Sample records for river runoff increase

  1. The impact of global warming on river runoff

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.

    1992-01-01

    A global atmospheric model is used to calculate the annual river runoff for 33 of the world's major rivers for the present climate and for a doubled CO2 climate. The model has a horizontal resolution of 4 x 5 deg, but the runoff from each model grid box is quartered and added to the appropriate river drainage basin on a 2 x 2.5 deg resolution. The computed runoff depends on the model's precipitation, evapotranspiration, and soil moisture storage. For the doubled CO2 climate, the runoff increased for 25 of the 33 rivers, and in most cases the increases coincide with increased rainfall within the drainage basins. There were runoff increases in all rivers in high northern latitudes, with a maximum increase of 47 percent. At low latitudes there were both increases and decreases ranging from a 96 increase to a 43 percent decrease. The effect of the simplified model assumptions of land-atmosphere interactions on the results is discussed.

  2. Impact of possible climate changes on river runoff under different natural conditions

    NASA Astrophysics Data System (ADS)

    Gusev, Yeugeniy M.; Nasonova, Olga N.; Kovalev, Evgeny E.; Ayzel, Georgy V.

    2018-06-01

    The present study was carried out within the framework of the International Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) for 11 large river basins located in different continents of the globe under a wide variety of natural conditions. The aim of the study was to investigate possible changes in various characteristics of annual river runoff (mean values, standard deviations, frequency of extreme annual runoff) up to 2100 on the basis of application of the land surface model SWAP and meteorological projections simulated by five General Circulation Models (GCMs) according to four RCP scenarios. Analysis of the obtained results has shown that changes in climatic runoff are different (both in magnitude and sign) for the river basins located in different regions of the planet due to differences in natural (primarily climatic) conditions. The climatic elasticities of river runoff to changes in air temperature and precipitation were estimated that makes it possible, as the first approximation, to project changes in climatic values of annual runoff, using the projected changes in mean annual air temperature and annual precipitation for the river basins. It was found that for most rivers under study, the frequency of occurrence of extreme runoff values increases. This is true both for extremely high runoff (when the projected climatic runoff increases) and for extremely low values (when the projected climatic runoff decreases).

  3. Quantitative analysis of the effect of climate change and human activities on runoff in the Liujiang River Basin

    NASA Astrophysics Data System (ADS)

    LI, X.

    2017-12-01

    Abstract: As human basic and strategic natural resources, Water resources have received an unprecedented challenge under the impacts of global climate change. Analyzing the variation characteristics of runoff and the effect of climate change and human activities on runoff could provide the basis for the reasonable utilization and management of water resources. Taking the Liujiang River Basin as the research object, the discharge data of hydrological station and meteorological data at 24 meteorological stations in the Guangxi Province as the basis, the variation characteristics of runoff and precipitation in the Liujiang River Basin was analyzed, and the quantitatively effect of climate change and human activities on runoff was proposed. The results showed that runoff and precipitation in the Liujiang River Basin had an increasing trend from 1964 to 2006. Using the method of accumulative anomaly and the orderly cluster method, the runoff series was divided into base period and change period. BP - ANN model and sensitivity coefficient method were used for quantifying the influences of climate change and human activities on runoff. We found that the most important factor which caused an increase trend of discharges in the Liujiang River Basin was precipitation. Human activities were also important factors which influenced the intra-annual distribution of runoff. Precipitation had a more sensitive influence to runoff variation than potential evaporation in the Liujiang River Basin. Key words: Liujiang River Basin, climate change, human activities, BP-ANN, sensitivity coefficient method

  4. Magnified Sediment Export of Small Mountainous Rivers in Taiwan: Chain Reactions from Increased Rainfall Intensity under Global Warming.

    PubMed

    Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji

    2015-01-01

    Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970-1989) and a recent stage (1990-2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0-99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe.

  5. Responses of Surface Runoff to Climate Change and Human Activities in the Arid Region of Central Asia: A Case Study in the Tarim River Basin, China

    NASA Astrophysics Data System (ADS)

    Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui

    2013-04-01

    Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.

  6. Responses of surface runoff to climate change and human activities in the arid region of central Asia: a case study in the Tarim River basin, China.

    PubMed

    Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui

    2013-04-01

    Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.

  7. Magnified Sediment Export of Small Mountainous Rivers in Taiwan: Chain Reactions from Increased Rainfall Intensity under Global Warming

    PubMed Central

    Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji

    2015-01-01

    Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970–1989) and a recent stage (1990–2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0–99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe. PMID:26372356

  8. Response of Colorado river runoff to dust radiative forcing in snow

    USGS Publications Warehouse

    Painter, T.H.; Deems, J.S.; Belnap, J.; Hamlet, A.F.; Landry, C.C.; Udall, B.

    2010-01-01

    The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river's historical mean. Climate models project runoff losses of 7-20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river's runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Hereweuse the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916-2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ???5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change.

  9. Using runoff slope-break to determine dominate factors of runoff decline in Hutuo River Basin, North China.

    PubMed

    Tian, Fei; Yang, Yonghui; Han, Shumin

    2009-01-01

    Water resources in North China have declined sharply in recent years. Low runoff (especially in the mountain areas) has been identified as the main factor. Hutuo River Basin (HRB), a typical up-stream basin in North China with two subcatchments (Ye and Hutuo River Catchments), was investigated in this study. Mann-Kendall test was used to determine the general trend of precipitation and runoff for 1960-1999. Then Sequential Mann-Kendall test was used to establish runoff slope-break from which the beginning point of sharp decline in runoff was determined. Finally, regression analysis was done to illustrate runoff decline via comparison of precipitation-runoff correlation for the period prior to and after sharp runoff decline. This was further verified by analysis of rainy season peak runoff flows. The results are as follows: (1) annual runoff decline in the basin is significant while that of precipitation is insignificant at alpha=0.05 confidence level; (2) sharp decline in runoff in Ye River Catchment (YRC) occurred in 1968 while that in Hutuo River Catchment (HRC) occurred in 1978; (3) based on the regression analysis, human activity has the highest impact on runoff decline in the basin. As runoff slope-breaks in both Catchments strongly coincided with increase in agricultural activity, agricultural water use is considered the dominate factor of runoff decline in the study area.

  10. Response of Colorado River runoff to dust radiative forcing in snow.

    PubMed

    Painter, Thomas H; Deems, Jeffrey S; Belnap, Jayne; Hamlet, Alan F; Landry, Christopher C; Udall, Bradley

    2010-10-05

    The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river's historical mean. Climate models project runoff losses of 7-20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river's runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Here we use the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916-2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ∼5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change.

  11. Changes of Geo-Runoff Components in Russian Arctic Rivers

    NASA Astrophysics Data System (ADS)

    Groisman, P. Y.; Georgiadi, A.; Kashutina, E.; Milyukova, I.

    2017-12-01

    Long-term phases of changes in naturalized components of the geo-runoff (streamflow, heat flow and suspended sediment yield) of Russian Arctic Rivers during the period of observation (from 1930-1940 till 2000s) were revealed on the basis of normalized cumulative curves. Their characteristics and the effects of impact of anthropogenic factors are evaluated. Since 1930-1940s till the beginning of the 21st century, the naturalized annual and seasonal river runoff in the largest river basins (Ob', Yenisei, Lena) was characterized by two main long-term phases of its changes. The phase of decreased runoff (since the 1930-1940s) was replaced in the 1970-1980s by a long-term phase of increased streamflow. The duration of phases was several decades and are characterized by significant runoff differences. In the long-term variations of the heat flow of the Ob, Yenisei, Lena, Northern Dvina and Pechora also were found two major long-term phases. The phase of the heat flow decrease, which began in 1930-1940-ies and lasted for 35-55 years, was replaced in 1970-1980 by 20-year phase of its increase (except the Yenisei, where this phase began in the late 1990s.) and has continued until now. Similar long-term phases are observed for river water temperature of considered rivers. Differences in heat flow reaches 20% during the phase of its increased and decreased values for the Northern Dvina and the Yenisei Rivers, but for other rivers they are not higher than 10%. Long-term changes of annual suspended sediment yield for the Yenisei and Lena Rivers are also characterized by two major long-term phases, which replaced each another in the 1970-1990. Differences in the suspended sediment yield during the increase and decrease phases reach 40% for Lena, whereas for Yenisei they are substantially less (10%). Anthropogenic factors (mainly water reservoirs) have significantly changed the characteristics of the long-term phases on the Yenisei River while their impact is not significant on other rivers. The long-term phases of decrease and increase of "conditionally natural" components of Arctic Rivers of Russia geo-runoff are closely associated with the indices zonal atmospheric air transport intensity.

  12. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China.

    PubMed

    Xue, Jie; Gui, Dongwei

    2015-01-01

    The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth's hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River.

  13. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China

    PubMed Central

    Xue, Jie

    2015-01-01

    The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth’s hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River. PMID:26244113

  14. Physicochemical conditions and properties of particles in urban runoff and rivers: Implications for runoff pollution.

    PubMed

    Wang, Qian; Zhang, Qionghua; Wu, Yaketon; Wang, Xiaochang C

    2017-04-01

    In this study, to gain an improved understanding of the fate and fractionation of particle-bound pollutants, we evaluated the physicochemical conditions and the properties of particles in rainwater, urban runoff, and rivers of Yixing, a city with a large drainage density in the Taihu Lake Basin, China. Road runoff and river samples were collected during the wet and dry seasons in 2015 and 2016. There were significant differences between the physicochemical conditions (pH, oxidation-reduction potential (ORP), and electroconductivity (EC)) of rainwater, runoff, and rivers. The lowest pH and highest ORP values of rainwater provide the optimal conditions for leaching of particle-bound pollutants such as heavy metals. The differences in the physicochemical conditions of the runoff and rivers may contribute to the redistribution of pollutants between particulate and dissolved phases after runoff is discharged into waterways. Runoff and river particles were mainly composed of silt and clay (<63 μm, 88.3%-90.7%), and runoff particles contained a higher proportion of nano-scale particles (<1 μm) but a lower proportion of submicron-scale particles (1-16 μm) than rivers. The ratio of turbidity to TSS increased with the proportion of fine particles and was associated with the accumulation of pollutants and settling ability of particles, which shows that it can be used as an index when monitoring runoff pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Statistical attribution analysis of the nonstationarity of the annual runoff series of the Weihe River.

    PubMed

    Xiong, Lihua; Jiang, Cong; Du, Tao

    2014-01-01

    Time-varying moments models based on Pearson Type III and normal distributions respectively are built under the generalized additive model in location, scale and shape (GAMLSS) framework to analyze the nonstationarity of the annual runoff series of the Weihe River, the largest tributary of the Yellow River. The detection of nonstationarities in hydrological time series (annual runoff, precipitation and temperature) from 1960 to 2009 is carried out using a GAMLSS model, and then the covariate analysis for the annual runoff series is implemented with GAMLSS. Finally, the attribution of each covariate to the nonstationarity of annual runoff is analyzed quantitatively. The results demonstrate that (1) obvious change-points exist in all three hydrological series, (2) precipitation, temperature and irrigated area are all significant covariates of the annual runoff series, and (3) temperature increase plays the main role in leading to the reduction of the annual runoff series in the study basin, followed by the decrease of precipitation and the increase of irrigated area.

  16. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    NASA Astrophysics Data System (ADS)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced the influence on water demand management. Second, water demand management factors positively relate to ecological improvement in Tarim River Basin. Third, after a further prediction on glacier melt with fuzzy neural network, it finds that the weaker adjustment influence of glacier runoff would put Tarim River Basin into a much weaker mutual-dependent relationship. The research believes that if short-term activity of society has wrongly adapted to runoff increase from faster glacier melt, it would put social development and ecological recovery of Tarim River Basin into a higher vulnerable way. Key words: Tarim River Basin, Changing Condition, Glacier Melt, mutual-dependent vulnerability

  17. Estimation of Shallow Groundwater Discharge and Nutrient Load into a River

    Treesearch

    Ying Ouyang

    2012-01-01

    Pollution of rivers with excess nutrients due to groundwater discharge, storm water runoff, surface loading,and atmospheric deposition is an increasing environmental concern worldwide. While the storm water runoff and surface loading of nutrients into many rivers have been explored in great detailed, the groundwater discharge of nutrients into the rivers has not yet...

  18. Influence of Cattle Trails on Runoff Quantity and Quality.

    PubMed

    Miller, Jim J; Curtis, Tony; Chanasyk, David S; Willms, Walter D

    2017-03-01

    Cattle trails in grazed pastures close to rivers may adversely affect surface water quality of the adjacent river by directing runoff to it. The objective of this 3-yr study (2013-2015) in southern Alberta, Canada, was to determine if cattle trails significantly increased the risk of runoff and contaminants (sediment, nutrients) compared with the adjacent grazed pasture (control). A portable rainfall simulator was used to generate artificial rainfall (140 mm h) and runoff. The runoff properties measured were time to runoff and initial abstraction (infiltration), total runoff depth and average runoff rates, as well as concentrations and mass loads of sediment, N, and P fractions. Cattle trails significantly ( ≤ 0.10) decreased time to runoff and initial abstraction (26-32%) in the 2 yr measured and increased total runoff depth, runoff coefficients, and average runoff rates (21-51%) in 2 of 3 yr. Concentrations of sediment, N, and P fractions in runoff were not significantly greater for cattle trails than for control areas. However, mass loads of total suspended solids (57-85% increase), NH-N (31-90%), and dissolved reactive P (DRP) (30-92%) were significantly greater because of increased runoff volumes. Overall, runoff quantity and loads of sediment, NH-N, and DRP were greater for cattle trails compared with the adjacent grazed pasture, and hydrologic connection with cattle-access sites on the riverbank suggests that this could adversely affect water quality in the adjacent river. Extrapolation of the study results should be tempered by the specific conditions represented by this rainfall simulation study. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. The genetic structure of the chloride ion runoff on the example of karst and non-karst geosystems of Arkhangelsk oblast

    NASA Astrophysics Data System (ADS)

    Khayrullina, D. N.; Kurzhanova, A. A.

    2018-01-01

    This paper deals with the estimate the structure of the chloride ion runoff from the karst (on the example of the Sula river basin) and non-karst (on the example of the Vaga river basin) geosystems of Arkhangelsk oblast. The contribution of the surface component predominates in the structure of the chloride ion runoff.For example, the input of surface ion runoff is 49% (for the Sula river basin), 55% (for the Vaga river basin). In time aspect the highest values of variability of the components of the chloride ion runoff are noted for karst geosystems and vary from 38.5% to 55.4% and from 24.7% to 42.9% - for non-karst geosystems.Finally, there is prevalence of the local factors influence because the atmospheric component decreases while ion runoff increases.

  20. River runoff influences on the Central Mediterranean overturning circulation

    NASA Astrophysics Data System (ADS)

    Verri, Giorgia; Pinardi, N.; Oddo, P.; Ciliberti, S. A.; Coppini, G.

    2018-03-01

    The role of riverine freshwater inflow on the Central Mediterranean Overturning Circulation (CMOC) was studied using a high-resolution ocean model with a complete distribution of rivers in the Adriatic and Ionian catchment areas. The impact of river runoff on the Adriatic and Ionian Sea basins was assessed by a twin experiment, with and without runoff, from 1999 to 2012. This study tries to show the connection between the Adriatic as a marginal sea containing the downwelling branch of the anti-estuarine CMOC and the large runoff occurring there. It is found that the multiannual CMOC is a persistent anti-estuarine structure with secondary estuarine cells that strengthen in years of large realistic river runoff. The CMOC is demonstrated to be controlled by wind forcing at least as much as by buoyancy fluxes. It is found that river runoff affects the CMOC strength, enhancing the amplitude of the secondary estuarine cells and reducing the intensity of the dominant anti-estuarine cell. A large river runoff can produce a positive buoyancy flux without switching off the antiestuarine CMOC cell, but a particularly low heat flux and wind work with normal river runoff can reverse it. Overall by comparing experiments with, without and with unrealistically augmented runoff we demonstrate that rivers affect the CMOC strength but they can never represent its dominant forcing mechanism and the potential role of river runoff has to be considered jointly with wind work and heat flux, as they largely contribute to the energy budget of the basin. Looking at the downwelling branch of the CMOC in the Adriatic basin, rivers are demonstrated to locally reduce the volume of Adriatic dense water formed in the Southern Adriatic Sea as a result of increased water stratification. The spreading of the Adriatic dense water into the Ionian abyss is affected as well: dense waters overflowing the Otranto Strait are less dense in a realistic runoff regime, with respect to no runoff experiment, and confined to a narrower band against the Italian shelf with less lateral spreading toward the Ionian Sea center.

  1. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China

    NASA Astrophysics Data System (ADS)

    Chen, Zhongsheng; Chen, Yaning; Li, Baofu

    2013-02-01

    Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Kaidu River Basin in the arid region of northwest China were analyzed to investigate changes in annual runoff during the period of 1960-2009. The nonparametric Mann-Kendall test and the Mann-Kendall-Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. Step change point in annual runoff was identified in the basin, which occurred in the year around 1993 dividing the long-term runoff series into a natural period (1960-1993) and a human-induced period (1994-2009). Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In 1994-2009, climate variability was the main factor that increased runoff with contribution of 90.5 %, while the increasing percentage due to human activities only accounted for 9.5 %, showing that runoff in the Kaidu River Basin is more sensitive to climate variability than human activities. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.

  2. Simulation of rainfall-runoff for major flash flood events in Karachi

    NASA Astrophysics Data System (ADS)

    Zafar, Sumaira

    2016-07-01

    Metropolitan city Karachi has strategic importance for Pakistan. With the each passing decade the city is facing urban sprawl and rapid population growth. These rapid changes directly affecting the natural resources of city including its drainage pattern. Karachi has three major cities Malir River with the catchment area of 2252 sqkm and Lyari River has catchment area about 470.4 sqkm. These are non-perennial rivers and active only during storms. Change of natural surfaces into hard pavement causing an increase in rainfall-runoff response. Curve Number is increased which is now causing flash floods in the urban locality of Karachi. There is only one gauge installed on the upstream of the river but there no record for the discharge. Only one gauge located at the upstream is not sufficient for discharge measurements. To simulate the maximum discharge of Malir River rainfall (1985 to 2014) data were collected from Pakistan meteorological department. Major rainfall events use to simulate the rainfall runoff. Maximum rainfall-runoff response was recorded in during 1994, 2007 and 2013. This runoff causes damages and inundation in floodplain areas of Karachi. These flash flooding events not only damage the property but also cause losses of lives

  3. [Variation characteristics of runoff coefficient of Taizi River basin in 1967-2006].

    PubMed

    Deng, Jun-Li; Zhang, Yong-Fang; Wang, An-Zhi; Guan, De-Xin; Jin, Chang-Jie; Wu, Jia-Bing

    2011-06-01

    Based on the daily precipitation and runoff data of six main embranchments (Haicheng River, Nansha River, Beisha River, Lanhe River, Xihe River, and Taizi River south embranchment) of Taizi River basin in 1967-2006, this paper analyzed the variation trend of runoff coefficient of the embranchments as well as the relationship between this variation trend and precipitation. In 1967-2006, the Taizi River south embranchment located in alpine hilly area had the largest mean annual runoff coefficient, while the Haicheng River located in plain area had the relatively small one. The annual runoff coefficient of the embranchments except Nansha River showed a decreasing trend, being more apparent for Taizi River south embranchment and Lanhe River. All the embranchments except Xihe River had an obvious abrupt change in the annual runoff coefficient, and the beginning year of the abrupt change differed with embranchment. Annual precipitation had significant effects on the annual runoff coefficient.

  4. Analysis of temporal and spatial trends of hydro-climatic variables in the Wei River Basin.

    PubMed

    Zhao, Jing; Huang, Qiang; Chang, Jianxia; Liu, Dengfeng; Huang, Shengzhi; Shi, Xiaoyu

    2015-05-01

    The Wei River is the largest tributary of the Yellow River in China. The relationship between runoff and precipitation in the Wei River Basin has been changed due to the changing climate and increasingly intensified human activities. In this paper, we determine abrupt changes in hydro-climatic variables and identify the main driving factors for the changes in the Wei River Basin. The nature of the changes is analysed based on data collected at twenty-one weather stations and five hydrological stations in the period of 1960-2010. The sequential Mann-Kendall test analysis is used to capture temporal trends and abrupt changes in the five sub-catchments of the Wei River Basin. A non-parametric trend test at the basin scale for annual data shows a decreasing trend of precipitation and runoff over the past fifty-one years. The temperature exhibits an increase trend in the entire period. The potential evaporation was calculated based on the Penman-Monteith equation, presenting an increasing trend of evaporation since 1990. The stations with a significant decreasing trend in annual runoff mainly are located in the west of the Wei River primarily interfered by human activities. Regression analysis indicates that human activity was possibly the main cause of the decline of runoff after 1970. Copyright © 2015. Published by Elsevier Inc.

  5. Increasing trends in rainfall-runoff erosivity in the Source Region of the Three Rivers, 1961-2012.

    PubMed

    Wang, Yousheng; Cheng, Congcong; Xie, Yun; Liu, Baoyuan; Yin, Shuiqing; Liu, Yingna; Hao, Yanfang

    2017-08-15

    As the head source of the two longest rivers in China and the longest river in Southeast Asia, the East Qinghai-Tibetan Plateau (QTP) is experiencing increasing thaw snowmelt and more heavy precipitation events under global warming, which might lead to soil erosion risk. To understand the potential driving force of soil erosion and its relationship with precipitation in the context of climate change, this study analyzed long-term variations in annual rainfall-runoff erosivity, a climatic index of soil erosion, by using the Mann-Kendall statistical test and Theil and Sen's approach in the Source Region of the Three Rivers during 1961-2012. The results showed the followings: (i) increasing annual rainfall-runoff erosivity was observed over the past 52years, with a mean relative trend index (RT 1 ) value of 12.1%. The increasing trend was more obvious for the latest two decades: RT 1 was nearly three times larger than that over the entire period; (ii) more precipitation events and a higher precipitation amount were the major forces for the increasing rainfall-runoff erosivity; (iii) similar rising trends in sediment yields, which corresponded to rainfall-runoff erosivity under slightly increasing vegetation coverage in the study area, implied a large contribution of rainfall-runoff erosivity to the increasing sediment yields; and (iv) high warming rates increased the risk of soil destruction, soil erosion and sediment yields. Conservation measures, such as enclosing grassland, returning grazing land to grassland and rotation grazing since the 1980s, have maintained vegetation coverage and should be continued and strengthened. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cryospheric Change Impacts on Alpine Hydrology: Combining Model With Observations in the Upper Reaches of Hei River, China

    NASA Astrophysics Data System (ADS)

    Li, X.; Chen, R.; Wang, G.; Liu, J.; Yang, Y.; Han, C.; Song, Y.; Liu, Z.; Kang, E.

    2017-12-01

    Cryospheric change impacts largely on alpine hydrology but they are still unclear owing to rare observations and suitable models in the Western Cold Regions of China (WCRC), where many large rivers including almost inland rivers originate and some of them flow to adjacent countries. The upstream of the inland river provides nearly almost water resources to the arid mid-downstream areas, such as the Hei River. Based on the long term field observation in WCRC, a Cryospheric Basin Hydrological Model (CBHM) was created to evaluate the cryospheric impacts on streamflow in the upper reaches of Hei river (UHR), and relationships between Cryosphere and streamflow were further discussed by using measured data. The NorESM1-ME were chosen to project future streamflow under scenarios RCP2.6, RCP4.5 and RCP8.5. The monthly basin runoff in UHR was simulated with a coefficient of efficiency about 0.93 and 0.94, and a mass balance error about 2.5% and -0.2% during the calibration period from 1960 to 1990 and validation period from 1991 to 2013, respectively. The CBHM results were then well validated by measured evapotranspiration (ET), soil temperature, glacier area, water balance of land covers etc. in UHR. It found that the moraine-talus region was the major runoff contribution (60.5%) area though its area proportion was only about 20%, whereas the total runoff contribution of meadow and grassland was only about 27% but their area ratio was about 70% in UHR. Glacier and snow cover contributed 3.5% and 25.4% fresh water in average to streamflow during 1960 to 2013 in HUR. Owing to the increased air temperature (2.9 oC/54a) and precipitation (69.2 mm/54a) in the past 54 years, glacial and snow melting runoff increased 9.8% and 12.1%, respectively. The air temperature rise decreased and brought forward the snowmelt flood peak, and increased the winter flow due to permafrost degradation in UHR. Glaciers would disappear in the near future owing to its small size and increasing air temperature, but the snow melting runoff would increase due to increasing snowfall in the higher mountainous areas in UHR. In the basins with small glacial runoff ratio such as UHR in WCRC, the basin runoff would increase or change a little in the future according to the water balance between the increasing rainfall and snowfall runoff and evapotranspiration.

  7. Phosphorus Concentrations, Loads, and Yields in the Illinois River Basin, Arkansas and Oklahoma, 1997-2001

    USGS Publications Warehouse

    Pickup, Barbara E.; Andrews, William J.; Haggard, Brian E.; Green, W. Reed

    2003-01-01

    The Illinois River and tributaries, Flint Creek and the Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus increases in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30- day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. Data from water-quality samples from 1997 to 2001 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and flowweighted concentrations in the Illinois River basin. Phosphorus concentrations in the Illinois River basin generally were significantly greater in runoff-event samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources. Estimated mean annual phosphorus loads were greater at the Illinois River stations than at Flint Creek and the Baron Fork. Loads appeared to generally increase with time during 1997-2001 at all stations, but this increase might be partly attributable to the beginning of runoff-event sampling in the basin in July 1999. Base-flow loads at stations on the Illinois River were about 10 times greater than those on the Baron Fork and 5 times greater than those on Flint Creek. Runoff components of the annual total phosphorus load ranged from 58.7 to 96.8 percent from 1997-2001. Base-flow and runoff loads were generally greatest in spring (March through May) or summer (June through August), and were least in fall (September through November). Total yields of phosphorus ranged from 107 to 797 pounds per year per square mile. Greatest yields were at Flint Creek near Kansas (365 to 797 pounds per year per square mile) and the least yields were at Baron Fork at Eldon (107 to 440 pounds per year per square mile). Estimated mean flow-weighted concentrations were more than 10 times greater than the median and were consistently greater than the 75th percentile of flow-weighted phosphorus concentrations in samples collected at relatively undeveloped basins of the United States (0.022 milligram per liter and 0.037 milligram per liter, respectively). In addition, flow-weighted phosphorus concentrations in 1999-2001 at all Illinois River stations and at Flint Creek near Kansas were equal to or greater than the 75th percentile of all National Water-Quality Assessment program stations in the United States (0.29 milligram per liter). The annual average phosphorus load entering Lake Tenkiller was about 577,000 pounds per year, and more than 86 percent of the load was transported to the lake by runoff.The Illinois River and tributaries, Flint Creek and the Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus increases in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30- day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. Data from water-quality samples from 1997 to 2001 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and flowweighted concentrations in the Illinois River basin. Phosphorus concentrations in the Illinois River basin generally were significantly greater in runoff-event samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus

  8. Applicability of GLDAS in the Yarlung Zangbo River Basin under Climate Change

    NASA Astrophysics Data System (ADS)

    Jia, L.; Hong, Z.; Linglei, Z.; Yun, D.

    2017-12-01

    The change of runoff has a great influence on global water cycle, and migration or transformation of biogenic matters. As the Tibet's most important economic region, the Yarlung Zangbo River basin is extremely sensitive and fragile to the global climate change. But the river is a typical lack-data basin, where the quantity of available runoff data is extremely limited and the spatial and temporal resolutions are very low. This study Chooses middle reaches of Yarlung Zangbo River basin as the study area, 4 models of Global Land Data Assimilation System (GLDAS) and the water balance equation are used to calculate surface runoff of Nuxia hydrological station from year of 2009 to 2013. Through the analysis of hydrological elements change, the impact of climate factors to surface runoff is discussed. At last, Statistical method is used to compare correlation and error between the 4 models results and in situ runoff observation. The Broke ranking method is applied to evaluate data quality and applicability of the 4 models in the Yarlung Zangbo River basin. The results reveal that the total runoff calculated from 4 models all have similar change cycle around 12 months, and the values all tend to have slight increase as in situ runoff data during research period. Moreover, it can conclude that the runoff time series show obvious period and mutation characters. During study period, monthly mean precipitation and temperature both have obvious seasonal variability, and the variation trend is relatively consistent. Through the analysis of the runoff affecting factors, it shows that the changes of precipitation and temperature are the most direct factors affecting runoff of the Yarlung Zangbo River. Correlation between precipitations, temperature with runoff of Nuxia hydrological station is good, and the correlation coefficients are in the range of 0.727 to 0.924.It shows that climate change controls basin runoff change to some extent. At last, runoff estimated from GLDAS-CLM can better represent runoff of the Yarlung Zangbo River basin than other 3 models with a total ranking score of 2.00. This paper carries out a helpful attempt on hydrological study in lack-data basin. And in the matter of medium and long terms, large and medium scales, the result is benefit to deepen cognition and comprehend on runoff characteristics.

  9. Peak streamflows and runoff volumes for the Central United States, February through September, 2011: Chapter C in 2011 floods of the central United States

    USGS Publications Warehouse

    Holmes, Robert R.; Wiche, Gregg J.; Koenig, Todd A.; Sando, Steven K.

    2013-01-01

    During 2011, excessive precipitation resulted in widespread flooding in the Central United States with 33 fatalities and approximately $4.2 billion in damages reported in the Souris/Red River of the North (Souris/Red) and Mississippi River Basins. At different times, beginning in late February 2011 and extending through September 2011, various rivers in these basins had major flooding, with some locations receiving multiple rounds of flooding. Peak streamflow records were broken at 105 streamgages in the Souris/Red and Mississippi River Basins and annual runoff volume records set at 47 of the 211 streamgages analyzed for annual runoff. For the period of 1950 through 2011, the Ohio River provided almost one-half of the annual runoff at Vicksburg; the Missouri River contributed less than one-fourth, and the lower Mississippi River less than one-fourth. Those relative contribution patterns also occurred in 1973 and 2011, with the notable exception of the decrease in contribution of the lower Mississippi River tributaries and the increase in contribution from the upper Missouri River Basin in 2011 as compared to 1973 and the long-term average from 1950 to 2011.

  10. Response of Colorado River runoff to dust radiative forcing in snow

    PubMed Central

    Painter, Thomas H.; Deems, Jeffrey S.; Belnap, Jayne; Hamlet, Alan F.; Landry, Christopher C.; Udall, Bradley

    2010-01-01

    The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river’s historical mean. Climate models project runoff losses of 7–20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river’s runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Here we use the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916–2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ∼5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change. PMID:20855581

  11. Analysis of climate and anthropogenic impacts on runoff in the Lower Pra River Basin of Ghana.

    PubMed

    Awotwi, Alfred; Anornu, Geophrey Kwame; Quaye-Ballard, Jonathan; Annor, Thompson; Forkuo, Eric Kwabena

    2017-12-01

    The Lower Pra River Basin (LPRB), located in the forest zone of southern Ghana has experienced changes due to variability in precipitation and diverse anthropogenic activities. Therefore, to maintain the functions of the ecosystem for water resources management, planning and sustainable development, it is important to differentiate the impacts of precipitation variability and anthropogenic activities on stream flow changes. We investigated the variability in runoff and quantified the contributions of precipitation and anthropogenic activities on runoff at the LPRB. Analysis of the precipitation-runoff for the period 1970-2010 revealed breakpoints in 1986, 2000, 2004 and 2010 in the LPRB. The periods influenced by anthropogenic activities were categorized into three periods 1987-2000, 2001-2004 and 2005-2010, revealing a decrease in runoff during 1987-2000 and an increase in runoff during 2001-2004 and 2005-2010. Assessment of monthly, seasonal and annual runoff depicted a significant increasing trend in the runoff time series during the dry season. Generally, runoff increased at a rate of 9.98 × 10 7 m 3 yr -1 , with precipitation variability and human activities contributing 17.4% and 82.3% respectively. The dominant small scale alluvial gold mining activity significantly contributes to the net runoff variability in LPRB.

  12. Study on the contribution of cryosphere to runoff in the cold alpine basin: A case study of Hulugou River Basin in the Qilian Mountains

    NASA Astrophysics Data System (ADS)

    Zongxing, Li; Qi, Feng; Wei, Liu; Tingting, Wang; Aifang, Cheng; Yan, Gao; Xiaoyan, Guo; Yanhui, Pan; Jianguo, Li; Rui, Guo; Bing, Jia

    2014-11-01

    Global warming would inevitably lead to the increased glacier-snow meltwater and mountainous discharge. Taking an example the Hulugou River Basin in the Qilian Mountains, this study confirmed the contribution of cryosphere to runoff by means of the isotope hydrograph separation. The hydro-geochemistry and the isotope geochemistry suggested that both the meltwater and rainwater infiltrated into the subsurface and fed into the river runoff of the Hulugou River Basin in the form of springs. The isotopic composition of river water and underground water was close to the Local Meteoric Water Line, and the δ18O and δD ranged among precipitation, glacier-snow meltwater and frozen soil meltwater. The results indicated that 68% of the recharge of the Hulugou River water was the precipitation, thereinto, glacier-snow meltwater and frozen soil meltwater contributing 11% and 21%, respectively. For tributary-1, precipitation accounted for 77% of the total stream runoff, with frozen soil meltwater accounting for 17%, and glacier-snow meltwater only supplied 6%. During the sampling period, the contribution of surface runoff from precipitation was 44% to tributary-2, and glacier-snow meltwater had contributed 42%; only 14% from frozen soil meltwater. For tributary-3, precipitation accounted for 63% of the total runoff, and other 37% originated from the frozen soil meltwater. According to the latest observational data, the glacier-snow meltwater has accounted for 11.36% of the total runoff in the stream outlet, in which the calculation has been verified by hydrograph separation. It is obvious that the contribution of cryosphere has accounted for 1/3 of the outlet runoff in the Hulugou River Basin, which has been an important part of river sources. This study demonstrated that the alpine regions of western China, especially those basins with glaciers, snow and frozen soil, have played a crucial role in regional water resource provision under global warming.

  13. Investigating Runoff Efficiency in Upper Colorado River Streamflow Over Past Centuries

    NASA Astrophysics Data System (ADS)

    Woodhouse, Connie A.; Pederson, Gregory T.

    2018-01-01

    With increasing concerns about the impact of warming temperatures on water resources, more attention is being paid to the relationship between runoff and precipitation, or runoff efficiency. Temperature is a key influence on Colorado River runoff efficiency, and warming temperatures are projected to reduce runoff efficiency. Here, we investigate the nature of runoff efficiency in the upper Colorado River (UCRB) basin over the past 400 years, with a specific focus on major droughts and pluvials, and to contextualize the instrumental period. We first verify the feasibility of reconstructing runoff efficiency from tree-ring data. The reconstruction is then used to evaluate variability in runoff efficiency over periods of high and low flow, and its correspondence to a reconstruction of late runoff season UCRB temperature variability. Results indicate that runoff efficiency has played a consistent role in modulating the relationship between precipitation and streamflow over past centuries, and that temperature has likely been the key control. While negative runoff efficiency is most common during dry periods, and positive runoff efficiency during wet years, there are some instances of positive runoff efficiency moderating the impact of precipitation deficits on streamflow. Compared to past centuries, the 20th century has experienced twice as many high flow years with negative runoff efficiency, likely due to warm temperatures. These results suggest warming temperatures will continue to reduce runoff efficiency in wet or dry years, and that future flows will be less than anticipated from precipitation due to warming temperatures.

  14. Investigating runoff efficiency in upper Colorado River streamflow over past centuries

    USGS Publications Warehouse

    Woodhouse, Connie A.; Pederson, Gregory T.

    2018-01-01

    With increasing concerns about the impact of warming temperatures on water resources, more attention is being paid to the relationship between runoff and precipitation, or runoff efficiency. Temperature is a key influence on Colorado River runoff efficiency, and warming temperatures are projected to reduce runoff efficiency. Here, we investigate the nature of runoff efficiency in the upper Colorado River (UCRB) basin over the past 400 years, with a specific focus on major droughts and pluvials, and to contextualize the instrumental period. We first verify the feasibility of reconstructing runoff efficiency from tree-ring data. The reconstruction is then used to evaluate variability in runoff efficiency over periods of high and low flow, and its correspondence to a reconstruction of late runoff season UCRB temperature variability. Results indicate that runoff efficiency has played a consistent role in modulating the relationship between precipitation and streamflow over past centuries, and that temperature has likely been the key control. While negative runoff efficiency is most common during dry periods, and positive runoff efficiency during wet years, there are some instances of positive runoff efficiency moderating the impact of precipitation deficits on streamflow. Compared to past centuries, the 20th century has experienced twice as many high flow years with negative runoff efficiency, likely due to warm temperatures. These results suggest warming temperatures will continue to reduce runoff efficiency in wet or dry years, and that future flows will be less than anticipated from precipitation due to warming temperatures.

  15. Variations of Runoff and Sediment Load in the Middle and Lower Reaches of the Yangtze River, China (1950-2013)

    PubMed Central

    Li, Na; Wang, Lachun; Zeng, Chunfen; Wang, Dong; Liu, Dengfeng; Wu, Xutong

    2016-01-01

    On the basis of monthly runoff series obtained in 1950–2013 and annual sediment load measured in 1956–-2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1) The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2) Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3) The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003–2013). The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities. PMID:27479591

  16. Variations of Runoff and Sediment Load in the Middle and Lower Reaches of the Yangtze River, China (1950-2013).

    PubMed

    Li, Na; Wang, Lachun; Zeng, Chunfen; Wang, Dong; Liu, Dengfeng; Wu, Xutong

    2016-01-01

    On the basis of monthly runoff series obtained in 1950-2013 and annual sediment load measured in 1956--2013 at five key hydrological stations in the middle and lower reaches of the Yangtze River basin, this study used the Mann-Kendall methods to identify trend and abrupt changes of runoff and sediment load in relation to human activities. The results were as follows: (1) The annual and flood season runoffs showed significant decreasing trends at Yichang station, and showed slight downward trends at Hankou and Datong stations, while the abrupt changes of dry season runoff at Yichang, Hankou and Datong stations occurred in about 2007 and the change points were followed by significant increasing trends. The construction of the Three Gorges Dam, which began to operate in 2003, influenced the variations of runoff in the mainstream of Yangtze River, but the effect weakened with the distance along the downstream direction from TGD. (2) Since the 1990s, annual sediment loads at Yichang, Hankou, and Datong stations have been decreasing significantly, and after 2002, the annual sediment load at Yichang dropped below that of Hankou and Datong. The dams and deforestation/forestation contributed to the significant decreasing trend of the sediment load. In addition, the Three Gorges Dam aggravated the downward trend and caused the erosion of the riverbed and riverbanks in the middle and lower reaches. (3) The runoff and sediment load flowing from Dongting Lake into the mainstream of the Yangtze River showed significant decreasing trends at Chenglingji station after 1970s, and in contrast, slight increase in the sediment flow from Poyang Lake to the mainstream of the Yangtze River at Hukou station were detected over the post-TGD period (2003-2013). The result of the study will be an important foundation for watershed sustainable development of the Yangtze River under the human activities.

  17. Exploring the causes of declining Colorado River streamflow

    NASA Astrophysics Data System (ADS)

    Xiao, M.; Udall, B. H.; Lettenmaier, D. P.

    2017-12-01

    As the major river of the Southwestern U.S., the Colorado River is central to the region's water resources. Over the period 1916-2014, the river's naturalized streamflow at Lee's Ferry declined by about 1/6th. However, annual precipitation in the Upper Colorado River Basin (UCRB) part (above Lees Ferry) over that period increases slightly (1.4%; ΔPwinter is -0.2% and ΔPsummer is 3.0%). In order to examine the causes of the runoff declines, we performed a set of experiments with the VIC model in which we detrended the model's temperature forcings for each of 20 sub-basins that make up the basin. Negative winter precipitation anomalies have occurred in the handful of highly productive sub-basins that account for much of streamflow at Lee's Ferry. Although a few headwater tributaries have received above-average precipitation that counteracts some of the runoff losses, the dominant signal in the highly productive sub-basins is declining precipitation and runoff. The situation is exacerbated by pervasive warming that has reduced winter snowpacks and enhanced ET (1.9°C increase for winter and 1.7°C for summer). The warming causes over half (53%) of the long-term decreasing runoff trend. The remainder is caused by a combination of reduced precipitation and increasing winter ET associated with increased net shortwave radiation. From comparison with an earlier 1953-1968 drought that was caused primarily by anomalously low precipitation across UCRB, we find higher temperatures have played a much larger role in the post-Millennium Drought, although reductions in precipitation in several of the most productive headwater basins have played a role as well. Finally, we evaluate the Upper Basin April-July runoff forecast, which decreased dramatically as the runoff season progressed. We find that well much of the spring was anomalously warm, the proximate cause of most of the forecast reduction was anomalous dryness, which accompanied the warmer conditions.

  18. Sustainable water deliveries from the Colorado River in a changing climate.

    PubMed

    Barnett, Tim P; Pierce, David W

    2009-05-05

    The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10-30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed approximately 58% of the time by 2050. If runoff reduces 20%, they will be missed approximately 88% of the time. The mean shortfall when full deliveries cannot be met increases from approximately 0.5-0.7 billion cubic meters per year (bcm/yr) in 2025 to approximately 1.2-1.9 bcm/yr by 2050 out of a request of approximately 17.3 bcm/yr. Such values are small enough to be manageable. The chance of a year with deliveries <14.5 bcm/yr increases to 21% by midcentury if runoff reduces 20%, but such low deliveries could be largely avoided by reducing scheduled deliveries. These results are computed by using estimates of Colorado River flow from the 20th century, which was unusually wet; if the river reverts to its long-term mean, shortfalls increase another 1-1.5 bcm/yr. With either climate-change or long-term mean flows, currently scheduled future water deliveries from the Colorado River are not sustainable. However, the ability of the system to mitigate droughts can be maintained if the various users of the river find a way to reduce average deliveries.

  19. Run-off regime of the small rivers in mountain landscapes (on an example of the mountain "Mongun-taiga

    NASA Astrophysics Data System (ADS)

    Pryahina, G.; Zelepukina, E.; Guzel, N.

    2012-04-01

    Hydrological characteristics calculations of the small mountain rivers in the basins with glaciers frequently cause complexity in connection with absence of standard hydrological supervision within remote mountain territories. The unique way of the actual information reception on a water mode of such rivers is field work. The rivers of the mountain Mongun-taiga located on a joint of Altai and Sayan mountains became hydrological researches objects of Russian geographical society complex expeditions in 2010-2011. The Mongun-taiga cluster of international biosphere reserve "Ubsunurskaya hollow" causes heightened interest of researchers — geographers for many years. The original landscape map in scale 1:100000 has been made, hydrological supervision on the rivers East Mugur and ugur, belonging inland basin of Internal Asia are lead. Supervision over the river drain East Mugur runoff were spent in profile of glacier tongue (the freezing area - 22 % (3.2 km2) from the reception basin) and in the closing alignment of the river located on distance of 3,4 km below tongue of glacier. During researches following results have been received. During the ablation period diurnal fluctuations with a strongly shown maximum and minimum of water discharges are typically for the small rivers with considerable share of a glacial food. The run-off maximum from the glacier takes place from 2 to 7 p.m., the run-off minimum is observed early in the morning. High speed of thawed snow running-off from glacier tongue and rather small volume of dynamic stocks water on an ice surface lead to growth of water discharge. In the bottom profile the time of maximum and minimum of water discharge is displaced on the average 2 hours, it depends of the water travel time. Maximum glacial run-off discharge (1.12 m3/s) in the upper profile was registered on July 16 (it was not rain). Volumes of daily runoff in the upper and bottom profiles were 60700-67600 m3 that day. The run-off from nonglacial part of the basin is formed by underground waters and melting snowfields, during the absence of rainfall period the part of one amounted to 10% of the run-off in the lower profile. We suggest that this water discharge corresponds to base flow value in the lower profile because the area of snowfields of the basin was < 0.1 km2 that year. Run-off monitoring has showed that rivers with a small glacial food are characterized by absence of diurnal balance of runoff. During rainfall the water content of river has being increased due to substantial derivation of basin and, as a result, fast flowing rain water into bed of river. The sharp decrease in water content of river during periods of rainfall absence indicates low inventory of soil and groundwater and the low rate of glacial. Thus, glaciers and character of the relief influence the formation of run-off small mountain rivers. Results of researches will be used for mathematical modeling mountain rivers run-off.

  20. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Inland River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Li, X.; Cheng, G.; Tian, W.; Zhang, Y.; Zhou, J.; Pan, X.; Ge, Y.; Hu, X.

    2013-12-01

    Inland river basins take about 11.4% of the land area of the world and most of them are distributed over arid regions. Understanding the hydrological cycle of inland river basin is important for water resource management in water scarcity regions. This paper illustrated hydrological cycle of a typical inland river basin in China, the Heihe River Basin (HRB). First, water balance in upper, middle and lower reaches of the HRB was conceptualized by analyzing dominant hydrological processes in different parts of the river basin. Then, we used a modeling approach to study the water cycle in the HRB. In the upper reaches, we used the GBHM-SHAW, a distributed hydrological model with a new frozen soil parameterization. In the middle and lower reaches, we used the GWSiB, a three-dimensionally coupled land surface-groundwater model. Modeling results were compared with water balance observations in different landscapes and cross-validated with other results to ensure the reliability. The results show that the hydrological cycle in HRB has some distinctive characteristics. Mountainous area generates almost all of the runoff for the whole river basin. High-elevation zones have much larger runoff/precipitation ratio. Cryospheric hydrology plays an important role. Although snow melting and glacier runoff take less than 25% of total runoff, these processes regulate inter-annual variation of runoff and thus provide stable water resource for oases downstream. Forest area contributes almost no runoff but it smoothes runoff and reduces floods by storing water in soil and releasing it out slowly. In the middle reaches, artificial hydrological cycle is much more dominated than natural one. River water and groundwater, recharged by runoff from mountainous area, is the water resource to support the agriculture and nurture the riparian ecosystem. Precipitation, approximately 150 mm in average, is only a supplement to agriculture use but sufficient to sustain desert vegetation. Water resources are redistributed by very developed and extensive irrigation system. Irrigation water balance is complex because of strong interactions among surface, ground, river and irrigation water. Lower reaches is an extremely arid environment. Water availability in lower reaches has a great impact on the evolution of natural ecosystem and vice versa the landscape change reshapes the hydrological cycle. After the water resource reallocation project implemented in 2000, the water delivered to lower reaches has increased by 36%. Of all the available water resource, about 10% is used to sustain a terminal lake and other water bodies, 20% is used for irrigation to support very rapidly increased farmlands, 40-50% is used to nurture the natural oasis, and other water is lost due to evaporation. The features of hydrological cycle in the HRB is very typical for inland river basins in China's arid region. In this region, air temperature is rising and precipitation is most likely to increase. Accelerating glacier retreat will also produce more water. However, water demand increases more rapidly due to quickly developing economy and growing population. Therefore, how to turn our understanding of hydrological cycle in this environmental fragile region into more rational water resource management is a grand challenge.

  1. Application of MIKE SHE to study the impact of coal mining on river runoff in Gujiao mining area, Shanxi, China

    PubMed Central

    Ping, Jianhua; Yan, Shiyan; Gu, Pan; Wu, Zening; Hu, Caihong

    2017-01-01

    Coal mining is one of the core industries that contribute to the economic development of a country but deteriorate the environment. Being the primary source of energy, coal has become essential to meet the energy demand of a country. It is excavated by both opencast and underground mining methods and affects the environment, especially hydrological cycle, by discharging huge amounts of mine water. Natural hydrological processes have been well known to be vulnerable to human activities, especially large scale mining activities, which inevitably generate surface cracks and subsidence. It is therefore valuable to assess the impact of mining on river runoff for the sustainable development of regional economy. In this paper, the impact of coal mining on river runoff is assessed in one of the national key coal mining sites, Gujiao mining area, Shanxi Province, China. The characteristics of water cycle are described, the similarities and differences of runoff formation are analyzed in both coal mining and pre-mining periods. The integrated distributed hydrological model named MIKE SHE is employed to simulate and evaluate the influence of coal mining on river runoff. The study shows that mining one ton of raw coal leads to the reduction of river runoff by 2.87 m3 between 1981 and 2008, of which the surface runoff decreases by 0.24 m3 and the baseflow by 2.63 m3. The reduction degree of river runoff for mining one ton of raw coal shows an increasing trend over years. The current study also reveals that large scale coal mining initiates the formation of surface cracks and subsidence, which intercepts overland flow and enhances precipitation infiltration. Together with mine drainage, the natural hydrological processes and the stream flows have been altered and the river run off has been greatly reduced. PMID:29267313

  2. Application of MIKE SHE to study the impact of coal mining on river runoff in Gujiao mining area, Shanxi, China.

    PubMed

    Ping, Jianhua; Yan, Shiyan; Gu, Pan; Wu, Zening; Hu, Caihong

    2017-01-01

    Coal mining is one of the core industries that contribute to the economic development of a country but deteriorate the environment. Being the primary source of energy, coal has become essential to meet the energy demand of a country. It is excavated by both opencast and underground mining methods and affects the environment, especially hydrological cycle, by discharging huge amounts of mine water. Natural hydrological processes have been well known to be vulnerable to human activities, especially large scale mining activities, which inevitably generate surface cracks and subsidence. It is therefore valuable to assess the impact of mining on river runoff for the sustainable development of regional economy. In this paper, the impact of coal mining on river runoff is assessed in one of the national key coal mining sites, Gujiao mining area, Shanxi Province, China. The characteristics of water cycle are described, the similarities and differences of runoff formation are analyzed in both coal mining and pre-mining periods. The integrated distributed hydrological model named MIKE SHE is employed to simulate and evaluate the influence of coal mining on river runoff. The study shows that mining one ton of raw coal leads to the reduction of river runoff by 2.87 m3 between 1981 and 2008, of which the surface runoff decreases by 0.24 m3 and the baseflow by 2.63 m3. The reduction degree of river runoff for mining one ton of raw coal shows an increasing trend over years. The current study also reveals that large scale coal mining initiates the formation of surface cracks and subsidence, which intercepts overland flow and enhances precipitation infiltration. Together with mine drainage, the natural hydrological processes and the stream flows have been altered and the river run off has been greatly reduced.

  3. Study of Spatial Interrelationship of Long-term River Runoff Variability

    NASA Astrophysics Data System (ADS)

    Jouk, V.; Romanova, H.; Polianin, V.

    To do a number of practical tasks related to water resources management, planning a hydrological monitoring network, estimation of economic activity influence on river runoff, recollection of runoff rows for rivers with short period of observation and other, it is necessary to know about spatial distribution of an annual river runoff. Most of the methods including optimal interpolation that are being used nowadays to solve such problems can deal only with homogeneous and isotropic fields what isn't true in case of an annual river runoff. To find the causes that make an annual river runoff non- isotropic, first of all it is necessary to learn the field structure of its main climatic factors such as precipitation and air humidity deficit. The analyses of anisotropy of these fields can be performed by using unrolled spatially-correlation functions (USCF): Ri,j =f(Si,j;a), Ri,j - empirical correlation of observed rows; Si,j - distance between meteorological stations; a - an anngle between a parallel and the lines that join the centers of river catchments. The form of lines of equal level of USCF shows the direction of bigger or smaller spa- tial interrelationship of the field. In this work an annual river runoff field, precipitation and air humidity deficit fields were studied. The data of 55 meteorological stations was used and the data on water discharge of more than 255 rivers within the East-Europe plain was processed (a period of runoff observation for every river is about 60 years and a catchment area varies from 1 to 20 thousand sq. km.). Joint analyses of the USCFs shows that anisotropy of an annual river runoff field de- pends strongly on anisotropy of the fields of precipitation forming river runoff. In other words, stronger interrelationship of annual river runoff is observed in the direction of dominant moisture transfer. Landscape features of a catchment also have considerable influence on interrelation- ship between annual runoff values of different rivers. This influence was studied by us- ing conditional spatially-correlation functions or CSCF (i.e. spatially-correlation func- 1 tions constructed according to certain conditions applied to some landscape features). The following factors that affect annual river runoff were studied: catchment area, slope, mean elevation of a catchment, percentage of a forest cover of a catchment. As the study shows, the last factor mentioned above is the most important one which affects spatial interrelationship of an annual river runoff. It can be explained by the fact that the forest is a considerable seasonal and annual runoff redistributor. Moreover a forested area of river catchments varies greatly over the studied region. The influence of elevation occurred to be less obvious than that of the forest because of its small variation within the territory. The use of interpolation schemes taking into account anisotropy and heterogeneity of the field made it possible to improve quality of recollection of runoff rows. So considering heterogeneity of an annual runoff field using the information of percent- age of forest cover of a river catchment and mean elevation of a catchment lessened inaccuracy of runoff rows recollection by more than 7%. In principle, quality of in- terpolation can be enhanced more by taking into consideration not only the factors mentioned above, but also all possible landscape features of a river catchment.But this is the task of further researches. 2

  4. Estimation of potential runoff-contributing areas in the Kansas-Lower Republican River Basin, Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.

    1999-01-01

    Digital soils and topographic data were used to estimate and compare potential runoff-contributing areas for 19 selected subbasins representing soil, slope, and runoff variability within the Kansas-Lower Republican (KLR) River Basin. Potential runoff-contributing areas were estimated separately and collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented high, moderate, and low potential runoff. For infiltration-excess overland flow, various rainfall intensities and soil permeabilities were used. For saturation-excess overland flow, antecedent soil-moisture conditions and a topographic wetness index were used. Results indicated that the subbasins with relatively high potential runoff are located in the central part of the KLR River Basin. These subbasins are Black Vermillion River, Clarks Creek, Delaware River upstream from Muscotah, Grasshopper Creek, Mill Creek (Wabaunsee County), Soldier Creek, Vermillion Creek (Pottawatomie County), and Wildcat Creek. The subbasins with relatively low potential runoff are located in the western one-third of the KLR River Basin, with one exception, and are Buffalo Creek, Little Blue River upstream from Barnes, Mill Creek (Washington County), Republican River between Concordia and Clay Center, Republican River upstream from Concordia, Wakarusa River downstream from Clinton Lake (exception), and White Rock Creek. The ability to distinguish the subbasins as having relatively high or low potential runoff was possible mostly due to the variability of soil permeability across the KLR River Basin.

  5. Hydrologic data for urban storm runoff in the Denver metropolitan area, Colorado

    USGS Publications Warehouse

    Gibbs, Johnnie W.; Doefer, John T.

    1982-01-01

    Urban storm-runoff data collected from April through September 1981 from nine Denver Nationwide Urban Runoff Program sites, urban storm-runoff data collected from April 1980 through September 1981 from ten South Platte River Study sites, and rainfall-runoff simulation data from two sites for June 1980 and May 1981 are presented in this report. The Denver Nationwide Urban Runoff Program sites were two single-family residential areas, two multifamily residential areas, one commercial area (shopping center), one mixed commercial and multifamily residential area, one natural area (open space), and two detention ponds. The South Platte River Study sites were six tributaries of the South Platte River and four instream sites on the South Platte River. The tributary sites were Bear Creek at mouth, at Sheridan; Harvard Gulch at Harvard Park, at Denver; Sanderson Gulch at mouth, at Denver; Weir Gulch at mouth, at Denver; Lakewood Gulch at mouth, at Denver; and Cherry Creek at Denver. The instream sites were South Platte River at Littleton; South Platte River at Florida Avenue, at Denver; South Platte River at Denver; and South Platte River at 50th Avenue, at Denver. The rainfall-runoff simulation sites were North Avenue at Denver Federal Center, at Lakewood and Rooney Gulch at Rooney Ranch, near Morrison. Precipitation, rainfall-runoff, water-quality data, and basin characteristics were collected at the urban storm-runoff sites. The urban storm-runoff data may be used to characterize runoff loading for various land-use types in Denver and other semiarid regions. (USGS)

  6. [Mercury Transport from Glacier to Runoff in Typical Inland Glacial Area in the Tibetan Plateau].

    PubMed

    Sun, Xue-jun; Wang, Kang; Guo, Jun-ming; Kang, Shi-chang; Zhang, Guo-shuai; Huang, Jie; Cong, Zhi-yuan; Zhang, Qiang-gong

    2016-02-15

    To investigate the transport of mercury from glacier to runoff in typical inland glacial area in the Tibetan Plateau, we selected Zhadang glacier and Qugaqie river Basin located in the Nyainqentanglha Range region and collected samples from snow pit, glacier melt-water and Qugaqie river water during 15th August to 9'h September 2011. Mercury speciation and concentrations were determined and their distribution and controlling factors in different environmental compartments were analyzed. The results showed that the average THg concentrations were (3.79 +/- 5.12) ng x L(-1), (1.06 +/- 0.77) ng x L(-1) and (1.02 +/- 0.24) ng x L(-1) for glacier snow, glacier melt-water and Qugaqie river water, respectively, all of which were at the global background levels. Particulate-bound mercury accounted for large proportion of mercury in all environmental matrices, while mercury in glacial melt-water was controlled by total suspended particle, and mercury in Qugaqie river water co-varied with runoff. With the increase of temperature, glacier melted and released water as well as mercury into glacier-fed river. Total mercury concentrations in glacier melt water, upstream and downstream peaked at 14:00, 16:00 and after 20:00, respectively, reflecting the process of mercury release from glacier and its subsequent transport in the glacier fed river. The transport of riverine mercury was controlled by multiple factors. Under the context of climate change, glacier ablation and the increasing runoff will play increasingly important roles in mercury release and transport.

  7. Sustainable water deliveries from the Colorado River in a changing climate

    PubMed Central

    Barnett, Tim P.; Pierce, David W.

    2009-01-01

    The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10–30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed ≈58% of the time by 2050. If runoff reduces 20%, they will be missed ≈88% of the time. The mean shortfall when full deliveries cannot be met increases from ≈0.5–0.7 billion cubic meters per year (bcm/yr) in 2025 to ≈1.2–1.9 bcm/yr by 2050 out of a request of ≈17.3 bcm/yr. Such values are small enough to be manageable. The chance of a year with deliveries <14.5 bcm/yr increases to 21% by midcentury if runoff reduces 20%, but such low deliveries could be largely avoided by reducing scheduled deliveries. These results are computed by using estimates of Colorado River flow from the 20th century, which was unusually wet; if the river reverts to its long-term mean, shortfalls increase another 1–1.5 bcm/yr. With either climate-change or long-term mean flows, currently scheduled future water deliveries from the Colorado River are not sustainable. However, the ability of the system to mitigate droughts can be maintained if the various users of the river find a way to reduce average deliveries. PMID:19380718

  8. Trends in precipitation, runoff, and evapotranspiration for rivers draining to the Gulf of Maine in the United States

    USGS Publications Warehouse

    Huntington, Thomas G.; Billmire, M.

    2014-01-01

    Climate warming is projected to result in increases in total annual precipitation in northeastern North America. The response of runoff to increases in precipitation is likely to be more complex because increasing evapotranspiration (ET) could counteract increasing precipitation. This study was conducted to examine these competing trends in the historical record for 22 rivers having >70 yr of runoff data. Annual (water year) average precipitation increased in all basins, with increases ranging from 0.9 to 3.12 mm yr−1. Runoff increased in all basins with increases ranging from 0.67 to 2.58 mm yr−1. The ET was calculated by using a water balance approach in which changes in terrestrial water storage were considered negligible. ET increased in 16 basins and decreased in 6 basins. Temporal trends in temperature, precipitation, runoff, and ET were also calculated for each basin over their respective periods of record for runoff and for the consistent period (1927–2011) for the area-weighted average of the nine largest non-nested basins. From 1927 through 2011, precipitation and runoff increased at average rates of 1.6 and 1.7 mm yr−1, respectively, and ET increased slightly at a rate of 0.18 mm yr−1. For the more recent period (1970–2011), there was a positive trend in ET of 1.9 mm yr−1. The lack of a more consistent increase in ET, compared with the increases in precipitation and runoff, for the full periods of record, was unexpected, but may be explained by various factors including decreasing wind speed, increasing cloudiness, decreasing vapor pressure deficit, and patterns of forest growth.

  9. A Quantitative Analysis of the Effects of Human Activities and Climate Change on Rainfall-Runoff in Xiaoqing River Basin

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Cao, S.; Liu, C.; Liu, Y.

    2017-12-01

    It is a hot topic to study the effects of human activities on the rainfall-runoff relationship and quantitatively analyze the influencing factors. According to the flexibility of Copula function to capture multivariate interdependent structure, the Copula structure between rainfall and runoff was analyzed by using the rainfall-runoff variation test method based on Archimedean Copula function to diagnose the variation of rainfall-runoff relationship. The correlation of rainfall-runoff relationship could be directly analyzed by Copula function, which could intuitively display the change of runoff in the same rainfall before and after the mutation period. The statistical method was used to simulate the underlying surface conditions before the abrupt point, and the effects of climate change and human activities on runoff changes were calculated. It can finally figure out the effects of human activities on the rainfall-runoff relationship. Taking xiaoqing river for example, the results showed that the rainfall-runoff relationship in the Xiaoqing River Basin variated in 1996 mainly due to the continuous increase of water consumption in the watershed and the change of the runoff attenuation caused by the large-scale water conservancy projects. And interannual or annual change of rainfall was not obvious; compared with the year before the variation , the runoff capacity of the basin was weakened under the same rainfall conditions after the variation ; Rainfall and runoff distribution were significantly changed and the same magnitude of rainfall and probability of runoff change were significantly different in different periods; The statistical method was used to simulate the runoff from 1996 to 2016. Compared with that from 1960 to 1995, the result showed that the contribution rate of human activities to runoff reduction was 46.8% and that of climate change was 53.2%. By relevant reference, rainfall-runoff correlation and analysis of human activities, the result was verified to be reasonable. The study can be applied to other watersheds, or used to diagnose the variation of the relationship between meteorological elements and hydrological elements so as to provide scientific basis for rational exploitation and utilization of river water resources, as well as soil and water conservation.

  10. Riverine export of dissolved organic carbon to the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Huntington, T. G.; Aiken, G.

    2013-12-01

    Land-to-sea carbon transport of dissolved organic carbon (DOC) is an important part of the carbon cycle that can affect long-term carbon sequestration, satellite-derived ocean color metrics, and ocean primary productivity and biogeochemistry. Using continuous discharge data and discrete sampling we estimated DOC fluxes from rivers covering about 68% of the watershed that drains to the Gulf of Maine (GoM) for water years (October through September) 2011 and 2012. Estimates for rivers entering the GoM in the USA were made using LOADEST regression software that fits a seasonally-adjusted concentration discharge relation to the data. The basin area-weighted 95% confidence limits about the LOADEST mean fluxes averaged 8.1% for the lower limit and 8.9% for the upper limit. Estimates for rivers entering the GoM in Canada were obtained from previously published estimates. Carbon yield tends to increase from southwest (35 to 36 kg C/ha/yr) to a maximum of 76 kg C/ha/yr for the Penobscot River and then decline further to the northeast (61 kg C/ha/yr in the St. John River and 41 kg C/ha/yr in the rest of New Brunswick and Nova Scotia). The area-weighted average carbon yield for all measured basins was 54.5 kg C/ha/yr. The variation in carbon yield is most closely associated with the amount of runoff and wetland area within a river basin. Simple area-weighted extrapolation to the entire GoM basin resulted in an estimate of 9.8 x 105 metric tons C per year for the WY2011 and WY2012 period. Runoff is the dominant control on intra and inter-annual variation in DOC flux because runoff varies much more than DOC concentration at these temporal scales. Runoff is usually low during the winter, peaks in the spring during snowmelt, decreases to a minimum in late summer and increases again in the fall when transpiration decreases. DOC concentration is low during the winter and snowmelt-dominated spring period, generally increases through the summer, and peaks during the fall. DOC flux to the GoM is characterized by low fluxes in winter, high fluxes during the spring snowmelt and before major increase in transpiration, lower fluxes during summer months and, increasing fluxes in the fall. The increase in spring DOC flux occurs earliest in the major river basins in the southwest and progressively later towards the northeast. Assuming that the seasonally adjusted DOC concentration discharge relationships we obtained have been stable over time we estimated fluxes using historical runoff data to assess potential changes in DOC export from five large river basins with long-term discharge data to the GoM since 1930 (St Croix, Penobscot, Androscoggin, Saco and Merrimack Rivers). DOC export has apparently been increasing over time in association with increasing runoff. The largest increases in DOC in absolute and percentage terms have occurred during October, November, and December. Increases were observed in all months except May when there was a small decrease. The decrease in May and increases in March and April are consistent with earlier snowmelt and earlier onset of transpiration.

  11. Climate Change and Its Impact on the Eco-Environment of the Three-Rivers Headwater Region on the Tibetan Plateau, China.

    PubMed

    Jiang, Chong; Zhang, Linbo

    2015-09-25

    This study analyzes the impact of climate change on the eco-environment of the Three-Rivers Headwater Region (TRHR), Tibetan Plateau, China. Temperature and precipitation experienced sharp increases in this region during the past 57 years. A dramatic increase in winter temperatures contributed to a rise in average annual temperatures. Moreover, annual runoff in the Lancang (LRB) and Yangtze (YARB) river basins showed an increasing trend, compared to a slight decrease in the Yellow River Basin (YRB). Runoff is predominantly influenced by rainfall, which is controlled by several monsoon systems. The water temperature in the YRB and YARB increased significantly from 1958 to 2007 (p < 0.001), driven by air temperature changes. Additionally, owing to warming and wetting trends in the TRHR, the net primary productivity (NPP) and normalized difference vegetation index (NDVI) showed significant increasing trends during the past half-century. Furthermore, although an increase in water erosion due to rainfall erosivity was observed, wind speeds declined significantly, causing a decline in wind erosion, as well as the frequency and duration of sandstorms. A clear regional warming trend caused an obvious increasing trend in glacier runoff, with a maximum value observed in the 2000s.

  12. Climate Change and Its Impact on the Eco-Environment of the Three-Rivers Headwater Region on the Tibetan Plateau, China

    PubMed Central

    Jiang, Chong; Zhang, Linbo

    2015-01-01

    This study analyzes the impact of climate change on the eco-environment of the Three-Rivers Headwater Region (TRHR), Tibetan Plateau, China. Temperature and precipitation experienced sharp increases in this region during the past 57 years. A dramatic increase in winter temperatures contributed to a rise in average annual temperatures. Moreover, annual runoff in the Lancang (LRB) and Yangtze (YARB) river basins showed an increasing trend, compared to a slight decrease in the Yellow River Basin (YRB). Runoff is predominantly influenced by rainfall, which is controlled by several monsoon systems. The water temperature in the YRB and YARB increased significantly from 1958 to 2007 (p < 0.001), driven by air temperature changes. Additionally, owing to warming and wetting trends in the TRHR, the net primary productivity (NPP) and normalized difference vegetation index (NDVI) showed significant increasing trends during the past half-century. Furthermore, although an increase in water erosion due to rainfall erosivity was observed, wind speeds declined significantly, causing a decline in wind erosion, as well as the frequency and duration of sandstorms. A clear regional warming trend caused an obvious increasing trend in glacier runoff, with a maximum value observed in the 2000s. PMID:26404333

  13. Climate regulates the erosional carbon export from the terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Hilton, Robert G.

    2017-01-01

    Erosion drives the export of particulate organic carbon from the terrestrial biosphere (POCbiosphere) and its delivery to rivers. The carbon transfer is globally significant and can result in drawdown of atmospheric carbon dioxide (CO2) if the eroded POCbiosphere escapes degradation during river transfer and sedimentary deposition. Despite this recognition, we lack a global perspective on how the tectonic and climatic factors which govern physical erosion regulate POCbiosphere discharge, obscuring linkages between mountain building, climate, and CO2 drawdown. To fill this deficit, geochemical (δ13C, 14C and C/N), hydrometric (water discharge, suspended sediment concentration) and geomorphic (slope) measurements are combined from 33 globally-distributed forested mountain catchments. Radiocarbon activity is used to account for rock-derived organic carbon and reveals that POCbiosphere eroded from mountain forests is mostly < 1300 14C years old. Annual POCbiosphere yields are positively correlated with suspended sediment yields, confirming results from Taiwan and a recent global analysis, and are high in catchments with the steepest slopes. Based on these relationships and the global distribution of slope angles (3-arc-second), it is suggested that topography steeper than 10° (16% of the continental area) may contribute 40% of global POCbiosphere erosional flux. Climate is shown to regulate POCbiosphere discharge by mountain rivers, by controlling hydrologically-driven erosion processes. In catchments where discharge measurements are available (8 of the 33) a significant relationship exists between daily runoff (mm day- 1) and POCbiosphere concentration (mg L- 1) (r = 0.53, P < 0.0001). The relationship can be described by a single power law and suggests a high connectivity between forested hillslopes and mountain river channels. As a result, annual POCbiosphere yields are significantly correlated with mean annual runoff (r = 0.64, P < 0.0001). A shear-stress POCbiosphere erosion model is proposed which can explain the patterns in the data. The model allows the climate sensitivity of this carbon flux to be assessed for the first time. For a 1% increase in annual runoff, POCbiosphere discharge is predicted to increase by 4%. In steeper catchments, POCbiosphere discharge increases more rapidly with an increase in annual runoff. For comparison, a 1% increase in annual runoff is predicted to increase carbon transfers by silicate weathering solute fluxes in mountains by 0.4-0.7%. Depending on the fate of the eroded POCbiosphere, river export of POCbiosphere from mountains may act as an important negative feedback on rising atmospheric CO2 and increased global temperature. Erosion of carbon from the terrestrial biosphere links mountain building and climate to the geological evolution of atmospheric CO2, while the carbon fluxes are sensitive to predicted changes in runoff over the coming century. Supplementary Table 2 - Global forested mountain river catchments with estimates of suspended sediment and POCbiosphere, and POCpetro yields, and annual runoff. Supplementary Table 3 - Geomorphic characteristics of mountain river catchments. Supplementary Table 4 - Outputs of binary mixing model.

  14. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    PubMed

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  15. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    USGS Publications Warehouse

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p < 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  16. Water runoff vs modern climatic warming in mountainous cryolithic zone in North-East Russia

    NASA Astrophysics Data System (ADS)

    Glotov, V. E.; Glotova, L. P.

    2018-01-01

    The article presents the results of studying the effects of current climatic warming for both surface and subsurface water runoffs in North-East Russia, where the Main Watershed of the Earth separates it into the Arctic and Pacific continental slopes. The process of climatic warming is testified by continuous weather records during 80-100 years and longer periods. Over the Arctic slope and in the northern areas of the Pacific slope, climatic warming results in a decline in a total runoff of rivers whereas the ground-water recharge becomes greater in winter low-level conditions. In the southern Pacific slope and in the Sea of Okhotsk basin, the effect of climatic warming is an overall increase in total runoff including its subsurface constituents. We believe these peculiar characters of river runoff there to be related to the cryolithic zone environments. Over the Arctic slope and the northern Pacific slope, where cryolithic zone is continuous, the total runoff has its subsurface constituent as basically resulting from discharge of ground waters hosted in seasonally thawing rocks. Warmer climatic conditions favor growth of vegetation that needs more water for the processes of evapotranspiration and evaporation from rocky surfaces in summer seasons. In the Sea of Okhotsk basin, where the cryolithic zone is discontinuous, not only ground waters in seasonally thawing layers, but also continuous taliks and subpermafrost waters participate in processes of river recharges. As a result, a greater biological productivity of vegetation cover does not have any effect on ground-water supply and river recharge processes. If a steady climate warming is provided, a continuous cryolithic zone can presumably degrade into a discontinuous and then into an island-type permafrost layer. Under such a scenario, there will be a general increase in the total runoff and its subsurface constituent. From geoecological viewpoints, a greater runoff will have quite positive effects, whereas some minor negative consequences of it can be successfully prevented.

  17. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    PubMed

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.

  18. Assessment of surface runoff depth changes in S\\varǎţel River basin, Romania using GIS techniques

    NASA Astrophysics Data System (ADS)

    Romulus, Costache; Iulia, Fontanine; Ema, Corodescu

    2014-09-01

    S\\varǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in S\\varǎţel catchment, between 1990-2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.

  19. Relations of surface-water quality to streamflow in the Atlantic Coastal, lower Delaware River, and Delaware Bay basins, New Jersey, water years 1976-93

    USGS Publications Warehouse

    Hunchak-Kariouk, Kathryn; Buxton, Debra E.; Hickman, R. Edward

    1999-01-01

    Relations of water quality to streamflow were determined for 18 water-quality constituents at 28 surface-water-quality stations within the drainage area of the Atlantic Coastal, lower Delaware River, and Delaware Bay Basins for water years 1976-93. Surface-water-quality and streamflow data were evaluated for trends (through time) in constituent concentrations during high and low flows, and relations between constituent concentration and streamflow, and between constituent load and streamflow, were determined. Median concentrations were calculated for the entire period of study (water years 1976-93) and for the last 5 years of the period of study (water years 1989-93) to determine whether any large variation in concentration exists between the two periods. Medians also were used to determine the seasonal Kendall\\'s tau statistic, which was then used to evaluate trends in concentrations during high and low flows. Trends in constituent concentrations during high and low flows were evaluated to determine whether the distribution of the observations changes through time for intermittent (nonpoint storm runoff) and constant (point sources and ground water) sources, respectively. High- and low-flow trends in concentrations were determined for some constituents at 26 of the 28 water-quality stations. Seasonal effects on the relations of concentration to streamflow are evident for 10 constituents at 14 or more stations. Dissolved oxygen shows seasonal dependency at all stations. Negative slopes of relations of concentration to streamflow, which indicate a decrease in concentration at high flows, predominate over positive slopes because of dilution of instream concentrations from storm runoff. The slopes of the regression lines of load to streamflow were determined in order to show the relative contributions to the instream load from constant (point sources and ground water) and intermittent sources (storm runoff). Greater slope values indicate larger contributions from storm runoff to instream load, which most likely indicate an increased relative importance of nonpoint sources. Load-to-streamflow relations along a stream reach that tend to increase in a downstream direction indicate the increased relative importance of contributions from storm runoff. Likewise, load-to-streamflow relations along a stream reach that tend to decrease in a downstream direction indicate the increased relative importance of point sources and ground-water discharge. The magnitudes of the load slopes for five constituents increase in the downstream direction along the Great Egg Harbor River, indicating an increased relative importance of storm runoff for these constituents along the river. The magnitudes of the load slopes for 11 constituents decrease in the downstream direction along the Assunpink Creek and for 5 constituents along the Maurice River, indicating a decreased relative importance of storm runoff for these constituents along the rivers.

  20. Impacts of changing atmospheric deposition chemistry on nitrogen and phosphorus loading to Ganga River (India).

    PubMed

    Pandey, Jitendra; Singh, Anand V; Singh, Ashima; Singh, Rachna

    2013-08-01

    Investigations on atmospheric deposition (AD) and water chemistry along a 35 km stretch of Ganga River indicated that although N:P stoichiometry of AD did not change, there were over 1.4-2.0 fold increase in AD-NO₃⁻, AD-NH₄⁺ and AD-PO₄³⁻ overtime. Concentration of dissolved inorganic-N (DIN) in river showed significant positive correlations with AD-NO₃⁻ and runoff DIN. Similarly, dissolved reactive-P (DRP) in river showed significant positive correlation with AD-PO₄³⁻ and runoff DRP. The study shows that AD has become an important source of N and P input to Ganga River.

  1. Quantitative analysis on sensitive factors of runoff change in Fenhe watershed based on integration approach

    NASA Astrophysics Data System (ADS)

    Wang, Deng; Jian, Shengqi; Wu, Zening; Zhang, Zhaoxi; Hu, Caihong

    2018-06-01

    The runoff of the Fenhe River flowed into the Yellow River (RRY) is reducing significantly due to the influence of climate change and human activities. It is generating bad situation of shortage of water resources and led to the deterioration of ecological environment of Shanxi Province. At the same time, the reduction in RRY causes the runoff reduction in Yellow River and exacerbated the water resources shortage of the middle area of the Yellow River. Therefore, it is important to alleviate water shortage and develop the soil and water conservation measurements and regional water policy by analyzing the influence of human activities and climate change on the RRY. The existing study quantified the reduction in amount of RRY which caused by human activities and climate change using statistical methods and watershed hydrological model. The main results of the study were as follow:

    1. Using hydrological variation diagnosis system, the variation characteristics of long time series of measured annual runoff were analyzed in Hejin station that is the Fenhe River control station. The results showed that the runoff of Fenhe River run into Yellow River declined year by year, in 1971, fell the most obviously.
    2. The impact of LUCC on runoff was calculated using the method of area ratio in the Fenhe River basin. Human activities were major factor in the reduction of RRY than the climate change, contributed 83.09 % of the total reduction in RRY, Groundwater exploitation gave the greatest contribution to the decrease in RRY in the scope of several kinds of human activity (30.09 %), followed by coal mining (26.03 %), climate changed contributed 19.17 % of the total reduction of RRY, and the decrease of precipitation contributed 20.81 %. But the variation of air temperature and wind speed would result in the increase of the amount of RRY.

  2. A century of hydrological variability and trends in the Fraser River Basin

    NASA Astrophysics Data System (ADS)

    Déry, Stephen J.; Hernández-Henríquez, Marco A.; Owens, Philip N.; Parkes, Margot W.; Petticrew, Ellen L.

    2012-06-01

    This study examines the 1911-2010 variability and trends in annual streamflow at 139 sites across the Fraser River Basin (FRB) of British Columbia (BC), Canada. The Fraser River is the largest Canadian waterway flowing to the Pacific Ocean and is one of the world’s greatest salmon rivers. Our analyses reveal high runoff rates and low interannual variability in alpine and coastal rivers, and low runoff rates and high interannual variability in most streams in BC’s interior. The interannual variability in streamflow is also low in rivers such as the Adams, Chilko, Quesnel and Stuart where the principal salmon runs of the Fraser River occur. A trend analysis shows a spatially coherent signal with increasing interannual variability in streamflow across the FRB in recent decades, most notably in spring and summer. The upward trend in the coefficient of variation in annual runoff coincides with a period of near-normal annual runoff for the Fraser River at Hope. The interannual variability in streamflow is greater in regulated rather than natural systems; however, it is unclear whether it is predominantly flow regulation that leads to these observed differences. Environmental changes such as rising air temperatures, more frequent polarity changes in large-scale climate teleconnections such as El Niño-Southern Oscillation and Pacific Decadal Oscillation, and retreating glaciers may be contributing to the greater range in annual runoff fluctuations across the FRB. This has implications for ecological processes throughout the basin, for example affecting migrating and spawning salmon, a keystone species vital to First Nations communities as well as to commercial and recreational fisheries. To exemplify this linkage between variable flows and biological responses, the unusual FRB runoff anomalies observed in 2010 are discussed in the context of that year’s sockeye salmon run. As the climate continues to warm, greater variability in annual streamflow, and hence in hydrological extremes, may influence ecological processes and human usage throughout the FRB in the 21st century.

  3. Assessing recent declines in Upper Rio Grande runoff efficiency from a paleoclimate perspective

    NASA Astrophysics Data System (ADS)

    Lehner, Flavio; Wahl, Eugene R.; Wood, Andrew W.; Blatchford, Douglas B.; Llewellyn, Dagmar

    2017-05-01

    Recent decades have seen strong trends in hydroclimate over the American Southwest, with major river basins such as the Rio Grande exhibiting intermittent drought and declining runoff efficiencies. The extent to which these observed trends are exceptional has implications for current water management and seasonal streamflow forecasting practices. We present a new reconstruction of runoff ratio for the Upper Rio Grande basin back to 1571 C.E., which provides evidence that the declining trend in runoff ratio from the 1980s to present day is unprecedented in context of the last 445 years. Though runoff ratio is found to vary primarily in proportion to precipitation, the reconstructions suggest a secondary influence of temperature. In years of low precipitation, very low runoff ratios are made 2.5-3 times more likely by high temperatures. This temperature sensitivity appears to have strengthened in recent decades, implying future water management vulnerability should recent warming trends in the region continue.Plain Language SummarySince the 1980s, major river basins in the American Southwest such as the Rio Grande have experienced droughts, declining streamflow, and increasing temperatures. More importantly, runoff ratio—the portion of precipitation that ends up in the river each year, rather than evaporating—has been decreasing as well. For water managers, it is important to know whether these trends are exceptional or are merely patterns that have occurred throughout history. We use long reconstructions of historical climate based on tree rings to estimate, for the first time, the paleo runoff ratio of the Upper Rio Grande. This new record indicates that the recently observed trends in runoff ratio are unprecedented in the 445 year record. Together with precipitation, high temperatures have an important influence, making very low runoff ratios 2.5-3 times more likely. These findings suggest that runoff ratio could decrease further if warming in the region continues, which may present challenges for water management in the river basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035359','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035359"><span>Evaluating the spatiotemporal variations of water budget across China over 1951-2006 using IBIS model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhu, Q.; Jiang, H.; Liu, J.; Wei, X.; Peng, C.; Fang, X.; Liu, S.; Zhou, G.; Yu, S.; Ju, W.</p> <p>2010-01-01</p> <p>The Integrated Biosphere Simulator is used to evaluate the spatial and temporal patterns of the crucial hydrological variables [run-off and actual evapotranspiration (AET)] of the water balance across China for the period 1951–2006 including a precipitation analysis. Results suggest three major findings. First, simulated run-off captured 85% of the spatial variability and 80% of the temporal variability for 85 hydrological gauges across China. The mean relative errors were within 20% for 66% of the studied stations and within 30% for 86% of the stations. The Nash–Sutcliffe coefficients indicated that the quantity pattern of run-off was also captured acceptably except for some watersheds in southwestern and northwestern China. The possible reasons for underestimation of run-off in the Tibetan plateau include underestimation of precipitation and uncertainties in other meteorological data due to complex topography, and simplified representations of the soil depth attribute and snow processes in the model. Second, simulated AET matched reasonably with estimated values calculated as the residual of precipitation and run-off for watersheds controlled by the hydrological gauges. Finally, trend analysis based on the Mann–Kendall method indicated that significant increasing and decreasing patterns in precipitation appeared in the northwest part of China and the Yellow River region, respectively. Significant increasing and decreasing trends in AET were detected in the Southwest region and the Yangtze River region, respectively. In addition, the Southwest region, northern China (including the Heilongjiang, Liaohe, and Haihe Basins), and the Yellow River Basin showed significant decreasing trends in run-off, and the Zhemin hydrological region showed a significant increasing trend.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812245P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812245P"><span>Extreme Hydrological Changes in the Western United States Drive Reductions in Water Supply by Mid Century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pagan, Brianna; Ashfaq, Moetasim; Rastogi, Deeksha; Kao, Shih-Chieh; Naz, Bibi; Mei, Rui; Kendall, Donald; Pal, Jeremy</p> <p>2016-04-01</p> <p>The Western United States has a greater vulnerability to climate change impacts on water security due to a reliance on snowmelt driven imported water. The State of California, which is the most populous and agriculturally productive in the United States, depends on an extensive artificial water storage and conveyance system primarily for irrigated agriculture, municipal and industrial supply and hydropower generation. This study provides an integrated approach to assessing climate change impacts on the hydrologic cycle and hydrologic extremes for all water supplies to Southern California including the San-Joaquin River, Tulare Lake, Sacramento River, Owens Valley, Mono Lake, and Colorado River basins. A 10-member ensemble of coupled global climate models is dynamically downscaled forcing a regional and hydrological model resulting in a high-resolution 4-km output for the region. Greenhouse gas concentrations are prescribed according to historical values for the present-day (1965-2005) and the IPCC Representative Concentration Pathway 8.5 for the near to mid term future (2010-2050). While precipitation is projected to remain the same or slightly increase, rising temperatures result in a shift in precipitation type towards more rainfall, reducing cold season snowpack and earlier snowmelt. Associated with these hydrological changes are substantial increases in both dry and flood event frequency and intensity, which are evaluated by using the Generalized Extreme Value distribution, Standardized Precipitation Index and ratio of daily precipitation to annual precipitation. Daily annual maximum runoff and precipitation event events significantly increase in intensity and frequency. Return periods change such that extreme events in the future become much more common by mid-century. The largest changes occur in the Colorado River where the daily annual maximum runoff 100-year event, for example, becomes approximately ten times more likely and twice as likely in the other basins. Volumes for annual cumulative maximum runoff increase and in contrast decrease for annual cumulative minimum runoff. Intuitively, increased frequency of years with below historical average runoff put further strain on water supply. However, the escalating likelihood of runoff occurring earlier in the year and in significantly higher amounts poses a substantial flood control risk requiring the release of water from reservoirs, also potentially decreasing water availability. Significant reductions in snowpack and increases in extreme runoff necessitate additional multiyear storage solutions for urban and agricultural regions in the Western United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2014/5170/pdf/sir2014-5170.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2014/5170/pdf/sir2014-5170.pdf"><span>Concentrations, loads, and yields of total phosphorus, total nitrogen, and suspended sediment and bacteria concentrations in the Wister Lake Basin, Oklahoma and Arkansas, 2011-13</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Buck, Stephanie D.</p> <p>2014-01-01</p> <p>The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33A1170Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33A1170Z"><span>Study on glacier changes from multi-source remote sensing data in the mountainous areas of the upper reaches of Shule River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, S.; Li, H.</p> <p>2017-12-01</p> <p>The changes of glacier area, ice surface elevation and ice storage in the upper reaches of the Shule River Basin were investigated by the Landsat TM series SRTM and stereo image pairs of Third Resources Satellite (ZY-3)from 2000 to 2015. There are 510 glaciers with areas large than 0.01 km2 in 2015, and the glacier area is 435 km2 in the upper reach of Shule River basin. 96 glaciers were disappeared from 2000 to 2015, and the total glacier area decreased by 57.6±2.68km2 (11.7 %). After correcting the elevation difference between ZY-3 DEM and SRTM and aspect, we found that the average ice surface elevation of glaciers reduced by 2.58±0.6m from 2000 to 2015 , with average reduction 0.172 ±0.04m a-1, and the ice storage reduced by 1.277±0.311km3. Elevation variation of ice surface in different sub-regions reflects the complexity of glacier change. The ice storage change calculated from the sum of single glacier area-volume relationship is glacier 1.46 times higher than that estimated from ice surface elevation change, indicating that the global ice storage change estimated from glacier area-volume change probably overestimated. The shrinkage of glacier increased glacier runoff, and led the significant increase of river runoff. The accuracy of projecting the potential glacier change, glacier runoff and river runoff is the key issues of delicacy water resource management in Shule River Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JHyd..513...91M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JHyd..513...91M"><span>Water circulation within a high-Arctic glaciated valley (Petunia Bay, Central Spitsbergen): Recharge of a glacial river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marciniak, Marek; Dragon, Krzysztof; Chudziak, Łukasz</p> <p>2014-05-01</p> <p>This article presents an investigation of the runoff of a glacial river located in the high Arctic region of Spitsbergen. The Ebba River runoff was measured during three melting seasons of 2007, 2008 and 2009. The most important component of the river recharge is the flow of melting water from glaciers (76-82% of total river runoff). However, the other components (surface water and groundwater) also made a significant contribution to the river recharge. The contribution of groundwater flow in total river runoff was estimated by measurements performed in four groups of piezometers located in different parts of the valley. The hydrogeological parameters that characterize shallow aquifer (thickness of the active layer, hydraulic conductivity, groundwater level fluctuations) were recognized by direct field measurements. The groundwater recharging river was the most variable recharge component, and ranged from 1% of the total runoff at the beginning of the melting season to even 27% at the end of summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815890H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815890H"><span>The Relationship between Hydroclimatic Variables and Faecal Indicator Bacteria in River Basins in Pakistan and Bangladesh</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hofstra, Nynke; Shahid Iqbal, M.; Majedul Islam, M. M.</p> <p>2016-04-01</p> <p>Water contaminated with pathogenic bacteria causing diarrhoea poses a health risk to the population. Worldwide, diarrhoea is the 3rd leading cause of death. A changing climate may increase the concentration of pathogens in surface water. Increased temperature will mostly increase the inactivation of pathogens and therefore decrease the surface water concentration. Increased precipitation may dilute contaminated water, but may also increase the runoff of pathogens into the surface water. Decreased precipitation may have the opposite effect. Moreover, increased chance of extreme precipitation events and increased risk of floods may also increase the runoff of pathogens into the surface water. The net balance of these effects is uncertain. The objective of our study is to quantify the relationship between hydroclimatic variables (surface air and water temperature, precipitation and runoff) and faecal indicator bacteria (FIB, E. coli and Enterococci) in two rivers in Pakistan and Bangladesh. In these countries health problems are large, particularly in annual periods of flood. We studied FIB instead of pathogens, because of the costs associated with pathogen measurements. The relationship between FIB and hydroclimatic variables is expected to be comparable to the relationship between pathogens and hydroclimatic variables. For both regions the FIB concentrations have been monitored for two years between 2013 and 2015 at several points in the rivers. Concentrations of FIB in Kabul (Pakistan) and Betna (Bangladesh) river basins are very high (up to 5.2 log10 cfu/100ml). Due to a broken waste water treatment system of the city of Peshawar, concentrations are higher in Kabul than in the Betna river. All hydroclimatic variables positively correlate with FIB. An unexpected positive relation with temperature can be explained by the fact that temperature and discharge increase at the same time and possibly FIB growth. The positive relation with precipitation and discharge shows that not the dilution, but the increased runoff of FIB is more important. Regression models for each of the measurement locations in Kabul river show that water temperature, discharge and precipitation together explain a large part of the variance (R2 equals 0.72-0.94) for E. coli. The regression model for Betna river comprises water temperature and discharge and for E. coli R2=0.47 and for Enterococci R2=0.49. We can conclude that FIB concentrations increase with increasing temperature and particularly precipitation and discharge. We expect pathogen concentrationss to increase in a similar way and would therefore expect increased health risk due to climate change in Kabul and Betna river basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC11D1028L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC11D1028L"><span>The Parana paradox: can a model explain the decadal impacts of climate variability and land-cover change?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, E.; Moorcroft, P. R.; Livino, A.; Briscoe, J.</p> <p>2013-12-01</p> <p>Since the 1970s, despite a decrease in rainfall, flow in the Parana river has increased. This paradox is explored using the Ecosystem Demography (ED) model. If there were no change in land cover, the modeled runoff decreased from the 1970s to the 2000s by 11.8% (with 1970 land cover) or 18.8% (with 2008 land cover). When the model is run holding climate constant, the decadal average of the modeled runoff increased by 24.4% (with the 1970s climate) or by 33.6% (with 2000s climate). When the model is run allowing both the actual climate and land-cover changes, the model gives an increase in the decadal average of runoff by 8.5%. This agrees well with 10.5% increase in the actual stream flow as measured at Itaipu. There are three main conclusions from this work. First, the ED model is able to explain a major, paradoxical, reality in the Parana basin. Second, it is necessary to take into account both climate and land use changes when exploring past or future changes in river flows. Third, the ED model, now coupled with a regional climate model (i.e., EDBRAMS), is a sound basis for exploring likely changes in river flows in major South American rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12..206K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12..206K"><span>Potential compensation of hydrological extremes in headwaters: case study of upper Vltava River basin, Šumava Mts., Czechia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kocum, Jan; Janský, Bohumír.; Česák, Julius</p> <p>2010-05-01</p> <p>Increasing frequency of catastrophic flash floods and extreme droughts in recent years results in an urgent need of solving of flood protection questions and measures leading to discharge increase in dry periods. Flattening of discharge call for the use of untraditional practices as a suitable complement to classical engineering methods. These measures could be represented by gradual increase of river catchment retention capacity in headstream areas. Very favorable conditions for this research solution are concentrated to the upper part of Otava River basin (Vltava River left tributary, Šumava Mts., southwestern Czechia) representing the core zone of a number of extreme floods in Central Europe and the area with high peat land proportion. A number of automatic ultrasound and hydrostatic pressure water level gauges, climatic stations and precipitation gauges and utilization of modern equipment and methods were used in chosen experimental catchments to assess the landscape retention potential and to find out rainfall-runoff relations in this area. Successively, the detailed analysis of peat land hydrological function was carried out. The peat bogs influence on runoff conditions were assessed by thorough comparison of runoff regimes in subcatchments with different peat land proportion. The peat bog influence on hydrological process can be considered also with respect to its affecting of water quality. Therefore, hydrological monitoring was completed by ion, carbon (TOC) and oxygen isotopes balance observing within periods of high or low discharges in order to precise runoff phases separation by means of anion deficiency. Pedological survey of different soil types and textures was carried out to precise the estimation of its water capacity. Detailed analyses of extreme runoff ascending and descending phases and minimum discharges in profiles closing several subcatchments with different physical-geographic conditions show higher peak flow frequency and their shorter reaction to causal amount of precipitation in the case of highly peaty areas, therefore more distinct runoff variability of streams draining peat land localities. These findings were affirmed by geochemical approach laboratory outcomes within the meaning of significant contribution of runoff from peat lands to the total runoff during extreme flood situations. An important component of rainfall-runoff process in source areas of czech rivers represented by snow conditions was analyses very in detail by means of monitoring of snow cover height and its water equivalent in chosen experimental catchments. Outcomes of this study should markedly help with significant precising of estimation of water storage retained in a snow cover. Consecutive runoff simulations using mathematical techniques would then improve a hydrological forecast. In terms of present dyking of former channels draining peat land represented by so called peat bog revitalization partial findings refer to positive effect during mean runoff situations but their considerably negative influence on runoff process in cases of extremely high discharges. In order to achieve retention potential enhancement in source areas of czech rivers an evaluation of possible former accumulative reservoirs (used for wood floating in former times) restoration which could function for example as dry (green) polders should be considered. The system of such small storage bins could function as an alternative and supplement to greater dam reservoirs. Possible spaces for water retention are measured by geodetic total station and modelled by suitable methods in GIS software. Existing outcomes advert to the fact that the effectiveness of such reservoir system would not have to be neglecting. By implementation of these unforceable measures realized in river headstream areas it could be contributed to reduction of peak flows and to increase of water resources during extreme droughts in future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20705330','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20705330"><span>Long-term trends and variation of acidity, COD(Mn) and colour in coastal rivers of Western Finland in relation to climate and hydrology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saarinen, Tuomas; Vuori, Kari-Matti; Alasaarela, Erkki; Kløve, Bjørn</p> <p>2010-10-01</p> <p>High acidity caused by geochemical processes and intensive land use of acid sulphate (AS) soils have continuously degraded the status of water bodies in Western Finland. Despite this, research on the long-term pattern and dynamics of acidification in rivers affected by acid sulphate soils is scarce. This study examined changes in alkalinity and pH value during the period 1913-2007 in nine large Finnish rivers discharging into the Gulf of Bothnia. In addition, patterns of COD(Mn) and colour were analysed during the period 1961-2007. Relationships between pH, alkalinity, COD(Mn) and colour and climate variables were also studied. In four rivers with no AS soil impact (Kokemäenjoki, Kemijoki, Iijoki and Oulujoki), critically low pH levels did not occur during the study period, whereas three rivers exposed to minor or moderate levels of runoff from AS soils (Lestijoki, Kalajoki, and Siikajoki) had all periods with critically low pH and alkalinity. The most severe acidity problems occurred in the rivers Kyrönjoki and Lapuanjoki, with extensive drainage of AS soils being the main reason for the low pH status. Maximum discharge was clearly related to the acidity status of many rivers during the autumn-winter runoff period, when a significant negative linear correlation was found between maximum discharge and minimum pH in the rivers affected by AS soils. There was also a more distinct relationship between maximum chemical oxygen demand (COD(Mn)) and minimum pH in autumn runoff than in spring. COD(Mn) levels significantly increased with increasing discharge in the rivers with no or minor AS soil impact. Climate change is predicted to increase river flow in general and winter discharge in particular, and therefore the acidity problems in affected rivers may increase in a future climate. Copyright 2010 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3542531','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3542531"><span>Pan-Arctic distributions of continental runoff in the Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fichot, Cédric G.; Kaiser, Karl; Hooker, Stanford B.; Amon, Rainer M. W.; Babin, Marcel; Bélanger, Simon; Walker, Sally A.; Benner, Ronald</p> <p>2013-01-01</p> <p>Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region. PMID:23316278</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H21F1194B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H21F1194B"><span>Snowmelt runoff in the Green River basin derived from MODIS snow extent</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barton, J. S.; Hall, D. K.</p> <p>2011-12-01</p> <p>The Green River represents a vital water supply for southwestern Wyoming, northern Colorado, eastern Utah, and the Lower Colorado River Compact states (Arizona, Nevada, and California). Rapid development in the southwestern United States combined with the recent drought has greatly stressed the water supply of the Colorado River system, and concurrently increased the interest in long-term variations in stream flow. Modeling of snowmelt runoff represents a means to predict flows and reservoir storage, which is useful for water resource planning. An investigation is made into the accuracy of the Snowmelt Runoff Model of Martinec and Rango, driven by Moderate Resolution Imaging Spectroradiometer (MODIS) snow maps for predicting stream flow within the Green River basin. While the moderate resolution of the MODIS snow maps limits the spatial detail that can be captured, the daily coverage is an important advantage of the MODIS imagery. The daily MODIS snow extent is measured using the most recent clear observation for each 500-meter pixel. Auxiliary data used include temperature and precipitation time series from the Snow Telemetry (SNOTEL) and Remote Automated Weather Station (RAWS) networks as well as from National Weather Service records. Also from the SNOTEL network, snow-water equivalence data are obtained to calibrate the conversion between snow extent and runoff potential.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1126851-impacts-climate-change-vegetation-dynamics-runoff-mountainous-region-haihe-river-basin-past-five-decades','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1126851-impacts-climate-change-vegetation-dynamics-runoff-mountainous-region-haihe-river-basin-past-five-decades"><span>Impacts of Climate Change and Vegetation Dynamics on Runoff in the Mountainous Region of the Haihe River Basin in the Past Five Decades</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lei, Huimin; Yang, Dawen; Huang, Maoyi</p> <p>2014-04-16</p> <p>Climate and atmospheric CO2 concentration have changed significantly in the mountainous region of the Haihe River basin over the past five decades. In the study, a process-based terrestrial model, version 4 of the Community Land Model (CLM4), was used to quantify the spatiotemporal changes in runoff over the region, driven by the varying climate factors and CO2 concentration. Overall, our simulations suggest that climate-induced change in runoff in this region show a decreasing trend since 1960. Changes in precipitation, solar radiation, air temperature, and wind speed accounts for 56%, -14%, 13%, -5% of the overall decrease in annual runoff, respectively,more » but their relative contributions vary across the study area. Rising atmospheric CO2 concentration was found to have limited impacts on runoff. Significant decrease in runoff over the southern and northeastern portion of the region is primarily attributed to decreasing precipitation, while decreasing solar radiation and increasing air temperature are the main causes of slight runoff increase in the northern portion. Our results also suggest that the magnitude of decreasing trend could be greatly underestimated if the dynamical interactions of vegetation phenology with the environmental factors are not considered in the modeling, highlighting the importance of including dynamic vegetation phenology in the prediction of runoff in this region.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2008/5124/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2008/5124/"><span>Effects of Potential Future Warming on Runoff in the Yakima River Basin, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mastin, Mark C.</p> <p>2008-01-01</p> <p>The Bureau of Reclamation has implemented a long-term planning study of potential water-storage alternatives in the Yakima River Basin, which includes planning for climate change effects on available water resources in the basin. Previously constructed watershed models for the Yakima River Basin were used to simulate changes in unregulated streamflow under two warmer climate scenarios, one representing a 1 degree C increase in the annual air temperature over current conditions (plus one scenario) and one representing a 2 degree C increase in the annual air temperature over current conditions (plus two scenario). Simulations were done for water years 1981 through 2005 and the results were compared to simulated unregulated runoff for the same period using recorded daily precipitation, and minimum and maximum air temperatures (base conditions). Precipitation was not altered for the two warmer climate change scenarios. Simulated annual runoff for the plus one and plus two scenarios decreased modestly from the base conditions, but the seasonal distribution and the general pattern of runoff proved to be highly sensitive to temperature changes throughout the basin. Seasonally increased runoff was simulated during the late autumn and winter months for both the plus one and plus two scenarios compared to base conditions. Comparisons at six principal regulatory locations in the basin showed that the maximum percentage increases in runoff over the base conditions during December to March varied from 24 to 48 percent for the plus one scenario and 59 to 94 percent for the plus two scenario. During late spring and summer months, significantly decreased runoff was simulated at these sites for both scenarios compared to base conditions. Simulated maximum decreases in runoff occurred during June and July, and the changes ranged from -22 to -51 percent for the plus one scenario and -44 to -76 percent for the plus two scenario. Differences in total annual runoff at these sites ranged from -1.4 to -3.9 percent for the plus one scenario and from -2.5 to -8.2 percent for the plus two scenario. The percent change of the monthly mean runoff for both scenarios from the base conditions at many points in the basin will be used in a water-management model developed by the Bureau of Reclamation to assess various storage alternatives.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411456K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411456K"><span>Flood Runoff in Relation to Water Vapor Transport by Atmospheric Rivers Over the Western United States, 1949-2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Konrad, Christopher P.; Dettinger, Michael D.</p> <p>2017-11-01</p> <p>Atmospheric rivers (ARs) have a significant role in generating floods across the western United States. We analyze daily streamflow for water years 1949 to 2015 from 5,477 gages in relation to water vapor transport by ARs using a 6 h chronology resolved to 2.5° latitude and longitude. The probability that an AR will generate 50 mm/d of runoff in a river on the Pacific Coast increases from 12% when daily mean water vapor transport, DVT, is greater than 300 kg m-1 s-1 to 54% when DVT > 600 kg m-1 s-1. Extreme runoff, represented by the 99th quantile of daily values, doubles from 80 mm/d at DVT = 300 kg m-1 s-1 to 160 mm/d at DVT = 500 kg m-1 s-1. Forecasts and predictions of water vapor transport by atmospheric rivers can support flood risk assessment and estimates of future flood frequencies and magnitude in the western United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1999/4045/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1999/4045/report.pdf"><span>Relations of surface-water quality to streamflow in the Raritan River basin, New Jersey, water years 1976-93</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Buxton, Debra E.; Hunchak-Kariouk, Kathryn; Hickman, R. Edward</p> <p>1999-01-01</p> <p>Relations of water quality to streamflow were determined for 18 water-quality constituents at 21 surface-water stations within the drainage area of the Raritan River Basin for water years 1976-93. Surface-water-quality and streamflow data were evaluated for trends (through time) in constituent concentrations during high and low flows, and relations between constituent concentration and streamflow, and between constituent load and streamflow, were determined. Median concentrations were calculated for the entire period of study (water years 1976-93) and for the last 5 years of the period of study (water years 1989-93) to determine whether any large variation in concentration exists between the two periods. Medians also were used to determine the seasonal Kendall’s tau statistic, which was then used to evaluate trends in concentrations during high and low flows. Trends in constituent concentrations during high and low flows were evaluated to determine whether the distribution of the observations changes through time for intermittent (nonpoint storm runoff) or constant (point sources and ground water) sources, respectively. Highand low-flow trends in concentrations were determined for some constituents at 13 of the 21 water-quality stations; 8 stations have insufficient data to determine trends. Seasonal effects on the relations of concentration to streamflow are evident for 16 of the 18 constituents. Negative slopes of relations of concentration to streamflow, which indicate a decrease in concentration at high flows, predominate over positive slopes because of the dilution of instream concentrations by storm runoff. The slopes of the regression lines of load to streamflow were determined in order to show the relative contributions to the instream load from constant (point sources and ground water) and intermittent sources (storm runoff). Greater slope values indicate larger contributions from storm runoff to instream load, which most likely indicate an increased relative importance of nonpoint sources. The slopes of load-to-streamflow relations along a stream reach that tend to increase in a downstream direction indicate the increased relative importance of contributions from storm runoff. The slopes of load-to-streamflow relations increase in the downstream direction for alkalinity at North Branch Raritan and Millstone Rivers, for some or all of the nutrient species at South Branch and North Branch Raritan Rivers, for hardness at South Branch Raritan River, for dissolved solids at North Branch Raritan River, for dissolved sodium at Lamington River, and for suspended sediment and dissolved oxygen at Millstone River. Likewise, the slopes of load-tostreamflow relations along a stream reach that tend to decrease in a downstream direction indicate the increased relative importance of point sources and ground-water discharge. The slopes of load-to-streamflow relations decrease in the downstream direction for dissolved solids at Raritan and Millstone Rivers; for dissolved sodium, dissolved chloride, total ammonia plus organic nitrogen, and total ammonia at South Branch Raritan, Raritan, and Millstone Rivers; for dissolved oxygen at North Branch Raritan and Lamington Rivers; for total nitrite at Lamington, Raritan, and Millstone Rivers; for total boron at South Branch Raritan and Millstone Rivers; for total organic carbon at North Branch Raritan River; for suspended sediment and total nitrogen at Raritan River; and for hardness, total phosphorus, and total lead at Millstone River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029209','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029209"><span>Nutrient contributions to the Santa Barbara Channel, California, from the ephemeral Santa Clara River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Warrick, J.A.; Washburn, L.; Brzezinski, Mark A.; Siegel, D.A.</p> <p>2005-01-01</p> <p>The Santa Clara River delivers nutrient rich runoff to the eastern Santa Barbara Channel during brief (???1-3 day) episodic events. Using both river and oceanographic measurements, we evaluate river loading and dispersal of dissolved macronutrients (silicate, inorganic N and P) and comment on the biological implications of these nutrient contributions. Both river and ocean observations suggest that river nutrient concentrations are inversely related to river flow rates. Land use is suggested to influence these concentrations, since runoff from a subwatershed with substantial agriculture and urban areas had much higher nitrate than runoff from a wooded subwatershed. During runoff events, river nutrients were observed to conservatively mix into the buoyant, surface plume immediately seaward of the Santa Clara River mouth. Dispersal of these river nutrients extended 10s of km into the channel. Growth of phytoplankton and nutrient uptake was low during our observations (1-3 days following runoff), presumably due to the very low light levels resulting from high turbidity. However, nutrient quality of runoff (Si:N:P = 16:5:1) was found to be significantly different than upwelling inputs (13:10:1), which may influence different algal responses once sediments settle. Evaluation of total river nitrate loads suggests that most of the annual river nutrient fluxes to the ocean occur during the brief winter flooding events. Wet winters (such as El Nin??o) contribute nutrients at rates approximately an order-of-magnitude greater than "average" winters. Although total river nitrate delivery is considerably less than that supplied by upwelling, the timing and location of these types of events are very different, with river discharge (upwelling) occurring predominantly in the winter (summer) and in the eastern (western) channel. ?? 2004 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2002/ofr02-300/pdf/ofr2002300.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2002/ofr02-300/pdf/ofr2002300.pdf"><span>Water-Resources Investigations in Wisconsin, 2002</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hueschen, K. A.; Jones, S.Z.; Fuller, J.A.</p> <p>2002-01-01</p> <p>Runoff for rivers in the state ranged from 67 percent of the average annual runoff (1964–2001) at the Kewaunee River site in the northeast part of the state to 160 percent of the average annual runoff (1944–2001) at the Eau Galle River at Spring Valley site in the west central part of the state. Departures of runoff in the 2001 water year as a percent of long-term average runoff in the state (determined using stations with drainage areas greater than 150 square miles and at least 20 years of record) are shown in figure 4.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/sir20045057','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/sir20045057"><span>Glacial history and runoff components of the Tlikakila River Basin, Lake Clark National Park and Preserve, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brabets, Timothy P.; March, Rod S.; Trabant, Dennis C.</p> <p>2004-01-01</p> <p>The Tlikakila River is located in Lake Clark National Park and Preserve and drains an area of 1,610 square kilometers (622 square miles). Runoff from the Tlikakila River Basin accounts for about one half of the total inflow to Lake Clark. Glaciers occupy about one third of the basin and affect the runoff characteristics of the Tlikakila River. As part of a cooperative study with the National Park Service, glacier changes and runoff characteristics in the Tlikakila River Basin were studied in water years 2001 and 2002. Based on analyses of remote sensing data and on airborne laser profiling, most glaciers in the Tlikakila River Basin have retreated and thinned from 1957 to the present. Volume loss from 1957-2001 from the Tanaina Glacier, the largest glacier in the Tlikakila River Basin, was estimated to be 6.1 x 109 cubic meters or 1.4 x 108 cubic meters per year. For the 2001 water year, mass balance measurements made on the three largest glaciers in the Tlikakila River BasinTanaina, Glacier Fork, and North Forkall indicate a negative mass balance. Runoff measured near the mouth of the Tlikakila River for water year 2001 was 1.70 meters. Of this total, 0.18 meters (11 percent) was from glacier ice melt, 1.27 meters (75 percent) was from snowmelt, 0.24 meters (14 percent) was from rainfall runoff, and 0.01 meters (1 percent) was from ground water. Although ground water is a small component of runoff, it provides a critical source of warm water for fish survival in the lower reaches of the Tlikakila River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016HydSJ..61.1065Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016HydSJ..61.1065Z"><span>Changes in the long-term hydrological regimes and the impacts of human activities in the main Wei River, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Hongbo; Huang, Qiang; Zhang, Qiang; Gu, Lei; Chen, Keyu; Yu, Qijun</p> <p>2016-03-01</p> <p>Under the combined influence of climate changes and human activities, the hydrological regime of the Wei River shows remarkable variations which have caused many issues in the Wei River in recent decades, such as a lack of freshwater, water pollution, disastrous flooding and channel sedimentation. Hence, hydrological regime changes and potential human-induced impacts have been drawing increasing attention from local government and hydrologists. This study investigates hydrological regime changes in the natural and measured runoff series at four hydrological stations on the main Wei River and quantifies features of their long-term change by analysing their historical annual and seasonal runoff data using several approaches, i.e., continuous wavelet transform, cross-wavelet, wavelet coherence, trend-free pre-whitening Mann-Kendall test and detrended fluctuation analysis. By contrasting two different analysis results between natural and measured river runoff series, the impacts of human activities on the long-term hydrological regime were investigated via the changes of spatio-temporal distribution in dominant periods, the trends and long-range memory of river runoff. The results show : (a) that periodic properties of the streamflow changes are the result of climate, referring to precipitation changes in particular, while human activities play a minor role; (b) a significant decreasing trend can be observed in the natural streamflow series along the entire main stream of the Wei River and the more serious decrease emerging in measured flow should result from human-induced influences in recent decades; and (c) continuous decreasing streamflow in the Wei River will trigger serious shortages of freshwater in the future, which may challenge the sustainability and safety of water resources development in the river basin, and should be paid great attention before 2020.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70148023','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70148023"><span>Changes in total phosphorus concentration in the Red River of the North Basin, 1970-2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ryberg, Karen R.; Akyüz, F. Adnan; Lin, Wei</p> <p>2015-01-01</p> <p>The Red River of the North drains much of eastern North Dakota and northwestern Minnesota and flows north into Manitoba, Canada, ultimately into Lake Winnipeg; therefore, water quality is an International concern. With increased runoff in the past few decades, phosphorus flux (the amount of phosphorus transported by the river) has increased. This is a concern, especially with respect to Lake Winnipeg, an important inland fishery and recreational destination. There is pressure at the State and International levels to reduce phosphorus flux, an expensive proposition. Depending on the method (controlling sources, settling ponds, buffer strips), control of phosphorus flux is not always effective during spring runoff. This work represents a first step in developing a causal model for phosphorus flux by examining available data and changes in concentration over time. Total phosphorus concentration data for the Red River at Emerson, Manitoba, and at Fargo, North Dakota-Moorhead, Minnesota, were summarized and then analyzed using WRTDS (Weighted Regressions on Time, Discharge, and Season) to describe total phosphorus changes over time in two analysis periods: 1970-1993 and 1993-2012. Total phosphorus concentration increased in the first period at Emerson, Manitoba, indicating phosphorus was likely being transported to streams during runoff events. A very different pattern occurred at Fargo-Moorhead with declines in concentration, except at high discharge. While concentration continually changes, during the second period it decreased during spring runoff at Emerson and Fargo-Moorhead and during the growing season at Fargo-Moorhead, perhaps because of improved agricultural practices and declines in some uses of phosphorus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C11C..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C11C..02P"><span>The Airborne Snow Observatory: fusion of imaging spectrometer and scanning lidar for studies of mountain snow cover (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Painter, T. H.; Andreadis, K.; Berisford, D. F.; Goodale, C. E.; Hart, A. F.; Heneghan, C.; Deems, J. S.; Gehrke, F.; Marks, D. G.; Mattmann, C. A.; McGurk, B. J.; Ramirez, P.; Seidel, F. C.; Skiles, M.; Trangsrud, A.; Winstral, A. H.; Kirchner, P.; Zimdars, P. A.; Yaghoobi, R.; Boustani, M.; Khudikyan, S.; Richardson, M.; Atwater, R.; Horn, J.; Goods, D.; Verma, R.; Boardman, J. W.</p> <p>2013-12-01</p> <p>Snow cover and its melt dominate regional climate and water resources in many of the world's mountainous regions. However, we face significant water resource challenges due to the intersection of increasing demand from population growth and changes in runoff total and timing due to climate change. Moreover, increasing temperatures in desert systems will increase dust loading to mountain snow cover, thus reducing the snow cover albedo and accelerating snowmelt runoff. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still poorly quantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. Recognizing this need, JPL developed the Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. Critical in the design of the ASO system is the availability of snow water equivalent and albedo products within 24 hours of acquisition for timely constraint of snowmelt runoff forecast models. In spring 2013, ASO was deployed for its first year of a multi-year Demonstration Mission of weekly acquisitions in the Tuolumne River Basin (Sierra Nevada) and monthly acquisitions in the Uncompahgre River Basin (Colorado). The ASO data were used to constrain spatially distributed models of varying complexities and integrated into the operations of the O'Shaughnessy Dam on the Hetch Hetchy reservoir on the Tuolumne River. Here we present the first results from the ASO Demonstration Mission 1 along with modeling results with and without the constraint by the ASO's high spatial resolution and spatially complete acquisitions. ASO ultimately provides a potential foundation for coming spaceborne missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri014027','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri014027"><span>Relations among rainstorm runoff, streamflow, pH, and metal concentrations, Summitville Mine area, upper Alamosa River basin, southwest Colorado, 1995-97</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rupert, Michael G.</p> <p>2001-01-01</p> <p>The upper Alamosa River Basin contains areas that are geochemically altered and have associated secondary sulfide mineralization. Occurring with this sulfide mineralization are copper, gold, and silver deposits that have been mined since the 1870's. Weathering of areas with sulfide mineralization produces runoff with anomalously low pH and high metal concentrations; mining activities exacerbate the condition. Summer rainstorms in the upper Alamosa River Basin produce a characteristic relation between streamflow and pH; streamflow suddenly increases and pH suddenly decreases (commonly by more than 1 pH unit). This report evaluates changes in pH in the upper Alamosa River Basin during July, August, and September 1995, 1996, and 1997 to examine possible adverse environmental effects due to rainstorm runoff. Ninety-three percent of the rainstorms occurring during 1995?97 produced runoff throughout the entire basin. Out of 54 storms, only 3 storms were isolated to the river reach upstream from the streamflow-gaging station Alamosa River above Wightman Fork, and only 1 storm was isolated to the river reach between the streamflow-gaging stations Alamosa River below Jasper and Alamosa River above Terrace Reservoir. Although most rainstorm runoff events occurred throughout the entire basin, pH changes were highest in parts of the basin that receive runoff from hydrothermally altered areas. The three principal altered areas within the basin are the Jasper, Stunner, and Summitville areas. Only limited mining occurred in the Stunner altered area, and yet significant decreases in pH values occur due to runoff from this area. Even after environmental restoration activities are completed at the Summitville Mine, the main stem of the Alamosa River may continue to be adversely affected by runoff from the Stunner and Jasper altered areas. A comparison of measured pH with Federal and State of Colorado water-quality standards and Toxicological Reference Values indicates pH was too low to support aquatic life in many parts of the basin for extended periods of time. Added stresses from sudden decreases in pH due to rainstorm runoff compound the adverse effects. Discharge of effluent from the Summitville Mine impoundment can significantly decrease pH in the Alamosa River downstream to Terrace Reservoir. A release of only 3 cubic feet per second from the impoundment decreased pH by at least 1 standard unit at all downstream sites. Low-flow years may pose a substantial risk to aquatic organisms within and downstream from Terrace Reservoir. During 1996, the basin had a low-flow year, and water storage and pool size of Terrace Reservoir were significantly reduced. The pH of water discharging from Terrace Reservoir was anomalously low during late August and September 1996, possibly due to geochemical interactions between sediment and the water column within the reservoir. In general, an inverse log-log relation exists between pH and the logarithm of dissolved metal concentrations, but the relations generally are not significant enough to confidently predict metal concentrations based upon measured pH values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194211','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194211"><span>Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lilledahl, Anna K.; Gadeke, Anne; O'Neel, Shad; Gatesman, T. A.; Douglas, T. A.</p> <p>2017-01-01</p> <p>Arctic river discharge has increased in recent decades although sources and mechanisms remain debated. Abundant literature documents permafrost thaw and mountain glacier shrinkage over the past decades. Here we link glacier runoff to aquifer recharge via a losing headwater stream in subarctic Interior Alaska. Field measurements in Jarvis Creek (634 km2), a subbasin of the Tanana and Yukon Rivers, show glacier meltwater runoff as a large component (15–28%) of total annual streamflow despite low glacier cover (3%). About half of annual headwater streamflow is lost to the aquifer (38 to 56%). The estimated long-term change in glacier-derived aquifer recharge exceeds the observed increase in Tanana River base flow. Our findings suggest a linkage between glacier wastage, aquifer recharge along the headwater stream corridor, and lowland winter discharge. Accordingly, glacierized headwater streambeds may serve as major aquifer recharge zones in semiarid climates and therefore contributing to year-round base flow of lowland rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015HESSD..12.6305E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015HESSD..12.6305E"><span>Land-use changes reinforce the impacts of climate change on annual runoff dynamics in a southeast China coastal watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ervinia, A.; Huang, J.; Zhang, Z.</p> <p>2015-06-01</p> <p>Study on runoff dynamics across different physiographic regions is fundamentally important to formulate the sound strategies for water resource management especially in the coastal watershed where peoples heavily concentrated and relied on water resources. The L-R diagram, a conceptual model by which the land-changes evapotranspiration (ΔL) was estimated as the difference between actual and climate evapotranspiration to identify the specific impact of land-use changes on annual runoff changes (ΔR), was developed using the 53-year hydro-climatic data of Jiulong River Watershed, a typical medium-sized subtropical coastal watershed in China. This study found that land-use changes have reinforced the impact of climatic changes on runoff changes where nearly all points were scattered in II and IV quadrant. Deforestation and expansion of built up area has diminished the water retention capacity in a catchment as well as evapotranspiration thus produce extra runoff accounting for 12-183 % of total runoff increase. In contrast, reforestation makes the significant contribution to decreasing annual runoff for about 21-82 % of total runoff loss. This study revealed the river runoff has become more vulnerable to intensive anthropogenic disturbances under the context of climate changes in a coastal watershed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026421','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026421"><span>Are big basins just the sum of small catchments?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shaman, J.; Stieglitz, M.; Burns, D.</p> <p>2004-01-01</p> <p>Many challenges remain in extending our understanding of how hydrologic processes within small catchments scale to larger river basins. In this study we examine how low-flow runoff varies as a function of basin scale at 11 catchments, many of which are nested, in the 176 km2 Neversink River watershed in the Catskill Mountains of New York. Topography, vegetation, soil and bedrock structure are similar across this river basin, and previous research has demonstrated the importance of deep groundwater springs for maintaining low-flow stream discharge at small scales in the basin. Therefore, we hypothesized that deep groundwater would contribute an increasing amount to low-flow discharge as basin scale increased, resulting in increased runoff. Instead, we find that, above a critical basin size of 8 to 21 km2, low-flow runoff is similar within the Neversink watershed. These findings are broadly consistent with those of a previous study that examined stream chemistry as a function of basin scale for this watershed. However, we find physical evidence of self-similarity among basins greater than 8 km2, whereas the previous study found gradual changes in stream chemistry among basins greater than 3 km 2. We believe that a better understanding of self-similarity and the subsurface flow processes that affect stream runoff will be attained through simultaneous consideration of both chemical and physical evidence. We also suggest that similar analyses of stream runoff in other basins that represent a range of spatial scales, geomorphologies and climate conditions will further elucidate the issue of scaling of hydrologic processes. Copyright ?? 2004 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1798k/pdf/pp1798k.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1798k/pdf/pp1798k.pdf"><span>The effects of Missouri River mainstem reservoir system operations on 2011 flooding using a Precipitation-Runoff Modeling System model: Chapter K in 2011 Floods of the Central United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haj, Adel E.; Christiansen, Daniel E.; Viger, Roland J.</p> <p>2014-01-01</p> <p>In 2011 the Missouri River Mainstem Reservoir System (Reservoir System) experienced the largest volume of flood waters since the initiation of record-keeping in the nineteenth century. The high levels of runoff from both snowpack and rainfall stressed the Reservoir System’s capacity to control flood waters and caused massive damage and disruption along the river. The flooding and resulting damage along the Missouri River brought increased public attention to the U.S. Army Corps of Engineers (USACE) operation of the Reservoir System. To help understand the effects of Reservoir System operation on the 2011 Missouri River flood flows, the U.S. Geological Survey Precipitation-Runoff Modeling System was used to construct a model of the Missouri River Basin to simulate flows at streamgages and dam locations with the effects of Reservoir System operation (regulation) on flow removed. Statistical tests indicate that the Missouri River Precipitation-Runoff Modeling System model is a good fit for high-flow monthly and annual stream flow estimation. A comparison of simulated unregulated flows and measured regulated flows show that regulation greatly reduced spring peak flow events, consolidated two summer peak flow events to one with a markedly decreased magnitude, and maintained higher than normal base flow beyond the end of water year 2011. Further comparison of results indicate that without regulation, flows greater than those measured would have occurred and been sustained for much longer, frequently in excess of 30 days, and flooding associated with high-flow events would have been more severe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28605863','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28605863"><span>Quantitative assessment of the impacts of climate change and human activities on runoff change in a typical karst watershed, SW China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Luhua; Wang, Shijie; Bai, Xiaoyong; Luo, Weijun; Tian, Yichao; Zeng, Cheng; Luo, Guangjie; He, Shiyan</p> <p>2017-12-01</p> <p>The Yinjiang River watershed is a typical karst watershed in Southwest China. The present study explored runoff change and its responses to different driving factors in the Yinjiang River watershed over the period of 1984 to 2015. The methods of cumulative anomaly, continuous wavelet analysis, Mann-Kendall rank correlation trend test, and Hurst exponent were applied to analyze the impacts of climate change and human activities on runoff change. The contributions of climate change and human activities to runoff change were quantitatively assessed using the comparative method of the slope changing ratio of cumulative quantity (SCRCQ). The following results were obtained: (1) From 1984 to 2015, runoff and precipitation exhibited no-significant increasing trend, whereas evaporation exhibited significant decreasing trend. (2) In the future, runoff, precipitation, and evaporation will exhibit weak anti-persistent feature with different persistent times. This feature indicated that in their persistent times, runoff and precipitation will continuously decline, whereas evaporation will continuously increase. (3) Runoff and precipitation were well-synchronized with abrupt change features and stage characteristics, and exhibited consistent multi-timescale characteristics that were different from that of evaporation. (4) The contribution of precipitation to runoff change was 50%-60% and was considered high and stable. The contribution of evaporation to runoff change was 10%-90% and was variable with a positive or negative effects. The contribution of human activities to runoff change was 20%-60% and exerted a low positive or negative effect. (5) Climatic factors highly contributed to runoff change. By contrast, the contribution of human activities to runoff change was low. The contribution of climatic factors to runoff change was highly variable because of differences among base periods. In conclusion, this paper provides a basic theoretical understanding of the main factors that contribute to runoff change in a karst watershed. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43B1626K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43B1626K"><span>Impact assessment of climate change and human activities on net runoff in the Yellow River Basin from 1951 to 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kong, D.</p> <p>2017-12-01</p> <p>Runoff in the Yellow River Basin (YRB) has changed constantly during the past six decades. This study investigates the features of variations in runoff increment in the YRB and evaluates the impact of climate change and human activities on the mean annual net runoff. Residual analysis based on double mass curves (RA-DMC) was performed to quantitatively assess the separate contributions of climate change and human activities to the changes in net runoff. There was a significant downward trend in annual net runoff for each of the Yellow River sub-basins. For the basin as a whole, net runoff decreased at a rate of 0.721 × 109 m3 yr-1, with the upper, middle, and lower sub-basins separately accounting for 28.4%, 40.5% and 31.1% of the decrease. Human activities were responsible for more than 90% of the change in runoff in each separate sub-basin between 1960 and 2012. For the entire YRB, 91.7% of the change in net runoff from baseline was attributed to human activities. This indicates that human activities have become the dominant factor in net runoff changes in the Yellow River Basin. Among the upper, middle, and lower reaches, the effect of human activities was greatest in the lower reaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSR...126...12F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSR...126...12F"><span>Characterization of Iberian turbid plumes by means of synoptic patterns obtained through MODIS imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernández-Nóvoa, D.; deCastro, M.; Des, M.; Costoya, X.; Mendes, R.; Gómez-Gesteira, M.</p> <p>2017-08-01</p> <p>Turbid plumes formed by the main Iberian rivers were analyzed and compared in order to determine similarities and differences among them. Five Atlantic rivers (Minho, Douro, Tagus, Guadiana and Guadalquivir) and one Mediterranean river (Ebro) were considered. Plume extension and turbidity were evaluated through synoptic patterns obtained by means of MODIS imagery over the period 2003-2014. River discharge showed to be the main forcing. In fact, the dependence of plume extension on runoff is moderate or high for all rivers, except for Ebro. In addition, most of river plumes adjust immediately to runoff fluctuations. Only the extension of Tagus and Guadalquivir plumes is lagged with respect to river runoff, due to the high residence time generated by their large estuaries. Wind is a secondary forcing, being only noticeable under high discharges. Actually, the dependence of plume extension on wind is moderate or high for all rivers, except Guadalquivir and Ebro. All the Atlantic rivers show the maximum (minimum) near- field plume extension under landward (oceanward) cross-shore winds. The opposite situation was observed for Ebro River. Tide is also a secondary forcing although less important than wind. Actually, the dependence of plume extension on tide is only high for Guadiana River. Nevertheless, all Atlantic river plumes still have some dependence on semidiurnal tidal cycle, they increase under low tides and decrease under high tides. In addition, Tagus River plume also depends on the fortnightly tidal cycle being larger during spring tides than during neap tides. This is due to particular shape of the estuary, where the river debouches into a semi-enclosed embayment connected to the Atlantic Ocean through a strait. Ebro River constitutes a particular case since it has a low dependence on runoff and wind and a negligible dependence on tide. In fact, its plume is mainly driven by the Liguro-Provençal coastal current. Guadalquivir River also shows some unique features due to its high sediment load. It generates the largest Iberian plume in terms of turbid signal and extension even being the second smallest river in terms of discharge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5423604','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5423604"><span>Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: Past, present, and future</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cai, Mingyong; Yang, Shengtian; Zhao, Changsen; Zhou, Qiuwen; Hou, Lipeng</p> <p>2017-01-01</p> <p>Regional hydrological modeling in ungauged regions has attracted growing attention in water resources research. The southern Tibetan Plateau often suffers from data scarcity in watershed hydrological simulation and water resources assessment. This hinders further research characterizing the water cycle and solving international water resource issues in the area. In this study, a multi-spatial data based Distributed Time-Variant Gain Model (MS-DTVGM) is applied to the Yarlung Zangbo River basin, an important international river basin in the southern Tibetan Plateau with limited meteorological data. This model is driven purely by spatial data from multiple sources and is independent of traditional meteorological data. Based on the methods presented in this study, daily snow cover and potential evapotranspiration data in the Yarlung Zangbo River basin in 2050 are obtained. Future (2050) climatic data (precipitation and air temperature) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5) are used to study the hydrological response to climate change. The result shows that river runoff will increase due to precipitation and air temperature changes by 2050. Few differences are found between daily runoff simulations from different Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5 and RCP8.5) for 2050. Historical station observations (1960–2000) at Nuxia and model simulations for two periods (2006–2009 and 2050) are combined to study inter-annual and intra-annual runoff distribution and variability. The inter-annual runoff variation is stable and the coefficient of variation (CV) varies from 0.21 to 0.27. In contrast, the intra-annual runoff varies significantly with runoff in summer and autumn accounting for more than 80% of the total amount. Compared to the historical period (1960–2000), the present period (2006–2009) has a slightly uneven intra-annual runoff temporal distribution, and becomes more balanced in the future (2050). PMID:28486483</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28486483','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28486483"><span>Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: Past, present, and future.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cai, Mingyong; Yang, Shengtian; Zhao, Changsen; Zhou, Qiuwen; Hou, Lipeng</p> <p>2017-01-01</p> <p>Regional hydrological modeling in ungauged regions has attracted growing attention in water resources research. The southern Tibetan Plateau often suffers from data scarcity in watershed hydrological simulation and water resources assessment. This hinders further research characterizing the water cycle and solving international water resource issues in the area. In this study, a multi-spatial data based Distributed Time-Variant Gain Model (MS-DTVGM) is applied to the Yarlung Zangbo River basin, an important international river basin in the southern Tibetan Plateau with limited meteorological data. This model is driven purely by spatial data from multiple sources and is independent of traditional meteorological data. Based on the methods presented in this study, daily snow cover and potential evapotranspiration data in the Yarlung Zangbo River basin in 2050 are obtained. Future (2050) climatic data (precipitation and air temperature) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5) are used to study the hydrological response to climate change. The result shows that river runoff will increase due to precipitation and air temperature changes by 2050. Few differences are found between daily runoff simulations from different Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5 and RCP8.5) for 2050. Historical station observations (1960-2000) at Nuxia and model simulations for two periods (2006-2009 and 2050) are combined to study inter-annual and intra-annual runoff distribution and variability. The inter-annual runoff variation is stable and the coefficient of variation (CV) varies from 0.21 to 0.27. In contrast, the intra-annual runoff varies significantly with runoff in summer and autumn accounting for more than 80% of the total amount. Compared to the historical period (1960-2000), the present period (2006-2009) has a slightly uneven intra-annual runoff temporal distribution, and becomes more balanced in the future (2050).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PIAHS.379..357C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PIAHS.379..357C"><span>Multiple time scale analysis of sediment and runoff changes in the Lower Yellow River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chi, Kaige; Gang, Zhao; Pang, Bo; Huang, Ziqian</p> <p>2018-06-01</p> <p>Sediment and runoff changes of seven hydrological stations along the Lower Yellow River (LYR) (Huayuankou Station, Jiahetan Station, Gaocun Station, Sunkou Station, Ai Shan Station, Qikou Station and Lijin Station) from 1980 to 2003 were alanyzed at multiple time scale. The maximum value of monthly, daily and hourly sediment load and runoff conservations were also analyzed with the annually mean value. Mann-Kendall non-parametric mathematics correlation test and Hurst coefficient method were adopted in the study. Research results indicate that (1) the runoff of seven hydrological stations was significantly reduced in the study period at different time scales. However, the trends of sediment load in these stations were not obvious. The sediment load of Huayuankou, Jiahetan and Aishan stations even slightly increased with the runoff decrease. (2) The trends of the sediment load with different time scale showed differences at Luokou and Lijin stations. Although the annually and monthly sediment load were broadly flat, the maximum hourly sediment load showed decrease trend. (3) According to the Hurst coefficients, the trend of sediment and runoff will be continue without taking measures, which proved the necessary of runoff-sediment regulation scheme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MAP...127..273Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MAP...127..273Z"><span>Variations of annual and seasonal runoff in Guangdong Province, south China: spatiotemporal patterns and possible causes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Qiang; Xiao, Mingzhong; Singh, Vijay P.; Xu, Chong-Yu; Li, Jianfeng</p> <p>2015-06-01</p> <p>In this study, we thoroughly analyzed spatial and temporal distributions of runoff and their relation with precipitation changes based on monthly runoff dataset at 25 hydrological stations and monthly precipitation at 127 stations in Guangdong Province, south China. Trends of the runoff and precipitation are detected using Mann-Kendall trend test technique. Correlations between runoff and precipitation are tested using Spearman's and Pearson's correlation coefficients. The results indicate that: (1) annual maximum monthly runoff is mainly in decreasing tendency and significant increasing annual minimum monthly runoff is observed in the northern and eastern Guangdong Province. In addition, annual mean runoff is observed to be increasing at the stations located in the West and North Rivers and the coastal region; (2) analysis of seasonal runoff variations indicates increasing runoff in spring, autumn and winter. Wherein, significant increase of runoff is found at 8 stations and only 3 stations are dominated by decreasing runoff in winter; (3) runoff changes of the Guangdong Province are mainly the results of precipitation changes. The Guangdong Province is wetter in winter, spring and autumn. Summer is coming to be drier as reflected by decreasing runoff in the season; (4) both precipitation change and water reservoirs also play important roles in the increasing of annual minimum monthly streamflow. Seasonal shifts of runoff variations may pose new challenges for the water resources management under the influences of climate changes and intensifying human activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11.1371V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11.1371V"><span>Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van As, Dirk; Mikkelsen, Andreas Bech; Holtegaard Nielsen, Morten; Box, Jason E.; Claesson Liljedahl, Lillemor; Lindbäck, Katrin; Pitcher, Lincoln; Hasholt, Bent</p> <p>2017-06-01</p> <p>Concurrent ice sheet surface runoff and proglacial discharge monitoring are essential for understanding Greenland ice sheet meltwater release. We use an updated, well-constrained river discharge time series from the Watson River in southwest Greenland, with an accurate, observation-based ice sheet surface mass balance model of the ˜ 12 000 km2 ice sheet area feeding the river. For the 2006-2015 decade, we find a large range of a factor of 3 in interannual variability in discharge. The amount of discharge is amplified ˜ 56 % by the ice sheet's hypsometry, i.e., area increase with elevation. A good match between river discharge and ice sheet surface meltwater production is found after introducing elevation-dependent transit delays that moderate diurnal variability in meltwater release by a factor of 10-20. The routing lag time increases with ice sheet elevation and attains values in excess of 1 week for the upper reaches of the runoff area at ˜ 1800 m above sea level. These multi-day routing delays ensure that the highest proglacial discharge levels and thus overbank flooding events are more likely to occur after multi-day melt episodes. Finally, for the Watson River ice sheet catchment, we find no evidence of meltwater storage in or release from the en- and subglacial environments in quantities exceeding our methodological uncertainty, based on the good match between ice sheet runoff and proglacial discharge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3885547','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3885547"><span>Coral Luminescence Identifies the Pacific Decadal Oscillation as a Primary Driver of River Runoff Variability Impacting the Southern Great Barrier Reef</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rodriguez-Ramirez, Alberto; Grove, Craig A.; Zinke, Jens; Pandolfi, John M.; Zhao, Jian-xin</p> <p>2014-01-01</p> <p>The Pacific Decadal Oscillation (PDO) is a large-scale climatic phenomenon modulating ocean-atmosphere variability on decadal time scales. While precipitation and river flow variability in the Great Barrier Reef (GBR) catchments are sensitive to PDO phases, the extent to which the PDO influences coral reefs is poorly understood. Here, six Porites coral cores were used to produce a composite record of coral luminescence variability (runoff proxy) and identify drivers of terrestrial influence on the Keppel reefs, southern GBR. We found that coral skeletal luminescence effectively captured seasonal, inter-annual and decadal variability of river discharge and rainfall from the Fitzroy River catchment. Most importantly, although the influence of El Niño-Southern Oscillation (ENSO) events was evident in the luminescence records, the variability in the coral luminescence composite record was significantly explained by the PDO. Negative luminescence anomalies (reduced runoff) were associated with El Niño years during positive PDO phases while positive luminescence anomalies (increased runoff) coincided with strong/moderate La Niña years during negative PDO phases. This study provides clear evidence that not only ENSO but also the PDO have significantly affected runoff regimes at the Keppel reefs for at least a century, and suggests that upcoming hydrological disturbances and ecological responses in the southern GBR region will be mediated by the future evolution of these sources of climate variability. PMID:24416214</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24416214','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24416214"><span>Coral luminescence identifies the Pacific Decadal Oscillation as a primary driver of river runoff variability impacting the southern Great Barrier Reef.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rodriguez-Ramirez, Alberto; Grove, Craig A; Zinke, Jens; Pandolfi, John M; Zhao, Jian-xin</p> <p>2014-01-01</p> <p>The Pacific Decadal Oscillation (PDO) is a large-scale climatic phenomenon modulating ocean-atmosphere variability on decadal time scales. While precipitation and river flow variability in the Great Barrier Reef (GBR) catchments are sensitive to PDO phases, the extent to which the PDO influences coral reefs is poorly understood. Here, six Porites coral cores were used to produce a composite record of coral luminescence variability (runoff proxy) and identify drivers of terrestrial influence on the Keppel reefs, southern GBR. We found that coral skeletal luminescence effectively captured seasonal, inter-annual and decadal variability of river discharge and rainfall from the Fitzroy River catchment. Most importantly, although the influence of El Niño-Southern Oscillation (ENSO) events was evident in the luminescence records, the variability in the coral luminescence composite record was significantly explained by the PDO. Negative luminescence anomalies (reduced runoff) were associated with El Niño years during positive PDO phases while positive luminescence anomalies (increased runoff) coincided with strong/moderate La Niña years during negative PDO phases. This study provides clear evidence that not only ENSO but also the PDO have significantly affected runoff regimes at the Keppel reefs for at least a century, and suggests that upcoming hydrological disturbances and ecological responses in the southern GBR region will be mediated by the future evolution of these sources of climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17305178','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17305178"><span>Characteristics of storm runoff and sediment dispersal in the San Pedro Channel, southern California.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahn, J H; Grant, S B</p> <p>2007-01-01</p> <p>In-site measurements of particle size spectra were obtained from three offshore cruises to evaluate the physical consequences of increased sediment transport and deposition offshore which was caused by episodic storm runoff water from the Santa Ana River watershed, a highly urbanised coastal watershed in southern California. Of the total annual runoff discharge to the coastal ocean, 89.2% occurred in the 2003/2004 winter season, and 0.22 Mt of sediment mass was transported during the storm events. The runoff plume at surface taken offshore by cross-shore currents progressed rapid aggregation and sedimentation, while the initially high concentration of suspended sediment discharged from the river outlet was dominated by small particles. Vertical profiles of particle size spectra revealed two separated plumes near the river outlet and turbidity plume along the bottom consisted of an abundance of very fine and dense particles. It would appear to support the theory that even if the storm runoff does not carry a high concentration of sediment being capable of generating negative buoyancy, sediment deposition on the shelf might mobilise in dense, fluid mud transported offshore by gravity. In a coastal pollution context, sediment particle size spectra information may offer potentially useful means of characterising particle-associated pollutants for purposes of source tracking and environmental interpretation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.6912H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.6912H"><span>The impact of run-off change on physical instream habitats and its response to river morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hauer, Christoph; Habersack, Helmut</p> <p>2010-05-01</p> <p>Rivers have already been substantially altered by human activity. Channelization, flow regulation, or changes in land use, especially urbanization, significantly alter the water discharge, sediment transport, and morphology of rivers. The impacts of these anthropogenic measures (disturbances) on river morphology and instream habitats were frequently investigated by the scientific community over the last decades. However, there are forms of disturbances (often induced by climate change) which cause at the beginning only a slight but (over the years) a continuous degradation of aquatic habitats (and river morphology). In the presented study the impact of such disturbances caused by climate change on summer run-off was investigated within the Gr. Mühl River catchment, Austria. So far, various studies have documented the impact of run-off change on river morphology and/or sediment load. Further the impact of run-off change on aquatic ecology (target fish species) have been documented throughout various scientific papers. However, there is a lack of knowledge how (climate induced) run-off changes affect instream aquatic habitats concerning various morphological patterns (e.g. riffle-pool morphology vs. plane bed river). Thus, the aim of the presented study was to link the impacts of climate change (e.g. reduced summer run-off) to various morphological types (riffle-pool, plane bed) using habitat modelling (2-dimensional) as integrative evaluation method. As target fish species sub-adult/adult grayling was selected due to the fact, that Thymallus thymallus features especially high sensitivity in water depth (microhabitat use). Further grayling was one the historically dominant fish species for the hyporhithral catchment of the Gr. Mühl River. Within the catchment 80% of the total river length are determined as plane bed river and 20 % as riffle-pool reaches (situated in former fine material deposits). Six reaches (3 plane-bed, 3 riffle-pool) were selected and surveyed by total station (Leica805) to derive high quality DTM-models for modelling. Monitoring data of temperature (period: 1948 - 2006) and gauging data of three stations (Vorderanger, period: 1966 - 2008; Furthmühle, period: 1951 - 2008; Teufelmühle, period: 1951 - 2008) along the investigated reach were additionally provided by the local government agencies. The results of the statistical testing (for significant breakpoints in temperature trends) exhibited significant changes (p>95%) for the seasons spring (year 1989) and summer (year 1990) (increase in regional temperature). Simultaneously, the periods of run-off below statistically determined low-flow thresholds increased significantly especially for summer periods (e.g. gauging station Furthmühle: period 1951 - 1990: n = 684 days / 1990 - 2008: n = 760 days). The impact of those intensified low flow conditions on subadult / adult grayling were (and are) limiting available physical habitats especially within the plane-bed sections (n=3). Only riffle-pool reaches exhibited suitable habitats (evaluated by habitatmodelling) for these dry-periods. However, those riffle-pool reaches are rare and randomly distributed over the 45 km river length (investigated reach). In the presented study it could be figured out, that climate change affects instream fish habitats not only by an increase in water temperatures, but also by limiting physical habitats (in relation to various morphological types). Thus, the response of fish (e.g. grayling) could be on the one hand an upstream migration due to the warmer water temperatures (frequently documented) but on the other hand a downstream migration caused by unsuitable habitats. This second finding should be seen as one crucial point especially for the restoration of regulated rivers with respect to climate change and to fulfil the aims of the European Water Framework Directive.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.C11A..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.C11A..06H"><span>Hydrological Changes in the Arctic in Response to a Changing Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hinzman, L. D.; Kane, D. L.; McNamara, J. P.; Nolan, M. A.; Romanovsky, V. E.; Yang, D.; Yoshikawa, K.</p> <p>2003-12-01</p> <p>The broadest impacts of climate change to the terrestrial arctic regions will result through consequent effects of changing permafrost structure and extent. As the climate differentially warms in summer and winter, the permafrost will become warmer, the active layer (the layer of soil above the permafrost that annually experiences freeze and thaw) will become thicker, the lower boundary of permafrost will become shallower and permafrost extent will decrease in area. These simple structural changes will affect every aspect of the surface water and energy balances. As the active layer thickens, there is greater storage capacity for soil moisture and greater lags and decays are introduced into the hydrologic response times to precipitation. When the frozen ground is very close to the surface, the stream and river discharge peaks are higher and the base flow is lower. As permafrost becomes thinner, there can be more connections between surface and subsurface water. As permafrost extent decreases, there is more infiltration to groundwater. This has significant impacts on large and small scales. The timing of stream runoff will change, reducing the percentage of continental runoff released during the summer and increasing the proportion of winter runoff. This is already becoming evident in Siberian Rivers. As permafrost becomes thinner and is reduced in spatial extent, the proportions of groundwater in stream runoff will increase as the proportion of surface runoff decreases, increasing river alkalinity and electrical conductivity. This could impact mixing of fresh and saline waters, formation of the halocline and seawater chemistry. Other important impacts will occur due to changing basin geomorphology. Currently the drainage networks in arctic watersheds are quite immature as compared to the more well-developed stream networks of temperate regions. These stream channels are essentially frozen in place as the major flood events (predominantly snowmelt) occur when the soils and streambeds are frozen solid. As the active layer becomes thicker, there could be significantly increased sediment loads delivered to the ocean. Presently, most small streams (<=ssim1,000 km2) in the Arctic are completely frozen from the bed to the surface when spring melt is initiated. However, in lower reaches of the rivers there are places where the channel is deep enough to prevent complete winter freezing. Break-up of the rivers differs dramatically in these places where the ice is not frozen fast to the bottom. Huge ice chunks are lifted by the flowing water, chewing up channels bottoms and sides and introducing massive sediments to the spring runoff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...82a2093J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...82a2093J"><span>Research on the response of the water sources to the climatic change in Shiyang River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jin, Y. Z.; Zeng, J. J.; Hu, X. Q.; Sun, D. Y.; Song, Z. F.; Zhang, Y. L.; Lu, S. C.; Cui, Y. Q.</p> <p>2017-08-01</p> <p>The influence of the future climate change to the water resource will directly pose some impact on the watershed management planning and administrative strategies of Shiyang River Basin. With the purpose of exploring the influence of climate change to the runoff, this paper set Shiyang River as the study area and then established a SWAT basin hydrological model based on the data such as DEM, land use, soil, climate hydrology and so on. Besides, algorithm of SUFI2 embedded in SWAT-CUP software is adopted. The conclusion shows that SWAT Model can simulate the runoff process of Nanying River well. During the period of model verification and simulation, the runoff Nash-Sutcliffe efficient coefficient of the verification and simulation is 0.76 and 0.72 separately. The relative error between the simulation and actual measurement and the model efficient coefficient are both within the scope of acceptance, which means that the SWAT hydrological model can be properly applied into the runoff simulation of Shiyang River Basin. Meantime, analysis on the response of the water resources to the climate change in Shiyang River Basin indicates that the impact of climate change on runoff is remarkable under different climate change situations and the annual runoff will be greatly decreased as the precipitation falls and the temperature rises. Influence of precipitation to annual runoff is greater than that of temperature. Annual runoff differs obviously under different climate change situations. All in all, this paper tries to provide some technical assistance for the water sources development and utilization assessment and optimal configuration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110011549&hterms=deforestation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddeforestation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110011549&hterms=deforestation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddeforestation"><span>Hydrological Regimes of Small Catchments in the High Tatra Mountains Before and After Extraordinary Wind-Induced Deforestation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holko, Ladislav; Hlavata, Helena; Kostka, Zdenek; Novak, Jan</p> <p>2009-01-01</p> <p>The paper presents the results of rainfall-runoff data analysis for small catchments of the upper Poprad River affected by wind-induced deforestation in November 2004. Before-event and afterevent measured data were compared in order to assess the impact of deforestation on hydrological regimes. Several characteristics were used including water balance, minimum and maximum runoff, runoff thresholds, number of runoff events, selected characteristics of events, runoff coefficients, and flashiness indices. Despite increased spring runoff minima, which in one catchment (Velick Creek) exceeded previously observed values after deforestation took place, it can be generally concluded that the impact of the deforestation was not clearly manifested in the analyzed hydrological data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950031631&hterms=runoff+precipitation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drunoff%2Bprecipitation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950031631&hterms=runoff+precipitation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drunoff%2Bprecipitation"><span>Evaluating GCM land surface hydrology parameterizations by computing river discharges using a runoff routing model: Application to the Mississippi basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liston, G. E.; Sud, Y. C.; Wood, E. F.</p> <p>1994-01-01</p> <p>To relate general circulation model (GCM) hydrologic output to readily available river hydrographic data, a runoff routing scheme that routes gridded runoffs through regional- or continental-scale river drainage basins is developed. By following the basin overland flow paths, the routing model generates river discharge hydrographs that can be compared to observed river discharges, thus allowing an analysis of the GCM representation of monthly, seasonal, and annual water balances over large regions. The runoff routing model consists of two linear reservoirs, a surface reservoir and a groundwater reservoir, which store and transport water. The water transport mechanisms operating within these two reservoirs are differentiated by their time scales; the groundwater reservoir transports water much more slowly than the surface reservior. The groundwater reservior feeds the corresponding surface store, and the surface stores are connected via the river network. The routing model is implemented over the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project Mississippi River basin on a rectangular grid of 2 deg X 2.5 deg. Two land surface hydrology parameterizations provide the gridded runoff data required to run the runoff routing scheme: the variable infiltration capacity model, and the soil moisture component of the simple biosphere model. These parameterizations are driven with 4 deg X 5 deg gridded climatological potential evapotranspiration and 1979 First Global Atmospheric Research Program (GARP) Global Experiment precipitation. These investigations have quantified the importance of physically realistic soil moisture holding capacities, evaporation parameters, and runoff mechanisms in land surface hydrology formulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.H11F0378B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.H11F0378B"><span>Global change and drought severity in the Battle River Basin, Alberta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byrne, J.; Kienzle, S.; Sauchyn, D.</p> <p>2004-12-01</p> <p>The Battle River basin is a prairie watershed with headwaters in the central Alberta Parkland region immediately east of the Rocky Mountain foothills. The watershed has low relief - mean slope of about 1.5% - typical for a prairie landscape. Most streamflow originates from spring snowmelt. In years with high snowmelt runoff, the channel wetlands are extensive and enhance runoff from summer showers. In years of low snowmelt runoff, the wetlands are of modest scale, and the rate of runoff from summer showers decline rapidly as the season advances and the wetlands shrink or disappear. Upland wetlands, also called sloughs or potholes, likely contribute very modest quantities of water to the regional groundwater system that interacts with the Battle River. The Battle has suffered a severe climatic and hydrologic drought since the year 2000. The objective herein is to define the relative severity of the drought in 2000-04 in the upper Battle River watershed. Dendrochronology data indicated the drought was one of the worst in the past several centuries. Frequency analyses indicated the summer low flow experienced in 2002 was stochastically a 1:217 year event. The average Palmer Drought Severity Index (PSDI) over the entire basin in July 2002 is at an historical extreme. Land use changes are likely adversely affecting runoff. Climate change is likely affecting hydrology, including timing and volumes of the spring peak flow and summer runoff. Water licenses have increased significantly over the past years and certainly contribute to the cumulative effects resulting in reduced streamflow, particularly in the summer months. Water authorities must re-examine the assumptions for engineering design and water allocation in the basin given the changing climate and hydrology regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri024129/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri024129/"><span>Measured and simulated runoff to the lower Charles River, Massachusetts, October 1999-September 2000</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zarriello, Phillip J.; Barlow, Lora K.</p> <p>2002-01-01</p> <p>The lower Charles River, the water body between the Watertown Dam and the New Charles River Dam, is an important recreational resource for the Boston, Massachusetts, metropolitan area, but impaired water quality has affected its use. The goal of making this resource fishable and swimmable requires a better understanding of combined-sewer-overflow discharges, non-combined-sewer-overflow stormwater runoff, and constituent loads. This report documents the modeling effort used to calculate non-combined-sewer-overflow runoff to the lower Charles River. During the 2000 water year, October 1, 1999?September 30, 2000, the U.S. Geological Survey collected precipitation data at Watertown Dam and compiled data from five other precipitation gages in or near the watershed. In addition, surface-water discharge data were collected at eight sites?three relatively homogenous land-use sites, four major tributary sites, and the Charles River at Watertown Dam, which is the divide between the upper and lower watersheds. The precipitation and discharge data were used to run and calibrate Stormwater Management Models developed for the three land-use subbasins (single-family, multi-family, and commercial), and the two tributary subbasins (Laundry and Faneuil Brooks). These calibrated models were used to develop a sixth model to simulate 54 ungaged outfalls to the lower Charles River. Models developed by the U.S. Geological Survey at gaged sites were calibrated with up to 24 storms. Each model was evaluated by comparing simulated discharge against measured discharge for all storms with appreciable precipitation and reliable discharge data. The model-fit statistics indicated that the models generally were well calibrated to peak discharge and runoff volumes. The model fit of the commercial land-use subbasin was not as well calibrated compared to the other models because the measured flows appear to be affected by variable conditions not represented in the model. A separate Stormwater Management Model of the Stony Brook Subbasin previously developed by others was evaluated with the newly collected data from this study; this model had a model fit comparable to the models developed by the U.S. Geological Survey. The total annual runoff to the lower Charles River during the 2000 water year, not including contributions from combined-sewer-overflows except from the Stony Brook Subbasin, was 16,500 million cubic feet; 92 percent of the inflow was from the Charles River above Watertown Dam, 3 percent was from the Stony Brook Subbasin, 2 percent was from the Muddy River Subbasin, and less than 1 percent was from the combined inflows of Laundry and Faneuil Brooks. The remaining ungaged drainage area contributed about 2 percent of the total annual inflow to the lower Charles River. Excluding discharge from the Charles River above Watertown Dam, total annual runoff to the lower Charles River was 1,240 million cubic feet; 39 percent was from the Stony Brook Subbasin, 27 percent was from the Muddy River, which includes runoff that drains to the Muddy River conduit, 7 percent was from the Laundry Brook Subbasin, and 4 percent was from the Faneuil Brook Subbasin. Flow from the ungaged areas composed about 23 percent of the total annual inflow to the lower Charles River, excluding discharge from the Charles River above Watertown Dam. Runoff to the lower Charles River was calculated for two design storms representing a 3-month and a 1-year event, 1.84 and 2.79 inches of total rainfall, respectively. These simulated discharges were provided to the Massachusetts Water Resources Authority for use in a receiving-water model of the lower Charles River. Total storm runoff to the lower Charles River was 111 and 257 million cubic feet for the 3-month and 1-year storms, respectively. Excluding discharge from the Charles River above Watertown Dam, total runoff to the lower Charles River was 30 and 53 million cubic feet for the 3-month and 1-year storms, respectively. Runoff from</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916769M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916769M"><span>Quantifying the present-day human influence on temperature, precipitation, and runoff in an pre-Alpine Swiss catchment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mülchi, Regula; Rössler, Ole; Romppainen-Martius, Olivia; Pall, Pardeep; Weingartner, Rolf</p> <p>2017-04-01</p> <p>Understanding the influence of anthropogenic greenhouse gas (GHG) emissions on climate and environmental variables is still a challenge in science. Many detection and attribution studies have been carried out focusing on global and regional scales or on single events. However, the influence of anthropogenic greenhouse gas emission on both, runoff regime and driving meteorological characteristics is still an open question. This study assesses the influence of anthropogenic GHG emissions on temperature, precipitation, and river runoff in a pre-Alpine catchment in Switzerland. For this purpose, thousands of one-year (April 2000-March 2001) simulations representing both, a present-day climate with actual anthropogenic GHG concentrations (A2000), and a climate with pre-industrial GHG concentrations (A2000N) were bias-corrected and used to analyze changes in temperature and precipitation. The two variables were then used to drive the hydrological model GR4J including the snow module Cemaneige for the river Thur (1700 km2). Comparing the runoff of the two scenarios and calculating the fraction of attributable risk (FAR) as well as the change in probability of occurrence (PR) for specific runoff thresholds enabled the assessment of the influence of anthropogenic GHG emissions. We found higher mean runoff in winter and spring in the A2000 scenario compared to the A2000N scenario. This is mainly caused by the combination of higher precipitation and higher temperatures in winter resulting in less snow accumulation in the A2000 scenario. Therefore, more liquid water is available in the hydrological model leading to enhanced runoff. In contrast, the A2000 simulations exhibit lower runoff in summer and autumn than the A2000N simulations. We relate this to higher temperatures in the A2000 scenario enhancing evapotranspiration and lower precipitation amounts. The calculation of FAR and PR for different runoff thresholds indicates that the FAR and PR increase with higher thresholds suggesting stronger influence of anthropogenic GHG emissions on the very high river flows. The bias-correction led to a reduction of FAR and PR and to an increase in the corresponding uncertainty ranges. This study demonstrates that temperature and precipitation in Switzerland as well as the runoff regime and runoff extremes have changed due to the emission of anthropogenic GHGs. It also highlights the influence of bias-correction on the estimation of FAR and PR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1995/4284/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1995/4284/report.pdf"><span>Precipitation-runoff and streamflow-routing models for the Willamette River basin, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Laenen, Antonius; Risley, John C.</p> <p>1997-01-01</p> <p>With an input of current streamflow, precipitation, and air temperature data the combined runoff and routing models can provide current estimates of streamflow at almost 500 locations on the main stem and major tributaries of the Willamette River with a high degree of accuracy. Relative contributions of surface runoff, subsurface flow, and ground-water flow can be assessed for 1 to 10 HRU classes in each of 253 subbasins identified for precipitation-runoff modeling. Model outputs were used with a water-quality model to simulate the movement of dye in the Pudding River as an example</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/2003/4097/wri03-4097.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/2003/4097/wri03-4097.pdf"><span>The effect of chamber mixing velocity on bias in measurement of sediment oxygen demand rates in the Tualatin River basin, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Doyle, Micelis C.; Rounds, Stewart</p> <p>2003-01-01</p> <p>The same resuspension effect probably exists in the Tualatin River during storm-runoff events following prolonged periods of low flow, when increased stream velocity may result in the resuspension of bottom sediments. The resuspension causes increased turbidity and increased oxygen demand, resulting in lower instream dissolved oxygen concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.6576G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.6576G"><span>The Pechora River Runoff, Atmospheric Circulation and Solar Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golovanov, O. F.</p> <p></p> <p>This study presents an attempt to define and estimate the factors effecting and possi- bly, determining the spatial-temporal characteristics of the Pechora River hydrological regime. The time-series of hydrometeorological observations (runoff, precipitation, air temperature) carried out within the basin of the impact object U the Pechora River U are close to secular and include the year of the century maximum of the solar activ- ity (1957). The joint statistical analysis of these characteristics averaged both for a year and for the low water periods in spring (V-VII), summer-autumn (VIII-IX) and winter (X-IV) demonstrated the majority of integral curves to have minimums coin- ciding or slightly differing from the solar activity maximum in 1957. It is especially typical for the spring high water runoff along the entire length of the Pechora River. Only the curves of the air temperature in the summer-autumn low water period are in the opposite phase relative to all other elements. In the upper Pechora the inte- gral curves of winter and annual precipitation are synchronous to the runoff curves. The multiyear variability of the Pechora runoff corresponds to that of the atmospheric circulation in the northern hemisphere. This is clearly illustrated by the decrease of the Pechora runoff and increase of the climate continentality in its basin, that is ac- companied with predominating of the meridional circulation, anticyclone invasion and precipitation decrease while the solar activity grows. This process takes place at the background of the prevailing mass transport of E+C type, increase of number of the elementary synoptic processes (ESP). The maximum number of ESP (observed in 1963) was recorded soon after the century maximum of the solar activity. This fact may be explained by the anticyclone circulation prevalence which results in growth of the climate continentality in the Pechora basin in this period. The enumerated in- flection points of the integral curves of the runoff and meteorological characteristics agree well with some characteristics of the macro-circulation processes (high latitude indexes and process types) connected with the circumpolar vortex dynamics. In par- ticular, in the inner-annual scale the B-type process prevalence leads to formation of the maximum extreme water discharge. The hydrometeorological observations in the Pechora basin are correlated with the solar activity dynamics more closely than the observations held in the lower reaches of neighboring northern or Siberian rivers. The correlation between the hydro- and meteorological characteristics (from one side) and the solar wind energy summed for the cold season (from other side) was examined on the example of the synchronous 24 year time-series. The reason for such analysis was 1 the study executed by the group of the AARI geophysicists (Shirochkov A.V.) The significant correlation between this parameter and spring runoff was detected while the correlation with precipitation and Qmax was absent. The experimental regression equation for the runoff summed for three spring-summer months was obtained. The basic predictor in this equation is the total for the cold season precipitation in Troitsko- Pechorsk. Its weight in the equation is equal to 62 per cent. The weight of the solar wind total energy is 29 per cent. The integral correlation coefficient, if using the latter parameter, increases from 0.70 to 0.80. The probability obtained on dependent and limited independent material is 80 and 75 per cent respectively, the S/s ratio is equal to 0.66. The pair correlation between the solar wind and the spring high water runoff in the Pechora mouth appeared significant (r=0.43) enough for designing the fore- cast regression model. The pair correlation coefficient between the spring runoff and the solar wind energy increases along the Pechora from head to mouth. In the lower reaches of the other great northern and Siberian rivers (except for the Yenisey River) the partial correlation coefficient is less and sometimes changes its sign. There are hypothese regarding the impact of this energy on the atmosphere-Earth system (Shi- rochkov A.V.), but they still do not explain the existing correlation between the solar wind and the high water runoff of the Yenisey and Pechora rivers. The only thing that can be noted is that during the period of snow cover formation in the northern regions, under the polar night condition, the effect of the Sun ray energy is absent, and, hence, the detected impact of the corpuscular energy on the higher atmosphere prevails. The results obtained give an opportunity to continue the study in the direction of search- ing new significant dependencies for revealing the mechanism of interaction within the atmosphere-hydrosphere system in order to obtain the new practical means for calculation and forecast of the rivers runoff and its future tendencies. 2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917599W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917599W"><span>How snowmelt changed due to climate change in an ungauged catchment on the Tibetan Plateau?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Rui; Yao, Zhijun</p> <p>2017-04-01</p> <p>Snow variability is an integrated indicator of climate change, and it has important impacts on runoff regimes and water availability in high altitude catchments. Remote sensing techniques can make it possible to quantitatively detect the snow cover changes and associated hydrological effects in those poorly gauged regions. In this study, the spatial-temporal variations of snow cover and snow melting time in the Tuotuo River basin, which is the headwater of the Yangtze River, were evaluated based on satellite information from MODIS snow cover product, and the snow melting equivalent and its contribution to the total runoff and baseflow were estimated by using degree-day model. The results showed that the snow cover percentage and the tendency of snow cover variability increased with rising altitude. From 2000 to 2012, warmer and wetter climate change resulted in an increase of the snow cover area. Since the 1960s, the start time for snow melt has become earlier by 0.9 3 d/10a and the end time of snow melt has become later by 0.6 2.3 d/10a. Under the control of snow cover and snow melting time, the equivalent of snow melting runoff in the Tuotuo River basin has been fluctuating. The average contributions of snowmelt to baseflow and total runoff were 19.6 % and 6.8 %, respectively. Findings from this study will serve as a reference for future research in areas where observational data are deficient and for planning of future water management strategies for the source region of the Yangtze River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2013/5059/pdf/sir2013-5059.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2013/5059/pdf/sir2013-5059.pdf"><span>Sources of suspended-sediment loads in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary, south Texas, 1958–2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ockerman, Darwin J.; Heitmuller, Franklin T.; Wehmeyer, Loren L.</p> <p>2013-01-01</p> <p>During 2010, additional suspended-sediment data were collected during selected runoff events to provide new data for model testing and to help better understand the sources of suspended-sediment loads. The model was updated and used to estimate and compare sediment yields from each of 64 subwatersheds comprising the lower Nueces River watershed study area for three selected runoff events: November 20-21, 2009, September 7-8, 2010, and September 20-21, 2010. These three runoff events were characterized by heavy rainfall centered near the study area and during which minimal streamflow and suspended-sediment load entered the lower Nueces River upstream from Wesley E. Seale Dam. During all three runoff events, model simulations showed that the greatest sediment yields originated from the subwatersheds, which were largely cropland. In particular, the Bayou Creek subwatersheds were major contributors of suspended-sediment load to the lower Nueces River during the selected runoff events. During the November 2009 runoff event, high suspended-sediment concentrations in the Nueces River water withdrawn for the City of Corpus Christi public-water supply caused problems during the water-treatment process, resulting in failure to meet State water-treatment standards for turbidity in drinking water. Model simulations of the November 2009 runoff event showed that the Bayou Creek subwatersheds were the primary source of suspended-sediment loads during that runoff event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H13H1444G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H13H1444G"><span>Climate Change Impact on Water Balance at the Chipola River Watershed in Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Griffen, J. M.; Chen, X.; Wang, D.; Hagen, S. C.</p> <p>2013-12-01</p> <p>As the largest tributary to the Apalachicola River, the Chipola River originates in southern Alabama, flows through the Florida Panhandle and drains into the Gulf of Mexico. The Chipola watershed is located in an intermediate climate environment with an aridity index of approximately 1.0. However, climate change affects the hydrologic cycle of Chipola River watershed at various temporal and spatial scales. Studying the effects of climate variations is of great importance for water and environmental management purposes in this watershed. This research is mainly focused on assessing climate change impact on the partitioning of rainfall and the following runoff generation in Chipola watershed, from long-term mean annual to inter-annual and to seasonal and monthly scales. A comprehensive water balance model at inter-annual scale is built in this study based on Budyko's framework, two-stage runoff theory and proportionality hypothesis. The inter-annual scale model considers the impact of storage change, seasonality and landscape controls, which are normally assumed to be negligible on a long-term scale. The model is applied to the Chipola River Watershed in Florida to project future water balance pattern with the input from a Regional Climate Model projection. Based on the projection results: evaporation will increase in the future in all 12 months; runoff will increase only in dry months of July to October, while significantly decrease in wet months of December to April; storage change will increase in wet months of January to April, while decrease in the dry months of August to November.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.131..845L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.131..845L"><span>Attribution analysis of runoff decline in a semiarid region of the Loess Plateau, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Binquan; Liang, Zhongmin; Zhang, Jianyun; Wang, Guoqing; Zhao, Weimin; Zhang, Hongyue; Wang, Jun; Hu, Yiming</p> <p>2018-01-01</p> <p>Climate variability and human activities are two main contributing attributions for runoff changes in the Yellow River, China. In the loess hilly-gully regions of the middle Yellow River, water shortage has been a serious problem, and this results in large-scale constructions of soil and water conservation (SWC) measures in the past decades in order to retain water for agricultural irrigation and industrial production. This disturbed the natural runoff characteristics. In this paper, we focused on a typical loess hilly-gully region (Wudinghe and Luhe River basins) and investigated the effects of SWC measures and climate variability on runoff during the period of 1961-2013, while the SWC measures were the main representative of human activities in this region. The nonparametric Mann-Kendall test was used to analyze the changes of annual precipitation, air temperature, potential evapotranspiration (PET), and runoff. The analysis revealed the decrease in precipitation, significant rise in temperature, and remarkable runoff reduction with a rate of more than 0.4 mm per year. It was found that runoff capacity in this region also decreased. Using the change point detection methods, the abrupt change point of annual runoff series was found at 1970, and thus, the study period was divided into the baseline period (1961-1970) and changed period (1971-2013). A conceptual framework based on four statistical runoff methods was used for attribution analysis of runoff decline in the Wudinghe and Luhe River basins (-37.3 and -56.4%, respectively). Results showed that runoff reduction can be explained by 85.2-90.3% (83.3-85.7%) with the SWC measures in the Wudinghe (Luhe) River basin while the remaining proportions were caused by climate variability. The findings suggested that the large-scale SWC measures demonstrated a dominant influence on runoff decline, and the change of precipitation extreme was also a promoting factor of the upward trending of SWC measures' contribution to runoff decline. This study enhances our understanding of runoff changes caused by SWC measures and climate variability in the typical semiarid region of Loess Plateau, China.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4660853','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4660853"><span>Anomalous Near-Surface Low-Salinity Pulses off the Central Oregon Coast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mazzini, Piero L. F.; Risien, Craig M.; Barth, John A.; Pierce, Stephen D.; Erofeev, Anatoli; Dever, Edward P.; Kosro, P. Michael; Levine, Murray D.; Shearman, R. Kipp; Vardaro, Michael F.</p> <p>2015-01-01</p> <p>From mid-May to August 2011, extreme runoff in the Columbia River ranged from 14,000 to over 17,000 m3/s, more than two standard deviations above the mean for this period. The extreme runoff was the direct result of both melting of anomalously high snowpack and rainfall associated with the 2010–2011 La Niña. The effects of this increased freshwater discharge were observed off Newport, Oregon, 180 km south of the Columbia River mouth. Salinity values as low as 22, nine standard deviations below the climatological value for this period, were registered at the mid-shelf. Using a network of ocean observing sensors and platforms, it was possible to capture the onshore advection of the Columbia River plume from the mid-shelf, 20 km offshore, to the coast and eventually into Yaquina Bay (Newport) during a sustained wind reversal event. Increased freshwater delivery can influence coastal ocean ecosystems and delivery of offshore, river-influenced water may influence estuarine biogeochemistry. PMID:26607750</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP13B1621L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP13B1621L"><span>Dramatic decreases in runoff and sediment load in the Huangfuchuan Basin of the Middle Yellow River, China: historical records and future projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>LI, E.; Li, D.; Wang, Y.; Fu, X.</p> <p>2017-12-01</p> <p>The Yellow River is well known for its high sediment load and serious water shortage. The long-term averaged sediment load is about 1.6´103 million tons per year, resulting in aggrading and perched lower reaches. In recent years, however, dramatic decreases in runoff and sediment load have been observed. The annual sediment load has been less than 150 million tons in the last ten years. Extrapolation of this trend into the future would motivate substantial change in the management strategies of the Lower Yellow River. To understand the possible trend and its coevolving drivers, we performed a case study of the Huangfuchuang River, which is a tributary to the Middle Yellow River, with a drainage area of 3246 km2 and an annual precipitation of 365 mm. Statistical analysis of historical data from 1960s to 2015 showed a significantly decreasing trend in runoff and sediment load since 1984. As potential drivers, the precipitation does not show an obvious change in annual amount, while the vegetation cover and the number of check dams have been increased gradually as a result of the national Grain for Green project. A simulation with the Soil and Water Assessment Tool (SWAT) reproduced the historical evolution processes, and showed that human activities dominated the reduction in runoff and sediment load, with a contribution of around 80%. We then projected the runoff and sediment load for the next 50 years (2016-2066), considering typical scenarios of climate change and accounting for vegetation cover development subject to climate conditions and storage capacity loss of check dams due to sediment deposition. The differences between the projected trend and the historical record were analyzed, so as to highlight the coevolving processes of climate, vegetation, and check dam retention on a time scale of decades. Keywords: Huangfuchuan River Basin, sediment load, vegetation cover, check dams, annual precipitation, SWAT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006HyPr...20..533L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006HyPr...20..533L"><span>Predicting storm runoff from different land-use classes using a geographical information system-based distributed model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Y. B.; Gebremeskel, S.; de Smedt, F.; Hoffmann, L.; Pfister, L.</p> <p>2006-02-01</p> <p>A method is presented to evaluate the storm runoff contributions from different land-use class areas within a river basin using the geographical information system-based hydrological model WetSpa. The modelling is based on division of the catchment into a grid mesh. Each cell has a unique response function independent of the functioning of other cells. Summation of the flow responses from the cells with the same land-use type results in the storm runoff contribution from these areas. The model was applied on the Steinsel catchment in the Alzette river basin, Grand Duchy of Luxembourg, with 52 months of meteo-hydrological measurements. The simulation results show that the direct runoff from urban areas is dominant for a flood event compared with runoff from other land-use areas in this catchment, and this tends to increase for small floods and for the dry-season floods, whereas the interflow from forested, pasture and agricultural field areas contributes to recession flow. It is demonstrated that the relative contribution from urban areas decreases with flow coefficient, that cropland relative contribution is nearly constant, and that the relative contribution from grassland and woodland increases with flow coefficient with regard to their percentage of land-use class areas within the study catchment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23608986','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23608986"><span>Spatial and temporal variations of river nitrogen exports from major basins in China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ti, Chaopu; Yan, Xiaoyuan</p> <p>2013-09-01</p> <p>Provincial-level data for population, livestock, land use, economic growth, development of sewage systems, and wastewater treatment rates were used to construct a river nitrogen (N) export model in this paper. Despite uncertainties, our results indicated that river N export to coastal waters increased from 531 to 1,244 kg N km(-2) year(-1) in the Changjiang River basin, 107 to 223 kg N km(-2) year(-1) in the Huanghe River basin, and 412 to 1,219 kg N km(-2) year(-1) in the Zhujiang River basin from 1980 to 2010 as a result of rapid population and economic growth. Significant temporal changes in water N sources showed that as the percentage of runoff from croplands increased, contributions of natural system runoff and rural human and livestock excreta decreased in the three basins from 1980 to 2010. Moreover, the nonpoint source N decreased from 72 to 58 % in the Changjiang River basin, 80 to 67 % in the Huanghe River basin, and 69 to 51 % in the Zhujiang River basin, while the contributions of point sources increased greatly during the same period. Estimated results indicated that the N concentrations in the Changjiang, Huanghe, and Zhujiang rivers during 1980-2004 were higher than those in the St. Lawrence River in Canada and lower than those in the Thames, Donau, Rhine, Seine, and Han rivers during the same period. River N export will reduce by 58, 54, and 57 % for the Changjiang River, Huanghe River, and Zhujiang River in the control scenario in 2050 compared with the basic scenario.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5677431','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5677431"><span>Variation of River Islands around a Large City along the Yangtze River from Satellite Remote Sensing Images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shi, Haiyun; Gao, Chao; Dong, Changming; Xia, Changshui; Xu, Guanglai</p> <p>2017-01-01</p> <p>River islands are sandbars formed by scouring and silting. Their evolution is affected by several factors, among which are runoff and sediment discharge. The spatial-temporal evolution of seven river islands in the Nanjing Section of the Yangtze River of China was examined using TM (Thematic Mapper) and ETM (Enhanced Thematic Mapper)+ images from 1985 to 2015 at five year intervals. The following approaches were applied in this study: the threshold value method, binarization model, image registration, image cropping, convolution and cluster analysis. Annual runoff and sediment discharge data as measured at the Datong hydrological station upstream of Nanjing section were also used to determine the roles and impacts of various factors. The results indicated that: (1) TM/ETM+ images met the criteria of information extraction of river islands; (2) generally, the total area of these islands in this section and their changing rate decreased over time; (3) sediment and river discharge were the most significant factors in island evolution. They directly affect river islands through silting or erosion. Additionally, anthropocentric influences could play increasingly important roles. PMID:28953218</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20729579','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20729579"><span>Quantifying the magnitude of the impact of climate change and human activity on runoff decline in Mian River Basin, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fan, Jing; Tian, Fei; Yang, Yonghui; Han, Shumin; Qiu, Guoyu</p> <p>2010-01-01</p> <p>Runoff in North China has been dramatically declining in recent decades. Although climate change and human activity have been recognized as the primary driving factors, the magnitude of impact of each of the above factors on runoff decline is still not entirely clear. In this study, Mian River Basin (a watershed that is heavily influenced by human activity) was used as a proxy to quantify the contributions of human and climate to runoff decline in North China. SWAT (Soil and Water Assessment Tool) model was used to isolate the possible impacts of man and climate. SWAT simulations suggest that while climate change accounts for only 23.89% of total decline in mean annual runoff, human activity accounts for the larger 76.11% in the basin. The gap between the simulated and measured runoff has been widening since 1978, which can only be explained in terms of increasing human activity in the region. Furthermore, comparisons of similar annual precipitation in 3 dry-years and 3 wet-years representing hydrological processes in the 1970s, 1980s, and 1990s were used to isolate the magnitude of runoff decline under similar annual precipitations. The results clearly show that human activity, rather than climate, is the main driving factor of runoff decline in the basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC33F1139S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC33F1139S"><span>Understanding of changes in river flow using recently collected field and observational data from Russian Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shiklomanov, A. I.; Tokarev, I. V.; Davydov, S. P.; Davydova, A.; Streletskiy, D. A.</p> <p>2017-12-01</p> <p>There is substantial evidence supporting increasing river runoff in the Eurasian pan-Arctic, but the causes of these changes are not well understood. To determine the contributions of various water sources to river runoff generation in small streams and large rivers located in the continuous permafrost zone, an extensive field campaign was carried out near the town of Cherskii, Russia. Measurements of hydrometeorological characteristics, as well as stable isotope composition and hydrochemistry of precipitation, river flow and ground ice, were obtained during the 2013-2016 period. When combined with older data (2005-2009), the isotopic composition of atmospheric precipitation showed a general trend towards heavier winter precipitation, attributed mainly to observed increases in winter air temperature. Samples of water and ground ice from several boreholes showed that isotopic compositions of water from the active layer, transient layer and permafrost are significantly different. Thus, stable isotopes can be used to assess contributions of different soil layers to stream flow generation. Increases in streamflow of small test watersheds were observed during dry periods in August-September. These increases were associated with considerable stable isotope depletion in streamflow samples, which is likely caused by thawing of the transient- and possibly upper permafrost layers. The absence of correlation between water and air temperature during these periods (R2 = 0.22 in August-September and R2 = 0.8 in June-July) also suggests an increasing contribution of thawing ground ice to the streamflow. To quantitatively assess the contribution of various water sources to the river runoff of Kolyma River, we used stable isotope data along with a physically based hydrological model developed at the University of New Hampshire. Preliminary results suggest that thawing permafrost increased August-September discharge in Kolyma near Cherskii by 8% in 2013, 11% in 2014 and 4% in 2015, even though none of these years was extremely warm or wet. We estimate that 5cm of permafrost thaw (with 30% ice content) over the entire Kolyma basin can contribute about 10 km3/year (or 10%) to annual discharge and significantly change the water regime during low-flow periods (fall-winter).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA096179','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA096179"><span>Environmental and Cultural Impact Proposed Tennessee Colony Reservoir, Trinity River, Texas. Volume V. Appendix G.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1972-01-01</p> <p>allocation. Pri- marily it is concerned with any land use that increases surface water runoff and soil compaction, two phenomena that decrease recharge... runoff . Forested filter strips between range and reser- voir boundary should be developed as a land use for water quality control and quail habitat. High...shown on Plates G-10 and G-11) some measures will also be necessary to prevent fertilizer pollution of the reservoir from excessive surface runoff . G</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022454','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022454"><span>Role of lake regulation on glacier fed rivers in enhancing salmon productivity: The Cook Inlet watershed south central Alaska, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hupp, C.R.</p> <p>2000-01-01</p> <p>Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat. Copyright ?? 2000 John Wiley & Sons, Ltd.Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018182','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018182"><span>Pesticides and pesticide degradation products in stormwater runoff: Sacramento River Basin, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Domagalski, Joseph L.</p> <p>1996-01-01</p> <p>Pesticides in stormwater runoff, within the Sacramento River Basin, California, were assessed during a storm that occurred in January 1994. Two organophosphate insecticides (diazinon and methidathion), two carbamate pesticides (molinate and carbofuran), and one triazine herbicide (simazine) were detected. Organophosphate pesticide concentrations increased with the rising stage of the hydrographs; peak concentrations were measured near peak discharge. Diazinon oxon, a toxic degradation product of diazinon, made up approximately 1 to 3 percent of the diazinon load. The Feather River was the principal source of organophosphate pesticides to the Sacramento River during this storm. The concentrations of molinate and carbofuran, pesticides applied to rice fields during May and June, were relatively constant during and after the storm. Their presence in surface water was attributed to the flooding and subsequent drainage, as a management practice to degrade rice stubble prior to the next planting. A photodegradation product of molinate, 4-keto molinate, was in all samples where molinate was detected and made up approximately 50 percent of the total molinate load. Simazine, a herbicide used in orchards and to control weeds along the roadways, was detected in the storm runoff, but it was not possible to differentiate the two sources of that pesticide to the Sacramento River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1998/4049/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1998/4049/report.pdf"><span>Relations of surface-water quality to streamflow in the Hackensack, Passaic, Elizabeth, and Rahway River basins, New Jersey, water years 1976-93</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Buxton, Debra E.; Hunchak-Kariouk, Kathryn; Hickman, R. Edward</p> <p>1998-01-01</p> <p>Relations of water quality to streamflow were determined for 18 water-quality constituents at 19 surface-water-quality stations within the drainage basins of the Hackensack, Passaic, Elizabeth, and Rahway Rivers in New Jersey for water years 1976-93. Surface-waterquality and streamflow data were evaluated for trends (through time) in constituent concentrations during high and low flows, and relations between constituent concentration and streamflow, and constituent load and streamflow, were determined. Median concentrations were calculated for the entire period of study (water years 1976-93) and for the last 5 years of the period of study (water years 1989-93) to determine whether any large variation in concentration exists between the two periods. Medians also were used to determine the seasonal Kendall’s tau statistic, which was then used to evaluate trends in concentrations during high and low flows.Trends in constituent concentrations during high and low flows were evaluated to determine whether the distribution of the observations changes over time for intermittent (nonpoint storm runoff) or constant (point sources and ground water) sources, respectively. Highand low-flow concentration trends were determined for some constituents at 11 of the 19 waterquality stations; 8 stations have insufficient data to determine trends. Seasonal effects on the relations of concentration to streamflow are evident for 16 of the 18 constituents. Negative slopes of relations of concentration to streamflow, which indicate a decrease in concentration at high flows, predominate over positive slopes because of dilution of instream concentrations from storm runoff.The slopes of the regression lines of load to streamflow were determined in order to show the relative contributions to the instream load from constant (point sources and ground water) and intermittent sources (storm runoff). Greater slope values suggest larger contributions from storm runoff to instream load, which most likely indicate an increased relative importance of nonpoint sources. Load-to-streamflow relations along a stream reach that tend to increase in a downstream direction indicate the increased relative importance of contributions from storm runoff. Likewise, load-to-streamflow relations along a stream reach that tend to decrease in a downstream direction indicate the increased relative importance of point sources and ground-water discharge. For most of the 18 constituents, load-to-streamflow relations at stations along a river reach remain constant or decrease in a downstream direction. The slopes increase in the downstream direction for some or all of the nutrient species at the Ramapo, lower Passaic, and Rahway Rivers; for dissolved solids, dissolved sodium, and dissolved chloride at the lower Passaic River; and for alkalinity and hardness at the Rahway River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030676','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030676"><span>An assessment of the effects of cell size on AGNPS modeling of watershed runoff</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wu, S.-S.; Usery, E.L.; Finn, M.P.; Bosch, D.D.</p> <p>2008-01-01</p> <p>This study investigates the changes in simulated watershed runoff from the Agricultural NonPoint Source (AGNPS) pollution model as a function of model input cell size resolution for eight different cell sizes (30 m, 60 m, 120 m, 210 m, 240 m, 480 m, 960 m, and 1920 m) for the Little River Watershed (Georgia, USA). Overland cell runoff (area-weighted cell runoff), total runoff volume, clustering statistics, and hot spot patterns were examined for the different cell sizes and trends identified. Total runoff volumes decreased with increasing cell size. Using data sets of 210-m cell size or smaller in conjunction with a representative watershed boundary allows one to model the runoff volumes within 0.2 percent accuracy. The runoff clustering statistics decrease with increasing cell size; a cell size of 960 m or smaller is necessary to indicate significant high-runoff clustering. Runoff hot spot areas have a decreasing trend with increasing cell size; a cell size of 240 m or smaller is required to detect important hot spots. Conclusions regarding cell size effects on runoff estimation cannot be applied to local watershed areas due to the inconsistent changes of runoff volume with cell size; but, optimal cells sizes for clustering and hot spot analyses are applicable to local watershed areas due to the consistent trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2001/0254/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2001/0254/report.pdf"><span>Water-Resources Investigations in Wisconsin, 2001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Maertz, Diane E.; Fuller, Jan A.</p> <p>2001-01-01</p> <p>Runoff differed for rivers throughout the State and ranged from 33 percent in east central Wisconsin to 166 percent in south central Wisconsin. Runoff was lowest (33 percent of the average annual runoff from 1964- 2000) for the Lake Michigan tributary Kewaunee River near Kewaunee, and highest (166 percent of the average annual runoff from 1974-2000) for the Pheasant Branch at Middleton station in south central Wisconsin. Departures of runoff in the 2000 water year as a percent of long-term average runoff in the State (determined using stations with drainage areas greater than 150 square miles and at least 20 years of record) are shown in Figure 4.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H51T..06O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H51T..06O"><span>Hydrological Footprints of Urban Developments in the Lake Simcoe Watershed, Canada: A Combined Paired-Catchment and Change Detection Modeling Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oni, S. K.; Futter, M. N.; Buttle, J. M.; Dillon, P.</p> <p>2014-12-01</p> <p>Urban sprawl and regional climate variability are major stresses on surface water resources in many places. The Lake Simcoe watershed (LSW) Ontario, Canada, is no exception. The LSW is predominantly agricultural but is experiencing rapid population growth due to its proximity to the greater Toronto area. This has led to extensive land use changes which have impacted its water resources and altered runoff patterns in some rivers draining to the lake. Here, we use a paired-catchment approach, hydrological change detection modelling and remote sensing analysis of satellite images to evaluate the impacts of land use change on the hydrology of the LSW (1994 to 2008). Results show that urbanization increased up to 16% in Lovers Creek, the most-urban impacted catchment. Annual runoff from Lovers Creek increased from 239 to 442 mm/yr in contrast to the reference catchment (Black River at Washago) where runoff was relatively stable with an annual mean of 474 mm/yr. Increased annual runoff from Lovers Creek was not accompanied by an increase in annual precipitation. Discriminant function analysis suggests that early (1992-1997; pre-major development) and late (2004-2009; fully urbanized) periods for Lovers Creek separated mainly based on model parameter sets related to runoff flashiness and evapotranspiration. As a result, parameterization in either period cannot be used interchangeably to produce credible runoff simulations in Lovers Creek due to greater scatter between the parameters in canonical space. Separation of early and late period parameter sets for the reference catchment was based on climate and snowmelt related processes. This suggests that regional climatic variability could be influencing hydrologic change in the reference catchment whereas urbanization amplified the regional natural hydrologic changes in urbanizing catchments of the LSW.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.129..667J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.129..667J"><span>Impact of climate variability and anthropogenic activity on streamflow in the Three Rivers Headwater Region, Tibetan Plateau, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Chong; Li, Daiqing; Gao, Yanni; Liu, Wenfeng; Zhang, Linbo</p> <p>2017-07-01</p> <p>Under the impacts of climate variability and human activities, there is violent fluctuation for streamflow in the large basins in China. Therefore, it is crucial to separate the impacts of climate variability and human activities on streamflow fluctuation for better water resources planning and management. In this study, the Three Rivers Headwater Region (TRHR) was chosen as the study area. Long-term hydrological data for the TRHR were collected in order to investigate the changes in annual runoff during the period of 1956-2012. The nonparametric Mann-Kendall test, moving t test, Pettitt test, Mann-Kendall-Sneyers test, and the cumulative anomaly curve were used to identify trends and change points in the hydro-meteorological variables. Change point in runoff was identified in the three basins, which respectively occurred around the years 1989 and 1993, dividing the long-term runoff series into a natural period and a human-induced period. Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In the human-induced period, climate variability was the main factor that increased (reduced) runoff in LRB and YARB (YRB) with contribution of more than 90 %, while the increasing (decreasing) percentage due to human activities only accounted for less than 10 %, showing that runoff in the TRHR is more sensitive to climate variability than human activities. The intra-annual distribution of runoff shifted gradually from a double peak pattern to a single peak pattern, which was mainly influenced by atmospheric circulation in the summer and autumn. The inter-annual variation in runoff was jointly controlled by the East Asian monsoon, the westerly, and Tibetan Plateau monsoons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27422727','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27422727"><span>The role of climatic and anthropogenic stresses on long-term runoff reduction from the Loess Plateau, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feng, Xiaoming; Cheng, Wei; Fu, Bojie; Lü, Yihe</p> <p>2016-11-15</p> <p>Human intervention has strongly altered patterns of river runoff. Yet, few studies have addressed the complexity and nonlinearity of the anthropogenic stresses on runoff or their interaction with climate. We study the Loess Plateau in China, whose river runoff contributes 65% of the discharge to the middle reach of the Yellow River; this landscape has been shaped by human activity and is intensively managed. Our purpose is to characterize the interactive roles of climate and human activities in defining river runoff from the Loess Plateau. Applying a transient analysis to discover the time-varying runoff trend and impact factors, we found that the average runoff in the Loess Plateau decreased continuously during the period 1961-2009 (average rate of -0.9mmyear(-1), P<0.001). This long-term decrease in runoff mainly occurred in three stages, with transitions in 1970, 1981 and 1996. Reduced precipitation was the main reason for the decrease in runoff over the entire study period. However, human intervention played a dominant role in creating the transition points. Water yield (i.e., the ratio of runoff to precipitation) decreased following each anthropogenic transition, causing a 56% reduction in available freshwater resources during the period 1961-2009. These findings highlight the need for studies that address the dynamic and nonlinear processes controlling the availability of freshwater resources in the light of anthropogenic influences applied under a changing climate. Such studies are essential if we are to meet the human water demand in the Loess Plateau region. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeCoA.166..249E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeCoA.166..249E"><span>Direct evidence of the feedback between climate and nutrient, major, and trace element transport to the oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eiriksdottir, Eydis Salome; Gislason, Sigurður Reynir; Oelkers, Eric H.</p> <p>2015-10-01</p> <p>Climate changes affect weathering, denudation and riverine runoff, and therefore elemental fluxes to the ocean. This study presents the climate effect on annual fluxes of 28 dissolved elements, and organic and inorganic particulate fluxes, determined over 26-42 year period in three glacial and three non-glacial river catchments located in Eastern Iceland. Annual riverine fluxes were determined by generating robust correlations between dissolved element concentrations measured from 1998 to 2003 and suspended inorganic matter concentrations measured from 1962 to 2002 with instantaneous discharge measured at the time of sampling in each of these rivers. These correlations were used together with measured average daily discharge to compute daily elemental fluxes. Integration of these daily fluxes yielded the corresponding annual fluxes. As the topography and lithology of the studied glacial and non-glacial river catchments are similar, we used the records of average annual temperature and annual runoff to examine how these parameters and glacier melting influenced individual element fluxes to the oceans. Significant variations were found between the individual elements. The dissolved fluxes of the more soluble elements, such as Mo, Sr, and Na are less affected by increasing temperature and runoff than the insoluble nutrients and trace elements including Fe, P, and Al. This variation between the elements tends to be more pronounced for the glacial compared to the non-glacial rivers. These observations are interpreted to stem from the stronger solubility control on the concentrations of the insoluble elements such that they are less affected by dilution. The dilution of the soluble elements by increasing discharge in the glacial rivers is enhanced by a relatively low amount of water-rock interaction; increased runoff due to glacial melting tend to be collected rapidly into river channels limiting water-rock interaction. It was found that the climate effect on particle transport from the glacial rivers is far higher than all other measured fluxes. This observation, together with the finding that the flux to the oceans of biolimiting elements such as P and Fe is dominated by particulates, suggests that particulate transport by melting glaciers have a relatively strong effect on the feedback between continental weathering, atmospheric chemistry, and climate regulation over geologic time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25833447','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25833447"><span>Nonlinear response in runoff magnitude to fluctuating rain patterns.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Curtu, R; Fonley, M</p> <p>2015-03-01</p> <p>The runoff coefficient of a hillslope is a reliable measure for changes in the streamflow response at the river link outlet. A high runoff coefficient is a good indicator of the possibility of flash floods. Although the relationship between runoff coefficient and streamflow has been the subject of much study, the physical mechanisms affecting runoff coefficient including the dependence on precipitation pattern remain open topics for investigation. In this paper, we analyze a rainfall-runoff model at the hillslope scale as that hillslope is forced with different rain patterns: constant rain and fluctuating rain with different frequencies and amplitudes. When an oscillatory precipitation pattern is applied, although the same amount of water may enter the system, its response (measured by the runoff coefficient) will be maximum for a certain frequency of precipitation. The significant increase in runoff coefficient after a certain pattern of rainfall can be a potential explanation for the conditions preceding flash-floods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/41232','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/41232"><span>Snowmelt runoff and water yield along elevation and temperature gradients in California's southern Sierra Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Carolyn T. Hunsaker; Thomas W. Whitaker; Roger C. Bales</p> <p>2012-01-01</p> <p>Differences in hydrologic response across the rain-snow transition in the southern Sierra Nevada were studied in eight headwater catchments – the Kings River Experimental Watersheds – using continuous precipitation, snowpack, and streamflow measurements. The annual runoff ratio (discharge divided by precipitation) increased about 0.1 per 300 m of mean catchment...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2010/5114/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2010/5114/"><span>Estimation of the effects of land use and groundwater withdrawals on streamflow for the Pomperaug River, Connecticut</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bjerklie, David M.; Starn, J. Jeffrey; Tamayo, Claudia</p> <p>2010-01-01</p> <p>A precipitation runoff model for the Pomperaug River watershed, Connecticut was developed to address issues of concern including the effect of development on streamflow and groundwater recharge, and the implications of water withdrawals on streamflow. The model was parameterized using a strategy that requires a minimum of calibration and optimization by establishing basic relations between the parameter value and physical characteristics of individual hydrologic response units (HRUs) that comprise the model. The strategy was devised so that the information needed can be obtained from Geographic Information System and other general databases for Connecticut. Simulation of groundwater recharge enabled evaluation of the temporal and spatial mapping of recharge variation across the watershed and the spatial effects of changes in land cover on base flow and surface runoff. The modeling indicated that over the course of a year, groundwater provides between 60 and 70 percent of flow in the Pomperaug River; the remainder is generated by more rapid flow through the shallow subsurface and runoff from impermeable surfaces and saturated ground. Groundwater is recharged primarily during periods of low evapotranspiration in the winter, spring, and fall. The largest amount of recharge occurs in the spring in response to snowmelt. During floods, the Weekeepeemee and Nonnewaug Rivers (tributaries that form the Pomperaug River) respond rapidly with little flood peak attenuation due to flood-plain storage. In the Pomperaug River, flood-plain storage is more important in attenuating floods; abandoned quarry ponds (O&G ponds) adjacent to the river provide substantial flood storage above specific river stages when flow from the river spills over the banks and fills the ponds. Discharge from the ponds also helps to sustain low flows in the Pomperaug River. Similarly, releases from the Bronson-Lockwood reservoir sustain flow in the Nonnewaug River and tend to offset the effect of groundwater withdrawals from a well field adjacent to the river during periods of natural low flow. The model indicated that under the current zoning, future development could reduce low flows by as much as 10 percent at the 99 percent exceedance level (99 percent of flows are greater than or equal to this flow), but would not substantially increase the highest flows. Simulation of projected and hypothetical development in the watershed shows, depending on how stormwater is managed, that between 10 and 20 percent effective impervious area in an HRU results in streamflow becoming dominated by the surface-runoff component. This shift from a groundwater-dominated system would likely result in substantial changes in water quality and instream habitat characteristics of the river. Base flow to streams in the Pomperaug River watershed is reduced by both increased impervious surface and increased groundwater withdrawals. For the watershed as a whole, increasing groundwater withdrawals have the potential for causing greater overall reductions in flow compared to increased development and impervious surfaces. Additionally, on the basis of groundwater-modeling simulations, the projected increase in development across the watershed and, to a lesser extent the increase in groundwater withdrawals, will increase the number of local losing reaches experiencing dry conditions and the duration of these dry periods. The location of the losing reaches tends to be in areas near the transition from the uplands to the valley bottoms that are filled with coarse glacial stratified deposits. The simulated increase in the duration and extent of localized dry stream reaches is most sensitive to local increase in impervious surface. Conversion of land from forest or developed land cover to pasture or agricultural land increases groundwater recharge and discharge to streams, while at the same time increasing overall streamflow (the opposite effect as increased impervious surface). These resu</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43D1665S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43D1665S"><span>Evaluating the impact of climate and underlying surface on runoff change within Budyko framework: a study across 224 catchments in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Q.; Cong, Z.; Lei, H.</p> <p>2017-12-01</p> <p>Climate change and underlying surface change are two main factors affecting the hydrological cycle. In respect of climate change, precipitation alters not only in magnitude, but also in intensity, which can be represented by the precipitation depth. To further understand the spatial variation of the impact of precipitation, potential evapotranspiration, precipitation depth as well as the water storage capacity, in this paper 224 catchments across China were analyzed applying the Choudhury-Porporato equation based on the Budyko hypothesis. The catchments distribute in 9 major basins in China and the study period is from 1960 to 2010. The results show that underlying surface is the major driving force of the change in runoff in the Songhua Basin, the Liaohe Basin and the Haihe Basin, while climate change dominates runoff change in other basins. Climate change causes runoff increase in most catchments, except for some catchments in the Yellow River Basin and the Yangtze River Basin. Specifically, change in precipitation depth induces runoff increase in almost each catchment and shows a remarkable contribution rate (14.8% on average, larger than 20% in 32% catchments). The contribution of precipitation depth has little correlation with the aridity index, while positively correlates to the significance of trend in precipitation depth. This study suggests that precipitation depth is an important aspect that should be taken into consideration in attribution of runoff change. The results can give a sight for future researches in attribution analysis within the Budyko framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2011/3123/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2011/3123/"><span>Watershed scale response to climate change--Naches River Basin, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mastin, Mark C.; Hay, Lauren E.; Markstrom, Steven L.</p> <p>2012-01-01</p> <p>Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Naches River Basin below Tieton River in Washington.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25500472','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25500472"><span>Green-blue water in the city: quantification of impact of source control versus end-of-pipe solutions on sewer and river floods.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P</p> <p>2014-01-01</p> <p>Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.H31A0117G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.H31A0117G"><span>River Runoff Estimates on the Basis of Satellite-Derived Surface Currents and Water Levels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gruenler, S.; Romeiser, R.; Stammer, D.</p> <p>2007-12-01</p> <p>One promising technique for river runoff estimates from space is the retrieval of surface currents on the basis of synthetic aperture radar along-track interferometry (ATI). The German satellite TerraSAR-X, which was launched in June 2007, permits current measurements by ATI in an experimental mode of operation. Based on numerical simulations, we present first findings of a research project in which the potential of satellite measurements of various parameters with different temporal and spatial sampling characteristics is evaluated and a dedicated data synthesis system for river discharge estimates is developed. We address the achievable accuracy and limitations of such estimates for different local flow conditions at selected test sites. High-resolution three- dimensional current fields in the Elbe river (Germany) from a numerical model of the German Federal Waterways Engineering and Research Institute (BAW) are used as reference data set and input for simulations of a variety of possible measuring and data interpretation strategies to be evaluated. For example, runoff estimates on the basis of measured surface current fields and river widths from TerraSAR-X and water levels from radar altimetry are simulated. Despite the simplicity of some of the applied methods, the results provide quite comprehensive pictures of the Elbe river runoff dynamics. Although the satellite-based river runoff estimates exhibit a lower accuracy in comparison to traditional gauge measurements, the proposed measuring strategies are quite promising for the monitoring of river discharge dynamics in regions where only sparse in-situ measurements are available. We discuss the applicability to a number of major rivers around the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JHyd..400..465T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JHyd..400..465T"><span>Pollutant runoff yields in the Yamato-gawa River, Japan, to be applied for EAH books of municipal wastewater intending pollutant discharge reduction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsuzuki, Yoshiaki; Yoneda, Minoru</p> <p>2011-04-01</p> <p>SummaryA Social Experiment Program to decrease municipal wastewater pollutant discharge by "soft interventions" in households and to improve river water quality was conducted in the Yamato-gawa River Basin, Japan. Environmental accounting housekeeping (EAH) books of municipal wastewater were prepared mainly for dissemination purpose to be applied during the Social Experiment Program. The EAH books are table format spreadsheets to estimate pollutant discharges. Pollutant load per capita flowing into water body (PLC wb) and pollutant runoff yields from sub-river basins to the river mouth are indispensable parameters for their preparation. In order to estimate the pollutant runoff yields of the pollutants, BOD, TN and TP, a concept of pollutant runoff yield from upper monitoring point, MP n, to lower monitoring point, MP n+1 ( Rm n(n+1)), and that from corresponding sub-river basin ( Rd(n+1)(n+1)) was introduced in this paper. When proportion of the pollutant runoff yields, p n (= Rm n(n+1)/ Rd(n+1)(n+1)), was equal to 1.0 in all the river sections, which was determined based on the simulation results of Rm and Rd, pollutant runoff yield from sub-river basin n to the monitoring point nearest to the river mouth, Ry n7, were estimated to be 0.3-66.8% for BOD, 25.8-75.8% for TN and 18.9-78.5% for TP. The EAH books of municipal wastewater were prepared by adopting the estimated pollutant runoff yields, Ry n7. The EAH books were thought to be distributed widely, however, they did not seem to be used by many ordinary citizens in the Social Experiment Program in February, 2010, judging from the small number of website visitor counter and less responses from people. Possible reasons for less usage than expected were considered to be unsuccessful negotiation with the official organizations of the Social Experiment Program on the EAH books utilization as official tools and some difficulties in using the EAH books for ordinary people.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PalOc..30..751C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PalOc..30..751C"><span>Impact of global SST gradients on the Mediterranean runoff changes across the Plio-Pleistocene transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colleoni, Florence; Cherchi, Annalisa; Masina, Simona; Brierley, Christopher M.</p> <p>2015-06-01</p> <p>This work explores the impact of the development of global meridional and zonal sea surface temperature (SST) gradients on the Mediterranean runoff variability during the Plio-Pleistocene transition, about 3 Ma. Results show that total annual mean Pliocene Mediterranean runoff is about 40% larger than during the preindustrial period due to more increased extratropical specific humidity. As a consequence of a weakened and extended Hadley cell, the Pliocene northwest Africa hydrological network produces a discharge 30 times larger than today. Our results support the conclusion that during the Pliocene, the Mediterranean water deficit was reduced relative to today due to a larger river discharge. By means of a stand-alone atmospheric general circulation model, we simulate the separate impact of extratropical and equatorial SST cooling on the Mediterranean runoff. While cooling the equatorial SST does not imply significant changes to the Pliocene Mediterranean hydrological budget, the extratropical SST cooling increases the water deficit due to a decrease in precipitation and runoff. Consequently, river discharge from this area reduces to preindustrial levels. The main teleconnections acting upon the Mediterranean area today, i.e., the North Atlantic Oscillation during winter and the "monsoon-desert" mechanism during summer already have a large influence on the climate of our Pliocene simulations. Finally, our results also suggest that in a climate state significantly warmer than today, changes of the Hadley circulation could potentially lead to increased water resources in northwest Africa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1998/4017/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1998/4017/report.pdf"><span>Pesticides in storm runoff from agricultural and urban areas in the Tuolumne River basin in the vicinity of Modesto, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kratzer, Charles R.</p> <p>1998-01-01</p> <p>The occurrence, concentrations, and loads of dissolved pesticides in storm runoff were compared for two contrasting land uses in the Tuolumne River Basin, California, during two different winter storms: agricultural areas (February 1994) and the Modesto urban area (February 1995). Both storms followed the main application period of pesticides on dormant almond orchards. Eight samples of runoff from agricultural areas were collected from a Tuolumne River site, and 10 samples of runoff from urban areas were collected from five storm drains. All samples were analyzed for 46 pesticides. Six pesticides were detected in runoff from agricultural areas, and 15 pesticides were detected in runoff from urban areas. Chlorpyrifos, diazinon, dacthal (DCPA), metolachlor, and simazine were detected in almost every sample. Median concentrations were higher in the runoff from urban areas for all pesticides except napropamide and simazine. The greater occurrence and concentrations in storm drains is partly attributed to dilution of agricultural runoff by nonstorm base-flow in the Tuolumne River and by storm runoff from nonagricultural and nonurban land. In most cases, the occurrence and relative concentrations of pesticides found in storm runoff from agricultural and urban areas were related to reported pesticide application. Pesticide concentrations in runoff from agricultural areas were more variable during the storm hydrograph than were concentrations in runoff from urban areas. All peak pesticide concentrations in runoff from agricultural areas occurred during the rising limb of the storm hydrograph, whereas peak concentrations in the storm drains occurred at varying times during the storm hydrograph. Transport of pesticides from agricultural areas during the February 1994 storm exceeded transport from urban areas during the February 1995 storm for chlorpyrifos, diazinon, metolachlor, napropamide, and simazine. Transport of DCPA was about the same from agricultural and urban sources, and the main source of transport for the other pesticides could not be determined because of concentrations less than the method detection limit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA......633H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA......633H"><span>Rainfall-Runoff Parameters Uncertainity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heidari, A.; Saghafian, B.; Maknoon, R.</p> <p>2003-04-01</p> <p>Karkheh river basin, located in southwest of Iran, drains an area of over 40000 km2 and is considered a flood active basin. A flood forecasting system is under development for the basin, which consists of a rainfall-runoff model, a river routing model, a reservior simulation model, and a real time data gathering and processing module. SCS, Clark synthetic unit hydrograph, and Modclark methods are the main subbasin rainfall-runoff transformation options included in the rainfall-runoff model. Infiltration schemes, such as exponentioal and SCS-CN methods, account for infiltration losses. Simulation of snow melt is based on degree day approach. River flood routing is performed by FLDWAV model based on one-dimensional full dynamic equation. Calibration and validation of the rainfall-runoff model on Karkheh subbasins are ongoing while the river routing model awaits cross section surveys.Real time hydrometeological data are collected by a telemetry network. The telemetry network is equipped with automatic sensors and INMARSAT-C comunication system. A geographic information system (GIS) stores and manages the spatial data while a database holds the hydroclimatological historical and updated time series. Rainfall runoff parameters uncertainty is analyzed by Monte Carlo and GLUE approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JESS..127...19D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JESS..127...19D"><span>Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian river basins during 1985-2005 using variable infiltration capacity approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Das, Pulakesh; Behera, Mukunda Dev; Patidar, Nitesh; Sahoo, Bhabagrahi; Tripathi, Poonam; Behera, Priti Ranjan; Srivastava, S. K.; Roy, Partha Sarathi; Thakur, Praveen; Agrawal, S. P.; Krishnamurthy, Y. V. N.</p> <p>2018-03-01</p> <p>As a catchment phenomenon, land use and land cover change (LULCC) has a great role in influencing the hydrological cycle. In this study, decadal LULC maps of 1985, 1995, 2005 and predicted-2025 of the Subarnarekha, Brahmani, Baitarani, Mahanadi and Nagavali River basins of eastern India were analyzed in the framework of the variable infiltration capacity (VIC) macro scale hydrologic model to estimate their relative consequences. The model simulation showed a decrease in ET with 0.0276% during 1985-1995, but a slight increase with 0.0097% during 1995-2005. Conversely, runoff and base flow showed an overall increasing trend with 0.0319 and 0.0041% respectively during 1985-1995. In response to the predicted LULC in 2025, the VIC model simulation estimated reduction of ET with 0.0851% with an increase of runoff by 0.051%. Among the vegetation parameters, leaf area index (LAI) emerged as the most sensitive one to alter the simulated water balance. LULC alterations via deforestation, urbanization, cropland expansions led to reduced canopy cover for interception and transpiration that in turn contributed to overall decrease in ET and increase in runoff and base flow. This study reiterates changes in the hydrology due to LULCC, thereby providing useful inputs for integrated water resources management in the principle of sustained ecology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H51D1236P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H51D1236P"><span>Eco-hydrological Responses to Soil and Water Conservation in the Jinghe River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peng, H.; Jia, Y.; Qiu, Y.</p> <p>2011-12-01</p> <p>The Jinghe River Basin is one of the most serious soil erosion areas in the Loess Plateau. Many measures of soil and water conservation were applied in the basin. Terrestrial ecosystem model BIOME-BGC and distributed hydrological model WEP-L were used to build eco-hydrological model and verified by field observation and literature values. The model was applied in the Jinghe River Basin to analyze eco-hydrological responses under the scenarios of vegetation type change due to soil and water conservation polices. Four scenarios were set under the measures of conversion of cropland to forest, forestation on bare land, forestation on slope wasteland and planting grass on bare land. Analysis results show that the soil and water conservation has significant effects on runoff and the carbon cycle in the Jinghe River Basin: the average annual runoff would decrease and the average annual NPP and carbon storage would increase. Key words: soil and water conservation; conversion of cropland to forest; eco-hydrology response; the Jinghe River Basin</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.129..645H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.129..645H"><span>Human activity and climate variability impacts on sediment discharge and runoff in the Yellow River of China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Yi; Wang, Fei; Mu, Xingmin; Guo, Lanqin; Gao, Peng; Zhao, Guangju</p> <p>2017-07-01</p> <p>We analyze the variability of sediment discharge and runoff in the Hekou-Longmen segment in the middle reaches of the Yellow River, China. Our analysis is based on Normalized Difference Vegetation Index (NDVI), sediment discharge, runoff, and monthly meteorological data (1961-2010). The climate conditions are controlled via monthly regional average precipitation and potential evapotranspiration (ET0) that are calculated with the Penman-Monteith method. Data regarding water and soil conservation infrastructure and their effects were investigated as causal factors of runoff and sediment discharge changes. The results indicated the following conclusions: (1) The sediment concentration, sediment discharge, and annual runoff, varied considerably during the study period and all of these factors exhibited larger coefficients of variation than ET0 and precipitation. (2) Sediment discharge, annual runoff, and sediment concentration significantly declined over the study period in a linear fashion. This was accompanied by an increase in ET0 and decline in precipitation that were not significant. (3) Within paired years with similar precipitation and potential evapotranspiration conditions (SPEC), all pairs showed a decline in runoff, sediment discharge, and sediment concentration. (4) Human impacts in this region were markedly high as indicated by NDVI, and soil and water measurements, and especially the soil and water conservation infrastructure resulting in an approximately 312 Mt year-1 of sediment deposition during 1960-1999.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760009485','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760009485"><span>Employment of satellite snowcover observations for improving seasonal runoff estimates. [Indus River and Wind River Range, Wyoming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rango, A.; Salomonson, V. V.; Foster, J. L.</p> <p>1975-01-01</p> <p>Low resolution meteorological satellite and high resolution earth resources satellite data were used to map snowcovered area over the upper Indus River and the Wind River Mountains of Wyoming, respectively. For the Indus River, early Spring snowcovered area was extracted and related to April through June streamflow from 1967-1971 using a regression equation. Composited results from two years of data over seven Wind River Mountain watersheds indicated that LANDSAT-1 snowcover observations, separated on the basis of watershed elevation, could also be related to runoff in significant regression equations. It appears that earth resources satellite data will be useful in assisting in the prediction of seasonal streamflow for various water resources applications, nonhazardous collection of snow data from restricted-access areas, and in hydrologic modeling of snowmelt runoff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013WRR....49.6744H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013WRR....49.6744H"><span>Simultaneous calibration of ensemble river flow predictions over an entire range of lead times</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hemri, S.; Fundel, F.; Zappa, M.</p> <p>2013-10-01</p> <p>Probabilistic estimates of future water levels and river discharge are usually simulated with hydrologic models using ensemble weather forecasts as main inputs. As hydrologic models are imperfect and the meteorological ensembles tend to be biased and underdispersed, the ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, in order to achieve both reliable and sharp predictions statistical postprocessing is required. In this work Bayesian model averaging (BMA) is applied to statistically postprocess ensemble runoff raw forecasts for a catchment in Switzerland, at lead times ranging from 1 to 240 h. The raw forecasts have been obtained using deterministic and ensemble forcing meteorological models with different forecast lead time ranges. First, BMA is applied based on mixtures of univariate normal distributions, subject to the assumption of independence between distinct lead times. Then, the independence assumption is relaxed in order to estimate multivariate runoff forecasts over the entire range of lead times simultaneously, based on a BMA version that uses multivariate normal distributions. Since river runoff is a highly skewed variable, Box-Cox transformations are applied in order to achieve approximate normality. Both univariate and multivariate BMA approaches are able to generate well calibrated probabilistic forecasts that are considerably sharper than climatological forecasts. Additionally, multivariate BMA provides a promising approach for incorporating temporal dependencies into the postprocessed forecasts. Its major advantage against univariate BMA is an increase in reliability when the forecast system is changing due to model availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1983/4027/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1983/4027/report.pdf"><span>Reconnaissance of surface-water resources in the Kobuk River basin, Alaska, 1979-80</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Childers, J.M.; Kernodle, D.R.</p> <p>1983-01-01</p> <p>Surface water data were collected at selected sites in the Kobuk River Basin in northwest Alaska in August 1979 and April 1980. In August 1979, frequent heavy rains caused abnormally high flows in the basin; unit runoff values, computed from discharge measurements at 25 sites, ranged from 0.08 to 12.2 cu ft/sec/sq mi. Mean unit runoff for August computed from 13 years of record at a stream gaging station on the Kobuk River ranged from 1 to 3 cu ft/sec/sq mi. Unit runoff computed from discharge measurements made at eight sites in April 1980 ranged from 0 to 0.30 cubic feet per second per square mile. These values are in reasonable agreement with those derived from the record at the gaging station. High-water marks of maximum evident floods and evidence of ice-affected flooding were found at near bankfull stages at 17 sites on the Kobuk River and its tributaries. Computed unit runoff for the maximum evident floods generally decreases with increasing drainage area. Unit runoff ranges from about 50 to 75 cu ft/sec/sq mi for drainage areas < 1,000 sq mi to < 25 cu ft/sec/sq mi for larger areas. Field determinations were made of water temperature, pH, alkalinity, dissolved-oxygen concentration, and specific conductance, and discharge was measured at about 40 stream sites and one spring. Water samples for laboratory analysis of dissolved inorganic constituents and biological samples were collected in August 1979. Water quality data indicate that the surface waters would be acceptable for most uses; they are a calcium bicarbonate type having dissolved-solids concentrations between 50 and 140 milligm/liter. The pristine nature of the waters is also indicated by the overall diversity and composition of its benthic invertebrate community. A more highly mineralized (about 550 milligm/liter dissolved solids) sodium bicarbonate water flows from Reed River Hot Spring. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22705871','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22705871"><span>Effect of storm events on riverine nitrogen dynamics in a subtropical watershed, southeastern China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Nengwang; Wu, Jiezhong; Hong, Huasheng</p> <p>2012-08-01</p> <p>Rain storms are predicted to increase in the subtropical region due to climate change. However, the effects of storm events on riverine nitrogen (N) dynamics are poorly understood. In this study, the riverine N dynamics and storm effects in a large subtropical river (North Jiulong River, southeastern China) were investigated through continuous sampling of two storm events which occurred in June 2010 and June 2011. The results disclosed a strong linkage between N dynamics and hydrological controls and watershed characteristics. The extreme storm in June 2010 resulted in more fluctuations in N concentrations, loads, and composition, compared with the moderate storm in June 2011. There were contrasting patterns (e.g., the hysteresis effect) between nitrate and ammonium behavior in storm runoff, reflecting their different supply source and transport mechanism. Overall, nitrate supply originated from subsurface runoff and was dominated by within-channel mobilization, while ammonium was mainly from over-land sources and flushed by surface runoff. Extreme storm runoff (2010) caused a four-fold increase in dissolved inorganic N fluxes (DIN), with a greater fraction of ammonium (up to 30% of DIN) compared with the moderate storm and background flow condition (less than 15%). Storm-driven sharp increases of N loads and changes in nutrient stoichiometry (more ammonium) might have been connected with algal blooms in the adjacent estuary and Xiamen Bay. Combined with the background flow measurement of N gradients along the main river and a stream together with anthropogenic N load information, the interactive effect of hydrological and biogeochemical process on riverine N was preliminarily revealed. Current results suggested that storm runoff N was controlled by rainfall, hydrological condition, antecedent soil moisture, spatial variability of land-based N source, and damming. These findings could be used as a reference for future water quality monitoring programs and the development of a pollution mitigation strategy. Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1798g/pdf/pp1798g.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1798g/pdf/pp1798g.pdf"><span>Occurrence and transport of nutrients in the Missouri River Basin, April through September 2011: Chapter G in 2011 floods of the central United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kalkhoff, Stephen J.</p> <p>2013-01-01</p> <p>Heavy snow and early spring rainfall generated substantial amounts of runoff and flooding in the upper part of the Missouri River Basin in 2011. Spring runoff in the upper and middle parts of the basin exceeded the storage capacity of the Missouri River reservoirs and unprecedented amounts of water were released into the lower parts of the basin resulting in record floods from June through September on the Missouri River in Iowa and Nebraska and extending into Kansas and Missouri. Runoff from the Missouri River Basin in April through September 2011 was 8,440,000 hectare meters (68,400,000 acre feet) and was only exceeded during flooding in 1993 when runoff was 11,200,000 hectare meters (90,700,000 acre feet). Nitrate and total phosphorus concentrations in the Missouri River and selected tributaries in April through September, 2011 generally were within the expected range of concentrations measured during the last 30 years. Substantial discharge from the upper and middle parts of the Missouri River Basin resulted in nitrate concentrations decreasing in the lower Missouri River beginning in June. Concentrations of nitrate in water entering the Mississippi River from the Missouri River were less in 2011 than in 1993, but total phosphorus concentrations entering the Mississippi River were substantially greater in 2011 than in 1993. The Missouri River transported an estimated 79,600 megagrams of nitrate and 38,000 megagrams of total phosphorus to the Mississippi River from April through September 2011. The nitrate flux in 2011 was less than 20 percent of the combined total from the Upper Mississippi and Missouri River Basins. In contrast, the total phosphorus flux of 38,000 megagrams from the Missouri River constituted about 39 percent of the combined total from the Upper Mississippi and Missouri River Basins during April through September 2011. Substantially more nitrate but less total phosphorus was transported from the Missouri River Basin during the historic 1993 than during the 2011 flood. Greater runoff from the lower part of the basin contributed to the greater nitrate transport in 1993. In addition to the differing amounts of runoff and the source of flood waters, changes in land use, and management practices are additional factors that may have contributed to the difference in nitrate and total phosphorus flux between the 1993 and 2011 floods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1798d/pdf/pp1798d.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1798d/pdf/pp1798d.pdf"><span>Annual exceedance probabilities and trends for peak streamflows and annual runoff volumes for the Central United States during the 2011 floods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Driscoll, Daniel G.; Southard, Rodney E.; Koenig, Todd A.; Bender, David A.; Holmes, Robert R.</p> <p>2014-01-01</p> <p>During 2011, excess precipitation resulted in widespread flooding in the Central United States with 33 fatalities and approximately $4.2 billion in damages reported in the Red River of the North, Souris, and Mississippi River Basins. At different times from late February 2011 through September 2011, various rivers in these basins had major flooding, with some locations having multiple rounds of flooding. This report provides broadscale characterizations of annual exceedance probabilities and trends for peak streamflows and annual runoff volumes for selected streamgages in the Central United States in areas affected by 2011 flooding. Annual exceedance probabilities (AEPs) were analyzed for 321 streamgages for annual peak streamflow and for 211 streamgages for annual runoff volume. Some of the most exceptional flooding was for the Souris River Basin, where of 11 streamgages considered for AEP analysis of peak streamflow, flood peaks in 2011 exceeded the next largest peak of record by at least double for 6 of the longest-term streamgages (75 to 108 years of peak-flow record). AEPs for these six streamgages were less than 1 percent. AEPs for 2011 runoff volumes were less than 1 percent for all seven Souris River streamgages considered for AEP analysis. Magnitudes of 2011 runoff volumes exceeded previous maxima by double or more for 5 of the 7 streamgages (record lengths 52 to 108 years). For the Red River of the North Basin, AEPs for 2011 runoff volumes were exceptional, with two streamgages having AEPs less than 0.2 percent, five streamgages in the range of 0.2 to 1 percent, and four streamgages in the range of 1 to 2 percent. Magnitudes of 2011 runoff volumes also were exceptional, with all 11 of the aforementioned streamgages eclipsing previous long-term (62 to 110 years) annual maxima by about one-third or more. AEPs for peak streamflows in the upper Mississippi River Basin were not exceptional, with no AEPs less than 1 percent. AEPs for annual runoff volumes indicated less frequent recurrence, with 11 streamgages having AEPs of less than 1 percent. The 2011 runoff volume for streamgage 05331000 (at Saint Paul, Minnesota) exceeded the previous record (112 years of record) by about 24 percent. An especially newsworthy feature was prolonged flooding along the main stem of the Missouri River downstream from Garrison Dam (located upstream from Bismarck, North Dakota) and extending downstream throughout the length of the Missouri River. The 2011 runoff volume for streamgage 06342500 (at Bismarck) exceeded the previous (1975) maximum by about 50 percent, with an associated AEP in the range of 0.2 to 1 percent. In the Ohio River Basin, peak-streamflow AEPs were less than 2 percent for only four streamgages. Runoff-volume AEPs were less than 2 percent for only three streamgages. Along the lower Mississippi River, the largest streamflow peak in 91 years was recorded for streamgage 07289000 (at Vicksburg, Mississippi), with an associated AEP of 0.8 percent. Trends in peak streamflow were analyzed for 98 streamgages, with 67 streamgages having upward trends, 31 with downward trends, and zero with no trend. Trends in annual runoff volume were analyzed for 182 streamgages, with 145 streamgages having upward trends, 36 with downward trends, and 1 with no trend. The trend analyses used descriptive methods that did not include measures of statistical significance. A dichotomous spatial distribution in trends was apparent for both peak streamflow and annual runoff volume, with a small number of streamgages in the northwestern part of the study area having downward trends and most streamgages in the eastern part of the study area having upward trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013MsT..........6M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013MsT..........6M"><span>Impacts of retrogressive thaw slumps on the geochemistry of permafrost catchments, Stony Creek Watershed, NWT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malone, Laura</p> <p></p> <p>Retrogressive thaw slumps are one of the most dramatic thermokarst landforms in periglacial regions. This thesis investigates the impacts of two of the largest hillslope thaw slumps on the geochemistry of periglacial streams on the Peel Plateau, Northwest Territories. It aims to describe the inorganic geochemistry of runoff across active mega-slumps, impacted and pristine tundra streams, as well as that of the ice-rich permafrost exposed in the slump headwalls. Slump runoff is characterized by elevated suspended sediments (911 g/L), high conductivity (2700 microS/cm), and high SO42- (up to 2078 ppm). The runoff originates as a solute-rich meltwater near the slump headwall, and leaches and re-dissolves soluble salts (e.g., gypsum) as it flows along the mudflow. Conductivity increases until the runoff mixes with pristine tundra streams, diluting the slump runoff signal. SO4 2-/Cl- is used as a tracer to isolate the slump runoff signal in impacted waters, and suggests that the contribution of slump runoff to the Peel River has been increasing since the 1960s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.4115A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.4115A"><span>Simulated hydrologic response to projected changes in precipitation and temperature in the Congo River basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aloysius, Noel; Saiers, James</p> <p>2017-08-01</p> <p>Despite their global significance, the impacts of climate change on water resources and associated ecosystem services in the Congo River basin (CRB) have been understudied. Of particular need for decision makers is the availability of spatial and temporal variability of runoff projections. Here, with the aid of a spatially explicit hydrological model forced with precipitation and temperature projections from 25 global climate models (GCMs) under two greenhouse gas emission scenarios, we explore the variability in modeled runoff in the near future (2016-2035) and mid-century (2046-2065). We find that total runoff from the CRB is projected to increase by 5 % [-9 %; 20 %] (mean - min and max - across model ensembles) over the next two decades and by 7 % [-12 %; 24 %] by mid-century. Projected changes in runoff from subwatersheds distributed within the CRB vary in magnitude and sign. Over the equatorial region and in parts of northern and southwestern CRB, most models project an overall increase in precipitation and, subsequently, runoff. A simulated decrease in precipitation leads to a decline in runoff from headwater regions located in the northeastern and southeastern CRB. Climate model selection plays an important role in future projections for both magnitude and direction of change. The multimodel ensemble approach reveals that precipitation and runoff changes under business-as-usual and avoided greenhouse gas emission scenarios (RCP8.5 vs. RCP4.5) are relatively similar in the near term but deviate in the midterm, which underscores the need for rapid action on climate change adaptation. Our assessment demonstrates the need to include uncertainties in climate model and emission scenario selection during decision-making processes related to climate change mitigation and adaptation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16..555H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16..555H"><span>Modeling the hydrologic effects of land and water development interventions: a case study of the upper Blue Nile river basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haregeweyn, Nigussie; Tsunekawa, Atsushi; Tsubo, Mitsuru; Meshesha, Derege; Adgo, Enyew; Poesen, Jean; Schütt, Brigitta</p> <p>2014-05-01</p> <p>Over 67% of the Ethiopian landmass has been identified as very vulnerable to climate variability and land degradation. These problems are more prevalent in the Upper Blue Nile (UBN, often called Abay) river basin covering a drainage area of about 199,800 km2. The UBN River runs from Lake Tana (NW Ethiopia) to the Ethiopia-Sudan border. To enhance the adaptive capacity to the high climate variability and land degradation in the basin, different land and water management measures (stone/soil bunds, runoff collector trenches, exclosures) have been extensively implemented, especially since recent years. Moreover, multipurpose water harvesting schemes including the Grand Ethiopian Renaissance Dam (GERD, reservoir area of ca. 4000 km2) and 17 other similar projects are being or to be implemented by 2025. However, impact studies on land and water management aspects rarely include detailed hydrological components especially at river basin scale, although it is generally regarded as a major determinant of hydrological processes. The main aim of this study is therefore to model the significance of land and water management interventions in surface runoff response at scale of UBN river basin and to suggest some recommendations. Spatially-distributed annual surface runoff was simulated for both present-day and future (2025) land and water management conditions using calibrated values of the proportional loss model in ArcGIS environment. Average annual rainfall map (1998-2012) was produced from calibrated TRMM satellite source and shows high spatial variability of rainfall ranging between ca. 1000 mm in the Eastern part of the basin to ca. 2000 mm in the southern part of the basin. Present-day land use day condition was obtained from Abay Basin Master Plan study. The future land use map was created taking into account the land and water development interventions to be implemented by 2025. Under present-day conditions, high spatial variability of annual runoff depth was observed in the basin ranging from 80 mm in the central part of the basin to over 1700 mm in water bodies. This variation is mainly controlled by variation in surface conditions and areal-extent of each land use type, and rainfall depth. For a specific land use type, runoff depth is found to increase with elevation as this in turn directly influences the rainfall distribution. By 2025, due to the land and water management interventions, total runoff depth in the basin could decrease by up to 40%. Following the conversion of other land use types to water bodies due to the medium to large-scale water harvesting schemes such as GERD reservoir, runoff response in those specific parts of the basin could increase by over 200%. Sub-basins have been prioritized for future land and water management interventions. Further study remains necessary to understand the downstream impacts of those interventions on runoff and sediment discharges. Keywords: Land and water management; Upper Blue Nile; Grand Ethiopian Renaissance Dam; Spatial variability of runoff; Downstream impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916479X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916479X"><span>Runoff projection under climate change over Yarlung Zangbo River, Southwest China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xuan, Weidong; Xu, Yue-Ping</p> <p>2017-04-01</p> <p>The Yarlung Zangbo River is located in southwest of China, one of the major source of "Asian water tower". The river has great hydropower potential and provides vital water resource for local and downstream agricultural production and livestock husbandry. Compared to its drainage area, gauge observation is sometimes not enough for good hydrological modeling in order to project future runoff. In this study, we employ a semi-distributed hydrologic model SWAT to simulate hydrological process of the river with rainfall observation and TRMM 3B4V7 respectively and the hydrological model performance is evaluated based on not only total runoff but snowmelt, precipitation and groundwater components. Firstly, calibration and validation of the hydrological model are executed to find behavioral parameter sets for both gauge observation and TRMM data respectively. Then, behavioral parameter sets with diverse efficiency coefficient (NS) values are selected and corresponding runoff components are analyzed. Robust parameter sets are further employed in SWAT coupled with CMIP5 GCMs to project future runoff. The final results show that precipitation is the dominating contributor nearly all year around, while snowmelt and groundwater are important in the summer and winter alternatively. Also sufficient robust parameter sets help reduce uncertainty in hydrological modeling. Finally, future possible runoff changes will have major consequences for water and flood security.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A23E0372G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A23E0372G"><span>Effects of climate change on hydrology and hydraulics of Qu River Basin, East China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, C.; Zhu, Q.; Zhao, Z.; Pan, S.; Xu, Y. P.</p> <p>2015-12-01</p> <p>The impacts of climate change on regional hydrological extreme events have attracted much attention in recent years. This paper aims to provide a general overview of changes on future runoffs and water levels in the Qu River Basin, upper reaches of Qiantang River, East China by combining future climate scenarios, hydrological model and 1D hydraulic model. The outputs of four GCMs BCC, BNU, CanESM and CSIRO under two scenarios RCP4.5 and RCP8.5 for 2021-2050 are chosen to represent future climate change projections. The LARS-WG statistical downscaling method is used to downscale the coarse GCM outputs and generate 50 years of synthetic precipitation and maximum and minimum temperatures to drive the GR4J hydrological model and the 1D hydraulic model for the baseline period 1971-2000 and the future period 2021-2050. Finally the POT (Peaks Over Threshold) method is applied to analyze the change of extreme events in the study area. The results show that design runoffs and water levels all indicate an increasing trend in the future period for Changshangang River, Jiangshangang River and Qu River at most cases, especially for small return periods(≤20), and for Qu River the increase becomes larger, which suggests that the risk of flooding will probably become greater and appropriate adaptation measures need to be taken.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..529.1633B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..529.1633B"><span>Hourly runoff forecasting for flood risk management: Application of various computational intelligence models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.</p> <p>2015-10-01</p> <p>Reliable river flow forecasts play a key role in flood risk mitigation. Among different approaches of river flow forecasting, data driven approaches have become increasingly popular in recent years due to their minimum information requirements and ability to simulate nonlinear and non-stationary characteristics of hydrological processes. In this study, attempts are made to apply four different types of data driven approaches, namely traditional artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), wavelet neural networks (WNN), and, hybrid ANFIS with multi resolution analysis using wavelets (WNF). Developed models applied for real time flood forecasting at Casino station on Richmond River, Australia which is highly prone to flooding. Hourly rainfall and runoff data were used to drive the models which have been used for forecasting with 1, 6, 12, 24, 36 and 48 h lead-time. The performance of models further improved by adding an upstream river flow data (Wiangaree station), as another effective input. All models perform satisfactorily up to 12 h lead-time. However, the hybrid wavelet-based models significantly outperforming the ANFIS and ANN models in the longer lead-time forecasting. The results confirm the robustness of the proposed structure of the hybrid models for real time runoff forecasting in the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.tmp..413S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.tmp..413S"><span>Understanding the impacts of climate change and human activities on streamflow: a case study of the Soan River basin, Pakistan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shahid, Muhammad; Cong, Zhentao; Zhang, Danwu</p> <p>2017-09-01</p> <p>Climate change and land use change are the two main factors that can alter the catchment hydrological process. The objective of this study is to evaluate the relative contribution of climate change and land use change to runoff change of the Soan River basin. The Mann-Kendal and the Pettit tests are used to find out the trends and change point in hydroclimatic variables during the period 1983-2012. Two different approaches including the abcd hydrological model and the Budyko framework are then used to quantify the impact of climate change and land use change on streamflow. The results from both methods are consistent and show that annual runoff has significantly decreased with a change point around 1997. The decrease in precipitation and increases in potential evapotranspiration contribute 68% of the detected change while the rest of the detected change is due to land use change. The land use change acquired from Landsat shows that during post-change period, the agriculture has increased in the Soan basin, which is in line with the positive contribution of land use change to runoff decrease. This study concludes that aforementioned methods performed well in quantifying the relative contribution of land use change and climate change to runoff change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5071869','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5071869"><span>Changes in Central Asia’s Water Tower: Past, Present and Future</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Yaning; Li, Weihong; Deng, Haijun; Fang, Gonghuan; Li, Zhi</p> <p>2016-01-01</p> <p>The Tienshan Mountains, with its status as “water tower”, is the main water source and ecological barrier in Central Asia. The rapid warming affected precipitation amounts and fraction as well as the original glacier/snowmelt water processes, thereby affecting the runoff and water storage. The ratio of snowfall to precipitation (S/P) experienced a downward trend, along with a shift from snow to rain. Spatially, the snow cover area in Middle Tienshan Mountains decreased significantly, while that in West Tienshan Mountains increased slightly. Approximately 97.52% of glaciers in the Tienshan Mountains showed a retreating trend, which was especially obvious in the North and East Tienshan Mountains. River runoff responds in a complex way to changes in climate and cryosphere. It appears that catchments with a higher fraction of glacierized area showed mainly increasing runoff trends, while river basins with less or no glacierization exhibited large variations in the observed runoff changes. The total water storage in the Tienshan Mountains also experienced a significant decreasing trend in Middle and East Tienshan Mountains, but a slight decreasing trend in West Tienshan Mountains, totally at an average rate of −3.72 mm/a. In future, water storage levels are expected to show deficits for the next half-century. PMID:27762285</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000HyPr...14.3149D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000HyPr...14.3149D"><span>Role of lake regulation on glacier-fed rivers in enhancing salmon productivity: the Cook Inlet watershed, south-central Alaska, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dorava, Joseph M.; Milner, Alexander M.</p> <p>2000-10-01</p> <p>Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation.Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.C41A0186H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.C41A0186H"><span>Discharge and water chemistry of High Arctic rivers in NW Greenland (76° N, 68° W)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hagedorn, B.; Sletten, R. S.; Vigna, A. C.; Hallet, B.</p> <p>2004-12-01</p> <p>The volume, temperature, and quality of freshwater runoff from high latitude areas ultimately affect sensitive components of polar oceans, including water stratification, nutrient cycling, and formation of deepwater currents. Freshwater is conveyed from Greenland to the ocean from a multitude of medium-sized rivers for which little is known about discharge and water characteristics. River runoff together with microclimate and soil processes were recorded in a typical high Arctic area in NW Greenland where complete climate records from pre-1978 to the present indicate increases in mean annual air temperature from -12.0° C to -10.7° C and precipitation from 65 mm to 120 mm water equivalent between 1993 and 2002. The study will improve understanding of the interaction between climate, landscape processes, and river runoff. The study site extends from the western edge of the Greenland Ice Sheet to Baffin Bay; it covers an area ranging between 10-20 km E-W and 10-15 km N-S, and the elevations reach 700 m. It is a typical high Arctic environment with sparse vegetation and pervasive active patterned ground. Most of the area is covered by glacial drift that resembles the underlying sedimentary and igneous Archean and Proterozoic bedrock. To address how seasonal weather patterns and landscape processes affect runoff and water quality, as well as to examine weathering and carbon budgets in the drainage, we monitor water discharge and suspended load, water temperature, water chemistry (pH, dissolved ions, dissolved organic and inorganic carbon) of three rivers. Two of these rivers originate as melt water runoff from the Greenland Ice Sheet. The third stream is fed by local snowmelt and summer rain events. In addition, climate data along with soil moisture and temperature are recorded with automated stations at two locations. The potential sources of river water are thawing permafrost, local snowmelt, rain, and melting of glacial ice that all have distinct isotopic signatures (δ D and δ 18O). Stable isotopes therefore, are used to separate the hydrograph into these sources to help us relate discharge pattern and water quality to climate (precipitation, temperature) and landscape processes (thawing of permafrost, weathering, decomposition of organic matter). This presentation focuses on first data set collected from June to September 2004.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19427665','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19427665"><span>First-flush loads of perfluorinated compounds in stormwater runoff from Hayabuchi River basin, Japan served by separated sewerage system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zushi, Yasuyuki; Masunaga, Shigeki</p> <p>2009-08-01</p> <p>Worldwide environmental pollution by perfluorinated compounds (PFCs) has been reported. PFCs have also been reported to have nonpoint sources (NPSs). A fixed-point hourly monitoring in the river was conducted during a storm event using an automatic sampler to estimate the impact of the first-flush of PFCs from NPS in this study. Perfluorocarboxylates (PFCAs) and perfluoroalkyl sulfonates (PFASs) with different chain lengths were monitored. The concentrations of short- to medium-chain-length PFCAs such as PFHpA, PFOA and PFNA, and PFASs such as PFBS, PFPeS, PFHxS, PFHpS and PFOS showed no marked increase with the storm-runoff event. However, in contrast to this, concentrations of long-chain-length PFCAs such as PFDA and PFUnA increased markedly. The concentrations of PFDA and PFUnA increased 3.4 (1.5-5.0 ng L(-1))- and 2.0 (3.3-6.7 ng L(-1))-fold, respectively. This study demonstrates that large loads of long-chain-length PFCAs are discharged to the Hayabuchi River during the first-flush after the rain event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC13D1119G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC13D1119G"><span>Rainfall-runoff model for prediction of waterborne viral contamination in a small river catchment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gelati, E.; Dommar, C.; Lowe, R.; Polcher, J.; Rodó, X.</p> <p>2013-12-01</p> <p>We present a lumped rainfall-runoff model aimed at providing useful information for the prediction of waterborne viral contamination in small rivers. Viral contamination of water bodies may occur because of the discharge of sewage effluents and of surface runoff over areas affected by animal waste loads. Surface runoff is caused by precipitation that cannot infiltrate due to its intensity and to antecedent soil water content. It may transport animal feces to adjacent water bodies and cause viral contamination. We model streamflow by separating it into two components: subsurface flow, which is produced by infiltrated precipitation; and surface runoff. The model estimates infiltrated and non-infiltrated precipitation and uses impulse-response functions to compute the corresponding fractions of streamflow. The developed methodologies are applied to the Glafkos river, whose catchment extends for 102 km2 and includes the city of Patra. Streamflow and precipitation observations are available at a daily time resolution. Waterborne virus concentration measurements were performed approximately every second week from the beginning of 2011 to mid 2012. Samples were taken at several locations: in river water upstream of Patras and in the urban area; in sea water at the river outlet and approximately 2 km south-west of Patras; in sewage effluents before and after treatment. The rainfall-runoff model was calibrated and validated using observed streamflow and precipitation data. The model contribution to waterborne viral contamination prediction was benchmarked by analyzing the virus concentration measurements together with the estimated surface runoff values. The presented methodology may be a first step towards the development of waterborne viral contamination alert systems. Predicting viral contamination of water bodies would benefit sectors such as water supply and tourism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20063733','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20063733"><span>[Total pollution features of urban runoff outlet for urban river].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Luo, Hong-Bing; Luo, Lin; Huang, Gu; He, Qiang; Liu, Ping</p> <p>2009-11-01</p> <p>The urban stormwater runoff discharged to urban river, especially to rainfall source river, cannot be ignored. In this study, the Futian River watershed in Shenzhen city in a typical southern city of China is taken as the research object. In order to guide the pollution control for urban river, the eighteen rainfall events were monitored, and the total pollution features of the urban runoff outlet for this urban river were analyzed and discussed by using the process of pollutographs, the identifying to first flush, event mean concentration (EMC), etc. Results show that the concentrations of COD, SS, TN, TP and BOD5 are ten times more than the grade V of the environmental quality standards for surface water during the runoff time; the pollution caused by heavy metals (Cr, Ge, Cu, Hg and As) in runoff at a typical rainfall event is serious; the average and range of pollutant concentration at this runoff outlet in study area are evidently higher than at Shapingba in Chongqing city of China and at Silerwood in Canada, but are lower than at Shilipu in Wuhan city of China. The first flushes of COD, SS, BOD5, especially COD and SS, are evident, but the TN and TP are not. The average EMC of COD, TN, TP and BOD5 are 224.14, 571.15, 5.223, 2.04, 143.5 mg/L, respectively. To some extent, the EMC of COD is about two times of the value of the near cities, Macao and Zhuhai. The EMC of TN and TP are obviously higher than Beijing, Guangzhou and Shanghai. To compared with foreign counties, the EMC of the study area in Shenzhen is obviously much higher than the cities of Korean, USA and Canada. So the total pollution caused by the urban surface runoff in study area is serious and necessary to be treated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3785503','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3785503"><span>Coral Skeletons Provide Historical Evidence of Phosphorus Runoff on the Great Barrier Reef</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mallela, Jennie; Lewis, Stephen E.; Croke, Barry</p> <p>2013-01-01</p> <p>Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca) of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs. PMID:24086606</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25197084','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25197084"><span>Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goulden, Michael L; Bales, Roger C</p> <p>2014-09-30</p> <p>Climate change has the potential to reduce surface-water supply by expanding the activity, density, or coverage of upland vegetation, although the likelihood and severity of this effect are poorly known. We quantified the extent to which vegetation and evapotranspiration (ET) are presently cold-limited in California's upper Kings River basin and used a space-for-time substitution to calculate the sensitivity of riverflow to vegetation expansion. We found that runoff is highly sensitive to vegetation migration; warming projected for 2100 could increase average basin-wide ET by 28% and decrease riverflow by 26%. Kings River basin ET currently peaks at midelevation and declines at higher elevation, creating a cold-limited zone above 2,400 m that is disproportionately important for runoff generation. Climate projections for 2085-2100 indicate as much as 4.1 °C warming in California's Sierra Nevada, which would expand high rates of ET 700-m upslope if vegetation maintains its current correlation with temperature. Moreover, we observed that the relationship between basin-wide ET and temperature is similar across the entire western slope of California's Sierra Nevada, implying that the risk of increasing montane ET with warming is widespread.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33G1785W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33G1785W"><span>How will the future warming climate impact the river discharge in the alpine mountain region of upper Heihe River Basin?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y.; Yang, H.; Yang, D.; Gao, B.; Qin, Y.</p> <p>2017-12-01</p> <p>The Tibetan Plateau is more sensitive to the global climate change than other areas due to its special geography. Previous studies have shown that, besides the changes of temperature and precipitation, the changes in the cryosphere such as glacier and frozen ground also have important and far-reaching effects on the ecological and hydrological processes in the basin. In order to reliably predict the future runoff changing trend in the future, it's important to estimate the responses of cryosphere to the future climate change, as well as its impacts on the hydrological processes. Based on typical future climate scenarios (under emission scenario RCP4.5) from five general circulation models (GCMs) and one regional climate model (RCM), as well as a distributed eco-hydrological model (GBEHM), this study analyzes the possible future climate change (from 2011 to 2060) and its impacts on cryospheric and hydrological processes in upper Heihe River Basin, a typical cold mountain region located in the Northeast Tibetan Plateau. The results suggest that air temperature is expected to rise in the future by approximately 0.32 °C/10a, and precipitation is expected to rise slightly by about 3 mm/10a. Under the rising air temperature, the maximum frozen depth of seasonally frozen ground will decrease by about 4.1 cm/10a and the active layer depth of the frozen ground will increase by about 6.2 cm/10a. The runoff is expected to reduce by approximately 6 mm/10a and the evapotranspiration is expected to increase by approximately 9 mm/10a. These changes in hydrological processes are mainly caused by the air temperature rise. The impacts of air temperature change on the hydrological processes are mainly due to the changes of frozen ground. The thickening of active layer of the frozen ground increases the soil storage capacity, leading to the decrease of runoff and increase of evapotranspiration. Results show that, when the active layer depth increase by 1 cm, the runoff will decrease by about 1 2 mm and the evapotranspiration will increase by about 0.7 2 mm. Additionally, the changes from permafrost to seasonal frozen ground increase the groundwater infiltration, which also leads to the decrease of surface runoff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1981/1005/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1981/1005/report.pdf"><span>Hydrologic reconnaissance of the Noatak River basin, Alaska, 1978</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Childers, Joseph M.; Kernodle, Donald R.</p> <p>1981-01-01</p> <p>Hydrologic data were collected in 1978 described water resources of the Noatak River basin, Alaska. Streamflow varies seasonally. No flow was observed from the upper part of the basin in late winter (April). In the lower part of the basin springs support perennial flow in the Kugururok River and downstream along the Noatak. The discharge of the Noatak was 150 cubic feet per second in April 1978. During the summer, rainstorms are common, and runoff produces high flow. During August 1978, flow was normal in the basin; unit runoff averaged about 1 cubic foot per second per square mile. The Noatak is a gravel-bed stream of moderate slope. It drops about 1,800 feet in elevation from a point near the head waters to the mouth, a distance of 400 miles. Streambed material in most places is gravel, cobbles, and boulders, maximum riffle depths and pool widths increase in a downstream direction. Stream velocity in August 1978 increased from about 1 foot per second in the upper basin to about 4 feet per second in the lower reaches. High-water marks of the maximum evident flood were found at elevations from bankfull to 5 feet above bankfull. Maximum evident flood unit runoff rates were estimated to be less than 50 cubic feet per second per square mile. Scars produced by ice jams were seldom seen above bankfull. Bank erosion appears to be most active in the lowlands. Water in the Noatak River basin is virtually unaffected by man 's activity. Water quality varies with location, weather, season, and source; the water is normally clear, cool, and hard. During late winter sea water intrudes into the Lower Noatak Canyon. Benthic invertebrate community composition and variability suggest the river 's undiminished natural quality. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC43E1106X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC43E1106X"><span>Comparison of the Various Methodologies Used in Studying Runoff and Sediment Load in the Yellow River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, M., III; Liu, X.</p> <p>2017-12-01</p> <p>In the past 60 years, both the runoff and sediment load in the Yellow River Basin showed significant decreasing trends owing to the influences of human activities and climate change. Quantifying the impact of each factor (e.g. precipitation, sediment trapping dams, pasture, terrace, etc.) on the runoff and sediment load is among the key issues to guide the implement of water and soil conservation measures, and to predict the variation trends in the future. Hundreds of methods have been developed for studying the runoff and sediment load in the Yellow River Basin. Generally, these methods can be classified into empirical methods and physical-based models. The empirical methods, including hydrological method, soil and water conservation method, etc., are widely used in the Yellow River management engineering. These methods generally apply the statistical analyses like the regression analysis to build the empirical relationships between the main characteristic variables in a river basin. The elasticity method extensively used in the hydrological research can be classified into empirical method as it is mathematically deduced to be equivalent with the hydrological method. Physical-based models mainly include conceptual models and distributed models. The conceptual models are usually lumped models (e.g. SYMHD model, etc.) and can be regarded as transition of empirical models and distributed models. Seen from the publications that less studies have been conducted applying distributed models than empirical models as the simulation results of runoff and sediment load based on distributed models (e.g. the Digital Yellow Integrated Model, the Geomorphology-Based Hydrological Model, etc.) were usually not so satisfied owing to the intensive human activities in the Yellow River Basin. Therefore, this study primarily summarizes the empirical models applied in the Yellow River Basin and theoretically analyzes the main causes for the significantly different results using different empirical researching methods. Besides, we put forward an assessment frame for the researching methods of the runoff and sediment load variations in the Yellow River Basin from the point of view of inputting data, model structure and result output. And the assessment frame was then applied in the Huangfuchuan River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri024090','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri024090"><span>Rainfall-runoff characteristics and effects of increased urban density on streamflow and infiltration in the eastern part of the San Jacinto River basin, Riverside County, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Guay, Joel R.</p> <p>2002-01-01</p> <p>To better understand the rainfall-runoff characteristics of the eastern part of the San Jacinto River Basin and to estimate the effects of increased urbanization on streamflow, channel infiltration, and land-surface infiltration, a long-term (1950?98) time series of monthly flows in and out of the channels and land surfaces were simulated using the Hydrologic Simulation Program- FORTRAN (HSPF) rainfall-runoff model. Channel and land-surface infiltration includes rainfall or runoff that infiltrates past the zone of evapotranspiration and may become ground-water recharge. The study area encompasses about 256 square miles of the San Jacinto River drainage basin in Riverside County, California. Daily streamflow (for periods with available data between 1950 and 1998), and daily rainfall and evaporation (1950?98) data; monthly reservoir storage data (1961?98); and estimated mean annual reservoir inflow data (for 1974 conditions) were used to calibrate the rainfall-runoff model. Measured and simulated mean annual streamflows for the San Jacinto River near San Jacinto streamflow-gaging station (North-South Fork subbasin) for 1950?91 and 1997?98 were 14,000 and 14,200 acre-feet, respectively, a difference of 1.4 percent. The standard error of the mean for measured and simulated annual streamflow in the North-South Fork subbasin was 3,520 and 3,160 acre-feet, respectively. Measured and simulated mean annual streamflows for the Bautista Creek streamflow-gaging station (Bautista Creek subbasin) for 1950?98 were 980 acre-feet and 991 acre-feet, respectively, a difference of 1.1 percent. The standard error of the mean for measured and simulated annual streamflow in the Bautista Creek subbasin was 299 and 217 acre-feet, respectively. Measured and simulated annual streamflows for the San Jacinto River above State Street near San Jacinto streamflow-gaging station (Poppet subbasin) for 1998 were 23,400 and 23,500 acre-feet, respectively, a difference of 0.4 percent. The simulated mean annual streamflow for the State Street gaging station at the outlet of the study basin and the simulated mean annual basin infiltration (combined infiltration from all the channels and land surfaces) were 8,720 and 41,600 acre-feet, respectively, for water years 1950-98. Simulated annual streamflow at the State Street gaging station ranged from 16.8 acre-feet in water year 1961 to 70,400 acre-feet in water year 1993, and simulated basin infiltration ranged from 2,770 acre-feet in water year 1961 to 149,000 acre-feet in water year 1983.The effects of increased urbanization on the hydrology of the study basin were evaluated by increasing the size of the effective impervious and non-effective impervious urban areas simulated in the calibrated rainfall-runoff model by 50 and 100 percent, respectively. The rainfall-runoff model simulated a long-term time series of monthly flows in and out of the channels and land surfaces using daily rainfall and potential evaporation data for water years 1950?98. Increasing the effective impervious and non-effective impervious urban areas by 100 percent resulted in a 5-percent increase in simulated mean annual streamflow at the State Street gaging station, and a 2.2-percent increase in simulated basin infiltration. Results of a frequency analysis of the simulated annual streamflow at the State Street gaging station showed that when effective impervious and non-effective impervious areas were increased 100 percent, simulated annual streamflow increased about 100 percent for low-flow conditions and was unchanged for high-flow conditions. The simulated increase in streamflow at the State Street gaging station potentially could infiltrate along the stream channel further downstream, outside of the model area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816447R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816447R"><span>Using isotope, hydrochemical methods and energy-balance modelling to estimate contribution of different components to flow forming process in a high-altitude catchment (Dzhancuat river basin case study)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rets, Ekaterina; Loshakova, Nadezhda; Chizhova, Julia; Kireeva, Maria; Frolova, Natalia; Tokarev, Igor; Budantseva, Nadine; Vasilchuk, Yurij</p> <p>2016-04-01</p> <p>A multicomponent structure of sources of river runoff formation is characteristic of high-altitude territories: ice and firn melting; seasonal snow melting on glacier covered and non-glacier area of a watershed; liquid precipitation; underground waters. In addition, each of these components can run off the watershed surface in different ways. Use of isotopic, hydrochemical methods and energy balance modelling provides possibility to estimate contribution of different components to river runoff that is an essential to understand the mechanism of flow formation in mountainious areas. A study was carried out for Dzhancuat river basin that was chosen as representative for North Caucasus in course of the International Hydrological Decade. Complex glaciological, hydrological and meteorological observation have been carried in the basin since 1965. In years 2013-2015 the program also included daily collecting of water samples on natural stable isotopes on the Dzhancuat river gauging station, and sampling water nourishment sources (ice, snow, firn, liquid precipitation) within the study area. More then 800 water samples were collected. Application of an energy balance model of snow and ice melt with distributed parameters provided an opportunity to identify Dzhancuat river runoff respond to glaciers melt regime and seasonal redistribution of melt water. The diurnal amplitude of oscillation of the Dzhakuat river runoff in the days without precipitation is formed by melting at almost snow-free areas of the Dzhancuat glacier tongues. Snowmelt water from the non-glacierized part contributes to the formation of the next day runoff. A wave of snow and firn melt in upper zones of glacier flattens considerably during filtration through snow and run-off over the surface and in the body of the glacier. This determines a general significant inertia of the Dzhacuat river runoff. Some part of melt water is stored into natural regulating reservoirs of the watershed that supply the Dzhancuat river flow during the winter period. Due to complexity of water flow nourishment structure in alpine conditions a solution of ion and d18O balance equation was carried out for seasons, when it is possible to neglect some of the components in order to reach a needed amount of variables. A substantial excess of d18O content in spring snow and liquid precipitation over winter snow, ice and firn allowed to distinguish these components in the Dzhancuat river runoff in June and August. Unlike d18O mineralization is a nonconservative characteristic, it can show how the water ran down the watershed: over a glacier surface and then through stream channels or over a non-glacier surface, filtrating through comminuted surficial deposits. A solution of conductivity balance equation provide possibility to identify a base flow component in the Dzhancuat river runoff in August and to separate an on-glacier snow melt component from snow melt on non-glacier part of the watershed. The study was supported by the Russian Foundation for Basic Research (Project № 16-35-60042), Russian Scientific fund (Project № 14-17-00766, 14-27-00083)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17587188','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17587188"><span>Quality characterization and impact assessment of highway runoff in urban and rural area of Guangzhou, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gan, Huayang; Zhuo, Muning; Li, Dingqiang; Zhou, Yongzhang</p> <p>2008-05-01</p> <p>Accurate knowledge of the quality and environmental impact of the highway runoff in Pear River Delta, South China is required to assess this important non-point pollution source. This paper presents the quality characterization and environmental impact assessment of rainfall runoff from highways in urban and rural area of Guangzhou, the largest city of Pear River Delta over 1 year's investigation. Multiple regression and Pearson correlation analysis were used to determine influence of the rainfall characteristics on water quality and correlations among the constituents in highway runoff. The results and analysis indicates that the runoff water is nearly neutral with low biodegradability. Oil and grease (O&G), suspended solids (SS) and heavy metals are the dominant pollutants in contrast to the low level of nutrient constituents in runoff. Quality of highway runoff at rural site is better than that of at urban site for most constituents. Depth and antecedent dry period are the main rainfall factors influencing quality of highway runoff. The correlation patterns among constituents in highway runoff at urban site are consistent with their dominant phases in water. Strong correlations (r > or = 0.80) are found among chemical oxygen demand (COD), total phosphorus, Cu and Zn as well as conductivity, nitrate nitrogen and total nitrogen. O&G, COD, SS and Pb in highway runoff at urban site substantially exceed their concentrations in receiving water of Pear River. The soil directly discharged by highway runoff at rural site has contaminated seriously by heavy metals in surface layer accompanying with pH conversion from original acidic to alkaline at present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007HESS...11.1175K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007HESS...11.1175K"><span>Hydrological impacts of climate change on the Tejo and Guadiana Rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kilsby, C. G.; Tellier, S. S.; Fowler, H. J.; Howels, T. R.</p> <p>2007-05-01</p> <p>A distributed daily rainfall runoff model is applied to the Tejo and Guadiana river basins in Spain and Portugal to simulate the effects of climate change on runoff production, river flows and water resource availability with results aggregated to the monthly level. The model is calibrated, validated and then used for a series of climate change impact assessments for the period 2070 2100. Future scenarios are derived from the HadRM3H regional climate model (RCM) using two techniques: firstly a bias-corrected RCM output, with monthly mean correction factors calculated from observed rainfall records; and, secondly, a circulation-pattern-based stochastic rainfall model. Major reductions in rainfall and streamflow are projected throughout the year; these results differ from those for previous studies where winter increases are projected. Despite uncertainties in the representation of heavily managed river systems, the projected impacts are serious and pose major threats to the maintenance of bipartite water treaties between Spain and Portugal and the supply of water to urban and rural regions of Portugal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2012/5213/sir2012-5213.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2012/5213/sir2012-5213.pdf"><span>Simulation of daily streamflows at gaged and ungaged locations within the Cedar River Basin, Iowa, using a Precipitation-Runoff Modeling System model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Christiansen, Daniel E.</p> <p>2012-01-01</p> <p>The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted a study to examine techniques for estimation of daily streamflows using hydrological models and statistical methods. This report focuses on the use of a hydrologic model, the U.S. Geological Survey's Precipitation-Runoff Modeling System, to estimate daily streamflows at gaged and ungaged locations. The Precipitation-Runoff Modeling System is a modular, physically based, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff and general basin hydrology. The Cedar River Basin was selected to construct a Precipitation-Runoff Modeling System model that simulates the period from January 1, 2000, to December 31, 2010. The calibration period was from January 1, 2000, to December 31, 2004, and the validation periods were from January 1, 2005, to December 31, 2010 and January 1, 2000 to December 31, 2010. A Geographic Information System tool was used to delineate the Cedar River Basin and subbasins for the Precipitation-Runoff Modeling System model and to derive parameters based on the physical geographical features. Calibration of the Precipitation-Runoff Modeling System model was completed using a U.S. Geological Survey calibration software tool. The main objective of the calibration was to match the daily streamflow simulated by the Precipitation-Runoff Modeling System model with streamflow measured at U.S. Geological Survey streamflow gages. The Cedar River Basin daily streamflow model performed with a Nash-Sutcliffe efficiency ranged from 0.82 to 0.33 during the calibration period, and a Nash-Sutcliffe efficiency ranged from 0.77 to -0.04 during the validation period. The Cedar River Basin model is meeting the criteria of greater than 0.50 Nash-Sutcliffe and is a good fit for streamflow conditions for the calibration period at all but one location, Austin, Minnesota. The Precipitation-Runoff Modeling System model accurately simulated streamflow at four of six uncalibrated sites within the basin. Overall, there was good agreement between simulated and measured seasonal and annual volumes throughout the basin for calibration and validation sites. The calibration period ranged from 0.2 to 20.8 percent difference, and the validation period ranged from 0.0 to 19.5 percent difference across all seasons and total annual runoff. The Precipitation-Runoff Modeling System model tended to underestimate lower streamflows compared to the observed streamflow values. This is an indication that the Precipitation-Runoff Modeling model needs more detailed groundwater and storage information to properly model the low-flow conditions in the Cedar River Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GPC...162..120X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GPC...162..120X"><span>Projection of future runoff change using climate elasticity method derived from Budyko framework in major basins across China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xing, Wanqiu; Wang, Weiguang; Zou, Shan; Deng, Chao</p> <p>2018-03-01</p> <p>This study established a climate elasticity method based on Budyko hypothesis and enhanced it by selecting the most effective Budyko-type formula to strengthen the runoff change prediction reliability. The spatiotemporal variations in hydrologic variables (i.e., runoff, precipitation and potential evaporation) during historical period were revealed first and the climate elasticities of runoff were investigated. The proposed climate elasticity method was also applied to project the spatiotemporal variations in future runoff and its key influencing factors in 35 watersheds across China. Wherein, the future climate series were retrieved by consulting the historical series, informed by four global climate models (GCMs) under representative concentration pathways from phase five of the Coupled Model Intercomparison Project. Wang-Tang equation was selected as the optimal Budyko-type equation for its best ability in reproducing the runoff change (with a coefficient of determination and mean absolute error of 0.998 and 1.36 mm, respectively). Observed runoff presents significant decreasing trends in the northern and increasing trends in the southern regions of China, and generally its change is identified to be more sensitive to climatic variables in Hai River Basin and lower Yellow River Basin. Compared to the runoff during the reference period, positive change rates in the north and negative change rates in the south of China in the mid-21st century can be practically generalized from the majority of GCMs projections. This maybe resulted from the increasing precipitation, especially in parts of northern basins. Meanwhile, GCMs project a consistently upward trend in potential evaporation although significant decreasing trends occur in the majority of catchments for the historical period. The results indicate that climate change will possibly bring some changes to the water resources over China in the mid-21st century and some countermeasures of water resources planning and management should be taken.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H41B1021R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H41B1021R"><span>Reducing runoff and nutrient loss from agricultural land in the Lower Mississippi River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reba, M. L.; Bouldin, J.; Teague, T.; Choate, J.</p> <p>2011-12-01</p> <p>The Lower Mississippi River Basin (LMRB) yields suspended sediment, total phosphorus, total nitrogen and silicate that are disproportionately high for the area. In addition, groundwater pumping of the alluvial aquifer has been deemed unsustainable under current practices. Much of the LMRB is used for large-scale agricultural production of primarily cotton, soybeans and rice. The incorporation of conservation practices may improve nutrient use efficiency and reduce runoff from agricultural fields. Three paired fields have been instrumented at the edge-of-field to quantify nutrients and runoff. The fields are located in northeastern Arkansas in the Little River Ditches and St. Francis watersheds. Nutrient use efficiency will be gained by utilizing variable rate fertilizer application technology. Reduced runoff will be gained through improved irrigation management. This study quantifies the runoff and nutrient loss from the first year of a 5-year study and will serve as a baseline for a comparative study of conservation practices employed on the paired fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19178284','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19178284"><span>Runoff and leaching of metolachlor from Mississippi River alluvial soil during seasons of average and below-average rainfall.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Southwick, Lloyd M; Appelboom, Timothy W; Fouss, James L</p> <p>2009-02-25</p> <p>The movement of the herbicide metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] via runoff and leaching from 0.21 ha plots planted to corn on Mississippi River alluvial soil (Commerce silt loam) was measured for a 6-year period, 1995-2000. The first three years received normal rainfall (30 year average); the second three years experienced reduced rainfall. The 4-month periods prior to application plus the following 4 months after application were characterized by 1039 +/- 148 mm of rainfall for 1995-1997 and by 674 +/- 108 mm for 1998-2000. During the normal rainfall years 216 +/- 150 mm of runoff occurred during the study seasons (4 months following herbicide application), accompanied by 76.9 +/- 38.9 mm of leachate. For the low-rainfall years these amounts were 16.2 +/- 18.2 mm of runoff (92% less than the normal years) and 45.1 +/- 25.5 mm of leachate (41% less than the normal seasons). Runoff of metolachlor during the normal-rainfall seasons was 4.5-6.1% of application, whereas leaching was 0.10-0.18%. For the below-normal periods, these losses were 0.07-0.37% of application in runoff and 0.22-0.27% in leachate. When averages over the three normal and the three less-than-normal seasons were taken, a 35% reduction in rainfall was characterized by a 97% reduction in runoff loss and a 71% increase in leachate loss of metolachlor on a percent of application basis. The data indicate an increase in preferential flow in the leaching movement of metolachlor from the surface soil layer during the reduced rainfall periods. Even with increased preferential flow through the soil during the below-average rainfall seasons, leachate loss (percent of application) of the herbicide remained below 0.3%. Compared to the average rainfall seasons of 1995-1997, the below-normal seasons of 1998-2000 were characterized by a 79% reduction in total runoff and leachate flow and by a 93% reduction in corresponding metolachlor movement via these routes. An added observation in the study was that neither runoff of rainfall nor runoff loss of metolachlor was influenced by the presence of subsurface drains, compared to the results from plots without such drains that were described in an earlier paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29133837','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29133837"><span>Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yuanyuan; Zhang, Yongqiang; Chiew, Francis H S; McVicar, Tim R; Zhang, Lu; Li, Hongxia; Qin, Guanghua</p> <p>2017-11-13</p> <p>As the "Asian Water Tower", the Tibetan Plateau (TP) provides water resources for more than 1.4 billion people, but suffers from climatic and environmental changes, followed by the changes in water balance components. We used state-of-the-art satellite-based products to estimate spatial and temporal variations and trends in annual precipitation, evapotranspiration and total water storage change across eastern TP, which were then used to reconstruct an annual runoff variability series for 2003-2014. The basin-scale reconstructed streamflow variability matched well with gauge observations for five large rivers. Annual runoff increased strongly in dry part because of increases in precipitation, but decreased in wet part because of decreases in precipitation, aggravated by noticeable increases in evapotranspiration in the north of wet part. Although precipitation primarily governed temporal-spatial pattern of runoff, total water storage change contributed greatly to runoff variation in regions with wide-spread permanent snow/ice or permafrost. Our study indicates that the contrasting runoff trends between the dry and wet parts of eastern TP requires a change in water security strategy, and attention should be paid to the negative water resources impacts detected for southwestern part which has undergone vast glacier retreat and decreasing precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JHyd..391..157L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JHyd..391..157L"><span>Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin</p> <p>2010-09-01</p> <p>SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged shallow aquifer through canal seepage. The water flowing out of the canal system accounted for approximately 32% of the water in the CIDS canals. The storage capacity of the CIDS canals is negatively correlated to the precipitation. In years with abundant precipitation, the volume of the surface runoff and drainage from the cropland may surpass the storage capacities of the CIDS canals, while in years with less precipitation, partial storage capacity of the CIDS canal may be occupied by the diversion water from the Yellow River. Proper maintenance of the storage capacity of the CIDS has the potential in improving the efficiency of reusing the surface runoff and field drainage for irrigation practices to mitigate the increasing water shortage along the lower Yellow River.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26631398','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26631398"><span>Rainfall-induced nutrient losses from manure-fertilized farmland in an alluvial plain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yiyao; Li, Huaizheng; Xu, Zuxin</p> <p>2016-01-01</p> <p>Nutrient transport and loss in farmlands are affected by factors such as land cover, fertilization, soil type, rainfall, and management practices. We investigated the temporal and spatial changes in macronutrient transport and loss after fertilization and precipitation in manure-fertilized eggplant farmland in an alluvial plain. Upon adding topical fertilizer, concentrations of most nutrients in runoff and groundwater increased, and nitrogen runoff increased from 22.11 to 35.81 kg/ha, although eggplant yield did not increase correspondingly. Incorporation of fertilizer by plowing reduced nutrient losses (nitrogen runoff/fertilizer decreased from 18.40 to 12.29 %). Measurements taken along the nutrient transport route (runoff, drainage ditch, groundwater, river water, and finally rainfall) revealed that concentrations of most nutrients declined at each stage. Nutrient characteristics varied by transport, and the forms of nitrogen and phosphorus differed greatly between runoff and groundwater (nitrate/nitrogen in runoff was ~43.49 %, while in groundwater ~5.41 %). Most nutrient concentrations in runoff decreased greatly during the planting season (total nitrogen decreased from 62.25 to 4.17 mg/L), correlated positively with temperature and stage of plant growth, but little temporal change was observed in groundwater. This field investigation during one planting season exemplifies the basic principles of nutrient loss and transport from manure-fertilized farmland in an alluvial plain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70171525','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70171525"><span>Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ogden, Fred L.; Crouch, Trey D.; Stallard, Robert F.; Hall, Jefferson S.</p> <p>2013-01-01</p> <p>A paired catchment methodology was used with more than 3 years of data to test whether forests increase base flow in the dry season, despite reduced annual runoff caused by evapotranspiration (the “sponge-effect hypothesis”), and whether forests reduce maximum runoff rates and totals during storms. The three study catchments were: a 142.3 ha old secondary forest, a 175.6 ha mosaic of mixed age forest, pasture, and subsistence agriculture, and a 35.9 ha actively grazed pasture subcatchment of the mosaic catchment. The two larger catchments are adjacent, with similar morphology, soils, underlying geology, and rainfall. Annual water balances, peak runoff rates, runoff efficiencies, and dry season recessions show significant differences. Dry season runoff from the forested catchment receded more slowly than from the mosaic and pasture catchments. The runoff rate from the forest catchment was 1–50% greater than that from the similarly sized mosaic catchment at the end of the dry season. This observation supports the sponge-effect hypothesis. The pasture and mosaic catchment median runoff efficiencies were 2.7 and 1.8 times that of the forest catchment, respectively, and increased with total storm rainfall. Peak runoff rates from the pasture and mosaic catchments were 1.7 and 1.4 times those of the forest catchment, respectively. The forest catchment produced 35% less total runoff and smaller peak runoff rates during the flood of record in the Panama Canal Watershed. Flood peak reduction and increased streamflows through dry periods are important benefits relevant to watershed management, payment for ecosystem services, water-quality management, reservoir sedimentation, and fresh water security in the Panama Canal watershed and similar tropical landscapes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26274970','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26274970"><span>Seasonal-Spatial Distribution and Long-Term Variation of Transparency in Xin'anjiang Reservoir: Implications for Reservoir Management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Zhixu; Zhang, Yunlin; Zhou, Yongqiang; Liu, Mingliang; Shi, Kun; Yu, Zuoming</p> <p>2015-08-12</p> <p>Water transparency is a useful indicator of water quality or productivity and is widely used to detect long-term changes in the water quality and eutrophication of lake ecosystems. Based on short-term spatial observations in the spring, summer, and winter and on long-term site-specific observation from 1988 to 2013, the spatial, seasonal, long-term variations, and the factors affecting transparency are presented for Xin'anjiang Reservoir (China). Spatially, transparency was high in the open water but low in the bays and the inflowing river mouths, reflecting the effect of river runoff. The seasonal effects were distinct, with lower values in the summer than in the winter, most likely due to river runoff and phytoplankton biomass increases. The transparency decreased significantly with a linear slope of 0.079 m/year, indicating a 2.05 m decrease and a marked decrease in water quality. A marked increase occurred in chlorophyll a (Chla) concentration, and a significant correlation was found between the transparency and Chla concentration, indicating that phytoplankton biomass can partially explain the long-term trend of transparency in Xin'anjiang Reservoir. The river input and phytoplankton biomass increase were associated with soil erosion and nutrient loss in the catchment. Our study will support future management of water quality in Xin'anjiang Reservoir.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2576Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2576Z"><span>Are human activities induced runoff change overestimated?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Danwu; Cong, Zhentao</p> <p>2017-04-01</p> <p>In the context of climate change, not only does the amount of annual precipitation and potential evapotranspiration alter, but also do the seasonal characteristics of climate, such as intra-annual distribution of water and energy. Yet, the runoff change induced by the change in seasonality of climatic forces is seldom evaluated, which is usually thought as the results of human activity, leading to contaminative runoff change attribution results. The past 50-year climatology seasonality was investigated by analyzing the daily meteorological records of 743 national weather stations across the China. Obvious spatial pattern of climatology seasonality emerged in China. The trend analysis indicated that there is decrease in precipitation seasonality, leaving other seasonal characteristics, such as peak time of climate forcing unchanged. With the aid of stochastic soil moisture model, water-energy balance models which take the effects of climate seasonality into consideration are developed. Efforts are made to achieve a better understanding of mean annual runoff change due to the climate change. As a representative of hydrologic responses, the contributions of variations in climate, especially in precipitation seasonality, and land use to runoff change of 282 catchments in China were evaluated. The results showed that the decline of precipitation seasonality has a significant influence on runoff change in the Yellow River, Haihe River and Liaohe River. Meanwhile, it also indicated that the contribution of land use change to runoff change is overestimated by the common runoff change attribution methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1188886-projected-changes-mean-interannual-variability-surface-water-over-continental-china','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1188886-projected-changes-mean-interannual-variability-surface-water-over-continental-china"><span>Projected Changes in Mean and Interannual Variability of Surface Water over Continental China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Leng, Guoyong; Tang, Qiuhong; Huang, Maoyi</p> <p></p> <p>Five General Circulation Model (GCM) climate projections under the RCP8.5 emission scenario were used to drive the Variable Infiltration Capacity (VIC) hydrologic model to investigate the impacts of climate change on hydrologic cycle over continental China in the 21st century. The bias-corrected climatic variables were generated for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). Results showed much larger fractional changes of annual mean Evaportranspiration (ET) per unit warming than the corresponding fractional changes of Precipitation (P) per unit warming across the country especially for South China,more » which led to notable decrease of surface water variability (P-E). Specifically, negative trends for annual mean runoff up to -0.33%/decade and soil moisture trends varying between -0.02 to -0.13%/decade were found for most river basins across China. Coincidentally, interannual variability for both runoff and soil moisture exhibited significant positive trends for almost all river basins across China, implying an increase in extremes relative to the mean conditions. Noticeably, the largest positive trends for runoff variability and soil moisture variability, which were up to 38 0.41%/decade and 0.90%/decade, both occurred in Southwest China. In addition to the regional contrast, intra-seasonal variation was also large for the runoff mean and runoff variability changes, but small for the soil moisture mean and variability changes. Our results suggest that future climate change could further exacerbate existing water-related risks (e.g. floods and droughts) across China as indicated by the marked decrease of surface water amounts combined with steady increase of interannual variability throughout the 21st century. This study highlights the regional contrast and intra-seasonal variations for the projected hydrologic changes and could provide muti-scale guidance for assessing effective adaptation strategies for the country on a river basin, regional, or as whole.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2006/5213/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2006/5213/"><span>A Precipitation-Runoff Model for the Blackstone River Basin, Massachusetts and Rhode Island</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barbaro, Jeffrey R.; Zarriello, Phillip J.</p> <p>2007-01-01</p> <p>A Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model of the Blackstone River Basin was developed and calibrated to study the effects of changing land- and water-use patterns on water resources. The 474.5 mi2 Blackstone River Basin in southeastern Massachusetts and northern Rhode Island is experiencing rapid population and commercial growth throughout much of its area. This growth and the corresponding changes in land-use patterns are increasing stress on water resources and raising concerns about the future availability of water to meet residential and commercial needs. Increased withdrawals and wastewater-return flows also could adversely affect aquatic habitat, water quality, and the recreational value of the streams in the basin. The Blackstone River Basin was represented by 19 hydrologic response units (HRUs): 17 types of pervious areas (PERLNDs) established from combinations of surficial geology, land-use categories, and the distribution of public water and public sewer systems, and two types of impervious areas (IMPLNDs). Wetlands were combined with open water and simulated as stream reaches that receive runoff from surrounding pervious and impervious areas. This approach was taken to achieve greater flexibility in calibrating evapotranspiration losses from wetlands during the growing season. The basin was segmented into 50 reaches (RCHRES) to represent junctions at tributaries, major lakes and reservoirs, and drainage areas to streamflow-gaging stations. Climatological, streamflow, water-withdrawal, and wastewater-return data were collected during the study to develop the HSPF model. Climatological data collected at Worcester Regional Airport in Worcester, Massachusetts and T.F. Green Airport in Warwick, Rhode Island, were used for model calibration. A total of 15 streamflow-gaging stations were used in the calibration. Streamflow was measured at eight continuous-record streamflow-gaging stations that are part of the U.S. Geological Survey cooperative streamflow-gaging network, and at seven partial-record stations installed in 2004 for this study. Because the model-calibration period preceded data collection at the partial-record stations, a continuous streamflow record was estimated at these stations by correlation with flows at nearby continuous-record stations to provide additional streamflow data for model calibration. Water-use information was compiled for 1996-2001 and included municipal and commercial/industrial withdrawals, private residential withdrawals, golf-course withdrawals, municipal wastewater-return flows, and on-site septic effluent return flows. Streamflow depletion was computed for all time-varying ground-water withdrawals prior to simulation. Water-use data were included in the model to represent the net effect of water use on simulated hydrographs. Consequently, the calibrated values of the hydrologic parameters better represent the hydrologic response of the basin to precipitation. The model was calibrated for 1997-2001 to coincide with the land-use and water-use data compiled for the study. Four long-term stations (Nipmuc River near Harrisville, Rhode Island; Quinsigamond River at North Grafton, Massachusetts; Branch River at Forestdale, Rhode Island; and Blackstone River at Woonsocket, Rhode Island) that monitor flow at 3.3, 5.4, 19, and 88 percent of the total basin area, respectively, provided the primary model-calibration points. Hydrographs, scatter plots, and flow-duration curves of observed and simulated discharges, along with various model-fit statistics, indicated that the model performed well over a range of hydrologic conditions. For example, the total runoff volume for the calibration period simulated at the Nipmuc River near Harrisville, Rhode Island; Quinsigamond River at North Grafton, Massachusetts; Branch River at Forestdale, Rhode Island; and Blackstone River at Woonsocket, Rhode Island streamflow-gaging stations differed from the observed runoff v</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15854735','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15854735"><span>Forecasting land use change and its environmental impact at a watershed scale.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tang, Z; Engel, B A; Pijanowski, B C; Lim, K J</p> <p>2005-07-01</p> <p>Urban expansion is a major driving force altering local and regional hydrology and increasing non-point source (NPS) pollution. To explore these environmental consequences of urbanization, land use change was forecast, and long-term runoff and NPS pollution were assessed in the Muskegon River watershed, located on the eastern coast of Lake Michigan. A land use change model, LTM, and a web-based environmental impact model, L-THIA, were used in this study. The outcomes indicated the watershed would likely be subjected to impacts from urbanization on runoff and some types of NPS pollution. Urbanization will slightly or considerably increase runoff volume, depending on the development rate, slightly increase nutrient losses in runoff, but significantly increase losses of oil and grease and certain heavy metals in runoff. The spatial variation of urbanization and its impact were also evaluated at the subwatershed scale and showed subwatersheds along the coast of the lake and close to cities would have runoff and nitrogen impact. The results of this study have significant implications for urban planning and decision making in an effort to protect and remediate water and habitat quality of Muskegon Lake, which is one of Lake Michigan's Areas of Concern (AOC), and the techniques described here can be used in other areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26595402','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26595402"><span>Impact of phosphate mining and separation of mined materials on the hydrology and water environment of the Huangbai River basin, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Kang; Lin, Zhongbing; Zhang, Renduo</p> <p>2016-02-01</p> <p>The objective of this study was to investigate the influence of large-scale phosphate mining (PM) on hydrology and water quality in the Huangbai River basin, China. Rainfall and runoff data were used to analyze hydrological changes of the basin before (from 1978 to 2002) and during (from 2003 to 2014) the PM period. From 2009 to 2014, flow rate and concentrations of ammonia nitrogen (NH4(+)), nitrate (NO3(-)), fluoride (F(-)), suspended solids (SS), total nitrogen (TN), soluble phosphorus (SP), and total phosphorus (TP) were measured at the outfalls of PM as well as at outlets of sub-basins with and without PM practices. Results showed that the PM activities generally reduced runoff (i.e., the runoff coefficient and runoff peak). The sequential Mann Kendall test revealed a decrease trend of runoff during wet seasons after 2008 in the PM regions. For a mining scale of one unit of PM productivity (i.e., 10(8)kg phosphate ore per year or 2.74×10(5) kg d(-1)), TN, SS, and TP of 0.633, 1.46 to 5.22, and 0.218 to 0.554 kg d(-1) were generated, respectively. The NH4(+) and TN loads in the sub-basins with PM were significantly higher than these in the sub-basins without PM; however, the NH4(+) and TN loads that discharged into rivers from the background non-point sources discharged were less in the sub-basins with PM than those without PM. The result was attributed to the reduction of runoff volume by PM. The annual mean concentrations of TN in reservoir water increased with the scales of PM, whereas the mean concentrations of SP were low. Nevertheless, the SP concentrations in the reservoirs greatly increased after 2012, mainly related to the dissolution of apatite in the sediment. The information from this study should improve the understanding of changes in hydrology and water quality in regions with large-scale PM. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H31D1443L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H31D1443L"><span>Hydrological Responses of Climate and Land Use/Cover Changes in Tao'er River Basin Based on the SWAT Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, J.; Kou, L.</p> <p>2015-12-01</p> <p>Abstract: The changes of both climate and land use/cover have some impact on the water resources. For Tao'er River Basin, these changes have a direct impact on the land use pattern adjustment, wetland protection, connection project between rivers and reservoirs, local social and economic development, etc. Therefore, studying the impact of climate and land use/cover changes is of great practical significance. The Soil and Water Assessment Tool (SWAT) is used as the research method. With historical actual measured runoff data and the yearly land use classification caught by satellite remote sensing maps, analyze the impact of climate change on the runoff of Tao'er River. And according to the land use/cover classification of 1990, 2000 and 2010, analyze the land use/cover change in the recent 30 years, the impact of the land use/cover change on the river runoff and the contribution coefficient of farmland, woodland, grassland and other major land-use types to the runoff. These studies can provide some references to the rational allocation of water resource and adjustment of land use structure in this area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1411184M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1411184M"><span>Hydrodynamic behaviour of crusted soils in the Sahel: a possible cause for runoff increase?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malam Abdou, M.; Vandervaere, J.-P.; Bouzou Moussa, I.; Descroix, L.</p> <p>2012-04-01</p> <p>Crusted soils are in extension in the Sahel. As rainfall has decreased over the past decades (it is now increasing again in the central Sahel) and no significant change was observed in rainfall intensity and in its time and space distribution, it is supposed that land use management is the main cause for crusts cover increase. Fallow shortening, lack of manure, and land overexploitation (wood harvesting, overgrazing) are frequently cited as main factors of soil degradation. Based on field measurements in some small catchments of Western Niger, the hydrodynamics behaviour of the newly crusted soils of this area is described, mostly constituted by erosion crusts. A strong fall in soil saturated conductivity and in the active porosity as well as a rise in bulk density all lead to a quick onset of runoff production. Results are shown from field experiments in sedimentary and basement areas leading to similar conclusions. In both contexts, runoff plot production was measured at the rain event scale from 10-m2 parcels as well as at the catchment outlet. Soil saturated conductivity was reduced by one order of magnitude when crusting occurs, leading to a sharp runoff coefficient increase, from 4% in a weeded millet field and 10% in an old fallow to more than 60% in a erosion-crusted topsoil at the plot scale. At the experimental catchment scale, runoff coefficient has doubled in less than 20 years. In pure Sahelian basins, this resulted in endorheism breaching, and in a widespread river discharge increase. For some right bank tributaries of the Niger River, discharge is three times higher now than before the drought years, in spite of the remaining rainfall deficit. On the other hand, a general increase in flooding hazard frequency is observed in the whole Sahelian stripe. The role of surface crusts in the Sahel is discussed leading to the implementation of new experiments in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1015514-effect-spatial-heterogeneity-runoff-generation-mechanisms-scaling-behavior-event-runoff-responses-natural-river-basin','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1015514-effect-spatial-heterogeneity-runoff-generation-mechanisms-scaling-behavior-event-runoff-responses-natural-river-basin"><span>Effect of Spatial Heterogeneity of Runoff Generation Mechanisms on the Scaling Behavior of Event Runoff Responses in a Natural River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, Hongyi; Sivapalan, Murugesu</p> <p>2011-05-26</p> <p>This paper investigates the effects of spatial heterogeneity of runoff generation processes on the scaling behavior of event runoff responses in a natural catchment, the Illinois River Basin near Tahlequah in Oklahoma. A previous study in this basin had revealed a systematic spatial trend in the relative dominance of different runoff generation mechanisms, with the fraction of total runoff generation due to the subsurface stormflow mechanism shown to increase in the downstream direction, while surface runoff generation by saturation excess showed a corresponding decrease. These trends were attributable to corresponding systematic trends in landscape properties, namely, saturated hydraulic conductivity ofmore » soils and topographic slope. Considering the differences in the timing of hillslope responses between the different runoff generation mechanisms, this paper then explores their impacts on the runoff routing responses, including how they change with increasing spatial scale. For this purpose we utilize a distributed, physically based hydrological model, with a fully hydraulic stream network routing component. The model is used to generate instantaneous response functions (IRF) for nested catchments of a range of sizes along the river network, as well as quantitative measures of their shape, e.g., peak and time-to-peak. In order to decipher and separate the effects of landscape heterogeneity from those due to basin geomorphology and hydrologic regime, the model simulations are carried out for three hypothetical cases that make assumptions about regarding landscape properties (uniform, a systematic trend, and heterogeneity plus the trend), repeating these simulations under wet and dry antecedent conditions. The simulations produced expected (consistent with previous theoretical studies) and also somewhat surprising results. For example, the power-law relationship between peak of the IRF and drainage area is shown to be flatter under wet conditions than under dry conditions, even though the (faster) saturation excess mechanism is more dominant under wet conditions. This result appears to be caused by partial area runoff generation: under wet conditions, the fraction of saturation area is about 30%, while under dry conditions it is less than 10% for the same input of rainfall. This means travel times associated with overland flow (that mostly contributes to the peak and time to peak) are in fact longer under wet conditions than during dry conditions. The power-law relationship between peak and drainage area also exhibits a scaling break at around 1000 km2, and this can be shown to be related to the peculiar shape of the catchment, which is reflected in a corresponding scaling break in the mainstream length versus drainage area relationship (i.e., Hack’s Law) at about 1,000 km2.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ECSS..132...34A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ECSS..132...34A"><span>Environmental variation and macrofauna response in a coastal area influenced by land runoff</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akoumianaki, Ioanna; Papaspyrou, Sokratis; Kormas, Konstantinos Ar.; Nicolaidou, Artemis</p> <p>2013-11-01</p> <p>Macrofauna community interactions with environmental variables in the water column (salinity, temperature, turbidity, transparency, suspended particulate matter, particulate organic matter, choloroplastic pigments) and in the sediment (granulometric variables, organic carbon and pigments) were investigated in a coastal area with high land runoff due to riverine and temporary stream discharges (Greece, Aegean Sea, Maliakos Gulf). Samples were taken along a distance-depositional gradient from the river mouth to the open sea at eight stations, at times of different precipitation regime from August 2000 to May 2001. The physical variables, such as transparency and median grain size, generally increased seawards, and parallelled the depositional gradient as opposed to measures of food inputs and hydrodynamic regime. High environmental heterogeneity was observed during peak precipitation. The total number of species increased seawards and from August (122 species) to May (170 species). Maximum abundance also increased from August (4953 m-2) to May (10,220 individuals m-2), irrespective of distance from river mouth. Species belonging to different functional groups, as to recolonization, feeding, motility and substrate preferences, coexisted at all times indicating high functional diversity. Non-parametric multivariate regression showed that at times of low, rising and falling precipitation 78-81% of community variation was explained by environmental variables, indicating that macrofauna distribution and species composition respond to food inputs and sediment characteristics. During peak land runoff the community-environment relationship weakened (57% of the variability explained). The diversity of functional traits of the most abundant species indicates that the macrofauna community can absorb the impact of increased turbidity, sedimentation and current-driven dispersion. The study offers baseline information for the integrated coastal zone management in microtidal areas with high land runoff under Mediterranean-type climate conditions. During peak land runoff the community-environment relationship weakened (57% of the variability explained) whilst species distribution ranges increased. The study shows that the functional diversity in the study area prior to high discharge period enable macrofauna community to absorb the impact of increased turbidity, sedimentation and current-driven dispersion. The study offers baseline information for the impact of high land runoff in microtidal areas under Mediterranean-type climate conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915891M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915891M"><span>Estimation of reservoir inflow in data scarce region by using Sacramento rainfall runoff model - A case study for Sittaung River Basin, Myanmar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Myo Lin, Nay; Rutten, Martine</p> <p>2017-04-01</p> <p>The Sittaung River is one of four major rivers in Myanmar. This river basin is developing fast and facing problems with flood, sedimentation, river bank erosion and salt intrusion. At present, more than 20 numbers of reservoirs have already been constructed for multiple purposes such as irrigation, domestic water supply, hydro-power generation, and flood control. The rainfall runoff models are required for the operational management of this reservoir system. In this study, the river basin is divided into (64) sub-catchments and the Sacramento Soil Moisture Accounting (SAC-SMA) models are developed by using satellite rainfall and Geographic Information System (GIS) data. The SAC-SMA model has sixteen calibration parameters, and also uses a unit hydrograph for surface flow routing. The Sobek software package is used for SAC-SMA modelling and simulation of river system. The models are calibrated and tested by using observed discharge and water level data. The statistical results show that the model is applicable to use for data scarce region. Keywords: Sacramento, Sobek, rainfall runoff, reservoir</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037473','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037473"><span>Using chloride and other ions to trace sewage and road salt in the Illinois Waterway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kelly, W.R.; Panno, S.V.; Hackley, Keith C.; Hwang, H.-H.; Martinsek, A.T.; Markus, M.</p> <p>2010-01-01</p> <p>Chloride concentrations in waterways of northern USA are increasing at alarming rates and road salt is commonly assumed to be the cause. However, there are additional sources of Cl- in metropolitan areas, such as treated wastewater (TWW) and water conditioning salts, which may be contributing to Cl- loads entering surface waters. In this study, the potential sources of Cl- and Cl- loads in the Illinois River Basin from the Chicago area to the Illinois River's confluence with the Mississippi River were investigated using halide data in stream samples and published Cl- and river discharge data. The investigation showed that road salt runoff and TWW from the Chicago region dominate Cl- loads in the Illinois Waterway, defined as the navigable sections of the Illinois River and two major tributaries in the Chicago region. Treated wastewater discharges at a relatively constant rate throughout the year and is the primary source of Cl- and other elements such as F- and B. Chloride loads are highest in the winter and early spring as a result of road salt runoff which can increase Cl- concentrations by up to several hundred mg/L. Chloride concentrations decrease downstream in the Illinois Waterway due to dilution, but are always elevated relative to tributaries downriver from Chicago. The TWW component is especially noticeable downstream under low discharge conditions during summer and early autumn when surface drainage is at a minimum and agricultural drain tiles are not flowing. Increases in population, urban and residential areas, and roadways in the Chicago area have caused an increase in the flux of Cl- from both road salt and TWW. Chloride concentrations have been increasing in the Illinois Waterway since around 1960 at a rate of about 1 mg/L/a. The increase is largest in the winter months due to road salt runoff. Shallow groundwater Cl- concentrations are also increasing, potentially producing higher base flow concentrations. Projected increases in population and urbanization over the next several decades suggest that the trend of increasing Cl- concentrations and loads will continue. Given the susceptibility of aquatic ecosystems to increasing Cl- concentrations, especially short-term spikes following snow melts, deleterious effects on riverine ecosystems would be expected. ?? 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.5195V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.5195V"><span>Impact of raized bogs on export of carbon and river water chemical composition in Western Siberia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voistinova, Elena</p> <p>2010-05-01</p> <p>Bogs play an important role in functioning of the biosphere. Specific geochemical environment of the bogs results in formation of the special biogeochemical cycle of the elements. Processes of decay and transformation of organic material define the reductive conditions of bog water, form and migratory mobility of the chemical elements. Particular interest in recent years is aroused by the question of content and dynamics of the carbon in bog and river water according to indicated natural and climatic changes on the territory. The most important parts of the carbon balance in bog ecosystems together with processes of exhalation from deposit surface in the form of CO2 is its export with river water. The results of research carried out in scientific station "Vasyugansky" in south taiga subzone of Western Siberia showed that chemical composition of raised bog water includes high amounts of total iron (2,13 mg/l), ammonium ions (5,33 mg/l), humic and fulvic acids (5,21 mg/l and 45,8 mg/l), dissolved organic carbon (69,1 mg/l), COD (236,93 mgO/l), there are low mineralization and indicators of pH. Carbon comes in bog water in organic compounds: carboxylic acids, phenols, aromatic and paraffin hydrocarbons, organic phosphates, phthalates and other compounds. Formation of river waters composition in the Western Siberia takes place in the following context: high level of bogged river catchments (sometimes up to 70%), excess humidification and low heat provision. Basing on the results of study of hydrochemical runoff in small and medium rivers with different levels of bogged in river catchments (Chaya, Bakchar, Klyuch, Gavrilovka) it was noted that raised bog influence on river waters chemical composition shows in ion runoff decrease, organic substances runoff increase, increase of amounts of total iron, ammonium irons and water pH indicators decrease. Study of humic matters migration is very important in the context of formation of flexible complexes of humic and fulvic acids and heavy metals, which should be taken into account when in waterlogged regions constructing large industrial projects and in formation of water removing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21..183Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21..183Y"><span>Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, Jing; He, Fan; Jiu Xiong, Yu; Qiu, Guo Yu</p> <p>2017-01-01</p> <p>Water resources, which are considerably affected by land use/land cover (LULC) and climate changes, are a key limiting factor in highly vulnerable ecosystems in arid and semi-arid regions. The impacts of LULC and climate changes on water resources must be assessed in these areas. However, conflicting results regarding the effects of LULC and climate changes on runoff have been reported in relatively large basins, such as the Jinghe River basin (JRB), which is a typical catchment (> 45 000 km2) located in a semi-humid and arid transition zone on the central Loess Plateau, northwest China. In this study, we focused on quantifying both the combined and isolated impacts of LULC and climate changes on surface runoff. We hypothesized that under climatic warming and drying conditions, LULC changes, which are primarily caused by intensive human activities such as the Grain for Green Program, will considerably alter runoff in the JRB. The Soil and Water Assessment Tool (SWAT) was adopted to perform simulations. The simulated results indicated that although runoff increased very little between the 1970s and the 2000s due to the combined effects of LULC and climate changes, LULC and climate changes affected surface runoff differently in each decade, e.g., runoff increased with increased precipitation between the 1970s and the 1980s (precipitation contributed to 88 % of the runoff increase). Thereafter, runoff decreased and was increasingly influenced by LULC changes, which contributed to 44 % of the runoff changes between the 1980s and 1990s and 71 % of the runoff changes between the 1990s and 2000s. Our findings revealed that large-scale LULC under the Grain for Green Program has had an important effect on the hydrological cycle since the late 1990s. Additionally, the conflicting findings regarding the effects of LULC and climate changes on runoff in relatively large basins are likely caused by uncertainties in hydrological simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2017/5067/sir20175067.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2017/5067/sir20175067.pdf"><span>Temporal changes in nitrogen and phosphorus concentrations with comparisons to conservation practices and agricultural activities in the Lower Grand River, Missouri and Iowa, and selected watersheds, 1969–2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Krempa, Heather M.; Flickinger, Allison K.</p> <p>2017-08-01</p> <p>This report presents the results of a cooperative study by the U.S. Geological Survey and Missouri Department of Natural Resources to estimate total nitrogen (TN) and total phosphorus (TP) concentrations at monitoring sites within and near the Lower Grand River hydrological unit. The primary objectives of the study were to quantify temporal changes in TN and TP concentrations and compare those concentrations to conservation practices and agricultural activities. Despite increases in funding during 2011–15 for conservation practices in the Lower Grand River from the Mississippi River Basin Healthy Watersheds Initiative, decreases in flow-normalized TN and TP concentrations during this time at the long-term Grand River site were less than at other long-term sites, which did not receive funding from the Mississippi River Basin Healthy Watersheds Initiative. The relative differences in the magnitude of flow-normalized TN and TP concentrations among long-term sites are directly related to the amount of agricultural land use within the watershed. Significant relations were determined between nitrogen from cattle manure and flow-normalized TN concentrations at selected long-term sites, indicating livestock manure may be a substantial source of nitrogen within the selected long-term site watersheds. Relations between flow-normalized TN and TP concentrations with Conservation Reserve Program acres and with nitrogen and phosphorus from commercial fertilizer indicate that changes in these factors alone did not have a substantial effect on stream TN and TP concentrations; other landscape activities, runoff, within-bank nutrients that are suspended during higher streamflows, or a combination of these have had a greater effect on stream TN and TP concentrations; or there is a lag time that is obscuring relations. Temporal changes in flow-adjusted TN and TP concentrations were not substantial at Lower Grand River Mississippi River Basin Healthy Watersheds Initiative sites, indicating factors besides stream variability did not have substantial effects on TN and TP concentrations. Flow-weighted TN and TP concentrations at Lower Grand River Mississippi River Basin Healthy Watershed Initiative sites increase with increasing streamflow, which indicates runoff, within-bank nutrients that are suspended during higher streamflows, or both, have more effect on stream TN and TP concentrations than consistent point sources or groundwater sources. Timing of TN and TP concentration increases compared to streamflow increases indicate that nitrogen and phosphorus loads are more strongly related to streamflow than to a particular period of the year, indicating that runoff, within-bank nutrients that are suspended during higher streamflows, or both are a substantial source of nutrients regardless of timing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/sir20045300/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/sir20045300/"><span>Analysis and mapping of post-fire hydrologic hazards for the 2002 Hayman, Coal Seam, and Missionary Ridge wildfires, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Elliott, J.G.; Smith, M.E.; Friedel, M.J.; Stevens, M.R.; Bossong, C.R.; Litke, D.W.; Parker, R.S.; Costello, C.; Wagner, J.; Char, S.J.; Bauer, M.A.; Wilds, S.R.</p> <p>2005-01-01</p> <p>Wildfires caused extreme changes in the hydrologic, hydraulic, and geomorphologic characteristics of many Colorado drainage basins in the summer of 2002. Detailed assessments were made of the short-term effects of three wildfires on burned and adjacent unburned parts of drainage basins. These were the Hayman, Coal Seam, and Missionary Ridge wildfires. Longer term runoff characteristics that reflect post-fire drainage basin recovery expected to develop over a period of several years also were analyzed for two affected stream reaches: the South Platte River between Deckers and Trumbull, and Mitchell Creek in Glenwood Springs. The 10-, 50-, 100-, and 500-year flood-plain boundaries and water-surface profiles were computed in a detailed hydraulic study of the Deckers-to-Trumbull reach. The Hayman wildfire burned approximately 138,000 acres (216 square miles) in granitic terrain near Denver, and the predominant potential hazard in this area is flooding by sediment-laden water along the large tributaries to and the main stem of the South Platte River. The Coal Seam wildfire burned approximately 12,200 acres (19.1 square miles) near Glenwood Springs, and the Missionary Ridge wildfire burned approximately 70,500 acres (110 square miles) near Durango, both in areas underlain by marine shales where the predominant potential hazard is debris-flow inundation of low-lying areas. Hydrographs and peak discharges for pre-burn and post-burn scenarios were computed for each drainage basin and tributary subbasin by using rainfall-runoff models because streamflow data for most tributary subbasins were not available. An objective rainfall-runoff model calibration method based on nonlinear regression and referred to as the ?objective calibration method? was developed and applied to rainfall-runoff models for three burned areas. The HEC-1 rainfall-runoff model was used to simulate the pre-burn rainfall-runoff processes in response to the 100-year storm, and HEC-HMS was used for runoff hydrograph generation. Post-burn rainfall-runoff parameters were determined by adjusting the runoff-curve numbers on the basis of a weighting procedure derived from the U.S. Soil Conservation Service (now the National Resources Conservation Service) equation for precipitation excess and the effect of burn severity. This weighting procedure was determined to be more appropriate than simple area weighting because of the potentially marked effect of even small burned areas on the runoff hydrograph in individual drainage basins. Computed water-peak discharges from HEC-HMS models were increased volumetrically to account for increased sediment concentrations that are expected as a result of accelerated erosion after burning. Peak discharge estimates for potential floods in the South Platte River were increased by a factor that assumed a volumetric sediment concentration (Cv) of 20 percent. Flood hydrographs for the South Platte River and Mitchell Creek were routed down main-stem channels using watershed-routing algorithms included in the HEC-HMS rainfall-runoff model. In areas subject to debris flows in the Coal Seam and Missionary Ridge burned areas, debris-flow discharges were simulated by 100-year rainfall events, and the inflow hydrographs at tributary mouths were simulated by using the objective calibration method. Sediment concentrations (Cv) used in debris-flow simulations were varied through the event, and were initial Cv 20 percent, mean Cv approximately 31 percent, maximum Cv 48 percent, Cv 43 percent at the time of the water hydrograph peak, and Cv 20 percent for the duration of the event. The FLO-2D flood- and debris-flow routing model was used to delineate the area of unconfined debris-flow inundation on selected alluvial fan and valley floor areas. A method was developed to objectively determine the post-fire recovery period for the Hayman and Coal Seam burned areas using runoff-curve numbers (RCN) for all drainage basins for a 50-year period. A</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA108909','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA108909"><span>Chena River Lakes Project Revegetation Study. Three-Year Summary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-10-01</p> <p>30 Sludge and runoff -water composition ................ ............ 32 Cost analysis....................................... ......... 34...willow treatments ..... 53 Appendix F: Grass growth on Tanana Levee treatments ........ 55 Appendix G: Chemical analysis of sludge and runoff water...31 17. Contents of sludge and runoff water, 1978 ............ ..... 34 IP. Contents of sludge and runoff water. 1979</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.H33F1066S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.H33F1066S"><span>Discharge-nitrate data clustering for characterizing surface-subsurface flow interaction and calibration of a hydrologic model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shrestha, R. R.; Rode, M.</p> <p>2008-12-01</p> <p>Concentration of reactive chemicals has different chemical signatures in baseflow and surface runoff. Previous studies on nitrate export from a catchment indicate that the transport processes are driven by subsurface flow. Therefore nitrate signature can be used for understanding the event and pre-event contributions to streamflow and surface-subsurface flow interactions. The study uses flow and nitrate concentration time series data for understanding the relationship between these two variables. Unsupervised artificial neural network based learning method called self organizing map is used for the identification of clusters in the datasets. Based on the cluster results, five different pattern in the datasets are identified which correspond to (i) baseflow, (ii) subsurface flow increase, (iii) surface runoff increase, (iv) surface runoff recession, and (v) subsurface flow decrease regions. The cluster results in combination with a hydrologic model are used for discharge separation. For this purpose, a multi-objective optimization tool NSGA-II is used, where violation of cluster results is used as one of the objective functions. The results show that the use of cluster results as supplementary information for the calibration of a hydrologic model gives a plausible simulation of subsurface flow as well total runoff at the catchment outlet. The study is undertaken using data from the Weida catchment in the North-Eastern Germany, which is a sub-catchment of the Weisse Elster river in the Elbe river basin.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2015/5129/sir20155129.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2015/5129/sir20155129.pdf"><span>Simulation of daily streamflow for nine river basins in eastern Iowa using the Precipitation-Runoff Modeling System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haj, Adel E.; Christiansen, Daniel E.; Hutchinson, Kasey J.</p> <p>2015-10-14</p> <p>The accuracy of Precipitation-Runoff Modeling System model streamflow estimates of nine river basins in eastern Iowa as compared to measured values at U.S. Geological Survey streamflow-gaging stations varied. The Precipitation-Runoff Modeling System models of nine river basins in eastern Iowa were satisfactory at estimating daily streamflow at 57 of the 79 calibration sites and 13 of the 14 validation sites based on statistical results. Unsatisfactory performance can be contributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) the availability and accuracy of meteorological input data. The Precipitation- Runoff Modeling System models of nine river basins in eastern Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PIAHS.379..231W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PIAHS.379..231W"><span>Response of streamflow to climate change in a sub-basin of the source region of the Yellow River based on a tank model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Pan; Wang, Xu-Sheng; Liang, Sihai</p> <p>2018-06-01</p> <p>Though extensive researches were conducted in the source region of the Yellow River (SRYR) to analyse climate change influence on streamflow, however, few researches concentrate on streamflow of the sub-basin above the Huangheyan station in the SRYR (HSRYR) where a water retaining dam was built in the outlet in 1999. To improve the reservoir regulation strategies, this study analysed streamflow change of the HSRYR in a mesoscale. A tank model (TM) was proposed and calibrated with monthly observation streamflow from 1991 to 1998. In the validation period, though there is a simulation deviation during the water storage and power generation period, simulated streamflow agrees favourably with observation data from 2008 to 2013. The model was further validated by two inside lakes area obtained from Landsat 5, 7, 8 datasets from 2000 to 2014, and significant correlations were found between the simulated lake outlet runoff and respective lake area. Then 21 Global Climate Models (GCM) ensembled data of three emission scenarios (SRA2, SRA1B and SRB1) were downscaled and used as input to the TM to simulate the runoff change of three benchmark periods 2011-2030 (2020s), 2046-2065 (2050s), 2080-2099 (2090s), respectively. Though temperature increase dramatically, these projected results similarly indicated that streamflow shows an increase trend in the long term. Runoff increase is mainly caused by increasing precipitation and decreasing evaporation. Water resources distribution is projected to change from summer-autumn dominant to autumn winter dominant. Annual lowest runoff will occur in May caused by earlier snow melting and increasing evaporation in March. According to the obtained results, winter runoff should be artificially stored by reservoir regulation in the future to prevent zero-flow occurrent in May. This research is helpful for water resources management and provides a better understand of streamflow change caused by climate change in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=289358','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=289358"><span>Impacts of urbanization on river flow frequency: A controlled experimental modeling-based evaluation approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Changes in land use are likely to cause a non-linear response in watershed hydrology. Specifically, small increases in urban expansion may greatly increase surface runoff while decreasing infiltration, impacting aquifer recharge and changing streamflow regimes. Quantifying the effects of urbanizatio...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1999/4197/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1999/4197/report.pdf"><span>Hydrogeologic investigations of the Sierra Vista subwatershed of the Upper San Pedro Basin, Cochise County, southeast Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pool, Donald R.; Coes, Alissa L.</p> <p>1999-01-01</p> <p>The hydrogeologic system in the Sierra Vista subwatershed of the Upper San Pedro Basin in southeastern Arizona was investigated for the purpose of developing a better understanding of stream-aquifer interactions. The San Pedro River is an intermittent stream that supports a narrow corridor of riparian vegetation. Withdrawal of ground water will result in reduced discharge from the basin through reduced base flow and evapotranspiration; however, the rate and location of reduced discharge are uncertain. The investigation resulted in better definition of distributions of silt and clay in the regional aquifer; changes in seasonal precipitation, runoff, and base flow in the San Pedro River; sources of base flow; and regional water-level changes. Regional ground-water flow is separated into deep-confined and shallow-unconfined systems by silt and clay. Precipitation, runoff, and base flow declined at the Charleston streamflow-gaging station from 1936 through 1997 for the months of June through October. Base flow at the Charleston station during 1996 and 1997 was primarily supplied by ground water recharged near the San Pedro River during recent major runoff and by minor contributions from the regional aquifer. The decline in base flow, about 2 cubic feet per second, has several probable causes including declining runoff and recharge near the river during June through October and increased interception of ground-water flow to the river by wells and phreatophytes. Water levels in wells throughout the regional aquifer generally declined at rates of 0.2 to 0.5 feet per year between 1940 and the mid-1980's, which corresponded with a period of below-average winter precipitation. Water levels in wells in the Fort Huachuca and Sierra Vista areas declined at rates that were faster than regional rates of decline through 1998 and caused diversion of ground-water flow that would have discharged along perennial stream reaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1410327S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1410327S"><span>Performance of a coupled lagged ensemble weather and river runoff prediction model system for the Alpine Ammer River catchment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smiatek, G.; Kunstmann, H.; Werhahn, J.</p> <p>2012-04-01</p> <p>The Ammer River catchment located in the Bavarian Ammergau Alps and alpine forelands, Germany, represents with elevations reaching 2185 m and annual mean precipitation between1100 and 2000 mm a very demanding test ground for a river runoff prediction system. Large flooding events in 1999 and 2005 motivated the development of a physically based prediction tool in this area. Such a tool is the coupled high resolution numerical weather and river runoff forecasting system AM-POE that is being studied in several configurations in various experiments starting from the year 2005. Corner stones of the coupled system are the hydrological water balance model WaSiM-ETH run at 100 m grid resolution, the numerical weather prediction model (NWP) MM5 driven at 3.5 km grid cell resolution and the Perl Object Environment (POE) framework. POE implements the input data download from various sources, the input data provision via SOAP based WEB services as well as the runs of the hydrology model both with observed and with NWP predicted meteorology input. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. Results obtained in the years 2005-2011 reveal that river runoff simulations depict high correlation with observed runoff when driven with monitored observations in hindcast experiments. The ability to runoff forecasts is depending on lead times in the lagged ensemble prediction and shows still limitations resulting from errors in timing and total amount of the predicted precipitation in the complex mountainous area. The presentation describes the system implementation, and demonstrates the application of the POE framework in networking, distributed computing and in the setup of various experiments as well as long term results of the system application in the years 2005 - 2011.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1211528G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1211528G"><span>River runoff estimates based on remotely sensed surface velocities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grünler, Steffen; Stammer, Detlef; Romeiser, Roland</p> <p>2010-05-01</p> <p>One promising technique for river runoff estimates from space is the retrieval of surface currents on the basis of synthetic aperture radar along-track interferometry (ATI). The German satellite TerraSAR-X, which was launched in June 2007, will permit ATI measurements in an experimental mode. Based on numerical simulations, we present findings of a research project in which the potential of satellite measurements of various parameters with different temporal and spatial sampling characteristics is evaluated. A sampling strategy for river runoff estimates is developed. We address the achievable accuracy and limitations of such estimates for different local flow conditions at selected test site. High-resolution three-dimensional current fields in the Elbe river (Germany) from a numerical model are used as reference data set and input for simulations of a variety of possible measuring and data interpretation strategies to be evaluated. Addressing the problem of aliasing we removed tidal signals from the sampling data. Discharge estimates on the basis of measured surface current fields and river widths from TerraSAR-X are successfully simulated. The differences of the resulted net discharge estimate are between 30-55% for a required continuously observation period of one year. We discuss the applicability of the measuring strategies to a number of major rivers. Further we show results of runoff estimates by the retrieval of surface current fields by real TerraSAR-X ATI data (AS mode) for the Elbe river study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9438P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9438P"><span>Hydrological modelling in sandstone rocks watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ponížilová, Iva; Unucka, Jan</p> <p>2015-04-01</p> <p>The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of this extreme event. The increase of the baseflow runoff is slower and remains constant after reaching a certain level. The rise of the baseflow runoff is showed in a descending part of the hydrograph. The recession method in this case shows almost 20 hours delay. Results from the HEC-HMS prove availability of both methods for the runoff modeling in this type of catchment. When simulating extreme short-term rainfall-runoff episodes, the influence of geological subsurface is not significant, but it is manifested. Using more relevant rainfall events would bring more satisfactory results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H53F1775X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H53F1775X"><span>Exploring the causes of Colorado River streamflow declines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, M.; Lettenmaier, D. P.; Udall, B. H.</p> <p>2016-12-01</p> <p>As the major river of the Southwestern U.S., the Colorado River (CR) is central to the region's water resources. Over the period 1916-2014, the river's naturalized Apr-Sep flow at Lee's Ferry declined by 18.4%, a number that is closely matched (19.8%) by reconstructions for the same period using the Variable Infiltration Capacity (VIC) hydrology model. However, basin-average annual precipitation over that period declined by only 4.4%. In order to examine the causes of the runoff declines, we performed experiments with the VIC model in which we detrended the model's temperature forcings (about 1.6°C over the 100-year record) for each of 24 sub-basins that make up the basin. We find that decreases in winter precipitation (the season that controls annual runoff) mostly occured in the northeast part of the basin while summer precipitation decreases (which have much less effect on annual runoff) occurred over much of the lower basin. Our model simulations suggest that about 2/3 of observed runoff declines are attributable to decreases in winter precipitation (most importantly, in the upper basin, where most of the basin's runoff is generated). The remaining 1/3 is attributable to warming temperatures. We also examine what appear to be changing characteristics of droughts in the basin. Compared with a prolonged drought in the 1960s, which was characterized by abnormally low precipitation and cool temperatures, temperatures during the ongoing millennial drought have been much warmer, but winter precipitation anomalies have been only slightly negative. During the 2000s drought, the basin-wide runoff anomaly has been about -3.8 km3/yr, with four sub-basins in the northeastern part of the basin accounting for about 2/3 of the annual runoff anomaly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PCE....32.1058D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PCE....32.1058D"><span>A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Winnaar, G.; Jewitt, G. P. W.; Horan, M.</p> <p></p> <p>Water scarce countries such as South Africa are subject to various hydrological constraints which can often be attributed to poor rainfall partitioning, particularly within resource poor farming communities that are reliant on rainfed agriculture. Recent initiatives to address this have shifted focus to explore more efficient alternatives to water supply and the recognition of numerous opportunities to implement runoff harvesting as a means to supplement water availability. However, increasing the implementation of runoff harvesting, without encountering unintended impacts on downstream hydrological and ecological systems, requires better understanding of the hydrologic and environmental impacts at catchment scale. In this paper the representation of spatial variations in landscape characteristics such as soil, land use, rainfall and slope information is shown to be an important step in identifying potential runoff harvesting sites, after which modelling the hydrological response in catchments where extensive runoff harvesting is being considered can be performed and likely impacts assessed. Geographic information systems (GIS) was utilised as an integrating tool to store, analyse and manage spatial information and when linked to hydrological response models, provided a rational means to facilitate decision making by providing catchment level identification, planning and assessment of runoff harvesting sites as illustrated by a case study at the Potshini catchment, a small sub-catchment in the Thukela River basin, South Africa. Through the linked GIS, potential runoff harvesting sites are identified relative to areas that concentrate runoff and where the stored water will be appropriately distributed. Based on GIS analysis it was found that 17% percent of the Potshini catchment area has a high potential for generating surface runoff, whereas an analysis of all factors which influence the location of such systems, shows that 18% is highly suitable for runoff harvesting. Details of the spatially explicit method that was adopted in this paper are provided and output from the integrated GIS modelling system is presented using suitability maps. It is concluded that providing an accurate spatial representation of the runoff generation potential within a catchment is an important step in developing a strategic runoff harvesting plan for any catchment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012WRR....4812508J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012WRR....4812508J"><span>Role of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeelani, G.; Feddema, Johannes J.; van der Veen, Cornelis J.; Stearns, Leigh</p> <p>2012-12-01</p> <p>Snowmelt and icemelt are believed to be important regulators of seasonal discharge of Himalayan rivers. To analyze the long term contribution of snowmelt and glacier/icemelt to river hydrology we apply a water budget model to simulate hydrology of the Liddar watershed in the western Himalaya, India for the 20th century (1901-2010) and future IPCC A1B climate change scenario. Long term (1901-2010) temperature and precipitation data in this region show a warming trend (0.08°C yr-1) and an increase in precipitation (0.28 mm yr-1), with a significant variability in seasonal trends. In particular, winter months have undergone the most warming, along with a decrease in precipitation rates; precipitation has increased throughout the spring. These trends have accelerated the melting and rapid disappearance of snow, causing a seasonal redistribution in the availability of water. Our model results show that about 60% of the annual runoff of the Liddar watershed is contributed from the snowmelt, while only 2% is contributed from glacier ice. The climate trend observed from the 1901 to 2010 time period and its impact on the availability of water will become significantly worse under the IPCC climate change scenarios. Our results suggest that there is a significant shift in the timing and quantity of water runoff in this region of the Himalayas due to snow distribution and melt. With greatly increased spring runoff and its reductions in summer potentially leading to reduced water availability for irrigation agriculture in summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013E%26ES...16a2076J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013E%26ES...16a2076J"><span>Output improvement of Sg. Piah run-off river hydro-electric station with a new computed river flow-based control system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jidin, Razali; Othman, Bahari</p> <p>2013-06-01</p> <p>The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2011/3125/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2011/3125/"><span>Watershed scale response to climate change--Feather River Basin, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Koczot, Kathryn M.; Markstrom, Steven L.; Hay, Lauren E.</p> <p>2012-01-01</p> <p>Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Feather River Basin, California.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2011/3124/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2011/3124/"><span>Watershed scale response to climate change--South Fork Flathead River Basin, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chase, Katherine J.; Hay, Lauren E.; Markstrom, Steven L.</p> <p>2012-01-01</p> <p>Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the South Fork Flathead River Basin, Montana.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2011/3122/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2011/3122/"><span>Watershed scale response to climate change--Pomperaug River Watershed, Connecticut</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bjerklie, David M.; Hay, Lauren E.; Markstrom, Steven L.</p> <p>2012-01-01</p> <p>Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Pomperaug River Basin at Southbury, Connecticut.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2011/3120/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2011/3120/"><span>Watershed scale response to climate change--Sprague River Basin, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Risley, John; Hay, Lauren E.; Markstrom, Steven L.</p> <p>2012-01-01</p> <p>Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Sprague River Basin near Chiloquin, Oregon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2011/3126/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2011/3126/"><span>Watershed scale response to climate change--East River Basin, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Battaglin, William A.; Hay, Lauren E.; Markstrom, Steven L.</p> <p>2012-01-01</p> <p>Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the East River Basin, Colorado.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2011/3116/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2011/3116/"><span>Watershed scale response to climate change--Flint River Basin, Georgia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hay, Lauren E.; Markstrom, Steven L.</p> <p>2012-01-01</p> <p>Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Flint River Basin at Montezuma, Georgia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021522','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021522"><span>Are shifts in herbicide use reflected in concentration changes in Midwestern rivers?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Battaglin, W.A.; Goolsby, D.A.</p> <p>1999-01-01</p> <p>In many Midwestern rivers, elevated concentrations of herbicides occur during runoff events for 1-3 months following application. The highest or 'peak' herbicide concentration often occurs during one of these runoff events. Herbicide concentrations in rivers are affected by a number of factors, including herbicide use patterns within the associated basin. Changing agricultural practices, reductions in recommended and permitted herbicide applications, shifts to new herbicides, and greater environmental awareness in the agricultural community have resulted in changes to herbicide use patterns. In the Midwestern United States, alachlor use was much larger in 1989 than in 1995, while acetochlor was not used in 1989, and commonly used in 1995. Use of atrazine, cyanazine, and metolachlor was about the same in 1989 and 1995. Herbicide concentrations were measured in samples from 53 Midwestern rivers during the first major runoff event that occurred after herbicide application (postapplication) in 1989, 1990, 1994, and 1995. The median concentrations of atrazine, alachlor, cyanazine, metribuzin, metolachlor, propazine, and simazine all were significantly higher in 1989/90 than in 1994/95. The median acetochlor concentration was higher in 1995 than in 1994. Estimated daily yields for all herbicides and degradation products measured, with the exception of acetochlor, were higher in 1989/90 than in 1994/95. The differences in concentration and yield do not always parallel changes in herbicide use, suggesting that other changes in herbicide or crop management are affecting concentrations in Midwestern rivers during runoff events.In many Midwestern rivers, elevated concentrations of herbicides occur during runoff events for 1-3 months following application. The highest or `peak' herbicide concentration often occurs during one of these runoff events. Herbicide concentrations in rivers are affected by a number of factors, including herbicide use patterns within the associated basin. Changing agricultural practices, reductions in recommended and permitted herbicide applications, shifts to new herbicides, and greater environmental awareness in the agricultural community have resulted in changes to herbicide use patterns. In the Midwestern United States, alachlor use was much larger in 1989 than in 1995, while acetochlor was not used in 1989, and commonly used in 1995. Use of atrazine, cyanazine, and metolachlor was about the same in 1989 and 1995. Herbicide concentrations were measured in samples from 53 Midwestern rivers during the first major runoff event that occurred after herbicide application (postapplication) in 1989, 1990, 1994, and 1995. The median concentrations of atrazine, alachlor, cyanazine, metribuzin, metolachlor, propazine, and simazine all were significantly higher in 1989/90 than in 1994/95. The median acetochlor concentration was higher in 1995 than in 1994. Estimated daily yields for all herbicides and degradation products measured, with the exception of acetochlor, were higher in 1989/90 than in 1994/95. The differences in concentration and yield do not always parallel changes in herbicide use, suggesting that other changes in herbicide or crop management are affecting concentrations in Midwestern rivers during runoff events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193041','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193041"><span>Comparative use of side and main channels by small-bodied fish in a large, unimpounded river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reinhold, Ann Marie; Bramblett, Robert G.; Zale, Alexander V.; Roberts, David W.; Poole, Geoffrey C.</p> <p>2016-01-01</p> <p>Ecological theory and field studies suggest that lateral floodplain connectivity and habitat heterogeneity provided by side channels impart favourable habitat conditions for lotic fishes, especially fluvial fishes dependent on large patches of shallow, slow velocity habitats for some portion of their life cycle. However, anthropogenic modification of large, temperate floodplain rivers has led to extensive channel simplification and side-channel loss. Highly modified rivers consist of simplified channels in contracted, less dynamic floodplains.Most research examining the seasonal importance of side channels for fish assemblages in large rivers has been carried out in heavily modified rivers, where side-channel extents are substantially reduced from pre-settlement times, and has often overlooked small-bodied fishes. Inferences about the ecological importance of side channels for small-bodied fishes in large rivers can be ascertained only from investigations of large rivers with largely intact floodplains. The Yellowstone River, our study area, is a rare example of one such river.We targeted small-bodied fishes and compared their habitat use in side and main channels in two geomorphically distinct types of river bends during early and late snowmelt runoff, and autumn base flow. Species compositions of side and main channels differed throughout hydroperiods concurrent with the seasonal redistribution of the availability of shallow, slow current-velocity habitats. More species of fish used side channels than main channels during runoff. Additionally, catch rates of small fishes were generally greater in side channels than in main channels and quantitative assemblage compositions differed between channel types during runoff, but not during base flow. Presence of and access to diverse habitats facilitated the development and persistence of diverse fish assemblages in our study area.Physical dissimilarities between side and main channels may have differentially structured the side- and main-channel fish assemblages during runoff. Patches of shallow, slow current-velocity (SSCV) habitats in side channels were larger and had slightly slower water velocities than SSCV habitat patches in main channels during runoff, but not during base flow.Our findings establish a baseline importance of side channels to riverine fishes in a large, temperate river without heavy anthropogenic modification. Establishing this baseline contributes to basic fluvial ecology and provides empirical justification for restoration efforts that reconnect large rivers with their floodplains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940038873&hterms=atmospheric+rivers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Datmospheric%2Brivers','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940038873&hterms=atmospheric+rivers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Datmospheric%2Brivers"><span>Continental-scale river flow in climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, James R.; Russell, Gary L.; Caliri, Guilherme</p> <p>1994-01-01</p> <p>The hydrologic cycle is a major part of the global climate system. There is an atmospheric flux of water from the ocean surface to the continents. The cycle is closed by return flow in rivers. In this paper a river routing model is developed to use with grid box climate models for the whole earth. The routing model needs an algorithm for the river mass flow and a river direction file, which has been compiled for 4 deg x 5 deg and 2 deg x 2.5 deg resolutions. River basins are defined by the direction files. The river flow leaving each grid box depends on river and lake mass, downstream distance, and an effective flow speed that depends on topography. As input the routing model uses monthly land source runoff from a 5-yr simulation of the NASA/GISS atmospheric climate model (Hansen et al.). The land source runoff from the 4 deg x 5 deg resolution model is quartered onto a 2 deg x 2.5 deg grid, and the effect of grid resolution is examined. Monthly flow at the mouth of the world's major rivers is compared with observations, and a global error function for river flow is used to evaluate the routing model and its sensitivity to physical parameters. Three basinwide parameters are introduced: the river length weighted by source runoff, the turnover rate, and the basinwide speed. Although the values of these parameters depend on the resolution at which the rivers are defined, the values should converge as the grid resolution becomes finer. When the routing scheme described here is coupled with a climate model's source runoff, it provides the basis for closing the hydrologic cycle in coupled atmosphere-ocean models by realistically allowing water to return to the ocean at the correct location and with the proper magnitude and timing.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatGe..10..859O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatGe..10..859O"><span>Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Overeem, I.; Hudson, B. D.; Syvitski, J. P. M.; Mikkelsen, A. B.; Hasholt, B.; van den Broeke, M. R.; Noël, B. P. Y.; Morlighem, M.</p> <p>2017-11-01</p> <p>Limited measurements along Greenland's remote coastline hamper quantification of the sediment and associated nutrients draining the Greenland ice sheet, despite the potential influence of river-transported suspended sediment on phytoplankton blooms and carbon sequestration. Here we calibrate satellite imagery to estimate suspended sediment concentration for 160 proglacial rivers across Greenland. Combining these suspended sediment reconstructions with numerical calculations of meltwater runoff, we quantify the amount and spatial pattern of sediment export from the ice sheet. We find that, although runoff from Greenland represents only 1.1% of the Earth's freshwater flux, the Greenland ice sheet produces approximately 8% of the modern fluvial export of suspended sediment to the global ocean. Sediment loads are highly variable between rivers, consistent with observed differences in ice dynamics and thus with control by glacial erosion. Rivers that originate from deeply incised, fast-moving glacial tongues form distinct sediment-export hotspots: just 15% of Greenland's rivers transport 80% of the total sediment load of the ice sheet. We conclude that future acceleration of melt and ice sheet flow may increase sediment delivery from Greenland to its fjords and the nearby ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=230088','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=230088"><span>Runoff and Leaching of Metolachlor from Mississippi River Alluvial Soil during Seasons of Average and Below-Average Rainfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The movement of metolachlor via runoff and leaching from plots planted to corn on Mississippi River alluvial soil (Commerce silt loam) was measured for a six-year period, 1995-2000. The first three years were characterized by normal rainfall volume, the second three years by reduced rainfall. The ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1982/4008/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1982/4008/report.pdf"><span>Water quality of streams and springs, Green River Basin, Wyoming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>DeLong, L.L.</p> <p>1986-01-01</p> <p>Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMGC21A0718B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMGC21A0718B"><span>Studying strategic interaction under environmental and economic uncertainties among water users in the Zambezi River Basin - From descriptive analysis to institutional design for better transboundary management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beck, L.; Siegfried, T. U.; Bernauer, T.</p> <p>2009-12-01</p> <p>The Zambezi River Basin (ZRB) is one of the largest freshwater catchments in Africa and worldwide. Consumptive water use in the ZRB is currently estimated at 15 - 20 percent of total runoff. This suggests many development possibilities, particularly for irrigated agriculture and hydropower production. The key drivers in the basin are population development on the demand side as well as uncertain impacts from climate change for supply. Development plans of the riparian countries suggest that consumptive water use might increase up to 40 percent of total runoff by 2025. This suggests that expanding water use in the Zambezi basin could become a source of disputes among the eight riparian countries. We study the surface water allocation in the basin by means of a couple hydrological-economic modeling approach. A conceptual lumped-parameter rainfall-runoff model for the ZRB was constructed and calibrated on the best available runoff data for the basin. Water users are modeled based on an agent-based framework and implemented as distributed sequential decision makers that act in an uncertain environment. Given the current non-cooperative status quo, we use the stochastic optimization technique of reinforcement learning to model the individual agents’ behavior. Their goals include the maximization of a) their long-term reward as conditioned on the state of the multi-agent system and b) the immediate reward obtained from operational decisions of reservoirs and water diversions under their control. We feed a wide range of water demand drivers as well as climate change predictions into the model and assess agents’ responses and the resulting implications for runoff at key points in the water catchment, including Victoria Falls, Kariba reservoir, Kafue Gorge, and Cahora Bassa reservoir in the downstream. It will be shown that considerable benefits exist if the current non-cooperative regime is replaced by a basin-wide, coordinated allocation strategy that regulates water storage and allocation in this complex multi-reservoir river basin. Benefits increase along the river towards the downstream, which suggests the establishment of an upstream-downstream compensation approach. The latter considers tradeoffs from water and hydropower exchanges during respective seasons and locations of peak demand.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....5651K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....5651K"><span>Climate Change and Runoff Statistics: a Process Study for the Rhine Basin using a coupled Climate-Runoff Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kleinn, J.; Frei, C.; Gurtz, J.; Vidale, P. L.; Schär, C.</p> <p>2003-04-01</p> <p>The consequences of extreme runoff and extreme water levels are within the most important weather induced natural hazards. The question about the impact of a global climate change on the runoff regime, especially on the frequency of floods, is of utmost importance. In winter-time, two possible climate effects could influence the runoff statistis of large Central European rivers: the shift from snowfall to rain as a consequence of higher temperatures and the increase of heavy precipitation events due to an intensification of the hydrological cycle. The combined effect on the runoff statistics is examined in this study for the river Rhine. To this end, sensitivity experiments with a model chain including a regional climate model and a distributed runoff model are presented. The experiments are based on an idealized surrogate climate change scenario which stipulates a uniform increase in temperature by 2 Kelvin and an increase in atmospheric specific humidity by 15% (resulting from unchanged relative humidity) in the forcing fields for the regional climate model. The regional climate model CHRM is based on the mesoscale weather prediction model HRM of the German Weather Service (DWD) and has been adapted for climate simulations. The model is being used in a nested mode with horizontal resolutions of 56 km and 14 km. The boundary conditions are taken from the original ECMWF reanalysis and from a modified version representing the surrogate scenario. The distributed runoff model (WaSiM) is used at a horizontal resolution of 1 km for the whole Rhine basin down to Cologne. The coupling of the models is provided by a downscaling of the climate model fields (precipitaion, temperature, radiation, humidity, and wind) to the resolution of the distributed runoff model. The simulations cover the period of September 1987 to January 1994 with a special emphasis on the five winter seasons 1989/90 until 1993/94, each from November until January. A detailed validation of the control simulation shows a good correspondence of the precipitation fields from the regional climate model with measured fields regarding the distribution of precipitation at the scale of the Rhine basin. Systematic errors are visible at the scale of single subcatchements, in the altitudinal distribution and in the frequency distribution of precipitation. These errors only marginally affect the runoff simulations, which show good correspondence with runoff observations. The presentation includes results from the scenario simulations for the whole basin as well as for Alpine and lowland subcatchements. The change in the runoff statistics is being analyzed with respect to the changes in snowfall and to the fequency distribution of precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4555293','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4555293"><span>Seasonal-Spatial Distribution and Long-Term Variation of Transparency in Xin’anjiang Reservoir: Implications for Reservoir Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wu, Zhixu; Zhang, Yunlin; Zhou, Yongqiang; Liu, Mingliang; Shi, Kun; Yu, Zuoming</p> <p>2015-01-01</p> <p>Water transparency is a useful indicator of water quality or productivity and is widely used to detect long-term changes in the water quality and eutrophication of lake ecosystems. Based on short-term spatial observations in the spring, summer, and winter and on long-term site-specific observation from 1988 to 2013, the spatial, seasonal, long-term variations, and the factors affecting transparency are presented for Xin’anjiang Reservoir (China). Spatially, transparency was high in the open water but low in the bays and the inflowing river mouths, reflecting the effect of river runoff. The seasonal effects were distinct, with lower values in the summer than in the winter, most likely due to river runoff and phytoplankton biomass increases. The transparency decreased significantly with a linear slope of 0.079 m/year, indicating a 2.05 m decrease and a marked decrease in water quality. A marked increase occurred in chlorophyll a (Chla) concentration, and a significant correlation was found between the transparency and Chla concentration, indicating that phytoplankton biomass can partially explain the long-term trend of transparency in Xin’anjiang Reservoir. The river input and phytoplankton biomass increase were associated with soil erosion and nutrient loss in the catchment. Our study will support future management of water quality in Xin’anjiang Reservoir. PMID:26274970</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70093982','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70093982"><span>Streamflow changes in the Sierra Nevada, California, simulated using a statistically downscaled general circulation model scenario of climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wilby, Robert L.; Dettinger, Michael D.</p> <p>2000-01-01</p> <p>Simulations of future climate using general circulation models (GCMs) suggest that rising concentrations of greenhouse gases may have significant consequences for the global climate. Of less certainty is the extent to which regional scale (i.e., sub-GCM grid) environmental processes will be affected. In this chapter, a range of downscaling techniques are critiqued. Then a relatively simple (yet robust) statistical downscaling technique and its use in the modelling of future runoff scenarios for three river basins in the Sierra Nevada, California, is described. This region was selected because GCM experiments driven by combined greenhouse-gas and sulphate-aerosol forcings consistently show major changes in the hydro-climate of the southwest United States by the end of the 21st century. The regression-based downscaling method was used to simulate daily rainfall and temperature series for streamflow modelling in three Californian river basins under current-and future-climate conditions. The downscaling involved just three predictor variables (specific humidity, zonal velocity component of airflow, and 500 hPa geopotential heights) supplied by the U.K. Meteorological Office couple ocean-atmosphere model (HadCM2) for the grid point nearest the target basins. When evaluated using independent data, the model showed reasonable skill at reproducing observed area-average precipitation, temperature, and concomitant streamflow variations. Overall, the downscaled data resulted in slight underestimates of mean annual streamflow due to underestimates of precipitation in spring and positive temperature biases in winter. Differences in the skill of simulated streamflows amongst the three basins were attributed to the smoothing effects of snowpack on streamflow responses to climate forcing. The Merced and American River basins drain the western, windward slope of the Sierra Nevada and are snowmelt dominated, whereas the Carson River drains the eastern, leeward slope and is a mix of rainfall runoff and snowmelt runoff. Simulated streamflow in the American River responds rapidly and sensitively to daily-scale temperature and precipitation fluctuations and errors; in the Merced and Carson Rivers, the response to the same short-term influences is much less. Consequently, the skill of simulated flows was significantly lower in the American River model than in the Carson and Merced. The physiography of the three basins also accounts for differences in their sensitivities to future climate change. Increases in winter precipitation exceeding +100% coupled with mean temperature rises greater than +2°C result in increased winter streamflows in all three basins. In the Merced and Carson basins, these streamflow increases reflect large changes in winter snowpack, whereas the streamflow changes in the lower elevation American basin are driven primarily by rainfall runoff. Furthermore, reductions in winter snowpack in the American River basin, owing to less precipitation falling as snow and earlier melting of snow at middle elevations, lead to less spring and summer streamflow. Taken collectively, the downscaling results suggest significant changes to both the timing and magnitude of streamflows in the Sierra Nevada by the end of the 21st Century. In the higher elevation basins, the HadCM2 scenario implies more annual streamflow and more streamflow during the spring and summer months that are critical for water-resources management in California. Depending on the relative significance of rainfall runoff and snowmelt, each basin responds in its own way to regional climate forcing. Generally, then, climate scenarios need to be specified — by whatever means — with sufficient temporal and spatial resolution to capture subtle orographic influences if projections of climate-change responses are to be useful and reproducible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860036479&hterms=runoff&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Drunoff','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860036479&hterms=runoff&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Drunoff"><span>Evaluation of the satellite derived snow cover area - Runoff forecasting models for the inaccessible basins of western Himalayas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dey, B.</p> <p>1985-01-01</p> <p>In this study, the existing seasonal snow cover area runoff forecasting models of the Indus, Kabul, Sutlej and Chenab basins were evaluated with the concurrent flow correlation model for the period 1975-79. In all the basins under study, correlation of concurrent flow model explained the variability in flow better than by the snow cover area runoff models. Actually, the concurrent flow correlation model explained more than 90 percent of the variability in the flow of these rivers. Compared to this model, the snow cover area runoff models explained less of the variability in flow. In the Himalayan river basins under study and at least for the period under observation, the concurrent flow correlation model provided a set of results with which to compare the estimates from the snow cover area runoff models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT.......216W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT.......216W"><span>GIS/RS-based Integrated Eco-hydrologic Modeling in the East River Basin, South China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Kai</p> <p></p> <p>Land use/cover change (LUCC) has significantly altered the hydrologic system in the East River (Dongjiang) Basin. Quantitative modeling of hydrologic impacts of LUCC is of great importance for water supply, drought monitoring and integrated water resources management. An integrated eco-hydrologic modeling system of Distributed Monthly Water Balance Model (DMWBM), Surface Energy Balance System (SEBS) was developed with aid of GIS/RS to quantify LUCC, to conduct physically-based ET (evapotranspiration) mapping and to predict hydrologic impacts of LUCC. To begin with, in order to evaluate LUCC, understand implications of LUCC and provide boundary condition for the integrated eco-hydrologic modeling, firstly the long-term vegetation dynamics was investigated based on Normalized Difference Vegetation Index (NDVI) data, and then LUCC was analyzed with post-classification methods and finally LUCC prediction was conducted based on Markov chain model. The results demonstrate that the vegetation activities decreased significantly in summer over the years. Moreover, there were significant changes in land use/cover over the past two decades. Particularly there was a sharp increase of urban and built-up area and a significant decrease of grassland and cropland. All these indicate that human activities are intensive in the East River Basin and provide valuable information for constructing scenarios for studying hydrologic impacts of LUCC. The physically-remote-sensing-based Surface Energy Balance System (SEBS) was employed to estimate areal actual ET for a large area rather than traditional point measurements . The SEBS was enhanced for application in complex vegetated area. Then the inter-comparison with complimentary ET model and distributed monthly water balance model was made to validate the enhanced SEBS (ESEBS). The application and test of ESEBS show that it has a good accuracy both monthly and annually and can be effectively applied in the East River Basin. The results of ET mapping based on ESEBS demonstrate that actual ET in the East River Basin decreases significantly in the last two decades, which is probably caused by decrease of sunshine duration. In order to effectively simulate hydrologic impact of LUCC, an integrated model of ESEBS and distributed monthly water balance model has been developed in this study. The model is capable of considering basin terrain and the spatial distribution of precipitation and soil moisture. Particularly, the model is unique in accounting for spatial and temporal variations of vegetation cover and ET, which provides a powerful tool for studying the hydrologic impacts of LUCC. The model was applied to simulate the monthly runoff for the period of 1980-1994 for model calibration and for the period of 1995-2000 for validation. The calibration and validation results show that the newly integrated model is suitable for simulating monthly runoff and studying hydrologic impacts ofLUCC in the East River Basin. Finally, the newly integrated model was firstly applied to analyze the relationship of land use and hydrologic regimes based on the land use maps in 1980 and 2000. Then the newly integrated model was applied to simulate the potential impacts of land use change on hydrologic regimes in the East River Basin under a series of hypothetical scenarios. The results show that ET has a positive relationship with Leaf Area Index (LAI) while runoff has a negative relationship with LAI in the same climatic zone, which can be elaborated by surface energy balance and water balance equation. Specifically, on an annual basis, ET of forest scenarios is larger than that of grassland or cropland scenarios. On the contrary, runoff of forest scenarios is less than that of grassland or cropland scenarios. On a monthly basis, for most of the scenarios, particularly the grassland and cropland scenarios, the most significant changes occurred in the rainy season. The results indicate that deforestation would cause increase of runoff and decrease of ET on an annual basis in the East River Basin. On a monthly basis, deforestation would cause significant decrease of ET and increase of runoff in the rainy season in the East River Basin. These results are not definitive statements as to what will happen to runoff, ET and soil moisture regimes in the East River Basin, but rather offer an insight into the plausible changes in basin hydrology due to land use change. The integrated model developed in this study and these results have significant implications for integrated water resources management and sustainable development in the East River Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23940354','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23940354"><span>Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feng, Xiaojuan; Vonk, Jorien E; van Dongen, Bart E; Gustafsson, Örjan; Semiletov, Igor P; Dudarev, Oleg V; Wang, Zhiheng; Montluçon, Daniel B; Wacker, Lukas; Eglinton, Timothy I</p> <p>2013-08-27</p> <p>Mobilization of Arctic permafrost carbon is expected to increase with warming-induced thawing. However, this effect is challenging to assess due to the diverse processes controlling the release of various organic carbon (OC) pools from heterogeneous Arctic landscapes. Here, by radiocarbon dating various terrestrial OC components in fluvially and coastally integrated estuarine sediments, we present a unique framework for deconvoluting the contrasting mobilization mechanisms of surface vs. deep (permafrost) carbon pools across the climosequence of the Eurasian Arctic. Vascular plant-derived lignin phenol (14)C contents reveal significant inputs of young carbon from surface sources whose delivery is dominantly controlled by river runoff. In contrast, plant wax lipids predominantly trace ancient (permafrost) OC that is preferentially mobilized from discontinuous permafrost regions, where hydrological conduits penetrate deeper into soils and thermokarst erosion occurs more frequently. Because river runoff has significantly increased across the Eurasian Arctic in recent decades, we estimate from an isotopic mixing model that, in tandem with an increased transfer of young surface carbon, the proportion of mobilized terrestrial OC accounted for by ancient carbon has increased by 3-6% between 1985 and 2004. These findings suggest that although partly masked by surface carbon export, climate change-induced mobilization of old permafrost carbon is well underway in the Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080032969','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080032969"><span>To What Extent Can Vegetation Mitigate Greenhouse Warming? A Modeling Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bounoua, L.; Hall, F.G.; Collatz, G.J.; Tucker, C.J.; Sellers, P.J.; Kumar, A.</p> <p>2008-01-01</p> <p>Climate models participating in the IPCC Fourth Assessment Report indicate that under a 2xCO2 environment, runoff would increase faster than precipitation overland. However, observations over large U.S watersheds indicate otherwise. This inconsistency suggests that there may be important feedbacks between climate and land surface unaccounted for in the present generation of models. We postulate that the increase in precipitation associated with the increase in CO2 is also increasing vegetation density, which may already be feeding back onto climate. Including this feedback in a climate model simulation resulted in precipitation and runoff trends consistent with observations and reduced the warming by 0.6OC overland. This unaccounted for missing water may be linked to about 10% of the missing land carbon sink. A recent compilation of outputs from 19 coupled atmosphere-ocean general circulation models used in the IPCC Fourth Assessment Report (AR4) shows projected increases in air temperature, precipitation and river discharge for 24 major rivers in the world in response to doubling CO2 by the end of the century (1). The ensemble mean from these models also indicates that, compared to their respective baselines overland, the global mean of the runoff change would increase faster (8.9% per year) than that of the precipitation (5% per year). We analyze century-scale observed annual runoff time-series (1901-2002) over 9 hydrological units covering large regions of the Eastern United States (Fig.1) compiled by the United States Geological Survey (USGS)(2). These regions were selected because they are the most forested; the least water-limited and are not under extensive irrigation. We compare these time-series to similar time-series of observed annual precipitation anomalies spanning the period 1900-1995 (3). Both time-series exhibit a positive longterm trend (Fig. 2); however, in contrast to the analysis of (I), these historic data records show that the rate of precipitation increase is 5.5 % per year, roughly double the rate of runoff increase of 3.1 % per year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4211F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4211F"><span>Glacier retreat and projected river regime changes in the hydrologically highly-coupled Virkisjökull catchment, Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flett, Verity; Kirkbride, Martin; Black, Andrew; Everest, Jez; MacDonald, Alan</p> <p>2016-04-01</p> <p>Virkisjökull, an outlet glacier of the Oræfajökull icecap in SE Iceland, currently has 60% glacier cover, though this is reducing due to glacier retreat. Intensive monitoring over the last 4 years includes measurement of measuring ice ablation, proglacial discharge, dye-tracing of flow pathways, and deployment of three automatic weather stations at altitudes up to 880 m. These data calibrate a distributed hydrological model (WaSIM) to project potential river regime during stages of glacier retreat. Results show: (1) glacier hypsometry sensitises the catchment to a disproportionately rapid increase in runoff as the snowline rises onto a gentle ice cap resulting in in a potential annual increase in river discharge of up to 37% (2) a dominantly channelized glacial drainage system in all seasons with a rapid runoff response to melt: englacial flow of 0.58 m s-1 is comparable to the proglacial river velocity; and (3) longer-term, reduced glacier cover and snow storage will lead to a discharge regime dominated by short-term precipitation events in all seasons, and a reduced influence of the seasonal meltwater discharge peak. The study demonstrates the importance of glacier hypsometry above the present ELA as an influence on catchment hydrological response to potential climate warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H33H1410W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H33H1410W"><span>A "total parameter estimation" method in the varification of distributed hydrological models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, M.; Qin, D.; Wang, H.</p> <p>2011-12-01</p> <p>Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in China. The application results demonstrate that this comprehensive testing method is very useful in the development of a distributed hydrological model and it provides a new way of thinking in hydrological sciences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28605858','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28605858"><span>Optimal implementation of green infrastructure practices to minimize influences of land use change and climate change on hydrology and water quality: Case study in Spy Run Creek watershed, Indiana.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Yaoze; Engel, Bernard A; Collingsworth, Paris D; Pijanowski, Bryan C</p> <p>2017-12-01</p> <p>Nutrient loading from the Maumee River watershed is a significant reason for the harmful algal blooms (HABs) problem in Lake Erie. The nutrient loading from urban areas needs to be reduced with the installation of green infrastructure (GI) practices. The Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model was used to explore the influences of land use (LU) and climate change on water quantity and quality in Spy Run Creek watershed (SRCW) (part of Maumee River watershed), decide whether and where excess phosphorus loading existed, identify critical areas to understand where the greatest amount of runoff/pollutants originated, and optimally implement GI practices to obtain maximum environmental benefits with the lowest costs. Both LU/climate changes increased runoff/pollutants generated from the watershed. Areas with the highest runoff/pollutant amount per area, or critical areas, differed for various environmental concerns, land uses (LUs), and climates. Compared to optimization considering all areas, optimization conducted only in critical areas can provide similar cost-effective results with decreased computational time for low levels of runoff/pollutant reductions, but critical area optimization results were not as cost-effective for higher levels of runoff/pollutant reductions. Runoff/pollutants for 2011/2050 LUs/climates could be reduced to amounts of 2001 LU/climate by installation of GI practices with annual expenditures of $0.34 to $2.05 million. The optimization scenarios that were able to obtain the 2001 runoff level in 2011/2050, can also reduce all pollutants to 2001 levels in this watershed. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25119535','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25119535"><span>Chronic kidney disease of unknown aetiology and ground-water ionicity: study based on Sri Lanka.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dharma-Wardana, M W C; Amarasiri, Sarath L; Dharmawardene, Nande; Panabokke, C R</p> <p>2015-04-01</p> <p>High incidence of chronic kidney disease of unknown aetiology (CKDU) in Sri Lanka is shown to correlate with the presence of irrigation works and rivers that bring-in 'nonpoint source' fertilizer runoff from intensely agricultural regions. We review previous attempts to link CKDU with As, Cd and other standard toxins. Those studies (e.g. the WHO-sponsored study), while providing a wealth of data, are inconclusive in regard to aetiology. Here, we present new proposals based on increased ionicity of drinking water due to fertilizer runoff into the river system, redox processes in the soil and features of 'tank'-cascades and aquifers. The consequent chronic exposure to high ionicity in drinking water is proposed to debilitate the kidney via a Hofmeister-type (i.e. protein-denaturing) mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28708605','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28708605"><span>Modal analysis of annual runoff volume and sediment load in the Yangtze river-lake system for the period 1956-2013.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Huai; Zhu, Lijun; Wang, Jianzhong; Fan, Hongxia; Wang, Zhihuan</p> <p>2017-07-01</p> <p>This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H51B1358P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H51B1358P"><span>Rainfall Runoff Modelling for Cedar Creek using HEC-HMS model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pathak, P.; Kalra, A.</p> <p>2015-12-01</p> <p>Rainfall-runoff modelling studies are carried out for the purpose of basin and river management. Different models have been effectively used to examine relationships between rainfall and runoff. Cedar Creek Watershed Basin, the largest tributary of St. Josephs River, located in northeastern Indiana, was selected as a study area. The HEC-HMS model developed by US Army Corps of Engineers was used for the hydrological modelling. The national elevation and national hydrography data was obtained from United States Geological Survey National Map Viewer and the SSURGO soil data was obtained from United States Department of Agriculture. The watershed received hypothetical uniform rainfall for a duration of 13 hours. The Soil Conservation Service Curve Number and Unit Hydrograph methods were used for simulating surface runoff. The simulation provided hydrological details about the quantity and variability of runoff in the watershed. The runoff for different curve numbers was computed for the same basin and rainfall, and it was found that outflow peaked at an earlier time with a higher value for higher curve numbers than for smaller curve numbers. It was also noticed that the impact on outflow values nearly doubled with an increase of curve number of 10 for each subbasin in the watershed. The results from the current analysis may aid water managers in effectively managing the water resources within the basin. 1 Graduate Student, Department of Civil and Environmental Engineering, Southern Illinois University Carbondale, Carbondale, Illinois, 62901-6603 2 Development Review Division, Clark County Public Works, 500 S. Grand Central Parkway, Las Vegas, NV 89155, USA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PIAHS.379..139N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PIAHS.379..139N"><span>Climate change impact on streamflow in large-scale river basins: projections and their uncertainties sourced from GCMs and RCP scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nasonova, Olga N.; Gusev, Yeugeniy M.; Kovalev, Evgeny E.; Ayzel, Georgy V.</p> <p>2018-06-01</p> <p>Climate change impact on river runoff was investigated within the framework of the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP2) using a physically-based land surface model Soil Water - Atmosphere - Plants (SWAP) (developed in the Institute of Water Problems of the Russian Academy of Sciences) and meteorological projections (for 2006-2099) simulated by five General Circulation Models (GCMs) (including GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M) for each of four Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Eleven large-scale river basins were used in this study. First of all, SWAP was calibrated and validated against monthly values of measured river runoff with making use of forcing data from the WATCH data set and all GCMs' projections were bias-corrected to the WATCH. Then, for each basin, 20 projections of possible changes in river runoff during the 21st century were simulated by SWAP. Analysis of the obtained hydrological projections allowed us to estimate their uncertainties resulted from application of different GCMs and RCP scenarios. On the average, the contribution of different GCMs to the uncertainty of the projected river runoff is nearly twice larger than the contribution of RCP scenarios. At the same time the contribution of GCMs slightly decreases with time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26141895','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26141895"><span>Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Li, Zhe; Li, Shiyang; Jiang, Xiaofeng</p> <p>2015-07-01</p> <p>Our study sought to assess how much phosphorus (P) runoff from paddy fields could be cut down by fertilizer management and inoculation with arbuscular mycorrhizal fungi. A field experiment was conducted in Lalin River basin, in the northeast China: six nitrogen-phosphorus-potassium fertilizer levels were provided (0, 20%, 40%, 60%, 80%, and 100% of the recommended fertilizer supply), with or without inoculation with Glomus mosseae. The volume and concentrations of particle P (PP) and dissolved P (DP) were measured for each runoff during the rice growing season. It was found that the seasonal P runoff, including DP and PP, under the local fertilization was 3.7 kg/ha, with PP, rather than DP, being the main form of P in runoff water. Additionally, the seasonal P runoff dropped only by 8.9% when fertilization decreased by 20%; rice yields decreased with declining fertilization. We also found that inoculation increased rice yields and decreased P runoff at each fertilizer level and these effects were lower under higher fertilization. Conclusively, while rice yields were guaranteed arbuscular mycorrhizal inoculation and fertilizer management would play a key role in reducing P runoff from paddy fields. Copyright © 2015. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3546765','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3546765"><span>Snowmelt Runoff: A New Focus of Urban Nonpoint Source Pollution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian</p> <p>2012-01-01</p> <p>Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing cosntitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control. PMID:23202881</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23202881','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23202881"><span>Snowmelt runoff: a new focus of urban nonpoint source pollution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian</p> <p>2012-11-30</p> <p>Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing constitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913288T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913288T"><span>Advanced inflow forecasting for a hydropower plant in an Alpine hydropower regulated catchment - coupling of operational and hydrological forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tilg, Anna-Maria; Schöber, Johannes; Huttenlau, Matthias; Messner, Jakob; Achleitner, Stefan</p> <p>2017-04-01</p> <p>Hydropower is a renewable energy source which can help to stabilize fluctuations in the volatile energy market. Especially pumped-storage infrastructures in the European Alps play an important role within the European energy grid system. Today, the runoff of rivers in the Alps is often influenced by cascades of hydropower infrastructures where the operational procedures are triggered by energy market demands, water deliveries and flood control aspects rather than by hydro-meteorological variables. An example for such a highly hydropower regulated river is the catchment of the river Inn in the Eastern European Alps, originating in the Engadin (Switzerland). A new hydropower plant is going to be built as transboundary project at the boarder of Switzerland and Austria using the water of the Inn River. For the operation, a runoff forecast to the plant is required. The challenge in this case is that a high proportion of runoff is turbine water from an upstream situated hydropower cascade. The newly developed physically based hydrological forecasting system is mainly capable to cover natural hydrological runoff processes caused by storms and snow melt but can model only a small degree of human impact. These discontinuous parts of the runoff downstream of the pumped storage are described by means of an additional statistical model which has been developed. The main goal of the statistical model is to forecast the turbine water up to five days in advance. The lead time of the data driven model exceeds the lead time of the used energy production forecast. Additionally, the amount of turbine water is linked to the need of electricity production and the electricity price. It has been shown that especially the parameters day-ahead prognosis of the energy production and turbine inflow of the previous week are good predictors and are therefore used as input parameters for the model. As the data is restricted due to technical conditions, so-called Tobit models have been used to develop a linear regression for the runoff forecast. Although the day-ahead prognosis cannot always be kept, the regression model delivers, especially during office hours, very reasonable results. In the remaining hours the error between measurement and the forecast increases. Overall, the inflow forecast can be substantially improved by the implementation of the developed regression in the hydrological modelling system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..113a2033Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..113a2033Z"><span>Runoff and sediment variation in the areas with high and coarse sediment yield of the middle Yellow River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Pan; Yao, Wenyi; Xiao, Peiqing; Sun, Weiying</p> <p>2018-02-01</p> <p>Massive water and soil conservation works (WSCW) have been conducted in the areas with high and coarse sediment yield of the middle Yellow River since 1982. With the impending effects of climate change, it is necessary to reconsider the effects of WSCW on runoff and sediment variation at decadal and regional scales. Using long-term official and synthesized data, the WSCW impacts on reducing water and soil loss were studied in Sanchuanhe River watershed. Results showed that the sediment and runoff generated from this area showed a decreasing trend in the past 50 years. A great progress has been achieved in erosion control since the 1970s. After the 4 soil and water conservation harnessing stages during the period from 1970 to 2006, the sediment and runoff yield showed decreases with the extension of harnessing. The results revealed that human activities exerted the largest effects on the sediment reduction and explained 66.6% of the variation in the specific sediment yield. The contribution of rainfall variation to runoff reduction was as large as human activities. A great benefit have been obtained in water and soil loss control in this area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2004/5287/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2004/5287/"><span>Rainfall-Runoff and Water-Balance Models for Management of the Fena Valley Reservoir, Guam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yeung, Chiu W.</p> <p>2005-01-01</p> <p>The U.S. Geological Survey's Precipitation-Runoff Modeling System (PRMS) and a generalized water-balance model were calibrated and verified for use in estimating future availability of water in the Fena Valley Reservoir in response to various combinations of water withdrawal rates and rainfall conditions. Application of PRMS provides a physically based method for estimating runoff from the Fena Valley Watershed during the annual dry season, which extends from January through May. Runoff estimates from the PRMS are used as input to the water-balance model to estimate change in water levels and storage in the reservoir. A previously published model was calibrated for the Maulap and Imong River watersheds using rainfall data collected outside of the watershed. That model was applied to the Almagosa River watershed by transferring calibrated parameters and coefficients because information on daily diversions at the Almagosa Springs upstream of the gaging station was not available at the time. Runoff from the ungaged land area was not modeled. For this study, the availability of Almagosa Springs diversion data allowed the calibration of PRMS for the Almagosa River watershed. Rainfall data collected at the Almagosa rain gage since 1992 also provided better estimates of rainfall distribution in the watershed. In addition, the discontinuation of pan-evaporation data collection in 1998 required a change in the evapotranspiration estimation method used in the PRMS model. These reasons prompted the update of the PRMS for the Fena Valley Watershed. Simulated runoff volume from the PRMS compared reasonably with measured values for gaging stations on Maulap, Almagosa, and Imong Rivers, tributaries to the Fena Valley Reservoir. On the basis of monthly runoff simulation for the dry seasons included in the entire simulation period (1992-2001), the total volume of runoff can be predicted within -3.66 percent at Maulap River, within 5.37 percent at Almagosa River, and within 10.74 percent at Imong River. Month-end reservoir volumes simulated by the reservoir water-balance model for both calibration and verification periods compared closely with measured reservoir volumes. Errors for the calibration periods ranged from 4.51 percent [208.7 acre-feet (acre-ft) or 68.0 million gallons (Mgal)] to -5.90 percent (-317.8 acre-ft or -103.6 Mgal). For the verification periods, errors ranged from 1.69 percent (103.5 acre-ft or 33.7 Mgal) to -4.60 percent (-178.7 acre-ft or -58.2 Mgal). Monthly simulation bias ranged from -0.19 percent for the calibration period to -0.98 percent for the verification period; relative error ranged from -0.37 to -1.12 percent, respectively. Relatively small bias indicated that the model did not consistently overestimate or underestimate reservoir volume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31A1494M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31A1494M"><span>Changes in the flood frequency in the Mahanadi basin under observed and projected future climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Modi, P. A.; Lakshmi, V.; Mishra, V.</p> <p>2017-12-01</p> <p>The Mahanadi river basin is vulnerable to multiple types of extreme events due to its topography and river networks. These extreme events are not efficiently captured by the current LSMs partly due to lack of spatial hydrological data and uncertainty in the models. This study compares and evaluates the hydrologic simulations of the recently developed community Noah model with multi-parameterization options which is an upgradation of baseline Noah LSM. The model is calibrated and validated for the Mahanadi river basin and is driven by major atmospheric forcing from the Indian Meteorological Department (IMD), Global Precipitation Measurement (GPM), Tropical rainfall Measurement Mission (TRMM) and Multi-Source Weighted-Ensemble Precipitation (MSWEP designed for hydrological modeling) precipitation datasets along with some additional forcing derived from the VIC model at 0.25-degree spatial resolution. The Noah-MP LSM is calibrated using observed daily streamflow data from 1978-1989 (India-WRIS) at the gauge stations with least human interventions with a Nash Sutcliffe Efficiency higher than 0.60. Noah MP was calibrated using different schemes for runoff with variation in all parameters sensitive to surface and sub-surface runoff. Streamflow routing was performed using a stand-alone model (VIC model) to route daily model runoff at required gauge station. Surface runoff is mainly affected by the uncertainties in major atmospheric forcing and highly sensitive parameters pertaining to soil properties. Noah MP is validated using observed streamflow from 1975-2010 which indicates the consistency of streamflow with the historical observations (NSE>0.65) thus indicating an increase in probability of future flood events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C11A0896M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C11A0896M"><span>Comparison of modelled runoff with observed proglacial discharge across the western margin of the Greenland ice sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moustafa, S.; Rennermalm, A.; van As, D.; Overeem, I.; Tedesco, M.; Mote, T. L.; Koenig, L.; Smith, L. C.; Hagedorn, B.; Sletten, R. S.; Mikkelsen, A. B.; Hasholt, B.; Hall, D. K.; Fettweis, X.; Pitcher, L. H.; Hubbard, A.</p> <p>2017-12-01</p> <p>Greenland ice sheet surface ablation now dominates its total mass loss contributions to sea-level rise. Despite the increasing importance of Greenland's sea-level contribution, a quantitative inter-comparison between modeled and measured melt, runoff and discharge across multiple drainage basins is conspicuously lacking. Here we investigate the accuracy of model discharge estimates from the Modèle Atmosphérique Régionale (MAR v3.5.2) regional climate model by comparison with in situ proglacial river discharge measurements at three West Greenland drainage basins - North River (Thule), Watson River (Kangerlussuaq), and Naujat Kuat River (Nuuk). At each target catchment, we: 1) determine optimal drainage basin delineations; 2) assess primary drivers of melt; 3) evaluate MAR at daily, 5-, 10- and 20-day time scales; and 4) identify potential sources for model-observation discrepancies. Our results reveal that MAR resolves daily discharge variability poorly in the Nuuk and Thule basins (r2 = 0.4-0.5), but does capture variability over 5-, 10-, and 20-day means (r2 > 0.7). Model agreement with river flow data, though, is reduced during periods of peak discharge, particularly for the exceptional melt and discharge events of July 2012. Daily discharge is best captured by MAR across the Watson River basin, whilst there is lower correspondence between modeled and observed discharge at the Thule and Naujat Kuat River basins. We link the main source of model error to an underestimation of cloud cover, overestimation of surface albedo, and apparent warm bias in near-surface air temperatures. For future inter-comparison, we recommend using observations from catchments that have a self-contained and well-defined drainage area and an accurate discharge record over variable years coincident with a reliable automatic weather station record. Our study highlights the importance of improving MAR modeled surface albedo, cloud cover representation, and delay functions to reduce model error and to improve prediction of Greenland's future runoff contribution to global sea level rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170007342&hterms=Scheme&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DScheme','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170007342&hterms=Scheme&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DScheme"><span>The Critical Role of the Routing Scheme in Simulating Peak River Discharge in Global Hydrological Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhao, Fang; Veldkamp, Ted I. E.; Frieler, Katja; Schewe, Jacob; Ostberg, Sebastian; Willner, Sven; Schauberger, Bernhard; Gosling, Simon N.; Schmied, Hannes Muller; Portmann, Felix T.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170007342'); toggleEditAbsImage('author_20170007342_show'); toggleEditAbsImage('author_20170007342_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170007342_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170007342_hide"></p> <p>2017-01-01</p> <p>Global hydrological models (GHMs) have been applied to assess global flood hazards, but their capacity to capture the timing and amplitude of peak river discharge which is crucial in flood simulations has traditionally not been the focus of examination. Here we evaluate to what degree the choice of river routing scheme affects simulations of peak discharge and may help to provide better agreement with observations. To this end we use runoff and discharge simulations of nine GHMs forced by observational climate data (1971-2010) within the ISIMIP2a (Inter-Sectoral Impact Model Intercomparison Project phase 2a) project. The runoff simulations were used as input for the global river routing model CaMa-Flood (Catchment-based Macro-scale Floodplain). The simulated daily discharge was compared to the discharge generated by each GHM using its native river routing scheme. For each GHM both versions of simulated discharge were compared to monthly and daily discharge observations from 1701 GRDC (Global Runoff Data Centre) stations as a benchmark. CaMa-Flood routing shows a general reduction of peak river discharge and a delay of about two to three weeks in its occurrence, likely induced by the buffering capacity of floodplain reservoirs. For a majority of river basins, discharge produced by CaMa-Flood resulted in a better agreement with observations. In particular, maximum daily discharge was adjusted, with a multi-model averaged reduction in bias over about two-thirds of the analysed basin area. The increase in agreement was obtained in both managed and near-natural basins. Overall, this study demonstrates the importance of routing scheme choice in peak discharge simulation, where CaMa-Flood routing accounts for floodplain storage and backwater effects that are not represented in most GHMs. Our study provides important hints that an explicit parameterisation of these processes may be essential in future impact studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP33A2293H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP33A2293H"><span>Sea ice cover variability and river run-off in the western Laptev Sea (Arctic Ocean) since the last 18 ka</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hörner, T.; Stein, R.; Fahl, K.; Birgel, D.</p> <p>2015-12-01</p> <p>Multi-proxy biomarker measurements were performed on two sediment cores (PS51/154, PS51/159) with the objective reconstructing sea ice cover (IP25, brassicasterol, dinosterol) and river-runoff (campesterol, β-sitosterol) in the western Laptev Sea over the last 18 ka with unprecedented temporal resolution. The sea ice cover varies distinctly during the whole time period. The absence of IP25 during 18 and 16 ka indicate that the western Laptev Sea was mostly covered with permanent sea ice (pack ice). However, a period of temporary break-up of the permanent ice coverage occurred at c. 17.2 ka (presence of IP25). Very little river-runoff occurred during this interval. Decreasing terrigenous (riverine) input and synchronous increase of marine produced organic matter around 16 ka until 7.5 ka indicate the gradual establishment of a marine environment in the western Laptev Sea related to the onset of the post-glacial transgression of the shelf. Strong river run-off and reduced sea ice cover characterized the time interval between 15.2 and 12.9 ka, including the Bølling/Allerød warm period (14.7 - 12.9 ka). Moreover, the DIP25 Index (ratio of HBI-dienes and IP25) might document the presence of Atlantic derived water at the western Laptev Sea shelf area. A sudden return to severe sea ice conditions occurred during the Younger Dryas (12.9 - 11.6 ka). This abrupt climate change was observed in the whole circum-Arctic realm (Chukchi Sea, Bering Sea, Fram Strait and Laptev Sea). At the onset of the Younger Dryas, a distinct alteration of the ecosystem (deep drop in terrigenous and phytoplankton biomarkers) may document the entry of a giant freshwater plume, possibly relating to the Lake Agassiz outburst at 13 ka. IP25 concentrations increase and higher values of the PIP25 Index during the last 7 ka reflect a cooling of the Laptev Sea spring season. Moreover, a short-term variability of c. 1.5 thousand years occurred during the last 12 ka, most probably following Bond Cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...82a2063W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...82a2063W"><span>Impacts of climate change and human activities on runoff in Weihe Basin based on Budyko hypothesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, H. S.; Liu, D. F.; Chang, J. X.; Zhang, H. X.; Huang, Q.</p> <p>2017-08-01</p> <p>The Weihe River Basin (WRB) is the largest tributary of the Yellow River and plays an irreplaceable role in the Shaanxi-Gansu-Ningxia area. In recent years, owing to the human activities and climate change, the runoff of the WRB has reduced, wherefore, it is necessary to analyze the impact on runoff quantitatively. By using the data of Huaxian and Zhuangtou stations, we can respectively calculate the changes in runoff for climate change and human activities via Budyko hypothesis. The trend of runoff, precipitation, temperature, potential evapotranspiration and the break points are examined by Mann-Kendall test (M-K method), cumulative anomaly method and ordered cluster analysis. The results show that the break points of runoff series in WRB are 1970 and 1989, so that the runoff series can be divided into the baseline period and the changed period. Based on the data of potential evapotranspiration and Budyko formula, the contribution rates of climate change and human activities to runoff are 41% and 59% in 1970-1989. From 1990 to 2010, the contribution rates of climate change and human activities are 37% and 63%, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PCE....36..727G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PCE....36..727G"><span>Using multiple climate projections for assessing hydrological response to climate change in the Thukela River Basin, South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, L. Phil; Andersson, Lotta; Horan, Mark; Kunz, Richard; Lumsden, Trevor; Schulze, Roland; Warburton, Michele; Wilk, Julie; Yang, Wei</p> <p></p> <p>This study used climate change projections from different regional approaches to assess hydrological effects on the Thukela River Basin in KwaZulu-Natal, South Africa. Projecting impacts of future climate change onto hydrological systems can be undertaken in different ways and a variety of effects can be expected. Although simulation results from global climate models (GCMs) are typically used to project future climate, different outcomes from these projections may be obtained depending on the GCMs themselves and how they are applied, including different ways of downscaling from global to regional scales. Projections of climate change from different downscaling methods, different global climate models and different future emissions scenarios were used as input to simulations in a hydrological model to assess climate change impacts on hydrology. A total of 10 hydrological change simulations were made, resulting in a matrix of hydrological response results. This matrix included results from dynamically downscaled climate change projections from the same regional climate model (RCM) using an ensemble of three GCMs and three global emissions scenarios, and from statistically downscaled projections using results from five GCMs with the same emissions scenario. Although the matrix of results does not provide complete and consistent coverage of potential uncertainties from the different methods, some robust results were identified. In some regards, the results were in agreement and consistent for the different simulations. For others, particularly rainfall, the simulations showed divergence. For example, all of the statistically downscaled simulations showed an annual increase in precipitation and corresponding increase in river runoff, while the RCM downscaled simulations showed both increases and decreases in runoff. According to the two projections that best represent runoff for the observed climate, increased runoff would generally be expected for this basin in the future. Dealing with such variability in results is not atypical for assessing climate change impacts in Africa and practitioners are faced with how to interpret them. This work highlights the need for additional, well-coordinated regional climate downscaling for the region to further define the range of uncertainties involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2015/1011/pdf/ofr2015-1011.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2015/1011/pdf/ofr2015-1011.pdf"><span>Simulated runoff at many stream locations in the Methow River Basin, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mastin, Mark C.</p> <p>2015-01-01</p> <p>Comparisons of the simulated runoff with observed runoff at six selected long-term streamflow-gaging stations showed that the simulated annual runoff was within +15.4 to -9.6 percent of the annual observed runoff. The simulated runoff generally matched the seasonal flow patterns, with bias at some stations indicated by over-simulation of the October–November late autumn season and under-simulation of the snowmelt runoff months of May and June. Sixty-one time series of daily runoff for a 26-year period representative of the long-term runoff pattern, water years 1988–2013, were simulated and provided to the trophic modeling team.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ISPAr.XL2..181M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ISPAr.XL2..181M"><span>Application of GIS in Modeling Zilberchai Basin Runoff</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malekani, L.; Khaleghi, S.; Mahmoodi, M.</p> <p>2014-10-01</p> <p>Runoff is one of most important hydrological variables that are used in many civil works, planning for optimal use of reservoirs, organizing rivers and warning flood. The runoff curve number (CN) is a key factor in determining runoff in the SCS (Soil Conservation Service) based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (GIS) are now being used in combination with the SCS-CN method. This work uses a methodology of determining surface runoff by Geographic Information System model and applying SCS-CN method that needs the necessary parameters such as land use map, hydrologic soil groups, rainfall data, DEM, physiographic characteristic of the basin. The model is built by implementing some well known hydrologic methods in GIS like as ArcHydro, ArcCN-Runoff for modeling of Zilberchai basin runoff. The results show that the high average weighted of curve number indicate that permeability of the basin is low and therefore likelihood of flooding is high. So the fundamental works is essential in order to increase water infiltration in Zilberchai basin and to avoid wasting surface water resources. Also comparing the results of the computed and observed runoff value show that use of GIS tools in addition to accelerate the calculation of the runoff also increase the accuracy of the results. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in large basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A23H3351M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A23H3351M"><span>A comparison of river discharge calculated by using a regional climate model output with different reanalysis datasets in 1980s and 1990s</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, X.; Yoshikane, T.; Hara, M.; Adachi, S. A.; Wakazuki, Y.; Kawase, H.; Kimura, F.</p> <p>2014-12-01</p> <p>To check the influence of boundary input data on a modeling result, we had a numerical investigation of river discharge by using runoff data derived by a regional climate model with a 4.5-km resolution as input data to a hydrological model. A hindcast experiment, which to reproduce the current climate was carried out for the two decades, 1980s and 1990s. We used the Advanced Research WRF (ARW) (ver. 3.2.1) with a two-way nesting technique and the WRF single-moment 6-class microphysics scheme. Noah-LSM is adopted to simulate the land surface process. The NCEP/NCAR and ERA-Interim 6-hourly reanalysis datasets were used as the lateral boundary condition for the runs, respectively. The output variables used for river discharge simulation from the WRF model were underground runoff and surface runoff. Four rivers (Mogami, Agano, Jinzu and Tone) were selected in this study. The results showed that the characteristic of river discharge in seasonal variation could be represented and there were overestimated compared with measured one.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1993/4119/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1993/4119/report.pdf"><span>Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania : characterization of surface-runoff and ground-water quantity and quality in a small carbonate basin near Churchtown, Pennsylvania, prior to terracing and implementation of nutrient management : water-quality study of the Conestoga River headwaters, Pennsylvania</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Leitman, Patricia L.; Hall, D.W.; Langland, M.J.; Chichester, D.C.; Ward, J.R.</p> <p>1996-01-01</p> <p>Surface-runoff and ground-water quantity and quality of a 22.1-acre field site were characterized from January 1983 through September 1984, before implementation of terracing and nutrient-management practices. The site, underlain by carbonate rock, was cropland used primarily for the production of corn and alfalfa. Average annual application of nutrients to the 14.4 acres of cornfields was 410 pounds of nitrogen and 110 pounds of phosphorus. About three times more nutrients were applied during the 1984 water year than during the 1983 water year. During the investigation, 714,000 cubic feet of runoff transported 244 tons of suspended sediment, 300 pounds of nitrogen, and 170 pounds of phosphorus during the 1984 water year. Runoff from storms on frozen ground produced the highest loads of nitrogen. Regression analyses indicate that runoff rates and quantities were controlled by precipitation intensities of quantities and the amount of crop cover, and that mean concentrations of nitrogen for runoff events increased with increased surface-nitrogen applications made prior to runoff. Ground-water levels responded quickly to recharge, with peaks occurring several hours to a day after precipitation. Median concentrations of dissolved nitrate in ground water ranged from 9.2 to 13 milligrams per liter as nitrogen. A lag time of 1 to 3 months was observed between the time that nitrogen was applied to the land surface and local maximums in nitrate concentrations were detected in ground water unaffected by recharge events. About 3 million cubic feet of ground water and an associated 2,200 pounds of nitrate-nitrogen discharged from the site during the study period. For the study period, 42 percent of the precipitation recharged to ground water, 10 percent became runoff, and 48 percent evapotranspired. Inputs of nitrogen to the study area were estimated to be 93 percent from manure, 5 percent from commercial fertilizer, and 2 percent from precipitation. Nitrogen outputs from the system were estimated to be 38 percent to crop uptake, 39 percent to volatilization, 20 percent to ground- water discharge, and 3 percent to surface runoff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19496010','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19496010"><span>Water quality in select regions of Cauvery Delta River basin, southern India, with emphasis on monsoonal variation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Solaraj, Govindaraj; Dhanakumar, Selvaraj; Murthy, Kuppuraj Rutharvel; Mohanraj, Rangaswamy</p> <p>2010-07-01</p> <p>Delta regions of the Cauvery River basin are one of the significant areas of rice production in India. In spite of large-scale utilization of the river basin for irrigation and drinking purposes, the lack of appropriate water management has seemingly deteriorated the water quality due to increasing anthropogenic activities. To assess the extent of deterioration, physicochemical characteristics of surface water were analyzed monthly in select regions of Cauvery Delta River basin, India, during July 2007 to December 2007. Total dissolved solids, chemical oxygen demand, and phosphate recorded maximum levels of 1,638, 96, and 0.43 mg/l, respectively, exceeding the permissible levels at certain sampling stations. Monsoonal rains in Cauvery River basin and the subsequent increase in river flow rate influences certain parameters like dissolved solids, phosphate, and dissolved oxygen. Agricultural runoff from watershed, sewage, and industrial effluents are suspected as probable factors of water pollution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003HyPr...17.2423R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003HyPr...17.2423R"><span>Experimental study of water fluxes in a residential area: 2. Road infiltration, runoff and evaporation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ragab, R.; Rosier, P.; Dixon, A.; Bromley, J.; Cooper, J. D.</p> <p>2003-08-01</p> <p>Lack of accurate data has led some hydrologists and city planners to assume that urban infiltration is zero and runoff is 100% of the rainfall. These assumptions lead to an over estimation of road runoff volume and an underestimation of direct recharge to groundwater, which is already rising under some UK cities. This study investigates infiltration and runoff processes and quantifies the percentage of rainfall that contributes to storm drainage, and that which infiltrates through different types of road surface. Access tubes were installed for measuring soil water content using a neutron probe in three car parks, a road and a grass site at the Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford. Storm drainage was recorded at the exit of the Thamesmead Estate in Crowmarsh Gifford, just before the drain joins the River Thames at Wallingford. Rainfall and water table depth were also recorded. Weekly measurements of soil moisture content indicated that the top 40 cm layer is not influenced by water-table fluctuations and, therefore, positive changes in soil moisture could be attributed to infiltration of rainfall through the surface. Depending on the nature of the surface, subsurface layers, level of traffic, etc., between 6 and 9% of rainfall was found to infiltrate through the road surfaces studied. The storm drainage generated by road runoff revealed a flow pattern similar to that of the receiving watercourse (River Thames) and increased with the increase of infiltration and soil water content below the road surface. The ratio of runoff to rainfall was 0·7, 0·9 and 0·5 for annual, winter (October-March) and summer (April-September) respectively. As the results of the infiltration indicated that 6 to 9% of annual rainfall infiltrates through the road surface, this means that evaporation represents, 21-24% of annual rainfall, with more evaporation taking place during summer than winter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H23A1519T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H23A1519T"><span>Stormwater Runoff Plumes in Southern California Detected with Satellite SAR and MODIS Imagery - Areas of Increased Contamination Risk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trinh, R. C.; Holt, B.; Gierach, M.</p> <p>2016-12-01</p> <p>Coastal pollution poses both a major health and environmental hazard, not only for beachgoers and coastal communities, but for marine organisms as well. Stormwater runoff is the largest source of pollution in the coastal waters of the Southern California Bight (SCB). The SCB is the final destination of four major urban watersheds and associated rivers, Ballona Creek, the Los Angeles River, the San Gabriel River, and the Santa Ana River, which act as channels for runoff and pollution during and after episodic rainstorms. Previous studies of SCB water quality have made use of both fine resolution Synthetic Aperture Radar (SAR) imagery and wide-swath medium resolution optical "ocean color" imagery from SeaWiFS and MODIS. In this study, we expand on previous SAR efforts, compiling a more extensive collection of multi-sensor SAR data, spanning from 1992 to 2014, analyzing the surface slick component of stormwater plumes. We demonstrate the use of SAR data in early detection of coastal stormwater plumes, relating plume extent to cumulative river discharge, and shoreline fecal bacteria loads. Intensity maps of the primary extent and direction of plumes were created, identifying coastal areas that may be subject to the greatest risk of environmental contamination. Additionally, we illustrate the differences in the detection of SAR surface plumes with the sediment-related discharge plumes derived from MODIS ocean color imagery. Finally, we provide a concept for satellite monitoring of stormwater plumes, combining both optical and radar sensors, to be used to guide the collection of in situ water quality data and enhance the assessment of related beach closures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC42A..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC42A..08H"><span>Improving simulations of snow water equivalent and total water storage changes over the Upper Yangtze River basin using multi-source remote sensing data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, P.; Long, D.</p> <p>2017-12-01</p> <p>Snow water equivalent (SWE) and total water storage (TWS) changes are important hydrological state variables over cryospheric regions, such as China's Upper Yangtze River (UYR) basin. Accurate simulation of these two state variables plays a critical role in understanding hydrological processes over this region and, in turn, benefits water resource management, hydropower development, and ecological integrity over the lower reaches of the Yangtze River, one of the largest rivers globally. In this study, an improved CREST model coupled with a snow and glacier melting module was used to simulate SWE and TWS changes over the UYR, and to quantify contributions of snow and glacier meltwater to the total runoff. Forcing, calibration, and validation data are mainly from multi-source remote sensing observations, including satellite-based precipitation estimates, passive microwave remote sensing-based SWE, and GRACE-derived TWS changes, along with streamflow measurements at the Zhimenda gauging station. Results show that multi-source remote sensing information can be extremely valuable in model forcing, calibration, and validation over the poorly gauged region. The simulated SWE and TWS changes and the observed counterparts are highly consistent, showing NSE coefficients higher than 0.8. The results also show that the contributions of snow and glacier meltwater to the total runoff are 8% and 6%, respectively, during the period 2003‒2014, which is an important source of runoff. Moreover, from this study, the TWS is found to increase at a rate of 5 mm/a ( 0.72 Gt/a) for the period 2003‒2014. The snow melting module may overestimate SWE for high precipitation events and was improved in this study. Key words: CREST model; Remote Sensing; Melting model; Source Region of the Yangtze River</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2011/5066/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2011/5066/"><span>Precipitation and runoff simulations of select perennial and ephemeral watersheds in the middle Carson River basin, Eagle, Dayton, and Churchill Valleys, west-central Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jeton, Anne E.; Maurer, Douglas K.</p> <p>2011-01-01</p> <p>The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To allow for water budget comparisons to the ephemeral models, the two perennial models were then run from 1980 to 2007, the time period constrained somewhat by the later record for the high-altitude climate station used in the simulation. The daily mean values of precipitation, runoff, evapotranspiration, and groundwater inflow simulated from the watershed models were summed to provide mean annual rates and volumes derived from each year of the simulation. Mean annual bias for the calibration period for Ash Canyon Creek and Clear Creek watersheds was within 6 and 3 percent, and relative errors were about 18 and -2 percent, respectively. For the 1980-2007 period of record, mean recharge efficiency and runoff efficiency (percentage of precipitation as groundwater inflow and runoff) averaged 7 and 39 percent, respectively, for Ash Canyon Creek, and 8 and 31 percent, respectively, for Clear Creek. For this same period, groundwater inflow volumes averaged about 500 acre-feet for Ash Canyon and 1,200 acre-feet for Clear Creek. The simulation period for the ephemeral watersheds ranged from water years 1978 to 2007. Mean annual simulated precipitation ranged from 6 to 11 inches. Estimates of recharge efficiency for the ephemeral watersheds ranged from 3 percent for Eureka Canyon to 7 percent for Eldorado Canyon. Runoff efficiency ranged from 7 percent for Eureka Canyon and 15 percent at Brunswick Canyon. For the 1978-2007 period, mean annual groundwater inflow volumes ranged from about 40 acre-feet for Eureka Canyon to just under 5,000 acre-feet for Churchill Canyon watershed. Watershed model results indicate significant interannual variability in the volumes of groundwater inflow caused by climate variations. For most of the modeled watersheds, little to no groundwater inflow was simulated for years with less than 8 inches of precipitation, unless those years were preceded by abnormally high precipitation years with significant subsurface storage carryover.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ECSS...81..569R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ECSS...81..569R"><span>Alkaline phosphatase activity in the western English Channel: Elevations induced by high summertime rainfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rees, Andrew P.; Hope, Sam B.; Widdicombe, Claire E.; Dixon, Joanna L.; Woodward, E. Malcolm S.; Fitzsimons, Mark F.</p> <p>2009-03-01</p> <p>Alkaline phosphatase activity (APA) was determined in bulk particulate material and in a single-cell (ELF) assay at station L4 in the western English Channel during the summer of 2007. Throughout this period, the UK experienced its heaviest summertime rainfall since records began in 1914; with the result that riverine run-off into coastal waters was also elevated relative to long-term averages. Between May and August 2007, three distinct periods of elevated river run-off were observed which resulted in salinity minima at L4 on days 141, 190 and 232. An extended period of high river run-off between days 170 and 210 was responsible for decreases in near-surface salinity at L4 from 35.2068 to a minimum on day 190 of 34.7422. This contributed to the development of haline stratification which supported the development of an intense bloom of the centric diatom Chaetoceros debelis, with maximum observed chlorophyll a concentration of 8.69 μg l -1. Minima in salinity, and maxima in chlorophyll concentration on day 190 were coincident with a peak in river-derived dissolved inorganic nitrogen (DIN) of 1.9 μmol l -1 which was >5 times greater than the summertime mean and 24 times the concentrations experienced at L4 on weeks immediately before and after. There was no accompanying increase in dissolved inorganic phosphorus (DIP), and the DIN:DIP ratio increased to 49. With the inherent phosphorus stress that this caused, rates of APA increased from <4 to 42.4 nmolP l -1 h -1. ELF analysis on day 197 identified two taxa actively expressing alkaline phosphatase: the dinoflagellate Prorocentrum micans and ciliate Tiarana sp.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19999964','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19999964"><span>Total pollution effect of urban surface runoff.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Luo, Hongbing; Luo, Lin; Huang, Gu; Liu, Ping; Li, Jingxian; Hu, Sheng; Wang, Fuxiang; Xu, Rui; Huang, Xiaoxue</p> <p>2009-01-01</p> <p>For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28516255','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28516255"><span>Water Quality Interaction with Alkaline Phosphatase in the Ganga River: Implications for River Health.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yadav, Amita; Pandey, Jitendra</p> <p>2017-07-01</p> <p>Carbon, nitrogen and phosphorus inputs through atmospheric deposition, surface runoff and point sources were measured in the Ganga River along a gradient of increasing human pressure. Productivity variables (chlorophyll a, gross primary productivity, biogenic silica and autotrophic index) and heterotrophy (respiration, substrate induced respiration, biological oxygen demand and fluorescein diacetate hydrolysis) showed positive relationships with these inputs. Alkaline phosphatase (AP), however, showed an opposite trend. Because AP is negatively influenced by available P, and eutrophy generates a feedback on P fertilization, the study implies that the alkaline phosphatase can be used as a high quality criterion for assessing river health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..561..312H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..561..312H"><span>Runoff sensitivity to climate change in the Nile River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hasan, Emad; Tarhule, Aondover; Kirstetter, Pierre-Emmanuel; Clark, Race; Hong, Yang</p> <p>2018-06-01</p> <p>In data scarce basins, such as the Nile River Basin (NRB) in Africa, constraints related to data availability, quality, and access often complicate attempts to estimate runoff sensitivity using conventional methods. In this paper, we show that by integrating the concept of the aridity index (AI) (derived from the Budyko curve) and climate elasticity, we can obtain the first order response of the runoff sensitivity using minimal data input and modeling expertise or experience. The concept of runoff elasticity relies on the fact that the energy available for evapotranspiration plays a major role in determining whether the precipitation received within a drainage basin generates runoff. The approach does not account for human impacts on runoff modification and or diversions. By making use of freely available gauge-corrected satellite data for precipitation, temperature, runoff, and potential evapotranspiration, we derived the sensitivity indicator (β) to determine the runoff response to changes in precipitation and temperature for four climatic zones in the NRB, namely, tropical, subtropical, semiarid and arid zones. The proposed sensitivity indicator can be partitioned into different elasticity components i.e: precipitation (εp), potential evapotranspiration (εETp), temperature (εT) and the total elasticity (εtot) . These elasticities allow robust quantification of the runoff response to the potential changes in precipitation and temperature with a high degree of accuracy. Results indicate that the tropical zone is energy-constrained with low sensitivity, (β < 1.0) , implying that input precipitation exceeds the amounts that can be evaporated given the available energy. The subtropical zone is subdivided into two distinct regions, the lowland (Machar and Sudd marshes), and the highland area (Blue Nile Basin), where each area has a unique sensitivity. The lowland area has high sensitivity, (β > 1.0) . The subtropical-highland zone moves between energy-limited to water-limited conditions during periods of wet and dry spells with varying sensitivity. The semiarid and arid zones are water limited, with high sensitivity, (β > 1.0) . The calculated runoff elasticities show that a 10% decrease in precipitation leads to a decrease in runoff of between 19% in the tropical zone and 30% in the arid zones. On the other hand, a 10% precipitation increase leads to a runoff increase of 14% in the tropical zone and 22% in the arid zone. The estimated runoff changes are consistent with the result obtained using other methods. Thus, the elasticity approach combines data parsimony and analytical simplicity to produce results that are practically useful for most purposes while facilitating communication with stakeholders with different levels of scientific knowledge. More research is needed to extend the application of the method to incorporate the effects of human activities, and land use change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28646776','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28646776"><span>Characterizing the PAHs in surface waters and snow in the Athabasca region: Implications for identifying hydrological pathways of atmospheric deposition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Birks, S J; Cho, S; Taylor, E; Yi, Y; Gibson, J J</p> <p>2017-12-15</p> <p>The composition of polycyclic aromatic hydrocarbons present in snow and surface waters in the Athabasca Oil Sands Region (AOSR) was characterized in order to identify major contributors to the organics detected in rivers and lakes in the region. PAH concentrations, measured by three monitoring programs in 2011, were used to compare the PAH compositions of snow and surface waters across the AOSR. The 2011 dataset includes total (dissolved+particulate) concentrations of thirty-four parent and alkylated PAH compounds in 105 snow, 272 river, and 3 lake samples. The concentration of PAHs in rivers varies seasonally, with the highest values observed in July. The timing of increases in PAH concentrations in rivers coincides with the high river discharge during the spring freshet, indicating that this major hydrological event may play an important role in delivering PAHs to rivers. However, the composition of PAHs present in rivers during this period differs from the composition of PAHs present in snow, suggesting that direct runoff and release of PAHs accumulated on snow may not be the major source of PAHs to the Athabasca River and its tributaries. Instead, snowmelt may contribute indirectly to increases in PAHs due to hydrological processes such as erosion of stream channels, remobilization of PAH-containing sediments, increased catchment runoff, and snowmelt-induced groundwater inputs during this dynamic hydrologic period. Better understanding of transformations of PAH profiles during transport along surface and subsurface flow paths in wetland-dominated boreal catchments would improve identification of potential sources and pathways in the region. The compositional differences highlight the challenges in identifying the origins of PAHs in a region with multiple potential natural and anthropogenic sources particularly when the potential transport pathways include air, soil and water. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024193','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024193"><span>Macroscale water fluxes 3. Effects of land processes on variability of monthly river discharge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Milly, P.C.D.; Wetherald, R.T.</p> <p>2002-01-01</p> <p>A salient characteristic of river discharge is its temporal variability. The time series of flow at a point on a river can be viewed as the superposition of a smooth seasonal cycle and an irregular, random variation. Viewing the random component in the spectral domain facilitates both its characterization and an interpretation of its major physical controls from a global perspective. The power spectral density functions of monthly flow anomalies of many large rivers worldwide are typified by a "red noise" process: the density is higher at low frequencies (e.g., <1 y-1) than at high frequencies, indicating disproportionate (relative to uncorrelated "white noise") contribution of low frequencies to variability of monthly flow. For many high-latitude and arid-region rivers, however, the power is relatively evenly distributed across the frequency spectrum. The power spectrum of monthly flow can be interpreted as the product of the power spectrum of monthly basin total precipitation (which is typically white or slightly red) and several filters that have physical significance. The filters are associated with (1) the conversion of total precipitation (sum of rainfall and snowfall) to effective rainfall (liquid flux to the ground surface from above), (2) the conversion of effective rainfall to soil water excess (runoff), and (3) the conversion of soil water excess to river discharge. Inferences about the roles of each filter can be made through an analysis of observations, complemented by information from a global model of the ocean-atmosphere-land system. The first filter causes a snowmelt-related amplification of high-frequency variability in those basins that receive substantial snowfall. The second filter causes a relatively constant reduction in variability across all frequencies and can be predicted well by means of a semiempirical water balance relation. The third filter, associated with groundwater and surface water storage in the river basin, causes a strong reduction in high-frequency variability of many basins. The strength of this reduction can be quantified by an average residence time of water in storage, which is typically on the order of 20-50 days. The residence time is demonstrably influenced by freezing conditions in the basin, fractional cover of the basin by lakes, and runoff ratio (ratio of mean runoff to mean precipitation). Large lake areas enhance storage and can greatly increase total residence times (100 to several hundred days). Freezing conditions appear to cause bypassing of subsurface storage, thus reducing residence times (0-30 days). Small runoff ratios tend to be associated with arid regions, where the water table is deep, and consequently, most of the runoff is produced by processes that bypass the saturated zone, leading to relatively small residence times for such basins (0-40 days).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029744','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029744"><span>Restoration of wildcelery, Vallisneria americana Michx., in the lower Detroit River of the Lake Huron-Lake Erie Corridor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schloesser, D.W.; Manny, B.A.</p> <p>2007-01-01</p> <p>American wildcelery (Vallisneria americana Michx.) is a valuable submersed aquatic plant that was negatively affected by pollution and urban runoff in the lower Detroit River for much of the 20th century. Following 25 years of water-pollution and urban-runoff abatement initiated in the early 1970s, we postulated that water clarity had increased and that this would allow restoration of wildcelery in the lower Detroit River. In addition, water clarity increased in the late 1980s due to water filtration and particulate removal by exotic dreissenid mussels (Dreissena polymorpha and D. bugensis), which could contribute to potential wildcelery restoration. We sampled wildcelery in 1996–97 and compared these data to wildcelery data from 1950–51 and 1984–85. Over the 48-year period of comparison, areal density of wildcelery tubers decreased 72% (from 51.2 million to 14.4 million tubers) between 1950–51 and 1984–85 then increased 251% (from14.4 million to 50.5 million tubers) between 1984–85 and 1996–97. As a result, overall areal abundance was about the same in 1950–51 as in fall 1996–97. However, tuber densities in spring 1996 were similar to historical low abundances in springs of 1984–85. Then between spring and fall 1996, tuber densities increased 333% and remained relatively abundant through October 1997 indicating the beginning of the restoration of wildcelery in the lower Detroit River. In addition, we believe further reductions of turbidity through continued pollution-abatement programs and water filtration by dreissenid mussels combined with habitat protection and active management of wildcelery will contribute even further to the restoration of wildcelery in the Detroit River in the 21st century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022441','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022441"><span>Concentrations and characteristics of organic carbon in surface water in Arizona: Influence of urbanization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Westerhoff, P.; Anning, D.</p> <p>2000-01-01</p> <p>Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p < 0.05). Reservoir outflows and wastewater-treatment plant effluent were higher in DOC concentration (p < 0.05) and exhibited less variability in concentration than inflows to the reservoirs. Specific ultraviolet absorbance values at 254 nm were typically less than 2 m-1(milligram DOC per liter)-1 and lower than values found in most temperate-region rivers, but specific ultraviolet absorbance values increased during runoff events. Fluorescence measurements indicated that DOC in desert streams typically exhibit characteristics of autochthonous sources; however, DOC in unregulated upland rivers and desert streams experienced sudden shifts from autochthonous to allochthonous sources during runoff events. The urban water system (reservoir systems and wastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition. (C) 2000 Elsevier Science B.V.Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p<0.05). Reservoir outflows and wastewater-treatment plant effluent were higher in DOC concentration (p<0.05) and exhibited less variability in concentration than inflows to the reservoirs. Specific ultraviolet absorbance values at 254 nm were typically less than 2 m-1(milligram DOC per liter)-1 and lower than values found in most temperate-region rivers, but specific ultraviolet absorbance values increased during runoff events. Fluorescence measurements indicated that DOC in desert streams typically exhibit characteristics of autochthonous sources; however, DOC in unregulated upland rivers and desert streams experienced sudden shifts from autochthonous to allochthonous sources during runoff events. The urban water system (reservoir systems and wastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition.The influence of urbanization, becoming increasingly common in arid regions, on dissolved organic carbon (DOC) concentrations in surface water resources was studied. DOC concentration and composition, seasonal watershed runoff events, streamflow variations, water management practices, and urban infrastructure in several Arizona watersheds were monitored. Ephemeral sites had the highest DOC levels, and unregulated perennial sites and lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater treatment plants. Reservoir outflows and wastewater treatment plant effluent had higher and less variable DOC concentrations than inflows to reservoirs. UV absorbance values, fluorescence measurements, and other indicators suggest that urban water systems (reservoirs and wastewater treatment plants) affect temporal variability in DOC concentration and composition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/circ/1949/0052/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/circ/1949/0052/report.pdf"><span>Annual runoff in the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Langbein, Walter Basil</p> <p>1949-01-01</p> <p>The water that drains from the land into creeks and rivers is called runoff. Supplying many of our basic human needs for water, runoff occurs chiefly as a residual of rainfall after Nature’s take – that is, after the persistent demands of evaporation from land and transpiration from vegetation have been supplied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23995020','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23995020"><span>Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: concentrations, mass loading and ecological risks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Weihai; Yan, Wen; Li, Xiangdong; Zou, Yongde; Chen, Xiaoxiang; Huang, Weixia; Miao, Li; Zhang, Ruijie; Zhang, Gan; Zou, Shichun</p> <p>2013-11-01</p> <p>Ten antibiotics belonging to three groups (macrolides, fluoroquinolones and sulfonamides) were investigated in riverine runoff of the Pearl River Delta (PRD) and Pearl River Estuary (PRE), South China for assessing the importance of riverine runoff in the transportation of contaminants from terrestrial sources to the open ocean. All antibiotics were detected in the eight outlets with concentrations ranging from 0.7 to 127 ng L(-1). The annual mass loadings of antibiotics from the PRD to the PRE and coast were 193 tons with 102 tons from the fluoroquinolone group. It showed that antibiotics decreased from the riverine outlets to the PRE and open ocean. Risk assessment showed that most of these antibiotics showed various ecological risks to the relevant aquatic organisms, in which ofloxacin (OFL), erythromycin (ETM) and ciprofloxacin (CIP) posed high ecological risks to the studied aquatic environments. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2006/5175/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2006/5175/"><span>Phosphorus Concentrations, Loads, and Yields in the Illinois River Basin, Arkansas and Oklahoma, 2000-2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tortorelli, Robert L.; Pickup, Barbara E.</p> <p>2006-01-01</p> <p>The Illinois River and tributaries, Flint Creek and Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus levels in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30-day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an investigation to summarize phosphorus concentrations and provide estimates of phosphorus loads, yields, and flow-weighted concentrations in the Illinois River and tributaries from January 2000 through December 2004. Data from water-quality samples collected from 2000 to 2004 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and mean flow-weighted concentrations in the Illinois River basin for three 3-year periods - 2000-2002, 2001-2003, and 2002-2004, to update a previous report that used data from water-quality samples from 1997 to 2001. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Phosphorus concentrations in the Illinois River basin were significantly greater in runoff samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and decreased in the downstream direction in the Illinois River from the Watts to Tahlequah stations. Phosphorus concentrations generally increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources. Estimated mean annual phosphorus loads were greater at the Illinois River stations than at Flint Creek and Baron Fork. Annual total loads in the Illinois River from Watts to Tahlequah, increased slightly for the period 2000-2002 and decreased slightly for the periods 2001-2003 and 2002-2004. Estimated mean annual base-flow loads at stations on the Illinois River were about 11 to 20 times greater than base-flow loads at the station on Baron Fork and 4 to 10 times greater than base-flow loads at the station on Flint Creek. Estimated mean annual runoff loads ranged from 68 to 96 percent of the estimated mean annual total phosphorus loads from 2000-2004. Estimated mean seasonal base-flow loads were generally greatest in spring (March through May) and were least in fall (September through November). Estimated mean seasonal runoff loads generally were greatest in summer (June through August) for the period 2000-2002, but were greatest in winter (December through February) for the period 2001-2003, and greatest in spring for the period 2002-2004. Estimated mean total yields of phosphorus ranged from 192 to 811 pounds per year per square mile, with greatest yields being reported for Illinois River near Watts (576 to 811 pounds per year per square mile), and the least yields being reported for Baron Fork at Eldon for the periods 2000-2002 and 2001-2003 (501 and 192 pounds per year per square mile) and for Illinois River near Tahlequah for the period 2002-2004 (370 pounds per year per square mile). Estimated mean flow-weighted concentrations were more than 10 times greater than the median (0.022 milligram per liter) and were consistently greater than the 75th percentile of flow-weighted phosphorus concentrations in samples collected at relatively undeveloped basins of the United States (0.037 milligram per liter). In addition, flow-weighted phosphorus concentrations in 2000-2002 at all Illinois River stations and at Flint Creek near Kansas were equal to or greater than the 75th percentile of all National Water-Quality Assessment Program station</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://oh.water.usgs.gov/reports/Abstracts/wrir00-4091.html','USGSPUBS'); return false;" href="http://oh.water.usgs.gov/reports/Abstracts/wrir00-4091.html"><span>Status and trends in suspended-sediment discharges, soil erosion, and conservation tillage in the Maumee River basin--Ohio, Michigan, and Indiana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Myers, Donna N.; Metzker, Kevin D.; Davis, Steven</p> <p>2000-01-01</p> <p>The relation of suspended-sediment discharges to conservation-tillage practices and soil loss were analyzed for the Maumee River Basin in Ohio, Michigan, and Indiana as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Cropland in the basin is the largest contributor to soil erosion and suspended-sediment discharge to the Maumee River and the river is the largest source of suspended sediments to Lake Erie. Retrospective and recently-collected data from 1970-98 were used to demonstrate that increases in conservation tillage and decreases in soil loss can be related to decreases in suspended-sediment discharge from streams. Average annual water and suspended-sediment budgets computed for the Maumee River Basin and its principal tributaries indicate that soil drainage and runoff potential, stream slope, and agricultural land use are the major human and natural factors related to suspended-sediment discharge. The Tiffin and St. Joseph Rivers drain areas of moderately to somewhat poorly drained soils with moderate runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the St. Joseph and Tiffin Rivers represent 29.0 percent of the basin area, 30.7 percent of the average-annual streamflow, and 9.31 percent of the average annual suspended-sediment discharge. The Auglaize and St. Marys Rivers drain areas of poorly to very poorly drained soils with high runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the Auglaize and St. Marys Rivers represent 48.7 percent of the total basin area, 53.5 percent of the average annual streamflow, and 46.5 percent of the average annual suspended-sediment discharge. Areas of poorly drained soils with high runoff potential appear to be the major source areas of suspended sediment discharge in the Maumee River Basin. Although conservation tillage differed in the degree of use throughout the basin, on aver-age, it was used on 55.4 percent of all crop fields in the Maumee River Basin from 1993-98. Conservation tillage was used at relatively higher rates in areas draining to the lower main stem from Defiance to Waterville, Ohio and at relatively lower rates in the St. Marys and Auglaize River Basins, and in areas draining to the main stem between New Haven, Ind. and Defiance, Ohio. The areas that were identified as the most important sediment-source areas in the basin were characterized by some of the lowest rates of conservation tillage. The increased use of conservation tillage was found to correspond to decreases in suspended-sediment discharge over time at two locations in the Maumee River Basin. A 49.8 percent decrease in suspended-sediment discharge was detected when data from 1970-74 were compared to data from 1996-98 for the Auglaize River near Ft. Jennings, Ohio. A decrease in suspended-sediment discharge of 11.2 percent was detected from 1970?98 for the Maumee River at Waterville, Ohio. No trends in streamflow at either site were detected over the period 1970-98. The lower rate of decline in suspended-sediment discharge for the Maumee River at Waterville, Ohio compared to the Auglaize River near Ft. Jennings, may be due to resuspension and export of stored sediments from drainage ditches, stream channels, and flood plains in the large drainage basin upstream from Waterville. Similar findings by other investigators about the capacity of drainage networks to store sediment are supported by this investigation. These findings go undetected when soil loss estimates are used alone to evaluate the effectiveness of conservation tillage. Water-quality data in combination with soil-loss estimates were needed to draw these conclusions. These findings provide information to farmers and soil conservation agents about the ability of conservation tillage to reduce soil erosion and suspended-sediment discharge from the Maumee River Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=300913&keyword=greenhouse&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=300913&keyword=greenhouse&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Climate Change Impacts and Greenhouse Gas Mitigation Effects on U.S. Hydropower Generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Climate change will have potentially significant effects on hydropower generation due to changes in the magnitude and seasonality of river runoff and increases in reservoir evaporation. These physical impacts will in turn have economic consequences through both producer revenues ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=253475','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=253475"><span>Trapping Efficiency of Agricultural Runoff in a Modified Riverine Backwater Wetland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Riverine backwater wetlands within river floodplains have important economic and ecological functions such as acting as filters for suspended sediment, nutrients and pesticides entering from adjacent agricultural fields. These wetlands hydrology can be modified to increase the efficiency of their n...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPA14A..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPA14A..04G"><span>Effects of Changing Climate During the Snow Ablation Season on Seasonal Streamflow Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gutzler, D. S.; Chavarria, S. B.</p> <p>2017-12-01</p> <p>Seasonal forecasts of total surface runoff (Q) in snowmelt-dominated watersheds derive most of their prediction skill from the historical relationship between late winter snowpack (SWE) and subsequent snowmelt runoff. Across the western US, however, the relationship between SWE and Q is weakening as temperatures rise. We describe the effects of climate variability and change during the springtime snow ablation season on water supply outlooks (forecasts of Q) for southwestern rivers. As snow melts earlier, the importance of post-snow rainfall increases: interannual variability of spring season precipitation accounts for an increasing fraction of the variability of Q in recent decades. The results indicate that improvements to the skill of S2S forecasts of spring season temperature and precipitation would contribute very significantly to water supply outlooks that are now based largely on observed SWE. We assess this hypothesis using historical data from several snowpack-dominated basins in the American Southwest (Rio Grande, Pecos, and Gila Rivers) which are undergoing rapid climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17255628','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17255628"><span>Phosphorus transport pathways to streams in tile-drained agricultural watersheds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gentry, L E; David, M B; Royer, T V; Mitchell, C A; Starks, K M</p> <p>2007-01-01</p> <p>Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011HESSD...810679V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011HESSD...810679V"><span>SWAT use of gridded observations for simulating runoff - a Vietnam river basin study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vu, M. T.; Raghavan, S. V.; Liong, S. Y.</p> <p>2011-12-01</p> <p>Many research studies that focus on basin hydrology have used the SWAT model to simulate runoff. One common practice in calibrating the SWAT model is the application of station data rainfall to simulate runoff. But over regions lacking robust station data, there is a problem of applying the model to study the hydrological responses. For some countries and remote areas, the rainfall data availability might be a constraint due to many different reasons such as lacking of technology, war time and financial limitation that lead to difficulty in constructing the runoff data. To overcome such a limitation, this research study uses some of the available globally gridded high resolution precipitation datasets to simulate runoff. Five popular gridded observation precipitation datasets: (1) Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources (APHRODITE), (2) Tropical Rainfall Measuring Mission (TRMM), (3) Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN), (4) Global Precipitation Climatology Project (GPCP), (5) modified Global Historical Climatology Network version 2 (GHCN2) and one reanalysis dataset National Centers for Environment Prediction/National Center for Atmospheric Research (NCEP/NCAR) are used to simulate runoff over the Dakbla River (a small tributary of the Mekong River) in Vietnam. Wherever possible, available station data are also used for comparison. Bilinear interpolation of these gridded datasets is used to input the precipitation data at the closest grid points to the station locations. Sensitivity Analysis and Auto-calibration are performed for the SWAT model. The Nash-Sutcliffe Efficiency (NSE) and Coefficient of Determination (R2) indices are used to benchmark the model performance. This entails a good understanding of the response of the hydrological model to different datasets and a quantification of the uncertainties in these datasets. Such a methodology is also useful for planning on Rainfall-runoff and even reservoir/river management both at rural and urban scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4052620','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4052620"><span>Variation of Runoff and Precipitation in the Hekou-Longmen Region of the Yellow River Based on Elasticity Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Erhui; Mu, Xingmin; Zhao, Guangju; Gao, Peng; Shao, Hongbo</p> <p>2014-01-01</p> <p>Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010), Huangfuchuan watershed (from 1954 to 2010), and Yanhe watershed (from 1952 to 2010) in the middle reaches of the Yellow River. The results showed that runoff appeared a significant decreasing trend (P = 0.01) while it was not significant in precipitation in all study areas. In particular, the reductions of average annual runoff in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed were 72.7%, 87.5%, and 32.2%, respectively, during 2000–2010 compared to the 1950s. There existed two abrupt change points of the runoff in the Hekou-Longmen region and Huangfuchuan watershed, which were detected in 1979 and 1998. But in the Yanhe watershed only one abrupt change point was found in 1996. The precipitation elasticities of runoff were 1.11, 1.09, and 1.26, respectively, and the contributions of precipitation on runoff reduction were 26.4%, 17.9%, and 31.6%, respectively, in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed. PMID:24955424</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24955424','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24955424"><span>Variation of runoff and precipitation in the Hekou-Longmen region of the Yellow River based on elasticity analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Erhui; Mu, Xingmin; Zhao, Guangju; Gao, Peng; Shao, Hongbo</p> <p>2014-01-01</p> <p>Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010), Huangfuchuan watershed (from 1954 to 2010), and Yanhe watershed (from 1952 to 2010) in the middle reaches of the Yellow River. The results showed that runoff appeared a significant decreasing trend (P = 0.01) while it was not significant in precipitation in all study areas. In particular, the reductions of average annual runoff in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed were 72.7%, 87.5%, and 32.2%, respectively, during 2000-2010 compared to the 1950s. There existed two abrupt change points of the runoff in the Hekou-Longmen region and Huangfuchuan watershed, which were detected in 1979 and 1998. But in the Yanhe watershed only one abrupt change point was found in 1996. The precipitation elasticities of runoff were 1.11, 1.09, and 1.26, respectively, and the contributions of precipitation on runoff reduction were 26.4%, 17.9%, and 31.6%, respectively, in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1986/4089/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1986/4089/report.pdf"><span>Hydrologic reconnaissance of the Unalakleet River basin, Alaska, 1982-83</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sloan, C.E.; Kernodle, D.R.; Huntsinger, Ronald</p> <p>1986-01-01</p> <p>The Unalakleet River, Alaska, from its headwaters to the confluence of the Chiroskey River has been designated as a wild river and is included in the National Wild and Scenic Rivers System. Yearly low flow, which occurs during the winter, is sustained by groundwater discharge; there are few lakes in the basin and the cold climate prevents winter runoff. The amount of winter streamflow was greatest in the lower parts of streams with the exception of the South River and was apparently proportional to the amount of unfrozen alluvium upstream from the measuring sites. Unit discharge in late winter ranged from nearly zero at the mouth of the South River to 0.24 cu ft/sec/sq mi in the Unalakleet River main stem below Tenmile River. Summer runoff at the time of the reconnaissance may have been slightly higher than normal owing to recent rains. Unit runoff ranged from a low of 1.0 cu ft/sec/sq mi at the South River, to a high value of 2.4 cu ft/sec/sq mi at the North Fork Unalakleet River. Flood marks were present in the basin well above streambank levels but suitable sections to measure the maximum evident flood by slope-area methods were not found. Flood peaks were calculated for the Unalakleet River and its tributaries using basin characteristics. Calculated unit runoff for the 50-year flood ranged from about 17 to 45 cu ft/sec/sq mi. Water quality was good throughout the basin, and an abundant and diversified community of benthic invertebrates was found in samples collected during the summer reconnaissance. Permafrost underlies most of the basin, but groundwater can be found in unfrozen alluvium in the stream valleys, most abundantly in the lower part of the main tributaries and along the main stem of the Unalakleet River. Groundwater sustains river flow through the winter; an estimate of its quantity can be found through low-flow measurements. Groundwater quality in the basin appears to be satisfactory for most uses. Currently, little groundwater is used within the basin. The water supply for Unalakleet is obtained from a well and gallery in a small valley north of the airport, outside the Unalakleet River basin. (Author 's abstract)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999WRR....35.1305G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999WRR....35.1305G"><span>Dam nation: A geographic census of American dams and their large-scale hydrologic impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graf, William L.</p> <p>1999-04-01</p> <p>Newly available data indicate that dams fragment the fluvial system of the continental United States and that their impact on river discharge is several times greater than impacts deemed likely as a result of global climate change. The 75,000 dams in the continental United States are capable of storing a volume of water almost equaling one year's mean runoff, but there is considerable geographic variation in potential surface water impacts. In some western mountain and plains regions, dams can store more than 3 year's runoff, while in the Northeast and Northwest, storage is as little as 25% of the annual runoff. Dams partition watersheds; the drainage area per dam varies from 44 km2 (17 miles2) per dam in New England to 811 km2 (313 miles2) per dam in the Lower Colorado basin. Storage volumes, indicators of general hydrologic effects of dams, range from 26,200 m3 km-2 (55 acre-feet mile-2) in the Great Basin to 345,000 m3 km-2 (725 acre-feet mile-2) in the South Atlantic region. The greatest river flow impacts occur in the Great Plains, Rocky Mountains, and the arid Southwest, where storage is up to 3.8 times the mean annual runoff. The nation's dams store 5000 m3 (4 acre-feet) of water per person. Water resource regions have experienced individualized histories of cumulative increases in reservoir storage (and thus of downstream hydrologic and ecologic impacts), but the most rapid increases in storage occurred between the late 1950s and the late 1970s. Since 1980, increases in storage have been relatively minor.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33G1795L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33G1795L"><span>Spatio-temporal Patterns of Vegetation and Its Relationship with Precipitation and Temperature in the Yarlung Zangbo River Basin, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>LIU, X.; Xu, Z.; Peng, D.</p> <p>2017-12-01</p> <p>Vegetation growth plays a significant role on runoff variation at high altitude, and precipitation and temperature are both key factors affecting vegetation conditions. As one of the greatest international rivers in China, the Yarlung Zangbo River in the southern Qinghai-Tibetan Plateau was selected, and the spatio-temporal patterns of vegetation were analyzed by using NDVI (Normalized Difference Vegetation Index) during 1998 2014. The relationship between NDVI and precipitation as well as temperature was also investigated in this study. Results showed that the value of NDVI increases with the decrease of elevation and the largest value appears in the broadleaf forest cover. Almost all annual NDVI variations exhibit an increasing tendency, particularly for the broadleaf forest cover. On the viewpoint of statistics, only 29% pixels of NDVI with increasing tendency are of significance for the other cover, while for cultivated vegetation cover, around 82% pixels of NDVI were detected with significant increasing tendency. In addition, vegetation growth showed lagging response to precipitation, and the lag time is around one month. Moreover, in the region with elevation over 5000 m, negative relationship between NDVI and precipitation for alpine vegetation was found. Approximately 75% of NDVI variations are dominated by precipitation and temperature. These findings may provide a reference to investigate runoff variations and strengthen ecological protection for similar high-altitude areas in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29758893','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29758893"><span>Future changes in Yuan River ecohydrology: Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wen, Xin; Liu, Zhehua; Lei, Xiaohui; Lin, Rongjie; Fang, Guohua; Tan, Qiaofeng; Wang, Chao; Tian, Yu; Quan, Jin</p> <p>2018-08-15</p> <p>The eco-hydrological system in southwestern China is undergoing great changes in recent decades owing to climate change and extensive cascading hydropower exploitation. With a growing recognition that multiple drivers often interact in complex and nonadditive ways, the purpose of this study is to predict the potential future changes in streamflow and fish habitat quality in the Yuan River and quantify the individual and cumulative effect of cascade damming and climate change. The bias corrected and spatial downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Model (GCM) projections are employed to drive the Soil and Water Assessment Tool (SWAT) hydrological model and to simulate and predict runoff responses under diverse scenarios. Physical habitat simulation model is established to quantify the relationship between river hydrology and fish habitat, and the relative change rate is used to assess the individual and combined effects of cascade damming and climate change. Mean annual temperature, precipitation and runoff in 2015-2100 show an increasing trend compared with that in 1951-2010, with a particularly pronounced difference between dry and wet years. The ecological habitat quality is improved under cascade hydropower development since that ecological requirement has been incorporated in the reservoir operation policy. As for middle reach, the runoff change from January to August is determined mainly by damming, and climate change influence becomes more pronounced in dry seasons from September to December. Cascade development has an effect on runoff of lower reach only in dry seasons due to the limited regulation capacity of reservoirs, and climate changes have an effect on runoff in wet seasons. Climate changes have a less significant effect on fish habitat quality in middle reach than damming, but a more significant effect in lower reach. In addition, the effect of climate changes on fish habitat quality in lower reach is high in dry seasons but low in flood seasons. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.H51F..05W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.H51F..05W"><span>The Effects of Urbanization and Flood Control on Sediment Discharge of a Southern California River, Evidence of a Dilution Effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Warrick, J. A.; Orzech, K. M.; Rubin, D. M.</p> <p>2004-12-01</p> <p>The southern California landscape has undergone dramatic urbanization and population growth during the past 60 years and currently supports almost 20 million inhabitants. During this time, rivers of the region have been altered with damming, channel straightening and hardening, and water transfer engineering. These changes have drastically altered water and sediment discharge from most of the region's drainage basins. Here we focus on changes in sediment discharge from the largest watershed of southern California, the Santa Ana River. Order-of-magnitude drops in the suspended sediment rating curves (the relationship between suspended sediment concentration and instantaneous river discharge) are observed between 1967 and 2001, long after the construction of a major flood control dam in 1941. These sediment concentration decreases do not, however, represent alteration of the total sediment flux from the basin (a common interpretation of sediment rating curves), but rather a dilution of suspended sediment by increases (approx. 4x) in stormwater discharge associated with urbanization. Increases in peak and total stormwater discharge are consistent with runoff patterns from urbanizing landscapes, supporting our hypothesis that the diluting water originated from stormwater runoff generated in urban areas both up- and downstream of dams. Our dilution hypothesis is further supported with water and sediment budgets, dilution calculations, and suspended and bed grain size information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14723924','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14723924"><span>Temporal pattern of toxicity in runoff from the Tijuana River Watershed.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gersberg, Richard M; Daft, Daniel; Yorkey, Darryl</p> <p>2004-02-01</p> <p>Samples were collected from the Tijuana River under both dry weather (baseflow) conditions and during wet weather, and tested for toxicity using Ceriodaphnia dubia tests. Toxicity of waters in the Tijuana River was generally low under baseflow conditions, but increased markedly during high flow runoff events. In order to determine the temporal pattern of toxicity during individual rain events, sequential grab samples were collected using an autosampler at 5-7 h intervals after the start of the rain event, and tested for acute toxicity. In all cases, peak toxicity values (ranging from 2.8 to 5.8TU) for each storm occurred within the first 1-2 h of initiation of the rain event, and were statistically higher (using the 95% CL) for each of the pre-storm base flow values. However, there was no statistically significant correlation (p<0.05) between flow rate and toxicity when all storm data was pooled. Additionally, we used toxicity identification evaluation (TIE) procedures to attempt to identify the classes of chemicals that account for this early storm toxicity. Solid phase extraction was the only treatment that showed consistent and significant (P<0.05) removal of toxicity. These TIEs, conducted on the most toxic sample of the river's flow during runoff events, suggest that non-polar organics may be responsible for such toxicity. The temporal pattern of toxicity, both during a given storm event and seasonally, indicates that wash-off from the watershed by rainfall may deplete the supply of toxicity available for wash-off in subsequent events, so that a clearly consistent relationship between flow and toxicity was not evident.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri034091','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri034091"><span>Diazinon and chlorpyrifos loads in precipitation and urban and agricultural storm runoff during January and February 2001 in the San Joaquin River basin, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zamora, Celia; Kratzer, Charles R.; Majewski, Michael S.; Knifong, Donna L.</p> <p>2003-01-01</p> <p>The application of diazinon and chlorpyrifos on dormant orchards in 2001 in the San Joaquin River Basin was 24 percent less and 3.2 times more than applications in 2000, respectively. A total of 16 sites were sampled during January and February 2001 storm events: 7 river sites, 8 precipitation sites, and 1 urban storm drain. The seven river sites were sampled weekly during nonstorm periods and more frequently during storm runoff from a total of four storms. The monitoring of storm runoff at a city storm drain in Modesto, California, occurred simultaneously with the collection of precipitation samples from eight sites during a January 2001 storm event. The highest concentrations of diazinon occurred during the storm periods for all 16 sites, and the highest concentrations of chlorpyrifos occurred during weekly nonstorm sampling for the river sites and during the January storm period for the urban storm drain and precipitation sites. A total of 60 samples (41 from river sites, 10 from precipitation sites, and 9 from the storm drain site) had diazinon concentrations greater than 0.08 ?g/L, the concentration being considered by the California Department of Fish and Game as its criterion maximum concentration for the protection of aquatic habitats. A total of 18 samples (2 from river sites, 9 from precipitation sites, and 7 from the storm drain site) exceeded the equivalent California Department of Fish and Game guideline of 0.02 ?g/L for chlorpyrifos. The total diazinon load in the San Joaquin River near Vernalis during January and February 2001 was 23.8 pounds active ingredient; of this amount, 16.9 pounds active ingredient were transported by four storms, 1.06 pounds active ingredient were transported by nonstorm events, and 5.82 pounds active ingredient were considered to be baseline loads. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2001 was 2.17 pounds active ingredient; of this amount, 0.702 pound active ingredient was transported during the four storms, and 1.47 pounds active ingredient were considered as baseline load. The total January and February diazinon load in the San Joaquin River near Vernalis was 0.27 percent of dormant application; the total January and February chlorpyrifos load was 0.02 percent of dormant application. The precipitation samples collected during the January 2001 storm event were analyzed for pesticides to evaluate their potential contribution to pesticide loads in the study area. When the average concentrations of diazinon and chlorpyrifos in the precipitation samples were compared with concentrations in urban storm runoff samples, 68 percent of the diazinon concentration in the runoff could be accounted for in the precipitation. Chlorpyrifos, however, had average precipitation concentrations that were 2.5 times higher than what was detected in the runoff. Although no firm conclusions can be made from one storm event, preliminary results indicate that pesticides in precipitation can significantly contribute to pesticide loads in storm runoff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26232981','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26232981"><span>Classical and generalized Horton laws for peak flows in rainfall-runoff events.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gupta, Vijay K; Ayalew, Tibebu B; Mantilla, Ricardo; Krajewski, Witold F</p> <p>2015-07-01</p> <p>The discovery of the Horton laws for hydrologic variables has greatly lagged behind geomorphology, which began with Robert Horton in 1945. We define the classical and the generalized Horton laws for peak flows in rainfall-runoff events, which link self-similarity in network geomorphology with river basin hydrology. Both the Horton laws are tested in the Iowa River basin in eastern Iowa that drains an area of approximately 32 400 km(2) before it joins the Mississippi River. The US Geological Survey continuously monitors the basin through 34 stream gauging stations. We select 51 rainfall-runoff events for carrying out the tests. Our findings support the existence of the classical and the generalized Horton laws for peak flows, which may be considered as a new hydrologic discovery. Three different methods are illustrated for estimating the Horton peak-flow ratio due to small sample size issues in peak flow data. We illustrate an application of the Horton laws for diagnosing parameterizations in a physical rainfall-runoff model. The ideas and developments presented here offer exciting new directions for hydrologic research and education.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/26185','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/26185"><span>Effects of urban runoff and wastewater effluent on Wilsons Creek and James River near Springfield, Missouri</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Berkas, Wayne R.</p> <p>1980-01-01</p> <p>Statistical analysis on water-quality parameters from James River upstream and downstream from the confluence of Wilsons Creek shows a significant difference for all parameters except temperature and dissolved silica at the 0.05 probability level. Regression analysis shows correlation for discharge with dissolved sodium, dissolved chloride, and dissolved potassium, and for specific conductance with dissolved chloride and dissolved sulfate at the station downstream from Wilsons Creek. This is due to the consistent quality of the effluent from the Southwest Wastewater Plant on Wilsons Creek. Water-quality monitor stations upstream and downstream from the wastewater plant indicate that the plant has a degrading effect on dissolved oxygen in Wilsons Creek and James River. The monitors also indicate that rainfall flushes momentarily poor quality water into Wilsons Creek from the urbanized Springfield area. Overall, the runoff is diluting the effluent from the wastewater plant. Rainfall and runoff stations indicate a rapid response of runoff to rainfall due to the high percentage of imperviousness and the filling or paving of sinkholes. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70179636','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70179636"><span>mizuRoute version 1: A river network routing tool for a continental domain water resources applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mizukami, Naoki; Clark, Martyn P.; Sampson, Kevin; Nijssen, Bart; Mao, Yixin; McMillan, Hilary; Viger, Roland; Markstrom, Steven; Hay, Lauren E.; Woods, Ross; Arnold, Jeffrey R.; Brekke, Levi D.</p> <p>2016-01-01</p> <p>This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPA11B0212R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPA11B0212R"><span>Enhancing Seasonal Water Outlooks: Needs and Opportunities in the Critical Runoff Season</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ray, A. J.; Barsugli, J. J.; Yocum, H.; Stokes, M.; Miskus, D.</p> <p>2017-12-01</p> <p>The runoff season is a critical period for the management of water supply in the western U.S., where in many places over 70% of the annual runoff occurs in the snowmelt period. Managing not only the volume, but the intra-seasonal timing of the runoff is important for optimizing storage, as well as achieving other goals such as mitigating flood risk, and providing peak flows for riparian habitat management, for example, for endangered species. Western river forecast centers produce volume forecasts for western reservoirs that are key input into many water supply decisions, and also short term river forecasts out to 10 days. The early volume forecasts each year typically begin in December, and are updated throughout the winter and into the runoff season (April-July for many areas, but varies). This presentation will discuss opportunities for enhancing this existing suite of RFC water outlooks, including the needs for and potential use for "intraseasonal" products beyond those provided by the Ensemble Streamflow Prediction system and the volume forecasts. While precipitation outlooks have little skill for many areas and seasons, and may not contribute significantly to the outlook, late winter and spring temperature forecasts have meaningful skill in certain areas and sub-seasonal to seasonal time scales. This current skill in CPC temperature outlooks is an opportunity to translate these products into information about the snowpack and potential runoff timing, even where the skill in precipitation is low. Temperature is important for whether precipitation falls as snow or rain, which is critical for streamflow forecasts, especially in the melt season in snowpack-dependent watersheds. There is a need for better outlooks of the evolution of snowpack, conditions influencing the April-July runoff, and the timing of spring peak or shape of the spring hydrograph. The presentation will also discuss a our work with stakeholders of the River Forecast Centers and the NIDIS Drought Early Warning Systems to refine stakeholder needs and create a refined decision calendar for upper Colorado River reservoirs that details decisions in the runoff period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..107a2108Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..107a2108Y"><span>Geographic Information System and Geoportal «River basins of the European Russia»</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yermolaev, O. P.; Mukharamova, S. S.; Maltsev, K. A.; Ivanov, M. A.; Ermolaeva, P. O.; Gayazov, A. I.; Mozzherin, V. V.; Kharchenko, S. V.; Marinina, O. A.; Lisetskii, F. N.</p> <p>2018-01-01</p> <p>Geographic Information System (GIS) and Geoportal with open access «River basins of the European Russia» were implemented. GIS and Geoportal are based on the map of basins of small rivers of the European Russia with information about natural and anthropogenic characteristics, namely geomorphometry of basins relief; climatic parameters, representing averages, variation, seasonal variation, extreme values of temperature and precipitation; land cover types; soil characteristics; type and subtype of landscape; population density. The GIS includes results of spatial analysis and modelling, in particular, assessment of anthropogenic impact on river basins; evaluation of water runoff and sediment runoff; climatic, geomorphological and landscape zoning for the European part of Russia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1112787G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1112787G"><span>Use of a stochastic approach for description of water balance and runoff production dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gioia, A.; Manfreda, S.; Iacobellis, V.; Fiorentino, M.</p> <p>2009-04-01</p> <p>The present study exploits an analytical model (Manfreda, NHESS [2008]) for the description of the probability density function of soil water balance and runoff generation over a set of river basins belonging to Southern Italy. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance; the watershed heterogeneity is described exploiting the conceptual lumped watershed Xinanjiang model (widely used in China) that uses a parabolic curve for the distribution of the soil water storage capacity (Zhao et al. [1980]). The model, characterized by parameters that depend on soil, vegetation and basin morphology, allowed to derive the probability density function of the relative saturation and the surface runoff of a basin accounting for the spatial heterogeneity in soil water storage. Its application on some river basins belonging to regions of Southern Italy, gives interesting insights for the investigation of the role played by the dynamical interaction between climate, soil, and vegetation in soil moisture and runoff production dynamics. Manfreda, S., Runoff Generation Dynamics within a Humid River Basin, Natural Hazard and Earth System Sciences, 8, 1349-1357, 2008. Zhao, R. -J., Zhang, Y. L., and Fang, L. R.: The Xinanjiang model, Hydrological Forecasting Proceedings Oxford Symposium, IAHS Pub. 129, 351-356, 1980.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP44A..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP44A..02P"><span>Decoupled Changes in Western Niger Delta Primary Productivity and Niger River Discharge Across the Last Deglacial</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parker, A. O.; Schmidt, M. W.; Slowey, N. C.; Jobe, Z. R.; Marcantonio, F.</p> <p>2014-12-01</p> <p>Abrupt droughts in West Africa impart significant socio-economic impacts on the developing countries of this region, and yet a comprehensive understanding of the causes and duration of such droughts remains elusive. Much of the summertime rainfall associated with the West African Monsoon (WAM) falls within the Niger River basin and eventually drains into the eastern Gulf of Guinea, contributing to the low sea-surface salinity of this region. Of the limited number of studies that reconstruct Gulf of Guinea salinity through the deglacial, the most comprehensive of those is located ~ 400 km east of the Niger delta and may not be solely influenced by WAM runoff. Here, we present XRF and foraminiferal trace metal data from two new cores located less than 100 km from the Western Niger Delta. Radiocarbon dating of cores Grand 21 (4.72oN, 4.48oE) and Fan 17 (4.81oN, 4.41oE) produced near linear sedimentation rates of 20 cm/kyr and 15 cm/kyr respectively. Elemental sediment compositions from XRF core scanning reveal an abrupt 50% increase in SiO2 between 17-15 ka during Heinrich Event 1. This increase, coeval with increases of CaCO3 (+12%) content and Ba/Ti ratios suggests a large increase in primary productivity during H1. Values then decrease at the onset of the Bolling-Allerod (~14.6 kyr) until a similar, albeit smaller increase is recorded during the Younger Dryas beginning at 12.7 kyr. In contrast, FeO2 and TiO2 are thought to be a proxies of Niger River discharge strength and suggest a more gradual change in riverine discharge across the deglacial that is most likely driven by precession. These proxies suggest Niger River runoff was low from the LGM through Heinrich 1, gradually increasing around 13 ka. FeO2 and TiO2 values then peak between 11.5-7.5 kyr, consistent with the African Humid Period, before gradually decreasing through the mid-late Holocene. This deglacial pattern of riverine input is markedly different from previous reconstructions of WAM variability and does not appear to explain the large increases in primary production during H1 or the YD. To further investigate Niger River runoff and water column hydrography change in the Niger Delta across the deglacial, we will also present data from three planktonic foraminifera: Globigerinoides ruber, Neogloboquadrina dutertrei and Globorotalia crassaformis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/1999l/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/1999l/report.pdf"><span>Factors contributing to unusually low runoff during the period 1962-68 in the Concho River Basin, Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sauer, Stanley P.</p> <p>1972-01-01</p> <p>The analyses of rainfall-intensity and runoff data indicate that the basic cause for the relatively low runoff during the period 1962-68 was the lack of high-intensity, long-duration storms rather than any physical changes or agricultural practices in the watershed</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025604','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025604"><span>Rivers, runoff, and reefs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McLaughlin, C.J.; Smith, C.A.; Buddemeier, R.W.; Bartley, J.D.; Maxwell, B.A.</p> <p>2003-01-01</p> <p>The role of terrigenous sediment in controlling the occurrence of coral reef ecosystems is qualitatively understood and has been studied at local scales, but has not been systematically evaluated on a global-to-regional scale. Current concerns about degradation of reef environments and alteration of the hydrologic and sediment cycles place the issue at a focal point of multiple environmental concerns. We use a geospatial clustering of a coastal zone database of river and local runoff identified with 0.5?? grid cells to identify areas of high potential runoff effects, and combine this with a database of reported coral reef locations. Coastal cells with high runoff values are much less likely to contain reefs than low runoff cells and GIS buffer analysis demonstrates that this inhibition extends to offshore ocean cells as well. This analysis does not uniquely define the effects of sediment, since salinity, nutrients, and contaminants are potentially confounding variables also associated with runoff. However, sediment effects are likely to be a major factor and a basis is provided for extending the study to higher resolution with more specific variables. ?? 2003 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B54D..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B54D..01P"><span>Is the Modern Marine 87Sr/86Sr Cycle Balanced?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peucker-Ehrenbrink, B.</p> <p>2017-12-01</p> <p>The marine 87Sr/86Sr record is one of the best-reconstructed isotope records with thousands of high quality measurements spanning the past 800 million years. It records a global signal of tectonic, biotic and climatic processes on Earth. Yet despite decades of research we still do not know whether the current marine Sr budget is in steady state. Studies of the marine 88Sr/86Sr record indicate that sources and sinks do not balance. The magnitude and isotope composition of the terrestrial inputs are being debated, and the magnitude and temporal variability of unradiogenic contributions are not well constrained. Here I provide a revised assessment of all continental sources of Sr to the ocean, including river runoff, submarine groundwater discharge (Beck et al., 2013), dissolution of riverine suspended matter in seawater and dissolution of volcanic ash deposited on the ocean (Jones et al., 2012). I contrast continental sources of Sr with estimates of marine sources of Sr to seawater, specifically high- and low-temperature submarine hydrothermal fluids, as well as diffusive diagenetic fluxes. Best current data imply that unradiogenic submarine hydrothermal inputs to seawater are insufficient to balance the flux of radiogenic continental Sr. The revised assessment of riverine contributions is based on Sr data for almost 230 rivers, an increasing amount of time-series data for such rivers, as well as river discharge and sediment flux data for more than 2000 rivers. Regional sampling biases have been corrected with the aid of digital bedrock maps, specifically along the western margin of North America, East Africa and the large drainage region of Arabia, India and SE Asia. Significant uncertainty in the chemical and isotopic compositions of runoff from Greenland and East Africa remains. The main uncertainty in the budget, however, is related to the possibility that modern rivers do not represent the pre-anthropogenic (natural) state of continental runoff (e.g. Ganges; Rahaman et al. 2011).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027135','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027135"><span>Pesticides in surface water runoff in south-eastern New York State, USA: Seasonal and stormflow effects on concentrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Phillips, P.J.; Bode, R.W.</p> <p>2004-01-01</p> <p>Samples from two streams (Kisco River and the Middle Branch of the Croton River) in the Croton Reservoir system in south-eastern New York State, USA were sampled from May 2000 through to February 2001 in order to document the effect of land use, streamflow and seasonal patterns of application on pesticide concentrations in runoff from developed watersheds. Many of the pesticides detected most commonly in this study are generally used in developed areas, and particularly on turfgrass. Pesticide concentrations were generally higher, and the numbers of compounds were generally larger, in samples from the Kisco River than in samples from the Middle Branch, probably because the Kisco River drainage has a greater population density and is more extensively developed. Four pesticides (2,4-D, 2,4-D-methyl, dicamba and metalaxyl) were detected in at least one sample from the Kisco River at a concentration > 1 ??g litre-1, and no pesticides were detected at concentrations >0.4 ??g litre-1 in Middle Branch samples. No human-health-based water-quality standards were exceeded by samples from either site in this study, but samples from the Kisco River contained four insecticides (carbaryl, chlorpyrifos, diazinon and malathion) and one herbicide (2,4-D) in concentrations that exceeded water quality criteria for the protection of aquatic life. The highest concentrations of most compounds occurred during stormflows in both streams in June, September and December, 2000. The lowest concentrations of most compounds at both sites occurred during baseflows from October 2000 through February 2001, even though the concentrations of many compounds increased substantially at the Kisco River site during stormflows in November and December. Detailed data on the variability of pesticide concentrations during stormflows indicate that there may be two sources of pesticides in the Kisco River watershed: (1) elevated concentrations of pesticides during peak flows that occur early in stormflows likely reflect runoff from paved areas, and (2) elevated concentrations during peak flows that occur later in stormflows from areas with lesser amounts of pavement. Data from the Kisco River indicate that the relation between storm discharge and pesticide concentrations varies among compounds, in part because of variation in seasonal application patterns. These variations in the timing of application result in not all stormflows producing increased concentrations of pesticides. Overall, these results indicate the importance of stormflow sampling throughout the year in assessing pesticide late and transport in urbanized, developed areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035103','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035103"><span>Trends in streamflow in the Yukon River Basin from 1944 to 2005 and the influence of the Pacific Decadal Oscillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brabets, T.P.; Walvoord, Michelle Ann</p> <p>2009-01-01</p> <p>Streamflow characteristics in the Yukon River Basin of Alaska and Canada have changed from 1944 to 2005, and some of the change can be attributed to the two most recent modes of the Pacific Decadal Oscillation (PDO). Seasonal, monthly, and annual stream discharge data from 21 stations in the Yukon River Basin were analyzed for trends over the entire period of record, generally spanning 4-6 decades, and examined for differences between the two most recent modes of the PDO: cold-PDO (1944-1975) and warm-PDO (1976-2005) subsets. Between 1944 and 2005, average winter and April flow increased at 15 sites. Observed winter flow increases during the cold-PDO phase were generally limited to sites in the Upper Yukon River Basin. Positive trends in winter flow during the warm-PDO phase broadened to include stations in the Middle and Lower Yukon River drainage basins. Increases in winter streamflow most likely result from groundwater input enhanced by permafrost thawing that promotes infiltration and deeper subsurface flow paths. Increased April flow may be attributed to a combination of greater baseflow (from groundwater increases), earlier spring snowmelt and runoff, and increased winter precipitation, depending on location. Calculated deviations from long-term mean monthly discharges indicate below-average flow in the winter months during the cold PDO and above-average flow in the winter months during the warm PDO. Although not as strong a signal, results also support the reverse response during the summer months: above-average flow during the cold PDO and below-average flow during the warm PDO. Changes in the summer flows are likely an indirect consequence of the PDO, resulting from earlier spring snowmelt runoff and also perhaps increased summer infiltration and storage in a deeper active layer. Annual discharge has remained relatively unchanged in the Yukon River Basin, but a few glacier-fed rivers demonstrate positive trends, which can be attributed to enhanced glacier melting. A positive trend in annual flow during the warm PDO near the mouth of the Yukon River suggests that small increases in flow throughout the Yukon River Basin have resulted in an additive effect manifested in the downstream-most streamflow station. Many of the identified changes in streamflow patterns in the Yukon River Basin show a correlation to the PDO regime shift. This work highlights the importance of considering proximate climate forcings as well as global climate change when assessing hydrologic changes in the Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/971308','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/971308"><span>Increasing runoff and sediment load from the Greenland ice sheet at kangerlussuaq (Sonder Stromfjord) in a 30-year perspective, 1979-2008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mernild, Sebastian Haugard; Liston, Glen; Hasholt, Bent</p> <p>2009-01-01</p> <p>This observation and modeling study provides insights into runoff and sediment load exiting the Watson River drainage basin, Kangerlussuaq, West Greenland during a 30 year period (1978/79-2007/08) when the climate experienced increasing temperatures and precipitation. The 30-year simulations quantify the terrestrial freshwater and sediment output from part of the Greenland Ice Sheet (GrIS) and the land between the GrIS and the ocean, in the context of global warming and increasing GrIS surface melt. We used a snow-evolution modeling system (SnowModel) to simulate the winter accumulation and summer ablation processes, including runoff and surface mass balance (SMB), of the Greenland icemore » sheet. Observed sediment concentrations were related to observed runoff, producing a sediment-load time series. To a large extent, the SMB fluctuations could be explained by changes in net precipitation (precipitation minus evaporation and sublimation), with 8 out of 30 years having negative SMB, mainly because of relatively low annual net precipitation. The overall trend in net precipitation and runoff increased significantly, while 5MB increased insignificantly throughout the simulation period, leading to enhanced precipitation of 0.59 km{sup 3} w.eq. (or 60%), runoff of 0.43 km{sup 3} w.eq (or 54%), and SMB of 0.16 km3 w.eq. (or 86%). Runoff rose on average from 0.80 km{sup 3} w.eq. in 1978/79 to 1.23 km{sup 3} w.eq. in 2007/08. The percentage of catchment oudet runoff explained by runoff from the GrIS decreased on average {approx} 10%, indicating that catchment runoff throughout the simulation period was influenced more by precipitation and snowmelt events, and less by runoff from the GrIS. Average variations in the increasing Kangerlussuaq runoff from 1978/79 through 2007/08 seem to follow the overall variations in satellite-derived GrIS surface melt, where 64% of the variations in simulated runoff were explained by regional melt conditions on the GrIS. Throughout the simulation period, the sediment load varied from a minimum of 0.96 x 10{sup 6} t y{sup -1} in 1991/92 to a maximum of 3.52 x 10{sup 6} t y{sup -1} in 2006/07, showing an average increase of sediment load of 9.42 x 10{sup 5} t (or 72%) throughout the period.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...743289W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...743289W"><span>Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick</p> <p>2017-02-01</p> <p>Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. We quantify here for the first time the global sanitation crisis through its impact on organic river pollution from the threats of (1) increasing wastewater discharge due to urbanization and intensification of livestock farming, and (2) reductions in river dilution capacity due to climate change and water extractions. Using in-stream Biochemical Oxygen Demand (BOD) as an overall indicator of organic river pollution, we calculate historical (2000) and future (2050) BOD concentrations in global river networks. Despite significant self-cleaning capacities of rivers, the number of people affected by organic pollution (BOD >5 mg/l) is projected to increase from 1.1 billion in 2000 to 2.5 billion in 2050. With developing countries disproportionately affected, our results point to a growing need for affordable wastewater solutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28230079','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28230079"><span>Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick</p> <p>2017-02-23</p> <p>Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. We quantify here for the first time the global sanitation crisis through its impact on organic river pollution from the threats of (1) increasing wastewater discharge due to urbanization and intensification of livestock farming, and (2) reductions in river dilution capacity due to climate change and water extractions. Using in-stream Biochemical Oxygen Demand (BOD) as an overall indicator of organic river pollution, we calculate historical (2000) and future (2050) BOD concentrations in global river networks. Despite significant self-cleaning capacities of rivers, the number of people affected by organic pollution (BOD >5 mg/l) is projected to increase from 1.1 billion in 2000 to 2.5 billion in 2050. With developing countries disproportionately affected, our results point to a growing need for affordable wastewater solutions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5322379','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5322379"><span>Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick</p> <p>2017-01-01</p> <p>Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. We quantify here for the first time the global sanitation crisis through its impact on organic river pollution from the threats of (1) increasing wastewater discharge due to urbanization and intensification of livestock farming, and (2) reductions in river dilution capacity due to climate change and water extractions. Using in-stream Biochemical Oxygen Demand (BOD) as an overall indicator of organic river pollution, we calculate historical (2000) and future (2050) BOD concentrations in global river networks. Despite significant self-cleaning capacities of rivers, the number of people affected by organic pollution (BOD >5 mg/l) is projected to increase from 1.1 billion in 2000 to 2.5 billion in 2050. With developing countries disproportionately affected, our results point to a growing need for affordable wastewater solutions. PMID:28230079</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029751','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029751"><span>Spatial and temporal geochemical trends in the hydrothermal system of Yellowstone National Park: Inferences from river solute fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hurwitz, S.; Lowenstern, J. B.; Heasler, H.</p> <p>2007-01-01</p> <p>We present and analyze a chemical dataset that includes the concentrations and fluxes of HCO3-, SO42-, Cl-, and F- in the major rivers draining Yellowstone National Park (YNP) for the 2002-2004 water years (1 October 2001 - 30 September 2004). The total (molar) flux in all rivers decreases in the following order, HCO3- > Cl- > SO42- > F-, but each river is characterized by a distinct chemical composition, implying large-scale spatial heterogeneity in the inputs of the various solutes. The data also display non-uniform temporal trends; whereas solute concentrations and fluxes are nearly constant during base-flow conditions, concentrations decrease, solute fluxes increase, and HCO3-/Cl-, and SO42-/Cl- increase during the late-spring high-flow period. HCO3-/SO42- decreases with increasing discharge in the Madison and Falls Rivers, but increases with discharge in the Yellowstone and Snake Rivers. The non-linear relations between solute concentrations and river discharge and the change in anion ratios associated with spring runoff are explained by mixing between two components: (1) a component that is discharged during base-flow conditions and (2) a component associated with snow-melt runoff characterized by higher HCO3-/Cl- and SO42-/Cl-. The fraction of the second component is greater in the Yellowstone and Snake Rivers, which host lakes in their drainage basins and where a large fraction of the solute flux follows thaw of ice cover in the spring months. Although the total river HCO3- flux is larger than the flux of other solutes (HCO3-/Cl- ??? 3), the CO2 equivalent flux is only ??? 1% of the estimated emission of magmatic CO2 soil emissions from Yellowstone. No anomalous solute flux in response to perturbations in the hydrothermal system was observed, possibly because gage locations are too distant from areas of disturbance, or because of the relatively low sampling frequency. In order to detect changes in river hydrothermal solute fluxes, sampling at higher frequencies with better spatial coverage would be required. Our analysis also suggests that it might be more feasible to detect large-scale heating or cooling of the hydrothermal system by tracking changes in gas and steam flux than by tracking changes in river solute flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGeo...12.1223D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGeo...12.1223D"><span>Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>D'Olivo, J. P.; McCulloch, M. T.; Eggins, S. M.; Trotter, J.</p> <p>2015-02-01</p> <p>The boron isotopic (δ11Bcarb) compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR) and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner- and mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a decline in seawater pH (pHsw) of ~0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that, compared to the mid-shelf corals, the δ11Bcarb compositions of inner-shelf corals subject to river discharge events have higher and more variable values, and hence higher inferred pHsw values. These higher δ11Bcarb values of inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from reduced aragonite saturation state and higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low-pH river water (pHrw) discharged into near-shore environments. Importantly, however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw, demonstrating the overriding importance of local reef-water quality and reduced aragonite saturation state on coral reef health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014BGD....1111443D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014BGD....1111443D"><span>Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>D'Olivo, J. P.; McCulloch, M. T.; Eggins, S. M.; Trotter, J.</p> <p>2014-07-01</p> <p>The boron isotopic (δ11Bcarb) compositions of long-lived Porites coral are used to reconstruct reef-water pH across the central Great Barrier Reef (GBR) and assess the impact of river runoff on inshore reefs. For the period from 1940 to 2009, corals from both inner as well as mid-shelf sites exhibit the same overall decrease in δ11Bcarb of 0.086 ± 0.033‰ per decade, equivalent to a~decline in seawater pH (pHsw) of ~ 0.017 ± 0.007 pH units per decade. This decline is consistent with the long-term effects of ocean acidification based on estimates of CO2 uptake by surface waters due to rising atmospheric levels. We also find that compared to the mid-shelf corals, the δ11Bcarb compositions for inner shelf corals subject to river discharge events, have higher and more variable values and hence higher inferred pHsw values. These higher δ11Bcarb values for inner-shelf corals are particularly evident during wet years, despite river waters having lower pH. The main effect of river discharge on reef-water carbonate chemistry thus appears to be from higher nutrients driving increased phytoplankton productivity, resulting in the drawdown of pCO2 and increase in pHsw. Increased primary production therefore has the potential to counter the more transient effects of low pH river water (pHrw) discharged into near-shore environments. Importantly however, inshore reefs also show a consistent pattern of sharply declining coral growth that coincides with periods of high river discharge. This occurs despite these reefs having higher pHsw values and hence higher seawater aragonite saturation states, demonstrating the over-riding importance of local reef-water quality on coral reef health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1984/4022/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1984/4022/report.pdf"><span>Quantity and quality of streamflow in the White River basin, Colorado and Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Boyle, J.M.; Covay, K.J.; Bauer, D.P.</p> <p>1984-01-01</p> <p>The water quality and flow of existing streams in the White River basin, located in northwestern Colorado and northeastern Utah, are adequate for present uses, but future development (such as energy) may affect stream quality and quantity. Present conditions are described as a baseline to enable planners to allocate available water and to measure changes in quantity and quality of water in the future. The White River basin contains extensive energy resources consisting of oil, natural gas, coal, and oil shale. Large quantities of water will be required for energy-resource development and associated municipal and industrial uses. An average of 70% of the annual flow in the White River occurs during May, June, and July as a result of snowmelt runoff. The 7-day, 10-year low-flow discharges/sq mi and the 1-day, 25-year high-flow discharges/sq mi are larger in the eastern part of the basin than in the western part. Flow-duration curves indicate that high flows in the White River and the North and South Fork White Rivers result mainly from snowmelt runoff and that base flow is sustained throughout the year by groundwater discharge from the alluvial and bedrock aquifers. Water type varies in the basin; however, calcium and sodium are the dominantly occurring cations and sulfate and bicarbonate are the dominantly occurring anions. Computed total annual dissolved-solids loads in the White River range from 31 ,800 tons/yr in the North Fork White River to 284,000 tons/yr at the mouth. A 10% increase to a 14% decrease of the dissolved-solids load could result at the mouth of the White River near Ouray, Utah. This corresponds to a 5% increase to a 10% decrease in dissolved-solids concentration. The seasonal pattern of stream temperatures was found to fit a harmonic curve. (Lantz-PTT)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H53E1503Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H53E1503Y"><span>Towards an improved understanding of hillslope runoff as a supply for groundwater recharge: Assessing hillslope runoff under regional deforestation and varying climate conditions in a drainage basin in central coastal California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Young, K. S.; Beganskas, S.; Fisher, A. T.</p> <p>2017-12-01</p> <p>We use a hydrologic model to analyze hillslope runoff under a range of climate and land use conditions in the San Lorenzo River Basin (SLRB), central coastal California, including contemporary land use and incremental deforestation. The SLRB is a heavily forested watershed with chronically overdrafted aquifers; in some areas, groundwater levels have been lowered by >50 m in recent decades. Managed aquifer recharge (MAR) can help mitigate declines in groundwater storage, routing excess surface flows to locations where they can infiltrate. We are especially interested in opportunities for collection of stormwater runoff, particularly where development and other changes in landuse have increased hill slope runoff. To assess hillslope runoff at the subwatershed scale (10-100 ha; 25-250 ac), we apply the Precipitation Runoff Modeling System (PRMS) to a high-resolution, digital elevation model and populate the simulation with area- and density-weighted vegetation and soil parameters calculated from high resolution input data. We also develop and apply a catalog of dry, normal, and wet climate scenarios from the historic record (1981-2014). In addition, we simulate conditions ranging from 0 to 100 percent of redwoods harvested (representing the mid-1800s to 1930s logging era) using a historical land use data set to alter soil and vegetation conditions. Results under contemporary land use suggest there are ample opportunities to establish MAR projects during all climate scenarios; hill slope runoff generation is spatially variable and on average exceeds 23,000 ac-ft/yr (3.2 in/yr) during the driest climate scenario. Preliminary results from the deforestation scenarios show notable increases in hillslope runoff with progressive redwood harvesting. Relative to pre-logging conditions, between 1.1 in (dry climates) and 1.5 in (wet climates) more runoff is generated under contemporary conditions, with most of the runoff increase occurring in urban areas. These modeling methods generate understanding of the impacts of changes in land use and vegetation, their sensitivity to differences in climate, and potential for developing MAR projects to benefit from increased stormwater generation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031453','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031453"><span>Quantification of changes in metal loading from storm runoff, Merse River (Tuscany, Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kimball, B.A.; Bianchi, F.; Walton-Day, K.; Runkel, R.L.; Nannucci, M.; Salvadori, A.</p> <p>2007-01-01</p> <p>The Merse River in Tuscany is affected by mine drainage and the weathering of mine wastes along several kilometres of its catchment. The metal loading to the stream was quantified by defining detailed profiles of discharge and concentration, using tracer-dilution and synoptic-sampling techniques. During the course of a field experiment to evaluate metal loading to the Merse, such data were obtained for both storm and pre-storm conditions, providing a unique opportunity for comparison. Iron, Cu, and Mn were chosen to illustrate changes resulting from the storm. The total-recoverable load of Fe increased 21-fold, while loads of Cu and Mn increased by 8- and 7-fold, respectively, during the storm runoff. The increases most likely resulted from flushing particulates from near the stream, resuspension of colloidal material from the streambed, and increased ground-water inflow to the stream. The increases in Cu and Mn loads results from their association with colloids. It is possible that in-stream colloids had relatively more Cu than Mn, while near-stream colloids had relatively more Mn. Each of the metals also increased as a result of increased ground-water discharge during the storm. Despite great increases in load, the filterable concentrations of these metals did not increase substantially, remaining below chronic levels of toxicity. ?? 2007 Springer-Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..797P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..797P"><span>Variation in Rising Limb of Colorado River Snowmelt Runoff Hydrograph Controlled by Dust Radiative Forcing in Snow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Painter, Thomas H.; Skiles, S. McKenzie; Deems, Jeffrey S.; Brandt, W. Tyler; Dozier, Jeff</p> <p>2018-01-01</p> <p>Common practice and conventional wisdom hold that fluctuations in air temperature control interannual variability in snowmelt and subsequent river runoff. However, recent observations in the Upper Colorado River Basin confirm that net solar radiation and by extension radiative forcing by dust deposited on snow cover exerts the primary forcing on snowmelt. We show that the variation in the shape of the rising limb of the annual hydrograph is controlled by variability in dust radiative forcing and surprisingly is independent of variations in winter and spring air temperatures. These observations suggest that hydroclimatic modeling must be improved to account for aerosol forcings of the water cycle. Anthropogenic climate change will likely reduce total snow accumulations and cause snowmelt runoff to occur earlier. However, dust radiative forcing of snowmelt is likely consuming important adaptive capacity that would allow human and natural systems to be more resilient to changing hydroclimatic conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcSci..14..437Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcSci..14..437Q"><span>Numerical study of hydrodynamic and salinity transport processes in the Pink Beach wetlands of the Liao River estuary, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qiao, Huiting; Zhang, Mingliang; Jiang, Hengzhi; Xu, Tianping; Zhang, Hongxing</p> <p>2018-06-01</p> <p>Interaction studies of vegetation within flow environments are essential for the determination of bank protection, morphological characteristics and ecological conditions for wetlands. This paper uses the MIKE 21 hydrodynamic and salinity model to simulate the hydrodynamic characteristics and salinity transport processes in the Pink Beach wetlands of the Liao River estuary. The effect of wetland plants on tidal flow in wetland areas is represented by a varying Manning coefficient in the bottom friction term. Acquisition of the vegetation distribution is based on Landsat TM satellites by remote sensing techniques. Detailed comparisons between field observation and simulated results of water depth, salinity and tidal currents are presented in the vegetated domain of the Pink Beach wetlands. Satisfactory results were obtained from simulations of both flow characteristics and salinity concentration, with or without vegetation. A numerical experiment was conducted based on variations in vegetation density, and compared with the tidal currents in non-vegetated areas; the computed current speed decreased remarkably with an increase in vegetation density. The impact of vegetation on water depth and salinity was simulated, and the findings revealed that wetland vegetation has an insignificant effect on the water depth and salinity in this wetland domain. Several stations (from upstream to downstream) in the Pink Beach wetlands were selected to estimate the longitudinal variation of salinity under different river runoff conditions; the results showed that salinity concentration decreases with an increase in river runoff. This study can consequently help increase the understanding of favourable salinity conditions for particular vegetation growth in the Pink Beach wetlands of the Liao River estuary. The results also provide crucial guidance for related interaction studies of vegetation, flow and salinity in other wetland systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23473021','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23473021"><span>Seasonal variation of oxygen-18 in precipitation and surface water of the Poyang Lake Basin, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Chunhua; Froehlich, Klaus; Zhou, Peng; Lou, Qian; Zeng, Simiao; Zhou, Wenbin</p> <p>2013-06-01</p> <p>Based on the monthly δ(18)O value measured over a hydrology period in precipitation, runoff of five tributaries and the main lake of the Poyang Lake Basin, combined with hydrological and meteorological data, the characteristics of δ(18)O in precipitation (δ(18)OPPT) and runoff (δ(18)OSUR) are discussed. The δ(18)OPPT and δ(18)OSUR values range from-2.75 to-14.12 ‰ (annual mean value=-7.13 ‰ ) and from-2.30 to-8.56 ‰, respectively. The seasonal variation of δ(18)OPPT is controlled by the air mass circulation in this region, which is dominated by the Asian summer monsoon and the Siberian High during winter. The correlation between the wet seasonal averages of δ(18)OSUR in runoff of the rivers and δ(18)OPPT of precipitation at the corresponding stations shows that in the Poyang Lake catchment area the river water consists of 23% direct runoff (precipitation) and 77% base flow (shallow groundwater). This high proportion of groundwater in the river runoff points to the prevalence of wetland conditions in the Poyang Lake catchment during rainy season. Considering the oxygen isotopic composition of the main body of Poyang Lake, no isotopic enrichment relative to river inflow was found during the rainy season with maximum expansion of the lake. Thus, evaporation causing isotopic enrichment is a minor component of the lake water balance in the rainy period. During dry season, a slight isotopic enrichment has been observed, which suggests a certain evaporative loss of lake water in that period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1985/0339/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1985/0339/report.pdf"><span>Report of the River Master of the Delaware River for the period December 1, 1983 - November 30, 1984</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schaefer, F.T.; Harkness, W.E.; Baebenroth, R.W.; Speight, D.W.</p> <p>1985-01-01</p> <p>A Decree of the U.S. Supreme Court in 1954 established the position of Delaware River Master. The Decree authorizes diversions of water from the Delaware River basin and requires compensating releases from certain reservoirs of the City of New York to be made under the supervision and direction of the River Master. Reports to the Court, not less frequently than annually were stipulated. During the 1984 report year, December 1, 1983 to November 30, 1984, precipitation and runoff varied from above average to below average in the Delaware River basin. For the year as a whole, precipitation and runoff were near average. Operations were under a status of drought warning December 1, 1983; however, the above normal precipitation the first half of the year increased storage in the reservoirs to record levels by June 1, 1984. Below normal precipitation from August to November coupled with large releases to maintain the Montague flow objective and customary diversions for water supply reduced storage in the reservoirs to the drought-warning level by November 27. Diversions from the Delaware River basin by New York City and New Jersey conformed to the terms of the Amended Decree throughout the year. Releases were made as directed by the River Master at rates designed to meet the Montague flow objective on 127 days between June 23 and November 30. Releases were made at conservation rates or at rates designed to relieve thermal stress in the streams downstream from the reservoirs at other times. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021325','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021325"><span>The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shanley, J.B.; Chalmers, A.</p> <p>1999-01-01</p> <p>Soil frost depth has been monitored at the Sleepers River Research Watershed in northeastern Vermont since 1984. Soil frost develops every winter, particularly in open fields, but its depth varies from year to year in inverse relation to snow depth. During the 15 years of record at a benchmark mid-elevation open site, the annual maximum frost depth varied from 70 to 390 mm. We empirically tested the hypothesis that frozen soil prevents infiltration and recharge, thereby causing an increased runoff ratio (streamflow/(rain + snowmelt)) during the snowmelt hydrograph rise and a decreased runoff ratio during snowmelt recession. The hypothesis was not supported at the 111 km2 W-5 catchment; there was no significant correlation of the runoff ratio with the seasonal maximum frost depth for either the pre-peak or post-peak period. In an analysis of four events, however, the presence of frost promoted a large and somewhat quicker response to rainfall relative to the no-frost condition, although snow cover caused a much greater time-to-peak regardless of frost status. For six years of flow and frost depth measured at the 59 ha agricultural basin W-2, the hypothesis appeared to be supported. The enhancement of runoff due to soil frost is evident on small plots and in extreme events, such as rain on frozen snow-free soil. In the northeastern USA and eastern Canada, the effect is often masked in larger catchments by several confounding factors, including storage of meltwater in the snowpack, variability in snowmelt timing due to elevational and aspect differences, interspersed forested land where frost may be absent, and the timing of soil thawing relative to the runoff peak.Soil frost depth has been monitored at the Sleepers River Research Watershed in northeastern Vermont since 1984. Soil frost develops every winter, particularly in open fields, but its depth varies greatly from year to year in inverse relation to snow depth. During the 15 years of record at a benchmark mid-elevation open site, the annual maximum frost depth varied from 70 to 390 mm. We empirically tested the hypothesis that frozen soil prevents infiltration and recharge, thereby causing an increased runoff ratio (streamflow/(rain + snowmelt)) during the snowmelt hydrograph rise and a decreased runoff ratio during snowmelt recession. The hypothesis was not supported at the 111 km2 W-5 catchment; there was no significant correlation of the runoff ratio with the seasonal maximum frost depth for either the pre-peak or post-peak period. In an analysis of four events, however, the presence of frost promoted a large and somewhat quicker response to rainfall relative to the no-frost condition, although snow cover caused a much greater time-to-peak regardless of frost status. For six years of flow and frost depth measured at the 59 ha agricultural basin W-2, the hypothesis appeared to be supported. The enhancement of runoff due to soil frost is evident on small plots and in extreme events, such as rain of frozen snow-free soil. In the northeastern USA and eastern Canada, the effect is often masked in larger catchments by several confounding factors, including storage of meltwater in the snowpack, variability in snowmelt timing due to elevational and aspect differences, interspersed forested land where frost may be absent, and the timing of soil thawing relative to the runoff peak.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2009/3103/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2009/3103/"><span>Stormwater Runoff: What it is and Why it is Important in Johnson County, Kansas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rasmussen, Teresa J.; Schmidt, Heather C.</p> <p>2009-01-01</p> <p>Stormwater runoff is a leading contributor to pollution in streams, rivers, and lakes in Johnson County, Kansas, and nationwide. Because stormwater runoff contains pollutants from many different sources, decreasing pollution from stormwater runoff is a challenging task. It requires cooperation from residents, businesses, and municipalities. An important step in protecting streams from stormwater pollution is understanding watershed processes, stormwater characteristics, and their combined effects on streams and water quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1066K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1066K"><span>Causes and consequences of the hydrological droughts in the south region of European Russia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kireeva, Maria; Ilich, Vladislav; Kharlamov, Maksim; Frolova, Natalia; Goncharov, Aleksandr</p> <p>2017-04-01</p> <p>In the last decade the number of extreme low-flow periods on Russian rivers has increased significantly. The most severe water shortage currently observed in the Don and Volga basin. Also suffers from lack of water of Lake Baikal region, left-bank tributaries of the Lena. The most acute problem of water shortage is in the basin of the Don river. It is located in the south od European part of Russia and has an area of 422 ths km2, which is very densely populated (more than 29 million inhabitants). The river and its tributaries are the main sources of fresh water for the population. In addition, they play a key role in industries such as fisheries, recreation, shipping, hydropower (HPP Tsimlyanskaya). Don anciently was very famous for its biodiversity and the number of organisms of the floodplain ecosystems. However, at the present time due to anthropogenic stress and climate change, these figures dropped down. This study is devoted to the complex analysis arising in the district. Don water shortage. As part of the research was carried out the spatial distribution of runoff, revealing its meteorological reasons of water shortage, the impact of water scarcity on the ecosystem in general and fish fauna in particular. Hydrological drought is clearly manifested in the annual runoff only in the lower part of the basin. From 2007 the annual runoff probability here are higher than 80%. It was found that the longest (during record from 1930ths) duration of the event associated with rotation of water shortages on the left and right-bank tributaries of the river. In addition, the analysis of the spatial distribution of seasonal runoff probability showed that in the upper catchment hydrological drought is hardly observed: the rate accounts for 60% and lower. Drought has led to the transformation of the aquatic ecosystem of the Don river and its transition from oligotrophic to eutrophic state. The concentration of phytoplankton in the August - September during low flow period has increased 10 times. Deficit of water affected the reproduction of fish communities - for some species has decreased the number of young fish due to the reduction of spawning areas. At the same time, for others, warm water and improved low levels affected beneficially. The unfavorable combination of natural and anthropogenic factors can be named as reasons for the origin of extreme low-flow period. On the one hand, the increase in the number of thaws and seasonal-floods in winter led to drawdown of snowmelt water in spring, increasing deadweight losses. On the other hand, in recent years it has increased anthropogenic press on the Don basin associated with the intensification of economic activities in the catchment area. This set of factors has led to significant damage from hydrological drought in 2007-2015 in the Don basin.This research was supported by Russian President Grant 2017 (contract No. MK-2331.2017.5)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1997/0246/ofr1997246.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1997/0246/ofr1997246.pdf"><span>NAWQA, National Water-Quality Assessment Program; Allegheny-Monongahela River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McAuley, Steven D.; Brown, Juliane B.; Sams, James I.</p> <p>1997-01-01</p> <p>Surface-water and ground-water quality and aquatic life can be significantly affected by the following principal issues identified in the Allegheny-Monongahela River Basin:Contaminants common to surface and under-ground coal mine discharge such as acidity, iron, aluminum, manganese, and sulfate.Volatile organic compounds (VOC’s), pesti-cides, and nutrients from increased urbanization.Runoff and loading of nutrients and pesticides to streams from nonpoint and point sources such as agricultural land uses.Radon in ground water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28683427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28683427"><span>Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qin, Yue; Yang, Dawen; Gao, Bing; Wang, Taihua; Chen, Jinsong; Chen, Yun; Wang, Yuhan; Zheng, Guanheng</p> <p>2017-12-15</p> <p>The Yellow River source region is located in the transition region between permafrost and seasonally frozen ground on the northeastern Qinghai-Tibet Plateau. The region has experienced severe climate change, especially air temperature increases, in past decades. In this study, we employed a geomorphology-based eco-hydrological model (GBEHM) to assess the impacts of climate change on the frozen ground and eco-hydrological processes in the region. Based on a long-term simulation from 1981 to 2015, we found that the areal mean maximum thickness of seasonally frozen ground ranged from 1.1-1.8m and decreased by 1.2cm per year. Additionally, the ratio of the permafrost area to the total area decreased by 1.1% per year. These decreasing trends are faster than the average in China because the study area is on the sensitive margin of the Qinghai-Tibet Plateau. The annual runoff exhibited variations similar to those of the annual precipitation (R 2 =0.85), although the annual evapotranspiration (ET) exhibited an increasing trend (14.3mm/10a) similar to that of the annual mean air temperature (0.66°C/10a). The runoff coefficient (annual runoff divided by annual precipitation) displayed a decreasing trend because of the increasing ET, and the vegetation responses to climate warming and permafrost degradation were manifested as increases in the leaf area index (LAI) and ET at the start of the growing season. Furthermore, the results showed that changes to the frozen ground depth affected vegetation growth. Notably, a rapid decrease in the frozen ground depth (< -3.0cm/a) decreased the topsoil moisture and then decreased the LAI. This study showed that the eco-hydrological processes in the headwater area of the Yellow River have changed because of permafrost degradation, and these changes could further influence the water resources availability in the middle and lower reaches of the basin. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2013/5144/pdf/sir2013-5144.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2013/5144/pdf/sir2013-5144.pdf"><span>Water quality and sources of fecal coliform bacteria in the Meduxnekeag River, Houlton, Maine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Culbertson, Charles W.; Huntington, Thomas G.; Stoeckel, Donald M.; Caldwell, James M.; O'Donnell, Cara</p> <p>2014-01-01</p> <p>In response to bacterial contamination in the Meduxnekeag River and the desire to manage the watershed to reduce contaminant sources, the Houlton Band of Maliseet Indians (HBMI) and the U.S. Geological Survey began a cooperative effort to establish a baseline of water-quality data that can be used in future studies and to indicate potential sources of nutrient and bacterial contamination. This study was conducted during the summer of 2005 in the Meduxnekeag River Basin near Houlton, Maine. Continuously recorded specific conductance can be a good indicator for water quality. Specific conductance increased downstream from the town of Houlton, between runoff events, and decreased sharply following major runoff events. Collections of discrete samples during the summer of 2005 indicated seasonal positive concentration-discharge relations for total phosphorus and total nitrogen; these results indicate that storm runoff may mobilize and transport these nutrients from the terrestrial environment to the river. Data collected by the HBMI on fecal coliform bacteria indicated that bacterial contamination enters the Meduxnekeag River from multiple paths including tributaries and surface drains (ditches) in developed areas in Houlton, Maine. The Houlton wastewater treatment discharge was not an important source of bacterial contamination. Bacteroidales-based tests for general fecal contamination (Bac32 marker) were predominantly positive in samples that had excessive fecal contamination as indicated by Enterococci density greater than 104 colony-forming units per 100 millilters. Of the 22 samples tested for Bacteroidales-based markers of human-associated fecal contamination (HF134 and HF183), 8 were positive. Of the 22 samples tested for Bacteroidales-based markers of ruminant-associated fecal contamination (CF128 and CF193), 7 were positive. Human fecal contamination was detected consistently at two sites (surface drains in urban areas in the town of Houlton) and occasionally detected at one site (Moose Brook) but was not detected at other sites. Fecal contamination (as indicated by fecal coliform density) apparently is localized under normal flow conditions with the highest levels restricted to drains in urban areas and to a lesser extent B Stream, Pearce Brook, and Big Brook, all tributaries to the main stem of the Meduxnekeag River. Coliphage were enumerated as an alternate indicator of fecal contamination with the intent of typing the virus into host-associated classes (human or ruminant), as was done for Enterococci; however, insufficient coliphage were isolated to provide more than preliminary indications. In spite of low coliphage enumeration, the preliminary results strengthen the conclusion that the Enterococci data correctly indicated the samples that contained human and ruminant fecal contamination. The finding that contamination was in many of the tributaries following storms in mid-July indicates that storm runoff likely carries fecal contaminants to more locations than runoff under lower flow conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70009710','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70009710"><span>Development of pan-Arctic database for river chemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Amon, R.; Brabets, T.; Cooper, L.; Gibson, J.; Gordeev, V.V.; Guay, C.; Milburn, D.; Staples, R.; Raymond, P.A.; Shiklomanov, I.; Striegl, Robert G.; Zhulidov, A.; Gurtovaya, T.; Zimov, S.</p> <p>2008-01-01</p> <p>More than 10% of all continental runoff flows into the Arctic Ocean. This runoff is a dominant feature of the Arctic Ocean with respect to water column structure and circulation. Yet understanding of the chemical characteristics of runoff from the pan-Arctic watershed is surprisingly limited. The Pan- Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments ( PARTNERS) project was initiated in 2002 to help remedy this deficit, and an extraordinary data set has emerged over the past few years as a result of the effort. This data set is publicly available through the Cooperative Arctic Data and Information Service (CADIS) of the Arctic Observing Network (AON). Details about data access are provided below.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123.3414C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123.3414C"><span>Effects of Cryospheric Change on Alpine Hydrology: Combining a Model With Observations in the Upper Reaches of the Hei River, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, R.; Wang, G.; Yang, Y.; Liu, J.; Han, C.; Song, Y.; Liu, Z.; Kang, E.</p> <p>2018-04-01</p> <p>Cryospheric changes have great effects on alpine hydrology, but these effects are still unclear owing to rare observations and suitable models in the western cold regions of China. Based on long-term field observations in the western cold regions of China, a cryospheric basin hydrological model was proposed to evaluate the cryospheric effects on streamflow in the upper Hei River basin (UHR), and the relationship between the cryosphere and streamflow was further discussed with measured data. The Norwegian Earth System Model outputs were chosen to project future streamflow under scenarios Representative Concentration Pathways (RCP)2.6, RCP4.5, and RCP8.5. The cryospheric basin hydrological model results were well validated by the measured precipitation, streamflow, evapotranspiration, soil temperature, glacier and snow cover area, and the water balance of land cover in the UHR. The moraine-talus region contributed most of the runoff (60%), even though it made up only about 20% of the area. On average, glacier and snow cover, respectively, contributed 3.5% and 25.4% of the fresh water to the streamflow in the UHR between 1960 and 2013. Because of the increased air temperature (2.9°C/54a) and precipitation (69.2 mm/54a) over the past 54 years, glacial and snowmelt runoff increased by 9.8% and 12.1%, respectively. The increase in air temperature brought forward the snowmelt flood peak and increased the winter flow due to permafrost degradation. Glaciers may disappear in the near future because of their small size, but snowmelt would increase due to increases in snowfall in the higher mountainous areas, and the basin runoff would increase slightly in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012TCD.....6.4557P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012TCD.....6.4557P"><span>Quantifying present and future glacier melt-water contribution to runoff in a Central Himalayan river basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prasch, M.; Mauser, W.; Weber, M.</p> <p>2012-10-01</p> <p>Water supply of most lowland cultures heavily depends on rain and melt-water from the upstream mountains. Especially melt-water release of alpine mountain ranges is usually attributed a pivotal role for the water supply of large downstream regions. Water scarcity is assumed as consequence of glacier shrinkage and possible disappearance due to Global Climate Change, particular for large parts of Central and South East Asia. In this paper, the application and validation of a coupled modeling approach with Regional Climate Model outputs and a process-oriented glacier and hydrological model is presented for a Central Himalayan river basin despite scarce data availability. Current and possible future contributions of ice-melt to runoff along the river network are spatially explicitly shown. Its role among the other water balance components is presented. Although glaciers have retreated and will continue to retreat according to the chosen climate scenarios, water availability is and will be primarily determined by monsoon precipitation and snow-melt. Ice-melt from glaciers is and will be a minor runoff component in summer monsoon-dominated Himalayan river basins.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22527002','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22527002"><span>The role of catchment vegetation in reducing atmospheric inputs of pollutant aerosols in Ganga river.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shubhashish, Kumar; Pandey, Richa; Pandey, Jitendra</p> <p>2012-08-01</p> <p>The role of woody perennials in the Ganga river basin in modifying the run-off quality as influenced by atmospheric deposition of pollutant aerosols was investigated. The concentration of seven nutrients and eight metals were measured in atmospheric deposits as well as in run-off water under the influence of five woody perennials. Nutrient retention was recorded maximum for Bougainvillea spectabilis ranged from 4.30 % to 33.70 %. Metal retention was recorded highest for Ficus benghalensis ranged from 5.15 % to 36.98 %. Although some species showed nutrient enrichment, all the species considered in the study invariably contribute to reduce nutrients and metal concentration in run-off water. Reduction in run off was recorded maximum for B. spectabilis (nutrient 6.48 %-40.66 %; metal 7.86 %-22.85 %) and minimum for Ficus religiosa (nutrient 1.68 %-27.19 %; metal 6.55 %-31.55 %). The study forms the first report on the use of woody perennials in reducing input of atmospheric pollutants to Ganga river and has relevance in formulating strategies for river basin management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022005','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022005"><span>Occurrence and transport of total mercury and methyl mercury in the Sacramento River Basin, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Domagalski, Joseph L.</p> <p>1999-01-01</p> <p>Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada, east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation are known to occur in stagnant wetland environments that have high dissolved carbon.Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation a</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1980/0449/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1980/0449/report.pdf"><span>Water-quality reconnaissance of the Middle and North Branch Park River watersheds, northeastern North Dakota</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ackerman, D.J.</p> <p>1980-01-01</p> <p>In order to design a network to monitor the effects of works of improvement in the Middle and North Branch Park River watersheds, and to determine the major factors controlling water-quality conditions in the watersheds, an evaluation of sediment transport, water chemistry, and biology was conducted during the spring and early summer of 1978.Major factors controlling water quality are geology, stream gradient, ground-water seepage, and the duration of streamflow.Sediment loads originate on the Pembina Escarpment. The coarse silt and sand parts of these loads are deposited on the Lake Agassiz Plain. Transport of sediment is lowered and flow duration is increased on the Middle Branch Park River due to the presence of small dams. Observations suggest that bedload transport is a significant process, particularly in the upstream reaches. However, no quantitative bedload data were collected.During periods of low flow, analyses of water from the rivers in both watersheds show downstream increases in sodium and chloride due to ground-water seepage or the unregulated flow of wells. Diversity of benthic invertebrates indicates water-quality conditions are better on the Middle Branch Park River than on the North Branch, and are better at upstream sites than at downstream sites. A program through which the Soil Conservation Service can monitor the effects of present and future works of improvement on the watersheds was designed. The monitoring program consists of intensive sampling at four locations for sediment and water chemistry during spring and early summer runoff events and by profiles of water chemistry during summer base runoff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C53B1032S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C53B1032S"><span>Variation trend of snowfall in the Kamikochi region of the Japanese Alps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, K.</p> <p>2017-12-01</p> <p>The Japanese Alps experience exceptionally heavy snowfall, extreme even by global standards, and in spring and summer the melting snow becomes a valuable water resource. The snow effectively acts as a natural dam when it accumulates in watersheds during winter. However, there have been no observations of the amount of snow in high-altitude regions of Japan. Therefore, we cannot discuss the effect of global warming on the change in the amount of snow in these regions based on direct observation data. We were, however, able to obtain climatic and hydrologic data for high-altitude sites in the Japanese Alps, and discuss the variations in these conditions in the Kamikochi region (altitude 1490 m-3190 m) of the Japanese Alps over a 68-year period using these observed data. No long-term trends are observed in the annual mean, maximum, or minimum temperatures at Taisho-ike from 1945 to 2012; the total annual precipitation shows a statistically significant decreasing trend. The annual total snowfall at Taisho-ike from 1969 to 2012 shows a statistically significant increasing trend. The annual total runoff of the Azusa River from 1945 to 2012 shows a statistically significant increasing trend, as does the snowmelt runoff to the river (which occurs from May to July). We can thus conclude that the annual snowfall in the Azusa River catchment has increased in recent years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H53D1478F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H53D1478F"><span>Attributing Increased River Flooding in the Future: Hydrodynamic Downscaling Reveals Role of Plant Physiological Responses to Increased CO2 is First Order</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fowler, M. D.; Kooperman, G. J.; Pritchard, M. S.; Randerson, J. T.</p> <p>2017-12-01</p> <p>River flooding events, which are the most frequently occurring natural disaster today, are expected to become more frequent and intense in response to climate change. However, the magnitude of these changes remains debated, in part due to uncertainty in our understanding of the physical processes that contribute to these events and their representation in global climate models. While the intensification of precipitation has been shown to be a primary driver of increased flooding, plant physiological responses to increasing CO2 may also play an important role. As the atmospheric concentration of CO2 increases, plants may respond by reducing the width of their stomata (i.e. stomatal conductance), which can decrease water lost through transpiration and in turn maintain higher soil moisture levels. On long timescales, reduced transpiration has been shown to increase average runoff, but on short timescales elevated soil moisture can also increase instantaneous runoff by limiting the rate at which water is able to infiltrate the soil surface. Here, through hydrodynamic downscaling, we isolate the portion of flooding amplification that can be attributed to the physiological response to increasing CO2. This builds on a new analysis that has revealed such physiological effects can rival changes caused by the atmospheric response alone in the tails of the runoff distribution. We use a set of four simulations run with the Community Earth System Model: one pre-industrial control simulation and three others that are forced with four times CO2. In the three climate change simulations, the increased CO2 is applied only to the land-surface, only to the atmosphere, and to both, respectively. Thirty years of daily runoff from these experiments are used as input for the hydrodynamic CaMa-Flood model. Our results reveal that both the radiative and physiological responses to climate change contribute significantly to future changes in flood return period and inundated area. This implies that better constraining the sensitivity of stomatal conductance to CO2 is of first order importance to reducing uncertainty for potential flood frequency and associated risk in a changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1988/4055/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1988/4055/report.pdf"><span>Channel infiltration from floodflows along the Pawnee River and its tributaries, west-central Kansas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gillespie, James B.; Perry, C.A.</p> <p>1988-01-01</p> <p>Most of the streams is west-central Kansas are ephemeral. Natural recharge to the alluvial aquifers underlying these streams occurs during periods of storm runoff in the ephemeral channels. Proposed flood-retarding structures within the basin will alter the downstream runoff characteristics in these channels by reducing the peak flow and increasing the flow duration. Information concerning channel-infiltration rate, unsaturated and saturated flow, and lithology of the unsaturated zone as related to stream stage and duration was collected along the Pawnee River and its tributaries to determine the effects of the flood-retarding structures. The infiltration rate on ephemeral streams was determined at five sites within the Pawnee River Basin. Tests were conducted in channel infiltrometers constructed by isolating a section of channel with two plastic-lined wooden cofferdams. At two of the sites, perched groundwater mounds intersected the bottom of the channel and reduced the infiltration rate. At two other sites where the perched groundwater mounds did not reach the bottom of the channel, the infiltration rate was directly proportional to the stage. Comparison of infiltration from simulated controlled and uncontrolled floodflows at the five sites indicated an average increase of about 2% with the controlled floodflow. Cumulative infiltration for these simulations ranged from 0.5 to 14.8 acre-ft/mi of channel. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/circ/1361/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/circ/1361/"><span>Effects of low-impact-development (LID) practices on streamflow, runoff quantity, and runoff quality in the Ipswich River Basin, Massachusetts-A Summary of field and modeling studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zimmerman, Marc J.; Waldron, Marcus C.; Barbaro, Jeffrey R.; Sorenson, Jason R.</p> <p>2010-01-01</p> <p>Low-impact-development (LID) approaches are intended to create, retain, or restore natural hydrologic and water-quality conditions that may be affected by human alterations. Wide-scale implementation of LID techniques may offer the possibility of improving conditions in river basins, such as the Ipswich River Basin in Massachusetts, that have run dry during the summer because of groundwater withdrawals and drought. From 2005 to 2008, the U.S. Geological Survey, in a cooperative funding agreement with the Massachusetts Department of Conservation and Recreation, monitored small-scale installations of LID enhancements designed to diminish the effects of storm runoff on the quantity and quality of surface water and groundwater. Funding for the studies also was contributed by the U.S. Environmental Protection Agency's Targeted Watersheds Grant Program through a financial assistance agreement with Massachusetts Department of Conservation and Recreation. The monitoring studies examined the effects of * replacing an impervious parking-lot surface with a porous surface on groundwater quality, * installing rain gardens and porous pavement in a neighborhood of 3 acres on the quantity and quality of stormwater runoff, and * installing a 3,000-ft2 (square-foot) green roof on the quantity and quality of rainfall-generated roof runoff. In addition to these small-scale installations, the U.S. Geological Survey's Ipswich River Basin model was used to simulate the basin-wide effects on streamflow of several changes: broad-scale implementation of LID techniques, reduced water-supply withdrawals, and water-conservation measures. Water-supply and conservation scenarios for application in model simulations were developed with the assistance of two technical advisory committees that included representatives of State agencies responsible for water resources, the U.S. Environmental Protection Agency, the U.S. Geological Survey, water suppliers, and non-governmental organizations. From June 2005 to June 2007, groundwater quality was monitored at the Silver Lake town beach parking lot in Wilmington, Massachusetts, prior to and following the replacement of the conventional, impervious-asphalt surface with a porous surface consisting primarily of porous asphalt and porous pavers designed to enhance rainfall infiltration into the groundwater and to minimize runoff to Silver Lake. Concentrations of phosphorus, nitrogen, cadmium, chromium, copper, lead, nickel, zinc, and total petroleum hydrocarbons in groundwater were monitored. Enhancing infiltration of precipitation did not result in discernible increases in concentrations of these potential groundwater contaminants. Concentrations of dissolved oxygen increased slightly in groundwater profiles following the removal of the impervious asphalt parking-lot surface. In Wilmington, Massachusetts, in a 3-acre neighborhood, stormwater runoff volume and quality were monitored to determine the ability of selected LID enhancements (rain gardens and porous paving stones) to reduce flows and loads of the selected constituents to Silver Lake. Water-quality samples were analyzed for nutrients, metals, total petroleum hydrocarbons, and total-coliform and E. coli bacteria. A decrease in runoff quantity was observed for storms of 0.25 inch or less of precipitation. Water-quality-monitoring results were inconclusive; there were no statistically significant differences in concentrations or loads when the pre- and post-installation-period samples were compared. In a third field study, the characteristics of runoff from a vegetated 'green' roof and a conventional, rubber-membrane roof were compared. The two primary factors affecting the green roof's water-storage capacity were the amount of precipitation and antecedent dry period. Although concentrations of many of the chemicals in roof runoff were higher from the green roof than from the conventional roof, the ability of the green roof to retain w</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123..848S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123..848S"><span>Hydrometeorology as an Inversion Problem: Can River Discharge Observations Improve the Atmosphere by Ensemble Data Assimilation?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sawada, Yohei; Nakaegawa, Tosiyuki; Miyoshi, Takemasa</p> <p>2018-01-01</p> <p>We examine the potential of assimilating river discharge observations into the atmosphere by strongly coupled river-atmosphere ensemble data assimilation. The Japan Meteorological Agency's Non-Hydrostatic atmospheric Model (JMA-NHM) is first coupled with a simple rainfall-runoff model. Next, the local ensemble transform Kalman filter is used for this coupled model to assimilate the observations of the rainfall-runoff model variables into the JMA-NHM model variables. This system makes it possible to do hydrometeorology backward, i.e., to inversely estimate atmospheric conditions from the information of river flows or a flood on land surfaces. We perform a proof-of-concept Observing System Simulation Experiment, which reveals that the assimilation of river discharge observations into the atmospheric model variables can improve the skill of the short-term severe rainfall forecast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..522...80K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..522...80K"><span>Assessing the impacts of climate change and dams on floodplain inundation and wetland connectivity in the wet-dry tropics of northern Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karim, Fazlul; Dutta, Dushmanta; Marvanek, Steve; Petheram, Cuan; Ticehurst, Catherine; Lerat, Julien; Kim, Shaun; Yang, Ang</p> <p>2015-03-01</p> <p>Floodplain wetlands and their hydrological connectivity with main river channels in the Australian wet-dry tropics are under increasing pressure from global climate change and water resource development, and there is a need for modelling tools to estimate the time dynamics of connectivity. This paper describes an integrated modelling framework combining conceptual rainfall-runoff modelling, river system modelling and hydrodynamic (HD) modelling to estimate hydrological connectivity between wetlands and rivers in the Flinders and Gilbert river catchments in northern Australia. Three historical flood events ranging from a mean annual flood to a 35-year return period flood were investigated using a two dimensional HD model (MIKE 21). Inflows from upstream catchments were estimated using a river network model. Local runoff within the HD modelling domain was simulated using the Sacramento rainfall-runoff model. The Shuttle Radar Topography Mission (SRTM) derived 30 m DEM was used to reproduce floodplain topography, stream networks and wetlands in the HD model. The HD model was calibrated using stream gauge data and inundation maps derived from satellite (MODIS: MODerate resolution Imaging Spectroradiometer) imagery. An algorithm was developed to combine the simulated water heights with the DEM to quantify inundation and flow connection between wetlands and rivers. The connectivity of 18 ecologically important wetlands on the Flinders floodplain and 7 on the Gilbert floodplain were quantified. The impacts of climate change and water resource development on connectivity to individual wetlands were assessed under a projected dry climate (2nd driest of 15 GCMs), wet climate (2nd wettest of 15 GCMs) and dam conditions. The results indicate that changes in rainfall under a wetter and drier future climate could have large impacts on area, duration and frequency of inundation and connectivity. Topographic relief, river bank elevation and flood magnitude were found to be the key factors contributing to the level of connectivity. Under a wetter future climate the average duration of connection of wetlands to the main river channel increased by 7% and under a drier climate it decreased by 18%. Construction of a 248 GL dam in the Flinders catchment and two (498 and 271 GL capacity) in the Gilbert catchment could reduce the average duration of connectivity by 1% and 2% in the Flinders and Gilbert catchments respectively. This information is potentially useful to future studies on the flood-dependent ecology in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/1048/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/1048/report.pdf"><span>Discharge and sediment loads in the Boise River drainage basin, Idaho 1939-40</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Love, S.K.; Benedict, Paul Charles</p> <p>1948-01-01</p> <p>The Boise River project is a highly developed agricultural area comprising some 520 square miles of valley and bench lands in southwestern Idaho. Water for irrigation is obtained from the Boise River and its tributaries which are regulated by storage in Arrow Rock and Deer Flat reservoirs. Distribution of water to the farms is effected by 27 principal canals and several small farm laterals which divert directly from the river. The- New York Canal, which is the largest, not only supplies water to smaller canals and farm laterals, but also is used to fill Deer Flat Reservoir near Nampa from which water is furnished to farms in the lower valley. During the past 15 years maintenance costs in a number of those canals have increased due to deposition of sediment in them and in the river channel itself below the mouth of Moore Creek. Interest in determining the runoff and sediment loads from certain areas in the Boise River drainage basin led to an investigation by the Flood Control Coordinating Committee of the Department of Agriculture. Measurements of daily discharge and sediments loads were made by the Geological Survey at 13 stations in the drainage basin during the 18-month period ended June 30, 1940. The stations were on streams in areas having different kinds of vegetative cover and subjected to different kinds of land-use practice. Data obtained during the investigation furnish a basis for certain comparisons of runoff and sediment loads from several areas arid for several periods of time. Runoff measured at stations on the. Boise River near Twin Springs and on Moore Creek near Arrow Rock was smaller during 1939 than during 1940 and was below the average annual runoff for the period of available record. Runoff measured at the other stations on the project also was smaller during 1939 than during 1940 and probably did not exceed the average for the previous 25 years. The sediment loads measured during the spring runoff in 1939 were smaller at most stations than those measured during the spring runoff in 1940. At those stations where the flow was not affected, or only slightly affected, by upstream diversions or by placer-mining operations, the largest sadiment loads per unit of drainage area were measured in Grouse Creek during both 1939 and 1940, amounting to 3,460 and 2,490 tons per square mile, respectively, and the smallest loads per unit of drainage area were measured in Bannock Creek during 1939 and in the Boise River near Twin Springs during 1940, amounting to 14 and 83 tons per square mile, respectively. Size anaylses of a large number of samples of suspended and deposited sediments give an indication of the origin of sediments carried past some of the stations. The analyses show that most of the sediment measured at the five stations in the Moore Creek drainages basin above Idaho City consisted largely of coarse material. They show, also, that the sediment measured at the station on Moore Creek above Thorn Creek consisted almost entirely of fine material during practically the entire period of the investigation. Most of the coarse material passing the stations above Idaho City probably was retained behind the dikes or in the pools usually formed by tailings from dredging operations in the placer-mining area below Idaho City, and much of the fine material measured at the station on Moore Creek above Thorn Creek probably was contributed by placer-mining activity. During the years when the spring runoff is greater than that measured during 1939 and 1940, it is probable that the dikes and pools will be less effective in retaining coarse sediments within the placered area. Records of sediment loads measured in the New York Canal indicate that a negligible amount of sediment was deposited there during 1939, but that in 1940 from 10 to 15 percent of the total load at the gaging station consisted of coarse sediment which was later deposited on the canal bottom. Most of the fine material was doubtless carried through the canal and eventually deposited in diversion ditches and on farm land. Because the sediment carried past the station on Moore Creek above Thorn Creek consisted almost entirely of fine material, it is probable, that a considerable part of the coarse sediment carried in the New York Canal during the 1940 spring runoff period was scoured from the large bed of deposited material in the Boise River above Diversion- Dam, and that the remainder came from Grimes Creek. Arrow Rock Reservoir was not sluiced during the investigation, and it is therefore unlikely that any of the coarse sediment in the New York Canal came from the Boise River above Moore Creek during 1939 and 1940. The average dry weight of 71 samples of deposited sediments collected from several parts of the Boise River drainage basin is about 90 pounds per cubic foot. The average specific gravity of 77 samples of deposited sediments is 2.57.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43C1663Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43C1663Z"><span>Climate Change Impacts on Sediment Yield in Headwaters of a High-latitude Region in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Y.; Xu, Y. J.; Wang, J., , Dr; Weihua, X.; Huang, Y.</p> <p>2017-12-01</p> <p>Climate change is expected to have strongest effects in higher latitude regions. Despite intensive research on possible hydrological responses to global warming in these regions, our knowledge of climate change on surface erosion and sediment yield in high-latitude headwaters is limited. In this study, we used the Soil and Water Assessment Tool (SWAT) to predict future runoff and sediment yield from the headwaters of a high-latitude river basin in China's far northeast. The SWAT model was first calibrated with historical discharge records and the model parameterization achieved satisfactory validation. The calibrated model was then applied to two greenhouse gas concentration trajectories, RCP4.5 and RCP8.5, for the period from 2020 to 2050 to estimate future runoff. Sediment yields for this period were predicted using a discharge-sediment load rating curve developed from field measurements in the past nine years. Our preliminary results show an increasing trend of sediment yield under both climate change scenarios, and that the increase is more pronounced in the summer and autumn months. Changes in precipitation and temperature seem to exert variable impacts on runoff and sediment yield at interannual and seasonal scales in these headwaters. These findings imply that the current river basin management in the region needs to be reviewed and improved in order to be effective under a changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25085426','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25085426"><span>The impact of land use and season on the riverine transport of mercury into the marine coastal zone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saniewska, Dominika; Bełdowska, Magdalena; Bełdowski, Jacek; Saniewski, Michał; Szubska, Marta; Romanowski, Andrzej; Falkowska, Lucyna</p> <p>2014-11-01</p> <p>In Mediterranean seas and coastal zones, rivers can be the main source of mercury (Hg). Catchment management therefore affects the load of Hg reaching the sea with surface runoff. The major freshwater inflows to the Baltic Sea consist of large rivers. However, their systems are complex and identification of factors affecting the outflow of Hg from its catchments is difficult. For this reason, a study into the impact of watershed land use and season on mercury biogeochemistry and transport in rivers was performed along two small rivers which may be considered typical of the southern Baltic region. Neither of these rivers are currently impacted by industrial effluents, thus allowing assessment of the influence of catchment terrain and season on Hg geochemistry. The study was performed between June 2008 and May 2009 at 13 sampling points situated at different terrain types within the catchments (forest, wetland, agriculture and urban). Hg analyses were conducted by CVAFS. Arable land erosion was found to be an important source of Hg to the aquatic system, similar to urban areas. Furthermore, inflows of untreated storm water discharge resulted in a fivefold increase of Hg concentration in the rivers. The highest Hg concentration in the urban runoff was observed with the greatest amount of precipitation during summer. Moderate rainfalls enhance the inflow of bioavailable dissolved mercury into water bodies. Despite the lack of industrial effluents entering the rivers directly, the sub-catchments with anthropogenic land use were important sources of Hg in the rivers. This was caused by elution of metal, deposited in soils over the past decades, into the rivers. The obtained results are especially important in the light of recent environmental conscience regulations, enforcing the decrease of pollution by Baltic countries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70175926','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70175926"><span>Effects of climate and land cover on hydrology in the southeastern U.S.: Potential impacts on watershed planning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland; Regan, R. Steve; Markstrom, Steven</p> <p>2015-01-01</p> <p>The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25225934','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25225934"><span>Quantitative identification of riverine nitrogen from point, direct runoff and base flow sources.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Hong; Zhang, Baifa; Lu, Jun</p> <p>2014-01-01</p> <p>We present a methodological example for quantifying the contributions of riverine total nitrogen (TN) from point, direct runoff and base flow sources by combining a recursive digital filter technique and statistical methods. First, we separated daily riverine flow into direct runoff and base flow using a recursive digital filter technique; then, a statistical model was established using daily simultaneous data for TN load, direct runoff rate, base flow rate, and temperature; and finally, the TN loading from direct runoff and base flow sources could be inversely estimated. As a case study, this approach was adopted to identify the TN source contributions in Changle River, eastern China. Results showed that, during 2005-2009, the total annual TN input to the river was 1,700.4±250.2 ton, and the contributions of point, direct runoff and base flow sources were 17.8±2.8%, 45.0±3.6%, and 37.2±3.9%, respectively. The innovation of the approach is that the nitrogen from direct runoff and base flow sources could be separately quantified. The approach is simple but detailed enough to take the major factors into account, providing an effective and reliable method for riverine nitrogen loading estimation and source apportionment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29464403','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29464403"><span>Assessment of snow-glacier melt and rainfall contribution to stream runoff in Baspa Basin, Indian Himalaya.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gaddam, Vinay Kumar; Kulkarni, Anil V; Gupta, Anil Kumar</p> <p>2018-02-20</p> <p>Hydrological regimes of most of the Himalayan river catchments are poorly studied due to sparse hydro-meteorological data. Hence, stream runoff assessment becomes difficult for various socio-industrial activities in the Himalaya. Therefore, an attempt is made in this study to assess the stream runoff of Baspa River in Himachal Pradesh, India, by evaluating the contribution from snow-ice melt and rainfall runoff. The total volume of flow was computed for a period of 15 years, from 2000 to 2014, and validated with the long-term field discharge measurements, obtained from Jaipee Hydropower station (31° 32' 35.53″ N, 78° 00' 54.80″ E), at Kuppa barrage in the basin. The observations suggest (1) a good correlation (r 2  > 0.80) between the modeled runoff and field discharge measurements, and (2) out of the total runoff, 81.2% are produced by snowmelt, 11.4% by rainfall, and 7.4% from ice melt. The catchment receives ~75% of its total runoff in the ablation period (i.e., from May to September). In addition, an early snowmelt is observed in accumulation season during study period, indicating the significant influence of natural and anthropogenic factors on high-altitude areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25577472','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25577472"><span>A drifter for measuring water turbidity in rivers and coastal oceans.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marchant, Ross; Reading, Dean; Ridd, James; Campbell, Sean; Ridd, Peter</p> <p>2015-02-15</p> <p>A disposable instrument for measuring water turbidity in rivers and coastal oceans is described. It transmits turbidity measurements and position data via a satellite uplink to a processing server. The primary purpose of the instrument is to help document changes in sediment runoff from river catchments in North Queensland, Australia. The 'river drifter' is released into a flooded river and drifts downstream to the ocean, measuring turbidity at regular intervals. Deployment in the Herbert River showed a downstream increase in turbidity, and thus suspended sediment concentration, while for the Johnstone River there was a rapid reduction in turbidity where the river entered the sea. Potential stranding along river banks is a limitation of the instrument. However, it has proved possible for drifters to routinely collect data along 80 km of the Herbert River. One drifter deployed in the Fly River, Papua New Guinea, travelled almost 200 km before stranding. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRD..120.7488Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRD..120.7488Y"><span>Multicriteria evaluation of discharge simulation in Dynamic Global Vegetation Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Hui; Piao, Shilong; Zeng, Zhenzhong; Ciais, Philippe; Yin, Yi; Friedlingstein, Pierre; Sitch, Stephen; Ahlström, Anders; Guimberteau, Matthieu; Huntingford, Chris; Levis, Sam; Levy, Peter E.; Huang, Mengtian; Li, Yue; Li, Xiran; Lomas, Mark R.; Peylin, Philippe; Poulter, Ben; Viovy, Nicolas; Zaehle, Soenke; Zeng, Ning; Zhao, Fang; Wang, Lei</p> <p>2015-08-01</p> <p>In this study, we assessed the performance of discharge simulations by coupling the runoff from seven Dynamic Global Vegetation Models (DGVMs; LPJ, ORCHIDEE, Sheffield-DGVM, TRIFFID, LPJ-GUESS, CLM4CN, and OCN) to one river routing model for 16 large river basins. The results show that the seasonal cycle of river discharge is generally modeled well in the low and middle latitudes but not in the high latitudes, where the peak discharge (due to snow and ice melting) is underestimated. For the annual mean discharge, the DGVMs chained with the routing model show an underestimation. Furthermore, the 30 year trend of discharge is also underestimated. For the interannual variability of discharge, a skill score based on overlapping of probability density functions (PDFs) suggests that most models correctly reproduce the observed variability (correlation coefficient higher than 0.5; i.e., models account for 50% of observed interannual variability) except for the Lena, Yenisei, Yukon, and the Congo river basins. In addition, we compared the simulated runoff from different simulations where models were forced with either fixed or varying land use. This suggests that both seasonal and annual mean runoff has been little affected by land use change but that the trend itself of runoff is sensitive to land use change. None of the models when considered individually show significantly better performances than any other and in all basins. This suggests that based on current modeling capability, a regional-weighted average of multimodel ensemble projections might be appropriate to reduce the bias in future projection of global river discharge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A51M0245Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A51M0245Y"><span>Multi-criteria Evaluation of Discharge Simulation in Dynamic Global Vegetation Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, H.; Piao, S.; Zeng, Z.; Ciais, P.; Yin, Y.; Friedlingstein, P.; Sitch, S.; Ahlström, A.; Guimberteau, M.; Huntingford, C.; Levis, S.; Levy, P. E.; Huang, M.; Li, Y.; Li, X.; Lomas, M.; Peylin, P. P.; Poulter, B.; Viovy, N.; Zaehle, S.; Zeng, N.; Zhao, F.; Wang, L.</p> <p>2015-12-01</p> <p>In this study, we assessed the performance of discharge simulations by coupling the runoff from seven Dynamic Global Vegetation Models (DGVMs; LPJ, ORCHIDEE, Sheffield-DGVM, TRIFFID, LPJ-GUESS, CLM4CN, and OCN) to one river routing model for 16 large river basins. The results show that the seasonal cycle of river discharge is generally modelled well in the low and mid latitudes, but not in the high latitudes, where the peak discharge (due to snow and ice melting) is underestimated. For the annual mean discharge, the DGVMs chained with the routing model show an underestimation. Furthermore the 30-year trend of discharge is also under-estimated. For the inter-annual variability of discharge, a skill score based on overlapping of probability density functions (PDFs) suggests that most models correctly reproduce the observed variability (correlation coefficient higher than 0.5; i.e. models account for 50% of observed inter-annual variability) except for the Lena, Yenisei, Yukon, and the Congo river basins. In addition, we compared the simulated runoff from different simulations where models were forced with either fixed or varying land use. This suggests that both seasonal and annual mean runoff has been little affected by land use change, but that the trend itself of runoff is sensitive to land use change. None of the models when considered individually show significantly better performances than any other and in all basins. This suggests that based on current modelling capability, a regional-weighted average of multi-model ensemble projections might be appropriate to reduce the bias in future projection of global river discharge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014E%26ES...18a2084B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014E%26ES...18a2084B"><span>Event-based rainfall-runoff modelling of the Kelantan River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Basarudin, Z.; Adnan, N. A.; Latif, A. R. A.; Tahir, W.; Syafiqah, N.</p> <p>2014-02-01</p> <p>Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HESS...22..351L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HESS...22..351L"><span>Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Wenbin; Sun, Fubao; Li, Yanzhong; Zhang, Guoqing; Sang, Yan-Fang; Lim, Wee Ho; Liu, Jiahong; Wang, Hong; Bai, Peng</p> <p>2018-01-01</p> <p>The dynamics of basin-scale water budgets over the Tibetan Plateau (TP) are not well understood nowadays due to the lack of in situ hydro-climatic observations. In this study, we investigate the seasonal cycles and trends of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q) in 18 TP river basins during the period 1982-2011 through the use of multi-source datasets (e.g. in situ observations, satellite retrievals, reanalysis outputs and land surface model simulations). A water balance-based two-step procedure, which considers the changes in basin-scale water storage on the annual scale, is also adopted to calculate actual ET. The results indicated that precipitation (mainly snowfall from mid-autumn to next spring), which are mainly concentrated during June-October (varied among different monsoons-impacted basins), was the major contributor to the runoff in TP basins. The P, ET and Q were found to marginally increase in most TP basins during the past 30 years except for the upper Yellow River basin and some sub-basins of Yalong River, which were mainly affected by the weakening east Asian monsoon. Moreover, the aridity index (PET/P) and runoff coefficient (Q/P) decreased slightly in most basins, which were in agreement with the warming and moistening climate in the Tibetan Plateau. The results obtained demonstrated the usefulness of integrating multi-source datasets to hydrological applications in the data-sparse regions. More generally, such an approach might offer helpful insights into understanding the water and energy budgets and sustainability of water resource management practices of data-sparse regions in a changing environment.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001714&hterms=air+asia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dair%2Basia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001714&hterms=air+asia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dair%2Basia"><span>Aerosols over Eastern Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>This Sea-viewing Wide Field-of-view Sensor (SeaWiFS) image of eastern Asia from October 14, 2001, shows large amounts of aerosol in the air. A few possible point sources of smoke, probably fires, are visible north of the Amur River at the very top of the image. One of the larger of these plumes can be seen down river of the confluence of the Songhua and Amur rivers. At lower left, the Yangtze River plume in the East China Sea is also very prominent. Sediment suspended in the ocean water is quite brown near the shore, but becomes much greener as it diffuses into the water. The increasing greenness of the river plume is probably an indication of enhanced phytoplankton growth driven by the nutrients in the river runoff. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.846a2019W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.846a2019W"><span>Tank Model Application for Runoff and Infiltration Analysis on Sub-Watersheds in Lalindu River in South East Sulawesi Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wirdhana Ahmad, Sitti</p> <p>2017-05-01</p> <p>Improper land management often causes flood, this is due to uncontrolled runoff. Runoff is affected by the management of the land cover. The phenomena also occurred in South East Sulawesi, Indonesia. This study aims to analyze the flow rate of water in watershed of Lalindu River in North Konawe, South East Sulawesi by using a Tank Model. The model determined the magnitude of the hydrologic runoff, infiltration capacity and soil water content several land uses were evaluated in the study area. The experimental and calculation results show that the runoff in the forest is 2,639.21 mm/year, in the reed is 2,517.05 mm/year, in the oil palm with a slope more than 45% is 2,715.36 mm/year, and in the oil palm with slopes less than 45% is 2,709.59 mm/year. Infiltration in the forest is 30.70 mm/year, in the reed is 7.51 mm/year, in the palm oil with a slope more than 45% is 24.13 mm/year and in the palm oil with slopes less than 45% is 29.67 mm/year. Runoff contributes to stream flow for water availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4795748','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4795748"><span>Effects of Stormwater and Snowmelt Runoff on ELISA-EQ Concentrations of PCDD/PCDF and Triclosan in an Urban River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Urbaniak, Magdalena; Tygielska, Adrianna; Krauze, Kinga; Mankiewicz-Boczek, Joanna</p> <p>2016-01-01</p> <p>The aim of the study was to determine the effects of stormwater and snowmelt runoff on the ELISA EQ PCDD/PCDF and triclosan concentrations in the small urban Sokołówka River (Central Poland). The obtained results demonstrate the decisive influence of hydrological conditions occurring in the river itself and its catchment on the quoted PCDD/PCDF ELISA EQ concentrations. The lowest PCDD/PCDF values of 87, 60 and 67 ng EQ L-1 in stormwater, the river and its reservoirs, respectively, were associated with the highest river flow of 0.02 m3 s-1 and high precipitation (11.2 mm) occurred five days before sampling. In turn, the highest values of 353, 567 and 343 ng EQ L-1 in stormwater, the river and its reservoirs, respectively, were observed during periods of intensive snow melting (stormwater samples) and spring rainfall preceded by a rainless phase (river and reservoir samples) followed by low and moderate river flows of 0.01 and 0.005 m3 s-1. An analogous situation was observed for triclosan, with higher ELISA EQ concentrations (444 to 499 ng EQ L-1) noted during moderate river flow and precipitation, and the lowest (232 to 288 ng EQ L-1) observed during high river flow and high precipitation preceded by violent storms. Stormwater was also found to influence PCDD/PCDF EQ concentrations of the river and reservoirs, however only during high and moderate flow, and no such effect was observed for triclosan. The study clearly demonstrates that to mitigate the high peaks of the studied pollutants associated with river hydrology, the increased in-site stormwater infiltration and purification, the development of buffering zones along river course and the systematic maintenance of reservoirs to avoid the accumulation of the studied micropollutants and their subsequent release after heavy rainfall are required. PMID:26985830</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26985830','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26985830"><span>Effects of Stormwater and Snowmelt Runoff on ELISA-EQ Concentrations of PCDD/PCDF and Triclosan in an Urban River.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Urbaniak, Magdalena; Tygielska, Adrianna; Krauze, Kinga; Mankiewicz-Boczek, Joanna</p> <p>2016-01-01</p> <p>The aim of the study was to determine the effects of stormwater and snowmelt runoff on the ELISA EQ PCDD/PCDF and triclosan concentrations in the small urban Sokołówka River (Central Poland). The obtained results demonstrate the decisive influence of hydrological conditions occurring in the river itself and its catchment on the quoted PCDD/PCDF ELISA EQ concentrations. The lowest PCDD/PCDF values of 87, 60 and 67 ng EQ L-1 in stormwater, the river and its reservoirs, respectively, were associated with the highest river flow of 0.02 m3 s-1 and high precipitation (11.2 mm) occurred five days before sampling. In turn, the highest values of 353, 567 and 343 ng EQ L-1 in stormwater, the river and its reservoirs, respectively, were observed during periods of intensive snow melting (stormwater samples) and spring rainfall preceded by a rainless phase (river and reservoir samples) followed by low and moderate river flows of 0.01 and 0.005 m3 s-1. An analogous situation was observed for triclosan, with higher ELISA EQ concentrations (444 to 499 ng EQ L-1) noted during moderate river flow and precipitation, and the lowest (232 to 288 ng EQ L-1) observed during high river flow and high precipitation preceded by violent storms. Stormwater was also found to influence PCDD/PCDF EQ concentrations of the river and reservoirs, however only during high and moderate flow, and no such effect was observed for triclosan. The study clearly demonstrates that to mitigate the high peaks of the studied pollutants associated with river hydrology, the increased in-site stormwater infiltration and purification, the development of buffering zones along river course and the systematic maintenance of reservoirs to avoid the accumulation of the studied micropollutants and their subsequent release after heavy rainfall are required.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.1929W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.1929W"><span>Impact of LUCC on streamflow based on the SWAT model over the Wei River basin on the Loess Plateau in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Hong; Sun, Fubao; Xia, Jun; Liu, Wenbin</p> <p>2017-04-01</p> <p>Under the Grain for Green Project in China, vegetation recovery construction has been widely implemented on the Loess Plateau for the purpose of soil and water conservation. Now it is becoming controversial whether the recovery construction involving vegetation, particularly forest, is reducing the streamflow in the rivers of the Yellow River basin. In this study, we chose the Wei River, the largest branch of the Yellow River, with revegetated construction area as the study area. To do that, we apply the widely used Soil and Water Assessment Tool (SWAT) model for the upper and middle reaches of the Wei River basin. The SWAT model was forced with daily observed meteorological forcings (1960-2009) calibrated against daily streamflow for 1960-1969, validated for the period of 1970-1979, and used for analysis for 1980-2009. To investigate the impact of LUCC (land use and land cover change) on the streamflow, we firstly use two observed land use maps from 1980 and 2005 that are based on national land survey statistics merged with satellite observations. We found that the mean streamflow generated by using the 2005 land use map decreased in comparison with that using the 1980 one, with the same meteorological forcings. Of particular interest here is that the streamflow decreased on agricultural land but increased in forest areas. More specifically, the surface runoff, soil flow, and baseflow all decreased on agricultural land, while the soil flow and baseflow of forest areas increased. To investigate that, we then designed five scenarios: (S1) the present land use (1980) and (S2) 10 %, (S3) 20 %, (S4) 40 %, and (S5) 100 % of agricultural land that was converted into mixed forest. We found that the streamflow consistently increased with agricultural land converted into forest by about 7.4 mm per 10 %. Our modeling results suggest that forest recovery construction has a positive impact on both soil flow and baseflow by compensating for reduced surface runoff, which leads to a slight increase in the streamflow in the Wei River with the mixed landscapes on the Loess Plateau that include earth-rock mountain area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26259438','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26259438"><span>[Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuan, Yu-zhi; Zhang, Zheng-dong; Meng, Jin-hua</p> <p>2015-04-01</p> <p>SWAT model, an extensively used distributed hydrological model, was used to quantitatively analyze the influences of changes in land use and climate on the runoff at watershed scale. Liuxihe Watershed' s SWAT model was established and three scenarios were set. The calibration and validation at three hydrological stations of Wenquan, Taipingchang and Nangang showed that the three factors of Wenquan station just only reached the standard in validated period, and the other two stations had relative error (RE) < 15%, correlation coefficient (R2) > 0.8 and Nash-Sutcliffe efficiency valve (Ens) > 0.75, suggesting that SWAT model was appropriate for simulating runoff response to land use change and climate variability in Liuxihe watershed. According to the integrated scenario simulation, the annual runoff increased by 11.23 m3 x s(-1) from 2001 to 2010 compared with the baseline period from 1991 to 2000, among which, the land use change caused an annual runoff reduction of 0.62 m3 x s(-1), whereas climate variability caused an annual runoff increase of 11.85 m3 x s(-1). Apparently, the impact of climate variability was stronger than that of land use change. On the other hand, the scenario simulation of extreme land use showed that compared with the land use in 2000, the annual runoff of the farmland scenario and the grassland scenario increased by 2.7% and 0.5% respectively, while that of the forest land scenario were reduced by 0.7%, which suggested that forest land had an ability of diversion closure. Furthermore, the scenario simulation of climatic variability indicated that the change of river runoff correlated positively with precipitation change (increase of 11.6% in annual runoff with increase of 10% in annual precipitation) , but negatively with air temperature change (reduction of 0.8% in annual runoff with increase of 1 degrees C in annual mean air temperature), which showed that the impact of precipitation variability was stronger than that of air temperature change. Therefore, in face of climate variability, we need to pay attention to strong rainfall forecasts, optimization of land use structure and spatial distribution, which could reduce the negative hydrological effects (such as floods) induced by climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011HESSD...8..811R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011HESSD...8..811R"><span>Long term variability of the annual hydrological regime and sensitivity to temperature phase shifts in Saxony/Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Renner, M.; Bernhofer, C.</p> <p>2011-01-01</p> <p>The timing of the seasons strongly effects ecosystems and human activities. Recently, there is increasing evidence of changes in the timing of the seasons, such as earlier spring seasons detected in phenological records, advanced seasonal timing of surface temperature, earlier snow melt or streamflow timing. For water resources management there is a need to quantitatively describe the variability in the timing of hydrological regimes and to understand how climatic changes control the seasonal water budget of river basins on the regional scale. In this study, changes of the annual cycle of hydrological variables are analysed for 27 river basins in Saxony/Germany. Thereby monthly series of basin runoff ratios, the ratio of runoff and basin precipitation are investigated for changes and variability of their annual periodicity over the period 1930-2009. Approximating the annual cycle by the means of harmonic functions gave acceptable results, while only two parameters, phase and amplitude, are required. It has been found that the annual phase of runoff ratio, representing the timing of the hydrological regime, is subject to considerable year-to-year variability, being concurrent with basins in similar hydro-climatic conditions. Two distinct basin classes have been identified, whereby basin elevation has been found to be the delimiting factor. An increasing importance of snow on the basin water balance with elevation is apparent and mainly governs the temporal variability of the annual timing of hydrological regimes. Further there is evidence of coincident changes in trend direction (change points in 1971 and 1988) in snow melt influenced basins. In these basins the timing of the runoff ratio is significantly correlated with the timing of temperature, and effects on runoff by temperature phase changes are even amplified. Interestingly, temperature effects may explain the low frequent variability of the second change point until today. However, the first change point can not be explained by temperature alone and other causes have to be considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JHyd..509..454M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JHyd..509..454M"><span>An assessment of the stationarity of climate and stream flow in watersheds of the Colorado River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murphy, Kevin W.; Ellis, Andrew W.</p> <p>2014-02-01</p> <p>Several studies drawing upon general circulation models have investigated the potential impacts of future climate change on precipitation and runoff to stream flow in the southwest United States, suggesting reduced runoff in response to increasing temperatures and less precipitation. With the hydroclimatic changes considered to be underway, water management professionals have been counseled to abandon historical assumptions of stationarity in the natural systems governing surface water replenishments. Stationarity is predicated upon an assumption that the generating process is in equilibrium around an underlying mean and that variance remains constant over time. The implications of a more arid future are significant for surface water resources in the semi-arid Colorado River Basin (CRB). To examine the evidence of forthcoming change, eight sub-basins were identified for this study having unregulated runoff to stream flow gages, providing a 22% spatial sampling of the CRB. Their long-term record of surface temperature and precipitation along with corresponding gage records were evaluated with time series analysis methods and testing criteria established per statistical definitions of stationarity. Statistically significant temperature increases in all sub-basins were found, with persistently non-stationary time series in the recent record relative to the earlier historical record. However, tests of precipitation and runoff did not reveal persistent reductions, indicating that they remain stationary processes. Their transitions through periods of drought and excess have been characterized, with precipitation and stream flows found to be currently close to their long-term average. The evidence also indicates that resolving precipitation and runoff trends amidst natural modes of variability will be challenging and unlikely within the next several decades. Abandonment of stationarity assumptions for the CRB is not necessarily supported by the evidence, making it premature to discard its historical record as an instrument by which to assess sustainability of water resource systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027843','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027843"><span>Effects of suburban development on runoff generation in the Croton River basin, New York, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Burns, D.; Vitvar, T.; McDonnell, J.; Hassett, J.; Duncan, J.; Kendall, C.</p> <p>2005-01-01</p> <p>The effects of impervious area, septic leach-field effluent, and a riparian wetland on runoff generation were studied in three small (0.38-0.56 km 2) headwater catchments that represent a range of suburban development (high density residential, medium density residential, and undeveloped) within the Croton River basin, 70 km north of New York City. Precipitation, stream discharge, and groundwater levels were monitored at 10-30 min intervals for 1 year, and stream water and groundwater samples were collected biweekly for ??18O, NO3-, and SO42- analysis for more than 2 years during an overlapping period in 2000-2002. Data from 27 storms confirmed that peak magnitudes increased and recession time decreased with increasing development, but lags in peak arrival and peak discharge/mean discharge were greatest in the medium density residential catchment, which contains a wetland in which storm runoff is retained before entering the stream. Baseflow during a dry period from Aug. 2001-Feb. 2002 was greatest in the high-density residential catchment, presumably from the discharge of septic effluent through the shallow groundwater system and into the stream. In contrast, moderate flows during a wet period from Mar.-Aug. 2002 were greatest in the undeveloped catchment, possibly as a result of greater subsurface storage or greater hydraulic conductivity at this site. The mean residence time of baseflow was about 30 weeks at all three catchments, indicating that human influence was insufficient to greatly affect the groundwater recharge and discharge properties that determine catchment residence time. These results suggest that while suburban development and its associated impervious surfaces and storm drains accelerate the transport of storm runoff into streams, the combined effects of remnant natural landscape features such as wetlands and human alterations such as deep groundwater supply and septic systems can change the expected effects of human development on storm runoff and groundwater recharge. ?? 2005 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcSci..13..465O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcSci..13..465O"><span>Small river plumes off the northeastern coast of the Black Sea under average climatic and flooding discharge conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osadchiev, Alexander; Korshenko, Evgeniya</p> <p>2017-06-01</p> <p>This study focuses on the impact of discharges of small rivers on the delivery and fate of fluvial water and suspended matter at the northeastern part of the Black Sea under different local precipitation conditions. Several dozens of mountainous rivers flow into the sea at the study region, and most of them, except for several of the largest, have little annual runoff and affect adjacent coastal waters to a limited extent under average climatic conditions. However, the discharges of these small rivers are characterized by a quick response to precipitation events and can significantly increase during and shortly after heavy rains, which are frequent in the considered area. The delivery and fate of fluvial water and terrigenous sediments at the study region, under average climatic and rain-induced flooding conditions, were explored and compared using in situ data, satellite imagery, and numerical modeling. It was shown that the point-source spread of continental discharge dominated by several large rivers under average climatic conditions can change to the line-source discharge from numerous small rivers situated along the coast in response to heavy rains. The intense line-source runoff of water and suspended sediments forms a geostrophic alongshore current of turbid and freshened water, which induces the intense transport of suspended and dissolved constituents discharged with river waters in a northwestern direction. This process significantly influences water quality and causes active sediment load at large segments of the narrow shelf at the northeastern part of the Black Sea compared to average climatic discharge conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916252O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916252O"><span>Small river plumes near the north-eastern coast of the Black Sea under climatic mean and flooding discharge conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osadchiev, Alexander; Korshenko, Evgeniya</p> <p>2017-04-01</p> <p>The study is focused on the impact of discharge from small rivers on propagation and final location of fluvial waters and suspended matter at the north-eastern part of the Black Sea under different local precipitation conditions. Several dozens of mountainous rivers inflow into the sea at the studied region and most of them, except the several largest of them, have small annual runoff and limitedly affect adjacent coastal waters under climatic mean conditions. However, discharges of these small rivers are characterized by quick response to precipitation events and can dramatically increase during and shortly after heavy rains, which are frequent in the area under consideration. Propagation and final location of fluvial waters and terrigenous sediments at the studied region under climatic mean and rain-induced flooding conditions were explored and compared using in situ data, satellite imagery and numerical modelling. It was shown that the point-source spread of continental discharge dominated by several large rivers during climatic mean conditions can change to the line-source discharge from numerous small rivers situated along the coast in response to heavy rains. Intense line-source runoff of water and suspended sediments form a geostrophic alongshore current of turbid and freshened water, which induces intense transport of suspended and dissolved constituents discharged with river waters in a north-western direction. This process significantly influences water quality and causes active sediment load at large segments of narrow shelf at the north-eastern part of the Black Sea as compared to climatic mean discharge conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2017/5091/sir20175091.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2017/5091/sir20175091.pdf"><span>Simulation of daily streamflow for 12 river basins in western Iowa using the Precipitation-Runoff Modeling System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Christiansen, Daniel E.; Haj, Adel E.; Risley, John C.</p> <p>2017-10-24</p> <p>The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for 12 river basins in western Iowa that drain into the Missouri River. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration periods for each basin varied depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.A geographic information system tool was used to delineate each basin and estimate initial values for model parameters based on basin physical and geographical features. A U.S. Geological Survey automatic calibration tool that uses a shuffled complex evolution algorithm was used for initial calibration, and then manual modifications were made to parameter values to complete the calibration of each basin model. The main objective of the calibration was to match daily discharge values of simulated streamflow to measured daily discharge values. The Precipitation-Runoff Modeling System model was calibrated at 42 sites located in the 12 river basins in western Iowa.The accuracy of the simulated daily streamflow values at the 42 calibration sites varied by river and by site. The models were satisfactory at 36 of the sites based on statistical results. Unsatisfactory performance at the six other sites can be attributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) limited availability and accuracy of meteorological input data. The Precipitation-Runoff Modeling System models of 12 river basins in western Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.5979S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.5979S"><span>Study and proposals related to extensive flooding in the Siret River area during the summer of 2008 in Romania</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stefanescu, Victor; Stefan, Sabina; Irimescu, Anisoara</p> <p>2010-05-01</p> <p>Extensive flooding due to overflowing of the Siret River and associated runoff in smaller rivers in northeastern Romania at the end of July 2008 are discussed, taking into account the meteorological and hydrological contexts. The flooding events in Romania claimed human deaths and population displacement, large-scale destruction of housing and infrastructure. Although the Siret river is quite shallow, and several dams and reservoirs restrict and control its flow, the area along the river remains prone to periodic flooding, mainly in spring and summer. Several observations are made on the viability of settlements close to Siret riverbed in Romania, related to the repeatability of situations such as that during the summer of 2008. Generally, the relative shallowness of the river Siret may cause flash floods, when its level increases rapidly due to abundant precipitation. As such, the horizontal extent of the flooding due to runoff is a factor seemingly more important than the short-lived increases in depth, combined with the speed of the flow. As a direct result of the flooding, crops and buildings were damaged. The probability that similar meteorological contexts can cause flooding with the extent of that in 2008 will be discussed. Also, some possible means to improve the reaction of authorities and delivery of relief by them to the affected population will be proposed. Regarding the meteorological context, a presentation of the cyclonic system that has brought heavy and/or continuous rain in northern and northeastern Romania will be made. As proposal for improving the delivery of resources toward the affected area and population, a software system designed to shorten the process of conveying relevant information to decisional factors, and to increase the speed of information between interesed parties will be discussed. The possible outcome of this specific case study will be the improvement of the decisional flux required in times of natural disasters, flooding included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApWS....7..787K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApWS....7..787K"><span>Impact of landuse/land cover change on run-off in the catchment of a hydro power project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khare, Deepak; Patra, Diptendu; Mondal, Arun; Kundu, Sananda</p> <p>2017-05-01</p> <p>The landuse/land cover change and rainfall have a significant influence on the hydrological response of the river basins. The run-off characteristics are changing naturally due to reduction of initial abstraction that increases the run-off volume. Therefore, it is necessary to quantify the changes in the run-off characteristics of a catchment under the influence of changed landuse/land cover. Soil conservation service model has been used in the present study to analyse the impact of various landuse/land cover (past, present and future time period) change in the run-off characteristics of a part of Narmada basin at the gauge discharge site of Mandaleswar in Madhya Pradesh, India. Calculated run-off has been compared with the observed run-off data for the study. The landuse/land cover maps of 1990, 2000 and 2009 have been prepared by digital classification method with proper accuracy using satellite imageries. The impact of the run-off change on hydro power potential has been assessed in the study along with the estimation of the future changes in hydro power potential. Five types of conditions (+10, +5 %, average, -5, -10 % of average rainfall) have been applied with 90 and 75 % dependability status. The generated energy will be less in 90 % dependable flow in respect to the 75 % dependable flow. This work will be helpful for future planning related to establishment of hydropower setup.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PIAHS.379..421C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PIAHS.379..421C"><span>Impact of the operation of cascade reservoirs in upper Yangtze River on hydrological variability of the mainstream</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Changjiang, Xu; Dongdong, Zhang</p> <p>2018-06-01</p> <p>As the impacts by climate changes and human activities are intensified, variability may occur in river's annual runoff as well as flood and low water characteristics. In order to understand the characteristics of variability in hydrological series, diagnosis and identification must be conducted specific to the variability of hydrological series, i.e., whether there was variability and where the variability began to occur. In this paper, the mainstream of Yangtze River was taken as the object of study. A model was established to simulate the impounding and operation of upstream cascade reservoirs so as to obtain the runoff of downstream hydrological control stations after the regulation by upstream reservoirs in different level years. The Range of Variability Approach was utilized to analyze the impact of the operation of upstream reservoirs on the variability of downstream. The results indicated that the overall hydrologic alterations of Yichang hydrological station in 2010 level year, 2015 level year and the forward level year were 68.4, 72.5 and 74.3 % respectively, belonging to high alteration in all three level years. The runoff series of mainstream hydrological stations presented variability in different degrees, where the runoff series of the four hydrological stations including Xiangjiaba, Gaochang and Wulong belonged to high alteration in the three level years; and the runoff series of Beibei hydrological station in 2010 level year belonged to medium alteration, and high alteration in 2015 level year and the forward level year. The study on the impact of the operation of cascade reservoirs in Upper Yangtze River on hydrological variability of the mainstream had important practical significance on the sustainable utilization of water resources, disaster prevention and mitigation, safe and efficient operation and management of water conservancy projects and stable development of the economic society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/2459/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/2459/report.pdf"><span>Streamflow transport of radionuclides and other chemical constituents in the Puerco and the Little Colorado river basins, Arizona and New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Graf, Julia B.; Wirt, Laurie; Swanson, E.K.; Fisk, G.G.; Gray, J.R.</p> <p>1996-01-01</p> <p>Samples collected at streamflow-gaging stations in the Puerco and Little Colorado rivers show that radioactivity of suspended sediment at gaging stations downstream from inactive uranium mines was not significantly higher than at gaging stations where no mining has occurred upstream. Drinking-water standards for many constituents, however, commonly are exceeded during runoff because concentration of these constituents on sediment from natural processes is high and suspended-sediment loads are high during runoff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=245202','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=245202"><span>Development of an automated procedure for estimation of the spatial variation of runoff in large river basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The use of distributed parameter models to address water resource management problems has increased in recent years. Calibration is necessary to reduce the uncertainties associated with model input parameters. Manual calibration of a distributed parameter model is a very time consuming effort. There...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=313653','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=313653"><span>Improving efficacy of landscape interventions in the (sub) humid Ethiopian highlands by improved understanding of runoff processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Despite millions of dollars invested in soil and water conservation practices and other landscape interventions in the Ethiopian highlands and billions of hours of food-for-work farm labor, sediment concentration in rivers is increasing. Possible ways to reverse the current trend have been investiga...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=238977&keyword=benefit+AND+decision+AND+making&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=238977&keyword=benefit+AND+decision+AND+making&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Delivery of Ecosystem Benefits at the Urban-Suburban Interface: A Case Study of Flood Protection in the Woonasquatucket River Watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Urbanization exacerbates flooding by increasing surface runoff and decreasing surface roughness. Restoring wetlands can enhance flood protection while providing a suite of co-benefits such as temperature regulation and access to open space. Spatial modeling of the delivery of flo...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970003259','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970003259"><span>Modeling Climate Change in the Absence of Climate Change Data. Editorial Comment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Skiles, J. W.</p> <p>1995-01-01</p> <p>Practitioners of climate change prediction base many of their future climate scenarios on General Circulation Models (GCM's), each model with differing assumptions and parameter requirements. For representing the atmosphere, GCM's typically contain equations for calculating motion of particles, thermodynamics and radiation, and continuity of water vapor. Hydrology and heat balance are usually included for continents, and sea ice and heat balance are included for oceans. The current issue of this journal contains a paper by Van Blarcum et al. (1995) that predicts runoff from nine high-latitude rivers under a doubled CO2 atmosphere. The paper is important since river flow is an indicator variable for climate change. The authors show that precipitation will increase under the imposed perturbations and that owing to higher temperatures earlier in the year that cause the snow pack to melt sooner, runoff will also increase. They base their simulations on output from a GCM coupled with an interesting water routing scheme they have devised. Climate change models have been linked to other models to predict deforestation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H53I1593Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H53I1593Y"><span>Analysis of Land Use and Land Cover Changes and Their Impacts on Future Runoff in the Luanhe River Basin in North China Using Markov and SWAT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, W.; Long, D.</p> <p>2017-12-01</p> <p>Both land use/cover change (LUCC) and climate change exert significant impacts on runoff, which needs to be thoroughly examined in the context of urbanization, population growth, and climate change. The majority of studies focus on the impacts of either LUCC or climate on runoff in the upper reaches of the Panjiakou Reservoir in the Luanhe River basin, North China. In this study, first, two land use change matrices for periods 1970‒1980 and 1980‒2000 were constructed based on the theory of the Markov Chain which were used to predict the land use scenario of the basin in year 2020. Second, a distributed hydrological model, Soil Water Assessment Tools (SWAT), was set up and driven mainly by the China Gauge-based Daily Precipitation Analysis (CGDPA) product and outputs from three general circulation models (GCMs) of the Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP). Third, under the land use scenario in 2000, streamflow at the Chengde gauging station for the period 1998‒2014 was simulated with the CGDPA as input, and streamflow for the period 2015‒2025 under four representative concentration pathways (RCPs) was simulated using the outputs from GCMs and compared under the land use scenarios in 2000 and 2020. Results show that during 2015‒2025, the ensemble average precipitation in summer (i.e., from June to August) may increase up to 20% but decrease by -16% in fall (i.e., from September to November). The streamflow may increase in all the seasons, particularly in spring (i.e., from March to May) and summer reaching 150% and 142%, respectively. Furthermore, the streamflow may increase even more when the land use scenario for the period 1998‒2025 remains the same as that in 2000. The minimum (61mm) and maximum (77mm) mean annual runoff depth occur under the RCP4.5 and RCP6 scenarios, respectively, compared with the mean annual observed streamflow of 33 mm from 1998 to 2014. Finally, we analyzed the correlation among the main land use types (i.e., agricultural land, forest, and pasture) and evapotranspiration, surface runoff contribution to streamflow (SURQ), groundwater contribution to streamflow (GWQ), and the sum of the surface runoff and groundwater contributions to streamflow (SSGQ), respectively. It was found that the increase in agricultural land may induce the increase in SURQ but the decrease in GWQ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.1455G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.1455G"><span>Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: a multi-model analysis with a new set of land-cover change scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guimberteau, Matthieu; Ciais, Philippe; Ducharne, Agnès; Boisier, Juan Pablo; Dutra Aguiar, Ana Paula; Biemans, Hester; De Deurwaerder, Hannes; Galbraith, David; Kruijt, Bart; Langerwisch, Fanny; Poveda, German; Rammig, Anja; Andres Rodriguez, Daniel; Tejada, Graciela; Thonicke, Kirsten; Von Randow, Celso; Von Randow, Rita C. S.; Zhang, Ke; Verbeeck, Hans</p> <p>2017-03-01</p> <p>Deforestation in Amazon is expected to decrease evapotranspiration (ET) and to increase soil moisture and river discharge under prevailing energy-limited conditions. The magnitude and sign of the response of ET to deforestation depend both on the magnitude and regional patterns of land-cover change (LCC), as well as on climate change and CO2 levels. On the one hand, elevated CO2 decreases leaf-scale transpiration, but this effect could be offset by increased foliar area density. Using three regional LCC scenarios specifically established for the Brazilian and Bolivian Amazon, we investigate the impacts of climate change and deforestation on the surface hydrology of the Amazon Basin for this century, taking 2009 as a reference. For each LCC scenario, three land surface models (LSMs), LPJmL-DGVM, INLAND-DGVM and ORCHIDEE, are forced by bias-corrected climate simulated by three general circulation models (GCMs) of the IPCC 4th Assessment Report (AR4). On average, over the Amazon Basin with no deforestation, the GCM results indicate a temperature increase of 3.3 °C by 2100 which drives up the evaporative demand, whereby precipitation increases by 8.5 %, with a large uncertainty across GCMs. In the case of no deforestation, we found that ET and runoff increase by 5.0 and 14 %, respectively. However, in south-east Amazonia, precipitation decreases by 10 % at the end of the dry season and the three LSMs produce a 6 % decrease of ET, which is less than precipitation, so that runoff decreases by 22 %. For instance, the minimum river discharge of the Rio Tapajós is reduced by 31 % in 2100. To study the additional effect of deforestation, we prescribed to the LSMs three contrasted LCC scenarios, with a forest decline going from 7 to 34 % over this century. All three scenarios partly offset the climate-induced increase of ET, and runoff increases over the entire Amazon. In the south-east, however, deforestation amplifies the decrease of ET at the end of dry season, leading to a large increase of runoff (up to +27 % in the extreme deforestation case), offsetting the negative effect of climate change, thus balancing the decrease of low flows in the Rio Tapajós. These projections are associated with large uncertainties, which we attribute separately to the differences in LSMs, GCMs and to the uncertain range of deforestation. At the subcatchment scale, the uncertainty range on ET changes is shown to first depend on GCMs, while the uncertainty of runoff projections is predominantly induced by LSM structural differences. By contrast, we found that the uncertainty in both ET and runoff changes attributable to uncertain future deforestation is low.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21251680','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21251680"><span>River discharge reduces reef coral diversity in Palau.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Golbuu, Yimnang; van Woesik, Robert; Richmond, Robert H; Harrison, Peter; Fabricius, Katharina E</p> <p>2011-04-01</p> <p>Coral community structure is often governed by a suite of processes that are becoming increasingly influenced by land-use changes and related terrestrial discharges. We studied sites along a watershed gradient to examine both the physical environment and the associated biological communities. Transplanted corals showed no differences in growth rates and mortality along the watershed gradient. However, coral cover, coral richness, and coral colony density increased with increasing distance from the mouth of the bay. There was a negative relationship between coral cover and mean suspended solids concentration. Negative relationships were also found between terrigenous sedimentation rates and the richness of adult and juvenile corals. These results have major implications not only for Pacific islands but for all countries with reef systems downstream of rivers. Land development very often leads to increases in river runoff and suspended solids concentrations that reduce coral cover and coral diversity on adjacent reefs. Copyright © 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23821561','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23821561"><span>First assessment of water and carbon cycles in two tropical coastal rivers of south-west India: an isotopic approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tripti, M; Lambs, L; Otto, T; Gurumurthy, G P; Teisserenc, R; Moussa, I; Balakrishna, K; Probst, J L</p> <p>2013-08-15</p> <p>The contribution of tropical coastal rivers to the global carbon budget remains unmeasured, despite their high water dynamics, i.e. higher run-off with their basin characteristic of warm temperature. Two rivers draining the western part of the Western Ghats, the Swarna (length 80 km) and Nethravati (147 km) Rivers, were studied for water and carbon cycles. The stable isotope ratios of oxygen (δ(18) O values), hydrogen (δ(2) H values) and carbon (δ(13) C values) were used to understand the water circulation, the weathering processes and the carbon biogeochemical cycle. The river water samples were collected during the dry post-monsoonal season (November 2011). The δ(18) O and δ(2) H values of river water suggested that the monsoonal vapour source and its high recycling have a dominant role because of the orographical and tropical conditions. The absence of calcareous rocks has led to dissolved inorganic carbon (DIC) mainly originating from atmospheric/soil CO2 , via rock-weathering processes, and the low soil organic matter combined with high run-off intensity has led to low riverine dissolved organic carbon (DOC) contents. The δ(13) C values increase from upstream to downstream and decrease with increasing pCO2 . There is a positive relationship between the δ(13) CDIC values and the DOC concentrations in these two rivers that is contrary to that in most of the studied rivers of the world. The higher evapotranspiration supported by tropical conditions suggests that there are higher vapour recycling process in the Swarna and Nethravati basins as studied from the water δ(18) O and δ(2) H values. The basin characteristics of higher rainfall/run-off accompanied by warm temperature suggest that the δ(13) C value of riverine DIC is mainly controlled by the weathering of source rocks (silicates) with variation along the river course by CO2 degassing from the river water to the atmosphere and is less dominated by the oxidation of DOC. Copyright © 2013 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990PalOc...5..897T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990PalOc...5..897T"><span>Meltwater and precipitation runoff to the North Atlantic, Arctic, and Gulf of Mexico from the Laurentide Ice Sheet and adjacent regions during the Younger Dryas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teller, James T.</p> <p>1990-12-01</p> <p>Runoff from North America may have played a significant role in ocean circulation and climate change during the last deglaciation. Because the driving force behind such changes may have been related to salinity of the north flowing Atlantic Ocean conveyor circulation, it is critical to know the volume, timing, and location of fresh water entering the North Atlantic from the melting Laurentide Ice Sheet. During the Younger Dryas cold episode, 11,000-10,000 years B.P., there was a two-fold increase in the volume of meltwater plus precipitation runoff, to more than 1700 km³ yr-1, flowing through the St. Lawrence valley to the North Atlantic, mainly because retreating ice allowed the glacial Lake Agassiz basin to drain eastward into the Great Lakes at this time. There was a corresponding decline in discharge from Lake Agassiz through the Mississippi River to the Gulf of Mexico. Runoff to the Arctic Ocean also increased at about the beginning of the Younger Dryas, from 740 to 900 km³ yr-1, because of the capture of what is now the headwater region of the Mackenzie River watershed. This, in combination with rising sea level and warming climate, may have increased the amount of pack ice reaching the North Atlantic through the Norwegian Sea from the Arctic Ocean. At 10,000 years B.P., eastward overflow from the western interior of North America was blocked by advancing ice, again forcing overflow to the Gulf of Mexico and, possibly, to the northwest into the Arctic Ocean. Although total runoff to the oceans from all regions draining from the Laurentide Ice Sheet did not vary substantially between 12,000 and 9000 years B.P., if discharge to the Gulf of Mexico is excluded, fresh water reaching the North Atlantic averaged 4000 km³ yr-1 during the Younger Dryas, in contrast to 2870 km³ yr-1 just before this cold episode and 3440 km³ yr-1 just after it.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812308M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812308M"><span>Isotopic investigation of the discharge driven nitrogen dynamics in a mesoscale river catchment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mueller, Christin; Zink, Matthias; Krieg, Ronald; Rode, Michael; Merz, Ralf; Knöller, Kay</p> <p>2016-04-01</p> <p>Nitrate in surface and groundwater has increased in the last decades due to landuse change, the application of different fertilizer for agricultural landuse and industrial dust in the atmospheric deposition. Increasing nitrate concentrations have a major impact on eutrophication, especially for coastal ecosystems. Therefore it is important to quantify potential nitrate sources and determine nitrate process dynamics with its drivers. The Bode River catchment (total size of 3200 m2) in the Harz Mountains in Germany was intensively investigated by a monitoring approach with 133 sampling points representing the same number of sub-catchments for a period of two years. The area is characterized by a strong anthropogenic gradient, with forest conservation areas in the mountain region, grassland, and intensively mixed farming in the lowlands. Consecutive discharge simulations by a mesoscale hydrological model (mhM) allow a quantitative analysis of nitrate fluxes for all observed tributaries. The investigation of nitrate isotopic signatures for characteristic landscape types allows the delineation of dominant NO3- sources: coniferous forests are characterized by recycled nitrified soil nitrogen; grassland is mainly impacted by organic fertilizer (manure) and nitrified soil-N; in agricultural land use areas nitrate predominantly derives from synthetic fertilizer application. Besides source delineation, the relationship between runoff and nitrate dynamics was analyzed for the entire Bode river catchment and, more detailed, for one major tributary with minor artificial reservoirs (Selke River). Thereby, it becomes apparent that nitrate isotopic variations increase with decreasing discharge. This effect might be due to a local, more intense impact of bacterial denitrification under low discharge conditions (higher residence time) in the anoxic soil zone, in the groundwater that discharges into the river and in the hyporheic zone. Generally, δ15N and δ18Oof nitrate decrease with increasing runoff, which can be caused by a preferential wash-out of more easily mobilizable, isotopically lighter fractions of the soil nitrate pool.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H21H0811S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H21H0811S"><span>New insights into hydrologic sources and sinks in the Nile Basin: A multi-source satellite data analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Senay, G. B.; Velpuri, N. M.; Bohms, S.; Demissie, Y.; Gebremichael, M.</p> <p>2014-12-01</p> <p>The Nile River is the longest in the world with a length of 6,800 km. However, the contrast between the length of the river or the size of the basin and the comparatively small volume of basin runoff generated is a unique feature of the Nile Basin. Due to non-availability of in-situ hydrologic data, we do not clearly understand the spatial distribution of hydrologic sources and sinks and how much they control input-output dynamics? In this study, we integrated satellite-derived precipitation, and modeled evapotranspiration data (2000-2012) to describe spatial variability of hydrologic sources and sinks in the Nile Basin. We also used long-term gridded runoff and river discharge data (1869-1984) to understand the discrepancy in the observed and expected flow along the Nile River. Results indicate that over 2000-2012 period, 4 out of 11 countries (Ethiopia, Tanzania, Kenya, and Uganda) in the Nile basin showed a positive water balance while three downstream countries (South Sudan, Sudan, and Egypt) showed a negative balance. The top three countries that contribute most to the flow are Ethiopia, Tanzania and Kenya. The study revealed that ~85% of the runoff generated in the Equatorial region is lost in an inter-station basin that includes the Sudd wetlands in South Sudan; this proportion is higher than the reported loss of 50% at the Sudd wetlands alone. The loss in runoff and flow volume at different sections of the river tend to be more than what can be explained by evaporation losses, suggesting a potential recharge to deeper aquifers that are not connected to the Nile channel systems. On the other hand, we also found that the expected average annual Nile flow at Aswan is larger (97 km3) than the reported amount (84 km3). Gravity Recovery and Climate Experiment (GRACE) mass deviation in storage data analysis showed that at annual time-scales, the Nile Basin shows storage change is substantial while over longer-time periods, it is minimal (<1% of basin precipitation). Due to the large variations of the reported Nile flow at different locations and time periods, the study recommends increased hydro-meteorological instrumentation of the basin. This study improves our understanding of the spatial dynamics of water sources and sinks in the Nile basin and identified emerging hydrologic questions that require further attention.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..3402020C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..3402020C"><span>Analysis of rainfall distribution in Kelantan river basin, Malaysia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Che Ros, Faizah; Tosaka, Hiroyuki</p> <p>2018-03-01</p> <p>Using rainfall gauge on its own as input carries great uncertainties regarding runoff estimation, especially when the area is large and the rainfall is measured and recorded at irregular spaced gauging stations. Hence spatial interpolation is the key to obtain continuous and orderly rainfall distribution at unknown points to be the input to the rainfall runoff processes for distributed and semi-distributed numerical modelling. It is crucial to study and predict the behaviour of rainfall and river runoff to reduce flood damages of the affected area along the Kelantan river. Thus, a good knowledge on rainfall distribution is essential in early flood prediction studies. Forty six rainfall stations and their daily time-series were used to interpolate gridded rainfall surfaces using inverse-distance weighting (IDW), inverse-distance and elevation weighting (IDEW) methods and average rainfall distribution. Sensitivity analysis for distance and elevation parameters were conducted to see the variation produced. The accuracy of these interpolated datasets was examined using cross-validation assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43C1654B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43C1654B"><span>Response of small glaciers to climate change: runoff from glaciers of the Wind River range, Wyoming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bliss, A. K.; Stamper, B.</p> <p>2017-12-01</p> <p>Runoff from glaciers affects downstream ecosystems by influencing the quantity, seasonality, and chemistry of the water. We describe the present state of glaciers in the Wind River range, Wyoming and consider how these glaciers will change in the future. Wind River glaciers have been losing mass in recent decades, as seen with geodetic techniques and by examining glacier morphology. Interestingly, the 2016/7 winter featured one of the largest snowfalls on record. Our primary focus is the Dinwoody Glacier ( 3 km^2, 3300-4000 m above sea level). We present data collected in mid-August 2017 including glacier ablation rates, snow line elevations, and streamflow. We compare measured glacier mass loss to streamflow at the glacier terminus and at a USGS stream gauge farther downstream. Using a hydrological model, we explore the fate of glacial runoff as it moves into downstream ecosystems and through ranchlands important to local people. The techniques used here can be applied to similar small-glacier systems in other parts of the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189958','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189958"><span>Generalizing a nonlinear geophysical flood theory to medium-sized river networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gupta, Vijay K.; Mantilla, Ricardo; Troutman, Brent M.; Dawdy, David; Krajewski, Witold F.</p> <p>2010-01-01</p> <p>The central hypothesis of a nonlinear geophysical flood theory postulates that, given space-time rainfall intensity for a rainfall-runoff event, solutions of coupled mass and momentum conservation differential equations governing runoff generation and transport in a self-similar river network produce spatial scaling, or a power law, relation between peak discharge and drainage area in the limit of large area. The excellent fit of a power law for the destructive flood event of June 2008 in the 32,400-km2 Iowa River basin over four orders of magnitude variation in drainage areas supports the central hypothesis. The challenge of predicting observed scaling exponent and intercept from physical processes is explained. We show scaling in mean annual peak discharges, and briefly discuss that it is physically connected with scaling in multiple rainfall-runoff events. Scaling in peak discharges would hold in a non-stationary climate due to global warming but its slope and intercept would change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://mo.water.usgs.gov/Reports/01-4123-kelly/index.htm','USGSPUBS'); return false;" href="http://mo.water.usgs.gov/Reports/01-4123-kelly/index.htm"><span>Relations Among River Stage, Rainfall, Ground-Water Levels, and Stage at Two Missouri River Flood-Plain Wetlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kelly, Brian P.</p> <p>2001-01-01</p> <p>The source of water is important to the ecological function of Missouri River flood-plain wetlands. There are four potential sources of water to flood-plain wetlands: direct flow from the river channel during high river stage, ground-water movement into the wetlands in response to river-stage changes and aquifer recharge, direct precipitation, and runoff from surrounding uplands. Concurrent measurements of river stage, rainfall, ground-water level, and wetland stage were compared for two Missouri River flood-plain wetlands located near Rocheport, Missouri, to characterize the spatial and temporal relations between river stage, rainfall, ground-water levels and wetland stage, determine the source of water to each wetland, and compare measured and estimated stage and ground-water levels at each site. The two sites chosen for this study were wetland NC-5, a non-connected, 50 feet deep scour constantly filled with water, formed during the flood of 1993, and wetland TC-1, a shallow, temporary wetland intermittently filled with water. Because these two wetlands bracket a range of wetland types of the Missouri River flood plain, the responses of other Missouri River wetlands to changes in river stage, rainfall, and runoff should be similar to the responses exhibited by wetlands NC-5 and TC-1. For wetlands deep enough to intersect the ground-water table in the alluvial aquifer, such as wetland NC-5, the ground-water response factor can estimate flood-plain wetland stage changes in response to known river-stage changes. Measured maximum stage and ground-water-level changes at NC-5 fall within the range of estimated changes using the ground-water response factor. Measured maximum ground-water-level changes at TC-1 are similar to, but consistently greater than the estimated values, and are most likely the result of alluvial deposits with higher than average hydraulic conductivity located between wetland TC-1 and the Missouri River. Similarity between ground-water level and stage hydrography at wetland NC-5 indicate that ground-water-level fluctuations caused by river-stage changes control the stage of wetland NC-5. A 2-day lag time exists between river-stage changes and ground water and stage changes at wetland NC-5. The lack of a measurable response of wetland NC-5 stage to rainfall indicate that rainfall is not a large source of water to wetland NC-5. Stage in wetland TC-1 only increased at high river stage in June and July 1999, and from runoff caused by local rainfall during the winter. The 2-day lag time between peak stages at wetland TC-1 and peak Missouri River stages compared to the 1-day lag time between Missouri River stage and ground-water peaks at wetland TC-1 indicates ground-water flow does not directly affect wetland stage at TC-1, but surface-water flow does affect wetland stage at TC-1 during high river stage. Comparing wetland TC-1 stage to potential water sources indicates the most likely explanation for the rise in stage at wetland TC-1 is surface runoff supplied via seepage through the levees and upward flow of ground water through alluvial deposits of higher hydraulic conductivity during high river stage. The rate of decrease in wetland TC-1 stage was limited by the rate at which ground-water level decreased. Stage response to rainfall at wetland TC-1 during the winter months and no response to greater rainfall amounts during spring and summer months indicate that evapotranspiration may limit the affect of rainfall on stage at wetland TC-1 during the growing season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QSRv..143..133H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QSRv..143..133H"><span>Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean) - A high-resolution biomarker study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hörner, T.; Stein, R.; Fahl, K.; Birgel, D.</p> <p>2016-07-01</p> <p>Multi-proxy biomarker measurements were applied on two sediment cores (PS51/154, PS51/159) to reconstruct sea ice cover (IP25), biological production (brassicasterol, dinosterol) and river run-off (campesterol, β-sitosterol) in the western Laptev Sea over the last ∼17 ka with unprecedented temporal resolution. The absence of IP25 from 17.2 to 15.5 ka, in combination with minimum concentration of phytoplankton biomarkers, suggests that the western Laptev Sea shelf was mostly covered with permanent sea ice. Very minor river run-off and restricted biological production occurred during this cold interval. From ∼16 ka until 7.5 ka, a long-term decrease of terrigenous (riverine) organic matter and a coeval increase of marine organic matter reflect the gradual establishment of fully marine conditions in the western Laptev Sea, caused by the onset of the post-glacial transgression. Intensified river run-off and reduced sea ice cover characterized the time interval between 15.2 and 12.9 ka, including the Bølling/Allerød warm period (14.7-12.9 ka). Prominent peaks of the DIP25 Index coinciding with maximum abundances of subpolar foraminifers, are interpreted as pulses of Atlantic water inflow on the western Laptev Sea shelf. After the warm period, a sudden return to severe sea ice conditions with strongest ice-coverage between 11.9 and 11 ka coincided with the Younger Dryas (12.9-11.6 ka). At the onset of the Younger Dryas, a distinct alteration of the ecosystem (reflected in a distinct drop in terrigenous and phytoplankton biomarkers) was detected. During the last 7 ka, the sea ice proxies reflect a cooling of the Laptev Sea spring/summer season. This cooling trend was superimposed by a short-term variability in sea ice coverage, probably representing Bond cycles (1500 ± 500 ka) that are related to solar activity changes. Hence, atmospheric circulation changes were apparently able to affect the sea ice conditions on the Laptev Sea shelf under modern sea level conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..560..247Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..560..247Z"><span>Simulation and assessment of urbanization impacts on runoff metrics: insights from landuse changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yongyong; Xia, Jun; Yu, Jingjie; Randall, Mark; Zhang, Yichi; Zhao, Tongtiegang; Pan, Xingyao; Zhai, Xiaoyan; Shao, Quanxi</p> <p>2018-05-01</p> <p>Urbanization-induced landuse changes alter runoff regimes in complex ways. In this study, a detailed investigation of the urbanization impacts on runoff regimes is provided by using multiple runoff metrics and with consideration of landuse dynamics. A catchment hydrological model is modified by coupling a simplified flow routing module of the urban drainage system and landuse dynamics to improve long-term urban runoff simulations. Moreover, multivariate statistical approach is adopted to mine the spatial variations of runoff metrics so as to further identify critical impact factors of landuse changes. The Qing River catchment as a peri-urban catchment in the Beijing metropolitan area is selected as our study region. Results show that: (1) the dryland agriculture is decreased from 13.9% to 1.5% of the total catchment area in the years 2000-2015, while the percentages of impervious surface, forest and grass are increased from 63.5% to 72.4%, 13.5% to 16.6% and 5.1% to 6.5%, respectively. The most dramatic landuse changes occur in the middle and downstream regions; (2) The combined landuse changes do not alter the average flow metrics obviously at the catchment outlet, but slightly increase the high flow metrics, particularly the extreme high flows; (3) The impacts on runoff metrics in the sub-catchments are more obvious than those at the catchment outlet. For the average flow metrics, the most impacted metric is the runoff depth in the dry season (October ∼ May) with a relative change from -10.9% to 11.6%, and the critical impact factors are the impervious surface and grass. For the high flow metrics, the extreme high flow depth is increased most significantly with a relative change from -0.6% to 10.5%, and the critical impact factors are the impervious surface and dryland agriculture; (4) The runoff depth metrics in the sub-catchments are increased because of the landuse changes from dryland agriculture to impervious surface, but are decreased because of the landuse changes from dryland agriculture or impervious surface to grass or forest. The results of this study provide useful information for urban planning such as Sponge City design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29330378','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29330378"><span>Mechanisms controlling the impact of multi-year drought on mountain hydrology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bales, Roger C; Goulden, Michael L; Hunsaker, Carolyn T; Conklin, Martha H; Hartsough, Peter C; O'Geen, Anthony T; Hopmans, Jan W; Safeeq, Mohammad</p> <p>2018-01-12</p> <p>Mountain runoff ultimately reflects the difference between precipitation (P) and evapotranspiration (ET), as modulated by biogeophysical mechanisms that intensify or alleviate drought impacts. These modulating mechanisms are seldom measured and not fully understood. The impact of the warm 2012-15 California drought on the heavily instrumented Kings River basin provides an extraordinary opportunity to enumerate four mechanisms that controlled the impact of drought on mountain hydrology. Two mechanisms intensified the impact: (i) evaporative processes have first access to local precipitation, which decreased the fractional allocation of P to runoff in 2012-15 and reduced P-ET by 30% relative to previous years, and (ii) 2012-15 was 1 °C warmer than the previous decade, which increased ET relative to previous years and reduced P-ET by 5%. The other two mechanisms alleviated the impact: (iii) spatial heterogeneity and the continuing supply of runoff from higher elevations increased 2012-15 P-ET by 10% relative to that expected for a homogenous basin, and iv) drought-associated dieback and wildfire thinned the forest and decreased ET, which increased 2016 P-ET by 15%. These mechanisms are all important and may offset each other; analyses that neglect one or more will over or underestimate the impact of drought and warming on mountain runoff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4507881','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4507881"><span>Simulation of Runoff Changes Caused by Cropland to Forest Conversion in the Upper Yangtze River Region, SW China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yu, Pengtao; Wang, Yanhui; Coles, Neil; Xiong, Wei; Xu, Lihong</p> <p>2015-01-01</p> <p>The "Grain for Green Project" is a country-wide ecological program to converse marginal cropland to forest, which has been implemented in China since 2002. To quantify influence of this significant vegetation change, Guansihe Hydrological (GSH) Model, a validated physically-based distributed hydrological model, was applied to simulate runoff responses to land use change in the Guansihe watershed that is located in the upper reaches of the Yangtze River basin in Southwestern China with an area of only 21.1 km2. Runoff responses to two single rainfall events, 90 mm and 206 mm respectively, were simulated for 16 scenarios of cropland to forest conversion. The model simulations indicated that the total runoff generated after conversion to forest was strongly dependent on whether the land was initially used for dry croplands without standing water in fields or constructed (or walled) paddy fields. The simulated total runoff generated from the two rainfall events displayed limited variation for the conversion of dry croplands to forest, while it strongly decreased after paddy fields were converted to forest. The effect of paddy terraces on runoff generation was dependent on the rainfall characteristics and antecedent moisture (or saturation) conditions in the fields. The reduction in simulated runoff generated from intense rainfall events suggested that afforestation and terracing might be effective in managing runoff and had the potential to mitigate flooding in southwestern China. PMID:26192181</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSMGC34A..04I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSMGC34A..04I"><span>Global Water Resources Under Future Changes: Toward an Improved Estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Islam, M.; Agata, Y.; Hanasaki, N.; Kanae, S.; Oki, T.</p> <p>2005-05-01</p> <p>Global water resources availability in the 21st century is going to be an important concern. Despite its international recognition, however, until now there are very limited global estimates of water resources, which considered the geographical linkage between water supply and demand, defined by runoff and its passage through river network. The available studies are again insufficient due to reasons like different approaches in defining water scarcity, simply based on annual average figures without considering the inter-annual or seasonal variability, absence of the inclusion of virtual water trading, etc. In this study, global water resources under future climate change associated with several socio-economic factors were estimated varying over both temporal and spatial scale. Global runoff data was derived from several land surface models under the GSWP2 (Global Soil Wetness Project) project, which was further processed through TRIP (Total Runoff Integrated Pathways) river routing model to produce a 0.5x0.5 degree grid based figure. Water abstraction was estimated for the same spatial resolution for three sectors as domestic, industrial and agriculture. GCM outputs from CCSR and MRI were collected to predict the runoff changes. Socio-economic factors like population and GDP growth, affected mostly the demand part. Instead of simply looking at annual figures, monthly figures for both supply and demand was considered. For an average year, such a seasonal variability can affect the crop yield significantly. In other case, inter-annual variability of runoff can cause for an absolute drought condition. To account for vulnerabilities of a region to future changes, both inter-annual and seasonal effects were thus considered. At present, the study assumed the future agricultural water uses to be unchanged under climatic changes. In this connection, EPIC model is underway to use for estimating future agricultural water demand under climatic changes on a monthly basis. From the estimation of present stress level (withdrawal to resource ratio), the months between January to May was found to have the highest number of population above water stress level, while the months between June to August having lower population in stress. The regions suffering from high seasonal variability are those of Asian monsoon zone, south-central Africa and central-east part of South America. Inter-annual variability, on the other hand, is dominant mostly along the Middle-east or Sahara regions and the western part of South America and Latin America. Virtual water trading among countries was estimated on per capita basis. It shows that many Middle east countries are able to compensate their water stress significantly through virtual water trading. The overall effect of climate change on lowering of river runoff mostly affected Europe, southern part of China and Latin America. India or Central Africa have better runoff availability under changing climate, but still subject to a higher water stress because of socio-economic factors like high population growth and expected increase in rate of water uses. Decrease in population as well as saturation level of maximum water uses along most European countries, on the contrary, relaxed the pressure of lowering river runoff, causing no significant change in future stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1292Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1292Z"><span>Terminology gap in hydrological cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhuo, Lu; Han, Dawei</p> <p>2016-04-01</p> <p>Water is central to life on Earth. People have been trying to understand how water moves in the hydrosphere throughout the human history. In the 9th century BC, the famous Greek poet Homer described the hydrological cycle in Iliad as "okeanos whose stream bends back in a circle" with a belief that rivers are ocean-fed from subterranean seas. Later, Aristotle (4th century BC) claimed that most of the water came from underground caverns in which air was transformed into water. It was only until 1674, French scientist Perrault developed the correct concept of the water cycle. In modern times, scientists are interested in understanding the individual processes of the hydrological cycle with a keen focus on runoff which supplies water to rivers, lakes, and oceans. Currently, the prevailing concepts on runoff processes include 'infiltration excess runoff' and 'saturation excess runoff'. However, there is no term to describe another major runoff due to the excess beyond the soil water holding capacity (i.e., the field capacity). We argue that a new term should be introduced to fill this gap, and it could be called 'holding excess runoff' which is compatible with the convention. This new term is significant in correcting a half-century misnomer where 'holding excess runoff' has been incorrectly named as 'saturation excess runoff', which was introduced by the Xinanjiang model in China in 1960s. Similar concept has been adopted in many well-known hydrological models such as PDM and HBV in which the saturation refers to the field capacity. The term 'holding excess runoff' resolves such a common confusion in the hydrological community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9998E..0VS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9998E..0VS"><span>Impact of dynamically changing land cover on runoff process: the case of Iligan river basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salcedo, Stephanie Mae B.; Suson, Peter D.; Milano, Alan E.; Ignacio, Ma. Teresa T.</p> <p>2016-10-01</p> <p>Iligan river basin located in Northern Mindanao, Philippines covers 165.7 km2 of basin area. In December 2011, tropical storm Sendong (Washi) hit Iligan City, leaving a trail of wrecked infrastructures and about 490 persons reported dead. What transpired was a wake up call to mitigate future flood disasters. Fundamental to mitigation is understanding runoff behavior inside a basin considering that this is the main source of flooding. For this reason, the present study evaluated total runoff volume, peak discharge and lag time given land cover scenarios in four different years- 1973, 1989, 1998 and 2008. IFSAR and LIDAR DEM were integrated to generate the basin model in ArcGIS. HEC-HMS was used in simulating models for each scenario with Soil Conservation Service Curve Number (SCS CN) as the loss parameter method. Four simulation models of the runoff with varying CN values were established using RIDF as rainfall input with 5 year, 10 year, 25 year, 50 year and 100 year Rainfall Return Period (RRP). Total Runoff volume, peak discharge and lag time were progressively higher from 1973 to 2008 with 1989 land cover as exception where runoff parameters was its lowest. The total runoff volume, peak discharge and lag time is governed by vegetation type. When vegetation is characterized predominantly with woody perennials, runoff volume and peak time is lower. Conversely, when the presence of woody perennials is minimal, these parameters are higher. This study shows that an important way to mitigate flooding is to reduce surface runoff by maintaining vegetation predominantly composed of woody perennials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20121184','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20121184"><span>Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin Delta of California.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weston, Donald P; Lydy, Michael J</p> <p>2010-03-01</p> <p>While studies have documented the presence of pyrethroid insecticides at acutely toxic concentrations in sediments, little quantitative data on sources exist. Urban runoff, municipal wastewater treatment plants and agricultural drains in California's Sacramento-San Joaquin River Delta were sampled to understand their importance as contributors of these pesticides to surface waters. Nearly all residential runoff samples were toxic to the amphipod, Hyalella azteca, and contained pyrethroids at concentrations exceeding acutely toxic thresholds, in many cases by 10-fold. Toxicity identification evaluation data were consistent with pyrethroids, particularly bifenthrin and cyfluthrin, as the cause of toxicity. Pyrethroids passed through secondary treatment systems at municipal wastewater treatment facilities and were commonly found in the final effluent, usually near H. azteca 96-h EC(50) thresholds. Agricultural discharges in the study area only occasionally contained pyrethroids and were also occasional sources of toxicity related to the organophosphate insecticide chlorpyrifos. Discharge of the pyrethroid bifenthrin via urban stormwater runoff was sufficient to cause water column toxicity in two urban creeks, over at least a 30 km reach of the American River, and at one site in the San Joaquin River, though not in the Sacramento River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1987/0250/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1987/0250/report.pdf"><span>Report of the River Master of the Delaware River for the period December 1, 1985, to November 30, 1986</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sauer, S.P.; Harkness, W.E.; Krejmas, B.E.; Vogel, K.L.</p> <p>1987-01-01</p> <p>A Decree of the Supreme Court of the United States in 1954 established the position of Delaware River Master. The Decree authorizes diversions of water from the Delaware River Basin (Figure 1) and requires compensating releases from certain reservoirs of the City of New York to be made under the supervision and direction of the River Master. Reports to the Court, not less frequently than annually, were stipulated. During the 1986 report year, December 1, 1985, to November 30, 1986, precipitation and runoff varied from below average to above average in the Delaware River Basin. For the year as a whole, precipitation was 4.3 inches above average. Runoff was near average. Operations were under a status of drought at the beginning of the report year. The drought emergency was terminated on December 18, 1985, by the Delaware River Basin Commission, and operations were returned to normal as prescribed by the Decree for the remainder of the report yr. Storage in the reservoirs increased to capacity during the winter months and all New York City Delaware River Basin reservoirs spilled throughout the year. Diversions from Delaware River Basin by New York City and New Jersey did not exceed those authorized by the terms of the Amended Decree. Releases were made as directed by the River Master at rates designed to meet the Montague flow objective on 69 days during the June to November period. Releases were made at conservation rates or at rates designed to relieve thermal stress in the streams downstream from the reservoirs at other times. The excess release quantity as defined by the Decree was not expended by end of the report year. New York City complied fully with the terms of the Decree and with the directives of the River Master during the year. (See also W89-04133) (USGS)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26002368','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26002368"><span>Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin: a case study of the town of Xueyan, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Q D; Sun, J H; Hua, G F; Wang, J H; Wang, H</p> <p>2015-10-01</p> <p>Non-point source pollution is a significant environmental issue in small watersheds in China. To study the effects of rainfall on pollutants transported by runoff, rainfall was monitored in Xueyan town in the Taihu Lake Basin (TLB) for over 12 consecutive months. The concentrations of different forms of nitrogen (N) and phosphorus (P), and chemical oxygen demand, were monitored in runoff and river water across different land use types. The results indicated that pollutant loads were highly variable. Most N losses due to runoff were found around industrial areas (printing factories), while residential areas exhibited the lowest nitrogen losses through runoff. Nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4-N) were the dominant forms of soluble N around printing factories and hotels, respectively. The levels of N in river water were stable prior to the generation of runoff from a rainfall event, after which they were positively correlated to rainfall intensity. In addition, three sites with different areas were selected for a case study to analyze trends in pollutant levels during two rainfall events, using the AnnAGNPS model. The modeled results generally agreed with the observed data, which suggests that AnnAGNPS can be used successfully for modeling runoff nutrient loading in this region. The conclusions of this study provide important information on controlling non-point source pollution in TLB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033231','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033231"><span>Potential effects of runoff, fluvial sediment, and nutrient discharges on the coral reefs of Puerto Rico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Larsen, M.C.; Webb, R.M.T.</p> <p>2009-01-01</p> <p>Coral reefs, the foundation and primary structure of many highly productive and diverse tropical marine ecosystems, have been degraded by human activity in much of the earth's tropical oceans. To contribute to improved understanding of this problem, the potential relation between river sediment and nutrient discharges and degradation of coral reefs surrounding Puerto Rico was studied using streamflow, suspended-sediment, and water-quality data. Mean annual runoff for the 8711 km2 island is 911 mm, about 57% of mean annual precipitation (1600 mm). Mean annual suspended-sediment discharge from Puerto Rico to coastal waters is estimated at 2.7-9.0 million metric tonnes. Storm runoff transports a substantial part of sediment: the highest recorded daily sediment discharge is 1-3.6 times the mean annual sediment discharge. Hurricane Georges (1998) distributed an average of 300 mm of rain across the island, equivalent to a volume of about 2.6 billion m3. Runoff of more than 1.0 billion m3 of water and as much as 5 to 10 million metric tonnes of sediment were discharged to the coast and shelf. Nitrogen and phosphorous concentrations in river waters are as much as 10 times the estimated presettlement levels. Fecal coliform and fecal streptococcus concentrations in many Puerto Rico rivers are near or above regulatory limits. Unlike sediment discharges, which are predominantly episodic and intense, river-borne nutrient and fecal discharge is a less-intense but chronic stressor to coral reefs found near the mouths of rivers. Negative effects of riverderived sediment and nutrient discharge on coral reefs are especially pronounced on the north, southwest, and west coasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H23H1770L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H23H1770L"><span>Tracers Show Ecohydrologic Influences on Runoff Generation Components at the Qinghai-Tibet Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, H.; Liu, J.; Peng, A.; Gu, W.; Wang, W.; Gao, F.</p> <p>2017-12-01</p> <p>In order to learn more about the critical zone ecohydrological dynamics at the Qinghai-Tibet Plateau, a research on the identification of runoff components using tracers was carried out in the Niyang River upstream, a tributary of the Yalung Zangbo River. In this study, four basins with the areas of 182, 216, 243, 213 km2 which are embed in a larger basin were sampled at altitudes between 3667 to 6140 m. The types of land use in the basins mainly include forest land, grassland and glacier. River water and precipitation were sampled monthly, while spring water, glacial ice, soil, and plants were sampled seasonally. Soil and plant samples were taken along the valleys with spatial interval of about 5 km. Soil and plant waters were extracted via cryogenic vacuum distillation method, and then analyzed for isotopes and ions. Preliminary results show that the δD and δ18O of the precipitation water spread approximately along the LMWL of the Namucuo Lake near Lasa city, which varied according to altitude. Stem water δD and δ18O from different elevations and tree species also varied regularly, albeit with no apparent relationship to recent precipitation. It appears that trees utilized fissure water and soil water formed by precipitation. Future efforts will involve (1) an expanded sampling strategy across basins, and (2) a series of experiments on the Hydrohill catchment in the Chuzhou Experimental Facility, whereby an improved understanding of K+, Na+, Ca2+ and Mg2+ export dynamics could aid in much better description and modeling of Niyang River runoff composition and generation. This research is funded by the NSFC project 91647111 and 91647203, which are included in the Runoff Change and its Adaptive Management in the Major Rivers in Southwestern China Major Research Plan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63432&Lab=NRMRL&keyword=Pre+AND+test&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63432&Lab=NRMRL&keyword=Pre+AND+test&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>STORMWATER TREATMENT AT CRITICAL AREAS: EVALUATION OF FILTRATION MEDIA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Past research has identified urban runoff as a major contributor to the degradation of urban streams and rivers. Filtration, especially "slow" filtration, is of interest for stormwater runoff treatment because filters will work on intermittent flows without significant loss of ca...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009pcms.confE.114M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009pcms.confE.114M"><span>Application of the high resolution regional climate change modelling for local impact study upon the hydrological regime in the Buzau and Ialomita river basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mic, R.; Corbus, C.; Caian, M.; Neculau, G.</p> <p>2009-09-01</p> <p>This paper is a subject of a stage within the scope of European Project 037005 STREP FP6 - CECILIA ("The assessment of impact and vulnerability of climate changes in the Centre and Eastern Europe"). The aim of this project is to assess the impact of climate changes from the regional scale to local scale of Centre and Eastern Europe area, pointing up very high climate resolution usefulness for catching the effects due to the field complexity of study area. The analysed Buzau and Ialomita river basins from Romania covering an area of 14392 km² are situated outside the Curvature Carpathian Mountains, into a zone where the altitude varies from 2500 m to 50 m. In conformity of altitude, the annual precipitation varied from 1400 mm/year, in the mountainous area to 400 mm/year in the plane area and the evapotranspiration between 500 mm/year in the high area to 850 mm/year in the plane area. However, due to a very high variability of weather conditions, droughts as well as excessive humidity periods occur in the course of a year. For the impact study of the possibly climate changes on the runoff in the Buzau and Ialomita river basins, the WatBal model was used, which have been calibrated through the runoff simulation in 17 cross-sections for the reference period 1971 - 2000. WatBal model has two main components. The first is the water balance component that uses continuous functions to describe water movement into a conceptualised basin and the second is the component that allows the calculation of potential evapotranspiration using the Priestly-Taylor equation. For the calculation of changes in the main climatic parameters (atmospheric precipitation, air temperature, relative humidity, solar radiation and wind speed), used in the analysis of the climate change impact on the hydrological regime, there were used the simulations accomplished with a regional climatic model (regCM3), elaborated by ICTP (Trieste), implemented in Romania and used for monthly, seasonal and climate scenarios numerical simulations, at a high spatial resolution of 10 km. Determination of the grid network nodes of the regional climate model regCM3 related to sub-basins from the Buzau and Ialomita river basins was accomplished with a methodology based on obtaining a digital map of river basins, together with related sub-basins. Overlapping this digital map over the network nodes of the grid was made by georeferencing. The changes were calculated for the periods 2021-2050 and 2071-2100 towards the reference period, for each month, like the differences between the values of the climatic parameters corresponding to the two periods. The monthly mean discharges at 4 gauging stations from the Buzau river basin and 13 gauging stations from Ialomita river basin, in the above mentioned hypotheses, are estimated. Study revealed the following changes in the components of the hydrological cycle due to the climate change: - The increase of the evapotranspiration, especially in the summer months, due to the increase of the air temperature. - The reduction of the depth and duration of snow cover due to the increase of the air temperature during winter time. - The variation of the annual mean runoff recorded an increase from the plain to the mountains, standing out a tendency of smoothing during the year in parallel with a global decrease of these. - The early occurrence of the floods and the reduction of the mixed spring floods (snow and rain) by the desynchronisation of the snow melting with the rainfall occurrence. - The reduction of the annual mean runoff on rivers due especially to the increase of the evapotranstpiration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26632992','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26632992"><span>Mid- and long-term runoff predictions by an improved phase-space reconstruction model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hong, Mei; Wang, Dong; Wang, Yuankun; Zeng, Xiankui; Ge, Shanshan; Yan, Hengqian; Singh, Vijay P</p> <p>2016-07-01</p> <p>In recent years, the phase-space reconstruction method has usually been used for mid- and long-term runoff predictions. However, the traditional phase-space reconstruction method is still needs to be improved. Using the genetic algorithm to improve the phase-space reconstruction method, a new nonlinear model of monthly runoff is constructed. The new model does not rely heavily on embedding dimensions. Recognizing that the rainfall-runoff process is complex, affected by a number of factors, more variables (e.g. temperature and rainfall) are incorporated in the model. In order to detect the possible presence of chaos in the runoff dynamics, chaotic characteristics of the model are also analyzed, which shows the model can represent the nonlinear and chaotic characteristics of the runoff. The model is tested for its forecasting performance in four types of experiments using data from six hydrological stations on the Yellow River and the Yangtze River. Results show that the medium-and long-term runoff is satisfactorily forecasted at the hydrological stations. Not only is the forecasting trend accurate, but also the mean absolute percentage error is no more than 15%. Moreover, the forecast results of wet years and dry years are both good, which means that the improved model can overcome the traditional ''wet years and dry years predictability barrier,'' to some extent. The model forecasts for different regions are all good, showing the universality of the approach. Compared with selected conceptual and empirical methods, the model exhibits greater reliability and stability in the long-term runoff prediction. Our study provides a new thinking for research on the association between the monthly runoff and other hydrological factors, and also provides a new method for the prediction of the monthly runoff. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..107a2042V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..107a2042V"><span>Long-term changes in the hydroclimatic characteristics in the Baikal region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voropay, N. N.; Kichigina, N. V.</p> <p>2018-01-01</p> <p>Since the end of the 19th century, global air temperature has been increasing. The period after 1976 is called the period of the most intensive warming. In Russia, the average annual air temperature rises at a rate of + 0.43 ° C / 10 years. The change of precipitation over the last 50-60 years on average in Russia is not significant. In the Baikal region, precipitation increase during the warm period (10-11%) and decrease during the cold period (4%). It is reflected on hydrological regime and the factors of river flow formation. The regional features of the hydrological regime dynamics of the Baikal region against the background of climate change are considered. Groups of the rivers with similar alternations of low water and high-water periods are allocated. Trends in runoff are analyzed. The increase in air temperature leads to intra annual redistribution of river flow. The majority of statistically significant trends of river run off are observed during the cold period of year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6193865-teleconnection-study-interannual-sea-surface-temperature-fluctuations-northern-north-atlantic-precipitation-runoff-over-western-siberia','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6193865-teleconnection-study-interannual-sea-surface-temperature-fluctuations-northern-north-atlantic-precipitation-runoff-over-western-siberia"><span>A teleconnection study of interannual sea surface temperature fluctuations in the northern North Atlantic and precipitation and runoff over Western Siberia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Peng, S.; Mysak, L.A.</p> <p></p> <p>The spatial distributions of northern North Atlantic sea surface temperature and the high-latitude Northern Hemisphere sea level pressure anomalies averaged over six consecutive warm SST winters (1951-1956) and six consecutive cold SST winters (1971-1976) are examined. Three SLP anomaly difference (i.e., warm - cold winters) centers, significant at the 5% level, are observed over the northern North Atlantic, Europe, and western Siberia. This anomaly pattern is consistent in principle with what was identified in a related analyses by Palmer and Sun, who used composite data from selected winter months. The SLP difference centers over the northern North Atlantic and westernmore » Siberia are in phase. The impact of the latter center upon the runoff from the underlying Ob and Yenisey rivers and especially the teleconnection between SST anomalies in the northern North Atlantic and runoff of those two rivers via the atmosphere are investigated. The temporal cross-correlation analyses of 50 years (1930-1979) of records of SST, precipitation, and runoff anomalies indicate that the winter SST anomalies in the northern North Atlantic are significantly correlated with the winter and following summer runoff fluctuations of the Ob and Yenisey rivers. Positive (negative) northern North Atlantic SST anomalies are related to less (more) precipitation, and hence, less (more) runoff, over western Siberia. Discussions of possible physical mechanisms and processes that lead to the above relationships are attempted. The analyses of spatial distributions of precipitation in the warm and cold SST winters suggest that precipitation fluctuations over Europe and western Siberia may be affected by shifts of cyclone tracks associated with the SST variations in the northern North Atlantic. 27 refs., 9 figs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31E1553W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31E1553W"><span>Coupling the WRF model with a temperature index model based on remote sensing for snowmelt simulations in a river basin in the Altay Mountains, northwest China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, X.; Shen, Y.; Wang, N.; Pan, X.; Zhang, W.; He, J.; Wang, G.</p> <p>2017-12-01</p> <p>Snowmelt water is an important freshwater resource in the Altay Mountains in northwest China, and it is also crucial for local ecological system, economic and social sustainable development; however, warming climate and rapid spring snowmelt can cause floods that endanger both eco-environment and public and personal property and safety. This study simulates snowmelt in the Kayiertesi River catchment using a temperature-index model based on remote sensing coupled with high-resolution meteorological data obtained from NCEP reanalysis fields that were downscaled using Weather Research Forecasting model, then bias-corrected using a statistical downscaled model. Validation of the forcing data revealed that the high-resolution meteorological fields derived from downscaled NCEP reanalysis were reliable for driving the snowmelt model. Parameters of temperature-index model based on remote sensing were calibrated for spring 2014, and model performance was validated using MODIS snow cover and snow observations from spring 2012. The results show that the temperature-index model based on remote sensing performed well, with a simulation mean relative error of 6.7% and a Nash-Sutchliffe efficiency of 0.98 in spring 2012 in the river of Altay Mountains. Based on the reliable distributed snow water equivalent simulation, daily snowmelt runoff was calculated for spring 2012 in the basin. In the study catchment, spring snowmelt runoff accounts for 72% of spring runoff and 21% of annual runoff. Snowmelt is the main source of runoff for the catchment and should be managed and utilized effectively. The results provide a basis for snowmelt runoff predictions, so as to prevent snowmelt-induced floods, and also provide a generalizable approach that can be applied to other remote locations where high-density, long-term observational data is lacking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035821','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035821"><span>Sources of land-derived runoff to a coral reef-fringed embayment identified using geochemical tracers in nearshore sediment traps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Takesue, Renee K.; Bothner, Michael H.; Reynolds, Richard L.</p> <p>2009-01-01</p> <p>Geochemical tracers, including Ba, Co, Th, 7Be, 137Cs and 210Pb, and magnetic properties were used to characterize terrestrial runoff collected in nearshore time-series sediment traps in Hanalei Bay, Kauai, during flood and dry conditions in summer 2006, and to fingerprint possible runoff sources in the lower watershed. In combination, the tracers indicate that runoff during a flood in August could have come from cultivated taro fields bordering the lower reach of the river. Land-based runoff associated with summer floods may have a greater impact on coral reef communities in Hanalei Bay than in winter because sediment persists for several months. During dry periods, sediment carried by the Hanalei River appears to have been mobilized primarily by undercutting of low 7Be, low 137Cs riverbanks composed of soil weathered from tholeiitic basalt with low Ba and Co concentrations. Following a moderate rainfall event in September, high 7Be sediment carried by the Hanalei River was probably mobilized by overland flow in the upper watershed. Ba-desorption in low-salinity coastal water limited its use to a qualitative runoff tracer in nearshore sediment. 210Pb had limited usefulness as a terrestrial tracer in the nearshore due to a large dissolved oceanic source and scavenging onto resuspended bottom sediment. 210Pb-scavenging does, however, illustrate the role resuspension could play in the accumulation of particle-reactive contaminants in nearshore sediment. Co and 137Cs were not affected by desorption or geochemical scavenging and showed the greatest potential as quantitative sediment provenance indicators in material collected in nearshore sediment traps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4206497','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4206497"><span>Effects of Climate Variability and Accelerated Forest Thinning on Watershed-Scale Runoff in Southwestern USA Ponderosa Pine Forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Robles, Marcos D.; Marshall, Robert M.; O'Donnell, Frances; Smith, Edward B.; Haney, Jeanmarie A.; Gori, David F.</p> <p>2014-01-01</p> <p>The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0–3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide. PMID:25337823</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25337823','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25337823"><span>Effects of climate variability and accelerated forest thinning on watershed-scale runoff in southwestern USA ponderosa pine forests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Robles, Marcos D; Marshall, Robert M; O'Donnell, Frances; Smith, Edward B; Haney, Jeanmarie A; Gori, David F</p> <p>2014-01-01</p> <p>The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0-3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H42D..01X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H42D..01X"><span>Urban Runoff and Nutrients Loading Control from Sustainable BMPs (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Q.</p> <p>2009-12-01</p> <p>Climate change alters hydrodynamic and nutrient dynamic in both large and small geographic scales. These changes in our freshwater system directly affect drinking water, food production, business, and all aspects of our life. Along with climate change is increasing urbanization which alters natural landscape. Urban runoff has been identified as one of many potential drivers of the decline of pelagic fishes in san Francisco Bay-Delta region. Recent found of Pyrethroids in American River has increased scientists, public, and policy makers’ concern about our fresh water system. Increasing our understanding about the fundamental hydrodynamic, nutrient dynamics, and the transport mechanics of runoff and nutrients are important for future water resource and ecosystem management. Urbanization has resulted in significantly increasing the amount of impervious land cover. Most impervious land covers are hydrophobic that alters surface runoff because of the effects on surface retention storage, rainfall interception, and infiltration. Large volumes of excess storm runoff from urbanized areas cause flooding, water pollution, groundwater recharge deficits, destroyed habitat, beach closures, and toxicity to aquatic organisms. Parking lot alone accounts for more than 11% of these impervious surfaces. Contrast to impervious parking lot, turfgrass can accouter for 12% of urban land in California. Irrigated urban landscapes create considerable benefits to our daily living. However, the use of fertilizers and pesticides has caused environmental problems. Preventing fertilizers and pesticides from entering storm drains is an important goal for both landscape and storm runoff managers. Studies of urban runoff have found that the most fertilizers and pesticides are from dry weather runoff which conveys pollutants to sidewalks, streets, and storm drains. Controlling surface runoff is critical to preventing these pollutants from entering storm drains and water bodies. Large scale construction of runoff retention basins and treatment facilities to meet TMDL (Total Maximum Daily Load) regulations are not cost-effective or practical. An alternative approach is to control runoff and nutrients on-site through installation of decentralized BMPs that detain and infiltrate runoff before it reaches storm drains. Recent developed green-infrastructure which integrating engineered soil and trees to reduce runoff and nutrients loading is a self-sustained best management practice (BMP). This BMP has been testing and used in urban runoff control. In Davis, CA this type of BMPs were installed in a parking lot and a residential property to evaluate the system’s effectiveness on reducing storm runoff and pollutant loading from the parking lot and irrigated landscape. Storm runoff and pollutant loading were measured and monitored during February 2007 thru May 2009 from the parking lot. The BMP reduced surface runoff and nutrients by 88.8% and 95.3%, respectively. In the residential irrigated landscape, the dry-weather runoff was monitored during 2007 irrigation season, the BMP captured almost all dry weather runoff. The performance of these BMPs demonstrated their potential use for reducing runoff and nutrients loading. Control urban runoff from these 23% landscape (i.e., parking lot and irrigated turf grass) could largely alter the runoff and nutrients transport and their dynamic in our water system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.2015F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.2015F"><span>The effect of satellite-derived surface soil moisture and leaf area index land data assimilation on streamflow simulations over France</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fairbairn, David; Lavinia Barbu, Alina; Napoly, Adrien; Albergel, Clément; Mahfouf, Jean-François; Calvet, Jean-Christophe</p> <p>2017-04-01</p> <p>This study evaluates the impact of assimilating surface soil moisture (SSM) and leaf area index (LAI) observations into a land surface model using the SAFRAN-ISBA-MODCOU (SIM) hydrological suite. SIM consists of three stages: (1) an atmospheric reanalysis (SAFRAN) over France, which forces (2) the three-layer ISBA land surface model, which then provides drainage and runoff inputs to (3) the MODCOU hydro-geological model. The drainage and runoff outputs from ISBA are validated by comparing the simulated river discharge from MODCOU with over 500 river-gauge observations over France and with a subset of stations with low-anthropogenic influence, over several years. This study makes use of the A-gs version of ISBA that allows for physiological processes. The atmospheric forcing for the ISBA-A-gs model underestimates direct shortwave and long-wave radiation by approximately 5 % averaged over France. The ISBA-A-gs model also substantially underestimates the grassland LAI compared with satellite retrievals during winter dormancy. These differences result in an underestimation (overestimation) of evapotranspiration (drainage and runoff). The excess runoff flowing into the rivers and aquifers contributes to an overestimation of the SIM river discharge. Two experiments attempted to resolve these problems: (i) a correction of the minimum LAI model parameter for grasslands and (ii) a bias-correction of the model radiative forcing. Two data assimilation experiments were also performed, which are designed to correct random errors in the initial conditions: (iii) the assimilation of LAI observations and (iv) the assimilation of SSM and LAI observations. The data assimilation for (iii) and (iv) was done with a simplified extended Kalman filter (SEKF), which uses finite differences in the observation operator Jacobians to relate the observations to the model variables. Experiments (i) and (ii) improved the median SIM Nash scores by about 9 % and 18 % respectively. Experiment (iii) reduced the LAI phase errors in ISBA-A-gs but had little impact on the discharge Nash efficiency of SIM. In contrast, experiment (iv) resulted in spurious increases in drainage and runoff, which degraded the median discharge Nash efficiency by about 7 %. The poor performance of the SEKF originates from the observation operator Jacobians. These Jacobians are dampened when the soil is saturated and when the vegetation is dormant, which leads to positive biases in drainage and/or runoff and to insufficient corrections during winter, respectively. Possible ways to improve the model are discussed, including a new multi-layer diffusion model and a more realistic response of photosynthesis to temperature in mountainous regions. The data assimilation should be advanced by accounting for model and forcing uncertainties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29494602','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29494602"><span>Runoff response to climate change and human activities in a typical karst watershed, SW China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Yan; Wang, Shijie; Bai, Xiaoyong; Shu, Dongcai; Tian, Yichao</p> <p>2018-01-01</p> <p>This study aims to reveal the runoff variation characteristics of long time series in a karst region, analyse comprehensively its different driving factors, and estimate quantitatively the contribution rates of climate change and human activities to net runoff variation. Liudong river basin, a typical karst watershed in southwest China, is the study site. Statistical methods, such as linear fitting, the Morlet wavelet analysis, normalized curve and double mass curve, are applied to analyse the runoff of the watershed. Results show that the runoff in the karst watershed during the research period exhibits a three-stage change and the abrupt change points are the years 1981 and 2007: (1) 1968-1980, the runoff initially exhibited a trend of sustained decreasing and then an abrupt fluctuation. The runoff was obviously destroyed through precipitation-producing processes. Improper land utilisation and serious forest and grass destruction intensified the fluctuation variation amplitude of the runoff. (2) 1981-2006, the changing processes of runoff and precipitation exhibited good synchronism. Precipitation significantly affected runoff variation and human activities had a slight interference degree. (3) 2007-2013, the fluctuation range of runoff was considerably smaller than that of precipitation. The significant growth of forest and grassland areas and the increase in water consumption mitigated runoff fluctuation and greatly diminished runoff variation amplitude. According to calculation, the relative contribution rates of precipitation and human activities to net runoff variation with 1981-2007 as the reference period were -81% and 181% in average, respectively, during 1968-1980, and -117% and 217% in average, respectively, during 2007-2013. In general, the analysis of runoff variation trend and of the contribution rate of its main influencing factors in the typical karst watershed for nearly half a century may be significant to solve the drought problem in the karst region and for the sustainable development of the drainage basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5832221','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5832221"><span>Runoff response to climate change and human activities in a typical karst watershed, SW China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Yan; Wang, Shijie; Shu, Dongcai; Tian, Yichao</p> <p>2018-01-01</p> <p>This study aims to reveal the runoff variation characteristics of long time series in a karst region, analyse comprehensively its different driving factors, and estimate quantitatively the contribution rates of climate change and human activities to net runoff variation. Liudong river basin, a typical karst watershed in southwest China, is the study site. Statistical methods, such as linear fitting, the Morlet wavelet analysis, normalized curve and double mass curve, are applied to analyse the runoff of the watershed. Results show that the runoff in the karst watershed during the research period exhibits a three-stage change and the abrupt change points are the years 1981 and 2007: (1) 1968–1980, the runoff initially exhibited a trend of sustained decreasing and then an abrupt fluctuation. The runoff was obviously destroyed through precipitation-producing processes. Improper land utilisation and serious forest and grass destruction intensified the fluctuation variation amplitude of the runoff. (2) 1981–2006, the changing processes of runoff and precipitation exhibited good synchronism. Precipitation significantly affected runoff variation and human activities had a slight interference degree. (3) 2007–2013, the fluctuation range of runoff was considerably smaller than that of precipitation. The significant growth of forest and grassland areas and the increase in water consumption mitigated runoff fluctuation and greatly diminished runoff variation amplitude. According to calculation, the relative contribution rates of precipitation and human activities to net runoff variation with 1981–2007 as the reference period were −81% and 181% in average, respectively, during 1968–1980, and −117% and 217% in average, respectively, during 2007–2013. In general, the analysis of runoff variation trend and of the contribution rate of its main influencing factors in the typical karst watershed for nearly half a century may be significant to solve the drought problem in the karst region and for the sustainable development of the drainage basin. PMID:29494602</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.4750M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.4750M"><span>Rainfall-runoff modelling of the Okavango River catchment to assess impacts of land use change on runoff and downstream ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milzow, Christian; Bauer-Gottwein, Peter</p> <p>2010-05-01</p> <p>The competition between human water use and ecosystem water use is one of the major challenges for water resources management at the global scale. We analyse the situation for the Okavango River basin of southern Africa. The Okavango River is representative for many large rivers throughout the developing world in that it is ungauged and poorly studied. The Okavango basin - spanning over Angola, Namibia and Botswana - represents a multi-objective problem in an international setting. Economic benefits of agricultural development and conservation of ecosystem services call for opposed actions. A semi-distributed rainfall-runoff model of the Okavango catchment is set up using the Soil and Water Assessment Tool (SWAT). The model is sufficiently physically based to simulate the impact on runoff of extent of agricultural use, crop types and management practices. Precipitation and temperature inputs are taken from datasets covering large parts of the globe. The methodology can thus easily be applied for other ungauged catchments. For temperature we use the ERA-Interim reanalysis product of the European Centre for Medium-Range Weather Forecasts and for precipitation the Famine Early Warning Systems Network data (FEWS-Net). Tropical Rainfall Measurement Mission (TRMM) data resulted in poor model performance compared to the FEWS-Net data. Presently, the upstream catchment in Angola is largely pristine and agriculture is basically restricted to dry land subsistence farming. But economic growth in Angola is likely to result in agricultural development and consequent impacts on catchment runoff. Land use scenarios that are simulated include large scale irrigated agriculture with water extractions from the river and the shallow aquifer. Climate change impacts are also studied and compared to land use change impacts. The downstream part of the basin consists of the large Okavango Wetlands, which are a biodiversity hotspot of global importance and, through tourism, an important source of economic income for Botswana. A second hydrological model simulating flow through the wetlands is used to study the impact of catchment runoff changes on the hydrology and ecology of the wetlands. The final goal of the project is to demonstrate the relation between economic benefits of water abstractions in the upstream and downstream environmental impact. Furthermore the results will provide a basis for defining adequate compensations for upstream stakeholders who forego benefits of agricultural intensification to ensure the conservation of downstream ecosystem services.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6749883-transport-plutonium-snowmelt-run-off','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6749883-transport-plutonium-snowmelt-run-off"><span>Transport of plutonium in snowmelt run-off</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Purtymun, W.D.; Peters, R.; Maes, M.N.</p> <p>1990-07-01</p> <p>Plutonium in treated low-level radioactive effluents released into intermittent streams is bound by ion exchange or adsorption to bed sediments in the stream channel. These sediments are subject to transport with summer and spring snowmelt run-off. A study was made of the transport of plutonium during seven spring run-off events in Los Alamos and Pueblo canyons from the Laboratory boundary to Otowi on the Rio Grande. The melting of the snowpack during these years resulted in run-off that was large enough to reach the eastern edge of the Laboratory. Of these seven run-off events recorded at the Laboratory boundary, onlymore » five had sufficient flow to reach the Rio Grande. The volume of the five events that reached the river ranged from 5 {times} 10{sup 3} m{sup 3} to 104 {times} 10{sup 3} m{sup 3}. The five run-off events carried 119 {times} 10{sup 3} kg of suspended sediments and 1073 {times} 10{sup 3} kg of bed sediments, and transported 598 {mu}Ci of plutonium to the river. Of the 598 {mu}Ci of plutonium, 3% was transported in solution, 57% with suspended sediments, and 40% with bed sediments. 13 refs., 3 figs., 6 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SPIE.6753E..2DL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SPIE.6753E..2DL"><span>Research on the semi-distributed monthly rainfall runoff model at the Lancang River basin based on DEM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Gang; Zhao, Rong; Liu, Jiping; Zhang, Qingpu</p> <p>2007-06-01</p> <p>The Lancang River Basin is so narrow and its hydrological and meteorological information are so flexible. The Rainfall, evaporation, glacial melt water and groundwater affect the runoff whose replenishment forms changing notable with the season in different areas at the basin. Characters of different kind of distributed model and conceptual hydrological model are analyzed. A semi-distributed hydrological model of relation between monthly runoff and rainfall, temperate and soil type has been built in Changdu County based on Visual Basic and ArcObject. The way of discretization of distributed hydrological model was used in the model, and principles of conceptual model are taken into account. The sub-catchment of Changdu is divided into regular cells, and all kinds of hydrological and meteorological information and land use classes and slope extracted from 1:250000 digital elevation models are distributed in each cell. The model does not think of the rainfall-runoff hydro-physical process but use the conceptual model to simulate the whole contributes to the runoff of the area. The affection of evapotranspiration loss and underground water is taken into account at the same time. The spatial distribute characteristics of the monthly runoff in the area are simulated and analyzed with a few parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1986/4191/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1986/4191/report.pdf"><span>Flooding of December 29, 1984 through January 2, 1985, in northern New York State, with flood profiles of the Black and Salmon rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lumia, Richard; Burke, P.M.; Johnston, W.H.</p> <p>1987-01-01</p> <p>Precipitation, snowmelt, and resultant flooding throughout northern New York from December 28 through January 2, 1985, were investigated through a detailed analysis of 56 precipitation stations, 101 stage and/or discharge gaging stations, and 9 miscellaneous measurement sites. Flood damage to property and roads and bridges exceeded $5 million. Lewis and Oswego Counties were declared Federal disaster areas, primarily a result of flooding of the Black River and Salmon River. Storm-precipitation and runoff maps show the storms ' greatest intensity to have been over the Tug Hill and southwest Adirondack areas. Total rainfall from December 28 through January 2 was 6.90 inches at Stillwater Reservoir but only 0.69 inches at Lake Placid. New peak discharges of record occurred at 17 gaging stations throughout northern New York, and the maximum discharge at 17 sites had recurrence intervals equal to or greater than 100 years. Computed inflows to 11 major lakes and reservoirs in northern New York indicate that significant volumes of water (as much as 5 inches of storm runoff at Stillwater Reservoir) were stored during the storm-runoff period. Maximum 1-day flood volumes at two gaging stations on the Black River had recurrence intervals greater than 100 years. To help evaluate the extent of flooding, 67 floodmarks were obtained along a 94-mile reach of the Black River from Dexter to Forestport, and several floodmarks were surveyed within major communities along the Salmon River. The floodmarks were obtained primarily near major bridges and dams along these rivers. (Author 's abstract)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=320111','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=320111"><span>Improving efficacy of landscape interventions in the (sub) humid Ethiopian highlands by improved understanding of runoff processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Despite millions of dollars invested in soil and water conservation practices in the (sub) humid Ethiopian highlands and billions of hours of food-for-work farm labor, sediment concentration in rivers is increasing. This paper reports on the research to reverse the current trend. Based on the unders...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC51E1131N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC51E1131N"><span>How is the River Water Quality Response to Climate Change Impacts?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nguyen, T. T.; Willems, P.</p> <p>2015-12-01</p> <p>Water quality and its response to climate change have been become one of the most important issues of our society, which catches the attention of many scientists, environmental activists and policy makers. Climate change influences the river water quality directly and indirectly via rainfall and air temperature. For example, low flow decreases the volume of water for dilution and increases the residence time of the pollutants. By contrast, high flow leads to increases in the amount of pollutants and sediment loads from catchments to rivers. The changes in hydraulic characteristics, i.e. water depth and velocity, affect the transportation and biochemical transformation of pollutants in the river water body. The high air temperature leads to increasing water temperature, shorter growing periods of different crops and water demands from domestic households and industries, which eventually effects the level of river pollution. This study demonstrates the quantification of the variation of the water temperature and pollutant concentrations along the Molse Neet river in the North East of Belgium as a result of the changes in the catchment rainfall-runoff, air temperature and nutrient loads. Firstly, four climate change scenarios were generated based on a large ensemble of available global and regional climate models and statistical downscaling based on a quantile perturbation method. Secondly, the climatic changes to rainfall and temperature were transformed to changes in the evapotranspiration and runoff flow through the conceptual hydrological model PDM. Thirdly, the adjustment in nutrient loads from agriculture due to rainfall and growing periods of crops were calculated by means of the semi-empirical SENTWA model. Water temperature was estimated from air temperature by a stochastic model separating the temperature into long-term annual and short-term residual components. Next, hydrodynamic and water quality models of the river, implemented in InfoWorks RS, were simulated for both historical (2000-2010) and projected future periods (2050-2060). The advection movement and physico-biochemical processes were considered for simulation of the following water quality variables: water temperature, dissolved oxygen, biological oxygen demand, ammonium, nitrate, nitrite and organic nitrogen.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC33G..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC33G..04P"><span>Increased Extreme Hydrological Events and Decreased Water Supply Availability for the Southwestern United States Projected by Mid-Century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pagan, B. R.; Ashfaq, M.; Rastogi, D.; Naz, B. S.; Kao, S. C.; Mei, R.; Kendall, D. R.; Pal, J. S.</p> <p>2014-12-01</p> <p>Semi-arid Southern California relies primarily on imported water originating mostly from snowpack in basins outside of the region including the San-Joaquin River, Tulare Lake, Sacramento River, Owens Valley, Mono Lake, and Colorado River basins. This study provides an integrated ensemble approach to assessing climate change impacts on the hydrologic cycle and hydrologic extremes for all water supplies to Southern California. Output from 10 global climate models is used to force a regional climate model and hydrological model resulting in high-resolution 4.17-km output for the region. Greenhouse gas concentrations are prescribed according to historical values for the present-day (1965-2005) and the IPCC Representative Concentration Pathway 8.5 for the near to mid term future (2010-2050). On the annual timescale, temperature, precipitation and evaporation increase throughout the majority of the study area. With increased temperatures, precipitation is less likely to fall as snow, decreasing snowpack and natural storage and shifting peak flows to earlier in the year. Daily annual maximum runoff and precipitation events are projected to significantly increase in intensity and frequency by mid-century. The 50-year event, for example, becomes approximately five times more likely in the Colorado River basin and twice as likely in the other basins. In densely populated coastal Southern Californian cities, extreme flood events become three to five times as likely substantially increasing the risk of overburdening flood control systems and potential widespread flooding. The escalating likelihood of the combined effects of runoff occurring earlier in the year and in significantly higher amounts poses a substantial flood control risk requiring adaptation measures such as water release from reservoirs. Significant snowpack reductions and increased flood risk will likely necessitate additional multiyear storage solutions for urban and agricultural regions in the Southwestern US.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC33G..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC33G..04P"><span>Increased Extreme Hydrological Events and Decreased Water Supply Availability for the Southwestern United States Projected by Mid-Century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pagan, B. R.; Ashfaq, M.; Rastogi, D.; Naz, B. S.; Kao, S. C.; Mei, R.; Kendall, D. R.; Pal, J. S.</p> <p>2015-12-01</p> <p>Semi-arid Southern California relies primarily on imported water originating mostly from snowpack in basins outside of the region including the San-Joaquin River, Tulare Lake, Sacramento River, Owens Valley, Mono Lake, and Colorado River basins. This study provides an integrated ensemble approach to assessing climate change impacts on the hydrologic cycle and hydrologic extremes for all water supplies to Southern California. Output from 10 global climate models is used to force a regional climate model and hydrological model resulting in high-resolution 4.17-km output for the region. Greenhouse gas concentrations are prescribed according to historical values for the present-day (1965-2005) and the IPCC Representative Concentration Pathway 8.5 for the near to mid term future (2010-2050). On the annual timescale, temperature, precipitation and evaporation increase throughout the majority of the study area. With increased temperatures, precipitation is less likely to fall as snow, decreasing snowpack and natural storage and shifting peak flows to earlier in the year. Daily annual maximum runoff and precipitation events are projected to significantly increase in intensity and frequency by mid-century. The 50-year event, for example, becomes approximately five times more likely in the Colorado River basin and twice as likely in the other basins. In densely populated coastal Southern Californian cities, extreme flood events become three to five times as likely substantially increasing the risk of overburdening flood control systems and potential widespread flooding. The escalating likelihood of the combined effects of runoff occurring earlier in the year and in significantly higher amounts poses a substantial flood control risk requiring adaptation measures such as water release from reservoirs. Significant snowpack reductions and increased flood risk will likely necessitate additional multiyear storage solutions for urban and agricultural regions in the Southwestern US.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27738864','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27738864"><span>Contribution of urban runoff in Taipei metropolitan area to dissolved inorganic nitrogen export in the Danshui River, Taiwan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kuo, Nae-Wen; Jien, Shih-Hao; Hong, Nien-Ming; Chen, Yao-Te; Lee, Tsung-Yu</p> <p>2017-01-01</p> <p>A previous study has demonstrated that Danshui River has almost the highest dissolved inorganic nitrogen (DIN) yield in the world and exports most of the DIN in the form of ammonium unlike the world's large rivers. However, the DIN sources are poorly constrained. In this study, the contributions of major sources in the Taipei metropolitan area to the DIN export in the Danshui River were investigated. It is observed that ammonium is the major DIN species in the downstream reaches, resulting from the ammonium-dominated inputs of the effluents of wastewater treatment plants (WWTP) and rain water pumping stations (RWPS). DIN concentrations in the downstream (urban) reaches are substantially elevated. The upstream tributaries annually discharge ∼2709 t DIN to the downstream reaches. However, the DIN discharge off the downstream reaches rises to ∼17,918 t, resulting from the contribution of RWPS-collected water, i.e., ∼14,632 t, and the effluents of two WWTP, i.e., ∼577 t. RWPS-collected water inherently contains the contribution of atmospheric deposition, ∼2937 t DIN. This finding implies that ∼11,695 t (∼66 % of the downstream output) DIN flux off the Danshui River is from urban runoff and can be attributed to human activities in the Taipei metropolitan area. To improve the water quality in the Danshui River, water quality controls in urban runoff are important.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5118/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5118/"><span>Historical Changes in Precipitation and Streamflow in the U.S. Great Lakes Basin, 1915-2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hodgkins, Glenn A.; Dudley, Robert W.; Aichele, Stephen S.</p> <p>2007-01-01</p> <p>The total amount of water in the Great Lakes Basin is important in the long-term allocation of water to human use and to riparian and aquatic ecosystems. The water available during low-flow periods is particularly important because the short-term demands for the water can exceed the supply. Precipitation increased over the last 90 years in the U.S. Great Lakes Basin. Total annual precipitation increased by 4.5 inches from 1915 to 2004 (based on the average of 34 U.S. Historical Climatology Network stations), 3.5 inches from 1935 to 2004 (average of 34 stations), and 4.2 inches from 1955 to 2004 (average of 37 stations). Variability in precipitation from year to year was large, but there were numerous years with relatively low precipitation in the 1930s and 1960s and many years with relatively high precipitation after about 1970. Annual runoff increased over the last 50 years in the U.S. Great Lakes Basin. Mean annual runoff increased by 2.6 inches, based on the average of 43 U.S. Geological Survey streamflow-gaging stations from 1955 to 2004 on streams that were relatively free of human influences. Variability in runoff from year to year was large, but on average runoff was relatively low from 1955 to about 1970 and relatively high from about 1970 to 1995. Runoff increased at all stations in the basin except in and near the Upper Peninsula of Michigan, where relatively small runoff decreases occurred. Changes in annual runoff for the 16 stations with data from 1935 to 2004 were similar to the changes from 1955 to 2004. The mean annual 7-day low runoff (the lowest annual average of 7 consecutive days of runoff) increased from 1955 to 2004 by 0.048 cubic feet per second per square mile based on the average of 27 stations. Runoff in the U.S. Great Lakes Basin from 1955 to 2004 increased for all months except April. November through January and July precipitation and runoff increased by similar amounts. There were differences between precipitation and runoff changes for February, March, and April, which were likely due to lower ratios of snowfall to rain and earlier snowmelt runoff in recent years. Increases in precipitation were larger than increases in runoff for May, June, August, September, and October. Some of this difference could be due to the different locations of the precipitation and streamflow stations in the basin. Part of the difference may be explained by changes in evapotranspiration. Some of the few highly urbanized and highly regulated stations analyzed in this report had larger increases in annual 7-day low-runoff from 1955 to 2004 than any of the stations in the U.S. Great Lakes Basin that are on streams relatively free of human influences. This demonstrates the human influence over time on very low streamflows. Changes-even over periods as long as 90 years-can be part of longer cycles. Previous studies of Great Lakes Basin precipitation and St. Lawrence River streamflow, using data from the mid-1800s to the late-1900s, showed low precipitation and streamflow in the late 1800s and early 1900s relative to earlier and later periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H13H1451S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H13H1451S"><span>Sensitivity of River Runoff in Bhutan to Changes in Precipitation and Temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sonessa, M. Y.; Nijssen, B.; Dorji, C.; Wangmo, D.; Lettenmaier, D. P.; Richey, J. E.</p> <p>2013-12-01</p> <p>In the past decades there has been increasing concern about the potential effects of climate change on runoff and water resources all over the world under different conditions. Various studies have indicated that climate change will have an impact on runoff and stream flow. Bhutan is one of the countries in the Hindu Kush-Himalayan region which shows more warming than the global average. The Variable Infiltration Capacity (VIC) model, a macroscale hydrological model, was used to assess the hydrology of the country and the potential impacts of climate change on water availability. Precipitation and temperature were perturbed to study the runoff sensitivity to temperature and precipitation changes. The VIC model was run at 1/24° latitude-longitude resolution. The modeled mean annual runoff elasticity which measures fractional change in annual runoff divided by fractional change in annual precipitation ranges from 1.08 to 2.16. The elasticity value is lower for higher reference precipitations and vice versa. The runoff sensitivity to temperature represents the percentage change in annual runoff per 1°C change in temperature. Runoff sensitivities are negative and range from -1.36%/°C to -1.70%/°C. Spatially, both greater elasticity and sensitivity occur towards the northern part of the country where elevation is more than 5000 m above sea level. Based on the coupled model inter-comparison project phase five (CMIP5) average model results, both precipitation and temperature are predicted to increase in Bhutan in the 21st century. Annually, P is expected to increase by 0.45 to 8.7% under RCP4.5 emission scenario and 1.95 to 14.26% under RCP8.5 emission. The mean annual temperature increment ranges from +1.1 to +2.6°C under RCP4.5 and +1.2 to +4.5°C under RCP8.5 emission scenario. These changes in precipitation and temperature are expected to result in runoff changes ranging from -1.0 to +14.3% and +2.2 to +23.1% increments under RCP4.5 and RCP8.5 emission scenarios, respectively, with the increment getting bigger towards the end of the century. Keywords: Climate change; runoff elasticity; runoff sensitivity; Bhutan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H51K1534W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H51K1534W"><span>Assessment of the Efficiency of Sediment Deposition Reduction in the Zengwen River Watershed in Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, M.; Tan, H. N.; Lo, W. C.; Tsai, C. T.</p> <p>2015-12-01</p> <p>The river upstream of watersheds in Taiwan is very steep, where soil and rock are often unstable so that the river watershed typically has the attribute of high sand yield and turbid runoff due to the excessive erosion in the heavy rainfall seasons. If flood water overflows the river bank, it would lead to a disaster in low-altitude plains. When flood retards or recesses, fine sediment would deposit. Over recent decades, many landslides arise in the Zengwen river watershed due to climate changes, earthquakes, and typhoons. The rocks and sands triggered by these landslides would move to the river channel through surface runoff, which may induce sediment disasters and also render an impact on the stability and sediment transport of the river channel. The risk of the sediment disaster could be reduced by implementing dredging works. However, because of the nature of the channel, the dredged river sections may have sediment depositions back; thus, causing an impact on flood safety. Therefore, it is necessary to evaluate the effectiveness of dredged works from the perspectives of hydraulic, sediment transport, and flood protection to achieve the objective of both disaster prevention and river bed stability. We applied the physiographic soil erosion-deposition (PSED) model to simulate the sediment yield, the runoff, and sediment transport rate of the Zengwen river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The potential of sediment deposition and erosion in the river sections of the Zengwen river could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency for the potential of river sediment deposition and erosion obtained from these two models is agreeable. Furthermore, in order to evaluate the efficiency of sediment deposition reduction, two quantized values, the rate of sediment deposition reduction and the ratio of sediment deposition reduction were utilized. According to the simulation results obtained from the PESD and ARMB-2D models, the river sections with severe sediment depositions and high efficiency of sediment deposition reduction will be referred to as the dredging-to-be areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=329096','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=329096"><span>Using aquatic vegetation to remediate nitrate, ammonium, and soluble reactive phosphorus in simulated runoff</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Within the agriculturally-intensive Mississippi River Basin of the United States, significant conservation efforts have focused on management practices that reduce nutrient runoff into receiving aquatic ecosystems. Only a small fraction of those efforts have focused on phytoremediation techniques. ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=347435','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=347435"><span>Can rice (Oryza sativa) mitigate pesticides and nutrients in agricultural runoff?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Phytoremediation of nutrients and pesticides in runoff is a growing conservation effort, particularly in agriculturally intensive areas such as the lower Mississippi River Valley. In the current study, rice (Oryza sativa) was examined for its mitigation capacity of nitrogen, phosphorus, diazinon, a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..108c2067C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..108c2067C"><span>Periodicity and Multi-scale Analysis of Runoff and Sediment Load in the Wulanghe River, Jinsha River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Yiming</p> <p>2018-01-01</p> <p>Based on the annual runoff and sediment data (1959-2014 ) of Zongguantian hydrological station, time-frequency wavelet transform characteristics and their periodic rules of high and low flow alternating change were analyzed in multi-time scales by the Morlet continue wavelet transformation (CWT). It is concluded that the primary periods of runoff and sediment load time series of the high and low annual flow in the different time scales were 12-year, 3-year and 26-year, 18-year, 13-year, 5-year, respectively, and predicted that the major variant trend of the two time series would been gradually decreasing and been in the high flow period around 8-year (from 2014 to 2022) and 10-year (from 2014 to 2020).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22939610','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22939610"><span>Water allocation assessment in low flow river under data scarce conditions: a study of hydrological simulation in Mediterranean basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bangash, Rubab F; Passuello, Ana; Hammond, Michael; Schuhmacher, Marta</p> <p>2012-12-01</p> <p>River Francolí is a small river in Catalonia (northeastern Spain) with an average annual low flow (~2 m(3)/s). The purpose of the River Francolí watershed assessments is to support and inform region-wide planning efforts from the perspective of water protection, climate change and water allocation. In this study, a hydrological model of the Francolí River watershed was developed for use as a tool for watershed planning, water resource assessment, and ultimately, water allocation purposes using hydrological data from 2002 to 2006 inclusive. The modeling package selected for this application is DHI's MIKE BASIN. This model is a strategic scale water resource management simulation model, which includes modeling of both land surface and subsurface hydrological processes. Topographic, land use, hydrological, rainfall, and meteorological data were used to develop the model segmentation and input. Due to the unavailability of required catchment runoff data, the NAM rainfall-runoff model was used to calculate runoff of all the sub-watersheds. The results reveal a potential pressure on the availability of groundwater and surface water in the lower part of River Francolí as was expected by the IPCC for Mediterranean river basins. The study also revealed that due to the complex hydrological regime existing in the study area and data scarcity, a comprehensive physically based method was required to better represent the interaction between groundwater and surface water. The combined ArcGIS/MIKE BASIN models appear as a useful tool to assess the hydrological cycle and to better understand water allocation to different sectors in the Francolí River watershed. Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..107a2026C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..107a2026C"><span>On the forecast of runoff based on the harmonic analysis of time series of precipitation in the catchment area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cherednichenko, A. V.; Cherednichenko, A. V.; Cherednichenko, V. S.</p> <p>2018-01-01</p> <p>It is shown that a significant connection exists between the most important harmonics, extracted in the process of harmonic analysis of time series of precipitation in the catchment area of rivers and the amount of runoff. This allowed us to predict the size of the flow for a period of up to 20 years, assuming that the main parameters of the harmonics are preserved at the predicted time interval. The results of such a forecast for three river basins of Kazakhstan are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019362','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019362"><span>Occurrence of alachlor and its sulfonated metabolite in rivers and reservoirs of the midwestern United States: The importance of sulfonation in the transport of chloroacetanilide herbicides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thurman, E.M.; Goolsby, D.A.; Aga, D.S.; Pomes, M.L.; Meyer, M.T.</p> <p>1996-01-01</p> <p>Alachlor and its metabolite, 2-[(2',6'-diethylphenyl)- (methoxymethyl)amino]-2-oxoethanesulfonate (ESA), were identified in 76 reservoirs in the midwestern United States using immunoassay, liquid chromatography, and gas chromatography/mass spectrometry. The median concentration of ESA (0.48 ??g/L) exceeded the median concentration of alachlor (<0.05 ??g/L), with highest values in the upper Midwest. ESA also was detected in the Mississippi River from the mouth to the headwaters at concentrations of 0.2-1.5 ??g/L, exceeding the concentration of alachlor. In a field runoff study, alachlor rapidly formed ESA. It is hypothesized that a glutathione conjugate forms, which later oxidizes in soil to ESA. The removal of the chlorine atom lessens the toxicity of the parent compound and increases runoff potential. It is hypothesized further that sulfonic acid metabolites of other chloroacetanilides, including acetochlor, butachlor, metolachlor, and propachlor, also occur in surface water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6653187-high-resolution-sr-ca-delta-sup-coral-record-from-great-barrier-reef-australia-el-nino','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6653187-high-resolution-sr-ca-delta-sup-coral-record-from-great-barrier-reef-australia-el-nino"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McCulloch, M.T.; Gagan, M.K.; Mortimer, G.E.</p> <p></p> <p>A high-resolution (near weekly) Sr/Ca and oxygen isotopic record is presented for a coral from the Pandora Reef in the Great Barrier Reef (GBR) of Australia during the period of 1978 to 1984. The records are well correlated except for periods of high rainfall when river runoff has significantly modified the [delta][sup 18]O value of seawater. Using the Sr/Ca temperature calibration of De Villiers et al., the Sr/Ca records exhibit seasonally controlled cyclical SST (sea surface temperature) variations of from [approximately] 21 to [approximately] 28[degrees]C. During the very strong El Nino of 1982-1983, the Sr/CA systematics indicate a sharp dropmore » in the winter SST to [approximately] 18.5[degrees]C. This represents a temperature anomaly of -3[degrees]C which is approximately twice that given by the [delta][sup 18]O variations, suggesting an [approximately] x2 amplification of the anomaly by the Sr/Ca system, possibly due to the increasing dominance of inorganically controlled aragonite-seawater fractionation. The oxygen isotope systematics show the combined effects of both temperature and changing seawater [delta][sup 18]O values, the latter reflecting the influx of [sup 18]O-depleted runoff during periods of high rainfall. Due to the extremely low ([approximately] 10[sup [minus]3]) Sr and Ca contents of river runoff relative to seawater, it is possible to use the Sr/Ca thermometer to calculate temperatures independent of major floods and hence deconvolve the combined effects in the oxygen isotopic record of variable temperature and the [delta][sup 18]O value of seawater. Using this approach it is possible to quantitatively reproduce the volume of runoff from the Burdekin River during the periods of major flooding that occurred in early 1979 and 1981. The results of this study demonstrate that the combined use of high-resolution Sr/Ca and [delta][sup 18]O systematics in scleractinian corals is a powerful tool for providing quantitative constraints on past climate.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H53M..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H53M..04G"><span>Fusing enhanced radar precipitation, in-situ hydrometeorological measurements and airborne LIDAR snowpack estimates in a hyper-resolution hydrologic model to improve seasonal water supply forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gochis, D. J.; Busto, J.; Howard, K.; Mickey, J.; Deems, J. S.; Painter, T. H.; Richardson, M.; Dugger, A. L.; Karsten, L. R.; Tang, L.</p> <p>2015-12-01</p> <p>Scarcity of spatially- and temporally-continuous observations of precipitation and snowpack conditions in remote mountain watersheds results in fundamental limitations in water supply forecasting. These limitationsin observational capabilities can result in strong biases in total snowmelt-driven runoff amount, the elevational distribution of runoff, river basin tributary contributions to total basin runoff and, equally important for water management, the timing of runoff. The Upper Rio Grande River basin in Colorado and New Mexico is one basin where observational deficiencies are hypothesized to have significant adverse impacts on estimates of snowpack melt-out rates and on water supply forecasts. We present findings from a coordinated observational-modeling study within Upper Rio Grande River basin whose aim was to quanitfy the impact enhanced precipitation, meteorological and snowpack measurements on the simulation and prediction of snowmelt driven streamflow. The Rio Grande SNOwpack and streamFLOW (RIO-SNO-FLOW) Prediction Project conducted enhanced observing activities during the 2014-2015 water year. Measurements from a gap-filling, polarimetric radar (NOXP) and in-situ meteorological and snowpack measurement stations were assimilated into the WRF-Hydro modeling framework to provide continuous analyses of snowpack and streamflow conditions. Airborne lidar estimates of snowpack conditions from the NASA Airborne Snow Observatory during mid-April and mid-May were used as additional independent validations against the various model simulations and forecasts of snowpack conditions during the melt-out season. Uncalibrated WRF-Hydro model performance from simulations and forecasts driven by enhanced observational analyses were compared against results driven by currently operational data inputs. Precipitation estimates from the NOXP research radar validate significantly better against independent in situ observations of precipitation and snow-pack increases. Correcting the operational NLDAS2 forcing data with the experimental observations led to significant improvements in the seasonal accumulation and ablation of mountain snowpack and ultimately led to marked improvement in model simulated streamflow as compared with streamflow observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10847156','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10847156"><span>Seasonal variability of salinity, temperature, turbidity and suspended chlorophyll in the Tweed Estuary.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Uncles, R J; Bloomer, N J; Frickers, P E; Griffiths, M L; Harris, C; Howland, R J; Morris, A W; Plummer, D H; Tappin, A D</p> <p>2000-05-05</p> <p>Results are presented from a campaign of measurements that were undertaken to examine seasonal variability in physical and chemical fluxes and processes within the Tweed Estuary during the period September 1996-August 1997. The study utilised monthly surveys, each of approximately 1 week duration. This article interprets a subset of the salinity, temperature, turbidity [suspended particulate matter (SPM) levels] and chlorophyll a data. Measurements discussed here were obtained throughout the estuary during high-speed transects that covered the region between the tidal river and the coastal zone. Longitudinal distributions of surface salinity depended strongly on freshwater runoff. During high runoff the surface salinity was low and the freshwater-saltwater interface (FSI) was located close to the mouth. The reverse was true at times of low runoff. Salinity stratification was generally strong. During the surveys, river runoff temperatures ranged from approximately 2 to 18 degrees C and coastal waters (approximately 33 salinity) from approximately 6 to 15 degrees C. Turbidity was low throughout the campaign (SPM < 30 mg l(-1)). Because of rapid flushing times (one or two tides), turbidity tended to mix conservatively between river and coastal waters. Higher coastal turbidity was associated with stronger wind events, and higher fluvial turbidity with spate events. Suspended chlorophyll a levels were usually low throughout the estuary (typically < 2 microg l(-1)) and showed large spatial variability. Because of the rapid flushing of the estuary, it is hypothesised that it was not possible for several algal cell divisions to occur before algae were flushed to the coastal zone. A 'bloom' occurred during the May 1997 survey, when chlorophyll a levels reached 14 microg l(-1). Higher chlorophyll a concentrations at that time occurred at very low salinities, indicating that these waters and algae were largely fluvially derived, and may have resulted from increasing springtime solar irradiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33N..01Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33N..01Z"><span>The critical role of the routing scheme in simulating peak river discharge in global hydrological models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, F.; Veldkamp, T.; Frieler, K.; Schewe, J.; Ostberg, S.; Willner, S. N.; Schauberger, B.; Gosling, S.; Mueller Schmied, H.; Portmann, F. T.; Leng, G.; Huang, M.; Liu, X.; Tang, Q.; Hanasaki, N.; Biemans, H.; Gerten, D.; Satoh, Y.; Pokhrel, Y. N.; Stacke, T.; Ciais, P.; Chang, J.; Ducharne, A.; Guimberteau, M.; Wada, Y.; Kim, H.; Yamazaki, D.</p> <p>2017-12-01</p> <p>Global hydrological models (GHMs) have been applied to assess global flood hazards, but their capacity to capture the timing and amplitude of peak river discharge—which is crucial in flood simulations—has traditionally not been the focus of examination. Here we evaluate to what degree the choice of river routing scheme affects simulations of peak discharge and may help to provide better agreement with observations. To this end we use runoff and discharge simulations of nine GHMs forced by observational climate data (1971-2010) within the ISIMIP2a project. The runoff simulations were used as input for the global river routing model CaMa-Flood. The simulated daily discharge was compared to the discharge generated by each GHM using its native river routing scheme. For each GHM both versions of simulated discharge were compared to monthly and daily discharge observations from 1701 GRDC stations as a benchmark. CaMa-Flood routing shows a general reduction of peak river discharge and a delay of about two to three weeks in its occurrence, likely induced by the buffering capacity of floodplain reservoirs. For a majority of river basins, discharge produced by CaMa-Flood resulted in a better agreement with observations. In particular, maximum daily discharge was adjusted, with a multi-model averaged reduction in bias over about 2/3 of the analysed basin area. The increase in agreement was obtained in both managed and near-natural basins. Overall, this study demonstrates the importance of routing scheme choice in peak discharge simulation, where CaMa-Flood routing accounts for floodplain storage and backwater effects that are not represented in most GHMs. Our study provides important hints that an explicit parameterisation of these processes may be essential in future impact studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70040123','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70040123"><span>Eleven-year trend in acetanilide pesticide degradates in the Iowa River, Iowa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kalkhoff, Stephen J.; Vecchia, Aldo V.; Capel, Paul D.; Meyer, Michael T.</p> <p>2012-01-01</p> <p>Trends in concentration and loads of acetochlor, alachlor, and metolachlor and their ethanasulfonic (ESA) and oxanilic (OXA) acid degradates were studied from 1996 through 2006 in the main stem of the Iowa River, Iowa and in the South Fork Iowa River, a small tributary near the headwaters of the Iowa River. Concentration trends were determined using the parametric regression model SEAWAVE-Q, which accounts for seasonal and flow-related variability. Daily estimated concentrations generated from the model were used with daily streamflow to calculate daily and yearly loads. Acetochlor, alachlor, metolachlor, and their ESA and OXA degradates were generally present in >50% of the samples collected from both sites throughout the study. Their concentrations generally decreased from 1996 through 2006, although the rate of decrease was slower after 2001. Concentrations of the ESA and OXA degradates decreased from 3 to about 23% yr-1. The concentration trend was related to the decreasing use of these compounds during the study period. Decreasing concentrations and constant runoff resulted in an average reduction of 10 to >3000 kg per year of alachlor and metolachlor ESA and OXA degradates being transported out of the Iowa River watershed. Transport of acetochlor and metolachlor parent compounds and their degradates from the Iowa River watershed ranged from <1% to about 6% of the annual application. These trends were related to the decreasing use of these compounds during the study period, but the year-to-year variability cannot explain changes in loads based on herbicide use alone. The trends were also affected by the timing and amount of precipitation. As expected, increased amounts of water moving through the watershed moved a greater percentage of the applied herbicides, especially the relatively soluble degradates, from the soils into the rivers through surface runoff, shallow groundwater inflow, and subsurface drainage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC54B..01Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC54B..01Y"><span>Development and Evaluation of an Integrated Hydrological Modeling Framework for Monitoring and Understanding Floods and Droughts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Z. L.; Wu, W. Y.; Lin, P.; Maidment, D. R.</p> <p>2017-12-01</p> <p>Extreme water events such as catastrophic floods and severe droughts have increased in recent decades. Mitigating the risk to lives, food security, infrastructure, energy supplies, as well as numerous other industries posed by these extreme events requires informed decision-making and planning based on sound science. We are developing a global water modeling capability by building models that will provide total operational water predictions (evapotranspiration, soil moisture, groundwater, channel flow, inundation, snow) at unprecedented spatial resolutions and updated frequencies. Toward this goal, this talk presents an integrated global hydrological modeling framework that takes advantage of gridded meteorological forcing, land surface modeling, channeled flow modeling, ground observations, and satellite remote sensing. Launched in August 2016, the National Water Model successfully incorporates weather forecasts to predict river flows for more than 2.7 million rivers across the continental United States, which transfers a "synoptic weather map" to a "synoptic river flow map" operationally. In this study, we apply a similar framework to a high-resolution global river network database, which is developed from a hierarchical Dominant River Tracing (DRT) algorithm, and runoff output from the Global Land Data Assimilation System (GLDAS) to a vector-based river routing model (The Routing Application for Parallel Computation of Discharge, RAPID) to produce river flows from 2001 to 2016 using Message Passing Interface (MPI) on Texas Advanced Computer Center's Stampede system. In this simulation, global river discharges for more than 177,000 rivers are computed every 30 minutes. The modeling framework's performance is evaluated with various observations including river flows at more than 400 gauge stations globally. Overall, the model exhibits a reasonably good performance in simulating the averaged patterns of terrestrial water storage, evapotranspiration and runoff. The system is appropriate for monitoring and studying floods and droughts. Directions for future research will be outlined and discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H31H0731S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H31H0731S"><span>Characterizing Flow and Suspended Sediment Trends in the Sacramento River Basin, CA Using Hydrologic Simulation Program - FORTRAN (HSPF)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stern, M. A.; Flint, L. E.; Flint, A. L.; Wright, S. A.; Minear, J. T.</p> <p>2014-12-01</p> <p>A watershed model of the Sacramento River Basin, CA was developed to simulate streamflow and suspended sediment transport to the San Francisco Bay Delta (SFBD) for fifty years (1958-2008) using the Hydrological Simulation Program - FORTRAN (HSPF). To compensate for the large model domain and sparse data, rigorous meteorological development and characterization of hydraulic geometry were employed to spatially distribute climate and hydrologic processes in unmeasured locations. Parameterization techniques sought to include known spatial information for tributaries such as soil information and slope, and then parameters were scaled up or down during calibration to retain the spatial characteristics of the land surface in un-gaged areas. Accuracy was assessed by comparing model calibration to measured streamflow. Calibration and validation of the Sacramento River ranged from "good" to "very good" performance based upon a "goodness-of-fit" statistical guideline. Model calibration to measured sediment loads were underestimated on average by 39% for the Sacramento River, and model calibration to suspended sediment concentrations were underestimated on average by 22% for the Sacramento River. Sediment loads showed a slight decreasing trend from 1958-2008 and was significant (p < 0.0025) in the lower 50% of stream flows. Hypothetical climate change scenarios were developed using the Climate Assessment Tool (CAT). Several wet and dry scenarios coupled with temperature increases were imposed on the historical base conditions to evaluate sensitivity of streamflow and sediment on potential changes in climate. Wet scenarios showed an increase of 9.7 - 17.5% in streamflow, a 7.6 - 17.5% increase in runoff, and a 30 - 93% increase in sediment loads. The dry scenarios showed a roughly 5% decrease in flow and runoff, and a 16 - 18% decrease in sediment loads. The base hydrology was most sensitive to a temperature increase of 1.5 degrees Celsius and an increase in storm intensity and frequency. The complete calibrated HSPF model will use future climate scenarios to make projections of potential hydrologic and sediment trends to the SFBD from 2000-2100.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApWS....8...94Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApWS....8...94Y"><span>The pattern of N/P/Si stoichiometry and ecological nutrient limitation in Ganga River: up- and downstream urban influences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yadav, Amita; Pandey, Jitendra</p> <p>2018-06-01</p> <p>The pattern of N/P/Si stoichiometry, although an important driver regulating river ecology, has received limited research attention for Ganga River. We investigated shifts in N/P/Si stoichiometry and ecological nutrient limitation as influenced by Varanasi urban core along a 37-km-long stretch of Ganga River. We also assessed the trophic status of the river in relation to shifting elemental stoichiometry. Together with point sources, atmospheric deposition coupled surface runoff appeared important factors leading to N/P/Si stoichiometric imbalances along the study stretch. The N/P and Si/P ratios declined downstream from 15.5 to 6.5 and 15.7 to 4.4, respectively, whereas N/Si increased from 1.01 to 1.6. Significant negative correlation of N/Si with biogenic silica to chlorophyll a (Chl a) ratios, and biogenic silica to phycocyanin ratios indicated increased growth of non-siliceous algae downstream signifying N and Si limitation with possible implications on food-web dynamics and feedback processes in the river in long run.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.H23E1177C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.H23E1177C"><span>Virtual mission stage I: Implications of a spaceborne surface water mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clark, E. A.; Alsdorf, D. E.; Bates, P.; Wilson, M. D.; Lettenmaier, D. P.</p> <p>2004-12-01</p> <p>The interannual and interseasonal variability of the land surface water cycle depend on the distribution of surface water in lakes, wetlands, reservoirs, and river systems; however, measurements of hydrologic variables are sparsely distributed, even in industrialized nations. Moreover, the spatial extent and storage variations of lakes, reservoirs, and wetlands are poorly known. We are developing a virtual mission to demonstrate the feasibility of observing surface water extent and variations from a spaceborne platform. In the first stage of the virtual mission, on which we report here, surface water area and fluxes are emulated using simulation modeling over three continental scale river basins, including the Ohio River, the Amazon River and an Arctic river. The Variable Infiltration Capacity (VIC) macroscale hydrologic model is used to simulate evapotranspiration, soil moisture, snow accumulation and ablation, and runoff and streamflow over each basin at one-eighth degree resolution. The runoff from this model is routed using a linear transfer model to provide input to a much more detailed flow hydraulics model. The flow hydraulics model then routes runoff through various channel and floodplain morphologies at a 250 m spatial and 20 second temporal resolution over a 100 km by 500 km domain. This information is used to evaluate trade-offs between spatial and temporal resolutions of a hypothetical high resolution spaceborne altimeter by synthetically sampling the resultant model-predicted water surface elevations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015WRR....51.8949M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015WRR....51.8949M"><span>Annual water, sediment, nutrient, and organic carbon fluxes in river basins: A global meta-analysis as a function of scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mutema, M.; Chaplot, V.; Jewitt, G.; Chivenge, P.; Blöschl, G.</p> <p>2015-11-01</p> <p>Process controls on water, sediment, nutrient, and organic carbon exports from the landscape through runoff are not fully understood. This paper provides analyses from 446 sites worldwide to evaluate the impact of environmental factors (MAP and MAT: mean annual precipitation and temperature; CLAY and BD: soil clay content and bulk density; S: slope gradient; LU: land use) on annual exports (RC: runoff coefficients; SL: sediment loads; TOCL: organic carbon losses; TNL: nitrogen losses; TPL: phosphorus losses) from different spatial scales. RC was found to increase, on average, from 18% at local scale (in headwaters), 25% at microcatchment and subcatchment scale (midreaches) to 41% at catchment scale (lower reaches of river basins) in response to multiple factors. SL increased from microplots (468 g m-2 yr-1) to plots (901 g m-2 yr-1), accompanied by decreasing TOCL and TNL. Climate was a major control masking the effects of other factors. For example, RC, SL, TOCL, TNL, and TPL tended to increase with MAP at all spatial scales. These variables, however, decreased with MAT. The impact of CLAY, BD, LU, and S on erosion variables was largely confined to the hillslope scale, where RC, SL, and TOCL decreased with CLAY, while TNL and TPL increased. The results contribute to better understanding of water, nutrient, and carbon cycles in terrestrial ecosystems and should inform river basin modeling and ecosystem management. The important role of spatial climate variability points to a need for comparative research in specific environments at nested spatiotemporal scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.H43E0547L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.H43E0547L"><span>Processes Controlling Baseflow and Climatic Warming Effects in Merced River, Sierra Nevada, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, F.; Conklin, M. H.; Shaw, G.; Bales, R. C.; Conrad, M. E.; Rice, R.</p> <p>2006-12-01</p> <p>Sources of streamflow in Merced River were determined using stable isotopes and chemical tracers in order to improve our understanding of hydrologic controls on streamflow and their relationship with climatic warming in the region. Samples were collected from streamflow, groundwater, and natural springs from 2003 to 2006. Both stable isotopes and specific conductivity in streamflow showed a strong seasonality, with lower values from April to July during the snowmelt season, higher values from August to October during dry season, and intermediate values from November to March during winter rainfall and snowfall. Two components controlling baseflow (streamflow from August to October) in the Upper Merced River were identified: shallow subsurface runoff from snowmelt infiltration and groundwater from fractured bedrock. Conductivity in baseflow increased rapidly with discharge, following a power law (R2 > 0.96, p < 0.05), and peaked in October, indicating that the contribution of shallow subsurface runoff to baseflow was significant but decreased rapidly from August to October. Baseflow appears to be very sensitive to the snowmelt timing and regime. From 1976 to 2005, during a period of increasing temperature in the region, streamflow tended to decrease significantly during October (p < 0.05) and increase during March (p < 0.05). However, total annual precipitation did not change significantly, indicating that the shift in baseflow discharge is a result of the early onset of snowmelt due to climatic warming. If climatic warming continues in the region, baseflow in the Sierra Nevada may continue decreasing and water supply may suffer increased stress during the late summer, high water-demand period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29579654','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29579654"><span>Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maguire, Timothy J; Wellen, Christopher; Stammler, Katie L; Mundle, Scott O C</p> <p>2018-08-15</p> <p>Greenhouse production of vegetables is a growing global trade. While greenhouses are typically captured under regulations aimed at farmland, they may also function as a point source of effluent. In this study, the cumulative impacts greenhouse effluents have on riverine macronutrient and trace metal concentrations were examined. Water samples were collected Bi-weekly for five years from 14 rivers in agriculturally dominated watersheds in southwestern Ontario. Nine of the watersheds contained greenhouses with their boundaries. Greenhouse influenced rivers had significantly higher concentrations of macronutrients (nitrogen, phosphorus, and potassium) and trace metals (copper, molybdenum, and zinc). Concentrations within greenhouse influenced rivers appeared to decrease over the 5-year study while concentrations within non-greenhouse influenced river remained constant. The different temporal pattern between river types was attributed to increased precipitation during the study period. Increases in precipitation diluted concentrations in greenhouse influenced rivers; however, non-influenced river runoff proportionally increased nutrient mobility and flow, stabilizing the observed concentrations of non-point sources. Understanding the dynamic nature of environmental releases of point and non-point sources of nutrients and trace metals in mixed agricultural systems using riverine water chemistry is complicated by changes in climatic conditions, highlighting the need for long-term monitoring of nutrients, river flows and weather data in assessing these agricultural sectors. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23288670','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23288670"><span>Mitigation of nutrient losses via surface runoff from rice cropping systems with alternate wetting and drying irrigation and site-specific nutrient management practices.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liang, X Q; Chen, Y X; Nie, Z Y; Ye, Y S; Liu, J; Tian, G M; Wang, G H; Tuong, T P</p> <p>2013-10-01</p> <p>Resource-conserving irrigation and fertilizer management practices have been developed for rice systems which may help address water quality concerns by reducing N and P losses via surface runoff. Field experiments under three treatments, i.e., farmers' conventional practice (FCP), alternate wetting and drying (AWD), and AWD integrated with site-specific nutrient management (AWD + SSNM) were carried out during two rice seasons at two sites in the southwest Yangtze River delta region. Across site years, results indicated that under AWD irrigation (i.e., AWD and AWD + SSNM), water inputs were reduced by 13.4~27.5 % and surface runoff was reduced by 30.2~36.7 % compared to FCP. When AWD was implemented alone, total N and P loss masses via surface runoff were reduced by 23.3~30.4 % and 26.9~31.7 %, respectively, compared to FCP. However, nutrient concentrations of surface runoff did not decrease under AWD alone. Under AWD + SSNM, total N and P loss masses via surface runoff were reduced to a greater extent than AWD alone (39.4~47.6 % and 46.1~48.3 % compared to FCP, respectively), while fertilizer inputs and N surpluses significantly decreased and rice grain yields increased relative to FCP. Therefore, by more closely matching nutrient supply with crop demand and reducing both surface runoff and nutrient concentrations of surface runoff, our results demonstrate that integration of AWD and SSNM practices can mitigate N and P losses via surface runoff from rice fields while maintaining high yields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12c4026S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12c4026S"><span>Potential of commercial microwave link network derived rainfall for river runoff simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smiatek, Gerhard; Keis, Felix; Chwala, Christian; Fersch, Benjamin; Kunstmann, Harald</p> <p>2017-03-01</p> <p>Commercial microwave link networks allow for the quantification of path integrated precipitation because the attenuation by hydrometeors correlates with rainfall between transmitter and receiver stations. The networks, operated and maintained by cellphone companies, thereby provide completely new and country wide precipitation measurements. As the density of traditional precipitation station networks worldwide is significantly decreasing, microwave link derived precipitation estimates receive increasing attention not only by hydrologists but also by meteorological and hydrological services. We investigate the potential of microwave derived precipitation estimates for streamflow prediction and water balance analyses, exemplarily shown for an orographically complex region in the German Alps (River Ammer). We investigate the additional value of link derived rainfall estimations combined with station observations compared to station and weather radar derived values. Our river runoff simulation system employs a distributed hydrological model at 100 × 100 m grid resolution. We analyze the potential of microwave link derived precipitation estimates for two episodes of 30 days with typically moderate river flow and an episode of extreme flooding. The simulation results indicate the potential of this novel precipitation monitoring method: a significant improvement in hydrograph reproduction has been achieved in the extreme flooding period that was characterized by a large number of local strong precipitation events. The present rainfall monitoring gauges alone were not able to correctly capture these events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PNAS..11410622S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PNAS..11410622S"><span>Direct measurements of meltwater runoff on the Greenland ice sheet surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H.; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Willis, Michael J.; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.</p> <p>2017-12-01</p> <p>Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29208716','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29208716"><span>Direct measurements of meltwater runoff on the Greenland ice sheet surface.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, Laurence C; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T; Chu, Vena W; Rennermalm, Åsa K; Ryan, Jonathan C; Cooper, Matthew G; Gleason, Colin J; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L; Cullather, Richard I; Zhao, Bin; Willis, Michael J; Hubbard, Alun; Box, Jason E; Jenner, Brittany A; Behar, Alberto E</p> <p>2017-12-12</p> <p>Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km 2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207-1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. Copyright © 2017 the Author(s). Published by PNAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5740616','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5740616"><span>Direct measurements of meltwater runoff on the Greenland ice sheet surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.</p> <p>2017-01-01</p> <p>Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland’s midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. PMID:29208716</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2015/5187/sir20155187.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2015/5187/sir20155187.pdf"><span>Hydrologic and hydraulic analyses for the Black Fork Mohican River Basin in and near Shelby, Ohio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Huitger, Carrie A.; Ostheimer, Chad J.; Koltun, G.F.</p> <p>2016-05-06</p> <p>Hydrologic and hydraulic analyses were done for selected reaches of five streams in and near Shelby, Richland County, Ohio. The U.S. Geological Survey (USGS), in cooperation with the Muskingum Watershed Conservancy District, conducted these analyses on the Black Fork Mohican River and four tributaries: Seltzer Park Creek, Seltzer Park Tributary, Tuby Run, and West Branch. Drainage areas of the four stream reaches studied range from 0.51 to 60.3 square miles. The analyses included estimation of the 10-, 2-, 1-, and 0.2-percent annual-exceedance probability (AEP) flood-peak discharges using the USGS Ohio StreamStats application. Peak discharge estimates, along with cross-sectional and hydraulic structure geometries, and estimates of channel roughness coefficients were used as input to step-backwater models. The step-backwater water models were used to determine water-surface elevation profiles of four flood-peak discharges and a regulatory floodway. This study involved the installation of, and data collection at, a streamflow-gaging station (Black Fork Mohican River at Shelby, Ohio, 03129197), precipitation gage (Rain gage at Reservoir Number Two at Shelby, Ohio, 405209082393200), and seven submersible pressure transducers on six selected river reaches. Two precipitation-runoff models, one for the winter events and one for nonwinter events for the headwaters of the Black Fork Mohican River, were developed and calibrated using the data collected. With the exception of the runoff curve numbers, all other parameters used in the two precipitation-runoff models were identical. The Nash-Sutcliffe model efficiency coefficients were 0.737, 0.899, and 0.544 for the nonwinter events and 0.850 and 0.671 for the winter events. Both of the precipitation-runoff models underestimated the total volume of water, with residual runoff ranging from -0.27 inches to -1.53 inches. The results of this study can be used to assess possible mitigation options and define flood hazard areas that will contribute to the protection of life and property. This study could also assist emergency managers, community officials, and residents in determining when flooding may occur and planning evacuation routes during a flood.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5291/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5291/"><span>Characteristics and Classification of Least Altered Streamflows in Massachusetts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Armstrong, David S.; Parker, Gene W.; Richards, Todd A.</p> <p>2008-01-01</p> <p>Streamflow records from 85 streamflow-gaging stations at which streamflows were considered to be least altered were used to characterize natural streamflows within southern New England. Period-of-record streamflow data were used to determine annual hydrographs of median monthly flows. The shapes and magnitudes of annual hydrographs of median monthly flows, normalized by drainage area, differed among stations in different geographic areas of southern New England. These differences were gradational across southern New England and were attributed to differences in basin and climate characteristics. Period-of-record streamflow data were also used to analyze the statistical properties of daily streamflows at 61 stations across southern New England by using L-moment ratios. An L-moment ratio diagram of L-skewness and L-kurtosis showed a continuous gradation in these properties between stations and indicated differences between base-flow dominated and runoff-dominated rivers. Streamflow records from a concurrent period (1960-2004) for 61 stations were used in a multivariate statistical analysis to develop a hydrologic classification of rivers in southern New England. Missing records from 46 of these stations were extended by using a Maintenance of Variation Extension technique. The concurrent-period streamflows were used in the Indicators of Hydrologic Alteration and Hydrologic Index Tool programs to determine 224 hydrologic indices for the 61 stations. Principal-components analysis (PCA) was used to reduce the number of hydrologic indices to 20 that provided nonredundant information. The PCA also indicated that the major patterns of variability in the dataset are related to differences in flow variability and low-flow magnitude among the stations. Hierarchical cluster analysis was used to classify stations into groups with similar hydrologic properties. The cluster analysis classified rivers in southern New England into two broad groups: (1) base-flow dominated rivers, whose statistical properties indicated less flow variability and high magnitudes of low flow, and (2) runoff-dominated rivers, whose statistical properties indicated greater flow variability and lower magnitudes of low flow. A four-cluster classification further classified the runoff-dominated streams into three groups that varied in gradient, elevation, and differences in winter streamflow conditions: high-gradient runoff-dominated rivers, northern runoff-dominated rivers, and southern runoff-dominated rivers. A nine-cluster division indicated that basin size also becomes a distinguishing factor among basins at finer levels of classification. Smaller basins (less than 10 square miles) were classified into different groups than larger basins. A comparison of station classifications indicated that a classification based on multiple hydrologic indices that represent different aspects of the flow regime did not result in the same classification of stations as a classification based on a single type of statistic such as a monthly median. River basins identified by the cluster analysis as having similar hydrologic properties tended to have similar basin and climate characteristics and to be in close proximity to one another. Stations were not classified in the same cluster on the basis of geographic location alone; as a result, boundaries cannot be drawn between geographic regions with similar streamflow characteristics. Rivers with different basin and climate characteristics were classified in different clusters, even if they were in adjacent basins or upstream and downstream within the same basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri034326/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri034326/"><span>Concentrations of dissolved solids and nutrients in water sources and selected streams of the Santa Ana Basin, California, Octoger 1998 - September 2001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kent, Robert; Belitz, Kenneth</p> <p>2004-01-01</p> <p>Concentrations of total dissolved solids (TDS) and nutrients in selected Santa Ana Basin streams were examined as a function of water source. The principal water sources are mountain runoff, wastewater, urban runoff, and stormflow. Rising ground water also enters basin streams in some reaches. Data were collected from October 1998 to September 2001 from 6 fixed sites (including a mountain site), 6 additional mountain sites (including an alpine indicator site), and more than 20 synoptic sites. The fixed mountain site on the Santa Ana River near Mentone appears to be a good representative of reference conditions for water entering the basin. TDS can be related to water source. The median TDS concentration in base-flow samples from mountain sites was 200 mg/L (milligrams per liter). Base-flow TDS concentrations from sites on the valley floor typically ranged from 400 to 600 mg/L; base flow to most of these sites is predominantly treated wastewater, with minor contributions of rising ground water and urban runoff. Sparse data suggest that TDS concentrations in urban runoff are about 300 mg/L. TDS concentrations appear to increase on a downstream gradient along the main stem of the Santa Ana River, regardless of source inputs. The major-ion compositions observed in samples from the different sites can be related to water source, as well as to in-stream processes in the basin. Water compositions from mountain sites are categorized into two groups: one group had a composition close to that of the alpine indicator site high in the watershed, and another group had ionic characteristics closer to those in tributaries on the valley floor. The water composition at Warm Creek, a tributary urban indicator site, was highly variable but approximately intermediate to the compositions of the upgradient mountain sites. Water compositions at the Prado Dam and Imperial Highway sites, located 11 miles apart on the Santa Ana River, were similar to one another and appeared to be a mixture of the waters of the upstream sites, Santa Ana River at MWD Crossing, Cucamonga Creek, and Warm Creek. Rainfall usually dilutes stream TDS concentrations. The median TDS concentration in all storm-event discrete samples was 260 mg/L. The median flow-weighted average TDS concentration for stormflow, based on continuous measurement of specific conductance and hydrograph separation of the continuous discharge record, was 190 mg/L. However, stormflow TDS concentrations were variable, and depended on whether the storm was associated with a relatively small or large rainfall event. TDS concentrations in stormflow associated with relatively small events ranged from about 50 to 600 mg/L with a median of 220 mg/L, whereas concentrations in stormflow associated with relatively large events ranged from about 40 to 300 mg/L with a median of 100 mg/L. From the perspective of water managers, the nutrient species of highest concern in Santa Ana Basin streams is nitrate. Most mountain streams had median base-flow concentrations of nitrate below 0.3 mg/L as nitrogen. Nitrate concentrations in both urban runoff and stormflow were near 1 mg/L, which is close to the level found in rainfall for the region. In fact, results from this study suggest that much of the nitrate load in urban storm runoff comes from rainwater. Nitrate concentrations in the Santa Ana River and its major tributaries are highest downstream from wastewater inputs, where median base-flow concentrations of nitrite+nitrate ranged from about 5 to 7 mg/L. About 4 percent of samples collected from sites receiving treated wastewater had nitrate concentrations greater than 10 mg/L. Rising ground water also appears to have high nitrate concentrations (greater than 10 mg/L) in some reaches of the river. Concentrations of other nitrogen species were much lower than nitrate concentrations in base-flow samples. However, storm events increased concentrations and the proportion of organic nitro</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JESS..118..355R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JESS..118..355R"><span>SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramakrishnan, D.; Bandyopadhyay, A.; Kusuma, K. N.</p> <p>2009-08-01</p> <p>The Kali sub-watershed is situated in the semi-arid region of Gujarat, India and forms a part of the Mahi River Watershed. This watershed receives an average annual rainfall of 900mm mainly between July and September. Due to high runoff potential, evapo-transpiration and poor infiltration, drought like situation prevails in this area from December to June almost every year. In this paper, augmentation of water resource is proposed by construction of runoff harvesting structures like check dam, percolation pond, farm pond, well and subsurface dyke. The site suitability for different water harvesting structures is determined by considering spatially varying parameters like runoff potential, slope, fracture pattern and micro-watershed area. GIS is utilised as a tool to store, analyse and integrate spatial and attribute information pertaining to runoff, slope, drainage and fracture. The runoff derived by SCS-CN method is a function of runoff potential which can be expressed in terms of runoff coefficient (ratio between the runoff and rainfall) which can be classified into three classes, viz., high (>40%), moderate (20-40%) and low (<20%). In addition to IMSD, FAO specifications for water harvesting/recharging structures, parameters such as effective storage, rock mass permeability are herein considered to augment effective storage. Using the overlay and decision tree concepts in GIS, potential water harvesting sites are identified. The derived sites are field investigated for suitability and implementation. In all, the accuracy of the site selection at implementation level varies from 80-100%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2012/5086/sir12-5086.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2012/5086/sir12-5086.pdf"><span>Seasonal patterns in nutrients, carbon, and algal responses in wadeable streams within three geographically distinct areas of the United States, 2007-08</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lee, Kathy E.; Lorenz, David L.; Petersen, James C.; Greene, John B.</p> <p>2012-01-01</p> <p>The U.S. Geological Survey determined seasonal variability in nutrients, carbon, and algal biomass in 22 wadeable streams over a 1-year period during 2007 or 2008 within three geographically distinct areas in the United States. The three areas are the Upper Mississippi River Basin (UMIS) in Minnesota, the Ozark Plateaus (ORZK) in southern Missouri and northern Arkansas, and the Upper Snake River Basin (USNK) in southern Idaho. Seasonal patterns in some constituent concentrations and algal responses were distinct. Nitrate concentrations were greatest during the winter in all study areas potentially because of a reduction in denitrification rates and algal uptake during the winter, along with reduced surface runoff. Decreases in nitrate concentrations during the spring and summer at most stream sites coincided with increased streamflow during the snowmelt runoff or spring storms indicating dilution. The continued decrease in nitrate concentrations during summer potentially is because of a reduction in nitrate inputs (from decreased surface runoff) or increases in biological uptake. In contrast to nitrate concentrations, ammonia concentrations varied among study areas. Ammonia concentration trends were similar at UMIS and USNK sampling sites with winter peak concentrations and rapid decreases in ammonia concentrations by spring or early summer. In contrast, ammonia concentrations at OZRK sampling sites were more variable with peak concentrations later in the year. Ammonia may accumulate in stream water in the winter under ice and snow cover at the UMIS and USNK sites because of limited algal metabolism and increased mineralization of decaying organic matter under reducing conditions within stream bottom sediments. Phosphorus concentration patterns and the type of phosphorus present changes with changing hydrologic conditions and seasons and varied among study areas. Orthophosphate concentrations tended to be greater in the summer at UMIS sites, whereas total phosphorus concentrations at most UMIS and USNK sites peaked in the spring during runoff and then decreased through the remainder of the sampling period. Total phosphorus and orthophosphate concentrations in OZRK streams peaked during summer indicating a runoff-based source of both nutrients. Orthophosphate concentrations may increase in streams in the late summer when surface runoff composes less of total streamflow, and when groundwater containing orthophosphate becomes a more dominant source in streams during lower flows. Seston chlorophyll a concentrations were greatest early in the growing season (spring), whereas the spring runoff events coincided with reductions in benthic algal chlorophyll a biomass likely because of scour of benthic algae from the channel bottom that are entrained in the water column during that period. Nitrate, ammonia, and orthophosphate concentrations also decreased during that same period, indicating dilution in the spring during runoff events. The data from this study indicate that the source of water (surface runoff or groundwater) to a stream and the intensity of major runoff events are important factors controlling instream concentrations. Biological processes appear to affect nutrient concentrations during more stable lower flow periods in later summer, fall, and winter when residence time of water in a channel is longer, which allows more time for biological uptake and transformations. Management of nutrient conditions in streams is challenging and requires an understanding of multiple factors that affect in-stream nutrient concentrations and biological uptake and growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..559..861Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..559..861Y"><span>Quantifying spatial and temporal patterns of flow intermittency using spatially contiguous runoff data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.</p> <p>2018-04-01</p> <p>River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990014052','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990014052"><span>Surface Hydrology in Global River Basins in the Off-Line Land-Surface GEOS Assimilation (OLGA) System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bosilovich, Michael G.; Yang, Runhua; Houser, Paul R.</p> <p>1998-01-01</p> <p>Land surface hydrology for the Off-line Land-surface GEOS Analysis (OLGA) system and Goddard Earth Observing System (GEOS-1) Data Assimilation System (DAS) has been examined using a river routing model. The GEOS-1 DAS land-surface parameterization is very simple, using an energy balance prediction of surface temperature and prescribed soil water. OLGA uses near-surface atmospheric data from the GEOS-1 DAS to drive a more comprehensive parameterization of the land-surface physics. The two global systems are evaluated using a global river routing model. The river routing model uses climatologic surface runoff from each system to simulate the river discharge from global river basins, which can be compared to climatologic river discharge. Due to the soil hydrology, the OLGA system shows a general improvement in the simulation of river discharge compared to the GEOS-1 DAS. Snowmelt processes included in OLGA also have a positive effect on the annual cycle of river discharge and source runoff. Preliminary tests of a coupled land-atmosphere model indicate improvements to the hydrologic cycle compared to the uncoupled system. The river routing model has provided a useful tool in the evaluation of the GCM hydrologic cycle, and has helped quantify the influence of the more advanced land surface model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2009/5032/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2009/5032/"><span>Selected Metals in Sediments and Streams in the Oklahoma Part of the Tri-State Mining District, 2000-2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Andrews, William J.; Becker, Mark F.; Mashburn, Shana L.; Smith, S. Jerrod</p> <p>2009-01-01</p> <p>The abandoned Tri-State mining district includes 1,188 square miles in northeastern Oklahoma, southeastern Kansas, and southwestern Missouri. The most productive part of the Tri-State mining district was the 40-square mile part in Oklahoma, commonly referred to as 'the Picher mining district' in north-central Ottawa County, Oklahoma. The Oklahoma part of the Tri-State mining district was a primary producing area of lead and zinc in the United States during the first half of the 20th century. Sulfide minerals of cadmium, iron, lead, and zinc that remained in flooded underground mine workings and in mine tailings on the land surface oxidized and dissolved with time, forming a variety of oxide, hydroxide, and hydroxycarbonate metallic minerals on the land surface and in streams that drain the district. Metals in water and sediments in streams draining the mining district can potentially impair the habitat and health of many forms of aquatic and terrestrial life. Lakebed, streambed and floodplain sediments and/or stream water were sampled at 30 sites in the Oklahoma part of the Tri-State mining district by the U.S. Geological Survey and the Oklahoma Department of Environmental Quality from 2000 to 2006 in cooperation with the U.S. Environmental Protection Agency, and the Quapaw and Seneca-Cayuga Tribes of Oklahoma. Aluminum and iron concentrations of several thousand milligrams per kilogram were measured in sediments collected from the upstream end of Grand Lake O' the Cherokees. Manganese and zinc concentrations in those sediments were several hundred milligrams per kilogram. Lead and cadmium concentrations in those sediments were about 10 percent and 0.1 percent of zinc concentrations, respectively. Sediment cores collected in a transect across the floodplain of Tar Creek near Miami, Oklahoma, in 2004 had similar or greater concentrations of those metals than sediment cores collected at the upstream end of Grand Lake O' the Cherokees. The greatest concentrations of cadmium, iron, lead, and zinc were detected in sediments beneath an intermittent tributary to Tar Creek, a slough which drains mined areas near Commerce, Oklahoma. In surface water, aluminum and iron concentrations were greatest in the Neosho River, perhaps a result of runoff from areas underlain by shales. The greatest aqueous concentrations of cadmium, lead, manganese, and zinc were measured in water from Tar Creek, the primary small stream draining the Picher mining district with the largest proportion of mined area. Water from the Spring River had greater zinc concentrations than water from the Neosho River, perhaps as a result of a greater proportion of mined area in the Spring River Basin. Dissolved metals concentrations were generally much less than total metals concentrations, except for manganese and zinc at sites on Tar Creek, where seepage of ground water from the mine workings, saturated mine tailings, and/or metalliferous streambed sediments may be sources of these dissolved metals. Iron and lead concentrations generally decreased with increasing streamflow in upstream reaches of Tar Creek, indicating dilution of metals-rich ground water by runoff. Farther downstream in Tar Creek, and in the Neosho and Spring Rivers, metals concentrations tended to increase with increasing streamflow, indicating that most metals in these parts of these streams were associated with runoff and re-suspension of metals precipitated as oxide, hydroxide, and hydroxycarbonate minerals on land surface and streambeds. Estimated total aluminum, cadmium, iron, manganese, and zinc loads generally were greatest in water from the Neosho and Spring Rivers, primarily because of comparatively large streamflows in those rivers. Slight increases in metal loads in the downstream directions on those rivers indicated contributions of metals from inflows of small tributaries such as Tar Creek and from runoff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22687753-mid-long-term-runoff-predictions-improved-phase-space-reconstruction-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22687753-mid-long-term-runoff-predictions-improved-phase-space-reconstruction-model"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hong, Mei; Wang, Dong, E-mail: wangdong@nju.edu.cn; Wang, Yuankun</p> <p></p> <p>In recent years, the phase-space reconstruction method has usually been used for mid- and long-term runoff predictions. However, the traditional phase-space reconstruction method is still needs to be improved. Using the genetic algorithm to improve the phase-space reconstruction method, a new nonlinear model of monthly runoff is constructed. The new model does not rely heavily on embedding dimensions. Recognizing that the rainfall–runoff process is complex, affected by a number of factors, more variables (e.g. temperature and rainfall) are incorporated in the model. In order to detect the possible presence of chaos in the runoff dynamics, chaotic characteristics of the modelmore » are also analyzed, which shows the model can represent the nonlinear and chaotic characteristics of the runoff. The model is tested for its forecasting performance in four types of experiments using data from six hydrological stations on the Yellow River and the Yangtze River. Results show that the medium-and long-term runoff is satisfactorily forecasted at the hydrological stations. Not only is the forecasting trend accurate, but also the mean absolute percentage error is no more than 15%. Moreover, the forecast results of wet years and dry years are both good, which means that the improved model can overcome the traditional ‘‘wet years and dry years predictability barrier,’’ to some extent. The model forecasts for different regions are all good, showing the universality of the approach. Compared with selected conceptual and empirical methods, the model exhibits greater reliability and stability in the long-term runoff prediction. Our study provides a new thinking for research on the association between the monthly runoff and other hydrological factors, and also provides a new method for the prediction of the monthly runoff. - Highlights: • The improved phase-space reconstruction model of monthly runoff is established. • Two variables (temperature and rainfall) are incorporated in the model. • Chaotic characteristics of the model are also analyzed. • The forecast results of the mid and long-term runoff in six stations are accurate.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.5845C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.5845C"><span>Sediment processes modelling below hydraulic mining: towards environmental impact mitigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chalov, Sergey R.</p> <p>2010-05-01</p> <p>Placer mining sites are located in the river valleys so the rivers are influenced by mining operations. Frequently the existing mining sites are characterized by low contribution to the environmental technologies. Therefore hydraulic mining alters stream hydrology and sediment processes and increases water turbidity. The most serious environmental sequences of the sediment yield increase occur in the rivers populated by salmon fish community because salmon species prefer clean water with low turbidity. For instance, the placer mining in Kamchatka peninsula (Far East of Russia) which is regarded to be the last global gene pool of wild salmon Oncorhynchus threatens the rivers ecosystems. System of man-made impact mitigation could be done through the exact recognition of the human role in hydrological processes and sediment transport especially. Sediment budget of rivers below mining sites is transformed according to the appearance of the man-made non-point and point sediment sources. Non-point source pollution occurs due to soil erosion on the exposed hillsides and erosion in the channel diversions. Slope wash on the hillsides is absent during summer days without rainfalls and is many times increased during rainfalls and snow melting. The nearness of the sources of material and the rivers leads to the small time of suspended load increase after rainfalls. The average time of material intake from exposed hillsides to the rivers is less than 1 hour. The main reason of the incision in the channel diversion is river-channel straightening. The increase of channel slopes and transport capacity leads to the intensive incision of flow. Point source pollution is performed by effluents both from mining site (mainly brief effluents) and from settling ponds (permanent effluents), groundwater seepage from tailing pits or from quarries. High rate of groundwater runoff is the main reason of the technological ponds overfilling. Intensive filtration from channel to ponds because of their nearness determines the water mass increase inside mining site. The predictive models were suggested to assess each of the mane-made processes contribution into the total sediment budget of the rivers below mining sites. The empirical data and theoretical and laboratory-derived correlations were used to obtain the predictive models for each processes of sediment supply. It was challenging to estimate specific erosion rate of washed exposed hillsides, channel incision, water supply conditions. Climatic and anthropogenic changes of water runoff also were simulated to decrease uncertainty of the proposed model. Application of the given approach to the hydraulic platinum-mining located in the Kamchatka peninsula (Koryak plateau, tributaries of the Vivenka River) gave the sediment budget of the placer-mined rivers and the total sediment yield supplied into the ocean from river basin. Polluted placer-mined rivers contribute about 30 % of the whole sediment yield of the Vivenka River. At the same time the catchment area of these rivers is less than 0,03 % from the whole Vivenka catchment area. Based on the sediment transport modeling the decision making system for controlling water pollution and stream community preservation was developed. Due to exposed hillside erosion prevention and settling pond system optimization the total decrease of sediment yield was up to 75 %.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ChJOL..34.1106Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ChJOL..34.1106Y"><span>Numerical study on the influences of Nanliu River runoff and tides on water age in Lianzhou Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Jing; Zhang, Xueqing; Liu, Jinliang; Liu, Rui; Wang, Xing</p> <p>2016-09-01</p> <p>The concept of water age is applied to calculate the timescales of the transport processes of freshwater in Lianzhou Bay, using a model based on ECOMSED. In this study, water age is defined as the time that has elapsed since the water parcel enters the Nanliu River. The results show that the mean age at a specified position and the runoff of the Nanliu River are well correlated and can be approximately expressed by a natural logarithmic function. During the neap tide, it takes 70, 60 and 40 days in the dry, normal and rainy seasons for water to travel from the mouth of the Nanliu River to the northeast of Lianzhou Bay, respectively, which is not beneficial to water exchange in the bay. Tides significantly influence the model results; it takes five less days for the tracer to be transported from the mouth of the Nanliu River to the north of Guantouling during the spring tide than during the neap tide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1987/4078/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1987/4078/report.pdf"><span>Estimates of average annual tributary inflow to the lower Colorado River, Hoover Dam to Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Owen-Joyce, Sandra J.</p> <p>1987-01-01</p> <p>Estimates of tributary inflow by basin or area and by surface water or groundwater are presented in this report and itemized by subreaches in tabular form. Total estimated average annual tributary inflow to the Colorado River between Hoover Dam and Mexico, excluding the measured tributaries, is 96,000 acre-ft or about 1% of the 7.5 million acre-ft/yr of Colorado River water apportioned to the States in the lower Colorado River basin. About 62% of the tributary inflow originates in Arizona, 30% in California, and 8% in Nevada. Tributary inflow is a small component in the water budget for the river. Most of the quantities of unmeasured tributary inflow were estimated in previous studies and were based on mean annual precipitation for 1931-60. Because mean annual precipitation for 1951-80 did not differ significantly from that of 1931-60, these tributary inflow estimates are assumed to be valid for use in 1984. Measured average annual runoff per unit drainage area on the Bill Williams River has remained the same. Surface water inflow from unmeasured tributaries is infrequent and is not captured in surface reservoirs in any of the States; it flows to the Colorado River gaging stations. Estimates of groundwater inflow to the Colorad River valley. Average annual runoff can be used in a water budget; although in wet years, runoff may be large enough to affect the calculation of consumptive use and to be estimated from hydrographs for the Colorado River valley are based on groundwater recharge estimates in the bordering areas, which have not significantly changed through time. In most areas adjacent to the Colorado River valley, groundwater pumpage is small and pumping has not significantly affected the quantity of groundwater discharged to the Colorado River valley. In some areas where groundwater pumpage exceeds the quantity of groundwater discharge and water levels have declined, the quantity of discharge probably has decreased and groundwater inflow to the Colorado River valley will eventually be reduced if not stopped completely. Groundwater discharged at springs below Hoover Dam is unused and flows directly to the Colorado River. (Lantz-PTT)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=228580','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=228580"><span>Pesticide trapping efficiency of a modified backwater wetland using a simulated runoff event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>This study examined the trapping efficiency of a modified backwater wetland amended with a mixture of three pesticides, atrazine, metolachlor, and fipronil, using a simulated runoff event. The 700 m long, 25 m wide wetland, located along the Coldwater River in Tunica County, Mississippi, was modifie...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=342297','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=342297"><span>Process-Based Modeling of Upland Erosion and Salt Load in the Upper Colorado River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Hillslope runoff and soil erosion processes are indicators of sustainability in rangeland ecosystem due to their control on resource mobility. Hillslope processes are dominant contributors to sediment delivery on semi-arid rangeland watersheds. The influence of vegetation on hillslope runoff and sed...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=183984&Lab=NRMRL&keyword=evapotranspiration&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=183984&Lab=NRMRL&keyword=evapotranspiration&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>IMPEDIMENTS AND SOLUTIONS TO SUSTAINABLE, WATERSHED-SCALE URBAN STORMWATER MANAGEMENT: LESSONS FROM AUSTRALIA AND THE UNITED STATES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>In urban and exurban areas, stormwater runoff is a primary stressor on surface waters (streams, wetlands, lakes, estuaries, and coastal waters). Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=321130&Lab=NHEERL&keyword=accounting&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=321130&Lab=NHEERL&keyword=accounting&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Agricultural production and nutrient runoff in the Corn Belt: Assessing dynamic environmental performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Agricultural production in the Corn Belt region of the Upper Mississippi River Basin (UMRB) remains a leading source of nitrogen runoff that contributes to the annual hypoxic 'Dead Zone' in the Gulf of Mexico. The rise of corn production, land conversion, and fertilizer use in re...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2848572','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2848572"><span>Hydrologic Response and Watershed Sensitivity to Climate Warming in California's Sierra Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Null, Sarah E.; Viers, Joshua H.; Mount, Jeffrey F.</p> <p>2010-01-01</p> <p>This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2°, 4°, and 6°C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds. PMID:20368984</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...33a2002C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...33a2002C"><span>Distribution and Geochemistry of Rare-Earth Elements in Rivers of Southern and Eastern Primorye (Far East of Russia)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chudaev, O. V.; Bragin, I. V.; A, Kharitonova N.; Chelnokov, G. A.</p> <p>2016-03-01</p> <p>The distribution and geochemistry of rare earth elements (REE) in anthropogenic, technogenic and natural surface waters of southern and eastern Primorye, Far East of Russia, are presented in this study. The obtained results indicated that most of REE (up to 70%) were transported as suspended matter, ratio between dissolved and suspended forms varing from the source to the mouth of rivers. It is shown that all REE (except Ce) in the source of the rivers are predominantly presented in dissolved form, however, the content of light and heavy REE is different. Short-term enrichment of light rare earth elements (LREE) caused by REE-rich runoff from waste dumps and mining is neutralized by the increase in river flow rate. Rivers in urban areas are characterized by high content of LREE in dissolved form and very low in suspended one.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001341&hterms=nelson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnelson','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001341&hterms=nelson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnelson"><span>Nelson River and Hudson Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>Rivers that empty into large bodies of water can have a significant impact on the thawing of nearshore winter ice. This true-color Moderate Resolution Imaging Spectroradiometer (MODIS) image from May 18, 2001, shows the Nelson River emptying spring runoff from the Manitoba province to the south into the southwestern corner of Canada's Hudson Bay. The warmer waters from more southern latitudes hasten melting of ice near the shore, though some still remained, perhaps because in shallow coastal waters, the ice could have been anchored to the bottom. High volumes of sediment in the runoff turned the inflow brown, and the rim of the retreating ice has taken on a dirty appearance even far to the east of the river's entrance into the Bay. The sediment would have further hastened the melting of the ice because its darker color would have absorbed more solar radiation than cleaner, whiter ice. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...90a2040S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...90a2040S"><span>Surface wastewater in Samara and their impact on water basins as water supply sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina</p> <p>2017-10-01</p> <p>The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApWS....7..591P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApWS....7..591P"><span>Hydrological simulation of Sperchios River basin in Central Greece using the MIKE SHE model and geographic information systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paparrizos, Spyridon; Maris, Fotios</p> <p>2017-05-01</p> <p>The MIKE SHE model is able to simulate the entire stream flow which includes direct and basic flow. Many models either do not simulate or use simplistic methods to determine the basic flow. The MIKE SHE model takes into account many hydrological data. Since this study was directed towards the simulation of surface runoff and infiltration into saturated and unsaturated zone, the MIKE SHE is an appropriate model for reliable conclusions. In the current research, the MIKE SHE model was used to simulate runoff in the area of Sperchios River basin. Meteorological data from eight rainfall stations within the Sperchios River basin were used as inputs. Vegetation as well as geological data was used to perform the calibration and validation of the physical processes of the model. Additionally, ArcGIS program was used. The results indicated that the model was able to simulate the surface runoff satisfactorily, representing all the hydrological data adequately. Some minor differentiations appeared which can be eliminated with the appropriate adjustments that can be decided by the researcher's experience.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1986/0606/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1986/0606/report.pdf"><span>Report of the River Master of the Delaware River for the period December 1, 1984 - November 30, 1985</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schaefer, F.T.; Harkness, W.E.; Cecil, L.D.</p> <p>1986-01-01</p> <p>A Decree of the Supreme Court of the United States in 1954 established the position of Delaware River Master. The Decree authorizes diversions of water from the Delaware River basin and requires compensating releases from certain reservoirs of the City of New York to be made under the supervision and direction of the River Master. Reports to the Court, not less frequently than annually, were stipulated. During the 1985 report year, December 1, 1984, to November 30, 1985, precipitation and runoff varied from below average to above average in the Delaware River basin. For the year as a whole, precipitation was near average. Runoff was below average. Operations were under a status of drought warning or drought from January 23, 1984, through the end of the report year. Below-normal precipitation the first half of the year resulted in decreased storage in the reservoirs to record low levels by March 1, 1985. Storage remained at record low levels from March through September. Above-normal precipitation in September and November served to break the drought and increase storage into the normal zone of the operating curves for the reservoirs. Diversions from the Delaware River basin by New York City did not exceed those authorized by the terms of the Amended Decree or those invoked by the several emergency conservation measures throughout the year. There were no diversions from the Delaware River basin by New Jersey during the year. Releases were made as directed by the River Master at rates designed to meet the Montague flow objective on 82 days between June 14 and September 28. Releases were made at conservation rates or at rates designed to relieve thermal stress in the streams downstream from the reservoirs at other times. (See also W89-04133) (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1994/4206/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1994/4206/report.pdf"><span>Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; effects of pipe-outlet terracing on quantity and quality of surface runoff and ground water in a small carbonate-rock basin near Churchtown, Pennsylvania, 1983-89</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lietman, P.L.; Gustafson-Minnich, L. C.; Hall, D.W.</p> <p>1997-01-01</p> <p>Terracing effects on surface-runoff and ground- water quantity and quality were investigated by the U.S. Geological Survey, in cooperation with Pennsylvania Department of Environmental Resources, during 1983-89 at a 23.1-acre agricultural site in Lancaster County, Pa., as part of the 1982 Rural Clean Water Program. The site, underlain by carbonate rock, was primarily corn and alfalfa fields; the median slope was 6 percent.Normal precipitation is about 42 inches per year. Average annual runoff was 11 percent and ground- water recharge was 37 percent of precipitation.Runoff quantity, suspended-sediment, and nutrient data, ground-water level and nutrient data, and precipitation-quantity data were collected for 21 months prior to, and 58 months after, pipe-outlet terrace construction. Data were analyzed by use of graphical, regression, covariate, cluster, Mann- Whitney Rank Sum test, and double-mass curvetechniques. Terracing changed runoff characteristics. Storm characteristics were similar throughout the study period. However, after terracing, storms producing less than 0.4 inch of precipitation rarely produced runoff. Total-storm discharge as a function of precipitation did not change significantly throughout the range of runoff-producing storms after terracing. Multiple-discharge peaks on hydrographs before terracing did not occur after terracing when hydrographs reflected the stepwisedraining of each terrace through the pipe outlet. After an initial 2-year period of terrace stabilization, suspended-sediment yield in runoff decreased significantly as a function of runoff. This result was expected because terracing decreased runoff energy, and because terrace ponding allowed time for sediment redeposition. Nitrate plus nitrite yields increased proportionally throughout the range of runoff during the post-terracing period relative to the pre- terracing period. After terracing, a combination of increased soil contact time and increased nitrification caused by wetter soils is believed to have increased nitrate concentrations in runoff. No significant change was found in yields of total nitrogen, ammonia plus organic nitrogen, or total phosphorus relative to runoff before and after terracing. Limited data suggest that fine-sediment particles (less than 0.62 micrometers in diameter), which continued to be discharged from the site, transported most of the phosphorus. Terracing did not significantly change the quantity of recharge to the carbonate aquifer. The mean annual water-table altitude did not change after terracing. Nitrate concentrations of ground water increased significantly at four of the site wells after terracing, probably because of increased contact time of the recharge with nutrient-rich soils in ponded terrace water. Qualitative evidence indicates that large decreases in nutrient requirements and nitrogen applications because of a crop change from corn to alfalfa upgradient of two site wells resulted in either no detectable change or a significant decrease in nitrate concentrations of ground water after terracing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28862461','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28862461"><span>Effects of an Extreme Flood on Trace Elements in River Water-From Urban Stream to Major River Basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barber, Larry B; Paschke, Suzanne S; Battaglin, William A; Douville, Chris; Fitzgerald, Kevin C; Keefe, Steffanie H; Roth, David A; Vajda, Alan M</p> <p>2017-09-19</p> <p>Major floods adversely affect water quality through surface runoff, groundwater discharge, and damage to municipal water infrastructure. Despite their importance, it can be difficult to assess the effects of floods on streamwater chemistry because of challenges collecting samples and the absence of baseline data. This study documents water quality during the September 2013 extreme flood in the South Platte River, Colorado, USA. Weekly time-series water samples were collected from 3 urban source waters (municipal tap water, streamwater, and wastewater treatment facility effluent) under normal-flow and flood conditions. In addition, water samples were collected during the flood at 5 locations along the South Platte River and from 7 tributaries along the Colorado Front Range. Samples were analyzed for 54 major and trace elements. Specific chemical tracers, representing different natural and anthropogenic sources and geochemical behaviors, were used to compare streamwater composition before and during the flood. The results differentiate hydrological processes that affected water quality: (1) in the upper watershed, runoff diluted most dissolved constituents, (2) in the urban corridor and lower watershed, runoff mobilized soluble constituents accumulated on the landscape and contributed to stream loading, and (3) flood-induced groundwater discharge mobilized soluble constituents stored in the vadose zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190508','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190508"><span>Effects of an extreme flood on trace elements in river water—From urban stream to major river basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barber, Larry B.; Paschke, Suzanne; Battaglin, William A.; Douville, Chris; Fitzgerald, Kevin C.; Keefe, Steffanie H.; Roth, David A.; Vajda, Alan M.</p> <p>2017-01-01</p> <p>Major floods adversely affect water quality through surface runoff, groundwater discharge, and damage to municipal water infrastructure. Despite their importance, it can be difficult to assess the effects of floods on streamwater chemistry because of challenges collecting samples and the absence of baseline data. This study documents water quality during the September 2013 extreme flood in the South Platte River, Colorado, USA. Weekly time-series water samples were collected from 3 urban source waters (municipal tap water, streamwater, and wastewater treatment facility effluent) under normal-flow and flood conditions. In addition, water samples were collected during the flood at 5 locations along the South Platte River and from 7 tributaries along the Colorado Front Range. Samples were analyzed for 54 major and trace elements. Specific chemical tracers, representing different natural and anthropogenic sources and geochemical behaviors, were used to compare streamwater composition before and during the flood. The results differentiate hydrological processes that affected water quality: (1) in the upper watershed, runoff diluted most dissolved constituents, (2) in the urban corridor and lower watershed, runoff mobilized soluble constituents accumulated on the landscape and contributed to stream loading, and (3) flood-induced groundwater discharge mobilized soluble constituents stored in the vadose zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2006/5118/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2006/5118/"><span>Occurrence of organic wastewater compounds in drinking water, wastewater effluent, and the Big Sioux River in or near Sioux Falls, South Dakota, 2001-2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sando, Steven K.; Furlong, Edward T.; Gray, James L.; Meyer, Michael T.</p> <p>2006-01-01</p> <p>The U.S. Geological Survey (USGS) in cooperation with the city of Sioux Falls conducted several rounds of sampling to determine the occurrence of organic wastewater compounds (OWCs) in the city of Sioux Falls drinking water and waste-water effluent, and the Big Sioux River in or near Sioux Falls during August 2001 through May 2004. Water samples were collected during both base-flow and storm-runoff conditions. Water samples were collected at 8 sites, which included 4 sites upstream from the wastewater treatment plant (WWTP) discharge, 2 sites downstream from the WWTP discharge, 1 finished drinking-water site, and 1 WWTP effluent (WWE) site. A total of 125 different OWCs were analyzed for in this study using five different analytical methods. Analyses for OWCs were performed at USGS laboratories that are developing and/or refining small-concentration (less than 1 microgram per liter (ug/L)) analytical methods. The OWCs were classified into six compound classes: human pharmaceutical compounds (HPCs); human and veterinary antibiotic compounds (HVACs); major agricultural herbicides (MAHs); household, industrial,and minor agricultural compounds (HIACs); polyaromatic hydrocarbons (PAHs); and sterol compounds (SCs). Some of the compounds in the HPC, MAH, HIAC, and PAH classes are suspected of being endocrine-disrupting compounds (EDCs). Of the 125 different OWCs analyzed for in this study, 81 OWCs had one or more detections in environmental samples reported by the laboratories, and of those 81 OWCs, 63 had acceptable analytical method performance, were detected at concentrations greater than the study reporting levels, and were included in analyses and discussion related to occurrence of OWCs in drinking water, wastewater effluent, and the Big Sioux River. OWCs in all compound classes were detected in water samples from sampling sites in the Sioux Falls area. For the five sampling periods when samples were collected from the Sioux Falls finished drinking water, only one OWC was detected at a concentration greater than the study reporting level (metolachlor; 0.0040 ug/L). During base-flow conditions, Big Sioux River sites upstream from the WWTP discharge had OWC contributions that primarily were from nonpoint animal or crop agriculture sources or had OWC concentrations that were minimal. The influence of the WWTP discharge on OWCs at downstream river sites during base-flow conditions ranged from minimal influence to substantial influence depending on the sampling period. During runoff conditions, OWCs at sites upstream from the WWTP discharge probably were primarily contributed by nonpoint animal and/or crop agriculture sources and possibly by stormwater runoff from nearby roads. OWCs at sites downstream from the WWTP discharge probably were contributed by sources other than the WWTP effluent discharge, such as stormwater runoff from urban and/or agriculture areas and/or resuspension of OWCs adsorbed to sediment deposited in the Big Sioux River. OWC loads generally were substantially smaller for upstream sites than downstream sites during both base-flow and runoff conditions.discharge had OWC contributions that primarily were from nonpoint animal or crop agriculture sources or had OWC concentrations that were minimal. The influence of the WWTP discharge on OWCs at downstream river sites during base-flow conditions ranged from minimal influence to substantial influence depending on the sampling period. During runoff conditions, OWCs at sites upstream from the WWTP discharge probably were primarily contributed by nonpoint animal and/or crop agriculture sources and possibly by stormwater runoff from nearby roads. OWCs at sites downstream from the WWTP discharge probably were contributed by sources other than the WWTP effluent discharge, such as stormwater runoff from urban and/or agriculture areas and/or resuspension of OWCs adsorbed to sediment deposited in the Big Sioux River. OWC loads generally were substantially smaller for</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992JAfES..15..375A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992JAfES..15..375A"><span>Groundwater resources of the Birim basin in Ghana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asomaning, G.</p> <p>1992-11-01</p> <p>An attempt to assess ground water resources of a medium size (4775 km 2) drainage basin located on the Crystalline Complex in southern Ghana is presented. Mean annual rainfall 1578 mm, total river discharge 1,886,588 064 m 3 a -1, surface runoff 1,320,611,645 m 3 a -1, base flow 565,976,419 m 3 a -1, were determined from 13 meteorological and 1 river gauging stations located within the basin. From these data, the total runoff coefficient was 36%, surface runoff coefficient was 25% and the base flow coefficient was 11%. Then, Permanent Water Reserve, Qt = 5,333.20 × 106 m 3 and Recoverable Water Reserve, 2,133.28 × 10 6 m 3 a -1 for the aquifer of the basement complex aquifer of the basin were calculated from 42 boreholes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..993B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..993B"><span>Isotopic investigation of rivers runoff in glaciated regions of the central Asian arid highlands (southeastern Altai)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bantcev, Dmitrii; Ganushkin, Dmitriy; Ekaykin, Alexey; Chistyakov, Kirill</p> <p>2017-04-01</p> <p>Stable isotopes investigations were carried out during fieldwork in glacier basins of the Mongun-Taiga (southwestern Tuva) and Tsambagarav (northwestern Mongolia) mountain massifs in July, 2016. These Arid highlands are problematic in the context of provision of water resources, and glaciers here play a large part in nourishment of the rivers. Concentrations of the oxygen 18, deuterium and the mineralization were measured in the samples of meltwater, precipitation, water from streams, ice and snow. Sable isotope method was used for separation of the glacier runoff. Average isotopic characteristics for different water sources, such as glacier ice, snow patches and precipitation, were calculated and the contribution of these sources in total runoff was valued. Isotopic method was also used for estimation of contribution of buried ice meltwater from rock glaciers ice cores.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850014915','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850014915"><span>Snowmelt-runoff Model Utilizing Remotely-sensed Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rango, A.</p> <p>1985-01-01</p> <p>Remotely sensed snow cover information is the critical data input for the Snowmelt-Runoff Model (SRM), which was developed to simulatke discharge from mountain basins where snowmelt is an important component of runoff. Of simple structure, the model requires only input of temperature, precipitation, and snow covered area. SRM was run successfully on two widely separated basins. The simulations on the Kings River basin are significant because of the large basin area (4000 sq km) and the adequate performance in the most extreme drought year of record (1976). The performance of SRM on the Okutadami River basin was important because it was accomplished with minimum snow cover data available. Tables show: optimum and minimum conditions for model application; basin sizes and elevations where SRM was applied; and SRM strengths and weaknesses. Graphs show results of discharge simulation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1982/0026/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1982/0026/report.pdf"><span>Streamflow and water-quality conditions, Wilsons Creek and James River, Springfield area, Missouri</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Berkas, Wayne R.</p> <p>1982-01-01</p> <p>A network of water-quality-monitoring stations was established upstream and downstream from the Southwest Wastewater-Treatment Plant on Wilsons Creek to monitor the effects of sewage effluent on water quality. Data indicate that 82 percent of the time the flow in Wilsons Creek upstream from the wastewater-treatment plant is less than the effluent discharged from the plant. On October 15, 1977, an advanced wastewater-treatment facility was put into operation. Of the four water-quality indicators measured at the monitoring stations (specific conductance, dissolved oxygen, pH, and water temperature), only dissolved oxygen showed improvement downstream from the plant. During urban runoff, the specific conductance momentarily increased and dissolved-oxygen concentration momentarily decreased in Wilsons Creek upstream from the plant. Urban runoff was found to have no long-term effects on specific conductance and dissolved oxygen downstream from the plant before or after the addition of the advanced wastewater-treatment facility. Data collected monthly from the James River showed that the dissolved-oxygen concentrations and the total nitrite plus nitrate nitrogen concentrations increased, whereas the dissolved-manganese concentrations decreased after the advanced wastewater-treatment facility became operational.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=236202&keyword=wetlands+AND+built&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=236202&keyword=wetlands+AND+built&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Urbanization Impacts on Flooding in the Kansas River Basin and Evaluation of Wetlands as a Mitigation Measure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This study evaluates the impacts of future land use changes on flooding in the Kansas River Basin. It also studies the impacts of wetlands on flood reduction. The study presents Hydrologic Engineering Centers-Hydrologic Modeling System (HEC-HMS) based runoff modeling and River A...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT.......186R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT.......186R"><span>Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rheinheimer, David Emmanuel</p> <p></p> <p>Hydropower systems and other river regulation often harm instream ecosystems, partly by altering the natural flow and temperature regimes that ecosystems have historically depended on. These effects are compounded at regional scales. As hydropower and ecosystems are increasingly valued globally due to growing values for clean energy and native species as well as and new threats from climate warming, it is important to understand how climate warming might affect these systems, to identify tradeoffs between different water uses for different climate conditions, and to identify promising water management solutions. This research uses traditional simulation and optimization to explore these issues in California's upper west slope Sierra Nevada mountains. The Sierra Nevada provides most of the water for California's vast water supply system, supporting high-elevation hydropower generation, ecosystems, recreation, and some local municipal and agricultural water supply along the way. However, regional climate warming is expected to reduce snowmelt and shift runoff to earlier in the year, affecting all water uses. This dissertation begins by reviewing important literature related to the broader motivations of this study, including river regulation, freshwater conservation, and climate change. It then describes three substantial studies. First, a weekly time step water resources management model spanning the Feather River watershed in the north to the Kern River watershed in the south is developed. The model, which uses the Water Evaluation And Planning System (WEAP), includes reservoirs, run-of-river hydropower, variable head hydropower, water supply demand, and instream flow requirements. The model is applied with a runoff dataset that considers regional air temperature increases of 0, 2, 4 and 6 °C to represent historical, near-term, mid-term and far-term (end-of-century) warming. Most major hydropower turbine flows are simulated well. Reservoir storage is also generally well simulated, mostly limited by the accuracy of inflow hydrology. System-wide hydropower generation is reduced by 9% with 6 °C warming. Most reductions in hydropower generation occur in the highly productive watersheds in the northern Sierra Nevada. The central Sierra Nevada sees less reduction in annual runoff and can adapt better to changes in runoff timing. Generation in southern watersheds is expected to decrease. System-wide, reservoirs adapt to capture earlier runoff, but mostly decrease in mean reservoir storage with warming due to decreasing annual runoff. Second, a multi-reservoir optimization model is developed using linear programming that considers the minimum instream flows (MIFs) and weekly down ramp rates (DRRs) in the Upper Yuba River in the northern Sierra Nevada. Weekly DRR constraints are used to mimic spring snowmelt flows, which are particularly important for downstream ecosystems in the Sierra Nevada but are currently missing due to the influence of dams. Trade-offs between MIFs, DRRs and hydropower are explored with air temperature warming (+0, 2, 4 and 6 °C). Under base case operations, mean annual hydropower generation increases slightly with 2 °C warming and decreases slightly with 6 °C warming. With 6 °C warming, the most ecologically beneficial MIF and DRR reduce hydropower generation 5.5% compared to base case operations and a historical climate, which has important implications for re-licensing the hydropower project. Finally, reservoir management for downstream temperatures is explored using a linear programming model to optimally release water from a reservoir using selective withdrawal. The objective function is to minimize deviations from desired downstream temperatures, which are specified to mimic the natural temperature regime in the river. One objective of this study was to develop a method that can be readily integrated into a basin-scale multi-reservoir optimization model using a network representation of system features. The second objective was to explore the potential use of reservoirs to maintain an ideal stream temperature regime to ameliorate the temperature effects of climate warming of air temperature. For proof-of-concept, the model is applied to Lake Spaulding in the Upper Yuba River. With selective withdrawal, the model hedges the release of cold water to decrease summer stream temperatures, but at a cost of warmer stream temperatures in the winter. Results also show that selective withdrawal can reduce, but not eliminate, the temperature effects of climate warming. The model can be extended to include other nearby reservoirs to optimally manage releases from multiple reservoirs for multiple downstream temperature targets in a highly interconnected system. While the outcomes of these studies contribute to our understanding of reservoir management and hydropower at the intersection of energy, water management, ecosystems, and climate warming, there are many opportunities to improve this work. Promising options for improving and building on the collective utility of these studies are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4629185','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4629185"><span>Changing fluxes of carbon and other solutes from the Mekong River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Siyue; Bush, Richard T.</p> <p>2015-01-01</p> <p>Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world’s largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923–2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO42−, Cl− and Na+. The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3− (23.4) > Ca2+ (6.4) > SO42− (3.8) > Cl− (1.74)~Na+ (1.7) ~ Si (1.67) > Mg2+ (1.2) > K+ (0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3− and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3− flux (Himalayan Rivers included) is 34014 × 109 mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3−, and 13553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling. PMID:26522820</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26522820','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26522820"><span>Changing fluxes of carbon and other solutes from the Mekong River.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Siyue; Bush, Richard T</p> <p>2015-11-02</p> <p>Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world's largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO4(2-), Cl(-) and Na(+). The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3(-) (23.4) > Ca(2+) (6.4) > SO4(2-) (3.8) > Cl(-) (1.74)~Na(+) (1.7) ~ Si (1.67) > Mg(2+) (1.2) > K(+ 0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3(-) and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3(-) flux (Himalayan Rivers included) is 34,014 × 10(9) mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3(-), and 13,553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC43B1194M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC43B1194M"><span>Seasonal And Intra-seasonal Hydrological Responses To Change In Climate Pattern And Small Dams of the Faga Watershed In Burkina-Faso</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mamounata, K.</p> <p>2015-12-01</p> <p>In response to the increasing demand for food linked to the substantial growth of population in Burkina Faso, irrigation has been widely used by the farming community to support agricultural production. Thus a promising option for water resources development in such a context is to increase the number of small dams. It is assumed that the great number of small dams may have effect on sub-basins' hydrological dynamic. This study aims to assess the seasonal and the intra-seasonal change in river basins hydrology with the case study of the Faga River sub-basin located in Burkina-Faso, West Africa, using Water Simulation Model (WaSiM). For this watershed the number of small dams is slightly very important (More than 60) and their impact on the watershed runoff has been estimated simultaneously with the change in climate pattern. The coefficient of variation for rainfall in this sub-basin from 1982 to 2010 is 0.097 and the stream flow presents a seasonal average of 25.58Km3 per month for the same period. The intra-seasonal climate variation for the same period is estimated at 0.087 in the scenario where any dam has not been considered. Results based on simulation including the five important dams over the sub-basin show that the overall effect of small dams is on average a 20.76% in runoff. Projections using the Representative Concentration Pathways (RCP) 4.5 and 8.5 climate scenarios with increase of 25% of dams' number show a probable decrease of about 29.54% and 35.25% of the average during the next fifty years runoff. The study findings show that small dams reduce significantly the runoff from their watershed and the uncertainties related to the sustainability of the resource seems to be increasing during the same period. Therefore, despite the very large number of water storage infrastructures, reservoirs operating strategies have to be achieved for water sustainability within the Faga sub-basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15757742','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15757742"><span>Influence of land runoff on rates and agents of bioerosion of coral substrates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hutchings, Pat; Peyrot-Clausade, Mireille; Osnorno, Alicia</p> <p>2005-01-01</p> <p>Annually large volumes of fresh water laden with sediment are washed down the Daintree River in North Queensland into the Great Barrier Reef lagoon. To investigate the effects of land runoff on bioerosion, samples of recently killed colonies of Porites were laid at 6 sites on a cross shelf transect from Snapper Island at the entrance to the river to Osprey Reef, approximately 328 km from the river mouth out in the Coral Sea. Rates and agents of bioerosion were determined over 4 years and inshore sites exhibited significantly lower rates of total bioerosion than the other sites. Offshore sites experienced high rates of bioerosion primarily due to grazing and internal bioerosion by macroborers such as sponges and bivalves was also important at some of these sites. Inshore sites were covered in heavy layers of silt which inhibited colonization and growth of microborers, primarily algae. This resulted in lower levels of grazing than at offshore sites. However the activity of macroborers (primarily sponges and bivalves) was often high at these sites. The macroboring communities differed between sites and over time and it is hypothesised that these site differences were due to different levels of terrestrial runoff. These results are compared with those from French Polynesia where contaminated terrestrial runoff greatly influenced rates and agents of bioerosion. However other factors such as overfishing may also play an important role in some locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70040458','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70040458"><span>Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ralph, F.M.; Coleman, T.; Neiman, P.J.; Zamora, R.J.; Dettinger, Mike</p> <p>2013-01-01</p> <p>This study is motivated by diverse needs for better forecasts of extreme precipitation and floods. It is enabled by unique hourly observations collected over six years near California’s Russian River and by recent advances in the science of atmospheric rivers (ARs). This study fills key gaps limiting the prediction of ARs and, especially, their impacts by quantifying the duration of AR conditions and the role of duration in modulating hydrometeorological impacts. Precursor soil moisture conditions and their relationship to streamflow are also shown. On the basis of 91 well-observed events during 2004-10, the study shows that the passage of ARs over a coastal site lasted 20 h on average and that 12% of the AR events exceeded 30 h. Differences in storm-total water vapor transport directed up the mountain slope contribute 74% of the variance in storm-total rainfall across the events and 61% of the variance in storm-total runoff volume. ARs with double the composite mean duration produced nearly 6 times greater peak streamflow and more than 7 times the storm-total runoff volume. When precursor soil moisture was less than 20%, even heavy rainfall did not lead to significant streamflow. Predicting which AR events are likely to produce extreme impacts on precipitation and runoff requires accurate prediction of AR duration at landfall and observations of precursor soil moisture conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2011/5169/SIR11-5169_508_Session-1B.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2011/5169/SIR11-5169_508_Session-1B.pdf"><span>Analysis of trends in climate, streamflow, and stream temperature in north coastal California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Madej, Mary Ann; Medley, C. Nicholas; Patterson, Glenn; Parker, Melanie J.</p> <p>2011-01-01</p> <p>As part of a broader project analyzing trends in climate, streamflow, vegetation, salmon, and ocean conditions in northern California national park units, we compiled average monthly air temperature and precipitation data from 73 climate stations, streamflow data from 21 river gaging stations, and limited stream temperature data from salmon-bearing rivers in north coastal California. Many climate stations show a statistically significant increase in both average maximum and average minimum air temperature in early fall and midwinter during the last century. Concurrently, average September precipitation has decreased. In many coastal rivers, summer low flow has decreased and summer stream temperatures have increased, which affects summer rearing habitat for salmonids. Nevertheless, because vegetative cover has also changed during this time period, we cannot ascribe streamflow changes to climate change without first assessing water budgets. Although shifts in the timing of the centroid of runoff have been documented in snowmelt-dominated watersheds in the western United States, this was not the case in lower elevation coastal rivers analyzed in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2010/5007/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2010/5007/"><span>Effects of selected low-impact-development (LID) techniques on water quality and quantity in the Ipswich River Basin, Massachusetts-Field and modeling studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zimmerman, Marc J.; Barbaro, Jeffrey R.; Sorenson, Jason R.; Waldron, Marcus C.</p> <p>2010-01-01</p> <p>During the months of August and September, flows in the Ipswich River, Massachusetts, dramatically decrease largely due to groundwater withdrawals needed to meet increased residential and commercial water demands. In the summer, rates of groundwater recharge are lower than during the rest of the year, and water demands are higher. From 2005 to 2008, the U.S. Geological Survey, in a cooperative funding agreement with the Massachusetts Department of Conservation and Recreation, monitored small-scale installations of low-impact-development (LID) enhancements designed to diminish the effects of storm runoff on the quantity and quality of surface water and groundwater. Funding for the studies also was contributed by the U.S. Environmental Protection Agency's Targeted Watersheds Grant Program through a financial assistance agreement with Massachusetts Department of Conservation and Recreation. The monitoring studies examined the effects of (1) replacing an impervious parking lot surface with a porous surface on groundwater quality, (2) installing rain gardens and porous pavement in a neighborhood of 3 acres on the quantity and quality of stormwater runoff, and (3) installing a 3,000-square foot (ft2) green roof on the quantity and quality of stormwater runoff. In addition, the effects of broad-scale implementation of LID techniques, reduced water withdrawals, and water-conservation measures on streamflow in large areas of the basin were simulated using the U.S. Geological Survey's Ipswich River Basin model. From June 2005 to 2007, groundwater quality was monitored at the Silver Lake town beach parking lot in Wilmington, MA, prior to and following the replacement of the conventional, impervious-asphalt surface with a porous surface consisting primarily of porous asphalt and porous pavers. Changes in the concentrations of the water-quality constituents, phosphorus, nitrogen, cadmium, chromium, copper, lead, nickel, zinc, and total petroleum hydrocarbons, were monitored. Increased infiltration of precipitation did not result in discernible increases in concentrations of these potential groundwater contaminants. Concentrations of dissolved oxygen increased slightly in groundwater profiles following the removal of the impervious asphalt parking lot surface. In Wilmington, MA, in a 3-acre neighborhood, stormwater runoff volume and quality were monitored to determine the ability of selected LID enhancements (rain gardens and porous paving stones) to reduce flows and loads of the above constituents to Silver Lake. Flow-proportional water-quality samples were analyzed for nutrients, metals, total petroleum hydrocarbons, and total-coliform and Escherichia coli bacteria. In general, when all storms were considered, no substantial decreases were observed in runoff volume as a result of installing LID enhancements. However, the relation between rainfall and runoff did provide some insight into how the LID enhancements affected the effective impervious area for the neighborhood. A decrease in runoff was observed for storms of 0.2 inches (in.) or less of precipitation, which indicated a reduction in effective impervious area from approximately 10 percent to about 4.5 percent for the 3-acre area. Water-quality-monitoring results were inconclusive; there were no statistically significant differences in concentrations or loads when the pre- and post-installation-period samples were compared. Three factors were probably most important in minimizing differences: (1) the small decrease in effective impervious area, (2) the differences in the size of storms sampled for water-quality constituents before and after installation of the infiltration enhancing measures, and (3) small sample sizes. In a third field study, the characteristics of runoff from a vegetated 'green' roof and a conventional, rubber-membrane roof were compared. The amount of precipitation and the length of the antecedent dry period were the two primary factors affecting the gre</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27000830','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27000830"><span>Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nazeer, Summya; Ali, Zeshan; Malik, Riffat Naseem</p> <p>2016-07-01</p> <p>The present study was designed to determine the spatiotemporal patterns in water quality of River Soan using multivariate statistics. A total of 26 sites were surveyed along River Soan and its associated tributaries during pre- and post-monsoon seasons in 2008. Hierarchical agglomerative cluster analysis (HACA) classified sampling sites into three groups according to their degree of pollution, which ranged from least to high degradation of water quality. Discriminant function analysis (DFA) revealed that alkalinity, orthophosphates, nitrates, ammonia, salinity, and Cd were variables that significantly discriminate among three groups identified by HACA. Temporal trends as identified through DFA revealed that COD, DO, pH, Cu, Cd, and Cr could be attributed for major seasonal variations in water quality. PCA/FA identified six factors as potential sources of pollution of River Soan. Absolute principal component scores using multiple regression method (APCS-MLR) further explained the percent contribution from each source. Heavy metals were largely added through industrial activities (28 %) and sewage waste (28 %), nutrients through agriculture runoff (35 %) and sewage waste (28 %), organic pollution through sewage waste (27 %) and urban runoff (17 %) and macroelements through urban runoff (39 %), and mineralization and sewage waste (30 %). The present study showed that anthropogenic activities are the major source of variations in River Soan. In order to address the water quality issues, implementation of effective waste management measures are needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H53J1610H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H53J1610H"><span>Simulating and predicting snow and glacier meltwater to the runoff of the Upper Mekong River basin in Southwest China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, Z.; Long, D.; Hong, Y.</p> <p>2017-12-01</p> <p>Snow and glacier meltwater in cryospheric regions replenishes groundwater and reservoir storage and is critical to water supply, hydropower development, agricultural irrigation, and ecological integrity. Accurate simulating and predicting snow and glacier meltwater is therefore fundamental to develop a better understanding of hydrological processes and water resource management for alpine basins and its lower reaches. The Upper Mekong River (or the Lancang River in China) as one of the most important transboundary rivers originating from the Tibetan Plateau (TP), features active dam construction and complicated water resources allocation of the stakeholders. Confronted by both climate change and significant human activities, it is imperative to examine contributions of snow and glacier meltwater to the total runoff and how it will change in the near future. This will greatly benefit hydropower development in the upper reach of the Mekong and better water resources allocation and management across the relevant countries. This study aims to improve snowfall and snow water equivalent (SWE) simulation using improved methods, and combines both modeling skill and remote sensing (i.e., passive microwave-based SWE, and satellite gravimetry-based total water storage) to quantify the contributions of snow and glacier meltwater there. In addition, the runoff of the Lancang River under a range of climate change scenarios is simulated using the improved modeling scheme to evaluate how climate change will impact hydropower development in the upper reaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19443016','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19443016"><span>Mass loading and partitioning of dioxins in irrigation runoff from Japanese paddy fields: combination usage of the CALUX assay with HRGC/HRMS.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kanematsu, Masakazu; Shimizu, Yoshihisa; Sato, Keisuke; Kim, Suejin; Suzuki, Tasuma; Park, Baeksoo; Saino, Reiko; Nakamura, Masafumi</p> <p>2009-08-01</p> <p>Lack of understanding of dioxins mass loading into the aquatic environment motivated the quantitative investigation of dioxins runoff from paddy fields during one entire irrigation period in the Minakuchi region, Japan. Combination use of the chemically activated luciferase gene expression (CALUX) bioassay together with high resolution gas chromatography and high resolution mass spectrometry (HRGC/HRMS) enabled efficient investigation of dioxins contamination. The result shows that the congener profile in irrigation runoff is quite similar to those in paddy soil samples and that 1,3,6,8-/1,3,7,9-TeCDD and OCDD derived from pesticides (i.e., pentachlorophenol (PCP) and chloronitrophen (CNP)) are predominant congeners in irrigation runoff. Although it is not surprising that dioxins concentration was strongly dependent on the suspended solids (SS) and the particulate organic carbon (POC) concentration, the dioxins toxic equivalency (TEQ) concentration was extremely high in irrigation runoff (max: 16,380 pg/L, corresponding to 12 pg WHO-TEQ/L) due to runoff of highly contaminated paddy soils. The results imply that dioxins concentration in a river must be monitored considering soil contamination level, land use, and soil runoff events. Using experimental data and a theoretical model, the mass loading of dioxins from the paddy fields by irrigation runoff was estimated to be 1.50 x 10(-2)% of total amount of dioxins accumulated in the paddy fields. Given the results of other researches, it is implied the following: 1) large portion of paddy soils released into the river appear to be settled on the riverbed due to small water flux, and, then, washed out and transported by rainfall runoff after irrigation period, 2) rainfall runoff itself also wash out paddy soils directly from paddy fields. Combination use of the CALUX bioassay with HRGC/HRMS is demonstrated as an alternative strategy to assess dioxins contamination in the environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21115515','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21115515"><span>Water availability in +2°C and +4°C worlds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fung, Fai; Lopez, Ana; New, Mark</p> <p>2011-01-13</p> <p>While the parties to the UNFCCC agreed in the December 2009 Copenhagen Accord that a 2°C global warming over pre-industrial levels should be avoided, current commitments on greenhouse gas emissions reductions from these same parties will lead to a 50 : 50 chance of warming greater than 3.5°C. Here, we evaluate the differences in impacts and adaptation issues for water resources in worlds corresponding to the policy objective (+2°C) and possible reality (+4°C). We simulate the differences in impacts on surface run-off and water resource availability using a global hydrological model driven by ensembles of climate models with global temperature increases of 2°C and 4°C. We combine these with UN-based population growth scenarios to explore the relative importance of population change and climate change for water availability. We find that the projected changes in global surface run-off from the ensemble show an increase in spatial coherence and magnitude for a +4°C world compared with a +2°C one. In a +2°C world, population growth in most large river basins tends to override climate change as a driver of water stress, while in a +4°C world, climate change becomes more dominant, even compensating for population effects where climate change increases run-off. However, in some basins where climate change has positive effects, the seasonality of surface run-off becomes increasingly amplified in a +4°C climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....5310025D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....5310025D"><span>Observed Hydrologic Impacts of Landfalling Atmospheric Rivers in the Salt and Verde River Basins of Arizona, United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Demaria, Eleonora M. C.; Dominguez, Francina; Hu, Huancui; von Glinski, Gerd; Robles, Marcos; Skindlov, Jonathan; Walter, James</p> <p>2017-12-01</p> <p>Atmospheric rivers (ARs), narrow atmospheric water vapor corridors, can contribute substantially to winter precipitation in the semiarid Southwest U.S., where natural ecosystems and humans compete for over-allocated water resources. We investigate the hydrologic impacts of 122 ARs that occurred in the Salt and Verde river basins in northeastern Arizona during the cold seasons from 1979 to 2009. We focus on the relationship between precipitation, snow water equivalent (SWE), soil moisture, and extreme flooding. During the cold season (October through March) ARs contribute an average of 25%/29% of total seasonal precipitation for the Salt/Verde river basins, respectively. However, they contribute disproportionately to total heavy precipitation and account for 64%/72% of extreme total daily precipitation (exceeding the 98th percentile). Excess precipitation during AR occurrences contributes to snow accumulation; on the other hand, warmer than normal temperatures during AR landfallings are linked to rain-on-snow processes, an increase in the basins' area contributing to runoff generation, and higher melting lines. Although not all AR events are linked to extreme flooding in the basins, they do account for larger runoff coefficients. On average, ARs generate 43% of the annual maximum flows for the period studied, with 25% of the events exceeding the 10 year return period. Our analysis shows that the devastating 1993 flooding event in the region was caused by AR events. These results illustrate the importance of AR activity on the hydrology of inland semiarid regions: ARs are critical for water resources, but they can also lead to extreme flooding that affects infrastructure and human activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B51A0380D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B51A0380D"><span>Occurrence of Organic Contaminants in Lower Reaches of River Ganges, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dutta Gupta, S.; Bhattacharya, A.; Mukherjee, A.; Bhattacharya, J.</p> <p>2016-12-01</p> <p>The Gangetic plain of eastern India has been long known as the "bread basket" of the Indian subcontinent. However, indiscriminate use of pesticides in the agricultural fields is to increase crop production. These resulted to increased vulnerability of pesticide pollution of the hydrological systems of the area, potentially exposing to significant human health consequences. Our present study delineate pesticides occurrence in lower Ganges in West Bengal. The major organic contaminants regularly detected in the studied reaches of the Ganges belong to wide range of herbicides and insecticides, which especially include organochlorides and organophosphates such as Aldrin, Alachlor, Lindane, Malathion, Chlorpyrifos and Methyl parathion. Results show Alachlor and Malathion were the most abundant organic contaminant in the river. Among the other pesticides, one of the most venomous substances, Malathion has been noticed from the last year insecticide screening study. The mean concentration of river water Malathion was found to be 5 times higher than the maximum concentration limit (MCL). Presence of Malathion or its derivative Malaoxon in river water is suspected to be caused by agricultural run-off and it showed a good correlation with river water chlorine concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=331993','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=331993"><span>Climate change impacts on runoff, sediment, and nutrient loads in an agricultural watershed in the Lower Mississippi River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Projected climate change can impact various aspects of agricultural systems, including the nutrient and sediment loads exported from agricultural fields. This study evaluated the potential changes in runoff, sediment, nitrogen, and phosphorus loads using projected climate estimates from 2041 – 2070 ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H52C..08Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H52C..08Y"><span>A high-resolution, regional analysis of stormwater runoff for managed aquifer recharge site assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Young, K. S.; Fisher, A. T.; Beganskas, S.; Harmon, R. E.; Teo, E. K.; Weir, W. B.; Lozano, S.</p> <p>2016-12-01</p> <p>Distributed Stormwater Collection-Managed Aquifer Recharge (DSC-MAR) presents a cost-effective method of aquifer replenishment by collecting runoff and infiltrating it into underlying aquifers, but its successful implementation demands thorough knowledge of the distribution and availability of hillslope runoff. We applied a surface hydrology model to analyze the dynamics of hillslope runoff at high resolution (0.1 to 1.0 km2) across the 350 km2 San Lorenzo River Basin (SLRB) watershed, northern Santa Cruz County, CA. We used a 3 m digital elevation model to create a detailed model grid, which we parameterized with high-resolution geologic, hydrologic, and land use data. To analyze hillslope runoff under a range of precipitation regimes, we developed dry, normal, and wet climate scenarios from historic daily precipitation records (1981-2014). Simulation results show high spatial variability of hillslope runoff generation as a function of differences in precipitation and soil and land use conditions, and reveal a consistent increase in the spatial and temporal variability of runoff under wetter climate scenarios. Our results suggest that there may be opportunities to develop successful DSC-MAR projects that provide benefits during all climate scenarios. In the SLRB, our results indicate that annual hillslope runoff generation achieves a target minimum of 100 acre-ft, per 100 acres of drainage area, in approximately 15% of the region during dry climate scenarios and 60% of the region during wet climate scenarios. The high spatial and temporal resolution of our simulation output enables quantification of hillslope runoff at sub-watershed scales, commensurate with the spacing and operation of DSC-MAR. This study demonstrates a viable tool for screening of potential DSC-MAR project sites and assessing project performance under a range of climate and land use scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014HydJ...22.1421G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014HydJ...22.1421G"><span>Groundwater flood of a river terrace in southwest Wisconsin, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gotkowitz, Madeline B.; Attig, John W.; McDermott, Thomas</p> <p>2014-09-01</p> <p>Intense rainstorms in 2008 resulted in wide-spread flooding across the Midwestern United States. In Wisconsin, floodwater inundated a 17.7-km2 area on an outwash terrace, 7.5 m above the mapped floodplain of the Wisconsin River. Surface-water runoff initiated the flooding, but results of field investigation and modeling indicate that rapid water-table rise and groundwater inundation caused the long-lasting flood far from the riparian floodplain. Local geologic and geomorphic features of the landscape lead to spatial variability in runoff and recharge to the unconfined sand and gravel aquifer, and regional hydrogeologic conditions increased groundwater discharge from the deep bedrock aquifer to the river valley. Although reports of extreme cases of groundwater flooding are uncommon, this occurrence had significant economic and social costs. Local, state and federal officials required hydrologic analysis to support emergency management and long-term flood mitigation strategies. Rapid, sustained water-table rise and the resultant flooding of this high-permeability aquifer illustrate a significant aspect of groundwater system response to an extreme precipitation event. Comprehensive land-use planning should encompass the potential for water-table rise and groundwater flooding in a variety of hydrogeologic settings, as future changes in climate may impact recharge and the water-table elevation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri03-4068/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri03-4068/"><span>Influence of local riparian cover and watershed runoff potential on invertebrate communities in agricultural streams in the Minnesota River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>ZumBerge, Jeremy Ryan; Perry, James A.; Lee, Kathy E.</p> <p>2003-01-01</p> <p>While it is difficult to determine the relative influence of watershed runoff potential and local riparian cover, invertebrate communities may be more strongly influenced by local wooded riparian cover than by watershed runoff potential. Invertebrate community measures indicate greater degradation at the open riparian cover, high runoff potential sites and less degradation at the wooded riparian cover, low runoff potential sites. In addition, differences between streams with wooded riparian cover and sites with open riparian cover were greater in watersheds with high runoff potential. The variance explained by riparian cover and runoff potential is relatively independent of other land-use effects. Wooded riparian cover influences invertebrate community composition by its relation to the other physical environmental variables. This study indicates that wooded riparian cover may be effective in maintaining stream biotic integrity in watersheds dominated by agricultural land use.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28863340','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28863340"><span>Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Zhandong; Lotz, Tom; Chang, Ni-Bin</p> <p>2017-12-15</p> <p>Effects of land use development on runoff patterns are salient at a hydrological response unit scale. However, quantitative analysis at the watershed scale is still a challenge due to the complex spatial heterogeneity of the upstream and downstream hydrological relationships and the inherent structure of drainage systems. This study aims to use the well-calibrated Soil and Water Assessment Tool (SWAT) to assess the response of hydrological processes under different land use scenarios in a large lake watershed (Lake Dongting) in the middle Yangtze River basin in China. Based on possible land use changes, scale-dependent land use scenarios were developed and parameters embedded in SWAT were calibrated and validated for hydrological systems analysis. This approach leads to the simulation of the land use change impacts on the hydrological cycle. Results indicated that evapotranspiration, surface runoff, groundwater flow, and water yield were affected by the land use change scenarios in different magnitudes. Overall, changes of land use and land cover have significant impacts on runoff patterns at the watershed scale in terms of both the total water yield (i.e., groundwater flow, surface runoff, and interflow, minus transmission losses) and the spatial distribution of runoff. The changes in runoff distribution were resulted in opposite impacts within the two land use scenarios including forest and agriculture. Water yield has a decrease of 1.8 percent in the forest-prone landscape scenario and an increase of 4.2 percent in the agriculture-rich scenario during the simulated period. Surface runoff was the most affected component in the hydrological cycle. Whereas surface runoff as part of water yield has a decrease of 8.2 percent in the forest- prone landscape scenario, there is an increase of 8.6 percent in the agriculture-rich landscape scenario. Different runoff patterns associated with each land use scenario imply the potential effect on flood or drought mitigation policy. Based on the results, key areas were identified to show that hydrological extreme mitigation and flood control can be coordinated by some land use regulations. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/1260b/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/1260b/report.pdf"><span>Floods of April 1952 in the Missouri River basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wells, J.V.B.</p> <p>1955-01-01</p> <p>The floods of April 1952 in the Milk River basin, along the Missouri River from the mouth of the Little Missouri River to the mouth of the Kansas River, and for scattered tributaries of the Missouri River in North and South Dakota were the greatest ever observed. The damage amounted to an estimated $179 million. The outstanding featur6 of the floods was the extraordinary peak discharge generated in the Missouri River at and downstream from Bismarck, N. Dak., on April 6 when a large ice jam upstream from the city was suddenly released. Inflow from flooding tributaries maintained the peak discharge at approximately the same magnitude in the transit of the flood across South Dakota; downstream from Yankton, S. Dak., attenuation of the peak discharge was continuous because of natural storage in the wide flood plains. The outstanding characteristic of floods in the Milk River basin was their duration--the flood crested at Havre, Mont., on April 3 and at Nashua, Mont.. on April 18. The floods were caused by an abnormally heavy accumulation of snow that was converted into runoff in a few days of very warm weather at the end of March. The heaviest water content of the snow pack at breakup was in a narrow arc extending through Aberdeen, S. Dak., Pierre, S. Dak.. and northwestward toward the southwest corner of North Dakota. The water content in part of this concentrated cover exceeded 6 inches. The winter of 1951-52, which followed a wet cold fall that made the ground impervious, was one of the most severe ever experienced in South Dakota and northern Montana. Depths of snow and low temperatures combined to produce, at the end of March, one of the heaviest snow covers in the history of the Great Plains. The Missouri River ice was intact upstream from Chamberlain, S. Dak., at the end of March, and the breakup of the ice with inflow of local runoff was one of the spectacular features of the flood. Runoff from the Yellowstone River combining with the flood pouring from the Little Missouri River caused the Missouri River to crest at an all-time high at Elbowoods, N. Dak., on April 4. As this crest moved downstream to Bismarck, its intensity was increased by the alternate storing and release of ice jams plus the inflow from the Knife River. The crest discharge of 500,000 cfs came at Bismarck at 6 p. m. on April 6. following a very sharp rise from 80,000 cfs at 11 a.m. Overflow occurred along the Missouri River from Elbowoods to the mouth with high damage to cities. farmland, and installations located in the flood plain. Cleanup and repair operations following the flood continued for many weeks. Few of the flooded farms produced a crop during 1952. This report presents detailed records of stage and discharge for the flood period on the Missouri River and tributaries from Fort Peck. Mont., to the mouth. Information on damages and river stages collected by other agencies is also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ECSS..156...92L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ECSS..156...92L"><span>Linking benthic community structure to terrestrial runoff and upwelling in the coral reefs of northeastern Hainan Island</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xiubao; Wang, Daoru; Huang, Hui; Zhang, Jing; Lian, Jiansheng; Yuan, Xiangcheng; Yang, Jianhui; Zhang, Guoseng</p> <p>2015-04-01</p> <p>Near-shore coral reefs in northeastern Hainan Island are close to river mouths and aquaculture ponds, and also located at the center of the Qiongdong Upwelling (QDU). However, it is still unclear how terrestrial runoff and upwelling influence the community composition and spatial distribution of the benthos. During three cruises in 2010 and 2011 in Wenchang, northeastern Hainan Island, we determined a subset of environmental parameters in seawater (e.g. temperature, salinity, DO, dissolved inorganic nutrient (DIN), turbidity and transparency) and macroalgal δ15N and investigated the benthic communities (e.g. live coral cover, coral species richness, juvenile coral density, macroalgal cover and coverage of calcified algae) by video transect and visual census techniques at 10 stations (i.e. 1S-6D). The results showed that the QDU has influenced the reef waters in Wenchang. In 2011, the upwelling started in early May, peaked in July and disappeared in September and most upwelling events lasted for 1-2 weeks between May and July. The results also demonstrated that the reef water was nutrient enriched. Stations close to the river mouth and aquaculture ponds had higher levels of DIN and a higher percentage of ammonia in DIN, and there was consistently lower live coral cover, juvenile coral density and higher macroalgal cover. At some stations in this study, live coral cover was negatively correlated with macroalgal cover (i.e. 2S-6D). Live coral cover, species richness, and juvenile coral density all increased with the distance away from the river outlet and decreased with the rise of DIN. These results suggest that terrestrial runoff and upwelling stimulate nutrient enrichment, and that overgrowing macroalgae has an important influence on the coral communities in northeastern Hainan Island.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22493114','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22493114"><span>Temporal association between land-based runoff events and California sea otter (Enhydra lutris nereis) protozoal mortalities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shapiro, Karen; Miller, Melissa; Mazet, Jonna</p> <p>2012-04-01</p> <p>Toxoplasma gondii and Sarcocystis neurona have caused significant morbidity and mortality in threatened Southern sea otters (Enhydra lutris nereis) along the central California coast. Because only terrestrial animals are known to serve as definitive hosts for T. gondii and S. neurona, infections in otters suggest a land to sea flow of these protozoan pathogens. To better characterize the role of overland runoff in delivery of terrestrially derived fecal pathogens to the near shore, we assessed the temporal association between indicators of runoff and the timing of sea otter deaths due to T. gondii and S. neurona. Sea otter stranding records 1998-2004, from Monterey and Estero bays were reviewed and cases identified for which T. gondii or S. neurona were determined to be a primary or contributing cause of death. Precipitation and stream flow data from both study sites were used as indicators of land-based runoff. Logistic regression was applied to determine if a temporal association could be detected between protozoal mortalities and runoff indicators that occur in the 2 mo preceding mortality events. A significant association was found between S. neurona otter deaths at Estero Bay and increased stream flow that occurred 30-60 days prior to mortality events. At this site, the cause of otter mortality following increased river flows was 12 times more likely to be S. neurona infection compared with nonprotozoal causes of death. There were no significant associations between the timing of T. gondii otter deaths and indicators of overland runoff. Our results indicate that the association between overland runoff and otter mortalities is affected by geography as well as parasite type, and highlight the complex mechanisms that influence transmission of terrestrially derived pathogens to marine wildlife. Policy and management practices that aim to mitigate discharges of contaminated overland runoff can aid conservation efforts by reducing pathogen pollution of coastal waters, which impacts the health of threatened marine wildlife and humans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2012/5068/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2012/5068/"><span>Reconnaissance of contaminants in selected wastewater-treatment-plant effluent and stormwater runoff entering the Columbia River, Columbia River Basin, Washington and Oregon, 2008-10</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Morace, Jennifer L.</p> <p>2012-01-01</p> <p>With a better understanding of the presence of these contaminants in the environment, future work can focus on developing research to characterize the effects of these contaminants on aquatic life and prioritize toxic-reduction efforts for the Columbia River Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC44C..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC44C..06H"><span>Impacts of the Indian Rivers Inter-link Project on Sediment Transport to River Deltas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Higgins, S.; Overeem, I.; Syvitski, J. P.</p> <p>2015-12-01</p> <p>The Indian Rivers Inter-link project is a proposal by the Indian government to link several of India's major rivers via a network of reservoirs and canals. Variations of the IRI have been discussed since 1980, but the current plan has recently received increased support from the Indian government. Construction on three canals has controversially begun. If the Inter-link project moves forward, fourteen canals will divert water from tributaries of the Ganges and Brahmaputra rivers to areas in the west, where fresh water is needed for irrigation. Additional canals would transport Himalayan sediments 500 km south to the Mahanadi delta and more than 1000 km south to the Godavari and Krishna deltas. We investigate the impacts of the proposed diversions on sediment transport to the Mahanadi/Brahmani, Godavari, and Krishna deltas in India and the Ganges-Brahmaputra Delta in Bangladesh. We map the entire river network and the proposed new nodes and connections. Changing watersheds are delineated using the Terrain Analysis Using Digital Elevation Models (TauDEM) Suite. Climate data comes from interpolation between observed precipitation stations located in China, Nepal, India, Bhutan and Bangladesh. Changes in water discharge due to the proposed canals are simulated using HydroTrend, a climate-driven hydrological water balance and transport model that incorporates drainage area, discharge, relief, temperature, basin-average lithology, and anthropogenic influences. Simulated river discharge is validated against observations from gauging stations archived by the Global Runoff Data Center (GRDC). HydroTrend is then used to investigate sediment transport changes that may result from the proposed canals. We also quantify changes in contributing areas for the outlets of nine major Indian rivers, showing that more than 50% of the land in India will contribute a portion of its runoff to a new outlet should the entire canal system be constructed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/gip/2007/47/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/gip/2007/47/"><span>The Charles River, Eastern Massachusetts: Scientific Information in Support of Environmental Restoration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Weiskel, Peter K.</p> <p>2007-01-01</p> <p>Human activity has profoundly altered the Charles River and its watershed over the past 375 years. Restoration of environmental quality in the watershed has become a high priority for private- and public-sector organizations across the region. The U.S. Environmental Protection Agency and the Massachusetts Executive Office of Environmental Affairs worked together to coordinate the efforts of the various organizations. One result of this initiative has been a series of scientific studies that provide critical information concerning some of the major hydrologic and ecological concerns in the watershed. These studies have focused upon: * Streamflows - Limited aquifer storage, growing water demands, and the spread of impervious surfaces are some of the factors exacerbating low summer streamflows in headwater areas of the watershed. Coordinated management of withdrawals, wastewater returns, and stormwater runoff could substantially increase low streamflows in the summer. Innovative approaches to flood control, including preservation of upstream wetland storage capacity and construction of a specially designed dam at the river mouth, have greatly reduced flooding in the lower part of the watershed in recent decades. * Water quality - Since the mid-1990s, the bacterial quality of the Charles River has improved markedly, because discharges from combined sewer overflows and the number of illicit sewer connections to municipal storm drains have been reduced. Improved management of stormwater runoff will likely be required, however, for full attainment of State and Federal water-quality standards. Phosphorus inputs from a variety of sources remain an important water-quality problem. * Fish communities and habitat quality - The Charles River watershed supports a varied fish community of about 20 resident and migratory species. Habitat conditions for fish and other aquatic species have improved in many parts of the river system in recent years. However, serious challenges remain, including the control of nutrients, algae, and invasive plants, mitigation of dam impacts, addressing remaining sources of bacteria to the river, and remediation of contaminated bottom habitat and the nontidal salt wedge in the lower river.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA121137','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA121137"><span>The Streambank Erosion Control Evaluation and Demonstration Act of 1974, Section 32, Public Law 93-251. Appendix F. Yazoo River Basin Demonstration Projects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-12-01</p> <p>function enhanced navigation on many of the basins streams. The system also served as a tributary for local runoff . This relationship was permanently...and should be divided into geologic sequences and time periods. The geologic controls in a -. basin denote the type of erosion, thus the runoff and...should not be used for comparison with stages or discharges associated with earlier runoff events because the stage discharge relations were altered by the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817305H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817305H"><span>Flood Hazard Mapping Assessment for El-Awali River Catchment-Lebanon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hdeib, Rouya; Abdallah, Chadi; Moussa, Roger; Hijazi, Samar</p> <p>2016-04-01</p> <p>River flooding prediction and flood forecasting has become an essential stage in the major flood mitigation plans worldwide. Delineation of floodplains resulting from a river flooding event requires coupling between a Hydrological rainfall-runoff model to calculate the resulting outflows of the catchment and a hydraulic model to calculate the corresponding water surface profiles along the river main course. In this study several methods were applied to predict the flood discharge of El-Awali River using the available historical data and gauging records and by conducting several site visits. The HEC-HMS Rainfall-Runoff model was built and applied to calculate the flood hydrographs along several outlets on El-Awali River and calibrated using the storm that took place on January 2013 and caused flooding of the major Lebanese rivers and by conducting additional site visits to calculate proper river sections and record witnesses of the locals. The Hydraulic HEC-RAS model was then applied to calculate the corresponding water surface profiles along El-Awali River main reach. Floodplain delineation and Hazard mapping for 10,50 and 100 years return periods was performed using the Watershed Modeling System WMS. The results first show an underestimation of the flood discharge recorded by the operating gauge stations on El-Awali River, whereas, the discharge of the 100 years flood may reach up to 506 m3/s compared by lower values calculated using the traditional discharge estimation methods. Second any flooding of El-Awali River may be catastrophic especially to the coastal part of the catchment and can cause tragic losses in agricultural lands and properties. Last a major floodplain was noticed in Marj Bisri village this floodplain can reach more than 200 meters in width. Overall, performance was good and the Rainfall-Runoff model can provide valuable information about flows especially on ungauged points and can perform a great aid for the floodplain delineation and flood prediction methods in poorly gauged basins, but further model updates and calibration is always required to compensate the weaknesses in such model and attain better results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ERL.....9i5005P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ERL.....9i5005P"><span>Winter cyclone frequency and following freshet streamflow formation on the rivers in Belarus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Partasenok, Irina S.; Groisman, Pavel Ya; Chekan, Grigoriy S.; Melnik, Viktor I.</p> <p>2014-09-01</p> <p>We studied long-term fluctuations of streamflow and occurrence of extreme phenomena on the rivers of Belarus during the post-World War II period. It was found that formation of annual runoff within the nation has no constant tendencies and varies from year to year. At the same time, analysis of intra-annual distribution of streamflow reveals significant changes since the 1970s, first of all, increase of winter and decrease of spring streamflow. As a result, the frequency of extreme floods has decreased. These changes in water regime are associated with climatic anomalies (increase of the surface air temperatures) caused by large-scale alterations in atmospheric circulation, specifically in trajectories of cyclones. During the last two decades, the frequency of Atlantic and southern cyclones has changed and caused decreasing of cold season storms and extreme phenomena on the rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ECSS...87..387S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ECSS...87..387S"><span>Tracking stormwater discharge plumes and water quality of the Tijuana River with multispectral aerial imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Svejkovsky, Jan; Nezlin, Nikolay P.; Mustain, Neomi M.; Kum, Jamie B.</p> <p>2010-04-01</p> <p>Spatial-temporal characteristics and environmental factors regulating the behavior of stormwater runoff from the Tijuana River in southern California were analyzed utilizing very high resolution aerial imagery, and time-coincident environmental and bacterial sampling data. Thirty nine multispectral aerial images with 2.1-m spatial resolution were collected after major rainstorms during 2003-2008. Utilizing differences in color reflectance characteristics, the ocean surface was classified into non-plume waters and three components of the runoff plume reflecting differences in age and suspended sediment concentrations. Tijuana River discharge rate was the primary factor regulating the size of the freshest plume component and its shorelong extensions to the north and south. Wave direction was found to affect the shorelong distribution of the shoreline-connected fresh plume components much more strongly than wind direction. Wave-driven sediment resuspension also significantly contributed to the size of the oldest plume component. Surf zone bacterial samples collected near the time of each image acquisition were used to evaluate the contamination characteristics of each plume component. The bacterial contamination of the freshest plume waters was very high (100% of surf zone samples exceeded California standards), but the oldest plume areas were heterogeneous, including both polluted and clean waters. The aerial imagery archive allowed study of river runoff characteristics on a plume component level, not previously done with coarser satellite images. Our findings suggest that high resolution imaging can quickly identify the spatial extents of the most polluted runoff but cannot be relied upon to always identify the entire polluted area. Our results also indicate that wave-driven transport is important in distributing the most contaminated plume areas along the shoreline.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUSM.H41A..18C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUSM.H41A..18C"><span>Impacts of Climate Change on Management of the Colorado River Reservoir System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christensen, N. S.; Lettenmaier, D. P.</p> <p>2002-05-01</p> <p>The Colorado River system provides water supply to a large area of the interior west. It drains a mostly arid area, with naturalized flow (effects of reservoirs and diversions removed) averaging only 40 mm/yr over the 630,000 km2 drainage area at the mouth of the river. Total reservoir storage (mostly behind Hoover and Glen Canyon Dams) is equivalent to over four times the mean flow of the river. Runoff is heavily dominated by high elevation source areas in the Rocky Mountain headwaters, and the seasonal runoff pattern throughout the Colorado basin is strongly dominated by winter snow accumulation and spring melt. Because of the arid nature of the basin and the low runoff per unit area, performance of the reservoir system is potentially susceptible to changes in streamflow that would result from global warming, although those manifestations are somewhat different than elsewhere in the west where reservoir storage is relatively much smaller. We evaluate, using the macroscale Variable Infiltration Capacity (VIC) model, possible changes in streamflow over the next century using three 100-year ensemble climate simulations of the NCAR/DOE Parallel Climate Model corresponding to business-as-usual (BAU) future greenhouse gas emissions. Single ensemble simulations of the U.K. Hadley Center, and the Max Planck Institute, are considered as well. For most of the climate scenarios, the peak runoff shifts about one month earlier relative to the recent past. However, unlike reservoir systems elsewhere in the west, the effect of these timing shifts is largely mitigated by the size of the reservoir system, and changes in reservoir system reliability (for agricultural water supply and hydropower production) are dominated by streamflow volume shifts, which vary considerably across the climate scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..551..116J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..551..116J"><span>Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing</p> <p>2017-08-01</p> <p>Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of eco-hydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965-1969) from -0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010-2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1390426-impact-vegetation-dynamics-hydrological-processes-semi-arid-basin-using-land-surface-hydrology-coupled-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1390426-impact-vegetation-dynamics-hydrological-processes-semi-arid-basin-using-land-surface-hydrology-coupled-model"><span>Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jiao, Yang; Lei, Huimin; Yang, Dawen</p> <p></p> <p>Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of themore » Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CoGG...47...95R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CoGG...47...95R"><span>The potential for land use change to reduce flood risk in mid-sized catchments in the Myjava region of Slovakia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rončák, Peter; Lisovszki, Evelin; Szolgay, Ján; Hlavčová, Kamila; Kohnová, Silvia; Csoma, Rózsa; Poórová, Jana</p> <p>2017-06-01</p> <p>The effects of land use management practices on surface runoff are evident on a local scale, but evidence of their impact on the scale of a watershed is limited. This study focuses on an analysis of the impact of land use changes on the flood regime in the Myjava River basin, which is located in Western Slovakia. The Myjava River basin has an area of 641.32 km2 and is typified by the formation of fast runoff processes, intensive soil erosion, and muddy floods. The main factors responsible for these problems with flooding and soil erosion are the basin's location, geology, pedology, agricultural land use, and cropping practices. The GIS-based, spatially distributed WetSpa rainfall-runoff model was used to simulate mean daily discharges in the outlet of the basin as well as the individual components of the water balance. The model was calibrated based on the period between 1997 and 2012 with outstanding results (an NS coefficient of 0.702). Various components of runoff (e.g., surface, interflow and groundwater) and several elements of the hydrological balance (evapotranspiration and soil moisture) were simulated under various land use scenarios. Six land use scenarios (`crop', `grass', `forest', `slope', `elevation' and `optimal') were developed. The first three scenarios exhibited the ability of the WetSpa model to simulate runoff under changed land use conditions and enabled a better adjustment of the land use parameters of the model. Three other "more realistic" land use scenarios, which were based on the distribution of land use classes (arable land, grass and forest) regarding permissible slopes in the catchment, confirmed the possibility of reducing surface runoff and maximum discharges with applicable changes in land use and land management. These scenarios represent practical, realistic and realizable land use management solutions and they could be economically implemented to mitigate soil erosion processes and enhance the flood protection measures in the Myjava River basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33G1798W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33G1798W"><span>Impacts of climate change on trends in baseflow and stormflow in major watersheds of China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, L.</p> <p>2017-12-01</p> <p>Impacts of climate change on trends in baseflow and stormflow in major watersheds of ChinaLijun Wang1, Fuqiang Tian1*, Hongchang Hu11State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China,Abstracts: During the past 50 years, runoff from the major watersheds in China has demonstrated a decrease trend. The variations in the amount of precipitation will directly influence the runoff, however in some parts of China, it is also found that there is huge variations in the amount of runoff whereas the amount of precipitation has not shown such variations. In the same time, the intensity and duration of rainfall has changed a lot. Therefore, it is important to categorize the different trends of runoff and to identify the major factors responsible for these changes. In this study, we have collected the data of 200 different locations from 8 major watersheds of China. By comparing and analyzing the daily precipitation and the daily runoff data, we have found some significant changes in runoff coefficients between two periods (1979-1988 and 2006-2014). On the basis of this, the further study will be carried out which identify that how the climate change influences the two major components of runoff, baseflow and stormflow. The impact of anthropogenic activity in the study area could not be ignored and it is important to know whether human action and climate change is the main factors for the decline of waterflow in river and how these factors influence the river water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22504879','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22504879"><span>Stormwater input of pyrethroid insecticides to an urban river.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weston, Donald P; Lydy, Michael J</p> <p>2012-07-01</p> <p>The American River flows for nearly 50 km through highly urbanized lands surrounding Sacramento, California, USA. Twenty-three streams, drainage canals, or pumping stations discharge urban runoff to the river, with the cumulative effect of nearly doubling the river's flow during rain events. During winter storms, the water column in the most downstream 13-km reach of the river exhibited toxicity to the standard testing species, Hyalella azteca, in 52% of samples, likely because of the pyrethroid insecticide bifenthrin. The compound is heavily used by professional pest controllers, either as a liquid perimeter treatment around homes or as granules broadcast over landscaped areas. It was found in 11 of 12 runoff sources examined, at concentrations averaging five times the H. azteca 96-h EC50. Quantified inputs of bifenthrin should have been sufficient to attain peak concentrations in the river twice those actually observed, suggesting loss by sedimentation of particulates and pesticide adsorption to the substrate and/or vegetation. Nevertheless, observed bifenthrin concentrations in the river were sufficient to cause water column toxicity, demonstrated during six storms studied over three successive winters. Toxicity and bifenthrin concentrations were greatest when river flow was low (<23 m(3) /s) but persisted even at atypically high flows (585 m(3) /s). Copyright © 2012 SETAC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814597W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814597W"><span>Decrease in hydroclimatic conditions generating floods in the southeast of Belgium over the last 50 years resulting from changes in seasonal snow cover and extreme precipitation events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wyard, Coraline; Fettweis, Xavier</p> <p>2016-04-01</p> <p>As a consequence of climate change, several studies concluded that winter flood occurrence could increase in the future in many rivers of northern and western Europe in response to an increase in extreme precipitation events. This study aims to determine if trends in extreme hydroclimatic events generating floods can already be detected over the last century. In particular, we focus on the Ourthe River (southeast of Belgium) which is one of the main tributaries of the Meuse River with a catchment area of 3500 km². In this river, most of the floods occur during winter and about 50% of them are due to rainfall events associated with the melting of the snow which covers the Ardennes during winter. In this study, hydroclimatic conditions favorable to flooding were reconstructed over the 20th century using the regional climate model MAR ("Modèle Atmosphérique Régional") forced by the following reanalyses: the ERA-20C, the ERA-Interim and the NCEP/NCAR-v1. The use of the MAR model allows to compute precipitation, snow depth and run-off resulting from precipitation events and snow melting in any part of the Ourthe river catchment area. Therefore, extreme hydroclimatic events, namely extreme run-off events, which could potentially generate floods, can be reconstructed using the MAR model. As validation, the MAR results were compared to weather station-based data. A trend analysis was then performed in order to study the evolution of conditions favorable to flooding in the Ourthe River catchment. The results show that the MAR model allows the detection of more than 95% of the hydroclimatic conditions which effectively generated observed floods in the Ourthe River over the 1974-2014 period. Conditions favorable to flooding present a negative trend over the last 50 years as a result of a decrease in snow accumulation and in extreme precipitation events. However, significance of these trends depends on the reanalysis used to force the regional climate model as well as the length of the time series.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1992/4130/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1992/4130/report.pdf"><span>Distribution and variability of fecal-indicator bacteria in Scioto and Olentangy rivers in the Columbus, Ohio, area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Myers, Donna N.</p> <p>1992-01-01</p> <p>This report presents the results of a study by the U.S. Geological Survey, in cooperation with the City of Columbus, Ohio, to determine the distribution and variability of fecal-indicator bacteria in Scioto and Olentangy Rivers. Fecal-indicator bacteria are among the contaminants of concern to recreational users of these rivers in the Columbus area. Samples were collected to be analyzed for fecal-coliform and Escherichia coli (E. coli) bacteria and selected water-quality constituents and physical properties at 10 sites-- 4 on the Olentangy River and 6 on the Scioto River during the recreational seasons in 1987, 1988, and 1989. Measurements of streamflow also were made at these sites at various frequencies during base flow and runoff. The concentrations of fecal-coliform and E. coli bacteria in the Scioto and Olentangy Rivers spanned a range of five orders of magnitude, from less than 20 to greater than 2,000,000 col/100 mL (colonies per 100 milliliters). In addition, the concentrations of fecal coliform and E. coli bacteria are well correlated (r=0.97) in the study area. At times, relatively high concentrations, for fecal-indicator bacteria (concentrations greater than 51,000 col/100 mL for fecal-coliform and E. coli ) were found in Olentangy River at Woody Hayes Drive and at Goodale Street, and in Scioto River at Greenlawn Avenue and at Columbus. Intermediate concentrations of fecal-indicator bacteria (from 5,100 to 50,000 col/100 mL for fecal coliform and (from 510 to 50,000 col/100 mL for E. coli ) were found in Scioto River at Town Street and below O'Shaughnessy Dam near Dublin, Ohio, and in Olentangy River at Henderson Road. The lowest (median) concentrations of fecal-indicator bacteria (from 20 to 5,000 col/100 mL for fecal coliform and from 20 to 500 col/100 mL for E. coli ) were found at Olentangy River near Worthington, Ohio, Scioto River at Dublin Road Water Treatment Plant and below Griggs Reservoir. Fecal-coliform concentrations exceeded the geometric mean and single-sample Ohio Water Quality Standards for recreation less frequently than E. coli concentrations. The E. coli numerical water-quality standards are more difficult to meet than the fecal coliform standards because they are as much as an order of magnitude lower in some instances. The geometric mean bathing-water and primary-contact standards for fecal-coliform and E. coli bacteria were exceeded in more samples for Olentangy River at Goodale Street than for any other site. The single-sample bathing-water standard for fecal-coliform bacteria was exceeded in 83 percent of all samples and for E. coli in 91 percent of samples for Olentangy River at Goodale Street. Compared to Olentangy River at Goodale Street, geometric means and single-samples exceeded the bathing-water standards somewhat less frequently for Scioto River at Town Street and far less frequently for Scioto River at Dublin Road Water Treatment Plant. In contrast to results for fecal-indicator bacteria, the differences between sites for pH and for concentrations for total alkalinity, total chloride, total nonfilterable residue, total nitrate plus nitrite as nitrogen, total phosphorus, and total organic carbon were small. The large contribution of streamflow and discharge of fecal-indicator bacteria from Olentangy River to Scioto River has a major effect on the Scioto River downstream from the confluence of Olentangy River during periods of rainfall and runoff. Fecal-indicator discharges were calculated for times before, during, and at 24-hour intervals for 48 to 72 hours after two runoff-producing storms. Fecal-coliform and E. coli concentrations were lower in samples collected before runoff and during receding streamflows at 24- to 48-hours after the storms than in samples collected during runoff. The fecal-indicator discharges entering Scioto River from Olentangy River ranged from 22.6 to nearly 100 percent of the total for two storms studied. Controlling nonpoint, unregulated,</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711604G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711604G"><span>Ponds' water balance and runoff of endorheic watersheds in the Sahel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gal, Laetitia; Grippa, Manuela; Kergoat, Laurent; Hiernaux, Pierre; Mougin, Eric; Peugeot, Christophe</p> <p>2015-04-01</p> <p>The Sahel has been characterized by a severe rainfall deficit since the mid-twentieth century, with extreme droughts in the early seventies and again in the early eighties. These droughts have strongly impacted ecosystems, water availability, fodder resources, and populations living in these areas. However, an increase of surface runoff has been observed during the same period, such as higher "summer discharge" of Sahelian's rivers generating local floods, and a general increase in pond's surface in pastoral areas of central and northern Sahel. This behavior, less rain but more surface runoff is generally referred to as the "Sahelian paradox". Various hypotheses have been put forward to explain this paradoxical situation. The leading role of increase in cropped areas, often cited for cultivated Sahel, does not hold for pastoral areas in central and northern Sahel. Processes such as degradation of vegetation subsequent to the most severe drought events, soils erosion and runoff concentration on shallow soils, which generate most of the water ending up in ponds, seem to play an important role. This still needs to be fully understood and quantified. Our study focuses on a model-based approach to better understand the hydrological changes that affected the Agoufou watershed (Gourma, Mali), typical of the central, non-cultivated Sahel. Like most of the Sahelian basins, the Agoufou watershed is ungauged. Therefore we used indirect data to provide the information required to validate a rainfall-runoff model approach. The pond volume was calculated by combining in-situ water level measurements with pond's surface estimations derived by remote sensing. Using the pond's water balance equation, the variations of pond volume combined to estimates of open water bodies' evaporation and infiltration determined an estimation for the runoff supplying the pond. This estimation highlights a spectacular runoff increase over the last sixty years on the Agoufou watershed. The runoff proxy derived for the Agoufou pond is used to evaluate results from the KINEROS2 model (KINematic runoff and EROSion). This model is specifically designed to simulate surface runoff in semi-arid watersheds. It describes the processes of runoff, infiltration and erosion by taking into account land cover and soil characteristics. We show that rain intensity, soil hydrological properties (hydraulic conductivity and Manning's roughness coefficient), contributing source area areas and land use-land cover were the major factors to take into account to correctly simulate runoff over the present period (2006-2010). This will help to simulate the past evolution of the Agoufou watershed and better understand the key mechanisms of the Sahelian paradox in non-cultivated Sahel. Finally, we will discuss the application of the SWOT and Sentinel-2 future satellites, which will provide water level and pond's surface, to obtain large-scale estimates of water balance in ungauged Sahelian basins.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>