that are listed under the Endangered Species Act.« less
River Food Web Response to Large-Scale Riparian Zone Manipulations
Wootton, J. Timothy
2012-01-01
Conservation programs often focus on select species, leading to management plans based on the autecology of the focal species, but multiple ecosystem components can be affected both by the environmental factors impacting, and the management targeting, focal species. These broader effects can have indirect impacts on target species through the web of interactions within ecosystems. For example, human activity can strongly alter riparian vegetation, potentially impacting both economically-important salmonids and their associated river food web. In an Olympic Peninsula river, Washington state, USA, replicated large-scale riparian vegetation manipulations implemented with the long-term (>40 yr) goal of improving salmon habitat did not affect water temperature, nutrient limitation or habitat characteristics, but reduced canopy cover, causing reduced energy input via leaf litter, increased incident solar radiation (UV and PAR) and increased algal production compared to controls. In response, benthic algae, most insect taxa, and juvenile salmonids increased in manipulated areas. Stable isotope analysis revealed a predominant contribution of algal-derived energy to salmonid diets in manipulated reaches. The experiment demonstrates that riparian management targeting salmonids strongly affects river food webs via changes in the energy base, illustrates how species-based management strategies can have unanticipated indirect effects on the target species via the associated food web, and supports ecosystem-based management approaches for restoring depleted salmonid stocks. PMID:23284786
Blanchard, Stephen F.
2007-01-01
INTRODUCTION The U.S. Geological Survey (USGS) established its first streamgage in 1889 on the Rio Grande River at Embudo, N.M. As the need for streamflow information increased, the USGS streamgaging network expanded to its current (2007) size of approximately 7,400 streamgages nationwide. The USGS streamgaging network, for most of its history, required mechanical measuring and recording devices to collect station data. Time-consuming and labor-intensive site visits were required to gather the recorded data for processing in the office. Eventually the data were published in paper reports. The USGS has progressively improved the streamgaging program by incorporating new technologies and techniques that streamline data collection, data delivery, and records processing while increasing the number and quality of product types that can be derived from the data. Improvements in recent decades that have expanded and broadened the streamgaging program are included the fact sheet.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This dataset represents the area of each physiographic province (Fenneman and Johnson, 1946) in square meters, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from Fenneman and Johnson's Physiographic Provinces of the United States, which is based on 8 major divisions, 25 provinces, and 86 sections representing distinctive areas having common topography, rock type and structure, and geologic and geomorphic history (Fenneman and Johnson, 1946). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Attributes for NHDPlus Catchments (Version 1.1) in the Conterminous United States: Bedrock Geology
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the area of bedrock geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the "Geology of the Conterminous United States at 1:2,500,000 Scale--A Digital Representation of the 1974 P.B. King and H.M. Beikman Map" (Schuben and others, 1994). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the 30-year (1971-2000) average annual maximum temperature in Celsius multiplied by 100 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster dataset produced by the PRISM Group at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the estimated area of level 3 ecological landscape regions (ecoregions), as defined by Omernik (1987), compiled for every catchment of NHDPlus for the conterminous United States. The source data set is Level III Ecoregions of the Continental United States (U.S. Environmental Protection Agency, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the area of Hydrologic Landscape Regions (HLR) compiled for every catchment of NHDPlus for the conterminous United States. The source data set is a 100-meter version of Hydrologic Landscape Regions of the United States (Wolock, 2003). HLR groups watersheds on the basis of similarities in land-surface form, geologic texture, and climate characteristics. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Attributes for NHDPlus Catchments (Version 1.1): Level 3 Nutrient Ecoregions, 2002
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the area of each level 3 nutrient ecoregion in square meters, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from the 2002 version of the U.S. Environmental Protection Agency's (USEPA) Aggregations of Level III Ecoregions for National Nutrient Assessment & Management Strategy (USEPA, 2002). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Attributes for NHDPlus Catchments (Version 1.1): Basin Characteristics, 2002
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents basin characteristics, compiled for every catchment in NHDPlus for the conterminous United States. These characteristics are basin shape index, stream density, sinuosity, mean elevation, mean slope, and number of road-stream crossings. The source data sets are the U.S. Environmental Protection Agency's NHDPlus and the U.S. Census Bureau's TIGER/Line Files. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the average monthly minimum temperature in Celsius multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time High-Resolution Monthly Average Maximum/Minimum Temperature for the Conterminous United States for 2002 raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Base-Flow Index
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents the mean base-flow index expressed as a percent, compiled for every catchment in NHDPlus for the conterminous United States. Base flow is the component of streamflow that can be attributed to ground-water discharge into streams. The source data set is Base-Flow Index for the Conterminous United States (Wolock, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the 30-year (1971-2000) average annual precipitation in millimeters multiplied by 100 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the "United States Average Monthly or Annual Precipitation, 1971 - 2000" raster dataset produced by the PRISM Group at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the average annual R-factor, rainfall-runoff erosivity measure, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from Christopher Daly of the Spatial Climate Analysis Service, Oregon State University, and George Taylor of the Oregon Climate Service, Oregon State University (2002), who developed spatially distributed estimates of R-factor for the period 1971-2000 for the conterminous United States. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the average atmospheric (wet) deposition, in kilograms per square kilometer, of inorganic nitrogen for the year 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data set for wet deposition was from the USGS's raster data set atmospheric (wet) deposition of inorganic nitrogen for 2002 (Gronberg, 2005). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years (2007-2008), an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the estimated amount of nitrogen and phosphorus in kilograms for the year 2002, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982-2001 (Ruddy and others, 2006). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the 30-year (1971-2000) average annual minimum temperature in Celsius multiplied by 100 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the "United States Average Monthly or Annual Minimum Temperature, 1971 - 2000" raster dataset produced by the PRISM Group at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents estimated soil variables compiled for every catchment of NHDPlus for the conterminous United States. The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the average monthly maximum temperature in Celsius multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time High-Resolution Monthly Average Maximum/Minimum Temperature for the Conterminous United States for 2002 raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the mean annual natural groundwater recharge, in millimeters, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is Estimated Mean Annual Natural Ground-Water Recharge in the Conterminous United States (Wolock, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, containing NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMottem, Andrew E.
2010-01-01
This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the estimated amount of phosphorus and nitrogen fertilizers applied to selected crops for the year 2002, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is based on 2002 fertilizer data (Ruddy and others, 2006) and tabulated by crop type per county (Alexander and others, 2007). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the average monthly precipitation in millimeters multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time Monthly High-Resolution Precipitation Climate Data Set for the Conterminous United States (2002) raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
NASA Astrophysics Data System (ADS)
Buddendorf, Bas; Geris, Josie; Malcolm, Iain; Wilkinson, Mark; Soulsby, Chris
2016-04-01
Anthropogenic activity in riverine ecosystems has led to a substantial divergence from the natural state of many rivers globally. Many of Scotland's rivers have been regulated for hydropower with increasing intensity since the 1890s. At the same time they sustain substantial populations of Atlantic Salmon (Salmo salar L.), which have a range of requirements in terms of flow and access to habitat, depending on the different life-stages. River barriers for hydropower regulation can change the spatial and temporal connectivity within river networks, the impacts of which on salmon habitat are not fully understood. Insight into such changes in connectivity, and the link with the distribution and accessibility of suitable habitat and areas of high productivity, are essential to aid restoration and/or conservation efforts. This is because they indicate where such efforts might have a higher chance of being successful in terms of providing suitable habitat and increasing river productivity. In this study we applied a graph theory approach to assess historic (natural) and contemporary (regulated) in-stream habitat connectivity of the River Lyon, an important UK salmon river that is moderately regulated for hydropower. Historic maps and GIS techniques were used to construct the two contrasting river networks (i.e., natural vs. regulated). Subsequently, connectivity metrics were used to assess the impacts of hydropower infrastructure on upstream and downstream migration possibilities for adults and juveniles, respectively. A national juvenile salmon production model was used to weight the importance of reaches for juvenile salmon production. Results indicate that the impact of barriers in the Lyon on the connectivity indices depends on the type of barrier and its location within the network, but is generally low for both adults and juveniles, and that compared to the historic river network the reduction in the amount of suitable habitat and juvenile production is most marked in the upper reaches of the river. This study represents an improved approach over more commonly applied assessments that focus on the impact of impoundment on wetted area or river length. Simpler approaches often lack ecological and hydrological detail leading to over- or underestimation of the impacts of river regulation on connectivity depending on the relative quality of available habitat. Our work aims to integrate hydrological and ecological aspects into a spatially explicit connectivity framework. Such an approach can help to better identify those areas most important to the conservation of fish habitat, inform sustainable management of hydropower schemes, and aid cost-efficient river restoration and management efforts.
Environmental setting of the Yellowstone River basin, Montana, North Dakota, and Wyoming
Zelt, Ronald B.; Boughton, G.K.; Miller, K.A.; Mason, J.P.; Gianakos, L.M.
1999-01-01
Natural and anthropogenic factors influence water-quality conditions in the Yellowstone River Basin. Physiography parallels the structural geologic setting that is generally composed of several uplifts and structural basins. Contrasts in climate and vegetation reflect topographic controls and the midcontinental location of the study unit. Surface-water hydrology reflects water surpluses in mountainous areas that are dominated by snowmelt runoff, and arid to semiarid conditions in the plains that are dissected by typically irrigated valleys in the remainder of the study unit. Principal shallow aquifers are Tertiary sandstones and unconsolidated Quaternary deposits. Human population, though sparsely distributed in general, is growing most rapidly in a few urban centers and resort areas, mostly in the northwestern part of the basin. Land use is areally dominated by grazing in the basins and plains and economically dominated by mineral-extraction activities. Forests are the dominant land cover in mountainous areas. Cropland is a major land use in principal stream valleys. Water use is dominated by irrigated agriculture overall, but mining and public-supply facilities are major users of ground water. Coal and hydrocarbon production and reserves distinguish the Yellowstone River Basin as a principal energy-minerals resources region. Current metallic ore production or reserves are nationally significant for platinum-group elements and chromium.The study unit was subdivided as an initial environmental stratification for use in designing the National Water-Quality Assessment Program investigation that began in 1997. Ecoregions, geologic groups, mineral-resource areas, and general land-cover and land-use categories were used in combination to define 18 environmental settings in the Yellowstone River Basin. It is expected that these different settings will be reflected in differing water-quality or aquatic-ecological characteristics.
27 CFR 9.78 - Ohio River Valley.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ohio River Valley. 9.78... River Valley. (a) Name. The name of the viticultural area described in this section is “Ohio River Valley.” (b) Approved maps. The approved maps for determining the boundary of the Ohio River Valley...
Savannah River Site Environmental Report for 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnett, M
The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.
ter Laak, Thomas L; Kooij, Pascal J F; Tolkamp, Harry; Hofman, Jan
2014-11-01
In the current study, 43 pharmaceuticals and 18 transformation products were studied in the river Meuse at the Belgian-Dutch border and four tributaries of the river Meuse in the southern part of the Netherlands. The tributaries originate from Belgian, Dutch and mixed Dutch and Belgian catchments. In total, 23 pharmaceuticals and 13 transformation products were observed in samples of river water collected from these rivers. Observed summed concentrations of pharmaceuticals and transformation products in river water ranged from 3.5 to 37.8 μg/L. Metformin and its transformation product guanylurea contributed with 53 to 80 % to this concentration, illustrating its importance on a mass basis. Data on the flow rate of different rivers and demographics of the catchments enabled us to calculate daily per capita loads of pharmaceuticals and transformation products. These loads were linked to sales data of pharmaceuticals in the catchment. Simple mass balance modelling accounting for human excretion and removal by sewage treatment plants revealed that sales could predict actual loads within a factor of 3 for most pharmaceuticals. Rivers that originated from Belgian and mixed Dutch and Belgian catchments revealed significantly higher per capita loads of pharmaceuticals (16.0 ± 2.3 and 15.7 ± 2.1 mg/inhabitant/day, respectively) than the Dutch catchment (8.7 ± 1.8 mg/inhabitant/day). Furthermore, the guanylurea/metformin ratio was significantly lower in waters originating from Belgium (and France) than in those from the Netherlands, illustrating that sewage treatment in the Belgian catchment is less efficient in transforming metformin into guanylurea. In summary, the current study shows that consumption-based modelling is suitable to predict environmental loads and concentrations. Furthermore, different consumption patterns and wastewater treatment efficiency are clearly reflected in the occurrence and loads of pharmaceuticals in regional rivers.
Seasonality of primary and secondary production in an Arctic river
NASA Astrophysics Data System (ADS)
Kendrick, M.; Huryn, A.; Deegan, L.
2011-12-01
Rivers and streams that freeze solid for 8-9 months each year provide excellent examples of the extreme seasonality of arctic habitats. The communities of organisms inhabiting these rivers must complete growth and development during summer, resulting in a rapid ramp-up and down of production over the short ice-free period. The effects of recent shifts in the timing of the spring thaw and autumn freeze-up on the duration and pattern of the period of active production are poorly understood. We are currently investigating: 1) the response of the biotic community of the Kuparuk River (Arctic Alaska) to shifts in the seasonality of the ice-free period, and 2) the community response to increases in phosphorous (P) supply anticipated as the volume of the permafrost active-layer increases in response to climate warming. Here algal production supports a 2-tier web of consumers. We tracked primary and secondary production from the spring thaw through mid-August in a reference reach and one receiving low-level P fertilization. Gross primary production/community respiration (GPP/R) ratios for both reaches were increasing through mid-July, with higher GPP/R in response to the P addition. Understanding the degree of synchrony between primary and secondary production in this Arctic river system will enhance further understanding of how shifts in seasonality affect trophic dynamics.
Assessment of coal geology, resources, and reserves in the Montana Powder River Basin
Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Gunderson, Jay A.
2013-01-01
The purpose of this report is to summarize geology, coal resources, and coal reserves in the Montana Powder River Basin assessment area in southeastern Montana. This report represents the fourth assessment area within the Powder River Basin to be evaluated in the continuing U.S. Geological Survey regional coal assessment program. There are four active coal mines in the Montana Powder River Basin assessment area: the Spring Creek and Decker Mines, both near Decker; the Rosebud Mine, near Colstrip; and the Absaloka Mine, west of Colstrip. During 2011, coal production from these four mines totaled approximately 36 million short tons. A fifth mine, the Big Sky, had significant production from 1969-2003; however, it is no longer in production and has since been reclaimed. Total coal production from all five mines in the Montana Powder River Basin assessment area from 1968 to 2011 was approximately 1.4 billion short tons. The Rosebud/Knobloch coal bed near Colstrip and the Anderson, Dietz 2, and Dietz 3 coal beds near Decker contain the largest deposits of surface minable, low-sulfur, subbituminous coal currently being mined in the assessment area. A total of 26 coal beds were identified during this assessment, 18 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Montana Powder River Basin assessment area for the 18 coal beds assessed was calculated to be 215 billion short tons. Available coal resources, which are part of the original coal resource remaining after subtracting restrictions and areas of burned coal, are about 162 billion short tons. Restrictions included railroads, Federal interstate highways, urban areas, alluvial valley floors, state parks, national forests, and mined-out areas. It was determined that 10 of the 18 coal beds had sufficient areal extent and thickness to be evaluated for recoverable surface resources ([Roland (Baker), Smith, Anderson, Dietz 2, Dietz 3, Canyon, Werner/Cook, Pawnee, Rosebud/Knobloch, and Flowers-Goodale]). These 10 coal beds total about 151 billion short tons of the 162 billion short tons of available resource; however, after applying a strip ratio of 10:1 or less, only 39 billion short tons remains of the 151 billion short tons. After mining and processing losses are subtracted from the 39 billion short tons, 35 billion short tons of coal were considered as a recoverable resource. Coal reserves (economically recoverable coal) are the portion of the recoverable coal resource that can be mined, processed, and marketed at a profit at the time of the economic evaluation. The surface coal reserve estimate for the 10 coal beds evaluated for the Montana Powder River assessment area is 13 billion short tons. It was also determined that about 42 billion short tons of underground coal resource exists in the Montana Powder River Basin assessment area; about 34 billion short tons (80 percent) are within 500-1,000 feet of the land surface and another 8 billion short tons are 1,000-2,000 feet beneath the land surface.
Guidelines for Software Engineering Education Version 1.0
1999-11-01
Turbo Pascal and Software Design. Sudbury, Massachusetts: Jones and Bartlett, 1997. " Deitel, Harvey M. & Deitel, Paul J. C++: How to Program . Upper...Saddle River, New Jersey: Prentice-Hall, 1997. " Deitel, Harvey M. & Deitel, Paul J. Java: How to Program . Upper Saddle River, New Jersey: Prentice-Hall
From Washington's Yakima River to India's Ganges: Project GREEN Is Connecting.
ERIC Educational Resources Information Center
Kuechle, Jeff
1993-01-01
Project GREEN (Global Rivers Environmental Education Network) is an international environmental education program empowering students to use science to improve and protect the quality of watersheds. As an integral part of the Yakima School District Environmental Awareness Program, Project GREEN provides educational benefits for both American…
This statistical summary reports data from the Environmental Monitoring and Assessment Program (EMAP) Western Pilot (EMAP-W). EMAP-W was a sample survey (or probability survey, often simply called 'random') of streams and rivers in 12 states of the western U.S. (Arizona, Californ...
EPA has released the document, Procedures for Delineating and Characterizing Watersheds for Stream and River Monitoring Programs (EPA/600/R-17/448F). This manual describes how states and tribes can delineate and characterize watersheds. It explains how to delineate water...
Agroforestry systems in the Sonora River Watershed, Mexico: An example of effective land stewardship
Diego Valdez-Zamudio; Peter F. Ffolliot
2000-01-01
The Sonora River watershed is located in the central part of the state of Sonora,Mexico, and is one of the most important watersheds in the region. Much of the state's economy depends on the natural resources, products, and productive activities developed in this watershed. Many natural areas along the river and its tributaries have been converted to a large...
NASA Astrophysics Data System (ADS)
Yard, M. D.; Kennedy, T.; Yackulic, C. B.; Bennett, G. E.
2012-12-01
Irregular features common to canyon-bound regions intercept solar incidence (photosynthetic photon flux density [PPFD: μmol m-2 s-1]) and can affect ecosystem energetics. The Colorado River in Grand Canyon is topographically complex, typical of most streams and rivers in the arid southwest. Dam-regulated systems like the Colorado River have reduced sediment loads, and consequently increased water transparency relative to unimpounded rivers; however, sediment supply from tributaries and flow regulation that affects erosion and subsequent sediment transport, interact to create spatial and temporal variation in optical conditions in this river network. Solar incidence and suspended sediment loads regulate the amount of underwater light available for aquatic photosynthesis in this regulated river. Since light availability is depth dependent (Beer's law), benthic algae is often exposed to varying levels of desiccation or reduced light conditions due to daily flow regulation, additional factors that further constrain aquatic primary production. Considerable evidence suggests that the Colorado River food web is now energetically dependent on autotrophic production, an unusual condition since large river foodwebs are typically supported by allochthonous carbon synthesized and transported from terrestrial environments. We developed a mechanistic model to account for these regulating factors to predict how primary production might be affected by observed and alternative flow regimes proposed as part of ongoing adaptive management experimentation. Inputs to our model include empirical data (suspended sediment and temperature), and predictive relationships: 1) solar incidence reaching the water surface (topographic complexity), 2) suspended sediment-light extinction relationships (optical properties), 3) unsteady flow routing model (stage-depth relationship), 4) channel morphology (photosynthetic area), and 5) photosynthetic-irradiant response for dominant algae (Cladophora glomerata and associated epiphytes). Initial findings suggest that aquatic primary production varies spatially and temporally in response to natural processes occurring at varying spatial scales and that flow regulation per se has only a minor effect on primary production. All of these physical drivers combined are likely to structure the abundance, distribution, and interaction of aquatic biota found in this ecosystem.
McPherson, Ann K.; Moreland, Richard S.; Atkins, J. Brian
2003-01-01
The Mobile River Basin is one of more than 50 river basins and aquifer systems being investigated as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. This basin is the sixth largest river basin in the United States and the fourth largest in terms of streamflow. The Mobile River Basin encompasses parts of Alabama, Georgia, Mississippi, and Tennessee, and almost two-thirds of the 44,0000-square-mile basin is located in Alabama. The extensive water resources of the Mobile River Basin are influenced by an array of natural and cultural factors, which impart unique and variable qualities to the streams, rivers, and aquifers and provide abundant habitat to sustain the diverse aquatic life in the basin. From January 1999 to December 2001, a study was conducted of the occurrence and distribution of nutrients, suspended sediment, and pesticides in surface water of the Mobile River Basin. Nine sampling sites were selected on the basis of land use. The nine sites included two streams draining agricultural areas, two urban streams, and five large rivers with mixed land use. Surface-water samples were collected from one to four times each month to characterize the spatial and temporal variation in nutrient and pesticide concentrations. Nutrient and suspended-sediment concentrations were highest in watersheds dominated by urban or agricultural land uses. Forty-two percent of the total phosphorus concentrations at all nine sites exceeded the U.S. Environmental Protection Agency's recommended maximum concentration of 0.1 milligram per liter. Flow-weighted mean concentrations at the Mobile River Basin sites generally were in the lower to middle percentile ranges compared with data from other NAWQA studies across the Nation. However, flow-weighted mean concentrations of ammonia, total nitrogen, orthophosphate, and total phosphorus at Bogue Chitto Creek, an agricultural watershed, ranked in the upper 20th percentile of agricultural sites sampled across the Nation as part of the NAWQA Program. Nutrient loads in the Tombigbee River were nearly twice as high compared with nutrient loads in the Alabama River. Nutrient yields were highest in Bogue Chitto Creek, Cahaba Valley Creek, and Threemile Branch because of agricultural and urban land uses in these watersheds. Of the 104 pesticides and degradation products analyzed in the stream samples, 69 were detected in one or more samples. Of the 69 detected pesticides, 51 were herbicides, 15 were insecticides, and 3 were fungicides. A relatively small number of heavily used herbicides accounted for most of the detections, including atrazine and its metabolites (deethylatrazine, 2-hydroxyatrazine, deisopropylatrazine, and deethyldeisopropylatrazine), simazine, metolachlor, tebuthiuron, prometon, diuron, and 2,4-D. Diazinon, chlorpyrifos, and carbaryl were the most frequently detected insecticides; metalaxyl was the most frequently detected fungicide in the Mobile River Basin. Concentrations of pesticides detected in surface water of the Mobile River Basin were among the highest concentrations recorded nationally by the NAWQA Program during 1991 to 2001. The three highest concentrations of atrazine detected at sites across the country were recorded at Bogue Chitto Creek; the highest concentrations of 2,4-D, imazaquin, and malathion recorded nationally were detected at Threemile Branch. Aquatic-life criteria were exceeded by concentrations of five herbicides (2,4-D, atrazine, cyanazine, diuron, and metolachlor), six insecticides (carbaryl, chlorpyrifos, diazinon, dieldrin, malathion, and p,p'-DDE), and one fungicide (chlorothalonil). Drinking-water standards were exceeded by concentrations of four herbicides (2,4-D, atrazine, cyanazine, and simazine), three insecticides (alpha- HCH, diazinon, and dieldrin), and one fungicide (chlorothalonil). The types and concentrations of pesticides found in surface water are linked to land use and to the types of pesti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, C.D.; Allison, M.L.
The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been usedmore » to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.« less
Increased river alkalinization in the Eastern U.S.
Kaushal, Sujay S; Likens, Gene E; Utz, Ryan M; Pace, Michael L; Grese, Melissa; Yepsen, Metthea
2013-09-17
The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km(2). We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These three variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the Eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.
Spahr, Norman E.; Driver, Nancy E.; Stephens, Verlin C.
1996-01-01
The U.S. Geological Survey began full implementation of the National Water-Quality Assessment (NAWQA) program in 1991. The long-term goals of the NAWQA program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams, rivers, and aquifers; (2) describe how water quality is changing over time; and (3) improve understanding of the primary natural and human factors that affect water-quality conditions (Leahy and others, 1990). To meet these goals, 60 study units representing the Nation's most important river basins and aquifers are being investigated. The program design balances the unique assessment requirements of individual study units with a nationally consistent design structure that incorporates a multiscale, interdisciplinary approach for assessment of surface and ground water.
Wildhaber, M.L.; Holan, S.H.; Bryan, J.L.; Gladish, D.W.; Ellersieck, M.
2011-01-01
In 2003, the US Army Corps of Engineers initiated the Pallid Sturgeon Population Assessment Program (PSPAP) to monitor pallid sturgeon and the fish community of the Missouri River. The power analysis of PSPAP presented here was conducted to guide sampling design and effort decisions. The PSPAP sampling design has a nested structure with multiple gear subsamples within a river bend. Power analyses were based on a normal linear mixed model, using a mixed cell means approach, with variance estimates from the original data. It was found that, at current effort levels, at least 20 years for pallid and 10 years for shovelnose sturgeon is needed to detect a 5% annual decline. Modified bootstrap simulations suggest power estimates from the original data are conservative due to excessive zero fish counts. In general, the approach presented is applicable to a wide array of animal monitoring programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, Curtis M.; Schroder, Steven L.; Johnston, Mark V.
This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning and (2) summarize results of research that have broader scientific relevance. This is the fourth in a series of reports that address reproductive ecological research and monitoring of spring chinook populations in the Yakima River basin. This annual report summarizes data collected between April 1, 2004 and March 31, 2005 and includes analyses of historical baseline data, asmore » well. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2004) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. The first chapter of this report compares first generation hatchery and wild upper Yakima River spring chinook returns over a suite of life-history, phenotypic and demographic traits. The second chapter deals specifically with identification of putative populations of wild spring chinook in the Yakima River basin based on differences in quantitative and genetic traits. The third chapter is a progress report on gametic traits and progeny produced by upper Yakima River wild and hatchery origin fish spawned in 2004 including some comparisons with Little Naches River fish. In the fourth chapter, we present a progress report on comparisons naturally spawning wild and hatchery fish in the upper Yakima River and in an experimental spawning channel at CESRF in 2004. The chapters in this report are in various stages of development. Chapters One and Two will be submitted for peer reviewed publication. Chapters Three and Four should be considered preliminary and additional fieldwork and/or analysis are in progress related to these topics. Readers are cautioned that any preliminary conclusions are subject to future revision as more data and analytical results become available.« less
1981-09-14
DACW-51-81-C-0006 . PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK AREA & WORK UNIT NUMBERS ~ Flaherty-Giauara Associates...olie It neceary and Idontily b block number) Dam Safety National Dam Safety Program Visual Inspection Lake Muskoday Dam Hydrology, Structural Stability...DELAWARE RIVER BASIN LAKE MUSKODAY DAM SULLIVAN COUNTY, NEW YORK INVENTORY No.NY341 PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM J T C NEW YORK
Monitoring changes in the Platte River riparian corridor with serial LiDAR surveys
Kinzel, Paul J.; Nelson, Jonathan M.; Wright, C. Wayne
2006-01-01
The Platte River in central Nebraska is a wide, sand-bedded river that provides habitat for migratory water birds along the North American flyway. The central Platte River functions as critical habitat for the endangered whooping crane (Grus americana) and also is an important habitat for the endangered least tern (Sterna antillarum) and the threatened piping plover (Charadrius melodus). Upstream water-resource development over the last century has decreased the water and sediment supplied to the central Platte River. This has resulted in vegetation encroachment and narrowing of Platte River channels. The National Academy of Sciences' National Research Council, in a recent review of these critical habitat designations, concluded that the current morphology of Platte River channels is limiting the recovery of the endangered and threatened avian species. Habitat-enhancement efforts along the Platte River currently (2006) are focused on the clearing of vegetation from in-channel and riparian areas, whereas future plans propose the release of water from upstream dams as a means to prevent vegetation from encroaching on the active river channel. For this reason, monitoring the physical response of the river channel to these management treatments is an important component of a proposed habitat recovery program. Understanding the effects of management strategies on Platte River riparian habitat also is a key objective of the U.S. Geological Survey's Platte River Priority Ecosystem Program (http://mcmcweb.er.usgs.gov/platte/). This fact sheet describes applications of LiDAR to monitor changes in the Platte River riparian corridor.
Liu, Dong; Pan, Delu; Bai, Yan; He, Xianqiang; Wang, Difeng; Zhang, Lin
2015-11-15
Real-time monitoring of riverine dissolved organic carbon (DOC) and the associated controlling factors is essential to coastal ocean management. This study was the first to simulate the monthly DOC concentrations at the Datong Hydrometric Station for the Changjiang River and at the Lijin Hydrometric Station for the Yellow River from 2000 to 2013 using a multilayer back-propagation neural network (MBPNN), along with basin remote-sensing products and river in situ data. The average absolute error between the modeled values and in situ values was 9.98% for the Changjiang River and 10.84% for the Yellow River. As an effect of water dilution, the variations of DOC concentrations in the two rivers were significantly negatively affected by discharge, with lower values reported during the wet season. Moreover, vegetation growth status and agricultural activities, represented by the gross primary product (GPP) and cropland area percent (CropPer) in the river basin, respectively, also significantly affected the DOC concentration in the Changjiang River, but not the Yellow River. The monthly riverine DOC flux was calculated using modeled DOC concentrations. In particular, the riverine DOC fluxes were affected by discharge, with 71.06% being reported for the Changjiang River and 90.71% for the Yellow River. Over the past decade, both DOC concentration and flux in the two rivers have not shown significant changes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chavez, Walter; Di Benedetto, Adalberto; Civeira, Gabriela; Lavado, Raúl
2008-11-01
The use of alternative soilless media for the production of potted plants requires knowledge of their physical and chemical characteristics to result in the best conditions for plant growth. We investigated the use of alternative soilless media based on river waste and Sphagnun sp. and Carex sp. from Argentinean peatlands on Petuniaxhybrida and Impatiens wallerana production at two fertilization levels (200 and 400mgl(-1)N). River waste or 'temperate peat' is the name given to a material, resulting from the accumulation of aquatic plant residues under an anaerobic subtropical environment, which is dredged from river banks. Our results showed that alternative substrates based on river waste can be used to grow high quality plants. This result was not fully explained on the basis of established methods to evaluate substrate quality. Highly concentrated fertigation solution decreased the substrate quality parameters and plant growth. Nitrate leaching from the alternative substrates containing river waste was lower than the standard peat-based materials, which makes river waste desirable from a sustainable pot production system perspective. River waste and Carex peat are suitable alternatives to Sphagnum peat from the Northern Hemisphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boe, Stephen J.; Crump, Carrie A.; Weldert, Rey L.
2009-04-10
This is the ninth annual report for a multi-year project designed to monitor and evaluate supplementation of endemic spring Chinook salmon in Catherine Creek and the upper Grande Ronde River. These two streams historically supported anadromous fish populations that provided significant tribal and non-tribal fisheries, but in recent years, have experienced severe declines in abundance. Conventional and captive broodstock supplementation methods are being used to restore these spring Chinook salmon populations. Spring Chinook salmon populations in Catherine Creek and the upper Grande Ronde River, and other streams in the Snake River Basin have experienced severe declines in abundance over themore » past two decades (Nehlsen et al. 1991). A supplementation program was initiated in Catherine Creek and the upper Grande Ronde River, incorporating the use of both captive and conventional broodstock methods, in order to prevent extinction in the short term and eventually rebuild populations. The captive broodstock component of the program (BPA Project 199801001) uses natural-origin parr collected by seining and reared to maturity at facilities near Seattle, Washington (Manchester Marine Laboratory) and Hood River, Oregon (Bonneville Hatchery). Spawning occurs at Bonneville Hatchery, and resulting progeny are reared in hatcheries. Shortly before outmigration in the spring, juveniles are transferred to acclimation facilities. After an acclimation period of about 2-4 weeks, volitional release begins. Any juveniles remaining after the volitional release period are forced out. The conventional broodstock component uses returning adults collected at traps near the spawning areas, transported to Lookingglass Hatchery near Elgin, Oregon, held, and later spawned. The resulting progeny are reared, acclimated, and released similar to the captive broodstock component. All progeny released receive one or more marks including a fin (adipose) clip, codedwire tag, PIT tag, or visual implant elastomer tag. The numbers of adults used for conventional broodstock are determined by an agreement among comanagers (Zimmerman and Patterson 2002). Activities for this project focus on two life stages of spring Chinook salmon: juveniles during the migration from freshwater to the ocean and adults during prespawning migration through the end of spawning. Life history, production, and genetics are monitored and used to evaluate program effectiveness.« less
Annual Coded Wire Tag Program; Missing Production Groups, 1996 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastor, Stephen M.
1997-01-01
In 1989 the Bonneville Power Administration (BPA) began funding the evaluation of production groups of juvenile anadromous fish not being coded-wire tagged for other programs. These groups were the ''Missing Production Groups''. Production fish released by the U.S. Fish and Wildlife Service (USFWS) without representative coded-wire tags during the 1980's are indicated as blank spaces on the survival graphs in this report. The objectives of the ''Missing Production Groups'' program are: (1) to estimate the total survival of each production group, (2) to estimate the contribution of each production group to various fisheries, and (3) to prepare an annual reportmore » for all USFWS hatcheries in the Columbia River basin. Coded-wire tag recovery information will be used to evaluate the relative success of individual brood stocks. This information can also be used by salmon harvest managers to develop plans to allow the harvest of excess hatchery fish while protecting threatened, endangered, or other stocks of concern. In order to meet these objectives, a minimum of one marked group of fish is necessary for each production release. The level of marking varies according to location, species, and age at release. In general, 50,000 fish are marked with a coded-wire tag (CWT) to represent each production release group at hatcheries below John Day Dam. More than 100,000 fish per group are usually marked at hatcheries above John Day Dam. All fish release information, including marked/unmarked ratios, is reported to the Pacific States Marine Fisheries Commission (PSMFC). Fish recovered in the various fisheries or at the hatcheries are sampled to recover coded-wire tags. This recovery information is also reported to PSMFC.« less
Canoeing the Murray River (Australia) as Environmental Education: A Tale of Two Rivers
ERIC Educational Resources Information Center
Stewart, Alistair
2004-01-01
The Murray River, lying at the heart of Australia's largest catchment, is used extensively in outdoor education programs in south-eastern Australia. Since European settlement the river's ecological health has declined considerably due to activities such as damming for irrigation and clearing of native vegetation. Colonial notions of how the river…
Great Rivers and reservoirs are complex, trans-border resources that are difficult and expensive to assess, monitor and manage. EMAP-UMR is a five-year effort to develop the methodology for Great River assessments, using the Upper Missouri as a test case. A major early achievemen...
Bacterial Pollution in River Waters and Gastrointestinal Diseases
Rodríguez-Tapia, Lilia; Morales-Novelo, Jorge A.
2017-01-01
Currently, one of Mexico’s most severe environmental problems is the high levels of pollution of many of its rivers. The present article focuses on the relationship between total coliform bacteria levels and the increase of human digestive tract diseases in the highly polluted Atoyac River in the central Mexican states of Puebla and Tlaxcala. Pollution has become a potential health hazard for people living in nearby river communities. Based on data collected from six of the most contaminated riverside municipalities, two environmental models were developed taking into consideration the health of the entire population, not simply that of its individual members. Such models estimate a health-disease function that confirm the link between Atoyac River pollution and the incidence of gastrointestinal diseases. The causal relation between pollution and gastrointestinal disease incentivizes the creation of epidemiological and public health programs aimed at reducing the environmental health impact of the pollution associated with the Atoyac River. The results presented here are the first of their kind of this river and will serve as basis for future research exploring other similarly contaminated riparian communities. As the causes of pollution are directly related to the economic development and population growth of the region, further research should be conducted for prevention of diseases, educational programs, water remediation and conservation programs that will have a positive impact on the quality of life of the population presently at risk. PMID:28471407
Bacterial Pollution in River Waters and Gastrointestinal Diseases.
Rodríguez-Tapia, Lilia; Morales-Novelo, Jorge A
2017-05-04
Currently, one of Mexico's most severe environmental problems is the high levels of pollution of many of its rivers. The present article focuses on the relationship between total coliform bacteria levels and the increase of human digestive tract diseases in the highly polluted Atoyac River in the central Mexican states of Puebla and Tlaxcala. Pollution has become a potential health hazard for people living in nearby river communities. Based on data collected from six of the most contaminated riverside municipalities, two environmental models were developed taking into consideration the health of the entire population, not simply that of its individual members. Such models estimate a health-disease function that confirm the link between Atoyac River pollution and the incidence of gastrointestinal diseases. The causal relation between pollution and gastrointestinal disease incentivizes the creation of epidemiological and public health programs aimed at reducing the environmental health impact of the pollution associated with the Atoyac River. The results presented here are the first of their kind of this river and will serve as basis for future research exploring other similarly contaminated riparian communities. As the causes of pollution are directly related to the economic development and population growth of the region, further research should be conducted for prevention of diseases, educational programs, water remediation and conservation programs that will have a positive impact on the quality of life of the population presently at risk.
Multimetric Fish Indices for Midcontinent (USA) Great Rivers
As part of the Environmental Monitoring and Assessment Program for Great River Ecosystems we developed a fish-assemblage based multimetric index (Great River Fish Index,GRFIn) as an indicator of ecological conditions in the Lower Missouri, impounded Upper Mississippi, unimpounded...
NASA Astrophysics Data System (ADS)
Yin, Fang; Deng, Xiangzheng; Jin, Qin; Yuan, Yongwei; Zhao, Chunhong
2014-03-01
Qinghai Province, which is the source of three major rivers (i.e., Yangtze River, Yellow River and Lancang River) in East Asia, has experienced severe grassland degradation in past decades. The aim of this work was to analyze the impacts of climate change and human activities on grassland ecosystem at different spatial and temporal scales. For this purpose, the regression and residual analysis were used based on the data from remote sensing data and meteorological stations. The results show that the effect of climate change was much greater in the areas exhibiting vigorous vegetation growth. The grassland degradation was strongly correlated with the climate factors in the study area except Haixi Prefecture. Temporal and spatial heterogeneity in the quality of grassland were also detected, which was probably mainly because of the effects of human activities. In the 1980s, human activities and grassland vegetation growth were in equilibrium, which means the influence of human activities was in balance with that of climate change. However, in the 1990s, significant grassland degradation linked to human activities was observed, primarily in the Three-River Headwaters Region. Since the 21st century, this adverse trend continued in the Qinghai Lake area and near the northern provincial boundaries, opposite to what were observed in the eastern part of study. These results are consistent with the currently status of grassland degradation in Qinghai Province, which could serve as a basis for the local grassland management and restoration programs.
Saleh, Dina K.; Domagalski, Joseph L.; Kratzer, Charles R.; Knifong, Donna L.
2003-01-01
Organic carbon, nutrient, and suspended sediment concentration data were analyzed for the Sacramento and San Joaquin River Basins for the period 1980-2000. The data were retrieved from three sources: the U.S. Geological Survey's National Water Information System, the U.S. Environmental Protection Agency's Storage and Retrieval System, and the California Interagency Ecological Program's relational database. Twenty sites were selected, all of which had complete records of daily streamflow data. These data met the minimal requirements of the statistical programs used to estimate trends, loads, and yields. The seasonal Kendall program was used to estimate trends in organic carbon, nutrient, and suspended sediment. At all 20 sites, analyses showed that in the 145 analyses for the seven constituents, 95 percent of the analyses had no significant trend. Dissolved organic carbon (DOC) concentrations were significant only for four sites: the American River at Sacramento, the Sacramento River sites near Freeport, Orestimba Creek at River Roads near Crows Landing, and the San Joaquin River near Vernalis. Loads were calculated using two programs, ESTIMATOR and LOADEST2. The 1998 water year was selected to describe loads in the Sacramento River Basin. Organic carbon, nutrient, and suspended sediment loads at the Sacramento River sites near Freeport included transported loads from two main upstream sites: the Sacramento River at Verona and the American River at Sacramento. Loads in the Sacramento River Basin were affected by the amount of water diverted to the Yolo Bypass (the amount varies annually, depending on the precipitation and streamflow). Loads at the Sacramento River sites near Freeport were analyzed for two hydrologic seasons: the irrigation season (April to September) and the nonirrigation season (October to March). DOC loads are lower during the irrigation season then they are during the nonirrigation season. During the irrigation season, water with low concentrations of DOC is released from reservoirs and used for irrigation. On the other hand, during the nonirrigation season, streamflow results from surface water runoff and has higher concentrations of organic carbon, nutrients, and suspended sediment. The 1986 and 1987 water years were selected to describe loads in the San Joaquin River Basin. Organic carbon, nutrient, and suspended sediment loads in the San Joaquin River near Vernalis included transported loads from upstream sites, such as the Mud and Salt Sloughs, the Merced River at River Roads Bridge near Newman, the Tuolumne River at Modesto, and the Stanislaus River at Ripon. Loads at the San Joaquin River near Vernalis also were analyzed for the two seasons. The DOC load for the San Joaquin River at Vernalis is slightly higher during the irrigation season. Yields were calculated in an attempt to rank the subbasins in the Sacramento and San Joaquin River Basins. Five sites delivered streamflow from agricultural and urban sources that had relatively high yields of organic carbon: Sacramento Slough near Knights Landing, Arcade Creek near Del Paso Heights, Salt Slough, Mud Slough, and Colusa Basin Drain at Road 99E near Knights Landing.
Benjamin, Joseph R.; Bellmore, J. Ryan
2016-05-19
In this report, we outline the structure of a stream food-web model constructed to explore how alternative river restoration strategies may affect stream fish populations. We have termed this model the “Aquatic Trophic Productivity model” (ATP). We present the model structure, followed by three case study applications of the model to segments of the Methow River watershed in northern Washington. For two case studies (middle Methow River and lower Twisp River floodplain), we ran a series of simulations to explore how food-web dynamics respond to four distinctly different, but applied, strategies in the Methow River watershed: (1) reconnection of floodplain aquatic habitats, (2) riparian vegetation planting, (3) nutrient augmentation (that is, salmon carcass addition), and (4) enhancement of habitat suitability for fish. For the third case study, we conducted simulations to explore the potential fish and food-web response to habitat improvements conducted in 2012 at the Whitefish Island Side Channel, located in the middle Methow River.
Return to the river: strategies for salmon restoration in the Columbia River Basin.
Richard N. Williams; Jack A. Standford; James A. Lichatowich; William J. Liss; Charles C. Coutant; Willis E. McConnaha; Richard R. Whitney; Phillip R. Mundy; Peter A. Bisson; Madison S. Powell
2006-01-01
The Columbia River today is a great "organic machine" (White 1995) that dominates the economy of the Pacific Northwest. Even though natural attributes remainfor example, salmon production in Washington State's Hanford Reach, the only unimpounded reach of the mainstem Columbia Riverthe Columbia and Snake River mainstems are dominated...
27 CFR 9.214 - Haw River Valley.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Haw River Valley. 9.214... River Valley. (a) Name. The name of the viticultural area described in this section is “Haw River Valley”. For purposes of part 4 of this chapter, “Haw River Valley” and “Haw River” are terms of viticultural...
NASA Astrophysics Data System (ADS)
Pang, Aiping; Sun, Tao; Yang, Zhifeng
2013-03-01
SummaryAgriculture and ecosystems are increasingly competing for water. We propose an approach to assess the economic compensation standard required to release water from agricultural use to ecosystems while taking into account seasonal variability in river flow. First, we defined agricultural water shortage as the difference in water volume between agricultural demands and actual supply after maintaining environmental flows for ecosystems. Second, we developed a production loss model to establish the relationship between production losses and agricultural water shortages in view of seasonal variation in river discharge. Finally, we estimated the appropriate economic compensation for different irrigation stakeholders based on crop prices and production losses. A case study in the Yellow River Estuary, China, demonstrated that relatively stable economic compensation for irrigation processes can be defined based on the developed model, taking into account seasonal variations in river discharge and different levels of environmental flow. Annual economic compensation is not directly related to annual water shortage because of the temporal variability in river flow rate and environmental flow. Crops that have stable planting areas to guarantee food security should be selected as indicator crops in economic compensation assessments in the important grain production zone. Economic compensation may be implemented by creating funds to update water-saving measures in agricultural facilities.
Geomorphic analysis of large alluvial rivers
NASA Astrophysics Data System (ADS)
Thorne, Colin R.
2002-05-01
Geomorphic analysis of a large river presents particular challenges and requires a systematic and organised approach because of the spatial scale and system complexity involved. This paper presents a framework and blueprint for geomorphic studies of large rivers developed in the course of basic, strategic and project-related investigations of a number of large rivers. The framework demonstrates the need to begin geomorphic studies early in the pre-feasibility stage of a river project and carry them through to implementation and post-project appraisal. The blueprint breaks down the multi-layered and multi-scaled complexity of a comprehensive geomorphic study into a number of well-defined and semi-independent topics, each of which can be performed separately to produce a clearly defined, deliverable product. Geomorphology increasingly plays a central role in multi-disciplinary river research and the importance of effective quality assurance makes it essential that audit trails and quality checks are hard-wired into study design. The structured approach presented here provides output products and production trails that can be rigorously audited, ensuring that the results of a geomorphic study can stand up to the closest scrutiny.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.
2003-03-01
This report presents results for year eleven in a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited atmore » a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible.« less
Application of optimization technique for flood damage modeling in river system
NASA Astrophysics Data System (ADS)
Barman, Sangita Deb; Choudhury, Parthasarathi
2018-04-01
A river system is defined as a network of channels that drains different parts of a basin uniting downstream to form a common outflow. An application of various models found in literatures, to a river system having multiple upstream flows is not always straight forward, involves a lengthy procedure; and with non-availability of data sets model calibration and applications may become difficult. In the case of a river system the flow modeling can be simplified to a large extent if the channel network is replaced by an equivalent single channel. In the present work optimization model formulations based on equivalent flow and applications of the mixed integer programming based pre-emptive goal programming model in evaluating flood control alternatives for a real life river system in India are proposed to be covered in the study.
Salmon Supplementation Studies in Idaho Rivers, 1996-1998 Progress Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reighn, Christopher A.; Lewis, Bert; Taki, Doug
1999-06-01
Information contained in this report summarizes the work that has been done by the Shoshone-Bannock Tribes Fisheries Department under BPA Project No. 89-098-3, Contract Number 92-BI-49450. Relevant data generated by the Shoshone-Bannock Tribe will be collated with other ISS cooperator data collected from the Salmon and Clearwater rivers and tributary streams. A summary of data presented in this report and an initial project-wide level supplementation evaluation will be available in the ISS 5 year report that is currently in progress. The Shoshone-Bannock Tribal Fisheries Department is responsible for monitoring a variety of chinook salmon (Oncorhynchus tshawytscha) production parameters as partmore » of the Idaho Supplementation Studies (BPA Project No. 89-098-3, Contract Number 92-BI-49450). Parameters include parr abundance in tributaries to the upper Salmon River; adult chinook salmon spawner abundance, redd counts, and carcass collection. A rotary screw trap is operated on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag chinook smolts. These traps are also used to monitor parr movement, and collect individuals for the State and Tribal chinook salmon captive rearing program. The SBT monitors fisheries parameters in the following six tributaries of the Salmon River: Bear Valley Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork. Chinook populations in all SBT-ISS monitored streams continue to decline. The South Fork Salmon River and Bear Valley Creek have the strongest remaining populations. Snorkel survey methodology was used to obtain parr population estimates for ISS streams from 1992 to 1997. Confidence intervals for the parr population estimates were large, especially when the populations were low. In 1998, based on ISS cooperator agreement, snorkeling to obtain parr population estimates was ceased due to the large confidence intervals. A rotary screw trap was operated on the West Fork Yankee Fork during the spring, summer, and fall of 1998 to monitor juvenile chinook migration. A screw trap was also operated on the East Fork of the Salmon River during the spring and fall from 1993 to 1997. Supplementation treatments have occurred on the South Fork Salmon River (IDFG), the East Fork Salmon River (EFSR), and the West Fork Yankee Fork of the Salmon River (WFYF). The EFSR received supplementation treatments yearly through 1995. There have been no treatments since 1995, and no significant future treatments from local broodstock are planned due to extremely poor escapement. The WFYF received a single presmolt treatment in 1994. There was an egg and adult release treatment in 1998 from the captive rearing program, not part of the original ISS study. Similarly, no significant future treatments are planned for the West Fork Yankee Fork due to extremely poor escapement. However, small scale experimental captive rearing and broodstock techniques are currently being tested with populations from the EFSR and WFYF. Captive rearing/broodstock techniques could potentially provide feedback for evaluation of supplementation. The other three SBT-ISS streams are control streams and do not receive supplementation treatments.« less
University of Wisconsin-River Falls Renewal Program.
ERIC Educational Resources Information Center
Wisconsin State Univ., River Falls.
The "Renewal" program is available to teachers in school districts that participate as partners with the university in the education of future teachers. Any district which has, or has expressed the desire to have student teachers or pre-student teachers or interns from the University of Wisconsin--River Falls, is eligible to be included…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
... DEPARTMENT OF THE INTERIOR Bureau of Reclamation San Joaquin River Restoration Program: Reach 4B...: Bureau of Reclamation, Interior. ACTION: Revised notice of intent to prepare an Environmental Impact...., the NRDC, Friant Water Users Authority, and the Departments of the Interior and Commerce (Settling...
Publications - GMC 64 | Alaska Division of Geological & Geophysical Surveys
sample from the AMOCO Production Company Cathedral River Unit #1 well Authors: Henning, Mitchel, and determination for a 10,650' deep cutting sample from the AMOCO Production Company Cathedral River Unit #1 well
First survey of parasitic helminths of goats along the Han River in Hubei Province, China.
Yang, Xin; Gasser, Robin B; Fang, Rui; Zeng, Jinrong; Zhu, Kaixiang; Qi, Mingwei; Zhang, Zongze; Tan, Li; Lei, Weiqiang; Zhou, Yanqin; Zhao, Junlong; Hu, Min
2016-09-01
Diseases caused by parasitic helminths cause considerable production and economic losses in livestock worldwide. Understanding the epidemiology of these parasites has important implications for controlling them. The main purpose of the present study was to estimate the prevalence of key parasitic helminths in goats along the Han River in Zhanggang, Hubei Province (from January to December 2014). We used faecal flotation and sedimentation techniques as well as PCR-based DNA sequencing to detect and identify helminths. Results showed that the prevalence of helminths was high throughout the year, particularly for gastrointestinal nematodes. These first findings provide useful baseline information for goat helminths in Zhanggang, and a starting point for the implementation of control programs. With an increased expansion of the goat industry in China, the findings also emphasise the need to undertake prevalence surveys in other regions of China where extensive farming practices are used.
Terrestrial Contributions to the Aquatic Food Web in the Middle Yangtze River
Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong
2014-01-01
Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies. PMID:25047656
Terrestrial contributions to the aquatic food web in the middle Yangtze River.
Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong
2014-01-01
Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.
Hiller, M M; Woda, C; Bougrov, N G; Degteva, M O; Ivanov, O; Ulanovsky, A; Romanov, S
2017-05-01
In the first years of its operation, the Mayak Production Association, a facility part of the Soviet nuclear weapons program in the Southern Urals, Russia, discharged large amounts of radioactively contaminated effluent into the nearby Techa River, thus exposing the people living at this river to external and internal radiations. The Techa River Cohort is a cohort intensely studied in epidemiology to investigate the correlation between low-dose radiation and health effects on humans. For the individuals in the cohort, the Techa River Dosimetry System describes the accumulated dose in human organs and tissues. In particular, organ doses from external exposure are derived from estimates of dose rate in air on the Techa River banks which were estimated from measurements and Monte Carlo modelling. Individual doses are calculated in accordance with historical records of individuals' residence histories, observational data of typical lifestyles for different age groups, and age-dependent conversion factors from air kerma to organ dose. The work here describes an experimentally independent assessment of the key input parameter of the dosimetry system, the integral air kerma, for the former village of Metlino, upper Techa River region. The aim of this work was thus to validate the Techa River Dosimetry System for the location of Metlino in an independent approach. Dose reconstruction based on dose measurements in bricks from a church tower and Monte Carlo calculations was used to model the historic air kerma accumulated in the time from 1949 to 1956 at the shoreline of the Techa River in Metlino. Main issues are caused by a change in the landscape after the evacuation of the village in 1956. Based on measurements and published information and data, two separate models for the historic pre-evacuation geometry and for the current geometry of Metlino were created. Using both models, a value for the air kerma was reconstructed, which agrees with that obtained in the Techa River Dosimetry System within a factor of two.
76 FR 5216 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... for Crystal River from 24 to 26 months on a one-time only basis. The proposed exemption does not make... licensed operator requalification program period for Crystal River from 24 to 26 months on a one-time only....59, by allowing Crystal River a one-time extension in the allowed time for completing the current...
NASA Astrophysics Data System (ADS)
Jäger, A.; Posselt, M.; Schaper, J. L.; Lewandowski, J.
2017-12-01
Not only transport, but especially transformation of polar organic micropollutants in urban streams is of increasing concern for urban water management. While concentrations of pharmaceuticals might decrease down the river, concentrations of their more persistent metabolites potentially increase due to microbial transformation. The river Erpe, an urban lowland stream located in Berlin, Germany, receives high loads of treated waste water. A Lagrangian sampling scheme was applied to follow water parcels 4.7 km down the river using the diurnal fluctuations of electrical conductivity as an intrinsic conservative tracer. Each experiment comprised of hourly sample collection for two days, accompanied by discharge measurements and continuous data logging of electrical conductivity. The fate of pharmaceuticals and their transformation products was compared between seasons (April and June) and before and after a stretch of the river has been cleared of macrophytes. The set of micropollutants was analysed by a newly developed direct injection-UHPLC-MS/MS method. The behaviour of individual micropollutants was compound-specific. Valsartan and metoprolol were attenuated by up to 18% of their original concentration. At the same time the transformation products valsartan acid and metoprolol acid increased in concentration by up to 24%. Their formation along the reach varied between seasons and was influenced by macrophyte removal. The findings indicate that the self-purification capacity of urban rivers is variable in time and sensitive to changes in the river's hydrological regime and emphasize the relevance of formation of transformation products in urban rivers.
Partners in Leadership for Pearl River
NASA Technical Reports Server (NTRS)
2007-01-01
Members of the 2007 class of Partners in Leadership toured NASA Stennis Space Center in Hancock County, Miss., on Jan. 11. They visited the center's B Test Stand, part of the center's rocket engine test complex. The Partners in Leadership training program is designed to teach Pearl River County leaders about their county's government, economic development, health and human services, history and arts, environment and education during a 10-month period. The program, sponsored by the Partners for Pearl River County, helps fulfill the mission of the economic and community development agency.
Partners in Leadership for Pearl River
2007-01-11
Members of the 2007 class of Partners in Leadership toured NASA Stennis Space Center in Hancock County, Miss., on Jan. 11. They visited the center's B Test Stand, part of the center's rocket engine test complex. The Partners in Leadership training program is designed to teach Pearl River County leaders about their county's government, economic development, health and human services, history and arts, environment and education during a 10-month period. The program, sponsored by the Partners for Pearl River County, helps fulfill the mission of the economic and community development agency.
1979-04-01
programs for non-Federal dams. (3) To update, verify and complete the National Inventory of Dams. 1.2 DESCRIPTION OF PROJECT a. Location. The Lovejoy Pond...BUREAU OF STANDARDS- 1963-A 41 ANDROSCOGGIN RIVER BASIN NORTH WAYNE ,MAINE LOVEJOY POND DAM ME-00022 0 PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION...side of necessar mnd idenifIr bioc Sigmmber) DAMS, INSPECTION, DAM SAFETY, * Androscoggin River Basin North Wayne, Maine Lovejoy Pond * 20. ABSTRACT
Pereira, W.E.; Rostad, C.E.; Leiker, T.J.; ,
1992-01-01
The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6'-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2???,6???-diethylacetanilide, 2-hydroxy-2???,6???-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be <2% of the annual application of each herbicide in the Midwest.
NASA Astrophysics Data System (ADS)
Schmidt, J. C.
2014-12-01
Throughout the Colorado River basin (CRb), scientists and river managers collaborate to improve native ecosystems. Native ecosystems have deteriorated due to construction of dams and diversions that alter natural flow, sediment supply, and temperature regimes, trans-basin diversions that extract large amounts of water from some segments of the channel network, and invasion of non-native animals and plants. These scientist/manager collaborations occur in large, multi-stakeholder, adaptive management programs that include the Lower Colorado River Multi-Species Conservation Program, the Glen Canyon Dam Adaptive Management Program, and the Upper Colorado River Endangered Species Recovery Program. Although a fundamental premise of native species recovery is that restoration of predam flow regimes inevitably leads to native species recovery, such is not the case in many parts of the CRb. For example, populations of the endangered humpback chub (Gila cypha) are largest in the sediment deficit, thermally altered conditions of the Colorado River downstream from Glen Canyon Dam, but these species occur in much smaller numbers in the upper CRb even though the flow regime, sediment supply, and sediment mass balance are less perturbed. Similar contrasts in the physical and biological response of restoration of predam flow regimes occurs in floodplains dominated by nonnative tamarisk (Tamarix spp.) where reestablishment of floods has the potential to exacerbate vertical accretion processes that disconnect the floodplain from the modern flow regime. A significant challenge in restoring segments of the CRb is to describe this paradox of physical and biological response to reestablishment of pre-dam flow regimes, and to clearly identify objectives of environmentally oriented river management. In many cases, understanding the nature of the perturbation to sediment mass balance caused by dams and diversions and understanding the constraints imposed by societal commitments to provide assured water supplies and hydroelectricity constrains the opportunities for rehabilitation and limits the management objectives to focus either on restoring predam physical processes or recovering native fish fauna and/or recovering native plant communities.
Developing a Global Network of River Reaches in Preparation of SWOT
NASA Astrophysics Data System (ADS)
Lion, C.; Pavelsky, T.; Allen, G. H.; Beighley, E.; Schumann, G.; Durand, M. T.
2016-12-01
In 2020, the Surface Water and Ocean Topography satellite (SWOT), a joint mission of NASA/CNES/CSA/UK will be launched. One of its major products will be the measurements of continental water surfaces, including the width, height, and slope of rivers and the surface area and elevations of lakes. The mission will improve the monitoring of continental water and also our understanding of the interactions between different hydrologic reservoirs. For rivers, SWOT measurements of slope will be carried out over predefined river reaches. As such, an a priori dataset for rivers is needed in order to facilitate analysis of the raw SWOT data. The information required to produce this dataset includes measurements of river width, elevation, slope, planform, river network topology, and flow accumulation. To produce this product, we have linked two existing global datasets: the Global River Widths from Landsat (GRWL) database, which contains river centerline locations, widths, and a braiding index derived from Landsat imagery, and a modified version of the HydroSHEDS hydrologically corrected digital elevation product, which contains heights and flow accumulation measurements for streams at 3 arcseconds spatial resolution. Merging these two datasets requires considerable care. The difficulties, among others, lie in the difference of resolution: 30m versus 3 arseconds, and the age of the datasets: 2000 versus 2010 (some rivers have moved, the braided sections are different). As such, we have developed custom software to merge the two datasets, taking into account the spatial proximity of river channels in the two datasets and ensuring that flow accumulation in the final dataset always increases downstream. Here, we present our results for the globe.
Developing a new global network of river reaches from merged satellite-derived datasets
NASA Astrophysics Data System (ADS)
Lion, C.; Allen, G. H.; Beighley, E.; Pavelsky, T.
2015-12-01
In 2020, the Surface Water and Ocean Topography satellite (SWOT), a joint mission of NASA/CNES/CSA/UK will be launched. One of its major products will be the measurements of continental water extent, including the width, height, and slope of rivers and the surface area and elevations of lakes. The mission will improve the monitoring of continental water and also our understanding of the interactions between different hydrologic reservoirs. For rivers, SWOT measurements of slope must be carried out over predefined river reaches. As such, an a priori dataset for rivers is needed in order to facilitate analysis of the raw SWOT data. The information required to produce this dataset includes measurements of river width, elevation, slope, planform, river network topology, and flow accumulation. To produce this product, we have linked two existing global datasets: the Global River Widths from Landsat (GRWL) database, which contains river centerline locations, widths, and a braiding index derived from Landsat imagery, and a modified version of the HydroSHEDS hydrologically corrected digital elevation product, which contains heights and flow accumulation measurements for streams at 3 arcsecond spatial resolution. Merging these two datasets requires considerable care. The difficulties, among others, lie in the difference of resolution: 30m versus 3 arseconds, and the age of the datasets: 2000 versus ~2010 (some rivers have moved, the braided sections are different). As such, we have developed custom software to merge the two datasets, taking into account the spatial proximity of river channels in the two datasets and ensuring that flow accumulation in the final dataset always increases downstream. Here, we present our preliminary results for a portion of South America and demonstrate the strengths and weaknesses of the method.
1979-09-01
of slm~ lu THAMES RIVER BASIN 00 DUDLEY, MASSACHUSETTS 0 0 in MERINO POND DAM MA 00110 0 PHASE I INSPECTION REPORT 0 NATIONAL DAM INSPECTION PROGRAM ...NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL , e, .* f. ,,,-Ue I,. h TNw@ e 6, CONTACT OR IAUNT ONUWSaEPe* U.S. AMY CORPS OF ENGINEERS NEW ENGLAND...SAaUmN el ame 6 am vel NSON* Odlmwmn ba 00-0 o6. oll.I,,NIA*v mOTE& Cover program reads: Phase I Inspection Report, National Dam Inspection Program
Sediment toxicity in mid-continent great rivers (USA)
In this study, 530 sediment samples were collected from 447 sites between 2004 and 2006 at randomly selected shoreline sites along the main channel of the Ohio, Missouri and Upper Mississippi Rivers as part of the Environmental Monitoring and Assessment Program for Great Rivers E...
Development of an Index of Ecological Condition based on Great River Fish Assemblages
As part of the Environmental Monitoring and Assessment Program for Great River Ecosystems we developed a fish-assemblage based multimetric index (Great River Fish Index,GRFIn) as an indicator of ecological conditions in the Lower Missouri, impounded Upper Mississippi,.unimpoun...
Home on the Big River: Great River Habitat Quality Indices
EPA’s Environmental Monitoring and Assessment Program sampled the Upper Mississippi, Missouri and Ohio Rivers from 2004 through 2006 as part of an integrated assessment of ecological condition. We developed fish habitat indices by dividing the components of habitat into four ca...
An Index of Ecological Condition Based on Great River Fish Assemblages
I will be presenting this talk at a workshop titled: Examining biological indicators for the Upper Mississippi River: Applications in Clean Water Act (CWA) and ecosystem restoration programs. This workshop is sponsored by the Upper Mississippi River Basin Association to frame th...
Mades, D.M.
1987-01-01
In 1986, the U.S. Geological Survey began a National Water-Quality Assessment program to (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation's surface- and ground-water resources; (2) define, where possible, trends in water quality; and (3) identify and describe the relations of both status and trends in water quality to natural factors and the history of land use and land- and waste-management activities. The program is presently in a pilot phase that will test and modify, as necessary, concepts and approaches in preparation for possible full implementation of the program in the future. The upper Illinois River basin is one of four basins selected to test the concepts and approaches of the surface-water-quality element of the national program. The basin drains 10,949 square miles of Illinois, Indiana, and Wisconsin. Three principal tributaries are the Kankakee and Des Plaines Rivers that join to form the Illinois River and the Fox River. Land use is predominantly agricultural; about 75 percent of the basin is cultivated primarily for production of corn and soybeans. About 13 percent of the basin is urban area, most of which is located in the Chicago metropolitan area. The population of the basin is about 7 million. About 6 million people live in the Des Plaines River basin. Many water-quality issues in the upper Illinois River basin are related to sediment, nutrients, potentially toxic inorganic and organic constituents, and to water-management practices. Occurrence of sediment and the chemical constituents in the rivers and lakes within the basin has the potential to adversely affect the water's suitability for aquatic life, recreation, or, through the consumption of fish, human health. The upper Illinois River basin project consists of five major activities. The first activity--analysis of existing information and preparation of a report that describes recent water-quality conditions and trends--is currently underway. The second activity--fixed-station water-quality sampling at eight stations--began in April 1987 and will last at least 3 years. Water-quality data collected at these stations will be used to determine the frequency of occurrence of constituent concentrations, their annual and seasonal loads, and time trends in concentrations for a selected number of constituents. The third activity will be synoptic water-quality studies. Each study will involve sampling many sites at specific flow conditions and for selected water-quality constituents. Information gained from these studies will supplement informa tion gained from fixed-station sampling. A synoptic study of streambed sediments is tentatively planned for the summer of 1987 to describe the occurrence and distribution of trace elements in the basin. The fourth activity will consist of one or more topical subbasin or river-reach studies. The purpose of such studies is to better define certain water-quality conditions in specific areas and gain an understanding of the processes affecting the observed conditions. The fifth activity is the preparation of reports that will describe results from each of the first four activities. Quality assurance and coordination are being provided at both the national and pilot-project levels. A technical quality-assurance plan that addresses all aspects of sample collection, analysis, and reporting is being prepared at the national level. This plan will be appended as needed at the pilot-project level. A National Coordinating Work Group that functions under the auspices of the Interagency Advisory Committee on Water Data and the Advisory Committee on Water Data for Public Use has been established at the national level. A local liaison committee consisting of representatives from Federal, State, and local agencies has been established to enhance communication and to ensure that the scientific information produced by the
Grand Ronde Basin Fish Habitat Enhancement Project, 2008 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGowan, Vance R.; Morton, Winston H.
2009-07-01
On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing the opportunities for natural fishmore » production within the basin. This project originally provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented under revisions of the Fish and Wild Program as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires considerable time be spent developing rapport with landowners to gain acceptance, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources, is the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by the Grande Ronde Model Watershed Program (Project. No. 199202601). Work undertaken during 2008 included: (1) completing 1 new fencing project in the North Fork John Day subbasin that protects 1.82 miles of stream and 216.2 acres of habitat, and 1 fencing project in the Wallowa subbasin that protects an additional 0.59 miles of stream and 42.5 acres of habitat; (2) constructing 0.47 miles of new channel on the Wallowa river to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) planting 10,084 plants along 0.5 miles of the Wallowa Riverproject; (4) establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; and (7) completed a comprehensive project summary report to the Independent Scientific Review panel (ISRP) that provided our conclusions regarding benefits to focal species, along with management recommendations for the future. Since initiation of this program 57 individual projects have been implemented, monitoring and maintained along 84.9 miles of anadromous fish bearing streams, that protect and enhance 3,564 acres of riparian and instream habitat.« less
Evaluating agricultural nonpoint-source pollution programs in two Lake Erie tributaries.
Forster, D Lynn; Rausch, Jonathan N
2002-01-01
During the past three decades, numerous government programs have encouraged Lake Erie basin farmers to adopt practices that reduce water pollution. The first section of this paper summarizes these state and federal government agricultural pollution abatement programs in watersheds of two prominent Lake Erie tributaries, the Maumee River and Sandusky River. Expenditures are summarized for each program, total expenditures in each county are estimated, and cost effectiveness of program expenditures (i.e., cost per metric ton of soil saved) are analyzed. Farmers received nearly $143 million as incentive payments to implement agricultural nonpoint source pollution abatement programs in the Maumee and Sandusky River watersheds from 1987 to 1997. About 95% of these funds was from federal sources. On average, these payments totaled about $7000 per farm or about $30 per farm acre (annualized equivalent of $2 per acre) within the watersheds. Our analysis raises questions about how efficiently these incentive payments were allocated. The majority of Agricultural Conservation Program (ACP) funds appear to have been spent on less cost-effective practices. Also, geographic areas with relatively low (high) soil erosion rates received relatively large (small) funding.
NASA Astrophysics Data System (ADS)
Frasson, R. P. M.; Wei, R.; Minear, J. T.; Tuozzolo, S.; Domeneghetti, A.; Durand, M. T.
2016-12-01
Averaging is a powerful method to reduce measurement noise associated with remote sensing observation of water surfaces. However, when dealing with river measurements, the choice of which points are averaged may affect the quality of the products. We examine the effectiveness of three fully automated reach definition strategies: In the first, we break up reaches at regular intervals measured along the rivers' centerlines. The second strategy consists of identifying hydraulic controls by searching for inflection points on water surface profiles. The third strategy takes into consideration river planform features, breaking up reaches according to channel sinuosity. We employed the Jet Propulsion Laboratory's (JPL) SWOT hydrology simulator to generate 9 synthetic SWOT observations of the Sacramento River in California, USA and 14 overpasses of the Po River in northern Italy. In order to create the synthetic SWOT data, the simulator requires the true water digital elevation model (DEM), which we constructed from hydraulic models of both rivers, and the terrain DEM, which we built from LiDAR data of both basins. We processed the simulated pixel clouds using the JPL's RiverObs package, which traces the river centerline and estimates water surface height and river width on equally spaced nodes located along the centerline. Subsequently, we applied the three reach definition methodologies to the nodes and to the hydraulic models' outputs to generate simulated reach-averaged observations and the reach-averaged truth respectively. Our results generally indicate that height, width, slope, and discharge errors decrease with increasing reach length, with most of the accuracy gains occurring when reach length increases to up to 15 km for both the narrow (Sacramento) and the wide (Po) rivers. The "smart" methods led to smaller slope, width, and discharge errors for the Sacramento River when compared to arbitrary reaches of similar length whereas, for the for the Po River all methods had comparable performance. Our results suggest that river segmentation strategies that take into consideration the hydraulic characteristics of rivers may lead to more meaningful reach boundaries and to better products especially for narrower and more complex rivers.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents the mean value for infiltration-excess overland flow as estimated by the watershed model TOPMODEL, compiled for every catchment of NHDPlus for the conterminous United States. Infiltration-excess overland flow, expressed as a percent of total overland flow, is simulated in TOPMODEL as precipitation that exceeds the infiltration capacity of the soil and enters the stream channel. The source data set is Infiltration-Excess Overland Flow Estimated by TOPMODEL for the Conterminous United States (Wolock, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Organic Matter in Rivers: The Crossroads between Climate and Water Quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davisson, M L
2001-04-27
All surface waters in the world contain dissolved organic matter and its concentration depends on climate and vegetation. Dissolved organic carbon (DOC) is ten times higher in wetlands and swamps than in surface water of arctic, alpine, or arid climate. Climates of high ecosystem productivity (i.e., tropics) typically have soils with low organic carbon storage, but drain high dissolved organic loads to rivers. Regions with lower productivity (e.g. grasslands) typically have high soil carbon storage while adjacent rivers have high DOC contents. Most DOC in a free-flowing river is derived from leaching vegetation and soil organic matter, whereas in dammedmore » rivers algae may comprise a significant portion. Water chemistry and oxygen-18 abundance of river water, along with radiocarbon and carbon-13 isotope abundance measurements of DOC were used to distinguish water and water quality sources in the Missouri River watershed. Drinking water for the City of St. Louis incorporates these different sources, and its water quality depends mostly on whether runoff is derived from the upper or the lower watershed, with the lower watershed contributing water with the highest DOC. During drinking water chlorination, DOC forms carcinogenic by-products in proportion to the amount of DOC present. This has recently led the USEPA to propose federal regulation standards. Restoration of natural riparian habitat such as wetlands will likely increase DOC concentrations in river water.« less
Assessing water reservoir management and development in Northern Vietnam
NASA Astrophysics Data System (ADS)
Pianosi, F.; Quach, X.; Castelletti, A.; Soncini-Sessa, R.
2012-04-01
In many developing countries water is a key renewable resource to complement carbon-emitting energy production and support food security in the face of demand pressure from fast-growing industrial production and urbanization. To cope with undergoing changes, water resources development and management have to be reconsidered by enlarging their scope across sectors and adopting effective tools to analyze current and projected infrastructure potential and operation strategies. In this work we use multi-objective deterministic and stochastic optimization to assess the current reservoir operation and planned capacity expansion in the Red River Basin (Northern Vietnam), focusing on the major controllable infrastructure in the basin, the HoaBinh reservoir on the Da River. We first provide a general and mathematical description of the socio economic and physical system of the Red River Basin, including the three main objectives of hydropower production, flood control, and water supply, and using conceptual and data-driven modeling tools. Then, we analyze the historical operation of the HoaBinh reservoir and explore re-operation options corresponding to different tradeoffs among the three main objectives, using Multi-Objective Genetic Algorithm. Results show that there exist several operating policies that prove Pareto-dominant over the historical one, that is, they can improve all three management objectives simultaneously. However, while the improvement is rather significant with respect to hydropower production and water supply, it is much more limited in terms of flood control. To understand whether this is due to structural constraints (insufficient storing capacity) or to the imperfect information system (uncertainty in forecasting future flows and thus anticipate floods), we assessed the infrastructural system potential by application of Deterministic Dynamic Programming. Results show that the current operation can only be relatively improved by advanced optimization techniques, while investment should be put into enlarging the system storage capacity and exploiting additional information to inform the operation.
McKenzie River Focus Watershed Coordination: Year-End Report 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thrailkil, Jim
2000-01-01
This report summarizes accomplishments of the McKenzie River Focus Watershed Council (MWC) in the areas of coordination and administration during Fiscal Year 2000. Coordination and administration consist of prioritization and planning for projects; project management and implementation; procurement of funding for long-term support of the Council; and watershed education/outreach program for residents and local schools. Key accomplishments in the area of project planning include coordinating: monthly Council and executive committee meetings; staffing the Upper Willamette Spring Chinook Working Group; staffing the water quality technical committee; and guiding education and stewardship projects. Key accomplishments in the area of project management includemore » the completion of the McKenzie-Willamette Confluence Assessment; securing funds for project planning in the confluence area; near completion of the BPA funded McKenzie sub-basin assessment; development of a framework for a McKenzie Watershed Conservation Strategy; an evaluation of Council's monitoring programs - ambient water quality, storm-event water quality, Tier III water quality, and macroinvertebrate monitoring. The Council, in cooperation with the McKenzie River Cooperative, completed habitat enhancements in the Gate Creek and Deer Creek sub-watersheds. This partnership recently submitted Bring Back the Natives grant for initiation of projects in other McKenzie tributaries. The Council will also be working with a local business to develop a river-side riparian enhancement and native landscaping project on the lodge grounds. This will serve as a demonstration project for blending fish and wildlife habitat concerns with maintaining grounds for business opportunities. Accomplishments in the area of procurement of funding included developing the FY2000 Scope of Work and budget for approval by the Council and BPA; providing quarterly budget and work program progress reports to the Council; and securing additional funding from Council partner organizations and foundations. Highlights in the area of watershed education/outreach include the MWC's lead role in convening the Watershed Education Network for teachers as part of its educational mission; production of newsletters and brochures; and coordination of media coverage of watershed-related issues.« less
Assessment of the White Salmon watershed using the ecosystem diagnosis and treatment model
Allen, Brady; Connolly, Patrick J.
2005-01-01
Salmon habitat models provide managers the ability to identify habitat limitations and prioritize restoration activities. Ecosystem Diagnosis and Treatment (EDT) has become a widely used tool for salmonid habitat analysis in the Pacific Northwest. The EDT model is a rule-based habitat rating system that provides reach-level diagnosis of habitat conditions for the major salmonid species of the Pacific Northwest. The EDT process itself is a complex modeling program with defined data needs. The program is a product developed by Mobrand Biometrics Incorporated (MBI) largely through funding by the Northwest Power and Conservation Council (NPCC). The NPCC had provided a free version of the program accessible through a website that required user registration. The EDT model allows the user to rate the quality, quantity, and diversity of fish habitat along a waterway. The model uses diagnostic species such as steelhead and Chinook salmon to identify the most significant limiting factors in a river and to help identify reaches for protection and restoration. The model includes a set of tools to help organize environmental information and rate the habitat elements that pertain to specific life stages of the diagnostic species. A major benefit of EDT is that it can show the potential of a river under current conditions and possible future conditions. The result is a scientifically-based assessment of fish habitat and a prioritization of restoration needs.
Edwards, Clayton J.; Hudson, Patrick L.; Duffy, Walter G.; Nepszy, Stephen J.; McNabb, Clarence D.; Haas, Robert C.; Liston, Charles R.; Manny, Bruce; Busch, Wolf-Dieter N.; Dodge, D.P.
1989-01-01
The connecting channels of the Great Lakes are large rivers (1, 200-9, 900 m3 • s-1) with limited tributary drainage systems and relatively stable hydrology (about 2:1 ration of maximum to minimum flow). The rivers, from headwaters to outlet, are the St. Marys, St. Clair, Detroit, Niagara, and St. Lawrence. They share several characteristics with certain other large rivers: the fish stocks that historically congregated for spawning or feeding have been overfished, extensive channel modification have been made, and they have been used as a repository for domestic and industrial wastes and for hydroelectric energy generation. Levels of phosphorus, chlorophyll a, and particulate organic matter increase 3- to 5-fold from the St. Marys River to the St. Lawrence River. Biological communities dependent on nutrients in the water column, such as phytoplankton, periphyton, and zooplankton similarly increase progressively downstream through the system. The standing crop of emergent macrophytes is similar in all of the rivers, reflecting the relatively large nutrient pools in the sediments and atmosphere. Consequently, emergent macrophytes are an important source of organic matter (67% of total primary production) in the nutrient poor waters of the St. Marys River, whereas phytoplankton production dominates (76%) in the enriched St. Lawrence River. Submersed and emergent macrophytes and the associated periphyton are major producers of organic matter in the connecting channels. Another major source of organic matter (measured as ash free dry weight, AFDW) in the Detroit River is sewage, introduced at a rate of 26, 000 t per year. The production of benthos ranges from a low 5.4 g AFDW•m-2 in the Detroit River to a high of 15.5 g AFDW•m-2 in the St. Marys River. The rivers lack the organic transport from riparian sources upstream but receive large amounts of high quality phytoplankton and zooplankton from the Great Lakes.
Zappia, Humbert
2002-01-01
During the summer of 1998, as part of the National Water-Quality Assessment Program, a survey was conducted to determine which organochlorine compounds and trace elements occur in fish tissues and streambed sediments in the Mobile River Basin, which includes parts of Alabama, Mississippi, Georgia, and Tennessee. The data collected were compared to guidelines related to wildlife, land use, and to 1991 and 1994 National Water-Quality Assessment Program Study-Unit data.Twenty-one sites were sampled in subbasins of the Mobile River Basin. The subbasins ranged in size from about 9 to 22,000 square miles and were dominated by either a single land use or a combination of land uses. The major land-use categories were urban, agriculture, and forest.Organochlorine compounds were widespread spatially in the Mobile River Basin. At least one organochlorine compound was reported at the majority of sampling sites (84 percent) and in a majority of whole-fish (80 percent) and streambed-sediment (52 percent) samples. Multiple organochlorine compounds were reported at 75 percent of the sites where fish tissues were collected and were reported at many of the streambed-sediment sampling sites (45 percent). The majority of concentrations reported, however, were less than 5 micrograms per kilogram in fish-tissue samples and less than 1 microgram per kilogram in streambed-sediment samples.The majority of trace elements analyzed in fish-liver tissue (86 percent) and streambed-sediment (98 percent) samples were reported during this study. Multiple trace elements were reported in all samples and at all sites.Based on comparisons of concentrations of organochlorine compounds and trace elements in fish-tissue and streambed-sediment samples in relation to National Academy of Science and National Academy of Engineering and Canadian tissue guidelines, probable-effects concentrations, and mean probable-effects concentration quotients for streambed sediment, the potential exists for adverse effects to wildlife at 15 (72 percent) of the sites sampled. The potential for adverse effects at these sites is because of the presence of residues or breakdown products related to polychlorinated biphenyls (PCB?s), chlordane, dichlorodiphenyltrichloroethane (DDT), chromium, lead, and zinc.The majority of compounds reported (65 percent) were chlordane, DDT, and PCB?s, or their breakdown products. Concentrations of chlordane and heptachlor epoxide in whole-fish tissue were positively correlated to the amount of urban land use in a basin. Total DDT concentrations in whole-fish tissues were positively correlated to agriculture.The relation of trace elements to land use is not as clear as the relation of organochlorine compounds to land use. This lack of clarity may be due to the possibility of geologic sources of trace elements in the Mobile River Basin and to the ubiquitous nature of many of these trace elements. However, there may be a correlation between the amount of urban land use and concentrations of antimony, cadmium, lead, and zinc in streambed-sediment samples from the Mobile River Basin.Fewer organochlorine compounds and trace elements were reported in samples from the Mobile River Basin than in samples collected during the 1991 and 1994 National Water-Quality Assessment Program studies. Of the organochlorine compounds analyzed nationally, 57 percent were reported in whole-fish tissue samples collected locally and 41 percent were reported in streambed-sediment samples collected locally, whereas 96 percent and 86 percent, respectively, were reported nationally. Of trace elements analyzed nationally, 86 percent were reported in fish-liver tissue locally and 95 percent were reported in streambed-sediment samples locally, whereas 95 percent and 98 percent, respectively, were reported nationally.In general, concentrations of organochlorine compounds and trace elements and the frequency with which they were reported in the Mobile River Basin are similar to or less than t
Runner, Michael S.; Turnipseed, D. Phil; Coupe, Richard H.
2002-01-01
Increased nutrient loading to the Gulf of Mexico from off-continent flux has been identified as contributing to the increase in the areal extent of the low dissolved-oxygen zone that develops annually off the Louisiana and Texas coast. The proximity of the Yazoo River Basin in northwestern Mississippi to the Gulf of Mexico, and the intensive agricultural activities in the basin have led to speculation that the Yazoo River Basin contributes a disproportionate amount of nitrogen and phosphorus to the Mississippi River and ultimately to the Gulf of Mexico. An empirical measurement of the flux of nitrogen and phosphorus from the Yazoo Basin has not been possible due to the hydrology of the lower Yazoo River Basin. Streamflow for the Yazoo River below Steele Bayou is affected by backwater from the Mississippi River. Flow at the gage is non-uniform and varying, with bi-directional and reverse flows possible. Streamflow was computed by using remote sensing and acoustic and conventional discharge and velocity measurement techniques. Streamflow from the Yazoo River for the 1996-2000 period accounted for 2.8 percent of the flow of the Mississippi River for the same period. Water samples from the Yazoo River were collected from February 1996 through December 2000 and were analyzed for total nitrogen, nitrate, total phosphorus, and orthophosphorus as part of the U.S. Geological Survey National Water-Quality Assessment Program. These data were used to compute annual loads of nitrogen and phosphorus discharged from the Yazoo River for the period 1996-2000. Annual loads of nitrogen and phosphorus were calculated by two methods. The first method used multivariate regression and the second method multiplied the mean annual concentration by the total annual flow. Load estimates based on the product of the mean annual concentration and the total annual flow were within the 95 percent confidence interval for the load calculated by multivariate regression in 10 of 20 cases. The Yazoo River loads, compared to average annual loads in the Mississippi River, indicated that the Yazoo River was contributing 1.4 percent of the total nitrogen load, 0.7 percent of the nitrate load, 3.4 percent of the total phosphorus load, and 1.6 percent of the orthophosphorus load during 1996 - 2000. The total nitrogen, nitrate, and orthophosphorus loads in the Yazoo River Basin were less than expected, whereas the total phosphorus load was slightly higher than expected based on discharge.
Distribution of agrochemicals in the lower Mississippi River and its tributaries
Pereira, W.E.; Rostad, C.E.; Leiker, T.J.
1990-01-01
The Mississippi River and its tributaries drain extensive agricultural regions of the Mid-Continental United States. Millions of pounds of herbicides are applied annually in these areas to improve crop yields. Many of these compounds are transported into the river from point and nonpoint sources, and eventually are discharged into the Gulf of Mexico. Studies being conducted by the U.S. Geological Survey along the lower Mississippi River and its major tributaries, representing a 2000 km river reach, have confirmed that several triazine and acetanilide herbicides and their degradation products are ubiquitous in this riverine system. These compounds include atrazine and its degradation products desethyl and desisopropylatrazine, cyanazine, simazine, metolachlor, and alachlor and its degradation products 2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6-diethylacetanilide and 2,6-diethylaniline. Loads of these compounds were determined at 16 different sampling stations. Stream-load calculations provided information concerning (a) conservative or nonconservative behavior of herbicides; (b) point sources or nonpoint sources; (c) validation of sampling techniques; and (d) transport past each sampling station.
Water Quality in the Yakima River Basin, Washington, 1999-2000
Fuhrer, Gregory J.; Morace, Jennifer L.; Johnson, Henry M.; Rinella, Joseph F.; Ebbert, James C.; Embrey, Sandra S.; Waite, Ian R.; Carpenter, Kurt D.; Wise, Daniel R.; Hughes, Curt A.
2004-01-01
This report contains the major findings of a 1999?2000 assessment of water quality in streams and drains in the Yakima River Basin. It is one of a series of reports by the NAWQA Program that present major findings on water resources in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is assessed at many scales?from large rivers that drain lands having many uses to small agricultural watersheds?and is discussed in terms of local, State, and regional issues. Conditions in the Yakima River Basin are compared to those found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, Tribal, State, or local agencies; universities; public interest groups; or the private sector. The information will be useful in addressing a number of current issues, such as source-water protection, pesticide registration, human health, drinking water, hypoxia and excessive growth of algae and plants, the effects of agricultural land use on water quality, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of water resources in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. Other products describing water-quality conditions in the Yakima River Basin are available. Detailed technical information, data and analyses, methodology, and maps that support the findings presented in this report can be accessed from http://or.water.usgs.gov/yakima. Other reports in this series and data collected from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).
NASA Astrophysics Data System (ADS)
Pai, H.; Tyler, S.
2017-12-01
Small, unmanned aerial systems (sUAS) are quickly becoming a cost-effective and easily deployable tool for high spatial resolution environmental sensing. Land surface studies from sUAS imagery have largely focused on accurate topographic mapping, quantifying geomorphologic changes, and classification/identification of vegetation, sediment, and water quality tracers. In this work, we explore a further application of sUAS-derived topographic mapping to a two-dimensional (2-d), depth-averaged river hydraulic model (Flow and Sediment Transport with Morphological Evolution of Channels, FaSTMECH) along a short, meandering reach of East River, Colorado. On August 8, 2016, we flew a sUAS as part of the Center for Transformative Environmental Monitoring Programs with a consumer-grade visible camera and created a digital elevation map ( 1.5 cm resolution; 5 cm accuracy; 500 m long river corridor) with Agisoft Photoscan software. With the elevation map, we created a longitudinal water surface elevation (WSE) profile by manually delineating the bank-water interface and river bathymetry by applying refraction corrections for more accurate water depth estimates, an area of ongoing research for shallow and clear river systems. We tested both uncorrected and refraction-corrected bathymetries with the steady-state, 2-d model, applying sensitivities for dissipation parameters (bed roughness and eddy characteristics). Model performance was judged from the WSE data and measured stream velocities. While the models converged, performance and insights from model output could be improved with better bed roughness characterization and additional water depth cross-validation for refraction corrections. Overall, this work shows the applicability of sUAS-derived products to a multidimensional river model, where bathymetric data of high resolution and accuracy are key model input requirements.
ASSESSING WATER QUALITY AND BIOLOGICAL INTEGRITY OF THE GREAT RIVERS OF THE CENTRAL U.S.
The goal of USEPA's Environmental Monitoring and Assessment Program for Great River Ecosystems (EMAP-GRE) is to demonstrate techniques with which to assess environmental conditions in the Upper Mississippi, Missouri, and Ohio Rivers. Previous EMAP efforts have focused on streams,...
Non-wadeable rivers have been largely overlooked by bioassessment programs because of sampling difficulties and a lack of appropriate methods and biological indicators. We are in the process of developing a Large River Bioassessment Protocol (LR-BP) for sampling macroinvertebrat...
ASSESSING ENDOCRINE-DISRUPTING CHEMICAL EXPOSURE IN INDIGENOUS AQUATIC POPULATIONS IN THE OHIO RIVER
The NERL has launched a collaborative study with the ORSANCO to determine the degree of ecologically relevant endocrine-disrupting chemical (EDC) exposure in the New Cumberland Pool of the Ohio River under the Environmental Monitoring and Assessment Program - Great Rivers Project...
We assessed the North American mid-continent great rivers (Upper Mississippi, Missouri, and Ohio). We estimated the extent of each river in most (MDC) or least-disturbed condition (LDC) based on multiple biological response indicators (fish and macroinvertebrates, trophic state ...
Development of an Index of Ecological Condition Based on Great River Fish Assemblages, Presentation
As part of the Environmental Monitoring and Assessment Program for Great River Ecosystems we developed a fish-assemblage based multimetric index (Great River Fish Index,GRFIn) as an indicator of ecological conditions in the Lower Missouri, impounded Upper Mississippi,.unimpounded...
Austin Youth River Watch Program: 1992-93 Final Report. Publication Number 92.33.
ERIC Educational Resources Information Center
Turner, Jeannine
The City of Austin (Texas) provides funds for an educational initiative to involve minority high school students in water quality issues and to reduce the dropout rate through positive role model interaction with academically successful students. Principal program activities were testing river water for pollutants and tutoring at-risk students by…
ERIC Educational Resources Information Center
Whiteford, Gail; Hunter, John; Jamie, Joanne; Pitson, Rhonda; Breckenridge, Deborah; Elders, Yaegl; Vemulpad, Subramanyam; Harrington, David; Jamie, Ian
2017-01-01
In this article, findings of a qualitative study of an Indigenous widening participation program are presented. The program, "River of Learning", has been in existence since 2010 and represents a powerful collaboration between a rural high school in New South Wales (NSW) Australia, a metropolitan university, Indigenous Elders and…
Size and distribution of the 1975 striped bass spawning stock in the Potomac River. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zankel, K.L.; Kobler, B.; Haire, M.S.
1976-12-01
In the spring of 1975, an acoustic survey was made of a 40-mile section of the Potomac River. This survey was part of a program designed to estimate the distribution and abundance of spawning striped bass. The total number of striped bass in the 40-mile sector of the Potomac from Mockley Point to Morgantown was estimated to be between 2 and 4.5 million adult fish during spawning in late April. The highest population density was found between Douglas Point and Possum Point. The surveys were part of the Potomac River Fisheries Program and were conducted for the power plant sitingmore » program of the state of Maryland.« less
NASA Astrophysics Data System (ADS)
Tsuzuki, Yoshiaki; Yoneda, Minoru
2011-04-01
SummaryA Social Experiment Program to decrease municipal wastewater pollutant discharge by "soft interventions" in households and to improve river water quality was conducted in the Yamato-gawa River Basin, Japan. Environmental accounting housekeeping (EAH) books of municipal wastewater were prepared mainly for dissemination purpose to be applied during the Social Experiment Program. The EAH books are table format spreadsheets to estimate pollutant discharges. Pollutant load per capita flowing into water body (PLC wb) and pollutant runoff yields from sub-river basins to the river mouth are indispensable parameters for their preparation. In order to estimate the pollutant runoff yields of the pollutants, BOD, TN and TP, a concept of pollutant runoff yield from upper monitoring point, MP n, to lower monitoring point, MP n+1 ( Rm n(n+1)), and that from corresponding sub-river basin ( Rd(n+1)(n+1)) was introduced in this paper. When proportion of the pollutant runoff yields, p n (= Rm n(n+1)/ Rd(n+1)(n+1)), was equal to 1.0 in all the river sections, which was determined based on the simulation results of Rm and Rd, pollutant runoff yield from sub-river basin n to the monitoring point nearest to the river mouth, Ry n7, were estimated to be 0.3-66.8% for BOD, 25.8-75.8% for TN and 18.9-78.5% for TP. The EAH books of municipal wastewater were prepared by adopting the estimated pollutant runoff yields, Ry n7. The EAH books were thought to be distributed widely, however, they did not seem to be used by many ordinary citizens in the Social Experiment Program in February, 2010, judging from the small number of website visitor counter and less responses from people. Possible reasons for less usage than expected were considered to be unsuccessful negotiation with the official organizations of the Social Experiment Program on the EAH books utilization as official tools and some difficulties in using the EAH books for ordinary people.
Summary of Bed-Sediment Measurements Along the Platte River, Nebraska, 1931-2009
Kinzel, P.J.; Runge, J.T.
2010-01-01
Rivers are conduits for water and sediment supplied from upstream sources. The sizes of the sediments that a river bed consists of typically decrease in a downstream direction because of natural sorting. However, other factors can affect the caliber of bed sediment including changes in upstream water-resource development, land use, and climate that alter the watershed yield of water or sediment. Bed sediments provide both a geologic and stratigraphic record of past fluvial processes and quantification of current sediment transport relations. The objective of this fact sheet is to describe and compare longitudinal measurements of bed-sediment sizes made along the Platte River, Nebraska from 1931 to 2009. The Platte River begins at the junction of the North Platte and South Platte Rivers near North Platte, Nebr. and flows east for approximately 500 kilometers before joining the Missouri River at Plattsmouth, Nebr. The confluence of the Loup River with the Platte River serves to divide the middle (or central) Platte River (the Platte River upstream from the confluence with the Loup River) and lower Platte River (the Platte River downstream from the confluence with Loup River). The Platte River provides water for a variety of needs including: irrigation, infiltration to public water-supply wells, power generation, recreation, and wildlife habitat. The Platte River Basin includes habitat for four federally listed species including the whooping crane (Grus americana), interior least tern (Sterna antillarum), piping plover (Charadrius melodus), and pallid sturgeon (Scaphirhynchus albus). A habitat recovery program for the federally listed species in the Platte River was initiated in 2007. One strategy identified by the recovery program to manage and enhance habitat is the manipulation of streamflow. Understanding the longitudinal and temporal changes in the size gradation of the bed sediment will help to explain the effects of past flow regimes and anticipated manipulation of streamflows on the channel morphology and habitat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, David L.
1994-06-01
Results of the second year are reported of a basinwide program to harvest northern squawfish in an effort to reduce mortality due to squawfish predation on juvenile salmonids during their migration from natal streams to the ocean. Six papers are included in this report. They are entitled: feasibility investigation of a commercial longline fishery for northern squawfish in the Columbia River downstream from Bonneville dam; evaluation of the northern squawfish sport-reward fishery in the Columbia and Snake Rivers; controlled angling for northern squawfish at selected dams on the Columbia and Snake Rivers in 1992; evaluation of harvest technology for squawfishmore » control in Columbia River reservoirs; effectiveness of predator-removal for protecting juvenile fall chinook salmon released from Bonneville Hatchery; and Northern squawfish sport-reward payments.« less
NASA Astrophysics Data System (ADS)
Hardegree, S. P.
2001-12-01
The National Weather Service (NWS) operates approximately 160 WSR-88D radar-precipitation stations as part of a Next Generation Radar (NEXRAD) program that began implementation in 1992. Among other products, these radar sites provide spatial rainfall estimates, at approximately 4 km2 resolution (Stage 1, Level 3 data), with nominal coverage of 96% of the coterminous United States. Effective coverage is much less than this in a given radar domain depending upon storm type and topography. As the original intent of this network was to support operational objectives of the Departments of Defense, Transportation and Commerce, the production of these data have been optimized for detection and mitigation of severe weather events that might result in flooding, destruction of property and loss of life. The primary hydrologic application has been river and flood forecast modeling by 13 NWS River Forecast Centers (RFC). As each RFC is responsible for a large river drainage, data processing and quality control of these data are geared toward optimization over a relatively large spatial domain (>100,000 km2). Use of these data for other hydrologic and natural resource applications is hampered by a lack of tools for data access and manipulation. NWRC has modified decoding and geo-referencing programs to facilitate utilization of these data for other research and management applications. Stage 1, Level 3 Digital Precipitation Array (DPA) files were obtained for the Boise, Idaho radar location (CBX) for the period of January 1998 to December 2000. Nine rain-gauge locations in the Reynolds Creek Experimental Watershed and Snake River Birds of Prey National Conservation Area, south of Boise, were georeferenced relative to the CBX Hydrologic Rainfall Analysis Project (HRAP) grid. NEXRAD estimates of total cumulative rainfall at these sites averaged only 20% of that measured by the local gauge network. This underestimate was attributed in the most part to truncation of low intensity rainfall events by the precipitation detection function (pdf) rather than to mis-calibration of the ZR relationship. At this time, these data are unsuitable as inputs for long-term water balance modeling but may be useful in extreme-event or flood-modeling applications. New tools to extract and manipulate specific subsets of Stage 1, Level 2 radar data may improve our ability to use radar reflectance data for a broader number of applications than are currently supported.
2002-07-01
Monthly. Caspian Tern Working Group Developing a plan to reduce smolt predation by Caspian terns nesting in the Columbia River estuary. As needed...Environment and Public Works, U.S. SenateJuly 2002 COLUMBIA RIVER BASIN SALMON AND STEELHEAD Federal Agencies’ Recovery Responsibilities... COLUMBIA RIVER BASIN SALMON AND STEELHEAD: Federal Agencies Recovery Responsibilities, Expenditures and Actions Contract Number Grant Number Program
Low, Walton H.
1997-01-01
In 1991, the U.S. Geological Survey (USGS) began a full-scale National Water-Quality Assessment (NAWQA) Program. The long-term goals of the NAWQA Program are to describe the status and trends in the water quality of a large part of the Nation's rivers and aquifers and to improve understanding of the primary natural and human factors that affect water-quality conditions. In meeting these goals, the program will produce water-quality, ecological, and geographic information that will be useful to policy makers and managers at the national, State, and local levels. A major component of the program is study-unit investigations, upon which national-level assessment activities are based. The program's 60 study-unit investigations are associated with principal river basins and aquifer systems throughout the Nation. Study units encompass areas from 1,200 to more than 65,000 mi2 (square miles) and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the upper Snake River Basin was among the first 20 NAWQA study units selected for implementation. From 1991 to 1995, a high-intensity data-collection phase of the upper Snake River Basin study unit (fig. 1) was implemented and completed. Components of this phase are described in a report by Gilliom and others (1995). In 1997, a low-intensity phase of data collection began, and work continued on data analysis, report writing, and data documentation and archiving activities that began in 1996. Principal data-collection activities during the low-intensity phase will include monitoring of surface-water and ground-water quality, assessment of aquatic biological conditions, and continued compilation of environmental setting information.
Gebbink, Wouter A; van Asseldonk, Laura; van Leeuwen, Stefan P J
2017-10-03
The present study investigated the presence of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in river water collected in 2016 up- and downstream from a fluorochemical production plant, as well as in river water from control sites, in The Netherlands. Additionally, drinking water samples were collected from municipalities in the vicinity from the production plant, as well as in other regions in The Netherlands. The PFOA replacement chemical GenX was detected at all downstream river sampling sites with the highest concentration (812 ng/L) at the first sampling location downstream from the production plant, which was 13 times higher than concentrations of sum perfluoroalkylcarboxylic acids and perfluoroalkanesulfonates (∑PFCA+∑PFSA). Using high resolution mass spectrometry, 11 polyfluoroalkyl acids belonging to the C 2n H 2n F 2n O 2 , C 2n H 2n+2 F 2n SO 4 or C 2n+1 H 2n F 2n+4 SO 4 homologue series were detected, but only in downstream water samples. These emerging PFASs followed a similar distribution as GenX among the downstream sampling sites, suggesting the production plant as the source. Polyfluoroalkyl sulfonates (C 2n H 2 F 4n SO 3 ) were detected in all collected river water samples, and therefore appear to be ubiquitous contaminants in Dutch rivers. GenX was also detected in drinking water collected from 3 out of 4 municipalities in the vicinity of the production plant, with highest concentration at 11 ng/L. Drinking water containing the highest level of GenX also contained two C 2n H 2n F 2n O 2 homologues.
2017-01-01
The present study investigated the presence of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in river water collected in 2016 up- and downstream from a fluorochemical production plant, as well as in river water from control sites, in The Netherlands. Additionally, drinking water samples were collected from municipalities in the vicinity from the production plant, as well as in other regions in The Netherlands. The PFOA replacement chemical GenX was detected at all downstream river sampling sites with the highest concentration (812 ng/L) at the first sampling location downstream from the production plant, which was 13 times higher than concentrations of sum perfluoroalkylcarboxylic acids and perfluoroalkanesulfonates (∑PFCA+∑PFSA). Using high resolution mass spectrometry, 11 polyfluoroalkyl acids belonging to the C2nH2nF2nO2, C2nH2n+2F2nSO4 or C2n+1H2nF2n+4SO4 homologue series were detected, but only in downstream water samples. These emerging PFASs followed a similar distribution as GenX among the downstream sampling sites, suggesting the production plant as the source. Polyfluoroalkyl sulfonates (C2nH2F4nSO3) were detected in all collected river water samples, and therefore appear to be ubiquitous contaminants in Dutch rivers. GenX was also detected in drinking water collected from 3 out of 4 municipalities in the vicinity of the production plant, with highest concentration at 11 ng/L. Drinking water containing the highest level of GenX also contained two C2nH2nF2nO2 homologues. PMID:28853567
von Biela, Vanessa R.; Zimmerman, Christian E.; Moulton, L. L.
2011-01-01
Arctic cisco Coregonus autumnalis young-of-year (YOY) growth was used as a proxy to examine the long-term response of a high-latitude fish population to changing climate from 1978 to 2004. YOY growth increased over time (r2 = 0·29) and was correlated with monthly averages of the Arctic oscillation index, air temperature, east wind speed, sea-ice concentration and river discharge with and without time lags. Overall, the most prevalent correlates to YOY growth were sea-ice concentration lagged 1 year (significant correlations in 7 months; r2 = 0·14-0·31) and Mackenzie River discharge lagged 2 years (significant correlations in 8 months; r2 = 0·13-0·50). The results suggest that decreased sea-ice concentrations and increased river discharge fuel primary production and that life cycles of prey species linking increased primary production to fish growth are responsible for the time lag. Oceanographic studies also suggest that sea ice concentration and fluvial inputs from the Mackenzie River are key factors influencing productivity in the Beaufort Sea. Future research should assess the possible mechanism relating sea ice concentration and river discharge to productivity at upper trophic levels.
Basin scale controls on CO2 and CH4 emissions from the Upper Mississippi River
Crawford, John T.; Loken, Luke C.; Stanley, Emily H.; Stets, Edward G.; Dornblaser, Mark M.; Striegl, Robert G.
2016-01-01
The Upper Mississippi River, engineered for river navigation in the 1930s, includes a series of low-head dams and navigation pools receiving elevated sediment and nutrient loads from the mostly agricultural basin. Using high-resolution, spatially resolved water quality sensor measurements along 1385 river kilometers, we show that primary productivity and organic matter accumulation affect river carbon dioxide and methane emissions to the atmosphere. Phytoplankton drive CO2to near or below atmospheric equilibrium during the growing season, while anaerobic carbon oxidation supports a large proportion of the CO2 and CH4 production. Reductions of suspended sediment load, absent of dramatic reductions in nutrients, will likely further reduce net CO2emissions from the river. Large river pools, like Lake Pepin, which removes the majority of upstream sediments, and large agricultural tributaries downstream that deliver significant quantities of sediments and nutrients, are likely to persist as major geographical drivers of greenhouse gas emissions.
Optimizing Irrigation Water Allocation under Multiple Sources of Uncertainty in an Arid River Basin
NASA Astrophysics Data System (ADS)
Wei, Y.; Tang, D.; Gao, H.; Ding, Y.
2015-12-01
Population growth and climate change add additional pressures affecting water resources management strategies for meeting demands from different economic sectors. It is especially challenging in arid regions where fresh water is limited. For instance, in the Tailanhe River Basin (Xinjiang, China), a compromise must be made between water suppliers and users during drought years. This study presents a multi-objective irrigation water allocation model to cope with water scarcity in arid river basins. To deal with the uncertainties from multiple sources in the water allocation system (e.g., variations of available water amount, crop yield, crop prices, and water price), the model employs a interval linear programming approach. The multi-objective optimization model developed from this study is characterized by integrating eco-system service theory into water-saving measures. For evaluation purposes, the model is used to construct an optimal allocation system for irrigation areas fed by the Tailan River (Xinjiang Province, China). The objective functions to be optimized are formulated based on these irrigation areas' economic, social, and ecological benefits. The optimal irrigation water allocation plans are made under different hydroclimate conditions (wet year, normal year, and dry year), with multiple sources of uncertainty represented. The modeling tool and results are valuable for advising decision making by the local water authority—and the agricultural community—especially on measures for coping with water scarcity (by incorporating uncertain factors associated with crop production planning).
NASA Astrophysics Data System (ADS)
Tsiaras, K. P.; Petihakis, G.; Kourafalou, V. H.; Triantafyllou, G.
2014-02-01
The impact of river load variability on the North Aegean ecosystem functioning over the last decades (1980-2000) was investigated by means of a coupled hydrodynamic/biogeochemical model simulation. Model results were validated against available SeaWiFS Chl-a and in situ data. The simulated food web was found dominated by small cells, in agreement with observations, with most of the carbon channelled through the microbial loop. Diatoms and dinoflagellates presented a higher relative abundance in the more productive coastal areas. The increased phosphate river loads in the early 80s resulted in nitrogen and silicate deficiency in coastal, river-influenced regions. Primary production presented a decreasing trend for most areas. During periods of increased phosphate/nitrate inputs, silicate deficiency resulted in a relative decrease of diatoms, triggering an increase of dinoflagellates. Such an increase was simulated in the late 90s in the Thermaikos Gulf, in agreement with the observed increased occurrence of Harmful Algal Blooms. Microzooplankton was found to closely follow the relative increase of dinoflagellates under higher nutrient availability, showing a faster response than mesozooplankton. Sensitivity simulations with varying nutrient river inputs revealed a linear response of net primary production and plankton biomass. A stronger effect of river inputs was simulated in the enclosed Thermaikos Gulf, in terms of productivity and plankton composition, showing a significant increase of dinoflagellates relative abundance under increased nutrient loads.
del Jesus, Manuel; Foti, Romano; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio
2012-01-01
The spatial organization of functional vegetation types in river basins is a major determinant of their runoff production, biodiversity, and ecosystem services. The optimization of different objective functions has been suggested to control the adaptive behavior of plants and ecosystems, often without a compelling justification. Maximum entropy production (MEP), rooted in thermodynamics principles, provides a tool to justify the choice of the objective function controlling vegetation organization. The application of MEP at the ecosystem scale results in maximum productivity (i.e., maximum canopy photosynthesis) as the thermodynamic limit toward which the organization of vegetation appears to evolve. Maximum productivity, which incorporates complex hydrologic feedbacks, allows us to reproduce the spatial macroscopic organization of functional types of vegetation in a thoroughly monitored river basin, without the need for a reductionist description of the underlying microscopic dynamics. The methodology incorporates the stochastic characteristics of precipitation and the associated soil moisture on a spatially disaggregated framework. Our results suggest that the spatial organization of functional vegetation types in river basins naturally evolves toward configurations corresponding to dynamically accessible local maxima of the maximum productivity of the ecosystem. PMID:23213227
First evidence of egg deposition by walleye (Sander vitreus) in the Detroit River
Manny, B.A.; Kennedy, G.W.; Allen, J.D.; French, J. R. P.
2007-01-01
The importance of fish spawning habitat in channels connecting the Great Lakes to fishery productivity in those lakes is poorly understood and has not been adequately documented. The Detroit River is a reputed spawning and nursery area for many fish, including walleye (Sander vitreus) that migrate between adjacent Lakes Erie and St. Clair. During April–May 2004, near the head of the Detroit River, we collected 136 fish eggs from the bottom of the river on egg mats. We incubated the eggs at the Great Lakes Science Center until they hatched. All eleven larvae that hatched from the eggs were identified as walleye. These eggs and larvae are the first credible scientific evidence that walleye spawn in the Detroit River. Their origin might be a stock of river-spawning walleye. Such a stock of walleye could potentially add resilience to production by walleye stocks that spawn and are harvested in adjacent waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Robert C.; Mehrhoff, L.A.
1985-01-01
The Pacific Northwest Electric Power Planning and Conservation Act and wildlife and their habitats in the Columbia River Basin and to compliance with the Program, the wildlife mitigation status reports coordination with resource agencies and Indian Tribes. developed the Columbia River Basin Fish and Wildlife Program development, operation, and maintenance of hydroelectric projects on existing agreements; and past, current, and proposed wildlife factual review and documentation of existing information on wildlife meet the requirements of Measure 1004(b)(l) of the Program. The mitigation, enhancement, and protection activities were considered. In mitigate for the losses to those resources resulting from the purposemore » of these wildlife mitigation status reports is to provide a resources at some of the Columbia River Basin hydroelectric projects the river and its tributaries. To accomplish this goal, the Council were written with the cooperation of project operators, and in within Idaho.« less
77 FR 16558 - Yakima River Basin Conservation Advisory Group Charter Renewal
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
... on the structure and implementation of the Yakima River Basin Water Conservation Program. The basin... water conservation measures in the Yakima River basin. Improvements in the efficiency of water delivery and use will result in improved streamflows for fish and wildlife and improve the reliability of water...
WATER QUALITY IN THE GARRISON REACH OF THE MISSOURI RIVER, ND: PRELIMINARY EMAP FINDINGS
In 2001 and 2002, summer water quality (WQ) sampling was conducted on open waters (flowing waters of the river channel) and backwaters of the Missouri River between Garrison Dam and Lake Oahe as part of the EPA's Environmental Monitoring and Assessment Program Upper Missouri Rive...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-10-01
A cooperative agreement with the United States Department of Energy provides the necessary funding for the Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, to render services required under federal law for the protection and management of archaeological resources on the Savannah River Site (SRS). Because the significance of archaeological resources is usually determined by research potential, the SRARP is guided by research objectives. An ongoing research program provides the theoretical, methodological and empirical basis for assessing site significance within the compliance process specified by law. In accordance withmore » the spirit of the law, the SRARP maintains an active public education program for disseminating knowledge about prehistory and history, and for enhancing awareness of historic preservation. This report summarizes the management, research and public education activities of the SRARP during Fiscal Year 1991.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-11-01
The Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, is funded through a direct contract with the United States Department of Energy to provide services required under federal law for the protection and management of archaeological resources on the Savannah River Site (SRS). Because the significance of most archaeological resources is dependent upon research potential, the SRARP is guided by research objectives. An on-going research program provides the problems, methods and means of assessing site significance within the compliance process specified by law. In addition, the SRARP maintains anmore » active program of public education to disseminate knowledge about prehistory and history, and to enhance public awareness about historic preservation. The following report summarizes the management, research and public education activities of the SRARP during Fiscal Year 1990.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
A cooperative agreement with the United States Department of Energy provides the necessary funding for the Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, to render services required under federal law for the protection and management of archaeological resources on the Savannah River Site (SRS). Because the significance of archaeological resources is usually determined by research potential, the SRARP is guided by research objectives. An ongoing research program provides the theoretical, methodological, and empirical basis for assessing site significance within the compliance process specified by law. In accordance withmore » the spirit of the law, the SRARP maintains an active public education program for disseminating knowledge about prehistory and history, and for enhancing awareness of historic preservation. This report summarizes the management, research, and public education activities of the SRARP during Fiscal Year 1993.« less
Development of river sediment monitoring in Croatia
NASA Astrophysics Data System (ADS)
Frančišković-Bilinski, Stanislav; Bilinski, Halka; Mlakar, Marina; Maldini, Krešimir
2017-04-01
Establishment of regular river sediment monitoring, in addition to water monitoring, is very important. Unlike water, which represents the current state of a particular watercourse, sediment represents a sort of record of the state of pollution in the long run. Sediment monitoring is crucial to gain a real insight into the status of pollution of particular watercourses and to determine trends over a longer period of time. First scientific investigations of river sediment geochemistry in Croatia started 1989 in the Krka River estuary [1], while first systematic research of a river basin in Croatia was performed 2005 in Kupa River drainage basin [2]. Up to now, several detailed studies of both toxic metals and organic pollutants have been conducted in this drainage basin and some other rivers, also Croatian scientists participated in river sediment research in other countries. In 2008 Croatian water authorities (Hrvatske Vode) started preliminary sediment monitoring program, what was successfully conducted. In the first year of preliminary program only 14 stations existed, while in 2014 number of stations increased to 21. Number of monitored watercourses and of analysed parameters also increased. Current plan is to establish permanent monitoring network of river sediments throughout the state. The goal is to set up about 80 stations, which will cover all most important and most contaminated watercourses in all parts of the country [3]. Until the end of the year 2016, regular monitoring was conducted at 31 stations throughout the country. Currently the second phase of sediment monitoring program is in progress. At the moment parameters being determined on particular stations are not uniform. From inorganic compounds it is aimed to determine Cd, Pb, Ni, Hg, Cu, Cr, Zn and As on all stations. The ratio of natural concentrations of those elements vs. anthropogenic influence is being evaluated on all stations. It was found that worse situation is with Ni, Hg and Cr, who have significant anthropogenic concentrations on several locations. With other studied elements situation is much better and anthropogenic influence is not so significant. Based on own research and experience and comparing them with existing sediment quality criteria worldwide, within the current phase of monitoring program it is aimed to propose threshold values for mentioned elements, what would be base for Croatian National legislative on sediment quality. [1] Prohić, E. and Juračić, M. (1989): Heavy metals in sediments - Problems concerning determination of the anthropogenic influence. Study in the Krka River Estuary, Eastern Adriatic Coast, Yugoslavia. Environmental Geology Water Science, 13(2), 145-151. [2] Franči\\vsković-Bilinski, S. (2005): Geochemistry of stream sediments in Kupa River drainage basin [In Croatian] / Doctoral thesis. University of Zagreb, Croatia. [3] Franči\\vsković-Bilinski, S., Bilinski, H., Maldini, K. (2015): Establishing of monitoring of river sediments in Croatia. Contaminated sediments: Environmental Chemistry, Ecotoxicology and Engineering - Program and Abstract Book, Congressi Stefano Franscini, Ascona, Switzerland, 73-73.
Adkison, M.; Peterman, R.; Lapointe, M.; Gillis, D.; Korman, J.
1996-01-01
We compare alternative models of sockeye salmon (Oncorhynchus nerka) productivity (returns per spawner) using more than 30 years of catch and escapement data for Bristol Bay, Alaska, and the Fraser River, British Columbia. The models examined include several alternative forms of models that incorporate climatic influences as well as models not based on climate. For most stocks, a stationary stock-recruitment relationship explains very little of the interannual variation in productivity. In Bristol Bay, productivity co-varies among stocks and appears to be strongly related to fluctuations in climate. The best model for Bristol Bay sockeye involved a change in the 1970s in the parameters of the Ricker stock-recruitment curve; the stocks generally became more productive. In contrast, none of the models of Fraser River stocks that we examined explained much of the variability in their productivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiskel, B.J.; Wozniewski, A.
This paper reports on an oil production facility at Norman Wells, N.W.T. The production is centered around the Mackenzie River with oil being produced from wells located on natural and artificial islands as well as from wells located on the mainland. Pipelines have been installed beneath the river to route production from the islands back to the central processing plant on the mainland. Cathodic protection was required for the pipelines crossing the Mackenzie River to prevent external corrosion in an environmentally sensitive area. Several difficulties were encountered in preparing an optimum cathodic design due to the unique production scheme, permafrostmore » and logistical problems associated with the northern location. An innovative approach was therefore required for the design, installation and testing of the cathodic protection system. This paper describes evolution of the cathodic protection system from a conventional one to a system utilizing a close groundbed concept and unique current return path.« less
Monitoring River Water Levels from Space: Quality Assessment of 20 Years of Satellite Altimetry Data
NASA Astrophysics Data System (ADS)
Bercher, Nicolas; Kosuth, Pascal
2013-09-01
This paper presents the results of 20 years of validation of altimetry data for the monitoring of river water levels using a standardized method. The method was initially developed by Cemagref (2006-2011, [5, 6, 3]), now Irste ´a, its implementation is now pursued at LEGOS.Our initial statement was: "what if someone1 wants to use satellite measurements of river water levels ?" The obvious question that comes to mind is "what the quality of the data ?". Moreover, there's also a need - a demand from data producers, to monitor products quality in a standardized fashion.We addressed such questions and have developped a method to assess the quality of, so called, "Alti-Hydro Products". The method was implemented for the following Alti-Hydro products (and automatically derived from a L2 product*) : AVISO* (Topex/Poseidon, Jason-2), CASH project (Topex/Poseidon), HydroWeb (Topex/Poseidon, ENVISAT), River & Lake Hydrology (ERS-2, ENVISAT) and PISTACH* (Jason-2).
John Day River Sub-Basin Fish Habitat Enhancement Project; 2008 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Russ M.; Alley, Pamela D.; Goin Jr, Lonnie
Work undertaken in 2008 included: (1) Seven new fence projects were completed thereby protecting approximately 10.97 miles of streams with 16.34 miles of riparian fence; (2) Renewal of one expired lease was completed thereby continuing to protect 0.75 miles of stream with 1.0 mile of riparian fence. (3) Maintenance of all active project fences (106.54 miles), watergaps (78), spring developments (33) were checked and repairs performed; (3) Planted 1000 willow/red osier on Fox Creek/Henslee property; (4) Planted 2000 willows/red osier on Middle Fork John Day River/Coleman property; (5) Planted 1000 willow/red osier cuttings on Fox Creek/Johns property; (6) Since themore » initiation of the Fish Habitat Project in 1984 we have 126.86 miles of stream protected using 211.72 miles of fence protecting 5658 acres. The purpose of the John Day Fish Habitat Enhancement Program is to enhance production of indigenous wild stocks of spring Chinook and summer steelhead within the sub basin through habitat protection, enhancement and fish passage improvement. The John Day River system supports the largest remaining wild runs of spring chinook salmon and summer steelhead in Northeast Oregon.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Joan B.
2004-05-01
In 1999 the Cle Elum Hatchery began releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. In 1998 and 2000 through 2003 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, withmore » a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. To date, only the bacterial pathogens have been detected and prevalences have been low. Prevalences have varied each year and these changes are attributed to normal fluctuation of prevalence. All of the pathogens detected are widely distributed in Washington State.« less
Yadav, Amita; Pandey, Jitendra
2017-07-01
Carbon, nitrogen and phosphorus inputs through atmospheric deposition, surface runoff and point sources were measured in the Ganga River along a gradient of increasing human pressure. Productivity variables (chlorophyll a, gross primary productivity, biogenic silica and autotrophic index) and heterotrophy (respiration, substrate induced respiration, biological oxygen demand and fluorescein diacetate hydrolysis) showed positive relationships with these inputs. Alkaline phosphatase (AP), however, showed an opposite trend. Because AP is negatively influenced by available P, and eutrophy generates a feedback on P fertilization, the study implies that the alkaline phosphatase can be used as a high quality criterion for assessing river health.
In Situ and Ex Situ Estimates of Benthic Silica Fluxes in NGOM Shelf Sediments
NASA Astrophysics Data System (ADS)
Ebner, B. C.; Ghaisas, N. A.; Maiti, K.
2017-12-01
Biogenic silica (bSi), plays an important role in regulating primary productivity of diatoms in coastal and shelf ecosystems fed by major rivers. In the Northern Gulf of Mexico (NGOM), loading of nitrogen (N) and phosphorous (P) have increased compared to a decline in silicic acid in the Mississippi River (MR). Continued decreasing in silicic acid concentration could lead to limited diatom growth and production, therefore, it is important understand the role of benthic fluxes in providing silica to the overlying water column. The benthic flux of Si from shelf sediments can thus represent an important source of Si to be utilized by diatoms. Sediment core incubations and benthic chamber deployments were conducted at 5 sites in the Mississippi river plume with varying salinities during periods of high river discharge (May 2017), low river discharge (August 2016) and peak in hypoxia (July 2017). Preliminary data indicates large spatial and temporal variability in benthic silica fluxes ranging between 1.1 to 5.9 mmol/m2/d. This large variability in benthic silica flux is probably related to the seasonal changes in river discharge, primary production, community composition and sediment biogeochemistry in the region.
Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy
2006-05-01
On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound inmore » Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred to Eagle Fish Hatchery on September 14, 2004 and later incorporated into hatchery spawn matrices. Nine anadromous females, 102 captive females from brood year 2001, and one captive female from brood year 2000 broodstock groups were spawned at the Eagle Hatchery in 2004. Spawn pairings produced approximately 140,823 eyed-eggs with egg survival to eyed stage of development averaging 72.8%. Eyed-eggs (49,134), presmolts (130,716), smolts (96), and adults (241) were planted or released into Sawtooth Valley waters in 2004. Reintroduction strategies involved releases to Redfish Lake, Alturas Lake, and Pettit Lake. During this reporting period, five broodstocks and five unique production groups were in culture at Idaho Department of Fish and Game (Eagle Fish Hatchery and Sawtooth Fish Hatchery) and Oregon Department of Fish and Wildlife (Oxbow Fish Hatchery) facilities. Two of the five broodstocks were incorporated into the 2004 spawning design.« less
Aymerich, I; Acuña, V; Barceló, D; García, M J; Petrovic, M; Poch, M; Rodriguez-Mozaz, S; Rodríguez-Roda, I; Sabater, S; von Schiller, D; Corominas, Ll
2016-09-01
Pharmaceuticals are designed to improve human and animal health, but may also be a threat to freshwater ecosystems, particularly after receiving urban or wastewater treatment plant (WWTP) effluents. Knowledge on the fate and attenuation of pharmaceuticals in engineered and natural ecosystems is rather fragmented, and comparable methods are needed to facilitate the comprehension of those processes amongst systems. In this study the dynamics of 8 pharmaceuticals (acetaminophen, sulfapyridine, sulfamethoxazole, carbamazepine, venlafaxine, ibuprofen, diclofenac, diazepam) and 11 of their transformation products were investigated in a WWTP and the associated receiving river ecosystem. During 3 days, concentrations of these compounds were quantified at the influents, effluents, and wastage of the WWTP, and at different distances downstream the effluent at the river. Attenuation (net balance between removal and release from and to the water column) was estimated in both engineered and natural systems using a comparable model-based approach by considering different uncertainty sources (e.g. chemical analysis, sampling, and flow measurements). Results showed that pharmaceuticals load reduction was higher in the WWTP, but attenuation efficiencies (as half-life times) were higher in the river. In particular, the load of only 5 out of the 19 pharmaceuticals was reduced by more than 90% at the WWTP, while the rest were only partially or non-attenuated (or released) and discharged into the receiving river. At the river, only the load of ibuprofen was reduced by more than 50% (out of the 6 parent compounds present in the river), while partial and non-attenuation (or release) was observed for some of their transformation products. Linkages in the routing of some pharmaceuticals (venlafaxine, carbamazepine, ibuprofen and diclofenac) and their corresponding transformation products were also identified at both WWTP and river. Finally, the followed procedure showed that dynamic attenuation in the coupled WWTP-river system could be successfully predicted with simple first order attenuation kinetics for most modeled compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gómez, María José; Herrera, Sonia; Solé, David; García-Calvo, Eloy; Fernández-Alba, Amadeo R
2012-03-15
This study aims to assess the occurrence, fate and temporal and spatial distribution of anthropogenic contaminants in a river subjected to different pressures (industrial, agricultural, wastewater discharges). For this purpose, the Henares River basin (central Spain) can be considered a representative basin within a continental Mediterranean climate. As the studied river runs through several residential, industrial and agricultural areas, it would be expected that the chemical water quality is modified along its course. Thereby the selection of sampling points and timing of sample collection are critical factors in the monitoring of a river basin. In this study, six different monitoring campaigns were performed in 2010 and contaminants were measured at the effluent point of the main wastewater treatment plant (WWTP) in the river basin and at five different points upstream and downstream from the WWTP emission point. The target compounds evaluated were personal care products (PCPs), polycyclic aromatic hydrocarbons (PAHs) and pesticides. Results show that the river is clearly influenced by wastewater discharges and also by its proximity to agricultural areas. The contaminants detected at higher concentrations were the PCPs. The spatial distribution of the contaminants indicates that the studied contaminants persist along the river. In the time period studied no great seasonal variations of PCPs at the river collection points were observed. In contrast, a temporal trend of pesticides and PAHs was observed. Besides the target compounds, other new contaminants were identified and evaluated in the water samples, some of them being investigated for the first time in the aquatic environment. The behaviour of three important transformation products was also evaluated: 9,10-anthracenodione, galaxolide-lactone and 4-amino-musk xylene. These were found at higher concentrations than their parent compounds, indicating the significance of including the study of transformation products in the monitoring programmes. Copyright © 2012 Elsevier B.V. All rights reserved.
Spokane Tribal Hatchery, 2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peone, Tim L.
2005-03-01
Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting a harvestable fishery for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). A collaborative multi-agency artificial production program for the Lake Roosevelt and Banks Lake fisheries exists consisting of the Spokane Tribal Hatchery,more » Sherman Creek Hatchery, Ford Trout Hatchery and the Lake Roosevelt Kokanee and Rainbow Trout Net Pen Rearing Projects. These projects operate complementary of one another to target an annual release of 1 million yearling kokanee and 500,000 yearling rainbow trout for Lake Roosevelt and 1.4 million kokanee fry/fingerlings for Banks Lake. Fish produced by this project in 2004 to meet collective fish production and release goals included: 1,655,722 kokanee fingerlings, 537,783 rainbow trout fingerlings and 507,660 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Lake Whatcom kokanee, 50:50 diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2004 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to harvestable rainbow trout and kokanee salmon fisheries. An increase in kokanee harvest was primarily owing to new release strategies. Walleye predation, early maturity and entrainment through Grand Coulee Dam continues to have a negative impact on adult kokanee returns and limits the success of hatchery/net pen stocking on the number of harvestable fish. Recommendations for future hatchery/net pen operations include use of stocks compatible or native to the upper Columbia River, continue hatchery-rearing practices to reduce precocity rates of kokanee and continue new kokanee stocking strategies associated with increased kokanee harvest rates.« less
NASA Astrophysics Data System (ADS)
Leavesley, G.; Markstrom, S.; Frevert, D.; Fulp, T.; Zagona, E.; Viger, R.
2004-12-01
Increasing demands for limited fresh-water supplies, and increasing complexity of water-management issues, present the water-resource manager with the difficult task of achieving an equitable balance of water allocation among a diverse group of water users. The Watershed and River System Management Program (WARSMP) is a cooperative effort between the U.S. Geological Survey (USGS) and the Bureau of Reclamation (BOR) to develop and deploy a database-centered, decision-support system (DSS) to address these multi-objective, resource-management problems. The decision-support system couples the USGS Modular Modeling System (MMS) with the BOR RiverWare tools using a shared relational database. MMS is an integrated system of computer software that provides a research and operational framework to support the development and integration of a wide variety of hydrologic and ecosystem models, and their application to water- and ecosystem-resource management. RiverWare is an object-oriented reservoir and river-system modeling framework developed to provide tools for evaluating and applying water-allocation and management strategies. The modeling capabilities of MMS and Riverware include simulating watershed runoff, reservoir inflows, and the impacts of resource-management decisions on municipal, agricultural, and industrial water users, environmental concerns, power generation, and recreational interests. Forecasts of future climatic conditions are a key component in the application of MMS models to resource-management decisions. Forecast methods applied in MMS include a modified version of the National Weather Service's Extended Streamflow Prediction Program (ESP) and statistical downscaling from atmospheric models. The WARSMP DSS is currently operational in the Gunnison River Basin, Colorado; Yakima River Basin, Washington; Rio Grande Basin in Colorado and New Mexico; and Truckee River Basin in California and Nevada.
Water Management Applications of Advanced Precipitation Products
NASA Astrophysics Data System (ADS)
Johnson, L. E.; Braswell, G.; Delaney, C.
2012-12-01
Advanced precipitation sensors and numerical models track storms as they occur and forecast the likelihood of heavy rain for time frames ranging from 1 to 8 hours, 1 day, and extended outlooks out to 3 to 7 days. Forecast skill decreases at the extended time frames but the outlooks have been shown to provide "situational awareness" which aids in preparation for flood mitigation and water supply operations. In California the California-Nevada River Forecast Centers and local Weather Forecast Offices provide precipitation products that are widely used to support water management and flood response activities of various kinds. The Hydrometeorology Testbed (HMT) program is being conducted to help advance the science of precipitation tracking and forecasting in support of the NWS. HMT high-resolution products have found applications for other non-federal water management activities as well. This presentation will describe water management applications of HMT advanced precipitation products, and characterization of benefits expected to accrue. Two case examples will be highlighted, 1) reservoir operations for flood control and water supply, and 2) urban stormwater management. Application of advanced precipitation products in support of reservoir operations is a focus of the Sonoma County Water Agency. Examples include: a) interfacing the high-resolution QPE products with a distributed hydrologic model for the Russian-Napa watersheds, b) providing early warning of in-coming storms for flood preparedness and water supply storage operations. For the stormwater case, San Francisco wastewater engineers are developing a plan to deploy high resolution gap-filling radars looking off shore to obtain longer lead times on approaching storms. A 4 to 8 hour lead time would provide opportunity to optimize stormwater capture and treatment operations, and minimize combined sewer overflows into the Bay.ussian River distributed hydrologic model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wein, G.; Rosier, B.
1998-12-31
This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.
Research on numerical method for multiple pollution source discharge and optimal reduction program
NASA Astrophysics Data System (ADS)
Li, Mingchang; Dai, Mingxin; Zhou, Bin; Zou, Bin
2018-03-01
In this paper, the optimal method for reduction program is proposed by the nonlinear optimal algorithms named that genetic algorithm. The four main rivers in Jiangsu province, China are selected for reducing the environmental pollution in nearshore district. Dissolved inorganic nitrogen (DIN) is studied as the only pollutant. The environmental status and standard in the nearshore district is used to reduce the discharge of multiple river pollutant. The research results of reduction program are the basis of marine environmental management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wein, G.; Rosier, B.
1997-12-31
This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.
ERIC Educational Resources Information Center
Turner, Jeannine
The City of Austin (Texas) provided funds for a supplementary educational activity to involve at-risk minority high school students in water quality issues. The program encourages at-risk students to remain in school by providing an interesting and authentic activity to use in the development of academic skills. Program activities included testing…
HIGHLIGHTS OF THE RUSSIAN HEALTH STUDIES PROGRAM AND UPDATED RESEARCH FINDINGS.
Fountos, Barrett N
2017-04-01
Recognized for conducting cutting-edge science in the field of radiation health effects research, the Department of Energy's (DOE) Russian Health Studies Program has continued to generate excitement and enthusiasm throughout its 23-year mission to assess worker and public health risks from radiation exposure resulting from nuclear weapons production activities in the former Soviet Union. The three goals of the Program are to: (1) clarify the relationship between health effects and chronic, low-to-medium dose radiation exposure; (2) estimate the cancer risks from exposure to gamma, neutron, and alpha radiation; and (3) provide information to the national and international organizations that determine radiation protection standards and practices. Research sponsored by DOE's Russian Health Studies Program is conducted under the authority of the Joint Coordinating Committee for Radiation Effects Research (JCCRER), a bi-national committee representing Federal agencies in the United States and the Russian Federation. Signed in 1994, the JCCRER Agreement established the legal basis for the collaborative research between USA and Russian scientists to determine the risks associated with working at or living near Russian former nuclear weapons production sites. The products of the Program are peer-reviewed publications on cancer risk estimates from worker and community exposure to ionizing radiation following the production of nuclear weapons in Russia. The scientific return on investment has been substantial. Through 31 December 2015, JCCRER researchers have published 299 peer-reviewed publications. To date, the research has focused on the Mayak Production Association (Mayak) in Ozersk, Russia, which is the site of the first Soviet nuclear weapons production facility, and people in surrounding communities along the Techa River. There are five current projects in the Russian Health Studies Program: two radiation epidemiology studies; two historical dose reconstruction studies and a worker biorepository. National and international standard-setting organizations use cancer risk estimates computed from epidemiological and historical dose reconstruction studies to validate or revise radiation protection standards. An overview of the most important research results will be presented. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rien, Thomas A.; Beiningen, Kirk T.
This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.
Hop, Kevin D.; Drake, Jim; Strassman, Andrew C.; Hoy, Erin E.; Jakusz, Joseph; Menard, Shannon; Dieck, Jennifer
2015-01-01
The Mississippi National River and Recreation Area (MISS) vegetation mapping project is an initiative of the National Park Service (NPS) Vegetation Inventory Program (VIP) to classify and map vegetation types of MISS. (Note: “MISS” is also referred to as “park” throughout this report.) The goals of the project are to adequately describe and map vegetation types of the park and to provide the NPS Natural Resource Inventory and Monitoring (I&M) Program, resource managers, and biological researchers with useful baseline vegetation information.The MISS vegetation mapping project was officially started in spring 2012, with a scoping meeting wherein partners discussed project objectives, goals, and methods. Major collaborators at this meeting included staff from the NPS MISS, the NPS Great Lakes Network (GLKN), NatureServe, and the USGS Upper Midwest Environmental Sciences Center. The Minnesota Department of Natural Resources (DNR) was also in attendance. Common to all NPS VIP projects, the three main components of the MISS vegetation mapping project are as follows: (1) vegetation classification, (2) vegetation mapping, and (3) map accuracy assessment (AA). In this report, each of these fundamental components is discussed in detail.With the completion of the MISS vegetation mapping project, all nine park units within the NPS GLKN have received vegetation classification and mapping products from the NPS and USGS vegetation programs. Voyageurs National Park and Isle Royale National Park were completed during 1996–2001 (as program pilot projects) and another six park units were completed during 2004–11, including the Apostle Islands National Lakeshore, Grand Portage National Monument, Indiana Dunes National Lakeshore, Pictured Rocks National Lakeshore, Saint Croix National Scenic Riverway, and Sleeping Bear Dunes National Lakeshore.
NASA Astrophysics Data System (ADS)
Cutter, P. G.; Walcutt, A.; O'Neil-Dunne, J.; Geheb, K.; Troy, A.; Saah, D. S.; Ganz, D.
2016-12-01
Dam construction in mainland Southeast Asia has increased substantially in recent years with extensive regional impacts including alterations to water regimes, the loss and degradation of natural forests and biodiversity, and reductions in soil and water quality. The CGIAR Water Land Ecosystem program (WLE) and partners maintain a comprehensive database of locations and other data relating to existing, planned, and proposed dams in the region's major transboundary rivers spanning areas in Thailand, Cambodia, Laos, Vietnam, Myanmar, and China. A recent regional needs assessment and specific stakeholder requests revealed the need for a dataset reflecting the inundation areas of these dams for use in measuring impacts to river ecology, analyzing disaster risk, monitoring land cover and land use change, evaluating carbon emissions, and assessing the actual and potential impacts to communities. In conjunction with WLE and other partners, SERVIR-Mekong, a regional hub of the USAID and NASA-supported SERVIR program, formulated an explicit procedure to produce this dataset. The procedure includes leveraging data from OpenStreetMap and other sources, creating polygons based on surface water classification procedures achieved via Google Earth Engine, manual digitizing, and modeling of planned/proposed dams based on a DEM and the location and planned height of dams. A quality assurance step ensures that all polygons conform to spatial data quality standards agreed upon by a wide range of production partners. When complete, the dataset will be made publicly available to encourage greater understanding and more informed decisions related to the actual and potential impacts of dams in the region.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the average contact time, in units of days, compiled for every catchment of NHDPlus for the conterminous United States. Contact time, as described in Wolock and others (1989), is the baseflow residence time in the subsurface. The source data set was the U.S. Geological Survey's (USGS) 1-kilometer grid for the conterminous United States (D.M. Wolock, U.S. Geological Survey, written commun., 2008). The grid was created using a method described by Wolock and others (1997a; see equation 3). In the source data set, the contact time was estimated from 1-kilometer resolution elevation data (Verdin and Greenlee, 1996 ) and STATSGO soil characteristics (Wolock, 1997b). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Sources of nitrate yields in the Mississippi River Basin.
David, Mark B; Drinkwater, Laurie E; McIsaac, Gregory F
2010-01-01
Riverine nitrate N in the Mississippi River leads to hypoxia in the Gulf of Mexico. Several recent modeling studies estimated major N inputs and suggested source areas that could be targeted for conservation programs. We conducted a similar analysis with more recent and extensive data that demonstrates the importance of hydrology in controlling the percentage of net N inputs (NNI) exported by rivers. The average fraction of annual riverine nitrate N export/NNI ranged from 0.05 for the lower Mississippi subbasin to 0.3 for the upper Mississippi River basin and as high as 1.4 (4.2 in a wet year) for the Embarras River watershed, a mostly tile-drained basin. Intensive corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] watersheds on Mollisols had low NNI values and when combined with riverine N losses suggest a net depletion of soil organic N. We used county-level data to develop a nonlinear model ofN inputs and landscape factors that were related to winter-spring riverine nitrate yields for 153 watersheds within the basin. We found that river runoff times fertilizer N input was the major predictive term, explaining 76% of the variation in the model. Fertilizer inputs were highly correlated with fraction of land area in row crops. Tile drainage explained 17% of the spatial variation in winter-spring nitrate yield, whereas human consumption of N (i.e., sewage effluent) accounted for 7%. Net N inputs were not a good predictor of riverine nitrate N yields, nor were other N balances. We used this model to predict the expected nitrate N yield from each county in the Mississippi River basin; the greatest nitrate N yields corresponded to the highly productive, tile-drained cornbelt from southwest Minnesota across Iowa, Illinois, Indiana, and Ohio. This analysis can be used to guide decisions about where efforts to reduce nitrate N losses can be most effectively targeted to improve local water quality and reduce export to the Gulf of Mexico.
Breton, André R.; Winkelman, Dana L.; Hawkins, John A.; Bestgen, Kevin R.
2014-01-01
Smallmouth bass Micropterus dolomieu were rare in the upper Colorado River basin until the early 1990’s when their abundance dramatically increased in the Yampa River sub-basin. Increased abundance was due primarily to colonization from Elkhead Reservoir, which was rapidly drawn down twice, first to make improvements to the dam (1992) and a second time for reservoir expansion (2005), and allowed escapement of resident bass to the river through an unscreened outlet. Elkhead Reservoir is located on Elkhead Creek, a tributary of the Yampa River. The rapid Elkhead Reservoir drawdown in 1992 was followed by a period of drought years with low, early runoff in the Yampa River sub-basin that benefitted smallmouth bass reproduction. This combination of factors allowed smallmouth bass to establish a self-sustaining population in the Yampa River. Subsequently, successful recruitment allowed smallmouth bass to disperse upstream and downstream in the Yampa River and eventually move into the downstream Green River. Smallmouth bass were also likely introduced, by unknown means, into the upper Colorado River and have since dispersed in this sub-basin. The rapid increase of smallmouth bass in the upper Colorado River basin overlapped with significant reductions in native fish populations in some locations. The threat to these native fishes initiated intensive mechanical removal of smallmouth bass by the Upper Colorado River Endangered Fish Recovery Program.In general, three factors explain fluctuating patterns in smallmouth bass density in the upper Colorado River basin in the last decade: reductions due to electrofishing removal, bass recovery after exploitation due to recruitment and immigration, and changes due to environmental factors not related to electrofishing and other management actions. Our analyses indicated that smallmouth bass densities were substantially reduced in most years by 7 electrofishing removal efforts. Less often, but dramatically in some cases, environmental effects were also responsible for significant declines in smallmouth bass densities in some reaches. Abundant year classes of young smallmouth bass produced in low flow and warm years such as 2007 have potential to overwhelm removal efforts, and the year class persists for one or more years. Nonetheless, it appears that increased electrofishing removal efforts from 2007 to 2011 resulted in sustained reductions in density of smallmouth bass sub-adults and adults throughout the upper basin despite environmental conditions that favored smallmouth bass reproduction in some years (e.g. 2007 and 2009), subsequent recruitment into sub-adult and adult age classes, and movement of smallmouth bass which previously (prior to increases in electrofishing removal efforts) allowed densities to recover in some reaches.We recommend that removal efforts continue in most areas of the upper basin but that the Recovery Program consider allocating effort based on population trends and suspected areas of highest smallmouth bass reproduction. For instance, reproduction, recruitment, and movement of smallmouth bass allowed densities to recover in some reaches, particularly Little Yampa Canyon. Smallmouth bass population recovery implies that areas such as Little Yampa Canyon itself or adjacent reaches (especially upstream), may provide important habitat for age-0 production. We recommend continued assessment of smallmouth bass populations in reaches where reproduction or age-1 nurseries are suspected, such as Little Yampa Canyon and the adjacent upstream reach. It may also be necessary to expand monitoring to areas surrounding suspected sources of smallmouth bass reproduction and increase electrofishing removal effort in these reaches.
Andersen, Douglas C.
2016-01-01
I compared riparian cottonwood (Populus fremontii) productivity-discharge relationships in a relictual stand along the highly regulated Green River and in a naturally functioning stand along the unregulated Yampa River in semiarid northwest Colorado. I used multiple regression to model flow effects on annual basal area increment (BAI) from 1982 to 2011, after removing any autocorrelation present. Each BAI series was developed from 20 trees whose mean size (67 cm diameter at breast height [DBH]) was equivalent in the two stands. BAI was larger in the Yampa River stand except in 2 y when defoliating leaf beetles were present there. I found no evidence for a Yampa flood-magnitude threshold above which BAI declined. Flow variables explained ∼45% of residual BAI variability, with most explained by current-year maximum 90-d discharge (QM90) in the Yampa River stand and by a measure of the year-to-year change in QM90 in the Green River stand. The latter reflects a management-imposed ceiling on flood magnitude—Flaming Gorge Dam power plant capacity—infrequently exceeded during the study period. BAI in the relictual stand began to trend upward in 1992 when flows started to mimic a natural flow regime. Mature Fremont cottonwoods appear to be ecologically resilient. Their productivity along regulated rivers might be optimized using multiyear environmental flow designs.
Widespread methanotrophic primary production in lowland chalk rivers.
Shelley, Felicity; Grey, Jonathan; Trimmer, Mark
2014-05-22
Methane is oversaturated relative to the atmosphere in many rivers, yet its cycling and fate is poorly understood. While photosynthesis is the dominant source of autotrophic carbon to rivers, chemosynthesis and particularly methane oxidation could provide alternative sources of primary production where the riverbed is heavily shaded or at depth beneath the sediment surface. Here, we highlight geographically widespread methanotrophic carbon fixation within the gravel riverbeds of over 30 chalk rivers. In 15 of these, the potential for methane oxidation (methanotrophy) was also compared with photosynthesis. In addition, we performed detailed concurrent measurements of photosynthesis and methanotrophy in one large chalk river over a complete annual cycle, where we found methanotrophy to be active to at least 15 cm into the riverbed and to be strongly substrate limited. The seasonal trend in methanotrophic activity reflected that of the riverine methane concentrations, and thus the highest rates were measured in mid-summer. At the sediment surface, photosynthesis was limited by light for most of the year with heavy shading induced by dense beds of aquatic macrophytes. Across 15 rivers, in late summer, we conservatively calculated that net methanotrophy was equivalent to between 1% and 46% of benthic net photosynthetic production within the gravel riverbed, with a median value of 4%. Hence, riverbed chemosynthesis, coupled to the oxidation of methane, is widespread and significant in English chalk rivers.
Widespread methanotrophic primary production in lowland chalk rivers
Shelley, Felicity; Grey, Jonathan; Trimmer, Mark
2014-01-01
Methane is oversaturated relative to the atmosphere in many rivers, yet its cycling and fate is poorly understood. While photosynthesis is the dominant source of autotrophic carbon to rivers, chemosynthesis and particularly methane oxidation could provide alternative sources of primary production where the riverbed is heavily shaded or at depth beneath the sediment surface. Here, we highlight geographically widespread methanotrophic carbon fixation within the gravel riverbeds of over 30 chalk rivers. In 15 of these, the potential for methane oxidation (methanotrophy) was also compared with photosynthesis. In addition, we performed detailed concurrent measurements of photosynthesis and methanotrophy in one large chalk river over a complete annual cycle, where we found methanotrophy to be active to at least 15 cm into the riverbed and to be strongly substrate limited. The seasonal trend in methanotrophic activity reflected that of the riverine methane concentrations, and thus the highest rates were measured in mid-summer. At the sediment surface, photosynthesis was limited by light for most of the year with heavy shading induced by dense beds of aquatic macrophytes. Across 15 rivers, in late summer, we conservatively calculated that net methanotrophy was equivalent to between 1% and 46% of benthic net photosynthetic production within the gravel riverbed, with a median value of 4%. Hence, riverbed chemosynthesis, coupled to the oxidation of methane, is widespread and significant in English chalk rivers. PMID:24695425
Modeling crop water productivity using a coupled SWAT-MODSIM model
USDA-ARS?s Scientific Manuscript database
This study examines the water productivity of irrigated wheat and maize yields in Karkheh River Basin (KRB) in the semi-arid region of Iran using a coupled modeling approach consisting of the hydrological model (SWAT) and the river basin water allocation model (MODSIM). Dynamic irrigation requireme...
Monitoring Snow and Land Ice Using Satellite data in the GMES Project CryoLand
NASA Astrophysics Data System (ADS)
Bippus, Gabriele; Nagler, Thomas
2013-04-01
The main objectives of the project "CryoLand - GMES Service Snow and Land Ice" are to develop, implement and validate services for snow, glaciers and lake and river ice products as a Downstream Service within the Global Monitoring for Environment and Security (GMES) program of the European Commission. CryoLand exploits Earth Observation data from current optical and microwave sensors and of the upcoming GMES Sentinel satellite family. The project prepares also the basis for the cryospheric component of the GMES Land Monitoring services. The CryoLand project team consists of 10 partner organisations from Austria, Finland, Norway, Sweden, Switzerland and Romania and is funded by the 7th Framework Program of the European Commission. The CryoLand baseline products for snow include fractional snow extent from optical satellite data, the extent of melting snow from SAR data, and coarse resolution snow water equivalent maps from passive microwave data. Experimental products include maps of snow surface wetness and temperature. The products range from large scale coverage at medium resolution to regional products with high resolution, in order to address a wide user community. Medium resolution optical data (e.g. MODIS, in the near future Sentinel-3) and SAR (ENVISAT ASAR, in the near future Sentinel-1) are the main sources of EO data for generating large scale products in near real time. For generation of regional products high resolution satellite data are used. Glacier products are based on high resolution optical (e.g. SPOT-5, in the near future Sentinel-2) and SAR (TerraSAR-X, in the near future Sentinel-1) data and include glacier outlines, mapping of glacier facies, glacier lakes and ice velocity. The glacier products are generated on users demand. Current test areas are located in the Alps, Norway, Greenland and the Himalayan Mountains. The lake and river ice products include ice extent and its temporal changes and snow extent on ice. The algorithms for these products are in development. One major task of CryoLand is the performance assessment of the products, which is carried out in different environments, climate zones and land cover types, selected jointly with users. Accuracy assessment is done for test areas using in-situ data and very high resolution satellite data. This presentation gives an overview on the processing lines and demonstration products for snow, glacier and lake ice parameters including examples of the product accuracy assessment. An important point of the CryoLand project is the use of advanced information technology, which is applied to process and distribute snow and land ice products in near real time.
Estimating time and spatial distribution of snow water equivalent in the Hakusan area
NASA Astrophysics Data System (ADS)
Tanaka, K.; Matsui, Y.; Touge, Y.
2015-12-01
In the Sousei program, on-going Japanese research program for risk information on climate change, assessing the impact of climate change on water resources is attempted using the integrated water resources model which consists of land surface model, irrigation model, river routing model, reservoir operation model, and crop growth model. Due to climate change, reduction of snowfall amount, reduction of snow cover and change in snowmelt timing, change in river discharge are of increasing concern. So, the evaluation of snow water amount is crucial for assessing the impact of climate change on water resources in Japan. To validate the snow simulation of the land surface model, time and spatial distribution of the snow water equivalent was estimated using the observed surface meteorological data and RAP (Radar Analysis Precipitation) data. Target area is Hakusan. Hakusan means 'white mountain' in Japanese. Water balance of the Tedori River Dam catchment was checked with daily inflow data. Analyzed runoff was generally well for the period from 2010 to 2012. From the result for 2010-2011 winter, maximum snow water equivalent in the headwater area of the Tedori River dam reached more than 2000mm in early April. On the other hand, due to the underestimation of RAP data, analyzed runoff was under estimated from 2006 to 2009. This underestimation is probably not from the lack of land surface model, but from the quality of input precipitation data. In the original RAP, only the rain gauge data of JMA (Japan Meteorological Agency) were used in the analysis. Recently, other rain gauge data of MLIT (Ministry of Land, Infrastructure, Transport and Tourism) and local government have been added in the analysis. So, the quality of the RAP data especially in the mountain region has been greatly improved. "Reanalysis" of the RAP precipitation is strongly recommended using all the available off-line rain gauges information. High quality precipitation data will contribute to validate hydrological model, satellite based precipitation product, GCM output, etc.
Evidence for early metamorphosis of sea lampreys in the Chippewa River, Michigan
Morkert, Sidney B.; Swink, William D.; Seelye, James G.
1998-01-01
We determined age at metamorphosis to the juvenile or parasitic phase for sea lampreysPetromyzon marinus in a highly productive Great Lakes tributary to determine if the age at metamorphosis was earlier than expected. Ages determined from statoliths, a structure analogous to otoliths in teleost fishes, indicated that many sea lampreys collected from the Chippewa River, Michigan, in September 1995 were undergoing metamorphosis at age 2, at least 1 year earlier than previously observed. In all, 141 newly metamorphosed lampreys were examined, and 81% were estimated to be only 2 years old. The length-frequency distribution of newly metamorphosed sea lampreys in the Chippewa River also indicated the possibility of metamorphsis at age 2, but to a lesser extent than indicated by statolith aging. The Chippewa River is a highly productive stream that might require more frequent treatment than previously suspected. More careful examination of other highly productive streams is needed to determine if, and to what extent, sea lampreys metamorphose at age 2 in the Chippewa River and other Great Lakes tributaries.
Moderate effect of damming the Romaine River (Quebec, Canada) on coastal plankton dynamics
NASA Astrophysics Data System (ADS)
Senneville, Simon; Schloss, Irene R.; St-Onge Drouin, Simon; Bélanger, Simon; Winkler, Gesche; Dumont, Dany; Johnston, Patricia; St-Onge, Isabelle
2018-04-01
Rivers' damming disrupts the seasonal cycle of freshwater and nutrient inputs into the marine system, which can lead to changes in coastal plankton dynamics. Here we use a 3-D 5-km resolution coupled biophysical model and downscale it to a 400-m resolution to simulate the effect of damming the Romaine River in Québec, Canada, which discharges on average 327 m3 s-1 of freshwater into the northern Gulf of St. Lawrence. Model results are compared with environmental data obtained from 2 buoys and in situ sampling near the Romaine River mouth during the 2013 spring-summer period. Noteworthy improvements are made to the light attenuation parametrization and the trophic links of the biogeochemical model. The modelled variables reproduced most of the observed levels of variability. Comparisons between natural and regulated discharge simulation show differences in primary production and in the dominance of plankton groups in the Romaine River plume. The maximum increase in primary production when averaged over the inner part of Mingan Archipelago is 41%, but 7.1% when the primary production anomaly is averaged from March to September.
Wildhaber, Mark L.; Yang, Wen-Hsi; Arab, Ali
2016-01-01
A baseline assessment of the Missouri River fish community and species-specific habitat use patterns conducted from 1996 to 1998 provided the first comprehensive analysis of Missouri River benthic fish population trends and habitat use in the Missouri and Lower Yellowstone rivers, exclusive of reservoirs, and provided the foundation for the present Pallid Sturgeon Population Assessment Program (PSPAP). Data used in such studies are frequently zero inflated. To address this issue, the zero-inflated Poisson (ZIP) model was applied. This follow-up study is based on PSPAP data collected up to 15 years later along with new understanding of how habitat characteristics among and within bends affect habitat use of fish species targeted by PSPAP, including pallid sturgeon. This work demonstrated that a large-scale, large-river, PSPAP-type monitoring program can be an effective tool for assessing population trends and habitat usage of large-river fish species. Using multiple gears, PSPAP was effective in monitoring shovelnose and pallid sturgeons, sicklefin, shoal and sturgeon chubs, sand shiner, blue sucker and sauger. For all species, the relationship between environmental variables and relative abundance differed, somewhat, among river segments suggesting the importance of the overall conditions of Upper and Middle Missouri River and Lower Missouri and Kansas rivers on the habitat usage patterns exhibited. Shoal and sicklefin chubs exhibited many similar habitat usage patterns; blue sucker and shovelnose sturgeon also shared similar responses. For pallid sturgeon, the primary focus of PSPAP, relative abundance tended to increase in Upper and Middle Missouri River paralleling stocking efforts, whereas no evidence of an increasing relative abundance was found in the Lower Missouri River despite stocking.
Technical developments in the Chalk River AMS program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, H.R.; Chant, L.; Cornett, R.J.J.
1995-12-01
The Chalk River AMS Program is centered on measurements of {sup 36}Cl and {sup 129}I with particular emphasis on samples related to nuclear activities including environmental monitoring, high level waste management, and nuclear safeguards. We are presently pursuing improvements in the areas of the gas-filled magnet, the ion source and data handling. Progress to date in these areas will be reported.
Bullock, Avery; Ziervogel, Kai; Ghobrial, Sherif; Smith, Shannon; McKee, Brent; Arnosti, Carol
2017-01-01
Riverine systems are important sites for the production, transport, and transformation of organic matter. Much of the organic matter processing is carried out by heterotrophic microbial communities, whose activities may be spatially and temporally variable. In an effort to capture and evaluate some of this variability, we sampled four sites-two upstream and two downstream-at each of two North Carolina rivers (the Neuse River and the Tar-Pamlico River) ca. twelve times over a time period of 20 months from 2010 to 2012. At all of the sites and dates, we measured the activities of extracellular enzymes used to hydrolyze polysaccharides and peptides, and thus to initiate heterotrophic carbon processing. We additionally measured bacterial abundance, bacterial production, phosphatase activities, and dissolved organic carbon (DOC) concentrations. Concurrent collection of physical data (stream flow, temperature, salinity, dissolved oxygen) enabled us to explore possible connections between physiochemical parameters and microbial activities throughout this time period. The two rivers, both of which drain into Pamlico Sound, differed somewhat in microbial activities and characteristics: the Tar-Pamlico River showed higher β-glucosidase and phosphatase activities, and frequently had higher peptidase activities at the lower reaches, than the Neuse River. The lower reaches of the Neuse River, however, had much higher DOC concentrations than any site in the Tar River. Both rivers showed activities of a broad range of polysaccharide hydrolases through all stations and seasons, suggesting that the microbial communities are well-equipped to access enzymatically a broad range of substrates. Considerable temporal and spatial variability in microbial activities was evident, variability that was not closely related to factors such as temperature and season. However, Hurricane Irene's passage through North Carolina coincided with higher concentrations of DOC at the downstream sampling sites of both rivers. This DOC maximum persisted into the month following the hurricane, when it continued to stimulate bacterial protein production and phosphatase activity in the Neuse River, but not in the Tar-Pamlico River. Microbial community activities are related to a complex array of factors, whose interactions vary considerably with time and space.
77 FR 58491 - Drawbridge Operation Regulation; Old River, Orwood, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-21
... regulation that governs the Burlington Northern & Santa Fe Railroad (BNSF) Drawbridge across Old River, mile... Renee V. Wright, Program Manager, Docket Operations, telephone 202-366-9826. SUPPLEMENTARY INFORMATION...
Crone, A.J.; Harding, S.T.; Russ, D.P.; Shedlock, K.M.
1986-01-01
Three major seismic-reflection programs have been conducted by the USGS in the New Madrid seismic zone. The first program consisted of 32 km of conventional Vibroseis profiling designed to investigate the subsurface structure associated with scarps and lineaments in northwestern Tennessee (Zoback, 1979). A second, more extensive Vibroseis program collected about 250 km of data from all parts of the New Madrid seismic zone in Missouri, Arkansas, and Tennessee (Hamilton and Zoback, 1979, 1982; Zoback and others, 1980). The profiles presented here are part of the third program that collected about 240 km of high-resolution seismic-reflection data from a boat along the Mississippi River between Osceola, Ark., and Wickliffe, Ky. (fig. 1). The data for profiles A, B, C, and D were collected between river miles 839-1/2 and 850-1/2 from near the Interstate-155 bridge to upstream of Caruthersville, Mo. (fig. 2). Profiles on this part of the river are important for three reasons: (1) they connect many of the land-based profiles on either side of the river, (2) they are near the northeast termination of a linear, 120km-long, northeast-southwest zone of seismicity that extends from northeast Arkansas to Caruthersville, Mo. (Stauder, 1982; fig. 1), and (3) they cross the southwesterly projection of the Cottonwood Grove fault (fig. 1), a fault having a substantial amount of vertical Cenozoic offset (Zoback and others, 1980).
Von Biela, V.R.; Zimmerman, C.E.; Moulton, L.L.
2011-01-01
Arctic cisco Coregonus autumnalis young-of-year (YOY) growth was used as a proxy to examine the long-term response of a high-latitude fish population to changing climate from 1978 to 2004. YOY growth increased over time (r2 = 0??29) and was correlated with monthly averages of the Arctic oscillation index, air temperature, east wind speed, sea-ice concentration and river discharge with and without time lags. Overall, the most prevalent correlates to YOY growth were sea-ice concentration lagged 1 year (significant correlations in 7 months; r2 = 0??14-0??31) and Mackenzie River discharge lagged 2 years (significant correlations in 8 months; r2 = 0??13-0??50). The results suggest that decreased sea-ice concentrations and increased river discharge fuel primary production and that life cycles of prey species linking increased primary production to fish growth are responsible for the time lag. Oceanographic studies also suggest that sea ice concentration and fluvial inputs from the Mackenzie River are key factors influencing productivity in the Beaufort Sea. Future research should assess the possible mechanism relating sea ice concentration and river discharge to productivity at upper trophic levels. Journal of Fish Biology ?? 2010 The Fisheries Society of the British Isles. No claim to original US government works.
National Water-Quality Assessment Program; the Allegheny-Monongahela River Basin
McAuley, Steven D.
1995-01-01
In 1991, the U.S. Geological Survey (USGS) began a National Water-Quality Assessment (NAWQA) program. The three major objectives of the NAWQA program are to provide a consistent description of current water-quality conditions for a large part of the Nation's water resources, define long-term trends in water quality, and identify, describe, and explain the major factors that affect water-quality conditions and trends. The program produces water-quality information that is useful to policy makers and managers at the National, State, and local levels.The program will be implemented through 60 separate investigations of river basins and aquifer systems called study units. These study-unit investigations will be conducted at the State and local level and will form the foundation on which national- and regional-level assessments are based. The 60 study units are hydrologic systems that include parts of most major river basins and aquifer systems. The study-unit areas range from 1,000 to more than 60,000 square miles and include about 60 to 70 percent of the Nation's water use and population served by public water supplies. Twenty studyunit investigations were started in 1991, 20 started in 1994, and 20 more are planned to start in 1997. The Allegheny-Monongahela River Basin was selected to begin assessment activities as a NAWQA study unit in 1994. The study team will work from the office of the USGS in Pittsburgh, Pa.
Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGowan, Vance
On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunitiesmore » for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22.9 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Planting 31,733 plants along 3.7 stream miles, (4) Establishing 71 new photopoints and retaking 254 existing photopoint pictures; (5) Monitoring stream temperatures at 12 locations on 6 streams; (6) Completing riparian fence, water gap and other maintenance on 100.5 miles of project fences. Since initiation of the project in 1984 over 68.7 miles of anadromous fish bearing streams and 1,933 acres of habitat have been protected, enhanced and maintained.« less
Thermal pollution impacts on rivers and power supply in the Mississippi River watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miara, Ariel; Vorosmarty, Charles J.; Macknick, Jordan E.
Thermal pollution from power plants degrades riverine ecosystems with ramifications beyond the natural environment as it affects power supply. The transport of thermal effluents along river reaches may lead to plant-to-plant interferences by elevating condenser inlet temperatures at downstream locations, which lower thermal efficiencies and trigger regulatory-forced power curtailments. We evaluate thermal pollution impacts on rivers and power supply across 128 plants with once-through cooling technologies in the Mississippi River watershed. By leveraging river network topologies with higher resolutions (0.05 degrees) than previous studies, we reveal the need to address the issue in a more spatially resolved manner, capable ofmore » uncovering diverse impacts across individual plants, river reaches and sub-basins. Results show that the use of coarse river network resolutions may lead to substantial overestimations in magnitude and length of impaired river reaches. Overall, there is a modest limitation on power production due to thermal pollution, given existing infrastructure, regulatory and climate conditions. However, tradeoffs between thermal pollution and electricity generation show important implications for the role of alternative cooling technologies and environmental regulation under current and future climates. Recirculating cooling technologies may nearly eliminate thermal pollution and improve power system reliability under stressed climate-water conditions. Regulatory limits also reduce thermal pollution, but at the expense of significant reductions in electricity generation capacity. However, results show several instances when power production capacity rises at individual plants when regulatory limits reduce upstream thermal pollution. Furthermore, these dynamics across energy-water systems highlight the need for high-resolution simulations and the value of coherent planning and optimization across infrastructure with mutual dependencies on natural resources to overcome climate-water constraints on productivity and bring to fruition energy and environmental win-win opportunities.« less
Thermal pollution impacts on rivers and power supply in the Mississippi River watershed
Miara, Ariel; Vorosmarty, Charles J.; Macknick, Jordan E.; ...
2018-03-08
Thermal pollution from power plants degrades riverine ecosystems with ramifications beyond the natural environment as it affects power supply. The transport of thermal effluents along river reaches may lead to plant-to-plant interferences by elevating condenser inlet temperatures at downstream locations, which lower thermal efficiencies and trigger regulatory-forced power curtailments. We evaluate thermal pollution impacts on rivers and power supply across 128 plants with once-through cooling technologies in the Mississippi River watershed. By leveraging river network topologies with higher resolutions (0.05 degrees) than previous studies, we reveal the need to address the issue in a more spatially resolved manner, capable ofmore » uncovering diverse impacts across individual plants, river reaches and sub-basins. Results show that the use of coarse river network resolutions may lead to substantial overestimations in magnitude and length of impaired river reaches. Overall, there is a modest limitation on power production due to thermal pollution, given existing infrastructure, regulatory and climate conditions. However, tradeoffs between thermal pollution and electricity generation show important implications for the role of alternative cooling technologies and environmental regulation under current and future climates. Recirculating cooling technologies may nearly eliminate thermal pollution and improve power system reliability under stressed climate-water conditions. Regulatory limits also reduce thermal pollution, but at the expense of significant reductions in electricity generation capacity. However, results show several instances when power production capacity rises at individual plants when regulatory limits reduce upstream thermal pollution. Furthermore, these dynamics across energy-water systems highlight the need for high-resolution simulations and the value of coherent planning and optimization across infrastructure with mutual dependencies on natural resources to overcome climate-water constraints on productivity and bring to fruition energy and environmental win-win opportunities.« less
Thermal pollution impacts on rivers and power supply in the Mississippi River watershed
NASA Astrophysics Data System (ADS)
Miara, Ariel; Vörösmarty, Charles J.; Macknick, Jordan E.; Tidwell, Vincent C.; Fekete, Balazs; Corsi, Fabio; Newmark, Robin
2018-03-01
Thermal pollution from power plants degrades riverine ecosystems with ramifications beyond the natural environment as it affects power supply. The transport of thermal effluents along river reaches may lead to plant-to-plant interferences by elevating condenser inlet temperatures at downstream locations, which lower thermal efficiencies and trigger regulatory-forced power curtailments. We evaluate thermal pollution impacts on rivers and power supply across 128 plants with once-through cooling technologies in the Mississippi River watershed. By leveraging river network topologies with higher resolutions (0.05°) than previous studies, we reveal the need to address the issue in a more spatially resolved manner, capable of uncovering diverse impacts across individual plants, river reaches and sub-basins. Results show that the use of coarse river network resolutions may lead to substantial overestimations in magnitude and length of impaired river reaches. Overall, there is a modest limitation on power production due to thermal pollution, given existing infrastructure, regulatory and climate conditions. However, tradeoffs between thermal pollution and electricity generation show important implications for the role of alternative cooling technologies and environmental regulation under current and future climates. Recirculating cooling technologies may nearly eliminate thermal pollution and improve power system reliability under stressed climate-water conditions. Regulatory limits also reduce thermal pollution, but at the expense of significant reductions in electricity generation capacity. However, results show several instances when power production capacity rises at individual plants when regulatory limits reduce upstream thermal pollution. These dynamics across energy-water systems highlight the need for high-resolution simulations and the value of coherent planning and optimization across infrastructure with mutual dependencies on natural resources to overcome climate-water constraints on productivity and bring to fruition energy and environmental win-win opportunities.
Amazon River carbon dioxide outgassing fuelled by wetlands.
Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C; Savoye, Nicolas; Deborde, Jonathan; Souza, Edivaldo Lima; Albéric, Patrick; Landim de Souza, Marcelo F; Roland, Fabio
2014-01-16
River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.
Jones, Michael L.; Seitz, Harold R.
1979-01-01
correct for sampler efficiency. An analysis of the middle Snake River streamflow record was made during 1977. The streamflow rating for the Snake River near Anatone, Washington, gage was found to be in error at high stages. The streamflow record for water years 1974 and 1975 was revised and published with 1976 water-year data (Water Resources Data for Idaho, Water Year 1976). The revised Snake River near Anatone streamflow rating was used to recompute the sediment-discharge rating curve (fig. 3). This study program is funded by the USACE through a cooperative agreement with the USGS. All field work, laboratory analysis, and compilation of data are being conducted by the USGS. Data collection is scheduled to terminate at the end of the 1979 runoff season. A reanalysis of all data collected since the start of the program will correct all provisional records since 1972, including the 1974, 1975, and 1976 years for the Snake River near Anatone station.
Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam
2015-04-01
In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.
The Adopt-a-Herring program as a fisheries conservation tool
Frank, Holly J.; Mather, Martha E.; Muth, Robert M.; Pautzke, Sarah M.; Smith, Joseph M.; Finn, John T.
2009-01-01
Successful conservation depends on a scientifically literate public. We developed the adopt-a-Herring program to educate nonscientists about fisheries and watershed restoration. this interactive educational and outreach project encouraged coastal residents to be involved in local watershed restoration. In the northeastern United States, river herring (Alosa spp.) are an important component of many coastal watersheds and often are the object of conservation efforts. In order to understand river herring spawning behavior and to improve the effectiveness of restoration efforts, our research tracked these fish via radiotelemetry in the Ipswich River, Massachusetts. In our adopt-a-Herring Program, participating stakeholder organizations adopted and named individual tagged river herring and followed their movements online. We also made information available to our adopters on our larger research goals, the mission and activities of other research and management agencies, examples of human actions that adversely affect watersheds, and opportunities for proactive conservation. Research results were communicated to adopters through our project web page and end-of-the-season summary presentations. Both tools cultivated a personal interest in river herring, stimulated discussion about fisheries and watershed restoration, educated participants about the goals and methods of scientists in general, and initiated critical thinking about human activities that advance or impede sustainability.
Maret, Terry R.; Dutton, DeAnn M.
1999-01-01
As part of the Northern Rockies Intermontane Basins study of the National Water-Quality Assessment Program, data collected between 1974 and 1996 were compiled to describe contaminants in tissue of riverine species. Tissue-contaminant data from 11 monitoring programs and studies representing 28 sites in the study area were summarized. Tissue-contaminant data for most streams generally were lacking. Many studies have focused on and around mining-affected areas on the Clark Fork and Coeur d'Alene Rivers and their major tributaries. DDT and PCBs and their metabolites and congeners were the synthetic organic contaminants most commonly detected in fish tissue. Fish collected from the Spokane River in Washington contained elevated concentrations of PCB arochlors, some of which exceeded guidelines for the protection of human health and predatory wildlife. Tissue samples of fish from the Flathead River watershed contained higher-than-expected concentrations of PCBs, which might have resulted from atmospheric transport. Trace element concentrations in fish and macroinvertebrates collected in and around mining areas were elevated compared with background concentrations. Some cadmium, copper, lead, and mercury concentrations in fish tissue were elevated compared with results from other studies, and some exceeded guidelines. Macroinvertebrates from the Coeur d'Alene River contained higher concentrations of cadmium, lead, and zinc than did macroinvertebrates from other river systems in mining-affected areas. A few sportfish fillet samples, most from the Spokane River in Washington, were collected to assess human health risk. Concentrations of PCBs in these fillets exceeded screening values for the protection of human health. At present, there is no coordinated, long-term fish tissue monitoring program for rivers in the study area, even though contaminants are present in fish at levels considered a threat to human health. Development of a coordinated, centralized national data base for contaminants in fish tissue is needed. The National Water-Quality Assessment Program can provide a framework for other agencies to evaluate tissue contaminants in the Northern Rockies Intermontane Basins study area. As of 1996, there are no fish consumption advisories or fishing restrictions as a result of elevated contaminants on any rivers within the study area.
Aquifer depletion in the Lower Mississippi River Basin: challenges and solutions
USDA-ARS?s Scientific Manuscript database
The Lower Mississippi River Basin (LMRB) is an internationally-important region of intensive agricultural crop production that relies heavily on the underlying Mississippi River Valley Alluvial Aquifer (MRVAA) for irrigation. Extensive irrigation coupled with the region’s geology have led to signifi...
Columbia River System Operation Review : Final Environmental Impact Statement, Appendix N: Wildlife.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Columbia River System Operation Review
1995-11-01
The Columbia River System is a vast and complex combination of Federal and non-Federal facilities used for many purposes including power production, irrigation, navigation, flood control, recreation, fish and wildlife habitat and municipal and industrial water supply. Each river use competes for the limited water resources in the Columbia River Basin. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The environmental impact statement (EIS) itself and some of the other appendices present analyses of the alternative approaches to the other three decisions considered as part of the SOR. This documentmore » is the product of the Wildlife Work Group, focusing on wildlife impacts but not including fishes. Topics covered include the following: scope and process; existing and affected environment, including specific discussion of 18 projects in the Columbia river basin. Analysis, evaluation, and alternatives are presented for all projects. System wide impacts to wildlife are also included.« less
Exploring changes in river nitrogen export to the world's oceans
NASA Astrophysics Data System (ADS)
Bouwman, A. F.; van Drecht, G.; Knoop, J. M.; Beusen, A. H. W.; Meinardi, C. R.
2005-03-01
Anthropogenic disturbance of river nutrient loads and export to coastal marine systems is a major global problem affecting water quality and biodiversity. Nitrogen is the major nutrient in rivers. On the basis of projections for food production and wastewater effluents, the global river N flux to coastal marine systems is shown to increase by 13% in the coming 3 decades. While the river N flux will grow by about 10% in North America and Oceania and will decrease in Europe, a 27% increase is projected for developing countries, which is a continuation of the trend observed in the past decades. This is a consequence of increasing nitrogen inputs to surface water associated with urbanization, sanitation, development of sewerage systems, and lagging wastewater treatment, as well as increasing food production and associated inputs of N fertilizer, animal manure, atmospheric N deposition, and biological N fixation in agricultural systems. Growing river N loads will lead to increased incidence of problems associated with eutrophication in coastal seas.
Diane De Steven; Stephen P. Faulkner; Bobby D. Keeland; Michael J. Baldwin; John W. McCoy; Steven C. Hughes
2015-01-01
In the Mississippi River Alluvial Valley (MAV), complete alteration of river-floodplain hydrology allowed for widespread conversion of forested bottomlands to intensive agriculture, resulting in nearly 80% forest loss. Governmental programs have attempted to restore forest habitat and functions within this altered landscape by the methods of tree planting (...
Estimation of dynamic load of mercury in a river with BASINS-HSPF model
Ying Ouyang; John Higman; Jeff Hatten
2012-01-01
Purpose Mercury (Hg) is a naturally occurring element and a pervasive toxic pollutant. This study investigated the dynamic loads of Hg from the Cedar-Ortega Rivers watershed into the Lower St. Johns River (LSJR), Florida, USA, using the better assessment science integrating point and nonpoint sources (BASINS)-hydrologic simulation program - FORTRAN (HSPF) model....
A River Runs through It: Austin Youth River Watch Final Report 1993-94.
ERIC Educational Resources Information Center
Turner, Jeannine
The City of Austin (Texas) provided funds for a supplementary educational activity to involve at-risk minority high school students in water quality issues. The program attempts to provide an interesting and authentic activity that also develops academic skills. Principal activities were testing river water for pollutants and the tutoring of…
Saltcedar control and water salvage on the Pecos River, Texas, 1999 to 2003
Charles R. Hart; Larry D. White; Alyson McDonald; Zhuping Sheng
2007-01-01
A large scale ecosystem restoration program was initiated in 1997 on the Pecos River in western Texas. Saltcedar (Tamarix spp.), a non-native invasive tree, had created a near monoculture along the banks of the river by replacing most native vegetation. Local irrigation districts, private landowners, federal and state agencies, and private industry...
33 CFR 263.13 - Program scope.
Code of Federal Regulations, 2010 CFR
2010-07-01
... authority. Section 107, River and Harbor Act of 1960, as amended (33 U.S.C 577). (e) Authority for snagging and clearing for navigation. Section 3, River and Harbor Act of 1945 (33 U.S.C 603a). (f) Small beach erosion control project authority. Section 103, River and Harbor Act of 1962, as amended (33 U.S.C. 426g...
ERIC Educational Resources Information Center
Felder, Jonathan E.; Finney, Joni E.; Kirst, Michael W.
2007-01-01
"Informed math self-placement," a program implemented at American River College in Sacramento, California, to determine students' readiness for college-level math, has been in place for three years. This case study describes the development and implementation of math self-placement at American River. Math self-placement consists of a…
Schemel, L.E.; Sommer, T.R.; Muller-Solger, A. B.; Harrell, W.C.
2004-01-01
The Yolo Bypass, a large, managed floodplain that discharges to the headwaters of the San Francisco Estuary, was studied before, during, and after a single, month-long inundation by the Sacramento River in winter and spring 2000. The primary objective was to identify hydrologic conditions and other factors that enhance production of phytoplankton biomass in the floodplain waters. Recent reductions in phytoplankton have limited secondary production in the river and estuary, and increased phytoplankton biomass is a restoration objective for this system. Chlorophyll a was used as a measure of phytoplankton biomass in this study. Chlorophyll a concentrations were low (<4 ??g l -1) during inundation by the river when flow through the floodplain was high, but concentrations rapidly increased as river inflow decreased and the floodplain drained. Therefore, hydrologic conditions in the weeks following inundation by river inflow appeared most important for producing phytoplankton biomass in the floodplain. Discharges from local streams were important sources of water to the floodplain before and after inundation by the river, and they supplied dissolved inorganic nutrients while chlorophyll a was increasing. Discharge from the floodplain was enriched in chlorophyll a relative to downstream locations in the river and estuary during the initial draining and later when local stream inflows produced brief discharge pulses. Based on the observation that phytoplankton biomass peaks during drainage events, we suggest that phytoplankton production in the floodplain and biomass transport to downstream locations would be higher in years with multiple inundation and draining sequences.
Chaves-Ulloa, Ramsa; Umaña-Villalobos, Gerardo; Springer, Monika
2014-04-01
Despite the fact that little is known about the consequences of hydropower production in tropical areas, many large dams (> 15 m high) are currently under construction or consideration in the tropics. We researched the effects of large hydroelectric dams on aquatic macroinvertebrate assemblages in two Costa Rican rivers. We measured physicochemical characteristics and sampled aquatic macroinvertebrates from March 2003 to March 2004 in two dammed rivers, Peñas Blancas and San Lorenzo, as well as in the undammed Chachagua River. Sites above and below the dam had differences in their physicochemical variables, with wide variation and extreme values in variables measured below the dam in the San Lorenzo River. Sites below the dams had reduced water discharges, velocities, and depths when compared with sites above the dams, as well as higher temperatures and conductivity. Sites above dams were dominated by collector-gatherer-scrapers and habitat groups dominated by swimmer-clingers, while sites below dams had a more even representation of groups. In contrast, a comparison between two sites at different elevation in the undammed river maintained a similar assemblage composition. Tributaries might facilitate macroinvertebrate recovery above the turbine house, but the assemblage below the turbine house resembled the one below the dam. A massive sediment release event from the dam decreased the abundance per sample and macroinvertebrate taxa below the dam in the Peñas Blancas River. Our study illustrates the effects of hydropower production on neotropical rivers, highlighting the importance of using multiple measures of macroinvertebrate assemblage structure for assessing this type of environmental impact.
Hoeinghaus, David J; Agostinho, Angelo A; Gomes, Luiz C; Pelicice, Fernando M; Okada, Edson K; Latini, João D; Kashiwaqui, Elaine A L; Winemiller, Kirk O
2009-10-01
Applying the ecosystem services concept to conservation initiatives or in managing ecosystem services requires understanding how environmental impacts affect the ecology of key species or functional groups providing the services. We examined effects of river impoundments, one of the leading threats to freshwater biodiversity, on an important ecosystem service provided by large tropical rivers (i.e., artisanal fisheries). The societal and economic importance of this ecosystem service in developing countries may provide leverage to advance conservation agendas where future impoundments are being considered. We assessed impoundment effects on the energetic costs of fisheries production (embodied energy) and commercial market value of the artisanal fishery of the Paraná River, Brazil, before and after formation of Itaipu Reservoir. High-value migratory species that dominated the fishery before the impoundment was built constituted a minor component of the contemporary fishery that is based heavily on reservoir-adapted introduced species. Cascading effects of river impoundment resulted in a mismatch between embodied energy and market value: energetic costs of fisheries production increased, whereas market value decreased. This was partially attributable to changes in species functional composition but also strongly linked to species identities that affected market value as a result of consumer preferences even when species were functionally similar. Similar trends are expected in other large tropical rivers following impoundment. In addition to identifying consequences of a common anthropogenic impact on an important ecosystem service, our assessment provides insight into the sustainability of fisheries production in tropical rivers and priorities for regional biodiversity conservation.
27 CFR 9.111 - Kanawha River Valley.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Kanawha River Valley. 9.111 Section 9.111 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Addison, Ohio—W. Va., dated 1960; (2) Gallipolis, Ohio—W. Va., dated 1958; (3) Apple Grove, Ohio—W. Va...
27 CFR 9.111 - Kanawha River Valley.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Kanawha River Valley. 9.111 Section 9.111 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Addison, Ohio—W. Va., dated 1960; (2) Gallipolis, Ohio—W. Va., dated 1958; (3) Apple Grove, Ohio—W. Va...
27 CFR 9.111 - Kanawha River Valley.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Kanawha River Valley. 9.111 Section 9.111 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Addison, Ohio—W. Va., dated 1960; (2) Gallipolis, Ohio—W. Va., dated 1958; (3) Apple Grove, Ohio—W. Va...
27 CFR 9.111 - Kanawha River Valley.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Kanawha River Valley. 9.111 Section 9.111 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Addison, Ohio—W. Va., dated 1960; (2) Gallipolis, Ohio—W. Va., dated 1958; (3) Apple Grove, Ohio—W. Va...
27 CFR 9.111 - Kanawha River Valley.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Kanawha River Valley. 9.111 Section 9.111 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Addison, Ohio—W. Va., dated 1960; (2) Gallipolis, Ohio—W. Va., dated 1958; (3) Apple Grove, Ohio—W. Va...
Pereira, W.E.; Rostad, C.E.; Leiker, T.J.
1992-01-01
The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2′,6′-diethylacetanilide 2-hydroxy-2′,6′-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987–1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.
Whitall, D.; Hively, W.D.; Leight, A.K.; Hapeman, C.J.; McConnell, L.L.; Fisher, T.; Rice, C.P.; Codling, E.; McCarty, G.W.; Sadeghi, A.M.; Gustafson, A.; Bialek, K.
2010-01-01
Restoration of the Chesapeake Bay, the largest estuary in the United States, is a national priority. Documentation of progress of this restoration effort is needed. A study was conducted to examine water quality in the Choptank River estuary, a tributary of the Chesapeake Bay that since 1998 has been classified as impaired waters under the Federal Clean Water Act. Multiple water quality parameters (salinity, temperature, dissolved oxygen, chlorophyll a) and analyte concentrations (nutrients, herbicide and herbicide degradation products, arsenic, and copper) were measured at seven sampling stations in the Choptank River estuary. Samples were collected under base flow conditions in the basin on thirteen dates between March 2005 and April 2008. As commonly observed, results indicate that agriculture is a primary source of nitrate in the estuary and that both agriculture and wastewater treatment plants are important sources of phosphorus. Concentrations of copper in the lower estuary consistently exceeded both chronic and acute water quality criteria, possibly due to use of copper in antifouling boat paint. Concentrations of copper in the upstream watersheds were low, indicating that agriculture is not a significant source of copper loading to the estuary. Concentrations of herbicides (atrazine, simazine, and metolachlor) peaked during early-summer, indicating a rapid surface-transport delivery pathway from agricultural areas, while their degradation products (CIAT, CEAT, MESA, and MOA) appeared to be delivered via groundwater transport. Some in-river processing of CEAT occurred, whereas MESA was conservative. Observed concentrations of herbicide residues did not approach established levels of concern for aquatic organisms. Results of this study highlight the importance of continued implementation of best management practices to improve water quality in the estuary. This work provides a baseline against which to compare future changes in water quality and may be used to design future monitoring programs needed to assess restoration strategy efficacy.
77 FR 24146 - Drawbridge Operation Regulation; Columbia River, Vancouver, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-23
... schedule that governs the Burlington Northern Santa Fe (BNSF) Railway Bridge across the Columbia River... viewing the docket, call Renee V. Wright, Program Manager, Docket Operations, telephone 202-366-9826...
Memorandum of Understanding with Pearl River Community College
The purpose of the Memorandum of Understanding is to increase cooperation between Pearl River Community College and the U.S Environmental Protection Agency’s Gulf of Mexico Program in areas of mutual interest.
Sandia National Laboratories: Employee Locator
Programs Research Working With Sandia News Careers Facebook Twitter YouTube Flickr RSS Employee Locator . Please note that email addresses are not available. Name submit clear Examples: (1) RIVERS (2) rivers, k
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, Allen B.
2000-08-01
The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy,more » and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.« less
Measuring variability in trophic status in the Lake Waco/Bosque River Watershed
Rodriguez, Angela D; Matlock, Marty D
2008-01-01
Background Nutrient management in rivers and streams is difficult due to the spatial and temporal variability of algal growth responses. The objectives of this project were to determine the spatial and seasonal in situ variability of trophic status in the Lake Waco/Bosque River watershed, determine the variability in the lotic ecosystem trophic status index (LETSI) at each site as indicators of the system's nutrient sensitivity, and determine if passive diffusion periphytometers could provide threshold algal responses to nutrient enrichment. Methods We used the passive diffusion periphytometer to measure in-situ nutrient limitation and trophic status at eight sites in five streams in the Lake Waco/Bosque River Watershed in north-central Texas from July 1997 through October 1998. The chlorophyll a production in the periphytometers was used as an indicator of baseline chlorophyll a productivity and of maximum primary productivity (MPP) in response to nutrient enrichment (nitrogen and phosphorus). We evaluated the lotic ecosystem trophic status index (LETSI) using the ratio of baseline primary productivity to MPP, and evaluated the trophic class of each site. Results The rivers and streams in the Lake Waco/Bosque River Watershed exhibited varying degrees of nutrient enrichment over the 18-month sampling period. The North Bosque River at the headwaters (NB-02) located below the Stephenville, Texas wastewater treatment outfall consistently exhibited the highest degree of water quality impact due to nutrient enrichment. Sites at the outlet of the watershed (NB-04 and NB-05) were the next most enriched sites. Trophic class varied for enriched sites over seasons. Conclusion Seasonality played a significant role in the trophic class and sensitivity of each site to nutrients. Managing rivers and streams for nutrients will require methods for measuring in situ responses and sensitivities to nutrient enrichment. Nutrient enrichment periphytometers show significant potential for use in nutrient gradient studies. PMID:18271947
Measuring variability in trophic status in the Lake Waco/Bosque River Watershed.
Rodriguez, Angela D; Matlock, Marty D
2008-01-11
Nutrient management in rivers and streams is difficult due to the spatial and temporal variability of algal growth responses. The objectives of this project were to determine the spatial and seasonal in situ variability of trophic status in the Lake Waco/Bosque River watershed, determine the variability in the lotic ecosystem trophic status index (LETSI) at each site as indicators of the system's nutrient sensitivity, and determine if passive diffusion periphytometers could provide threshold algal responses to nutrient enrichment. We used the passive diffusion periphytometer to measure in-situ nutrient limitation and trophic status at eight sites in five streams in the Lake Waco/Bosque River Watershed in north-central Texas from July 1997 through October 1998. The chlorophyll a production in the periphytometers was used as an indicator of baseline chlorophyll a productivity and of maximum primary productivity (MPP) in response to nutrient enrichment (nitrogen and phosphorus). We evaluated the lotic ecosystem trophic status index (LETSI) using the ratio of baseline primary productivity to MPP, and evaluated the trophic class of each site. The rivers and streams in the Lake Waco/Bosque River Watershed exhibited varying degrees of nutrient enrichment over the 18-month sampling period. The North Bosque River at the headwaters (NB-02) located below the Stephenville, Texas wastewater treatment outfall consistently exhibited the highest degree of water quality impact due to nutrient enrichment. Sites at the outlet of the watershed (NB-04 and NB-05) were the next most enriched sites. Trophic class varied for enriched sites over seasons. Seasonality played a significant role in the trophic class and sensitivity of each site to nutrients. Managing rivers and streams for nutrients will require methods for measuring in situ responses and sensitivities to nutrient enrichment. Nutrient enrichment periphytometers show significant potential for use in nutrient gradient studies.
NASA Astrophysics Data System (ADS)
Bhattacharya, R.; Osburn, C. L.
2017-12-01
Dissolved organic matter (DOM) exported from river catchments can influence the biogeochemical processes in coastal environments with implications for water quality and carbon budget. High flow conditions are responsible for most DOM export ("pulses") from watersheds, and these events reduce DOM transformation and production by "shunting" DOM from river networks into coastal waters: the Pulse-Shunt Concept (PSC). Subsequently, the source and quality of DOM is also expected to change as a function of river flow. Here, we used stream dissolved organic carbon concentrations ([DOC]) along with DOM optical properties, such as absorbance at 350 nm (a350) and fluorescence excitation and emission matrices modeled by parallel factor analysis (PARAFAC), to characterize DOM source, quality and fluxes under variable flow conditions for the Neuse River, a coastal river system in the southeastern US. Observations were made at a flow gauged station above head of tide periodically between Aug 2011 and Feb 2013, which captured low flow periods in summer and several high flow events including Hurricane Irene. [DOC] and a350 were correlated and varied positively with river flow, implying that a large portion of the DOM was colored, humic and flow-mobilized. During high flow conditions, PARAFAC results demonstrated the higher influx of terrestrial humic DOM, and lower in-stream phytoplankton production or microbial degradation. However, during low flow, DOM transformation and production increased in response to higher residence times and elevated productivity. Further, 70% of the DOC was exported by above average flows, where 3-4 fold increases in DOC fluxes were observed during episodic events, consistent with PSC. These results imply that storms dramatically affects DOM export to coastal waters, whereby high river flow caused by episodic events primarily shunt terrestrial DOM to coastal waters, whereas low flow promotes in-stream DOM transformation and amendment with microbial DOM.
Hydrologic indicators of hot spots and hot moments of mercury methylation along river corridors
NASA Astrophysics Data System (ADS)
Singer, Michael; Harrison, Lee; Donovan, Patrick; Blum, Joel; Marvin-DiPasquale, Mark
2016-04-01
The biogeochemical cycling of metals and other contaminants river-floodplain corridors is controlled by microbial activity is often affected by dynamic redox conditions. Riverine flooding thus has the potential to affect speciation of redox-sensitive metals such as mercury (Hg). Therefore, flow history over a period of decades potentially holds information on past production of bioavailable Hg. We investigate this process within a Northern California river system that has a legacy of industrial-scale 19th century hydraulic gold mining. In the first known application of this methodology, we combine hydraulic modeling, measurements of Hg species in sediment and biota, and first-order calculations to assess the role of river floodplains in producing monomethylmercury (MMHg), which accumulates in local and migratory biota. We identify areas that represent 'hot spots' (frequently inundated areas of floodplains) and 'hot moments' (floodplain areas inundated for consecutive long periods). We show that the probability of MMHg production in each sector of the river system is dependent on the spatial patterns of overbank flow and drainage, which affect its long-term redox history. MMHg bioaccumulation within the aquatic food web may pose a major risk to humans and waterfowl that eat migratory salmonids, which are being encouraged to come up these rivers to spawn, and there appears to be no end to MMHg production under a regime of increasingly common large floods with extended duration. These findings identify river floodplains as periodic, temporary, yet important, loci of biogeochemical transformation in which contaminants may undergo change during limited periods of the historical hydrologic record. We suggest that inundation is the primary driver of MMHg production in river corridors and that the entire flow history must be analyzed in terms of magnitude and frequency of inundation in order to accurately assess biogeochemical risks, rather than merely highlighting the largest floods.
O'Donnell, T. K.; Galat, D.L.
2008-01-01
Objective setting, performance measures, and accountability are important components of an adaptive-management approach to river-enhancement programs. Few lessons learned by river-enhancement practitioners in the United States have been documented and disseminated relative to the number of projects implemented. We conducted scripted telephone surveys with river-enhancement project managers and practitioners within the Upper Mississippi River Basin (UMRB) to determine the extent of setting project success criteria, monitoring, evaluation of monitoring data, and data dissemination. Investigation of these elements enabled a determination of those that inhibited adaptive management. Seventy river enhancement projects were surveyed. Only 34% of projects surveyed incorporated a quantified measure of project success. Managers most often relied on geophysical attributes of rivers when setting project success criteria, followed by biological communities. Ninety-one percent of projects that performed monitoring included biologic variables, but the lack of data collection before and after project completion and lack of field-based reference or control sites will make future assessments of ecologic success difficult. Twenty percent of projects that performed monitoring evaluated ???1 variable but did not disseminate their evaluations outside their organization. Results suggest greater incentives may be required to advance the science of river enhancement. Future river-enhancement programs within the UMRB and elsewhere can increase knowledge gained from individual projects by offering better guidance on setting success criteria before project initiation and evaluation through established monitoring protocols. ?? 2007 Springer Science+Business Media, LLC.
Annual Stock Assessment - CWT [Coded Wire Tag program] (USFWS), Annual Report 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastor, Stephen M.
2009-07-21
In 1989 the Bonneville Power Administration (BPA) began funding the evaluation of production groups of juvenile anadromous fish not being coded-wire tagged for other programs. These groups were the 'Missing Production Groups'. Production fish released by the U.S. Fish and Wildlife Service (FWS) without representative coded-wire tags during the 1980s are indicated as blank spaces on the survival graphs in this report. This program is now referred to as 'Annual Stock Assessment - CWT'. The objectives of the 'Annual Stock Assessment' program are to: (1) estimate the total survival of each production group, (2) estimate the contribution of each productionmore » group to fisheries, and (3) prepare an annual report for USFWS hatcheries in the Columbia River basin. Coded-wire tag recovery information will be used to evaluate the relative success of individual brood stocks. This information can also be used by salmon harvest managers to develop plans to allow the harvest of excess hatchery fish while protecting threatened, endangered, or other stocks of concern. All fish release information, including marked/unmarked ratios, is reported to the Pacific States Marine Fisheries Commission (PSMFC). Fish recovered in the various fisheries or at the hatcheries are sampled to recover coded-wire tags. This recovery information is also reported to PSMFC. This report has been prepared annually starting with the report labeled 'Annual Report 1994'. Although the current report has the title 'Annual Report 2007', it was written in fall of 2008 using data available from RMIS that same year, and submitted as final in January 2009. The main objective of the report is to evaluate survival of groups which have been tagged under this ongoing project.« less
Modeling chinook salmon with SALMOD on the Sacramento River, California
Bartholow, J.M.
2004-01-01
Four races of Pacific salmon crowd the Sacramento River below a large reservoir that prevents access to historical spawning grounds. Each race is keyed to spawn at specific times through the year. A salmon population model was used to estimate: (1) the effects that unique run timing, interacting with seasonal river flows and water temperatures, have on each race; and (2) which habitats appeared to be the most limiting for each race. The model appeared to perform well without substantive calibration. Late fall, winter, and spring run Chinook do not appear to have the same production potential as fall run Chinook even though fall run production is more variable than that for the other three races. Spring fish have the lowest production on average, and production appears to be declining through time, perhaps making that race harder to recover should the population become more depressed. Rearing habitat appears to be the factor most limiting production for all races, but water temperature is responsible for most year-to-year production variation.
Internal dosimetry technical basis manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-20
The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophicalmore » discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.« less
Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Ochs, Allen M.; Stricker, Gary D.; Roberts, Steven B.; Taber, Thomas T.; Bader, Lisa R.; Schuenemeyer, John H.
1998-01-01
The National Coal Resource Assessment (NCRA) project by the U.S. Geological Survey is designed to assess US coal with the greatest potential for development in the next 20 to 30 years. Coal in the Wyodak-Anderson (WA) coal zone in the Powder River Basin of Wyoming and Montana is plentiful, clean, and compliant with EPA emissions standards. This coal is considered to be very desirable for development for use in electric power generation. The purpose of this NCRA study was to compile all available data relating to the Wyodak- Anderson coal, correlate the beds that make up the WA coal zone, create digital files pertaining to the study area and the WA coal, and produce a variety of reports on various aspects of the assessed coal unit. This report contains preliminary calculations of coal resources for the WA coal zone and is one of many products of the NCRA study. Coal resource calculations in this report were produced using both public and confidential data from many sources. The data was manipulated using a variety of commercially available software programs and several custom programs. A general description of the steps involved in producing the resource calculations is described in this report.
Water-quality trends in New England rivers during the 20th century
Robinson, Keith W.; Campbell, Jean P.; Jaworski, Norbert A.
2003-01-01
Water-quality data from the Merrimack, Blackstone, and Connecticut Rivers in New England during parts of the 20th century were examined for trends in concentrations of sulfate, chloride, residue upon evaporation, nitrate, and total phosphorus. The concentrations of all five of these constituents show statistically significant trends during the century. Annual concentrations of sulfate and total phosphorus decreased during the second half of the century, whereas annual concentrations of nitrate, chloride, and residues increased throughout the century. In the Merrimack River, annual chloride concentrations increased by an order of magnitude. Annual nitrate concentrations also increased by an order of magnitude in the Merrimack and Connecticut Rivers. These changes in the water quality probably are related to changing human activities. Most notable is the relation between increasing use of road de-icing salts and chloride concentrations in rivers. In addition, changes in concentrations of nitrate and phosphorus probably are related to agricultural use of nitrogen and phosphorus fertilizers. For all the water-quality constituents assessed, concentrations were greatest in the Blackstone River. The Blackstone River Basin is smaller and more highly urbanized than the other basins studied. Data-collection programs that span multiple decades can provide valuable insight on the effects of changing human population and societal activities on the water quality of rivers. This study was done as part of the U.S. Geological Survey's National Water-Quality Assessment Program.
INEL Geothermal Environmental Program. Final environmental report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurow, T.L.; Cahn, L.S.
1982-09-01
An overview of environmental monitoring programs and research during development of a moderate temperature geothermal resource in the Raft River Valley is presented. One of the major objectives was to develop programs for environmental assessment and protection that could serve as an example for similar types of development. The monitoring studies were designed to establish baseline conditions (predevelopment) of the physical, biological, and human environment. Potential changes were assessed and adverse environmental impacts minimized. No major environmental impacts resulted from development of the Raft River Geothermal Research Facility. The results of the physical, biological, and human environment monitoring programs aremore » summarized.« less
NASA Technical Reports Server (NTRS)
Dillard, J. P.
1975-01-01
LANDSAT-1 imagery showing extent of snow cover was collected and is examined for the 1973 and 1974 snowmelt seasons for three Columbia River Basins. Snowlines were mapped and the aerial snow cover was determined using satellite data. Satellite snow mapping products were compared products from conventional information sources (computer programming and aerial photography was used). Available satellite data were successfully analyzed by radiance thresholding to determine snowlines and the attendant snow-covered area. Basin outline masks, contour elevation masks, and grid overlays were utilized as satellite data interpretation aids. Verification of the LANDSAT-1 data was generally good although there were exceptions. A major problem was lack of adequate cloud-free satellite imagery of high resolution and determining snowlines in forested areas.
Cross, Wyatt F.; Baxter, Colden V.; Donner, Kevin C.; Rosi-Marshall, Emma J.; Kennedy, Theodore A.; Hall, Robert O.; Wellard Kelly, Holly A.; Rogers, R. Scott
2011-01-01
Large dams have been constructed on rivers to meet human demands for water, electricity, navigation, and recreation. As a consequence, flow and temperature regimes have been altered, strongly affecting river food webs and ecosystem processes. Experimental high-flow dam releases, i.e., controlled floods, have been implemented on the Colorado River, USA, in an effort to reestablish pulsed flood events, redistribute sediments, improve conditions for native fishes, and increase understanding of how dam operations affect physical and biological processes. We quantified secondary production and organic matter flows in the food web below Glen Canyon dam for two years prior and one year after an experimental controlled flood in March 2008. Invertebrate biomass and secondary production declined significantly following the flood (total biomass, 55% decline; total production, 56% decline), with most of the decline driven by reductions in two nonnative invertebrate taxa, Potamopyrgus antipodarum and Gammarus lacustris. Diatoms dominated the trophic basis of invertebrate production before and after the controlled flood, and the largest organic matter flows were from diatoms to the three most productive invertebrate taxa (P. antipodarum, G. lacustris, and Tubificida). In contrast to invertebrates, production of rainbow trout (Oncorhynchus mykiss) increased substantially (194%) following the flood, despite the large decline in total secondary production of the invertebrate assemblage. This counterintuitive result is reconciled by a post-flood increase in production and drift concentrations of select invertebrate prey (i.e., Chironomidae and Simuliidae) that supported a large proportion of trout production but had relatively low secondary production. In addition, interaction strengths, measured as species impact values, were strongest between rainbow trout and these two taxa before and after the flood, demonstrating that the dominant consumer—resource interactions were not necessarily congruent with the dominant organic matter flows. Our study illustrates the value of detailed food web analysis for elucidating pathways by which dam management may alter production and strengths of species interactions in river food webs. We suggest that controlled floods may increase production of nonnative rainbow trout, and this information can be used to help guide future dam management decisions.
Sheets, Rodney A.; Bossenbroek, Karen E.
2005-01-01
The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect. Although the part of the lower Great Miami River Buried Valley Aquifer System where the Hamilton North Well Field is located is semiconfined, unconfined, or locally confined and not directly connected to the Great Miami River, the discontinuity of the clay/till layers beneath the river indicates that other, deeper parts of the aquifer system may be directly connected to the Great Miami River.
Clackamas/Hood River Habitat Enhancement Program, 1987 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Ken; Cain, Thomas C.; Heller, David A.
1988-03-01
Fisheries habitat improvement work is being done on priority drainages in the Clackamas and Rood River sub-basins under program measure 704(c), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program. This report describes the work completed in 1987 for Bonneville Power Administration (BPA) project number 84-11, the Clackamas/Hood River Habitat Enhancement Program. The program is composed of six projects: Collawash River Habitat Improvement Project; Collawash River Falls Passage Improvement Project, Oak Grove Fork Habitat Improvement Project; Lake Branch/West Fork Hood River Habitat Improvement Project; Fifteenmile Creek Habitat Improvement Project; and Abundance, Behavior, andmore » Habitat Utilization by Coho Salmon and Steelhead Trout in Fish Creek, Oregon, As Influenced by Habitat Enhancement. This ongoing program was initiated in 1984, although some of the projects were begun with BPA funding support as early as 1983. The projects are complemented by a variety of habitat improvement and management activities funded from a variety of Forest Service sources. This report describes the activities implemented for five of the six projects. A separate annual report on the 1987 habitat improvement and monitoring/evaluation efforts in the Fish Creek drainage has been prepared. Species for management emphasis include spring chinook and coho salmon, and summer and winter steelhead trout. Project work in 1987 primarily focused on increasing the quantity and quality of available rearing habitat, and improving access at passage barriers. The underlying theme of the improvement work has been to increase habitat diversity through the introduction of ''structure''. Structure provided by logs and boulders serves to deflect, pond, or otherwise disrupt flow patterns within a stream channel. This alteration of flow patterns results in formation of an increased number of habitat niches (i.e. pools, glides, alcoves, etc. ) in which a variety of species and age group: of salmon and trout can rear. It also results in the sorting of gravel, rubble, and boulders being transported downstream, creating high quality spawning and rearing habitats, and food producing areas. In 1987, a total of 11.0 miles of stream were treated; 334 log structures (Including: ''deflector'', ''digger'', ''sill'', and ''cover'' logs) and 141 boulder structures (including: single boulder placement, ''berms'', ''alcoves'', and ''clusters'') were completed to meet habitat improvement objectives. In addition to these direct habitat improvement activities, BPA and the Forest Service financed a number of project and program assessment activities that have improved the efficiency and effectiveness of the Forest's fisheries management program. Notable findings relate to the durability of habitat improvement structures, the associated changes in physical habitat, and biological response to the improvement activities. A discussion of the 1987 habitat monitoring and evaluation program results can be found in the supplemental document, Appendix: Monitoring and Evaluation of Mt. Hood National Forest Stream Habitat Improvement and Rehabilitation Projects: 1987 Annual Report (Forsgren, Heller, and Ober, 1988).« less
Tillman, Fred D.; Anning, David W.
2014-01-01
The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating over 4.5 million acres of farmland, and annually generating about 12 billion kilowatt hours of hydroelectric power. The Upper Colorado River Basin, part of the Colorado River Basin, encompasses more than 110,000 mi2 and is the source of much of more than 9 million tons of dissolved solids that annually flows past the Hoover Dam. High dissolved-solids concentrations in the river are the cause of substantial economic damages to users, primarily in reduced agricultural crop yields and corrosion, with damages estimated to be greater than 300 million dollars annually. In 1974, the Colorado River Basin Salinity Control Act created the Colorado River Basin Salinity Control Program to investigate and implement a broad range of salinity control measures. A 2009 study by the U.S. Geological Survey, supported by the Salinity Control Program, used the Spatially Referenced Regressions on Watershed Attributes surface-water quality model to examine dissolved-solids supply and transport within the Upper Colorado River Basin. Dissolved-solids loads developed for 218 monitoring sites were used to calibrate the 2009 Upper Colorado River Basin Spatially Referenced Regressions on Watershed Attributes dissolved-solids model. This study updates and develops new dissolved-solids loading estimates for 323 Upper Colorado River Basin monitoring sites using streamflow and dissolved-solids concentration data through 2012, to support a planned Spatially Referenced Regressions on Watershed Attributes modeling effort that will investigate the contributions to dissolved-solids loads from irrigation and rangeland practices.
7 CFR 955.4 - Production area.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... northerly along the main channel of the Ogeechee River to a point where it intersects with the southeastern... main channel of the Savannah River; thence northerly along the main channel of the Savannah River to a...
A New Hydrogeological Research Site in the Willamette River Floodplain
The Willamette River is a ninth-order tributary of the Columbia which passes through a productive and populous region in northwest Oregon. Where unconstrained by shoreline revetments, the floodplain of this river is a high-energy, dynamic system which supports a variety of ripari...
RiverCare communication strategy for reaching beyond
NASA Astrophysics Data System (ADS)
Cortes Arevalo, Juliette; den Haan, Robert Jan; Berends, Koen; Leung, Nick; Augustijn, Denie; Hulscher, Suzanne J. M. H.
2017-04-01
Effectively communicating river research to water professionals and researchers working in multiple disciplines or organizations is challenging. RiverCare studies the mid-term effects of innovative river interventions in the Netherlands to improve river governance and sustainable management. A total of 21 researchers working at 5 universities are part of the consortium, which also includes research institutes, consultancies, and water management authorities. RiverCare results do not only benefit Dutch river management, but can also provide useful insights to challenges abroad. Dutch partner organizations actively involved in RiverCare are our direct users. However, we want to reach water professionals from the Netherlands and beyond. To communicate with and disseminate to these users, we set up a communication strategy that includes the following approaches : (1) Netherlands Centre of River studies (NCR) website to announce activities post news, not limited to RiverCare; (2) A RiverCare newsletter that is published twice per year to update about our progress and activities; (3) A multimedia promotional providing a 'first glance' of RiverCare. It consists of four video episodes and an interactive menu; (4) An interactive knowledge platform to provide access, explain RiverCare results and gather feedback about the added value and potential use of these results; and (5) A serious gaming environment titled Virtual River where actors can play out flood scaling intervention and monitoring strategies to assess maintenance scenarios. The communication strategy and related approaches are being designed and developed during the project. We use participatory methods and systematic evaluation to understand communication needs and to identify needs for improvement. As a first step, RiverCare information is provided via the NCR website. The active collaboration with the NCR is important to extend communication efforts beyond the RiverCare consortium and after the program ends. The RiverCare newsletters are being distributed mainly through the NCR mailing list. As part of the multimedia product, four videos are in development as 'theaters of river research'. The first video presented our societal contribution to river research. Subsequent videos will be released approximately every six months. The knowledge platform is being designed as a combination of online services including: a content management system in which storylines are the main component; a data repository; and hyperlinks to online sites that present our results via short news articles. A storyline example has been prepared to explain research outputs instead of or in addition to more technical means such as scientific papers and reports. As for the serious gaming environment, a concept is being designed for experimentation in river and floodplain scenarios in regard to maintenance intervals and scaling of floodplains. Early results from the number of viewers of the NCR website, newsletter and first video show that dissemination efforts reach the NCR network but should also address other networks. Furthermore, the videos create interest and visibility in RiverCare. However, the audience should be challenged in different ways to look for additional information. Challenges of our research are to limit the overlap between the different communication approaches and to evaluate the effectiveness of the communication strategy.
NASA Astrophysics Data System (ADS)
Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick
2018-01-01
In many regions of the world, intensive livestock farming has become a significant source of organic river pollution. As the international meat trade is growing rapidly, the environmental impacts of meat production within one country can occur either domestically or internationally. The goal of this paper is to quantify the impacts of the international meat trade on global organic river pollution at multiple scales (national, regional and gridded). Using the biological oxygen demand (BOD) as an overall indicator of organic river pollution, we compute the spatially distributed organic pollution in global river networks with and without a meat trade, where the without-trade scenario assumes that meat imports are replaced by local production. Our analysis reveals a reduction in the livestock population and production of organic pollutants at the global scale as a result of the international meat trade. However, the actual environmental impact of trade, as quantified by in-stream BOD concentrations, is negative; i.e. we find a slight increase in polluted river segments. More importantly, our results show large spatial variability in local (grid-scale) impacts that do not correlate with local changes in BOD loading, which illustrates: (1) the significance of accounting for the spatial heterogeneity of hydrological processes along river networks, and (2) the limited value of looking at country-level or global averages when estimating the actual impacts of trade on the environment.
Hou, Cui-cui; Zhang, Fang; Li, Ying-chen; Wang, Qi-bo; Liu, Sai
2016-05-15
Distributions of CH₄ and N₂O concentrations in Weihe River in Xinxiang City were monitored in spring of 2015, and their influencing factors were discussed. The result showed that CH₄ and N₂O were super-saturated in surface water of Weihe River. The variation ranges of two gases' saturations in the surface water of Weihe River were 147.59-2667.85 (CH₄) and 4.06-188.25 (N₂O). In the urban area, significant correlation existed between N₂O and NH₄⁺-N concentrations (P < 0.01), but in the new district, dissolved N₂O concentration showed sharp increase because of the water input from the urban sewage plants, illustrating that the controlling mechanism on N₂O production varied as pollutant characteristics changed. Stepwise regression analysis showed that CH₄ concentrations could be explained by NH₄⁺-N concentrations and water temperature, and CH₄ concentrations in the surface water of Weihe River was significantly correlated with NH₄⁺-N concentrations (R² = 0.70, P < 0.01), suggesting that NH₄⁺-N was the key factor in regulating the production and assumption of CH₄oxidation in Weihe River in spring. Besides, this study showed that when there was less NO₃⁻-N but more NH₄⁺-N in river water, CH₄and N₂O concentrations would be positively correlated, indicating that different nitrogen sources would impact the coupling mechanism of CH₄and N₂O productions.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the mean percent impervious surface from the Imperviousness Layer of the National Land Cover Dataset 2001 (LaMotte and Wieczorek, 2010), compiled for every catchment of NHDPlus for the conterminous United States. The source data set represents imperviousness for the conterminous United States for 2001. The Imperviousness Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the estimated area of land use and land cover from the National Land Cover Dataset 2001 (LaMotte, 2008), compiled for every catchment of NHDPlus for the conterminous United States. The source data set represents land use and land cover for the conterminous United States for 2001. The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Sams, James I.; Beer, Kevin M.
2000-01-01
In 1980, the Allegheny and Monongahela Rivers transported a sulfate load of 1.2 million and 1.35 million tons, respectively, to the Ohio River at Pittsburgh. The Monongahela River Basin had a sulfate yield of 184 tons per square mile per year compared to 105 tons per square mile per year for the Allegheny River Basin. Within the large Allegheny and Monongahela River Basins, the subbasins with the highest sulfate yields in tons per square mile per year were those of Redstone Creek (580), Blacklick Creek (524), Conemaugh River (292), Buffalo Creek (247), Stonycreek River (239), Two Lick Creek (231), Dunkard Creek (212), and Loyalhanna Creek (196). These basins have been extensively mined. The sulfate yields of Brokenstraw and Conewango Creeks, which are outside the area underlain by coal and thus contain no coal mines, were 25 and 24 tons per square mile per year, respectively.Within the Allegheny and Monongahela River Basins, seven sites showed significant trends in sulfate concentration from 1965 to 1995. Dunkard Creek and Stonycreek River show significant upward trends in sulfate concentration. These trends appear to be related to increases in coal production in the two basins from 1965 to 1995. Blacklick Creek at Josephine and Loyalhanna Creek at Loyalhanna Dam show significant downward trends in sulfate concentration between 1965 and 1995. Blacklick Creek had a 50-percent decrease in sulfate concentration. Coal production in the Blacklick Creek Basin, which reached its peak at almost 4 million tons per year in the 1940's, dropped to less than 1 million tons per year by 1995. In the Loyalhanna Creek Basin, which had a 41-percent decrease in sulfate concentration, coal-production rates dropped steadily from more than 1.5 million tons per year in the 1940's to less than 200,000 tons per year in 1995.
Curran, Christopher A.; Konrad, Christopher P.; Dinehart, Randal L.; Moran, Edward H.
2008-01-01
The removal of two dams from the mainstem of the Elwha River is expected to cause a broad range of changes to the river and nearby coastal ecosystem. The U.S. Geological Survey has documented aspects of the condition of the river to allow analysis of ecological responses to dam removal. This report documents the bank topography, river bathymetry, and current velocity data collected along the lower 0.5 kilometer of the Elwha River, May 15-17, 2006. This information supplements nearshore and beach surveys done in 2006 as part of the U.S. Geological Survey Coastal Habitats in Puget Sound program near the Elwha River delta in the Strait of Juan de Fuca, Washington.
SRNL Atmospheric Technologies Group
Viner, Brian; Parker, Matthew J.
2018-01-16
The Savannah River National Laboratory, Atmospheric Technologies Group, conducts a best-in class Applied Meteorology Program to ensure the Department of Energyâs Savannah River Site is operated safely and complies with stringent environmental regulations.
Publications - RI 97-15D | Alaska Division of Geological & Geophysical
Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Coastal and River; Coastal and River Hazards; Construction Materials; Derivative; Engineering; Engineering
Removing Mercury in the Guadalupe River Watershed Project
Information about the SFBWQP Removing Mercury in the Guadalupe River Watershed Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.
Program Updates - San Antonio River Basin
This page will house updates for this urban waters partnership location. As projects progress, status updates can be posted here to reflect the ongoing work by partners in San Antonio working on the San Antonio River Basin.
Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin.
Ziv, Guy; Baran, Eric; Nam, So; Rodríguez-Iturbe, Ignacio; Levin, Simon A
2012-04-10
The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We find that the completion of 78 dams on tributaries, which have not previously been subject to strategic analysis, would have catastrophic impacts on fish productivity and biodiversity. Our results argue for reassessment of several dams planned, and call for a new regional agreement on tributary development of the Mekong River Basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht-Schmitt, Thomas Edward
The past three years of support by the Heavy Elements Chemistry Program have been highly productive in terms of advanced degrees awarded, currently supported graduate students, peer-reviewed publications, and presentations made at universities, national laboratories, and at international conferences. Ph.D. degrees were granted to Shuao Wang and Juan Diwu, who both went on to post-doctoral appointments at the Glenn T. Seaborg Center at Lawrence Berkeley National Laboratory with Jeff Long and Ken Raymond, respectively. Pius Adelani completed his Ph.D. with me and is now a post-doc with Peter C. Burns. Andrea Alsobrook finished her Ph.D. and is now a post-docmore » at Savannah River with Dave Hobbs. Anna Nelson completed her Ph.D. and is now a post-doc with Rod Ewing at the University of Michigan. As can be gleaned from this list, students supported by the Heavy Elements Chemistry grant have remained interested in actinide science after leaving my program. This follows in line with previous graduates in this program such as Richard E. Sykora, who did his post-doctoral work at Oak Ridge National Laboratory with R. G. Haire, and Amanda C. Bean, who is a staff scientist at Los Alamos National Laboratory, and Philip M. Almond and Thomas C. Shehee, who are both staff scientists at Savannah River National Laboratory, Gengbang Jin who is a staff scientist at Argonne National Lab, and Travis Bray who has been a post-doc at both LBNL and ANL. Clearly this program is serving as a pipe-line for students to enter into careers in the national laboratories. About half of my students depart the DOE complex for academia or industry. My undergraduate researchers also remain active in actinide chemistry after leaving my group. Dan Wells was a productive undergraduate of mine, and went on to pursue a Ph.D. on uranium and neptunium chalcogenides with Jim Ibers at Northwestern. After earning his Ph.D., he went directly into the nuclear industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contor, Craig R.; Sexton, Amy D.
2003-06-02
The Walla Walla Basin Natural Production Monitoring and Evaluation Project (WWNPME) was funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) under the Walla Walla Basin Natural Production Monitoring and Evaluation Project (WWNPME).more » Chapter One provides an overview of the entire report and how the objectives of each statement of work from 1999, 2000, 2001, and 2002 contract years are organized and reported. Chapter One also provides background information relevant to the aquatic resources of the Walla Walla River Basin. Objectives are outlined below for the statements of work for the 1999, 2000, 2001 and 2002 contract years. The same objectives were sometimes given different numbers in different years. Because this document is a synthesis of four years of reporting, we gave objectives letter designations and listed the objective number associated with the statement of work for each year. Some objectives were in all four work statements, while other objectives were in only one or two work statements. Each objective is discussed in a chapter. The chapter that reports activities and findings of each objective are listed with the objective below. Because data is often interrelated, aspects of some findings may be reported or discussed in more than one chapter. Specifics related to tasks, approaches, methods, results and discussion are addressed in the individual chapters.« less
NASA Astrophysics Data System (ADS)
Cortes Arevalo, Juliette; den Haan, Robert-Jan; van der Voort, Mascha; Hulscher, Suzanne
2016-04-01
Effective communication strategies are necessary between different scientific disciplines, practitioners and non-experts for a shared understanding and better implementation of river management measures. In that context, the RiverCare program aims to get a better understanding of riverine measures that are being implemented towards self-sustaining multifunctional rivers in the Netherlands. During the RiverCare program, user committees are organized between the researchers and practitioners to discuss the aim and value of RiverCare outputs, related assumptions and uncertainties behind scientific results. Beyond the RiverCare program end, knowledge about river interventions, integrated effects, management and self-sustaining applications will be available to experts and non-experts by means of River Care communication tools: A web-collaborative platform and a serious gaming environment. As part of the communication project of RiverCare, we are designing the RiverCare web-collaborative platform and the knowledge-base behind that platform. We aim at promoting collaborative efforts and knowledge exchange in river management. However, knowledge exchange does not magically happen. Consultation and discussion of RiverCare outputs as well as elicitation of perspectives and preferences from different actors about the effects of riverine measures has to be facilitated. During the RiverCare research activities, the platform will support the user committees or collaborative sessions that are regularly held with the organizations directly benefiting from our research, at project level or in study areas. The design process of the collaborative platform follows an user centred approach to identify user requirements, co-create a conceptual design and iterative develop and evaluate prototypes of the platform. The envisioned web-collaborative platform opens with an explanation and visualisation of the RiverCare outputs that are available in the knowledge base. Collaborative sessions are initiated by one facilitator that invites other users to contribute by agreeing on an objective for the session and ways and period of collaboration. Upon login, users can join the different sessions that they are invited or will be willing to participate. Within these sessions, users collaboratively engage on the topic at hand, acquiring knowledge about the ongoing results of RiverCare, sharing knowledge between actors and co-constructing new knowledge in the process as input for RiverCare research activities. An overview of each session will be presented to registered and non-registered users to document collaboration efforts and promote interaction with actors outside RiverCare. At the user requirements analysis stage of the collaborative platform, a questionnaire and workshop session was launched to uncover the end user's preferences and expectations about the tool to be designed. Results comprised insights about design criteria of the collaborative platform. The user requirements will be followed by interview sessions with RiverCare researchers and user committee members to identify considerations for data management, objectives of collaboration, expected outputs and indicators to evaluate the collaborative platform. On one side, considerations of intended users are important for co-designing tools that effectively communicate and promote a shared understanding of scientific outputs. On the other one, active involvement of end-users is important for the establishment of measurable indicators to evaluate the tool and the collaborative process.
78 FR 58882 - Safety Zone; Chelsea River, Boston Inner Harbor, Boston, MA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
...-AA00 Safety Zone; Chelsea River, Boston Inner Harbor, Boston, MA AGENCY: Coast Guard, DHS. ACTION...: Chelsea River, Boston Inner Harbor, Boston, MA. Since the implementation of the regulation, physical... Chelsea, MA and East Boston, MA. Several petroleum-product transfer facilities are located on the Chelsea...
NASA Astrophysics Data System (ADS)
Silva, S. R.; Kendall, C.; Young, M. B.; Stringfellow, W. T.; Borglin, S. E.; Kratzer, C. R.; Dahlgren, R. A.; Schmidt, C.; Rollog, M. E.
2007-12-01
Many competing demands have been placed on the San Joaquin River including deep water shipping, use as agricultural and drinking water, transport of agricultural and urban runoff, and recreation. These long-established demands limit the management options and increase the importance of understanding the river dynamics. The relationships among sources of water, nitrate, and algae in the San Joaquin River must be understood before management decisions can be made to optimize aquatic health. Isotopic analyses of water samples collected along the San Joaquin River in 2005-2007 have proven useful in assessing these relationships: sources of nitrate, the productivity of the San Joaquin River, and the relationship between nitrate and algae in the river. The San Joaquin River receives water locally from wetlands and agricultural return flow, and from three relatively large tributaries whose headwaters are in the Sierra Nevada. The lowest nitrate concentrations occur during periods of high flow when the proportion of water from the Sierra Nevada is relatively large, reflecting the effect of dilution from the big tributaries and indicating that a large fraction of the nitrate is of local origin. Nitrogen isotopes of nitrate in the San Joaquin River are relatively high (averaging about 12 per mil), suggesting a significant source from animal waste or sewage and/or the effects of denitrification. The d15N of nitrate varies inversely with concentration, indicating that these high isotopic values are also a local product. The d15N values of nitrate from most of the local tributaries is lower than that in the San Joaquin suggesting that nitrate from these tributaries does not account for a significant fraction of nitrate in the river. The source of the non-tributary nitrate must be either small unmeasured surface inputs or groundwater. To investigate whether groundwater might be a significant source of nitrate to the San Joaquin River, groundwater samples are being collected monthly from over 20 bank and in-stream wells. Preliminary data suggest that much of the groundwater nitrate has been variably denitrified thereby increasing its d15N values, but not by enough to account for the high d15N values in the river nitrate. The d15N of algae in the San Joaquin reflects the high values of the nitrate in the river indicating (1) that the San Joaquin is productive despite its relatively high opacity, (2) that the algae use the nitrate as a primary nutrient source, and (3) that the concentrations of algae in the San Joaquin are not principally dependent on algae from the tributaries being flushed into the river as has been suggested. The sources of nitrate to the San Joaquin River must be identified if algae production is to be controlled and hypoxic conditions in the downstream reaches eliminated.
R.W. Haynes; N.A. Bolon; D.T. Hormaechea
1992-01-01
Economic implications of critical habitat designation (CHD) for salmon in the Columbia River basin were estimated in advance of actual designation and recovery plan development. Economic impacts on Pacific, Northwest, Intermountain, and Northern Region National Forests' range, recreation, timber, and mineral programs in the Columbia and Snake River basins were...
Journey to Planet Earth: Rivers of Destiny. The Public Television Series. [Videotape].
ERIC Educational Resources Information Center
1999
This video program focuses on four rivers: the Mississippi, the Amazon, the Jordan, and the Mekong. Each locale serves as an example of what can happen when human beings tamper with the natural system of a river. Without thoughtful planning, the consequences can be disastrous,, but when communities work together, a balance can be achieved between…
Forest resources of the Monocacy River watershed of Maryland and Pennsylvania
James C. Rettie; George E. Doverspike; Wayne G. Banks
1951-01-01
The Monocacy River Watershed Council, organized in November 1949 with broad representation of the various local interest and civic organizations, is in process of developing a program of conservation for the water and land resources of that area. One of the major objectives is to regulate the streamflow and reduce the silt load of the Monocacy River and its tributaries...
Ensign, Scott H.; Hupp, Cliff R.; Noe, Gregory B.; Krauss, Ken W.; Stagg, Camille L.
2014-01-01
Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year−1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year−1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Yinghai; Coleman, Andre M.; Diefenderfer, Heida L.
We delineated 8 watersheds contributing to previously defined river reaches within the 1,468-km2 historical floodplain of the tidally influenced lower Columbia River and estuary. We assessed land-cover change at the watershed, reach, and restoration site scales by reclassifying remote-sensing data from the National Oceanic and Atmospheric Administration Coastal Change Analysis Program’s land cover/land change product into forest, wetland, and urban categories. The analysis showed a 198.3 km2 loss of forest cover during the first 6 years of the Columbia Estuary Ecosystem Restoration Program, 2001–2006. Total measured urbanization in the contributing watersheds of the estuary during the full 1996-2006 change analysismore » period was 48.4 km2. Trends in forest gain/loss and urbanization differed between watersheds. Wetland gains and losses were within the margin of error of the satellite imagery analysis. No significant land cover change was measured at restoration sites, although it was visible in aerial imagery, therefore, the 30-m land-cover product may not be appropriate for assessment of early-stage wetland restoration. These findings suggest that floodplain restoration sites in reaches downstream of watersheds with decreasing forest cover will be subject to increased sediment loads, and those downstream of urbanization will experience effects of increased impervious surfaces on hydrologic processes.« less
Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California
Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.
2017-09-27
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies.
2005-01-01
Nutrient- Related Water-Quality Improvements in the Thames River Basin, Connecticut Open-File Report 2005-1208 U.S. Department of the Interior U.S...Investigations to Support Nutrient- Related Water-Quality Improvements in the Thames River Basin, Connecticut 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Suggested Hydrologic Investigations to Support Nutrient- Related Water-Quality Improvements in the Thames River Basin, Connecticut By Elaine C. Todd
Space Radar Image of Rhine River, France and Germany
NASA Technical Reports Server (NTRS)
1994-01-01
This spaceborne radar image shows a segment of the Rhine River where it forms the border between the Alsace region of northeastern France on the left and the Black Forest region of Germany on the right. The Rhine, one of the largest and most used waterways in central Europe, winds its way through five countries from the Swiss-Austrian Alps to the North Sea coast of the Netherlands. The river valley is densely populated, as seen in this image, which shows the French city of Strasbourg, the light blue and orange area in the upper left center; and the German cities of Kehl, across the river from Strasbourg and Offenburg, the bright area in right center. The fertile valley is famous for its wine production and most of the agricultural areas in the image, shown in purple patches, are vineyards. The light green areas are forest. Scientists can use radar images like this one to monitor the effects of urban and agricultural development on sensitive ecosystems such as the Rhine River valley. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 2, 1994. The image is 34.2 kilometers by 33.2 kilometers (21.2 miles by 20.6 miles) and is centered at 48.5 degrees north latitude, 7.7 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
Umatilla Hatchery Monitoring and Evaluation, 1999-2002 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chess, Dale W.; Cameron, William A.; Stonecypher, Jr., R. Wes
2003-12-01
REPORT A: UMATILLA HATCHERY MONITORING AND EVALUATION--This report summarizes monitoring and evaluation studies of salmonids reared at Umatilla Fish Hatchery (UFH) for 1 November, 1999 to 31 October, 2002. Studies at UFH are designed to evaluate rearing of chinook salmon and steelhead in ''Michigan raceways''. Characteristics of Michigan raceways include high fish densities, rapid water turnover, oxygen supplementation, reuse of water, and baffles designed to reduce cleaning. Fish health at UFH and other facilities associated with the Umatilla program are intensively monitored and evaluated along with the overall research project. Further, under the Integrated Hatchery Operations Team guidelines, specific requirementsmore » for fish health monitoring at UFH are mandatory. An experiment designed to evaluate rearing subyearling fall chinook salmon in Michigan and Oregon raceways has been completed. An evaluation of survival of subyearling fall chinook salmon reared at three densities will be completed with final returns in 2005. Two new evaluations were started during this reporting period. The first is an evaluation of spring chinook survival of groups transferred to Imeques acclimation facility in the fall, overwinter-acclimated and released with the standard acclimated production groups in March. The second is an evaluation of subyearling fall chinook survival and straying of a direct-stream released group in the lower Umatilla River and the standard group acclimated at Thornhollow acclimation facility in the upper Umatilla River. An important aspect of the project is evaluation of the spring chinook and summer steelhead fisheries in the upper and lower Umatilla River. REPORT B: Fish Health Monitoring and Evaluation, 2000 Fiscal Year--The results presented in this report are from the ninth year of Fish Health Monitoring and Evaluation in the Umatilla Hatchery program. Broodstock monitoring for hatchery production was conducted on adult returns to the Umatilla River at Three Mile Dam and South Fork Walla Walla adult facilities for salmon; steelhead adults were monitored at Minthorn adult facility. A new addition to this year's report is the effort to bring together an overview of fish health monitoring results including historical and year to date pathogen information. This information is in table form (Appendix Tables A-28, A-29 and A-30). A summary of juvenile disease outbreaks at Umatilla Hatchery is also included (Appendix Table A-31). REPORT C: Fish Health Monitoring and Evaluation, 2001 Fiscal Year--Results from the 2001 annual report cover the 10th year of Fish Health Monitoring in the Umatilla Hatchery program. Efforts were again made to provide up to date fish health and juvenile disease outbreak loss summary tables from the beginning of the Umatilla Hatchery program (Appendix Tables A-27, A-28, A-29 and A-30). Outmigrant Fish Health Monitoring results were included in this report since this was part of the fish health work statement for this report period. The discussion section for the 2001 and 2002 annual reports are combined in the 2002 report due to time constraints and consolidation efforts to complete this report by the end of May 2003.« less
Estelle V. Balian; Robert J. Naiman
2005-01-01
Riparian zones associated with alluvial rivers are spatially dynamic, forming distinct vegetative mosaics that exhibit sharp contrasts in structure and processes related to the underlying biophysical template. The productivity of riparian plants, especially trees, influences streamside community characteristics as, well as the forms and fluxes of organic matter to...
Introduction to SNPP/VIIRS Flood Mapping Software Version 1.0
NASA Astrophysics Data System (ADS)
Li, S.; Sun, D.; Goldberg, M.; Sjoberg, W.; Santek, D.; Hoffman, J.
2017-12-01
Near real-time satellite-derived flood maps are invaluable to river forecasters and decision-makers for disaster monitoring and relief efforts. With support from the JPSS (Joint Polar Satellite System) Proving Ground and Risk Reduction (PGRR) Program, flood detection software has been developed using Suomi-NPP/VIIRS (Suomi National Polar-orbiting Partnership/Visible Infrared Imaging Radiometer Suite) imagery to automatically generate near real-time flood maps for National Weather Service (NWS) River Forecast Centers (RFC) in the USA. The software, which is called VIIRS NOAA GMU Flood Version 1.0 (hereafter referred to as VNG Flood V1.0), consists of a series of algorithms that include water detection, cloud shadow removal, terrain shadow removal, minor flood detection, water fraction retrieval, and floodwater determination. The software is designed for flood detection in any land region between 80°S and 80°N, and it has been running routinely with direct broadcast SNPP/VIIRS data at the Space Science and Engineering Center at the University of Wisconsin-Madison (UW/SSEC) and the Geographic Information Network of Alaska at the University of Alaska-Fairbanks (UAF/GINA) since 2014. Near real-time flood maps are distributed via the Unidata Local Data Manager (LDM), reviewed by river forecasters in AWIPS-II (the second generation of the Advanced Weather Interactive Processing System) and applied in flood operations. Initial feedback from operational forecasters on the product accuracy and performance has been largely positive. The software capability has also been extended to areas outside of the USA via a case-driven mode to detect major floods all over the world. Offline validation efforts include the visual inspection of over 10,000 VIIRS false-color composite images, an inter-comparison with MODIS automatic flood products and a quantitative evaluation using Landsat imagery. The steady performance from the 3-year routine process and the promising validation results indicate that VNG Flood V1.0 has a high feasibility for flood detection at the product level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boe, Stephen J.; Lofy, Peter T.
2003-03-01
This is the third annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2000: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCP). (2) Plan for recovery of endemic summer steelhead populations in Catherinemore » Creek and the upper Grande Ronde River. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (4) Collect summer steelhead. (5) Collect adult endemic spring chinook salmon broodstock. (6) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (7) Document accomplishments and needs to permitters, comanagers, and funding agency. (8) Communicate project results to the scientific community. (9) Plan detailed GRESCP Monitoring and Evaluation for future years. (10) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations and incidentally-caught summer steelhead and bull trout. (11) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (12) Monitor water quality at facilities. (13) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program.« less
Ha, Miae; Zhang, Zhonglong; Wu, May
2018-04-24
A watershed model was developed using the Soil and Water Assessment Tool (SWAT) that simulates nitrogen, phosphorus, and sediment loadings in the Lower Mississippi River Basin (LMRB). The LMRB SWAT model was calibrated and validated using 21 years of observed flow, sediment, and water-quality data. The baseline model results indicate that agricultural lands within the Lower Mississippi River Basin (LMRB) are the dominant sources of nitrogen and phosphorus discharging into the Gulf of Mexico. The model was further used to evaluate the impact of biomass production, in the presence of riparian buffers in the LMRB, on suspended-sediment and nutrient loading discharge from the Mississippi River into the Gulf of Mexico. The interplay among land use, riparian buffers, crop type, land slope, water quality, and hydrology were anlyzed at various scales. Implementing a riparian buffer in the dominant agricultural region within the LMRB could reduce suspended sediment, nitrogen, and phosphorus loadings at the regional scale by up to 65%, 38%, and 39%, respectively. Implementation of this land management practice can reduce the suspended-sediment content and improve the water quality of the discharge from the LMRB into the Gulf of Mexico and support the potential production of bioenergy and bio-products within the Mississippi River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.
von Biela, V R; Zimmerman, C E; Moulton, L L
2011-01-01
Arctic cisco Coregonus autumnalis young-of-year (YOY) growth was used as a proxy to examine the long-term response of a high-latitude fish population to changing climate from 1978 to 2004. YOY growth increased over time (r² = 0·29) and was correlated with monthly averages of the Arctic oscillation index, air temperature, east wind speed, sea-ice concentration and river discharge with and without time lags. Overall, the most prevalent correlates to YOY growth were sea-ice concentration lagged 1 year (significant correlations in 7 months; r² = 0·14-0·31) and Mackenzie River discharge lagged 2 years (significant correlations in 8 months; r² = 0·13-0·50). The results suggest that decreased sea-ice concentrations and increased river discharge fuel primary production and that life cycles of prey species linking increased primary production to fish growth are responsible for the time lag. Oceanographic studies also suggest that sea ice concentration and fluvial inputs from the Mackenzie River are key factors influencing productivity in the Beaufort Sea. Future research should assess the possible mechanism relating sea ice concentration and river discharge to productivity at upper trophic levels. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles. No claim to original US government works.
NASA Astrophysics Data System (ADS)
Kontar, Y. Y.; Bhatt, U. S.; Lindsey, S. D.; Plumb, E. W.; Thoman, R. L.
2015-06-01
In May 2013, a massive ice jam on the Yukon River caused flooding that destroyed much of the infrastructure in the Interior Alaska village of Galena and forced the long-term evacuation of nearly 70% of its residents. This case study compares the communication efforts of the out-of-state emergency response agents with those of the Alaska River Watch program, a state-operated flood preparedness and community outreach initiative. For over 50 years, the River Watch program has been fostering long-lasting, open, and reciprocal communication with flood prone communities, as well as local emergency management and tribal officials. By taking into account cultural, ethnic, and socioeconomic features of rural Alaskan communities, the River Watch program was able to establish and maintain a sense of partnership and reliable communication patterns with communities at risk. As a result, officials and residents in these communities are open to information and guidance from the River Watch during the time of a flood, and thus are poised to take prompt actions. By informing communities of existing ice conditions and flood threats on a regular basis, the River Watch provides effective mitigation efforts in terms of ice jam flood effects reduction. Although other ice jam mitigation attempts had been made throughout US and Alaskan history, the majority proved to be futile and/or cost-ineffective. Galena, along with other rural riverine Alaskan communities, has to rely primarily on disaster response and recovery strategies to withstand the shock of disasters. Significant government funds are spent on these challenging efforts and these expenses might be reduced through an improved understanding of both the physical and climatological principals behind river ice breakup and risk mitigation. This study finds that long term dialogue is critical for effective disaster response and recovery during extreme hydrological events connected to changing climate, timing of river ice breakup, and flood occurrence in rural communities of the Far North.
NASA Astrophysics Data System (ADS)
Maracle, B. K.; Schuster, P. F.
2008-12-01
The U.S. Geological Survey (USGS) recently concluded a five-year water quality study (2001-2005) of the Yukon River and its major tributaries. One component of the study was to establish a water quality baseline providing a frame of reference to assess changes in the basin that may result from climate change. As the study neared its conclusion, the USGS began to foster a relationship with the Yukon River Inter-Tribal Watershed Council (YRITWC). The YRITWC was in the process of building a steward-based Yukon River water quality program. Both the USGS and the YRITWC recognized the importance of collaboration resulting in mutual benefits. Through the guidance, expertise, and training provided by the USGS, YRITWC developed and implemented a basin-wide water quality program. The YRITWC program began in March, 2006 utilizing USGS protocols, techniques, and in-kind services. To date, more than 300 samplings and field measurements at more than 25 locations throughout the basin (twice the size of California) have been completed by more than 50 trained volunteers. The Yukon River Basin baseline water quality database has been extended from 5 to 8 years due to the efforts of the YRITWC-USGS collaboration. Basic field measurements include field pH, specific conductance, dissolved oxygen, and water temperature. Samples taken for laboratory analyses include major ions, dissolved organic carbon, greenhouse gases, nutrients, and stable isotopes of hydrogen and oxygen, and selected trace elements. Field replicates and blanks were introduced into the program in 2007 for quality assurance. Building toward a long-term dataset is critical to understanding the effects of climate change on river basins. Thus, relaying the importance of long-term water-quality databases is a main focus of the training workshops. Consistencies in data populations between the USGS 5-year database and the YRITWC 3-year database indicate protocols and procedures made a successful transition. This reflects the success of the YRITWC- USGS sponsored water-quality training workshops for water technicians representing more than 18 Tribal Councils and First Nations throughout the Yukon River Basin. The collaborative approach to outreach and education will be described along with discussion of future opportunities using this model.
Lower Clearwater Aquatic Mammal Survey. Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mack, Curt; Kronemann, Loren A.; Eneas, Cheryl
BPA provided funding to collect baseline data on river otters to assist in developing mitigation implementation plans for river otters percent to the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, sections 1003 (b)(2) and (3). Distribution, movements, habitat use, and diets of river otters were investigated in the Clearwater River within the Nez Perce Indian Reservation from 1991-1992. The study outlined recommendations to guide development of mitigation implementation plans for riparian habitats. Sections of the Clearwater River were identified that if protected or enhanced would provide optimal benefit to otters. Habitat improvement alternatives were also outlinedmore » which could be used to enhance otter habitats.« less
Millennial-aged organic carbon subsidies to a modern river food web.
Caraco, Nina; Bauer, James E; Cole, Jonathan J; Petsch, Steven; Raymond, Peter
2010-08-01
Recent studies indicate that highly aged material is a major component of organic matter transported by most rivers. However, few studies have used natural 14C to trace the potential entry of this aged material into modern river food webs. Here we use natural abundance 14C, 13C, and deuterium (2H) to trace the contribution of aged and contemporary organic matter to an important group of consumers, crustacean zooplankton, in a large temperate river (the Hudson River, New York, USA). Zooplankton were highly 14C depleted (mean delta14C = -240 per thousand) compared to modern primary production in the river or its watershed (delta14C = -60 per thousand to +50 per thousand). In order to account for the observed 14C depletion, zooplankton must be subsidized by highly aged particulate organic carbon. IsoSource modeling suggests that the range of the aged dietary subsidy is between approximately 57%, if the aged organic matter source was produced 3400 years ago, and approximately 21%, if the organic carbon used is > or = 50 000 years in age, including fossil material that is millions of years in age. The magnitude of this aged carbon subsidy to river zooplankton suggests that modern river food webs may in some cases be buffered from the limitations set by present-day primary production.
NASA Astrophysics Data System (ADS)
Power, M. E.; Limm, M.; Finlay, J. C.; Welter, J.; Furey, P.; Lowe, R.; Hondzo, M.; Dietrich, W. E.; Bode, C. A.; National CenterEarth Surface Dynamics
2011-12-01
Riverine biota live within several networks. Organisms are embedded in food webs, whose structure and dynamics respond to environmental changes down river drainages. In sunlit rivers, food webs are fueled by attached algae. Primary producer biomass in the Eel River of Northwestern California, as in many sunlit, temperate rivers worldwide, is dominated by the macroalga Cladophora, which grows as a hierarchical, branched network. Cladophora proliferations vastly amplify the ecological surface area and the diversity microhabitats available to microbes. Environmental conditions (light, substrate age or stability, flow, redox gradients) change in partially predictable ways along both Cladophora fronds and river drainage networks, from the frond tips (or headwaters) to their base (or river mouth). We are interested in the ecological and biogeochemical consequences, at the catchment scale, of cross-scale interactions of microbial food webs on Cladophora with macro-organismal food webs, as these change down river drainages. We are beginning to explore how seasonal, hydrologic and macro-consumer control over the production and fate of Cladophora and its epiphytes could mediate ecosystem linkages of the river, its watershed, and nearshore marine ecosystems. Of the four interacting networks we consider, the web of microbial interactions is the most poorly known, and possibly the least hierarchical due to the prevalence of metabolic processing chains (waste products of some members become resources for others) and mutualisms.
Draft Maumee River Watershed Restoration Plan
A draft of the Maumee River AOC Watershed Restoration Plan was completed in January 2006. The plan was created to meet requirements for the stage II RAP as well as Ohio EPA’s and ODNR’s Watershed Coordinator Program.
Napa River Sediment TMDL Implementation and Habitat Enhancement Project
Information about the SFBWQP Napa River Sediment TMDL Implementation and Habitat Enhancement Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.
Publications - RI 97-15E | Alaska Division of Geological & Geophysical
Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Metadata - Read me Keywords Avalanche; Coastal and River; Coastal and River Hazards; Derivative; Earthquake
Publications - PDF 98-37D | Alaska Division of Geological & Geophysical
Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in - Read me Keywords Coastal and River; Coastal and River Hazards; Construction Materials; Decorative Stone
Childers, Dallas; Hammond, Stephen E.; Johnson, William P.
1988-01-01
Immediately after the devastating May 18, 1980, eruption of Mount St. Helens, a program was initiated by the U.S. Geological Survey to study the streamflow and sediment characteristics of streams impacted by the eruption. Some of the data gathered in that program are presented in this report. Data are presented for two key sites in the Toutle River basin: North Fork Toutle River near Kid Valley, and Toutle River at Tower Road, near Silver Lake. The types of data presented are appropriate for use with sediment transport formulas; however, the data are also intended for use in a wide variety of additional applications. The data presented in this report are unique because they delineate flow conditions possessing great potential fo sediment transport. The data define unusually high suspended-sediment concentration. Data defining hydraulic, peak discharge, suspended-sediment, and bed-material characteristics are presented. (USGS)
Links between global meat trade and organic river pollution
NASA Astrophysics Data System (ADS)
Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick
2017-04-01
Rising demand of meat boosts livestock farming intensification. Due to international meat trade, the environmental costs of production are becoming increasingly separated from where the meat is consumed. However, little is known about the impact of trade on the environment for both importers and exporters. Combining multi-scale (national, regional and gridded) data, we present a new method to quantify the impacts of international meat trade on global river organic pollution. We computed spatially distributed organic pollution in global river networks with and without meat trade, where the without-trade scenario assumes that meat imports are replaced by local production. Our analysis indicates high potential savings of livestock population and pollutants production at the global scale due to the international meat trade. The spatially detailed analysis shows that current trade contributes to organic pollution reductions in meat importing regions, especially in rich nations. The deterioration of river water quality, especially in developing regions, points to an urgent need for affordable infrastructure and technology development and wastewater solutions.
Role of surface and subsurface processes in scaling N2O emissions along riverine networks
Marzadri, Alessandra; Dee, Martha M.; Tonina, Daniele; Bellin, Alberto; Tank, Jennifer L.
2017-01-01
Riverine environments, such as streams and rivers, have been reported as sources of the potent greenhouse gas nitrous oxide (N2O) to the atmosphere mainly via microbially mediated denitrification. Our limited understanding of the relative roles of the near-surface streambed sediment (hyporheic zone), benthic, and water column zones in controlling N2O production precludes predictions of N2O emissions along riverine networks. Here, we analyze N2O emissions from streams and rivers worldwide of different sizes, morphology, land cover, biomes, and climatic conditions. We show that the primary source of N2O emissions varies with stream and river size and shifts from the hyporheic–benthic zone in headwater streams to the benthic–water column zone in rivers. This analysis reveals that N2O production is bounded between two N2O emission potentials: the upper N2O emission potential results from production within the benthic–hyporheic zone, and the lower N2O emission potential reflects the production within the benthic–water column zone. By understanding the scaling nature of N2O production along riverine networks, our framework facilitates predictions of riverine N2O emissions globally using widely accessible chemical and hydromorphological datasets and thus, quantifies the effect of human activity and natural processes on N2O production. PMID:28400514
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, David L.; Nigro, Anthony A.; Willis, Charles F.
1994-06-01
The authors report their results of studies to determine the extent to which northern squawfish predation on juvenile salmonids is a problem in the Columbia River Basin, and to evaluate how effectively fisheries can be used to control northern squawfish populations and reduce juvenile salmonid losses to predation. These studies were initiated as part of a basinwide program to control northern squawfish predation and reduce mortality of juvenile salmonids on their migration to the ocean. Three papers are included in this report. They are entitled: (1) Development of a Systemwide Predator Control Program: Indexing and Fisheries Evaluation; (2) Economic, Socialmore » and Legal Feasibility of Commercial Sport, and Bounty Fisheries on Northern Squawfish; (3) Columbia River Ecosystem Model (CREM): Modeling Approach for Evaluation of Control of Northern Squawfish Populations using Fisheries Exploitation.« less
NASA Technical Reports Server (NTRS)
Williamson, F. S. L.
1974-01-01
The use of remote sensors to determine the characteristics of the wetlands of the Chesapeake Bay and surrounding areas is discussed. The objectives of the program are stated as follows: (1) to use data and remote sensing techniques developed from studies of Rhode River, West River, and South River salt marshes to develop a wetland classification scheme useful in other regions of the Chesapeake Bay and to evaluate the classification system with respect to vegetation types, marsh physiography, man-induced perturbation, and salinity; and (2) to develop a program using remote sensing techniques, for the extension of the classification to Chesapeake Bay salt marshes and to coordinate this program with the goals of the Chesapeake Research Consortium and the states of Maryland and Virginia. Maps of the Chesapeake Bay areas are developed from aerial photographs to display the wetland structure and vegetation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearsons, Todd N.; Thomas, Joan B.
2003-01-01
The change in pathogens prevalence to wild fish is probably the least studied ecological interaction associated with hatchery operations. In 1999, the Cle Elum Hatchery began releasing spring chinook smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to evaluate whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Approximately 200 smolts were collected at the Chandler smolt collection facility on the lower Yakimamore » River during 1998, 2000 and 2001 and monitored for specific pathogens. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. In addition, the fish were tested for Ceratomyxa shasta spores in 2001. Not all testing has been completed for every year, but to date, there have only been minimal changes in levels of the bacterial pathogens in the naturally produced smolts. At this point, due to the limited testing so far, these changes are attributed to normal fluctuation of prevalence.« less
New Whole-House Solutions Case Study: Hood River Passive House
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-02-01
The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift Housemore » and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.« less
Whitney, Rita
1994-01-01
The U.S. Geological Survey collected and analyzed water samples from June 1987 through February 1990 as part of a study of the ground-water quality in the Carson River Basin. The Carson River Basin is one of seven national pilot projects conducted by the Geological Survey as part of a National Water-Quality Assessment Program. The data from the sampling program include analyses of 110 different constituents and properties of ground water in 400 separate samplings of 230 domestic, public-supply, irrigation, and shallow monitoring wells and one spring. The water-quality data include: field measurements, major constituents, nutrients, minor constituents, radionuclides, stable isotopes, and synthetic organic compounds.
Pedro, F; Maltchik, L; Bianchini, I
2006-05-01
The dynamics of aquatic macrophytes in intermittent rivers is generally related to the characteristics of the resistance and resilience of plants to hydrologic disturbances of flood and drought. In the semi-arid region of Brazil, intermittent rivers and streams are affected by disturbances with variable intensity, frequency, and duration throughout their hydrologic cycles. The aim of the present study is to determine the occurrence and variation of biomass of aquatic macrophyte species in two intermittent rivers of distinct hydrologic regimes. Their dynamics were determined with respect to resistance and resilience responses of macrophytes to flood and drought events by estimating the variation of biomass and productivity throughout two hydrologic cycles. Twenty-one visits were undertaken in the rewetting, drying, and drought phases in a permanent puddle in the Avelós stream and two temporary puddles in the Taperoá river, state of Paraíba, Northeast Brazil. The sampling was carried out by using the square method. Floods of different magnitudes occurred during the present study in the river and in the stream. The results showed that floods and droughts are determining factors in the occurrence of macrophytes and in the structure of their aquatic communities. The species richness of the aquatic macrophyte communities was lower in the puddles of the river and stream subject to flood events, when compared to areas where the run-off water is retained. At the beginning of the recolonization process, the intensity of the floods was decisive in the productivity and biomass of the aquatic macrophytes in the Taperoá river and the Avelós stream. In intermediate levels of disturbance, the largest values of productivity and biomass and the shortest time for starting the recolonization process occurred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Gary E.
This document is the annual report for the period September 1, 2014 through August 31, 2015 for the project—Facilitation of the Estuary/Ocean Subgroup (EOS) and the Expert Regional Technical Group (ERTG). Pacific Northwest National Laboratory (PNNL) conducted the project for the Bonneville Power Administration (BPA). The EOS and ERTG are part of the research, monitoring, and evaluation (RME) and habitat restoration efforts, respectively, developed by the Action Agencies (BPA, U.S. Army Corps of Engineers [Corps or USACE], and U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federalmore » Columbia River Power System (FCRPS) and implemented under the Columbia Estuary Ecosystem Restoration Program (CEERP). BPA/Corps (2015) explain the CEERP and the role of RME and the ERTG. For the purposes of this report, the lower Columbia River and estuary (LCRE) includes the floodplain from Bonneville Dam down through the lower river and estuary into the river’s plume in the ocean. The main purpose of this project is to facilitate EOS and ERTG meetings and work products. Other purposes are to provide technical support for CEERP adaptive management, CEERP restoration design challenges, and tributary RME. From 2002 through 2008, the EOS worked to design the federal RME program for the estuary/ocean (Johnson et al. 2008). From 2009 to the present day, EOS activities have involved RME implementation; however, EOS activities were minimal during the current reporting period. PNNL provided technical support to CEERP’s adaptive management process by convening 1.2 meetings of the Action Agencies (AAs) and drafting material for the “CEERP 2015 Restoration and Monitoring Plan” (BPA/Corps 2015).« less
A report upon the Grand Coulee Fish Maintenance Project 1939-1947
Fish, F.F.; Hanavan, Mitchell G.
1948-01-01
The construction or Grand Coulee Dam, on the upper Columbia River, involved the loss of 1,140 lineal miles of spawning and rearing stream to the production of anadromous fishes. The fact that the annual value of these fish runs to the nation was estimated at $250,000 justified reasonable expenditures to assure their perpetuation. It was found economically infeasible to safely collect and pass adult fish upstream and fingerling fish downstream at the dam because of the tremendous flow of the river and the 320 foot vertical difference in elevation between forebay and tailrace.The Grand Coulee Fish-Maintenance Project, undertaken by the United States Fish and Wildlife Service in 1939, consisted in relocating the anadroumous runs of the upper Columbia River to four major tributaries entering below the Grand Coulee damsite. These streams were believed capable of supporting several times their existing, badly depleted, run. The plan was predicated upon the assumption that the relocated runs, in conformity with their "homing tendency", would return to the lower tributaries rather than attempt to reach their ancestral spawning grounds above Grand Coulee Dam. This interim report covers the history and accomplishments of the Grand Coulee Fish-Maintenance Project through the initial period of relocating the rune as well as the first four years of the permanent program. Results obtained to date indicate conclusive success in diverting the upper Columbia fish runs into the accessible lower tributaries. The results also indicate, less conclusively, that - in spite of many existing handicaps - the upper Columbia salmon and steelhead runs may be rehabilitated through the integrated program of natural and artificial propagation incorporated in the Grand Coulee Fish-Maintenance Project.
Lofrano, Giusy; Libralato, Giovanni; Acanfora, Floriana Giuseppina; Pucci, Luca; Carotenuto, Maurizio
2015-08-15
The Sarno River trend analysis during the last 60 years was traced focusing on the socio-economic and environmental issues. The river, originally worshiped as a god by Romans, is affected by an extreme level of environmental degradation, being sadly reputed as the most polluted river in Europe. This is the "not to be followed" example of the worst way a European river can be managed. Data about water, sediment, soil, biota and air contamination were collected from scientific papers, monitoring surveys, and technical reports depicting a sick river. Originally, the river was reputed as a source of livelihood, now it is considered a direct threat for human health. Wastewater can still flow through the river partially or completely untreated, waste production associated with the manufacture of metal products and leather tanning continues to suffer from the historical inadequacy of regional wastewater treatment plants (WWTPs), associated with the partial or no reuse of effluents. All efforts should be devoted to solving the lack of wastewater and waste management, the gap in land planning, improving the capacity of existing WWTPs also via the construction of new sewer sections, restoring Sarno River minimum vital-flow, keeping to a minimum uncontrolled discharges as well as supporting river contracts. The 2015 goal stated by the Water Framework Directive (2000/60/EC) is still far to be reached. The lesson has not been learnt yet. Copyright © 2015 Elsevier B.V. All rights reserved.
A modeling study examining the impact of nutrient boundaries ...
A mass balance eutrophication model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to describe nitrogen, phosphorus and primary production in the Louisiana shelf of the Gulf of Mexico. Features of this model include bi-directional boundary exchanges, an empirical site-specific light attenuation equation, estimates of 56 river loads and atmospheric loads. The model was calibrated for 2006 by comparing model output to observations in zones that represent different locations in the Gulf. The model exhibited reasonable skill in simulating the phosphorus and nitrogen field data and primary production observations. The model was applied to generate a nitrogen mass balance estimate, to perform sensitivity analysis to compare the importance of the nutrient boundary concentrations versus the river loads on nutrient concentrations and primary production within the shelf, and to provide insight into the relative importance of different limitation factors on primary production. The mass budget showed the importance of the rivers as the major external nitrogen source while the atmospheric load contributed approximately 2% of the total external load. Sensitivity analysis showed the importance of accurate estimates of boundary nitrogen concentrations on the nitrogen levels on the shelf, especially at regions further away from the river influences. The boundary nitrogen concentrations impacted primary production less than nitrogen concent
Primary Productivity in Meduxnekeag River, Maine, 2005
Goldstein, Robert M.; Schalk, Charles W.; Kempf, Joshua P.
2009-01-01
During August and September 2005, dissolved oxygen, temperature, pH, specific conductance, streamflow, and light intensity (LI) were determined continuously at six sites defining five reaches on Meduxnekeag River above and below Houlton, Maine. These data were collected as input for a dual-station whole-stream metabolism model to evaluate primary productivity in the river above and below Houlton. The river receives nutrients and organic matter from tributaries and the Houlton wastewater treatment plant (WWTP). Model output estimated gross and net primary productivity for each reach. Gross primary productivity (GPP) varied in each reach but was similar and positive among the reaches. GPP was correlated to LI in the four reaches above the WWTP but not in the reach below. Net primary productivity (NPP) decreased in each successive downstream reach and was negative in the lowest two reaches. NPP was weakly related to LI in the upper two reaches and either not correlated or negatively correlated in the lower three reaches. Relations among GPP, NPP, and LI indicate that the system is heterotrophic in the downstream reaches. The almost linear decrease in NPP (the increase in metabolism and respiration) indicates a cumulative effect of inputs of nutrients and organic matter from tributaries that drain agricultural land, the town of Houlton, and the discharges from the WWTP.
National Water-Quality Assessment program: The Trinity River Basin
Land, Larry F.
1991-01-01
In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water-quality information that will be useful to policy makers and managers at the national, State, and local levels. A major design feature of the NAWQA program will enable water-quality information at different areal scales to be integrated. A major component of the program is study-unit investigations, which comprise the principal building blocks of the program on which national-level assessment activities will be based. The 60 study-unit investigations that make up the program are hydrologic systems that include parts of most major river basins and aquifer systems. These study units cover areas of 1,200 to more than 65,000 square miles and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the Trinity River basin study was among the first 20 NAWQA study units selected for study under the full-scale implementation plan.
Valuing tradeoffs between agricultural production and ecosystem services in the Heihe River Basin
NASA Astrophysics Data System (ADS)
Li, Z.; Deng, X.; Wu, F.
2017-12-01
Ecosystem services are faced with multiple stress from complex driving factors, such as climate change and human interventions. The Heihe River Basin (HRB), as the second largest inland river basin in China, is a typical semi-arid and arid region with fragile and sensitive ecological environment. For the past decades, agricultural production activities in the basin has affected ecosystem services in different degrees, leading to complex relations among "water-land-climate-ecology-human", in which hydrological process and water resource management is the key. In this context, managing trade-offs among water uses in the river basin to sustain multiple ecosystem services is crucial for healthy ecosystem and sustainable socioeconomic development. In this study, we analyze the trade-offs between different water uses in agricultural production and key ecosystem services in the HRB by applying production frontier analysis, with the aim to explore the potential for managing them. This method traces out joint production frontiers showing the combinations of ecosystem services and agricultural production that can be generated in a given area, and it deals with the economic problem of the allocation of scarce water resources under presumed objective, which aims to highlight synergies and reduce trade-offs between alternative water uses. Thus, management schemes that targets to both sustain agricultural production and increase the provision of key ecosystem services have to consider not only the technological or biological nature of interrelationships, but also the economic interdependencies among them.
Johnson, G.C.; Connell, J.F.
2001-01-01
In 1994, the U.S. Geological Survey began an assessment of the upper Tennessee River Basin as part of the National Water-Quality Assessment (NAWQA) Program. A ground-water land-use study conducted in 1996 focused on areas with burley tobacco production in northeastern Tennessee and southwestern Virginia. Land-use studies are designed to focus on specific land uses and to examine natural and human factors that affect the quality of shallow ground water underlying specific types of land use. Thirty wells were drilled in shallow regolith adjacent to and downgradient of tobacco fields in the Valley and Ridge Physiographic Province of the upper Tennessee River Basin. Ground-water samples were collected between June 4 and July 9, 1997, to coincide with the application of the majority of pesticides and fertilizers used in tobacco production. Ground-water samples were analyzed for nutrients, major ions, 79 pesticides, 7 pesticide degradation products, 86 volatile organic compounds, and dissolved organic carbon. Nutrient concentrations were lower than the levels found in similar NAWQA studies across the United States during 1993-95. Five of 30 upper Tennessee River Basin wells (16.7 percent) had nitrate levels exceeding 10 mg/L while 19 percent of agricultural land-use wells nationally and 7.9 percent in the Southeast had nitrate concentrations exceeding 10 mg/L. Median nutrient concentrations were equal to or less than national median concentrations. All pesticide concentrations in the basin were less than established drinking water standards, and pesticides were detected less frequently than average for other NAWQA study units. Atrazine was detected at 8 of 30 (27 percent) of the wells, and deethylatrazine (an atrazine degradation product) was found in 9 (30 percent) of the wells. Metalaxyl was found in 17 percent of the wells, and prometon, flumetralin, dimethomorph, 2,4,5-T, 2,4-D, dichlorprop, and silvex were detected once each (3 percent). Volatile organic compounds were detected in 27 of 30 wells. Although none of the volatile organic compound concentrations exceeded drinking water standards, the detection frequency was higher than the average for the other NAWQA study units.
DeJager, Nathan R.
2016-03-22
The Upper Mississippi River System (UMRS) is a mosaic of river channels, backwater lakes, floodplain forests, and emergent marshes. This complex mosaic supports diverse aquatic and terrestrial plant communities, over 150 fish species; 40 freshwater mussel species; 50 amphibian and reptile species; and over 360 bird species, many of which use the UMRS as a critical migratory route. The river and floodplain are also hotspots for biogeochemical activity as the river-floodplain collects and processes nutrients derived from the UMR basin. These features qualify the UMRS as a Ramsar wetland of international significance.Two centuries of land-use change, including construction for navigation and conversion of large areas to agriculture, has altered the broad-scale structure of the river and changed local environmental conditions in many areas. Such changes have affected rates of nutrient processing and transport, as well as the abundance of various fish, mussel, plant, and bird species. However, the magnitude and spatial scale of these effects are not well quantified, especially in regards to the best methods and locations for restoring various aspects of the river ecosystem.The U.S. Congress declared the navigable portions of the Upper Mississippi River System (UMRS) a “nationally significant ecosystem and nationally significant commercial navigation system” in the Water Resources Development Act of 1986 (Public Law 99-662) and launched the Upper Mississippi River Restoration (UMRR) Program, the first comprehensive program for ecosystem restoration, monitoring, and research on a large river system. This fact sheet focuses on landscape ecological studies conducted by the U.S. Geological Survey to support decision making by the UMRR with respect to ecosystem restoration.