Science.gov

Sample records for riverton wyoming part

  1. Supplement to the UMTRA Project water sampling and analysis plan, Riverton, Wyoming

    SciTech Connect

    1995-09-01

    This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Riverton (DOE, 1994). Further, the supplement serves to confirm the Project`s present understanding of the site relative to the hydrogeology and contaminant distribution as well as the intent to continue to use the sampling strategy as presented in the 1994 WSAP document for Riverton. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 and 60 FR 2854. Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Riverton site are the Riverton Baseline Risk Assessment (BLRA) (DOE, 1995a) and the Riverton Site Observational Work Plan (SOWP) (DOE, 1995b).

  2. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    SciTech Connect

    1987-06-01

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

  3. Ground-water resources of Riverton irrigation project area, Wyoming

    USGS Publications Warehouse

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts

  4. Summary of the engineering assessment of inactive uranium mill tailings, Riverton Site, Riverton, Wyoming

    SciTech Connect

    1981-08-01

    Ford, Bacon, and Davis Utah Inc. has reevaluated the Riverton site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Riverton, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 900,000 tons of tailings materials at the Riverton site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The nine alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontaminations of the tailings site (Options II through IX). Cost estimates for the nine options range from about $16,600,000 for stabilization in-place, to about $23,200,000 for disposal at a distance of 18 to 25 mi. Three principal alternatives for the reprocessing of the Riverton tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $260 and $230/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery does not appear to be economically attractive.

  5. Ground-water resources of Riverton irrigation project area, Wyoming

    USGS Publications Warehouse

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts

  6. Reconnaissance soil geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont County, Wyoming

    USGS Publications Warehouse

    Smith, David B.; Sweat, Michael J.

    2012-01-01

    Soil samples were collected and chemically analyzed from the Riverton Uranium Mill Tailings Remedial Action Site, which lies within the Wind River Indian Reservation in Fremont County, Wyoming. Nineteen soil samples from a depth of 0 to 5 centimeters were collected in August 2011 from the site. The samples were sieved to less than 2 millimeters and analyzed for 44 major and trace elements following a near-total multi-acid extraction. Soil pH was also determined. The geochemical data were compared to a background dataset consisting of 160 soil samples previously collected from the same depth throughout the State of Wyoming as part of another ongoing study by the U.S. Geological Survey. Risk from potentially toxic elements in soil from the site to biologic receptors and humans was estimated by comparing the concentration of these elements with soil screening values established by the U.S. Environmental Protection Agency. All 19 samples exceeded the carcinogenic human health screening level for arsenic in residential soils of 0.39 milligrams per kilogram (mg/kg), which represents a one-in-one-million cancer risk (median arsenic concentration in the study area is 2.7 mg/kg). All 19 samples also exceeded the lead and vanadium screening levels for birds. Eighteen of the 19 samples exceeded the manganese screening level for plants, 13 of the 19 samples exceeded the antimony screening level for mammals, and 10 of 19 samples exceeded the zinc screening level for birds. However, these exceedances are also found in soils at most locations in the Wyoming Statewide soil database, and elevated concentrations alone are not necessarily cause for alarm. Uranium and thorium, two other elements of environmental concern, are elevated in soils at the site as compared to the Wyoming dataset, but no human or ecological soil screening levels have been established for these elements.

  7. Radiological survey of the inactive uranium-mill tailings at Riverton, Wyoming

    SciTech Connect

    Haywood, F.F.; Lorenzo, D.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Shinpaugh, W.H.

    1980-03-01

    Results of a radiological survey performed at the Riverton, Wyoming site in July 1976, are presented. The average external gamma exposure rate at 1 m over the tailings pile was 56 ..mu..R/hr. The corresponding rate for the former mill area was 97 ..mu..R/hr. Movement of tailings particles in a dry wash is evident; but it appears that, in general, the earth cover over the tailings pile has been effective in limiting both wind and water erosion of the tailings. The calculated concentration of /sup 226/Ra as a function of depth in 15 augered holes is presented graphically. A survey of the Teton Division Lumber Company property in Riverton showed a maximum external gamma exposure rate of 270 ..mu..R/hr.

  8. Work plan for ground water elevation data recorder installation at Riverton, Wyoming

    SciTech Connect

    Not Available

    1994-08-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water elevation data recorders (data loggers) at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Previous investigations conducted at the Riverton site to date supports a preliminary determination regarding the selection of ground water remediation alternatives appropriate to this site. Although ground water modeling employing existing data indicates that a natural flushing strategy may be appropriate, additional site-specific data are needed to confirm the applicability and feasibility of this remedial option. The data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area.

  9. Refining the site conceptual model at a former uranium mill site in Riverton, Wyoming, USA

    DOE PAGESBeta

    Dam, William; Campbell, Sam; Johnson, Ray; Looney, Brian; Denham, Miles E.; Eddy-Dilek, Carol A.; Babits, Steven J.

    2015-07-07

    Milling activities at a former uranium mill site near Riverton, Wyoming, USA, contaminated the shallow groundwater beneath and downgradient of the site. Although the mill operated for <6 years (1958-1963), its impact remains an environmental liability. Groundwater modeling predicted that contaminant concentrations were declining steadily, which confirmed the conceptual site model (CSM). However, local flooding in 2010 mobilized contaminants that migrated downgradient from the Riverton site and resulted in a dramatic increase in groundwater contaminant concentrations. This observation indicated that the original CSM was inadequate to explain site conditions and needed to be refined. In response to the new observationsmore » after the flood, a collaborative investigation to better understand site conditions and processes commenced. This investigation included installing 103 boreholes to collect soil and groundwater samples, sampling and analysis of evaporite minerals along the bank of the Little Wind River, an analysis of evaportranspiration in the shallow aquifer, and sampling naturally organic-rich sediments near groundwater discharge areas. The enhanced characterization revealed that the existing CSM did not account for high uranium concentrations in groundwater remaining on the former mill site and groundwater plume stagnation near the Little Wind River. Observations from the flood and subsequent investigations indicate that additional characterization is still needed to continue refining the CSM and determine the viability of the natural flushing compliance strategy. Additional sampling, analysis, and testing of soil and groundwater are necessary to investigate secondary contaminant sources, mobilization of contaminants during floods, geochemical processes, contaminant plume stagnation, distribution of evaporite minerals and organic-rich sediments, and mechanisms and rates of contaminant transfer from soil to groundwater. Future data collection will be used to

  10. Site observational work plan for the UMTRA Project site at Riverton, Wyoming

    SciTech Connect

    Not Available

    1994-09-01

    The site observational work plan (SOWP) for the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is the first document for the UMTRA Ground Water Project to address site-specific activities to meet compliance with the U.S. Environmental Protection Agency (EPA) proposed ground water standards (52 FR 36000 (1987)). In support of the activities the regulatory framework and drivers are presented along with a discussion of the relationship of this SOWP to other UMTRA Ground Water Project programmatic documents. A combination of the two compliance strategies that will be recommended for this site are no remediation with the application of alternate concentration levels (ACL) and natural flushing in conjunction with institutional controls. ACLs are to be applied to constituents that occur at concentrations above background levels but which are essential nutrients and occur within nutritional ranges and/or have very low toxicity and high dietary intake rates compared to the levels detected in the ground water. The essential premise of natural flushing is that ground water movement and natural attenuation processes will reduce the detected contamination to background levels within 1 00 years. These two recommended compliance strategies were evaluated by applying Riverton site-specific data to the compliance framework developed in the UMTRA Ground Water programmatic environmental impact statement. There are three aquifers beneath the site: a surficial unconfined aquifer, a middle semiconfined aquifer, and a deeper confined aquifer. The milling-related contamination at the site has affected both the surficial and semiconfined aquifers, although the leaky shale aquifers separating these units limits the downward migration of contamination into the semiconfined aquifer. A shale aquitard separates the semiconfined aquifer from the underlying confined aquifer which has not been contaminated by milling-related constituents.

  11. Refining the site conceptual model at a former uranium mill site in Riverton, Wyoming, USA

    SciTech Connect

    Dam, William; Campbell, Sam; Johnson, Ray; Looney, Brian; Denham, Miles E.; Eddy-Dilek, Carol A.; Babits, Steven J.

    2015-07-07

    Milling activities at a former uranium mill site near Riverton, Wyoming, USA, contaminated the shallow groundwater beneath and downgradient of the site. Although the mill operated for <6 years (1958-1963), its impact remains an environmental liability. Groundwater modeling predicted that contaminant concentrations were declining steadily, which confirmed the conceptual site model (CSM). However, local flooding in 2010 mobilized contaminants that migrated downgradient from the Riverton site and resulted in a dramatic increase in groundwater contaminant concentrations. This observation indicated that the original CSM was inadequate to explain site conditions and needed to be refined. In response to the new observations after the flood, a collaborative investigation to better understand site conditions and processes commenced. This investigation included installing 103 boreholes to collect soil and groundwater samples, sampling and analysis of evaporite minerals along the bank of the Little Wind River, an analysis of evaportranspiration in the shallow aquifer, and sampling naturally organic-rich sediments near groundwater discharge areas. The enhanced characterization revealed that the existing CSM did not account for high uranium concentrations in groundwater remaining on the former mill site and groundwater plume stagnation near the Little Wind River. Observations from the flood and subsequent investigations indicate that additional characterization is still needed to continue refining the CSM and determine the viability of the natural flushing compliance strategy. Additional sampling, analysis, and testing of soil and groundwater are necessary to investigate secondary contaminant sources, mobilization of contaminants during floods, geochemical processes, contaminant plume stagnation, distribution of evaporite minerals and organic-rich sediments, and mechanisms and rates of contaminant transfer from soil to groundwater. Future data collection will be used to

  12. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect

    Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

    1999-11-01

    The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

  13. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    SciTech Connect

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  14. Hydro-geochemical studies of uranium mill tailing piles at Riverton, Wyoming and Maybell, Colorado. Annual report for FY 1981

    SciTech Connect

    Narasimhan, T.N.; Galbraith, R.M.; White, A.; Smith, A.; Schmidt, H.; Moed, B.; Tokunaga, T.

    1982-05-01

    The present study is the beginning phase of an effort to develop an understanding of the physico-chemical interactions that occur within two typical inactive uranium mill tailing piles under the jurisdiction of the UMTRA Program. These sites are located at Riverton, Wyoming and at Maybell, Colorado. The understanding is to be gained through integrated hydrological-geochemical-radiometric studies. Investigated are: (a) the release of contaminants to the interstitial fluid; and (b) the vertical transport of the contaminants either upward to the surface or downward to the water table. This investigation would determine the important contaminants, ascertain the influence of chemical/osmotic potentials (if any) on fluid movement, and investigate the possibility of temporal cycles in the upward/downward movement of fluids with seasonal changes in the moisture content of the piles. The field work carried out during fiscal 1981 extended from June to September. During this period, exploratory drilling was completed at six locations on the Riverton and Maybell piles. Over 141 Shelby tube samples were collected, which represent relatively undisturbed core samples of the tailings material. In order to gain a maximum advantage of the short time available before the onset of the winter, it was decided to concentrate the rest of the data collection at the Riverton site, where the water table is shallow.

  15. Mathematical simulation of contaminant distribution in and around the uranium mill tailing piles, Riverton, Wyoming

    SciTech Connect

    Narasimhan, T.N.; Tokunaga, T.; White, A.F.; Smith, A.R.

    1983-02-01

    As part of the Research and Development phase of the Uranium Mill Tailings Remedial Action (UMTRA) program, the Lawrence Berkeley Laboratory (LBL) has set itself the goal of explaining the physico-chemical evolution of the Riverton site on the basis of the already collected field data at the site (Tokunaga and Narasimhan, 1982, Smith and Moed, 1982; White et al., 1984). The predictive aspects as well as addressing the question of critical quantity of field data have to be considered during the design phase of the project as a joint effort between the LBL team and the construction engineers. At the present time, LBL is in the process of completing the Research and Development phase of the work. As of this writing, the development of an appropriate set of mathematical models has been completed. The computations of the soil-water regime at the upper tailings surface, involving climatological factors is nearing completion. Computations of chemical transport are still in progress. This paper is devoted to a description of the key mathematical issues, the mathematical models that are needed to address these issues and a discussion of the model results pertaining to the soil water regime at the tailings-atmosphere interface. 11 references, 3 figures.

  16. Annual replenishment of bed material by sediment transport in the Wind River near Riverton, Wyoming

    USGS Publications Warehouse

    Smalley, M.L.; Emmett, W.W.; Wacker, A.M.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Transportation, conducted a study during 1985-87 to determine the annual replenishment of sand and gravel along a point bar in the Wind River near Riverton, Wyoming. Hydraulic- geometry relations determined from streamflow measurements; streamflow characteristics determined from 45 years of record at the study site; and analyses of suspended-sediment, bedload, and bed- material samples were used to describe river transport characteristics and to estimate the annual replenishment of sand and gravel. The Wind River is a perennial, snowmelt-fed stream. Average daily discharge at the study site is about 734 cubic feet per second, and bankfull discharge (recurrence interval about 1.5 years) is about 5,000 cubic feet per second. At bankfull discharge, the river is about 136 feet wide and has an average depth of about 5.5 feet and average velocity of about 6.7 feet per second. Streams slope is about 0.0010 foot per foot. Bed material sampled on the point bar before the 1986 high flows ranged from sand to cobbles, with a median diameter of about 22 millimeters. Data for sediment samples collected during water year 1986 were used to develop regression equations between suspended-sediment load and water discharge and between bedload and water discharge. Average annual suspended-sediment load was computed to be about 561,000 tons per year using the regression equation in combination with flow-duration data. The regression equation for estimating bedload was not used; instead, average annual bedload was computed as 1.5 percent of average annual suspended load about 8,410 tons per year. This amount of bedload material is estimated to be in temporary storage along a reach containing seven riffles--a length of approximately 1 river mile. On the basis of bedload material sampled during the 1986 high flows, about 75 percent (by weight) is sand (2 millimeters in diameter or finer); median particle size is

  17. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect

    Dr. Ronald C. Surdam

    1999-08-01

    A primary objective of the Institute for Energy Research (IER)-Santa Fe Snyder Corporation DOE Riverton Dome project is to test the validity of a new conceptual model and resultant exploration paradigm for so-called ''basin center'' gas accumulations. This paradigm and derivative exploration strategy suggest that the two most important elements crucial to the development of prospects in the deep, gas-saturated portions of Rocky Mountain Laramide Basins (RMLB) are (1) the determination and, if possible, three-dimensional evaluation of the pressure boundary between normal and anomalous pressure regimes (i.e., this boundary is typically expressed as a significant inversion in both sonic and seismic velocity-depth profiles) , and (2) the detection and delineation of porosity/permeability ''sweet spots'' (i.e., areas of enhanced storage capacity and deliverability) in potential reservoir targets below this boundary. There are other critical aspects in searching for basin center gas accumulations, but completion of these two tasks is essential to the successful exploration for the unconventional gas resources present in anomalously pressured rock/fluid systems in the Rocky Mountain Laramide Basins. The southern Wind River Basin, in particular the Riverton Dome and Emigrant areas, is a neat location for testing this exploration paradigm. Preliminary work within the Wind River Basin has demonstrated that there is a regionally prominent pressure surface boundary that can be detected by inversions in sonic velocity depth gradients in individual well log profiles and that can be seen as a velocity inversion on seismic lines. Also, the Wind River Basin in general--and the Riverton Dome area specially--is characterized by a significant number of anomalously pressured gas accumulations. Most importantly, Santa Fe Snyder Corporation has provided the study with sonic logs, two 3-D seismic studies (40 mi{sup 2} and 30 mi {sup 2}) and a variety of other necessary geological and

  18. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    SciTech Connect

    Not Available

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

  19. Riverton Dome Gas Exploration and Stimulation Technology Demonstration, Wind River Basin, Wyoming

    SciTech Connect

    Ronald C. Surdam

    1998-11-15

    This project will provide a full demonstration of an entirely new package of exploration technologies that will result in the discovery and development of significant new gas reserves now trapped in unconventional low-permeability reservoirs. This demonstration includes the field application of these technologies, prospect definition and well siting, and a test of this new strategy through wildcat drilling. In addition this project includes a demonstration of a new stimulation technology that will improve completion success in these unconventional low permeability reservoirs which are sensitive to drilling and completion damage. The work includes two test wells to be drilled by Snyder Oil Company on the Shoshone/Arapahoe Tribal Lands in the Wind River Basin. This basin is a foreland basin whose petroleum systems include Paleozoic and Cretaceous source beds and reservoirs which were buried, folded by Laramide compressional folding, and subsequently uplifted asymmetrically. The anomalous pressure boundary is also asymmetric, following differential uplift trends. The Institute for Energy Research has taken a unique approach to building a new exploration strategy for low-permeability gas accumulations in basins characterized by anomalously pressured, compartmentalized gas accumulations. Key to this approach is the determination and three-dimensional evaluation of the pressure boundary between normal and anomalous pressure regimes, and the detection and delineation of areas of enhanced storage capacity and deliverability below this boundary. This new exploration strategy will be demonstrated in the Riverton Dome� Emigrant Demonstration Project (RDEDP) by completing the following tasks: 1) detect and delineate the anomalous pressure boundaries, 2) delineate surface lineaments, fracture and fault distribution, spacing, and orientation through remote sensing investigations, 3) characterize the internal structure of the anomalous pressured volume in the RDEDP and

  20. Evaluation of Mineral Deposits Along the Little Wind River, Riverton, WY, Processing Site

    SciTech Connect

    Campbell, Sam; Dam, Wiliam

    2014-12-01

    In 2012, the U.S.Department of Energy (DOE) began reassessing the former Riverton, Wyoming, Processing Site area for potential contaminant sources impacting groundwater. A flood in 2010 along the Little Wind River resulted in increases in groundwater contamination (DOE 2013).This investigation is a small part of continued efforts by DOE and other stakeholders to update human health and ecological risk assessments, to make a comprehensive examination of all exposure pathways to ensure that the site remains protective through established institutional controls. During field inspections at the Riverton Site in 2013, a white evaporitic mineral deposit was identified along the bank of the Little Wind River within the discharge zone of the groundwater contamination plume. In December 2013, Savannah River National Laboratory (SRNL) personnel collected a sample for analysis by X-ray fluorescence (Figure 1 shows the type of material sampled). The sample had a uranium concentration of approximately 64 to 73 parts per million. Although the uranium in this mineral deposit is within the expected range for evaporatic minerals in the western United States (SRNL 2014), DOE determined that additional assessment of the mineral deposit was warranted. In response to the initial collection and analysis of a sample of the mineral deposit, DOE developed a work plan (Work Plan to Sample Mineral Deposits Along the Little Wind River, Riverton, Wyoming, Processing Site [DOE 2014]) to further define the extent of these mineral deposits and the concentration of the associated contaminants (Appendix A). The work plan addressed field reconnaissance, mapping, sampling, and the assessment of risk associated with the mineral deposits adjacent to the Little Wind River.

  1. A Multifaceted Sampling Approach to Better Understanding Biogeochemical and Hydrogeological Controls on Uranium Mobility at a Former Uranium Mill Tailings Site in Riverton, Wyoming

    NASA Astrophysics Data System (ADS)

    Dam, W. L.; Johnson, R. H.; Campbell, S.; Bone, S. E.; Noel, V.; Bargar, J.

    2015-12-01

    Understanding uranium mobility in subsurface environments is not trivial. Obtaining sufficient data to accurately represent soil and aquifer characteristics can require unique approaches that evolve with added site knowledge. At Riverton, the primary source of uranium mill tailings remaining from ore processing was removed but contaminant plumes have persisted longer than predicted by groundwater modeling. What are the primary mechanisms controlling plume persistence? DOE is conducting new characterization studies to assist our understanding of underlying biogeochemical and hydrogeological mechanisms affecting secondary sources. A variety of field sampling techniques are being sequentially employed including augering, trenching, pore water sampling, and installing multi-level wells. In August 2012, vadose zone soil samples from 34 locations and groundwater from 103 boreholes were collected with Geoprobe ® direct push rods. Lower than expected uranium concentrations in composited shallow soils indicated the need for more focused and deeper samples. In May 2014, soil samples containing evaporites were collected along the bank of the Little Wind River; elevated uranium concentrations in evaporite minerals correlated with plume configurations and reflect contaminated groundwater discharge at the river. In September 2014, hand anger samples collected by the river and oxbow lake also indicated the presence of organic rich zones containing elevated uranium (>50 mg/kg). Subsequent samples collected from five backhoe trenches in May 2015 revealed a highly heterogeneous vadose zone composed of clay, silt, sand and cobbles containing evaporites and organic rich zones which may interact with groundwater plumes.Plans for August 2015 include sonic drilling to obtain continuous cores from the surface down to the base of the surficial aquifer with multi-level monitoring wells constructed in each borehole to assess vertical variation in groundwater chemistry. Temporary well

  2. Energy map of southwestern Wyoming, Part A - Coal and wind

    USGS Publications Warehouse

    Biewick, Laura R.H.; Jones, Nicholas R.

    2012-01-01

    To further advance the objectives of the Wyoming Landscape Conservation Initiative (WLCI) the U.S. Geological Survey (USGS) and the Wyoming State Geological Survey (WSGS) have compiled Part A of the Energy Map of Southwestern Wyoming. Focusing primarily on electrical power sources, Part A of the energy map is a compilation of both published and previously unpublished coal (including coalbed gas) and wind energy resources data, presented in a Geographic Information System (GIS) data package. Energy maps, data, documentation and spatial data processing capabilities are available in a geodatabase, published map file (pmf), ArcMap document (mxd), Adobe Acrobat PDF map (plate 1) and other digital formats that can be downloaded at the USGS website. Accompanying the map (plate 1) and the geospatial data are four additional plates that describe the geology, energy resources, and related infrastructure. These tabular plates include coal mine (plate 2), coal field (plate 3), coalbed gas assessment unit (plate 4), and wind farm (plate 5) information with hyperlinks to source publications and data on the internet. The plates can be printed and examined in hardcopy, or accessed digitally. The data represent decades of research by the USGS, WSGS, BLM and others, and can facilitate landscape-level science assessments, and resource management decisionmaking.

  3. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    USGS Publications Warehouse

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  4. Airborne radioactivity Survey of part of Saratoga NW quadrangle, Carbon County, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 133 square miles of Saratoga NW quadrangle, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater Counties by the U. S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission.

  5. Airborne radioactivity surveys of parts of Savery SW and Savery SE quadrangles, Carbon County, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 222 square miles of Savery SW and Savery SE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater Counties by the U. S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission.

  6. Airborne radioactivity survey of parts of Savery NW and Savery NE quadrangles, Carbon County, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 266 square miles of Savery NW and Savery NE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater Counties by the U. S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission.

  7. 75 FR 19920 - Approval and Promulgation of Air Quality Implementation Plans; Wyoming; Revisions to the Wyoming...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Wyoming; Revisions to the Wyoming Air Quality Standards and Regulations AGENCY: Environmental Protection Agency (EPA...) revisions submitted by the State of Wyoming on September 11, 2008. Wyoming has revised its Air...

  8. Uranium-bearing coal in the central part of the Great Divide basin, Sweetwater County, Wyoming

    USGS Publications Warehouse

    Pipiringos, George Nicholas

    1956-01-01

    Field work leading to this report was done by the U.S. Geological Survey for the Division of Raw Materials of the U.S. Atomic Energy Commission. Nearly 24 townships were mapped in the central part of the Great Divide Basin, Sweetwater County, Wyoming. Fourteen of these townships contain outcrops of uranium-bearing coal. Thirty coal beds were mapped, but only seven of them have uranium-bearing coal reserves as defined in this report. Coal beds 2.5 or more feet thick are considered in calculating coal reserves, and of these, only beds containing 0.003 or more percent uranium are considered in calculating reserves of uranium in coal. Reserves of uranium in coal ash include those beds 2.5 or more feet thick that contain 0.015 or more percent uranium in coal ash. Measured and indicated coal reserves total about 700,000,000 short tons which contain about 2,600 short tons of uranium in the coal, or about 2,400 short tons of uranium in the coal ash. Strippable reserves, defined as reserves in beds beneath 60 or less feet of overburden, are about 250,000,000 short tons of coal containing about 1,100 short tons of uranium in coal, or about 600 tons of uranium in coal ash. The thickest coal beds underlie a relatively narrow belt that trends northwest and coincides approximately with the axis of the Red Desert syncline. The coal beds contain the most uranium on the east flank of the syncline near the southwesternmost edge of the Battle Spring formation (new). This formation is of early and middle Eocene age and consists predominantly of very coarse-grained arkosic sandstone which is highly permeable. It intertongues southwestward with the Tess permeable Green River and Wasatch formations. The Green River formation consists from youngest to oldest of the Morrow Creek and Laney shale members and the Tipton and Luman (new) tongues. The Wasatch formation interfingers with the Green River formation and consists from youngest to oldest of the Cathedral Bluffs, Niland, and Red Desert

  9. Geohydrology of bedrock aquifers in the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming

    SciTech Connect

    Downey, J.S.

    1986-01-01

    Development of energy-related resources in the northern Great Plains of the US will require large quantities of ground water. Because Montana, North Dakota, and Wyoming are semiarid, the primary local sources of nonappropriated water are the deep bedrock aquifers of Paleozoic and Mesozoic age. The US Geological Survey undertook a 4-year interdisciplinary study that has culminated in a digital-simulation model of the regional flow system and incorporates the results of geochemical, hydrologic, and geologic studies. Rocks of Paleozoic and Mesozoic age form at least five artesian aquifers that are recharged in the mountainous areas of Montana, South Dakota, and Wyoming. The aquifers extend for more than 600 mi to discharge areas in the northeastern part of North Dakota and in Manitoba. In general, the direction of flow in each aquifer is east to northeast, but flow is deflected to the north and south around the Williston basin. Flow through the Williston basin is restricted because of brine (200,000-350,000 mg/l), halite beds, geologic structures, and decreased permeability of rocks in the deeper parts of the basin. Fracture systems and lineaments transverse the entire area and act either as conduits or as barriers to ground-water flow, depending on their hydrogeologic and geochemical history. Vertical leakage from the aquifers is restricted by shale with low permeability, by halite beds, and by stratigraphic traps or low-permeability zones associated with petroleum accumulations. However, interaquifer leakage appears to occur through and along some of the major lineaments and fractures. Interaquifer leakage may be a major consideration in determining the quality of water produced from wells.

  10. Depositional and thermal history of Lower Triassic rocks in southwestern Montana and adjacent parts of Wyoming and Idaho

    SciTech Connect

    Paull, R.K.; Paull, R.A.; Kraemer, B.R. )

    1989-09-01

    Forty-two stratigraphic sections in Montana and adjacent parts of Wyoming and Idaho provide the framework for a conodont biostratigraphic and carbonate sedimentologic analysis of Lower Triassic marine rocks. From oldest to youngest, these units are the Dinwoody, Woodside (Red Peak to the east), and Thaynes Formations. The Dinwoody disconformably overlies Upper Permian rocks with little or no physical evidence of a 1 to 6-m.y. hiatus. The initial Triassic transgression was extensive and geologically instantaneous across the study area, and it resulted in deposition of interbedded calcareous mudstone, siltstone, and limestone. The Dinwoody varies in thickness from zero on the northeast to greater than 270 m in the southwest. Maximum thicknesses of Woodside red beds and Thaynes carbonates and siltstones are 244 and 400 m, respectively. Post-Triassic erosion progressively truncated the Thaynes, Woodside, and Dinwoody from north to south across the region. The western margin of the Triassic seaway in the study area is obscured by erosion, structural complexities, igneous activity, and younger sedimentary deposits. The sparse and scattered exposures that remain provide an intriguing mosaic of depositional environments that range from shallow marine to basinal and represent most of Early Triassic time. Lower Triassic rocks produce gas in the Wyoming-Idaho thrust belt, and similar potential may exist in Montana. Conodonts recovered from surface exposures are thermally unaltered except in close proximity to intrusive bodies and within the Medicine Lodge thrust system. This establishes that subsurface units in much of the study area are within the temperature regime for dry gas generation.

  11. Wyoming: Territory to Statehood, Unit VI.

    ERIC Educational Resources Information Center

    Robinson, Terry

    Designed for elementary school students, this unit on the Wyoming evolution from territory to statehood provides concepts, activities, stories, resources, and maps. Concepts stress the five national flags which have flown over Wyoming, several other territories Wyoming was a part of, construction of the Union Pacific railroad, problems of the new…

  12. Reconnaissance of uranium and copper deposits in parts of New Mexico, Colorado, Utah, Idaho, and Wyoming

    USGS Publications Warehouse

    Gott, Garland B.; Erickson, Ralph L.

    1952-01-01

    Because of the common association of uranium and copper in several of the commercial uranium deposits in the Colorado Plateau Province, a reconnaissance was made of several known deposits of copper disseminated through sandstone to determine whether they might be a source of uranium. In order to obtain more information regarding the relationship between copper, uranium and carbonaceous materials, some of the uraniferious asphaltrite deposits in the Shinarump conglomerate along the west flank of the San Rafael Swell were also investigated briefly. During this reconnaissance 18 deposits were examined in New Mexico, eight in Utah, two in Idaho, and one each in Wyoming and Colorado. No uranium deposits of commercial grade are associated with the copper deposits that were examined. The uraniferous asphaltites in the Shinarump conglomerate of Triassic age on the west flank of the San Rafael Swell, however, are promising from the standpoint of commercial uranium production. Spectrographic analyses of crude oil, asphalt, and bituminous shales show a rather consistent suite of trace metals including vanadium, nickel, copper, cobalt, chromium, lead zinc, and molybdenum. The similarity of the metal assemblage, including uranium of the San Rafael Swell asphaltites, to the metal assemblage in crude oil and other bituminous materials suggests that these metals were concentrated in the asphaltites from petroleum. However, the hypothesis that uranium minerals were already present before the hydrocarbons were introduced and that some sort of replacement or uranium minerals by carbon compounds was effected after the petroleum migrated into the uranium deposit should not be disregarded. The widespread association of uranium with asphaltic material suggests that it also may have been concentrated by some agency connected with the formation of petroleum. The problem of the association of uranium and other trace metals with hydrocarbons should be studied further both in the field and in

  13. Geohydrology of bedrock aquifers in the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming

    USGS Publications Warehouse

    Downey, J.S.

    1986-01-01

    Rocks of Paleozoic and Mesozoic age underlie the entire northern Great Plains of the United States. These rocks form 5 artesian aquifer systems that are recharged in the mountainous areas of Montana, South Dakota, and Wyoming and extend more than 600 miles to discharge areas in the northeastern part of North Dakota and in the Canadian Province of Manitoba. Generally, the principal direction of flow in each aquifer is deflected to the north and south around the Williston basin. Flow through the Williston basin is restricted because of geologic structure, and decreased permeability of rocks in the deeper parts of the basin. Major fracture systems or lineaments traverse the geologic section and are either vertical or horizontal conduits, or barriers to, groundwater flow. Vertical leakage from the aquifers is restricted by shale of minimal permeability, halite beds, and stratigraphic traps or minimal-permeability zones associated with petroleum accumulations. Interaquifer leakage appears to occur through and along some of the major lineaments. During the Pleistocene Epoch, thick ice sheets completely covered the discharge areas of the bedrock aquifers. This effectively blocked flow northeastward from the system and, at some locations, it may have caused a reversal of flow. The existing flow, system therefore, may not have reached hydrologic equilibrium with the stress of the last glacial period. (USGS)

  14. Digital map of water levels in 1980 for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1999-01-01

    This report contains digital data and accompanying documentation for contours for 1980 water-level elevations for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created by digitizing the 1980 water-level elevation contours from a 1:1,000,000-scale base map created by the U.S. Geological Survey High Plains Regional Aquifer Systems-Analysis (RASA) project (Gutentag, E.D., Heimes, F.J., Krothe, N.C., Luckey, R.R., and Weeks, J.B., 1984, Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological Survey Professional Paper 1400-B, 63 p.) The data are not intended for use at scales larger than 1:1,000,000.

  15. Digital map of saturated thickness in 1980 for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, South Dakota, Texas, Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1999-01-01

    This report contains digital data and accompanying documentation for saturated thickness contours of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created by digitizing the saturated thickness contours from a 1:1,000,000-scale base map created by the U.S. Geological Survey High Plains Regional Aquifer-System Analysis (RASA) project (Gutentag, E.D., Heimes, F.J., Krothe, N.C., Luckey, R.R., and Weeks, J.B., 1984, Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological Survey Professional Paper 1400-B, 63 p.) The data are not intended for use at scales larger than 1:1,000,000.

  16. A critical review of published coal quality data from the southwestern part of the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Luppens, James A.

    2011-01-01

    A review of publicly available coal quality data during the coal resource assessment of the southwestern part of the Powder River Basin, Wyoming (SWPRB), revealed significant problems and limitations with those data. Subsequent citations of data from original sources often omitted important information, such as moisture integrity and information needed to evaluate the issue of representativeness. Occasionally, only selected data were quoted, and some data were misquoted. Therefore, it was important to try to resolve issues concerning both the accuracy and representativeness of each available dataset. The review processes demonstrated why it is always preferable to research and evaluate the circumstances regarding the sampling and analytical methodology from the original data sources when evaluating coal quality information, particularly if only limited data are available. Use of the available published data at face value would have significantly overestimated the coal quality for all the coal fields from both the Fort Union and Wasatch Formations in the SWPRB assessment area. However, by using the sampling and analytical information from the original reports, it was possible to make reasonable adjustments to reported data to derive more realistic estimates of coal quality.

  17. Sedimentologic and stratigraphic framework of the upper part of the Fort Union Formation, western Powder River basin, Wyoming

    USGS Publications Warehouse

    Weaver, J.N.; Flores, R.M.

    1987-01-01

    The purpose of this study is to describe the stratigraphy and interpret the environments of deposition in the upper part of the Paleocene Fort Union Formation. Of all the lithofacies present within the study area, sandstone is the most dominant and makes up most of the upper part of the Fort Union Formation along the western edge of the Powder River basin, Wyoming. This sandstone lithofacies occurs in three forms: 1) pink conglomeratic sandstone, 2) coarse-grained sandstone, and 3) fine-grained sandstone. The pink conglomeratic sandstone lithofacies forms a series of Stacked channel bodies in which the clasts are as much as 1 3/4 in. in diameter. The coarse-grained sandstone lithofacies is laterally equivalent to the pink conglomeratic sandstone sequence, but contains smaller clasts; it is arranged en echelon (offset) to the north. The fine-grained sandstone lithofacies, limited to the northern part of the study area, is not as laterally continuous as the pink conglomeratic sandstone lithofacies to the south. Basal lag conglomerate underlies both the conglomeratic sandstone and coarse-grained sandstone lithofacies, but not the fine-grained sandstone. The presence of a fine-grained sandstone lithofacies lateral to the conglomeratic sandstone and coarse-grained sandstone lithofacies suggests the presence of a coarse-grained braided and meandering fluvial system coeval with a fine-grained meandering fluvial system.. The meandering fluvial systems drained the alluvial plain flanking the Bighorn Mountains on the west and the Casper arch on the southwest, and flowed north-northeastward within the Powder River basin.

  18. Sedimentology of Permian upper part of the Minnelusa Formation, eastern Powder River basin, Wyoming, and a comparison to the subsurface

    SciTech Connect

    Schenk, C.J.; Schmoker, J.W.; Fox, J.E.

    1993-04-01

    Outcrops of the Permian upper part of the Minnelusa Formation near Beulah, Wyoming consist of dolomite, gypsum, and sandstone units deposited in transgressive-regressive cycles. Three depositional cycles are partly exposed in the Simons Ranch anticline near Beulah, and provide an opportunity to view fades of the upper Minnelusa Formation in three dimensions. The cycles observed in outcrop were informally labelled cycle 1, cycle 2, and cycle 3 in ascending stratigraphic order. Cycle 2 contains a basal, laterally extensive sabkha sandstone and an overlying, laterally restricted sandstone that represents a preserved eolian-dune complex. The eolian-dune sandstone of cycle 2 was partially reworked during the marine transgression that initiated cycle 3. The eolian-dune deposit grades laterally into an apron of contorted and massive-bedded sandstones that formed as water-saturated sands liquified and slumped from the margins of the eolian dune. The partially reworked eolian-dune topography was covered by gypsum beds of cycle 3. The sandstone of cycle 3 is interpreted as a laterally continuous sabkha sandstone. West Mellott field (secs. 8, 9, T52N, R68W) represents a subsurface example of the facies and facies relationships observed in outcrop. The eolian-dune sandstone of the C cycle, which was partially reworked by the transgression of the B cycle, produces oil at West Mellott. The draping of dolomite and anhydrite of the B cycle on the eolian-dune sandstone of the C cycle is analogous to the draping of gypsum on dune sand in cycle 2 in outcrop.

  19. Northwest corner of Wyoming

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A near vertical view of the snow-covered northwest corner of Wyoming (43.5N, 109.5W), as seen from the Skylab space station in Earth orbit. A small portion of Montana and Idaho is in this photograph, also. The dark area is Yellowstone National Park. The largest body of water is Yellowstone Lake. The elongated range in the eastern part of the picture is the Big Horn Moutains. The Wind River Range is at the bottom center. The Grand Teton National Park area is almost straight south of Yellowstone Lake. Approximately 30 per cent of the State of Wyoming can be seen in this photograph.

  20. Wyoming Government, Unit VII.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on Wyoming government presents concepts, activities, and stories for elementary school students. Concepts stress that the functions of government are determined according to the demands, needs, and traditions of the people; each part of government has a special function; as citizens, we should be loyal to the underlying concepts of our…

  1. Status of ownership of part of the lands on which phosphate-bearing beds outcrop in westernmost Wyoming

    USGS Publications Warehouse

    Willey, Emerson C.; Cheney, T.M.; Peirce, H.W.; Grose, L.T.

    1955-01-01

    This report and accompanying maps summarize the status of ownership of many phosphate bearing lands in westernmost Wyoming. Ownership categories discussed are (1) phosphate rights owned by Federal Government, (2) phosphate rights not owned by Federal Government, and (3) ownership status uncertain.

  2. Outcrops, Fossils, Geophysical Logs, and Tectonic Interpretations of the Upper Cretaceous Frontier Formation and Contiguous Strata in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Merewether, E.A.; Cobban, W.A.; Tillman, R.W.

    2010-01-01

    In the Bighorn Basin of north-central Wyoming and south-central Montana, the Frontier Formation of early Late Cretaceous age consists of siliciclastic, bentonitic, and carbonaceous beds that were deposited in marine, brackish-water, and continental environments. Most lithologic units are laterally discontinuous. The Frontier Formation conformably overlies the Mowry Shale and is conformably overlain by the Cody Shale. Molluscan fossils collected from outcrops of these formations and listed in this report are mainly of marine origin and of Cenomanian, Turonian, and Coniacian ages. The lower and thicker part of the Frontier in the Bighorn Basin is of Cenomanian age and laterally equivalent to the Belle Fourche Member of the Frontier in central Wyoming. Near the west edge of the basin, these basal strata are disconformably overlain by middle Turonian beds that are the age equivalent of the Emigrant Gap Member of the Frontier in central Wyoming. The middle Turonian beds are disconformably overlain by lower Coniacian strata. Cenomanian strata along the south and east margins of the basin are disconformably overlain by upper Turonian beds in the upper part of the Frontier, as well as in the lower part of the Cody; these are, in turn, conformably overlain by lower Coniacian strata. Thicknesses and ages of Cenomanian strata in the Bighorn Basin and adjoining regions are evidence of regional differential erosion and the presence of an uplift during the early Turonian centered in northwestern Wyoming, west of the basin, probably associated with a eustatic event. The truncated Cenomanian strata were buried by lower middle Turonian beds during a marine transgression and possibly during regional subsidence and a eustatic rise. An uplift in the late middle Turonian, centered in north-central Wyoming and possibly associated with a eustatic fall, caused the erosion of lower middle Turonian beds in southern and eastern areas of the basin as well as in an adjoining region of north

  3. Airborne radioactivity survey of parts of Baggs SW and Baggs SE quadrangles, Carbon and Sweetwater counties, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 151 square miles of Baggs SW and Baggs SE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater counties by the U.S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a C-47 aircraft and consisted of parallel east-west flight lines spaced at quarter mile intervals, flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyrostabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. The width of the zone on the ground form which the anomalous radiation is measured at the nominal 500 foot flight altitude varied with the areal extent and the intensity of radioactivity of the source. For strong sources of radioactivity the width of the zone may be as much as 1,400 feet. Thus, quarter mile spacing of the flight lines would be adequate to detect anomalies from strong sources of radioactivity; however, small areas of considerable radioactivity midway between flight lines may not be noted. The approximate locations of twelve radioactivity anomalies are shown on the accompanying map. The plotted position of the anomalies may be in error by as much as a quarter mile owing to the errors in available base maps or to the existence of areas on the base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. The radioactivity

  4. Airborne radioactivity survey of parts of Sand Creek SW and Sand Creek SE quadrangles, Sweetwater county, Wyoming

    USGS Publications Warehouse

    Henderson, J.R.

    1954-01-01

    The accompanying map shows the results of an airborne radioactivity survey in 125 square miles of Sand Creek SW and Sand Creek SE quadrangles, Wyoming. This area is part of a larger survey made in southern Carbon and Sweetwater counties by the U.S. Geological Survey, November 9-24, 1953. The work was undertaken as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a C-47 aircraft and consisted of parallel east-west flight lines spaced at quarter mile intervals, flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyrostabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. The width of the zone on the ground form which the anomalous radiation is measured at the nominal 500 foot flight altitude varied with the areal extent and the intensity of radioactivity of the source. For strong sources of radioactivity the width of the zone may be as much as 1,400 feet. Thus, quarter mile spacing of the flight lines would be adequate to detect anomalies from strong sources of radioactivity; however, small areas of considerable radioactivity midway between flight lines may not be noted. The approximate locations of nine radioactivity anomalies are shown on the accompanying map. The plotted position of the anomalies may be in error by as much as a quarter mile owing to the errors in available base maps or to the existence of areas on the base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The present technique of airborne radioactivity measurement does not permit distinguishing between activity due to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. The

  5. Digital map of aquifer boundary for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1999-01-01

    This report contains digital data and accompanying documentation for aquifer boundaries for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was compiled from a digital coverage that was created for publication of paper maps in McGrath and Dugan (1993, Water-level changes in the High Plains aquifer -- predevelopment to 1991: U.S. Geological Survey Water-Resources Investigations Report 93-4088, 53 p.) The data are not intended for use at scales larger than 1:1,000,000.

  6. Workforce: Wyoming

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    From 2002 to 2012, the economy in Wyoming and the nation will continue generating jobs for workers at all levels of education and training, but there will be an increasing demand for employees with at least some postsecondary education, preferably a bachelor's degree. Nationwide, during a decade that will witness large numbers of baby boomers…

  7. Preliminary geologic mapping of Cretaceous and Tertiary formations in the eastern part of the Little Snake River coal field, Carbon County, Wyoming

    USGS Publications Warehouse

    Haacke, Jon E.; Barclay, C. S. Venable; Hettinger, Robert D.

    2016-09-30

    In the 1970s and 1980s, C.S. Venable Barclay conducted geologic mapping of areas primarily underlain by Cretaceous coals in the eastern part of the Little Snake River coal field (LSR) in Carbon County, southwest Wyoming. With some exceptions, most of the mapping data were never published. Subsequently, after his retirement from the U.S. Geological Survey (USGS), his field maps and field notebooks were archived in the USGS Field Records. Due to a pending USGS coal assessment of the Little Snake River coal field area and planned geological mapping to be conducted by the Wyoming State Geological Survey, Barclay’s mapping data needed to be published to support these efforts. Subsequently, geologic maps were scanned and georeferenced into a geographic information system, and project and field notes were scanned into Portable Document Format (PDF) files. Data for seventeen 7½-minute quadrangles are presented in this report. This publication is solely intended to compile the mapping data as it was last worked on by Barclay and provides no interpretation or modification of his work.

  8. An assessment of cumulative impacts of coal mining on the hydrology in part of the Powder River structural basin, Wyoming; a progress report

    USGS Publications Warehouse

    Jordan, P.R.; Bloyd, R.M.; Daddow, P.B.

    1984-01-01

    The U.S. Geological Survey and the Wyoming Department of Environmental Quality are involved in a cooperative effort to assess the probable cumulative impacts of coal mining on the hydrology of a part of the Powder River Structural Basin in Wyoming. It was assumed that the principal impacts on the ground-water system due to mining will occur in the relatively shallow aquifers which can be grouped into three homogeneous aquifers, namely, the Wyodak coal, the overburden, and the under burden. Emphasis of this report is on the results of analysis of surface-water resources in the Caballo Creek drainage. A surface-water model of the Caballo Creek drainage was developed using the Hydrological Simulation Program-Fortran model to help assess the impacts of mining activities on streamflow. The Caballo Creek drainage was divided into 10 land segments and 6 stream reaches in the modeling process. Three simulation runs show little, if any, change in streamflow between pre- and post-mining conditions and very little change between pre-mining and during-mining conditions. The principal reason for the absence of change is the high infiltration rate used in the model for all three conditions. (USGS)

  9. A comparison of trace element concentrations in biota from four irrigation projects in Wyoming

    SciTech Connect

    Ramirez, P. Jr.; Jennings, M.; Dickerson, K.

    1994-12-31

    Irrigation drainwater can or has the potential to cause the mobilization of trace elements into the food chain and adversely affect fish and aquatic birds. Because of the semi-arid climate, irrigation is a necessary component of agriculture in Wyoming. Biota from four irrigation projects in Wyoming were collected and analyzed for trace element concentrations between 1988 and 1990. The irrigation projects included: the Kendrick Reclamation Project, Natrona County; the Riverton Reclamation Project, Fremont County; the Shoshone Irrigation Project, Park and Bighorn counties; and the Wind River Irrigation Project, Fremont County. Selenium concentrations were elevated in aquatic vegetation, aquatic invertebrates, bird eggs, bird livers and fish from the Kendrick Reclamation Project. Reproductive impairment and embryo teratogenesis was documented at the Kendrick Reclamation Project. Trace element concentrations in most biological samples from the three other irrigation projects were less than levels suspected of causing adverse effects. However, at the Riverton Reclamation Project, selenium concentrations in some samples of aquatic vegetation, aquatic invertebrates, fish and fish eggs exceeded concentrations associated with adverse effects. Differences in selenium concentrations in the four irrigation projects can be explained by the extent of seleniferous formations and soils, and the presence of closed basin wetlands.

  10. MAP OF ECOREGIONS OF WYOMING

    EPA Science Inventory

    The ecoregions of Wyoming have been identified, mapped, and described and provide a geographic structure for environmental resources research, assessment, monitoring, and management. This project is part of a larger effort by the U.S. EPA to create a national, hierarchical ecore...

  11. Wyoming Kids Count Factbook, 1997.

    ERIC Educational Resources Information Center

    Wyoming Kids Count, Cheyenne.

    This Kids Count factbook details statewide trends in the well-being of Wyoming's children. The 1997 report has been expanded to include detailed information on the status of children by categories of welfare, health, and education. The first part of the factbook documents trends by county for 15 indicators: (1) poverty and population; (2)…

  12. Wyoming Strategic Plan, 2005

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2005

    2005-01-01

    Wyoming's colleges offer much more than academic and occupational technical degrees and certificates. In 2000, 27,703 Wyoming citizens, age 25 years and older, did not have a high school diploma. For this 12.14% of Wyoming's population, the Adult Basic Education (ABE) program at each of the colleges is designed to equip these adults with the…

  13. Digital map of changes in water levels from predevelopment to 1980 for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1999-01-01

    This report contains digital data and accompanying documentation for contours of predevelopment to 1980 water-level elevation changes for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created by digitizing the contours for predevelopment to 1980 water-level elevation change from a 1:1,000,000-scale base map created by the U.S. Geological Survey High Plains Regional Aquifer-System Analysis (RASA) project (Gutentag, E.D., Heimes, F.J., Krothe, N.C., Luckey, R.R., and Weeks, J.B., 1984, Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological Survey Professional Paper 1400-B, 63 p.) The data are not intended for use at scales larger than 1:1,000,000.

  14. Depositional environments in an alluvial-lacustrine system: molluscan paleoecology and lithofacies relations in upper part of Tongue River Member of Fort Union Formation, Powder River Basin, Wyoming

    SciTech Connect

    Hanley, J.H.; Flores, R.M.

    1983-03-01

    The upper part of the Tongue River Member of the Fort Union Formation (Paleocene) in the northern Powder River basin, Wyoming, contains assemblages of excellently preserved nonmarine mollusks which occur in laterally continuous outcrops of diverse lithologic sequences and sedimentary structures. Three facies are recognized vertically within an alluvial-lacustrine system. The interfluvial lake and lake splay facies is characterized by sequences of coarsening-upward detritus, abundant continuous limestone beds, and few beds of discontinuous coal and continuous carbonaceous shale. Limestones contain two lacustrine mollusk assemblages: a locally reworked assemblage dominated by the bivalve Plesielliptio (two species), and the gastropods Viviparus, Lioplacodes (three species), and Clenchiella; and a quite-water assemblage dominated by sphaeriid bivalves. The interfluvial crevasse splay-crevasse channel facies is characterized by sequences of coarsening-upward detritus and few discontinuous limestone beds, separated vertically by thick, continuous coal and carbonaceous shale beds. This facies includes small crevasse channel sandstones which scour into splay sandstones. Biofabric of lacustrine mollusk assemblages, which are identical in composition (but with dwarfed species of Plesielliptio) to locally reworked lacustrine assemblages of the interfluvial lake and lake splay facies, reflects deterioration of lakes through active infilling by crevasses. The fluvial channel and interchannel facies is typified by thick channel sandstones laterally separated by sequences of coarsening-upward detritus, overbank sediments, and rare limestones. This facies includes thick, continuous coal and carbonaceous shale beds.

  15. Digital map of areas of little or no saturated thickness for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1999-01-01

    This report contains digital data and accompanying documentation for boundaries of areas of little or no saturated thickness within the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was compiled from a digital coverage that was created for publication of paper maps in McGrath and Dugan (1993, Water-level changes in the High Plains aquifer -- predevelopment to 1991: U.S. Geological Survey Water-Resources Investigations Report 93-4088, 53 p.) The data are not intended for use at scales larger than 1:1,000,000.

  16. Wyoming Kids Count in Wyoming Factbook, 1999.

    ERIC Educational Resources Information Center

    Wyoming Children's Action Alliance, Cheyenne.

    This Kids Count factbook details statewide trends in the well-being of Wyoming's children. Following an overview of key indicators and data sources, the factbook documents trends by county for 20 indicators, including the following: (1) poverty and population; (2) welfare reform; (3) certified day care facilities; (4) births; (5) infant deaths;…

  17. Einstein in Wyoming.

    ERIC Educational Resources Information Center

    Elliot, Ian

    1996-01-01

    Describes "Einstein's Adventurarium," a science center housed in an empty shopping mall in Gillette, Wyoming, created through school, business, and city-county government partnership. Describes how interactive exhibits allow exploration of life sciences, physics, and paleontology. (KDFB)

  18. Wyoming Snowmelt 2013

    NASA Video Gallery

    Images from NASA/USGS Landsat satellites show the snow cover in Wyoming's Fremont Lake Basin throughout 2013. NASA scientists have used Landsat data from 1972-2013 to determine that the snow is mel...

  19. Petrology of Archean greenstone in Wyoming Province - Part 1: Thermal effects of Louis Lake batholith on Archean greenstones at South Pass, in southern Wind River Range-

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Yuasa, T.; Adachi, T.; Ogasawara, Y.

    2005-12-01

    South Pass Area is one of the greenstone belts in Wyoming Province. This area is famous for sequence of greenstones and iron mine ``Atlantic Mine". BIFs form a part of the sequence. Archean greenstones occur along the later Archean batholith (Louis Lake batholith). This greenstone belt locates to the east of the batholith and extends south and north direction. This is composed of four units from west to east; ultramafic to mafic rock unit, BIF-bearing pelitic rock unit, mafic rock unit, and metavolcanic - metagraywacke unit. These units are parallel to a contact between this greenstone belt and Louis Lake batholith. BIFs also lie along the contact about 0.3 km east. Several previous studies suggested that these greenstones were metamorphosed under conditions of amphibolite, and locally greenschist. However we discovered a lot of ``actinolite-facies" rocks that exposed in vicinity to high- grade garnet-bearing schists within 1 km. Therefore, it is necessary to clear the metamorphic grade and metamorphic history of the Archean greenstones in the South Pass Area. Actinolite is dominant constituent mineral in greenstones in far side (more than 1 km) of the Louis Lake batholith. We called these rocks ``actinolite-facies" rocks. Actinolite-facies rocks have a mineral assemblage of Act + Ab. Albite grains were mostly replaced by epidote. Actinolite grains have thin bluish-green hornblende rims like corona texture. Evidence for volcanic textures was observed. Pillow lava structure occurs about 3 km away from the Louis Lake batholith. A unit of pillow lava structure (7.5 cm _~ 20 cm, rim 0.5 cm width) is composed of pale green core and thin dark gray rim (chilled margin of pillow structure). The core assemblage is Ep + Chl + Qtz + Carb. The thin rim is composed of euhedral epidote, very fine-grained chlorite, and quartz. A volcanic texture was confirmed in this pillow lava structure. Albite grains preserve a relic intergranular texture in the part of these rocks. Relic

  20. Bitter bonanza in Wyoming

    SciTech Connect

    Randall, D.

    1980-12-01

    Mineral and energy-related exploration, such as the drilling activity in the Overthrust Belt for petroleum, has made Wyoming a leading energy supplier in the U.S. The energy boom has had many unfortunate effects on the state's environment. Environmental degradation caused by exploration and production in Wyoming includes loss of habitat, poaching of wildlife, water pollution from oil dumping and erosion, and impacts from squatter's camps.

  1. Energy Development Opportunities for Wyoming

    SciTech Connect

    Larry Demick

    2012-11-01

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  2. Plan of study for the High Plains regional aquifer-system analysis in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Weeks, John B.

    1978-01-01

    The Ogallala Formation and associated Tertiary and Quarternary deposits from the principal aquifers supporting irrigation in the High Plains of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The volume of water in storage within the aquifers is declining in most of the High Plains because water is being withdrawn in excess of the rate of replenishment. The U.S. Geological Survey has initiated a 5-year study of the High Plains aquifer system to develop the geohydrologic data base and computer models of the ground-water flow system needed to evaluate the response of the aquifer system to ground-water management alternatives. This report describes the objectives, plan, and organization of the study and outlines the work to be accomplished in each State in the study area. (Woodard-USGS)

  3. Wyoming Indians, Unit II.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on Wyoming Indians provides concepts, activities, Indian stories, and resources for elementary school students. Indian values and contributions are summarized. Concepts include the incorrectness of the term "Indian," the Indians' democratic society and sophisticated culture, historical events, and conflicts with whites over the land.…

  4. Ecological Status of Wyoming Streams, 2000-2003

    USGS Publications Warehouse

    Peterson, David A.; Hargett, Eric G.; Wright, Peter R.; Zumberge, Jeremy R.

    2007-01-01

    The ecological status of perennial streams in Wyoming was determined and compared with the status of perennial streams throughout 12 States in the western United States, using data collected as part of the Western Pilot Environmental Monitoring and Assessment Program (EMAP-West). Results for Wyoming are compared and contrasted in the context of the entire EMAP-West study area (west-wide) and climatic regions (based on aggregated ecoregions) within Wyoming. In Wyoming, ecological status, estimated as the proportion of the perennial stream length in least disturbed, most disturbed, and intermediate disturbance condition, based on ecological indicators of vertebrate and invertebrate assemblages was similar, in many cases, to the status of those assemblages determined for EMAP-West. Ecological status based on chemical and physical habitat stressors also was similar in Wyoming to west-wide proportions in many cases. Riparian disturbance was one of the most common physical stressors west-wide and in Wyoming. The estimates of riparian disturbance indicated about 90 percent of the stream length in the xeric climatic region in Wyoming was rated most disturbed, compared to about 30 percent rated most disturbed in the mountain climatic region in Wyoming. Results from analyses using a macroinvertebrate multi-metric index (MMI) and macroinvertebrate ratio of observed to expected taxa (O/E) developed specifically for the west-wide EMAP study were compared to results using a macroinvertebrate MMI and O/E developed for Wyoming. Proportions of perennial stream length in various condition categories determined from macroinvertebrate MMIs often were similar in Wyoming to proportions observed west-wide. Differences were larger, but not extreme, between west-wide and Wyoming O/E models. An aquatic life use support decision matrix developed for interpreting the Wyoming MMI and O/E model data indicated about one-half of the stream length statewide achieves the State's narrative aquatic

  5. Digital map of aquifer boundary for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Qi, Sharon

    2010-01-01

    This digital data set represents the extent of the High Plains aquifer in the central United States. The extent of the High Plains aquifer covers 174,000 square miles in eight states: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This data set represents a compilation of information from digital and paper sources and personal communication. This boundary is an update to the boundary published in U.S. Geological Survey Professional Paper 1400-B, and this report supersedes Open-File Report 99-267. The purpose of this data set is to refine and update the extent of the High Plains aquifer based on currently available information. This data set represents a compilation of arcs from a variety of sources and scales that represent the 174,000 square-mile extent of the High Plains aquifer within the eight states. Where updated information was not available, the original boundary extent defined by OFR 99-267 was retained. The citations for the sources in each State are listed in the 00README.txt file. The boundary also contains internal polygons, or 'islands', that represent the areas within the aquifer boundary where the aquifer is not present due to erosion or non-deposition. The datasets that pertain to this report can be found on the U.S. Geological Survey's NSDI (National Spatial Data Infrastructure) Node, the links are provided on the sidebar.

  6. Single-crystal {sup 40}Ar/{sup 39}Ar ages for rocks in the lower part of the frontier formation (Upper Cretaceous), Southwest Wyoming

    SciTech Connect

    M`Gonigle, J.W.; Holmes, C.W.; Dalrymple, G.B.

    1995-04-01

    Five tuff beds in a 150 m (490 ft) thick section within the nonmarine Chalk Creek Member of the Frontier Formation and one bentonite bed within the Allen Hollow Shale Member of the Frontier Formation were sampled for {sup 40}Ar/{sup 39}Ar dating at localities south of Kemmerer, Wyoming. The study area extends from Cumberland Gap northward for 15 km (9.3 mi) past Blason Gap, and includes units 5-43 and unit 91 of the reference section measured by Cobban and Reeside in 1952. The age of the tuff beds ranges from 96.6 {plus_minus} 0.3 to 93.6 {plus_minus} 0.3 Ma and confirms the inferred Cenomanian age of much of the Chalk Creek Member. Previously, the member`s age had been based solely on its stratigraphic position between the Albian-to-lower Cenomanian marine rocks for the Aspen Shale and the lower Turonian marine shales in the middle of the Frontier Formation. The age of biotite crystals from the bentonite in the Allen Hollow Member, 92.1 {plus_minus} 0.2 Ma, confirms the paleontologic Turonian age of the member.

  7. 76 FR 14058 - Notice of Inventory Completion: Fremont County Coroner, Riverton, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... notice. A detailed assessment of the human remains was made by the Fremont County Coroner professional staff in consultation with representatives of the Shoshone Tribe of the Wind River Reservation, Wyoming... Wind River Reservation, but subsequently transferred and is no longer reservation land. The area of...

  8. The bats of Wyoming

    USGS Publications Warehouse

    Bogan, Michael A.; Cryan, Paul M.; Choate, Jerry R.

    2000-01-01

    We examined 1280 bats of 12 species submitted to the Wyoming State Veterinary Laboratory (WSVL) for ra­bies testing between 1981 and 1992. The most abundant species in the sample was Myotis lucifugus, followed by Epte­sicus fuscus, Lasionycteris noetivagans, M. ciliolabrum, and M. volans. Using the WSVL sample and additional museum specimens, we summarized available records and knowledge for 17 species of bats in Wyoming, Records of the WSVL show that, between 1981 and 1992, 113 bats actually tested positive for rabies. We examined 45 of those rabies­ positive bats; E. fuscus had the highest incidence (60%) in the sample, followed by L. noctivagans (11 %) and L. cinereus (9%).

  9. Investigation of possible effects of surface coal mining on hydrology and landscape stability in part of the Powder River structural basin, northeastern Wyoming

    USGS Publications Warehouse

    Bloyd, R.M.; Daddow, P.B.; Jordon, P.R.; Lowham, H.W.

    1986-01-01

    The effects of surface coal mining on the surface- and groundwater systems in a 5,400 sq mi area in the Powder River Basin, Wyoming, that includes 20 major coal mines were evaluated using three approaches: A surface water model, a landscape-stability analysis, and a groundwater model. A surface water model was developed for the Belle Fourche River basin. The Hydrological Simulation Program-Fortran model was used to simulate changes in streamflow and changes in dissolved-solids and sulfate concentrations. Simulated streamflows resulting from less than average rainfall were small, changes in flow from premining to during-mining and postmining conditions were less than 2.5%, and changes in mean dissolved-solids and sulfate concentrations ranged from 1 to 7%. A landscape-stability analysis resulted in regression relations to aid in the reconstruction of reclaimed drainage networks. Hypsometric analyses indicate the larger basins are relatively stable, and statistical data from these basins may be used to design the placement of material within a mined basin to approximate natural, stable landscapes in the area. The attempt to define and simulate the groundwater system in the area using a groundwater-flow model was unsuccessful. The steady-state groundwater-flow model could not be calibrated. The modeling effort failed principally because of insufficient quantity and quality of data to define the spatial distribution of aquifer properties; the hydraulic-head distribution within and between aquifers; and the rates of groundwater recharge and discharge, especially for steady-state conditions. (USGS)

  10. The Spirit and Influence of the Wyoming Resolution: Looking Back to Look Forward

    ERIC Educational Resources Information Center

    McDonald, James C.; Schell, Eileen E.

    2011-01-01

    At the 1986 Wyoming Conference on English, a group of graduate students and part-time and tenure-line faculty formulated a statement known as the Wyoming Resolution, a rallying cry to improve composition teachers' pay, benefits, and working conditions. Adopted by the Conference on College Composition and Communication (CCCC) in 1987, the Wyoming…

  11. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    SciTech Connect

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

    2010-03-25

    functionality via the web. It is linked into various state and federal agency spatial data servers allowing users to visualize multiple themes, such as well locations and core sage grouse areas, in one domain. Additionally, this application gives users the ability to download any of the data being displayed within the web map. The Wyoming Energy Map is the newest mapping application developed directly from this effort. With over a 100 different layers accessible via this mapping application, it is the most comprehensive Wyoming energy mapping application available. This application also provides the public with the ability to create cultural and wildlife reports based on any location throughout Wyoming and at multiple scales. The WERIC website also allows users to access links to federal, state, and local natural resource agency websites and map servers; research documents about energy; and educational information, including information on upcoming energy-relate conferences. The WERIC website has seen significant use by energy industry consultants, land management agencies, state and local decision-makers, non-governmental organizations and the public. Continued service to these sectors is desirable but some challenges remain in keeping the WERIC site viable. The most pressing issue is finding the human and financial resources to keep the site continually updated. Initially, the concept included offering users the ability to maintain the site themselves; however, this has proven not to be a viable option since very few people contributed. Without user contributions, the web page relied on already committed university staff to publish and link to the appropriate documents and web-pages. An option that is currently being explored to address this issue is development of a partnership with the University of Wyoming, School of Energy Resources (SER). As part of their outreach program, SER may be able to contribute funding for a full-time position dedicated to maintenance of WERIC.

  12. Longwall in Wyoming

    SciTech Connect

    Buchsbaum, L.

    2007-05-15

    The article describes development of a longwall operation at Pacific Corp's Jim Bridger mine in Wyoming, USA. The lease acquisition and permitting process began in late 2003 and the longwall operations began on 5 March 2007. The quality is between sub and bituminous coal. The mine is shallow and the surrounding rock is weaker than longwall mines in Colorado or Utah. DBT supplied the longwall system comprising 1.75 m shields, a 1 m wide face conveyor and a DBT EL200 shear with a 1-m web. The mine also operates a highwall unit and two draglines. 4 photos.

  13. GROS VENTRE WILDERNESS STUDY AREA, WYOMING.

    USGS Publications Warehouse

    Simons, Frank S.; Bieniewski, Carl L.

    1984-01-01

    A mineral-resource survey of the Gros Ventre Wilderness study area in the Gros Ventre Mountains of northwestern Wyoming was carried out. The area was found to have demonstrated phosphate resources in areas of substantiated phosphate resource potential. A probable oil and gas resource potential in the southwestern part of the study area was also identified. Oil and gas may occur in various possible reservoir rocks beneath the Cache Creek thrust fault, which is believed to extend beneath this part of the study area. There is little promise for the occurrence of other mineral or energy resources in the area.

  14. Cost-effectiveness of the streamflow-gaging program in Wyoming

    USGS Publications Warehouse

    Druse, S.A.; Wahl, K.L.

    1988-01-01

    This report documents the results of a cost-effectiveness study of the streamflow-gaging program in Wyoming. Regression analysis or hydrologic flow-routing techniques were considered for 24 combinations of stations from a 139-station network operated in 1984 to investigate suitability of techniques for simulating streamflow records. Only one station was determined to have sufficient accuracy in the regression analysis to consider discontinuance of the gage. The evaluation of the gaging-station network, which included the use of associated uncertainty in streamflow records, is limited to the nonwinter operation of the 47 stations operated by the Riverton Field Office of the U.S. Geological Survey. The current (1987) travel routes and measurement frequencies require a budget of $264,000 and result in an average standard error in streamflow records of 13.2%. Changes in routes and station visits using the same budget, could optimally reduce the standard error by 1.6%. Budgets evaluated ranged from $235,000 to $400,000. A $235,000 budget increased the optimal average standard error/station from 11.6 to 15.5%, and a $400,000 budget could reduce it to 6.6%. For all budgets considered, lost record accounts for about 40% of the average standard error. (USGS)

  15. Multidisciplinary study of Wyoming test sites. [hydrology, biology, geology, lithology, geothermal, and land use

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.; Agard, S. S.; Downing, K. G.; Earle, J. L.; Froman, N. L.; Gordon, R.; Kolm, K. E.; Tomes, B.; Vietti, J.

    1974-01-01

    The author has identified the following significant results. Investigation of a variety of applications of EREP photographic data demonstrated that EREP S-190 data offer a unique combination of synoptic coverage and image detail. The broad coverage is ideal for regional geologic mapping and tectonic analysis while the detail is adequate for mapping of crops, mines, urban areas, and other relatively small features. The investigative team at the University of Wyoming has applied the EREP S-190 data to: (1) analysis of photolinear elements of the Powder River Basin, southern Montana, and the Wind River Mountains; (2) drainage analysis of the Powder River Basin and Beartooth Mountains; (3) lithologic and geologic mapping in the Powder River Basin, Black Hills, Green River Basin, Bighorn Basin and Southern Bighorn Mountains; (4) location of possible mineralization in the Absaroka Range; and (5) land use mapping near Riverton and Gillette. All of these applications were successful to some degree. Image enhancement procedures were useful in some efforts requiring distinction of small objects or subtle contrasts.

  16. Trona resources in southwest Wyoming

    USGS Publications Warehouse

    Dyni, J.R.; Wiig, S.V.; Grundy, W.D.

    1995-01-01

    Bedded trona (Na2CO3??NaHCO3??2H2O) in the lacustrine Green River Formation of Eocene age in the Green River Basin, southwest Wyoming, constitutes the largest known resource of natural sodium carbonate in the world. In this study, 116 gigatons (Gt) of trona ore are estimated to be present in 22 beds, ranging from 1.2 to 11 meters (m) in thickness. Of this total, 69 Gt of trona ore are estimated to be in beds containing less than 2 percent halite and 47 Gt in beds containing 2 or more percent halite. These 22 beds underlie areas of about 130 to more than 2,000 km2 at depths ranging from about 200 m to more than 900 m below the surface. The total resource of trona ore in the basin for which drilling information is available is estimated to be about 135 Gt. Underveloped trona beds in the deeper southern part of the basin may be best developed by solution mining. Additional unevaluated sodium carbonate resources are present in disseminated shortite (Na2CO3??2CaCO3) in strata interbedded with the trona and in shallow sodium carbonate brines in the northeast part of the basin. Estimates of the shortite and brine resources were not made. ?? 1995 Oxford University Press.

  17. Independent technical evaluation and recommendations for contaminated groundwater at the department of energy office of legacy management Riverton processing site

    SciTech Connect

    Looney, Brain B.; Denham, Miles E.; Eddy-Dilek, Carol A.

    2014-04-01

    The U.S. Department of Energy Office of Legacy Management (DOE-LM) manages the legacy contamination at the Riverton, WY, Processing Site – a former uranium milling site that operated from 1958 to 1963. The tailings and associated materials were removed in 1988-1989 and contaminants are currently flushing from the groundwater. DOE-LM commissioned an independent technical team to assess the status of the contaminant flushing, identify any issues or opportunities for DOE-LM, and provide key recommendations. The team applied a range of technical frameworks – spatial, temporal, hydrological and geochemical – in performing the evaluation. In each topic area, an in depth evaluation was performed using DOE-LM site data (e.g., chemical measurements in groundwater, surface water and soil, water levels, and historical records) along with information collected during the December 2013 site visit (e.g., plant type survey, geomorphology, and minerals that were observed, collected and evaluated).

  18. 76 FR 32225 - Notice of Public Meeting; Wyoming Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... Yellowstone, Cheyenne, Wyoming. FOR FURTHER INFORMATON CONTACT: Cindy Wertz, Wyoming Resource Advisory Council Coordinator, Wyoming State Office, 5353 Yellowstone, Cheyenne, Wyoming, 82009, telephone 307-775-6014....

  19. Stratigraphic sections of the Phosphoria formation in Wyoming, 1952

    USGS Publications Warehouse

    Sheldon, R.P.; Cressman, E.R.; Carswell, L.D.; Smart, R.A.

    1953-01-01

    The U.S. Geological Survey has measured and sampled the Phosphoria formation of Permian age at many localities in Wyoming and adjacent states. These data will not be fully synthesized for many years, but segments of the data, accompanied by little or no interpretation, are published as preliminary reports as they are assembled. This report, which contains abstracts of the sections measured in western Wyoming (fig. 1), during 1952, is the fourth Wyoming report of this series. The field and laboratory procedures adopted in these investigations are described rather fully in a previous report (McKelvey and others, 1953a). Many people have taken part in this investigation. T. M. Cheney participated in the description of strata and the collection of samples referred to in this report and T. K. Rigby assisted in the collection of samples. The laboratory preparation of samples for chemical analysis was done in Denver, Colo., under the direction of W. P. Huleatt.

  20. Stratigraphic sections of the Phosphoria formation in Wyoming, 1951

    USGS Publications Warehouse

    Cheney, Thomas McGriffin; Sheldon, Richard Porter; Waring, R.G.; Warner, M.A.

    1953-01-01

    The U.S. Geological Survey has recently measured and sampled the Phosphoria formation at many localities in Wyoming and adjacent states. These data will not be fully synthesized for many years, but segments of the data, accompanied by little or no interpretation, are published as preliminary reports as they are assembled. This report, which contains abstracts of the sections measured in western Wyoming (fig. 1) during 1951, is the third Wyoming report of this series. The field and laboratory procedures adopted in these investigations are described rather fully in a previous report (McKelvey and others, 1953b). Many people have taken part in this investigation. J. W. Hill, H. W. Peirce, J. A. Peterson, and R. A. Smart participated in the description of strata and the collection of samples referred to in this report. The laboratory preparation of samples for chemical analysis was done in Denver, Colo., under the direction of W. P. Huleatt.

  1. Pesticides in Ground Water - Sublette County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Sublette County. This fact sheet describes and summarizes results of the baseline monitoring in Sublette County.

  2. Pesticides in Ground Water - Carbon County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Carbon County. This fact sheet describes and summarizes results of the baseline monitoring in Carbon County.

  3. Pesticides in Ground Water - Campbell County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Campbell County. This fact sheet describes and summarizes results of the baseline monitoring in Campbell County.

  4. Fiscal Year 1990 program report: Wyoming Water Research Center

    SciTech Connect

    Gloss, S.P.

    1991-07-01

    Four research projects were directly funded under the FY90 program, as well as information transfer activities. Two research projects were funded through the WWRC state grants program as part of the matching contribution. These six research projects relate to important water issues in the region and the State of Wyoming. Reaction of CO2 under pressure in fly ash and spent oil shale waste materials was shown to lower the pH of the materials and effectively reduced the concentrations of toxic elements (As, B, F, Mn and Se) as well as increasing the native population of microbes. Movement of aldicarb through the unsaturated zone and in the groundwater of an agricultural area of Wyoming indicates that aldicarb itself is not persistent, but that the sulfoxide and sulfone metabolities of aldicarb may be quite persistent. A set of water education curriculum materials for elementary schools in Wyoming have been developed that will require intensive workshops and personnel with water knowledge.

  5. SAVAGE RUN WILDERNESS, WYOMING.

    USGS Publications Warehouse

    McCallum, M.E.; Kluender, Steven E.

    1984-01-01

    Mineral evaluation and related surveys were conducted in the Savage Run Wilderness in Wyoming and results of these studies indicate probable mineral-resource potential in four areas. Gold and (or) silver mineralization in veins associated with faults was found in two areas; all known occurrences inside the wilderness are very small in size. Slightly anomalous values of platinum, palladium, and nickel were recorded from rock-chip and stream- sediment samples from the southeast portion of the wilderness where layered mafic rocks predominate, and a probable resource potential exists for platinum, palladium, and nickel. An area of sheared rocks in the northeastern corner of the wilderness has a probable resource potential for copper. The nature of the geologic terrane precludes the occurrence of organic fuels.

  6. NORTH ABSAROKA WILDERNESS, WYOMING.

    USGS Publications Warehouse

    Nelson, Willis H.; Williams, Frank E.

    1984-01-01

    The North Absaroka Wilderness in Wyoming was studied to evaluate the resource potential of the area. The results of geologic field mapping, field inspection of claims and prospects, analyses of bedrock and stream-sediment samples, and an aeromagnetic survey indicate that a small area of geologic terrane with probable mineral-resource potential for silver, lead, and zinc is present on the northern edge of the wilderness. Bentonite, low-quality coal, and localized deposits of uranium and chromite have been produced from surrounding areas; but such deposits, if present in the wilderness, are probably too deeply buried, too small, or too sporadically distributed to be classed as resources. Copper and gold mines and prospects are present on the fringes of the wilderness, but otherwise the area seems to be devoid of concentrations of metallic minerals. No surface evidence of geothermal energy resources was found.

  7. SNOWY RANGE WILDERNESS, WYOMING.

    USGS Publications Warehouse

    Houston, Robert S.; Bigsby, Philip R.

    1984-01-01

    A mineral survey of the Snowy Range Wilderness in Wyoming was undertaken and was followed up with more detailed geologic and geochemical surveys, culminating in diamond drilling of one hole in the Snowy Range Wilderness. No mineral deposits were identified in the Snowy Range Wilderness, but inasmuch as low-grade uranium and associated gold resources were identified in rocks similar to those of the northern Snowy Range Wilderness in an area about 5 mi northeast of the wilderness boundary, the authors conclude that the northern half of the wilderness has a probable-resource potential for uranium and gold. Closely spaced drilling would be required to completely evaluate this mineral potential. The geologic terrane precludes the occurrence of fossil fuels.

  8. LARAMIE PEAK WILDERNESS STUDY AREA, WYOMING.

    USGS Publications Warehouse

    Segerstrom, Kenneth; Weisner, R.C.

    1984-01-01

    On the basis of a mineral survey, most of the Laramie Peak Wilderness study area in Wyoming was concluded to have little promise for the occurrence of mineral or energy resources. Only three small areas in the northern part, one extending outside the study area to Esterbrook, were found to have probable mineral-resource potential for copper and lead. The geologic setting precludes the presence of fossil-fuel resources in the study area. There are no surface indications that geothermal energy could be developed within or near the study area.

  9. Assessment of the quality of groundwater and the Little Wind River in the area of a former uranium processing facility on the Wind River Reservation, Wyoming, 1987 through 2010

    USGS Publications Warehouse

    Ranalli, Anthony J.; Naftz, David L.

    2014-01-01

    In 2010, the U.S Geological Survey (USGS), in cooperation with the Wind River Environmental Quality Commission (WREQC), began an assessment of the effectiveness of the existing monitoring network at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) site. The USGS used existing data supplied by the U.S. Department of Energy (DOE). The study was to determine (1) seasonal variations in the direction of groundwater flow in the area of the former uranium processing facility toward the Little Wind River, (2) the extent of contaminated groundwater among the aquifers and between the aquifers and the Little Wind River, (3) whether current monitoring is adequate to establish the effectiveness of natural attenuation for the contaminants of concern, and (4) the influence of groundwater discharged from the sulfuric-acid plant on water quality in the Little Wind River.

  10. Libraries in Wyoming: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/wyoming.html Libraries in Wyoming To use the sharing features on this page, please enable JavaScript. Cheyenne Laramie County Library System 2200 Pioneer Ave. Cheyenne, WY 82001 307- ...

  11. Geologic framework of the ground-water system in Jurassic and Cretaceous rocks in the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming

    SciTech Connect

    Anna, L.O.

    1986-01-01

    Energy development in the Northern Great Plains will place new and increased demands on ground-water development. Water from Jurassic and Cretaceous rocks might supply part of the needed water. Geologic framework of the ground-water flow system in the Northern Great Plains is divided into two parts: structural and stratigraphic. Jurassic and Cretaceous rocks are divided into six chronostratigraphic intervals. Thickness and sedimentological variations of each interval show distinct patterns or lineaments. These lineaments may reflect paleogeographic and paleostructural trends. The tectonic and sedimentation model most appropriate for the lineaments and the orientations of these lineaments can be explained best by a horizontal stress system. This system created the structural configuration of grabens, half-grabens, and horsts, initiated in Precambrian time, that influenced the position of depositional environments, subsequently influenced the lateral and vertical distribution of sediments, and was enhanced by eustatic changes in sea level. Orientation of tensional and compressional structural features and lineaments is predictable under this stress system. Tensional features, oriented east-west and northeast-southwest, enhance secondary porosity or permeability; thus, they become partial conduits for ground-water flow. Compressional features, oriented generally north-south and northwest-southeast, decrease porosity or permeability and become barriers or partial barriers to ground-water flow.

  12. Facies composition calculated from the sonic, neutron, and density log suite, upper part of the Minnelusa Formation, Powder River basin, Wyoming

    USGS Publications Warehouse

    Schmoker, J.W.; Schenk, C.J.

    1988-01-01

    Sandstones and dolomites of the Permian upper part of the Minnelusa Formation are treated here as four-component systems consisting of fluid-filled pore space, quartz, dolomite, and anhydrite. Response equations of sonic, neutron, and density logs form a system of four simultaneous equations. With four equations and four unknowns, the composition of upper Minnelusa facies is defined by the three-log suite and can be calculated by solving a 4 ?? 4 matrix. Such calculations of facies composition help in establishing subsurface correlations and yield information on the diagenesis and physical character of upper Minnelusa sandstones and dolomites. Applications of composition calculations are illustrated by examples drawn from the area of the West Mellott field (T52N, R68W), where the upper Minnelusa is at depths of about 7000 ft (2100m). -from Authors

  13. Work plan for monitor well installation water and sediment sample collection aquifer testing and topographic surveying at the Riverton, Wyoming, UMTRA Project Site

    SciTech Connect

    1995-06-01

    Investigations conducted during preparation of the site observational work plan (SOWP) at the Uranium Mill Tailings Remedial Action (UMTRA) Project site support a proposed natural flushing ground water compliance strategy, with institutional controls. However, additional site-specific data are needed to reduce uncertainties in order to confirm the applicability and feasibility of this proposed compliance strategy option. This proposed strategy will be analyzed in the site-specific environmental assessment. The purpose of this work plan is to summarize the data collection objectives to fill those data needs, describe the data collection activities that will be undertaken to meet those objectives, and elaborate on the data quality objectives which define the procedures that will be followed to ensure that the quality of these data meet UMTRA Project needs.

  14. Dissolved solids and sodium in water from the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Krothe, Noel C.; Oliver, Joseph W.; Weeks, John B.

    1982-01-01

    In 1978, the U.S. Geological Survey initiated a 5-year study of the High Plains regional aquifer to provide: (1) Hydrologic information needed to evaluate the effects of continued ground-water development; and (2) computer models to predict aquifer response to changes in ground-water development. The plan of study for the High Plains Regional Aquifer-System Analysis was described by Weeks (1978). A description of the High Plains aquifer and a map of the 1978 water table were presented by Gutentag and Weeks (1980). Maps of the bedrock geology, altitude of aquifer base, and saturated thickness of the High Plains aquifer were published by Weeks and Gutentag (1981). Water-level and saturated-thickness changes, from predevelopment to 1980, were mapped by Luckey, Gutentag, and Weeks (1981). This report describes the areal distribution of dissolved solids and sodium in the water of the High Plains aquifer. Data used in this study were provided by the U.S. Geological Survey and State agencies in each of the eight States in the High Plains. Their contribution is an integral part of this investigation.

  15. Educational Finance Reform in Wyoming.

    ERIC Educational Resources Information Center

    Neely, Robert O.; Basom, Margaret R.

    This paper provides a history and analysis of educational finance in Wyoming. It offers a summary of the funding model that is currently in place and that has been challenged in court--the fourth such challenge in the past 30 years. The article focuses on the current litigation. It discusses the funding formula that was adopted by the state…

  16. Wyoming's "Education Reform & Cost Study."

    ERIC Educational Resources Information Center

    Meyer, Joseph B.

    A history of education in the state of Wyoming, along with a description of recent legislative initiatives, are presented in this paper. It opens with statewide reorganizations begun in the 1960s that unified school districts and equalized property valuation. A decade later a court order ruled the system inequitable and new laws provided for a…

  17. Newcastle folio, Wyoming-South Dakota

    USGS Publications Warehouse

    Darton, N. H.

    1904-01-01

    The Newcastle quadrangle embraces the quarter of a square degree which lies between parallels 43° 30' and 44° north latitude and meridians 104° and 104° 30' west longitude.  It measures approximately 34 1/2 miles from north to south and 25 1/8 from east to west, and its area is 863 4/5 square miles.  It lies mainly in the eastern portion of Weston County, Wyo., but includes also a narrow area of western Custer and Pennington counties, S. Dak.  The northeastern portion of the quadrangle lies on the slopes of the Black Hills, but the larger part of it belongs to the Great Plains, although these plains are lower here than in the greater part of adjoining portions of Nebraska and Wyoming.  The district is drained by branches of the South Branch of Cheyenne River.

  18. Assessment of water quality and factors affecting dissolved oxygen in the Sangamon River, Decatur to Riverton, Illinois, summer 1982

    USGS Publications Warehouse

    Schmidt, A.R.; Stamer, J.K.

    1987-01-01

    Water quality and processes that affect the dissolved-oxygen concentration in a 45.9 mile reach of the Sangamon River from Decatur to Riverton, Illinois, were determined from data collected during low-flow periods in the summer of 1982. Relations among dissolved oxygen, water discharge, biochemical oxygen demand, ammonia and nitrite plus nitrate concentrations, and photosynthetic-oxygen production were simulated using a one-dimensional, steady-state computer model. Average dissolved oxygen concentrations ranged from 8.0 milligrams per liter at the upstream end of the study reach at Decatur to 5.2 milligrams per liter 12.2 miles downstream. Ammonia concentrations ranged from 45 milligrams per liter at the mouth of Stevens Creek (2.6 miles downstream from Decatur) to 0.03 milligram per liter at the downstream end of the study reach. Un-ionized ammonia concentrations exceeded the maximum concentration specified in the State water quality standard (0.04 milligram per liter) throughout most of the study reach. Model simulations indicated that oxidation of ammonia to form nitrite plus nitrate was the most significant process leading to low dissolved oxygen concentrations in the river. (USGS)

  19. Overview of Energy Development Opportunities for Wyoming

    SciTech Connect

    Larry Demick

    2012-11-01

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  20. Wyoming DOE EPSCoR

    SciTech Connect

    Gern, W.A.

    2004-01-15

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  1. Ground-water data, Green River basin, Wyoming

    USGS Publications Warehouse

    Zimmerman, Everett Alfred; Collier, K.R.

    1985-01-01

    Hydrologic and geologic data collected by the U.S. Geological Survey as part of energy-related projects in the Green River basin of Wyoming are compiled from the files of the Geological Survey and the Wyoming State Engineer as of 1977. The data include well and spring location, well depth, casing diameter, type of lifts, type of power, use of water, rock type of producing zone, owner, and discharge for more than 1,600 sites. Analyses for common chemical constituents, trace elements, and radioactive chemicals are tabulated as well as water temperature and specific conductance measurement data. Lithologic logs of more than 300 wells, test holes, and measured sections constitute much of this report. County maps at a scale of 1:500 ,000 show the locations. (USGS)

  2. Subgroup Achievement and Gap Trends: Wyoming, 2010

    ERIC Educational Resources Information Center

    Center on Education Policy, 2010

    2010-01-01

    This paper profiles the student subgroup achievement and gap trends in Wyoming for 2010. Wyoming's demographic profile is such that achievement trends could only be determined for white, Latino, male and female, and low-income student subgroups. In grade 8 (the only grade in which subgroup trends were analyzed by achievement level), the white,…

  3. 76 FR 80310 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... four deficiencies that were identified by OSM during the review of a previous program amendment (WY-038... documents at http://www.regulations.gov , you may review copies of the Wyoming program, this amendment, a... Wyoming program in the November 26, 1980, Federal Register (45 FR 78637). You can also find later...

  4. Wyoming Geology and Geography, Unit I.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on the geology and geography of Wyoming for elementary school students provides activities for map and globe skills. Goals include reading and interpreting maps and globes, interpreting map symbols, comparing maps and drawing inferences, and understanding time and chronology. Outlines and charts are provided for Wyoming geology and…

  5. Wyoming groundwater-quality monitoring network

    USGS Publications Warehouse

    Boughton, Gregory K.

    2011-01-01

    A wide variety of human activities have the potential to contaminate groundwater. In addition, naturally occurring constituents can limit the suitability of groundwater for some uses. The State of Wyoming has established rules and programs to evaluate and protect groundwater quality based on identified uses. The Wyoming Groundwater-Quality Monitoring Network (WGQMN) is a cooperative program between the U.S. Geological Survey (USGS) and the Wyoming Department of Environmental Quality (WDEQ) and was implemented in 2009 to evaluate the water-quality characteristics of the State's groundwater. Representatives from USGS, WDEQ, U.S. Environmental Protection Agency (USEPA), Wyoming Water Development Office, and Wyoming State Engineer's Office formed a steering committee, which meets periodically to evaluate progress and consider modifications to strengthen program objectives. The purpose of this fact sheet is to describe the WGQMN design and objectives, field procedures, and water-quality analyses. USGS groundwater activities in the Greater Green River Basin also are described.

  6. 78 FR 21565 - Television Broadcasting Services; Jackson, Wyoming to Wilmington, DE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 Television Broadcasting Services; Jackson, Wyoming to Wilmington, DE AGENCY... the Congressional review Act, see 5 U.S.C. 801(a)(1)(A). List of Subjects in 47 CFR Part 73...

  7. Wyoming Basin Rapid Ecoregional Assessment

    USGS Publications Warehouse

    Carr, Natasha B.; Means, Robert E.

    2013-01-01

    The overall goal of the Wyoming Basin Rapid Ecoregional Assessment (REA) is to provide information that supports regional planning and analysis for the management of ecological resources. The REA provides an assessment of baseline ecological conditions, an evaluation of current risks from drivers of ecosystem change (including energy development, fire, and invasive species), and a predictive capacity for evaluating future risks (including climate change). Additionally, the REA may be used for identifying priority areas for conservation or restoration and for assessing cumulative effects of multiple land uses. The Wyoming Basin REA will address Management Questions developed by the Bureau of Land Management and other agency partners for 8 major biomes and 19 species or species assemblages. The maps developed for addressing Management Questions will be integrated into overall maps of landscape-level ecological values and risks. The maps can be used to address the goals of the REA at a number of levels: for individual species, species assemblages, aquatic and terrestrial systems, and for the entire ecoregion. This allows flexibility in how the products of the REA are compiled to inform planning and management actions across a broad range of spatial scales.

  8. Petrology of greenstones in southern Wyoming Province

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Yuasa, T.; Ogasawara, Y.

    2006-12-01

    Archean greenstones occur in South Pass area and southern Wind River Canyon area in central Wyoming State, U.S.A. These two areas are near about 100 km away from each other and belong to the same sub- province named Wyoming greenstone province (WGP, composed of meta-mafic rocks and meta- sedimentary rocks) (Mueller et al., 1998). The South Pass area is one of the greenstone belts in the southern Wyoming Province and is located in the northwestern part of the WGP. The greenstones (15 km long) occur along the later Archean granitic batholith (Louis Lake batholith, 2.63 Ga) and are composed of meta-pillow lavas, meta diabasic rocks, meta-gabbroic rocks, meta basaltic tuffs, and other meta sediments. The meta diabasic rocks occur as dykes. Banded iron formation lies along the contact between these greenstones and the batholith. Several previous studies suggested that these greenstones were metamorphosed under conditions of amphibolite, and locally greenschist (Harper et al., 1985; Wilks and Harper, 1997; Frost et al., 2000). However we found evidence indicating limited distribution of the amphibolite facies zone which is restricted along the batholith. Greenstones in this area were regionally metamorphosed under low-grade and the amphibolite facies greenstones were formed by the thermal effects by the batholith. Many characteristics of the protolith are well preserved. The following textures are preserved; pillow lava structure, relic igneous augite grains in meta basaltic rocks, relic igneous brown hornblende grains in meta diabasic rocks, gabbroic textures, and some sedimentary textures. The pillow lavas (5-10 cm x 15-30 cm) are composed of pale green core and thin dark gray rim (about 0.5 cm wide) and the core domain is rich in carbonate. The southern Wind River Canyon area is located in the northern part of the WGP. Archean greenstones in this area are composed of meta pillow lavas, meta gabbroic rocks, and meta pelites. From south toward north, mafic rocks

  9. Energy map of southwestern Wyoming - Energy data archived, organized, integrated, and accessible

    USGS Publications Warehouse

    Biewick, Laura R.H.; Jones, Nicholas R.; Wilson, Anna B.

    2013-01-01

    The Wyoming Landscape Conservation Initiative (WLCI) focuses on conserving world-class wildlife resources while facilitating responsible energy development in southwestern Wyoming. To further advance the objectives of the WLCI long-term, science-based effort, a comprehensive inventory of energy resource and production data is being published in two parts. Energy maps, data, documentation and spatial data processing capabilities are available in geodatabase, published map file (pmf), ArcMap document (mxd), Adobe Acrobat PDF map, and other digital formats that can be downloaded at the USGS website.

  10. Comparison of Wyoming land cover types derived from the Landsat Thematic Mapper satellite with climate variables

    SciTech Connect

    Driese, K.L.; Reiners, W.A.

    1995-06-01

    As part of the Gap Analysis Program (National Biological survey) the land cover of Wyoming was mapped into 46 classes using the Landsat Thematic Mapper Satellite. This map was subsequently analyzed using a geographic information system (GIS) to calculate the amount of each type present in the state and to characterize each of the 46 types in terms of annual precipitation, minimum and maximum mean monthly temperature, growing degree days and elevation. Simple GCM-based climate change scenarios (changes in temperature and precipitation) were examined in relation to these characterizations. Results indicate that Wyoming types occupy overlapping climatic {open_quotes}envelopes{close_quotes} and possible climate change resulting from increased greenhouse gasses could result in significant changes in the Wyoming landscape.

  11. Pesticides in Ground Water - Niobrara and Weston Counties, Wyoming, 2005-2006

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.

    2007-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2005-2006, baseline monitoring was conducted in Niobrara and Weston Counties. This Fact Sheet describes and summarizes results of the baseline monitoring in Niobrara and Weston Counties.

  12. Rancher and farmer quality of life in the midst of energy development in southwest Wyoming

    USGS Publications Warehouse

    Allen, Leslie; Montag, Jessica; Lyon, Katie; Soileau, Suzanna; Schuster, Rudy

    2014-01-01

    Quality of life (QOL) is usually defined as a person’s general well-being, and may include individual perceptions of a variety of factors such family, work, finances, local community services, community relationships, surrounding environment, and other important aspects of their life, ultimately leading to life satisfaction. Energy development can have an effect on QOL components for rural residents. Southwest Wyoming is a rural area with a history of ranching and farming which continues today. This area has also seen a “boom” of increasing wind, solar, oil and gas energy developments over the past decade. Wyoming Department of Agriculture, as part of the Wyoming Landscape Conservation Initiative (WLCI), sponsored research to examine the effect of energy development on ranchers’ and farmers’ quality of life.

  13. Wyoming Basin Rapid Ecoregional Assessment

    USGS Publications Warehouse

    Carr, Natasha B.; Melcher, Cynthia P.

    2015-08-28

    We evaluated Management Questions (Core and Integrated) for each species and community for the Wyoming Basin REA. Core Management Questions address primary management issues, including (1) where is the Conservation Element, and what are its key ecological attributes (characteristics of species and communities that may affect their long-term persistence or viability); (2) what and where are the Change Agents; and (3) how do the Change Agents affect the key ecological attributes? Integrated Management Questions synthesize the Core Management Questions as follows: (1) where are the areas with high landscape-level ecological values; (2) where are the areas with high landscape-level risks; and (3) where are the potential areas for conservation, restoration, and development? The associated maps and key findings for each Management Question are summa

  14. Groundwater quality of southeastern Wyoming

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Blain, Liberty

    2011-01-01

    Groundwater is an important resource for domestic, municipal, stock, and irrigation uses in southeastern Wyoming. Thirty-seven percent of water used in the tri-County area, which includes Laramie, Platte, and Goshen Counties, is from groundwater. Most groundwater use in the tri-County area is withdrawn from three primary aquifer groups: Quaternary-age unconsolidated-deposit aquifers, Tertiary-age units of the High Plains aquifer system, and Upper Cretaceous bedrock aquifers (Lance Formation and Fox Hills Sandstone). Authors include selected physical properties and chemicals found in water samples, describe sources and importance, and report maximum levels established by the U.S. Environmental Protection Agency. They also show concentration ranges for selected physical properties and chemicals in samples collected from the three primary aquifer groups in the tri-County area.

  15. Wyoming Basin Rapid Ecoregional Assessment

    USGS Publications Warehouse

    Carr, Natasha B.; Melcher, Cynthia P.

    2015-08-28

    We evaluated Management Questions (Core and Integrated) for each species and community for the Wyoming Basin REA. Core Management Questions address primary management issues, including (1) where is the Conservation Element, and what are its key ecological attributes (characteristics of species and communities that may affect their long-term persistence or viability); (2) what and where are the Change Agents; and (3) how do the Change Agents affect the key ecological attributes? Integrated Management Questions synthesize the Core Management Questions as follows: (1) where are the areas with high landscape-level ecological values; (2) where are the areas with high landscape-level risks; and (3) where are the potential areas for conservation, restoration, and development? The associated maps and key findings for each Management Question are summarized for each Conservation Element in individual chapters. Additional chapters on landscape intactness and an REA synthesis are included.

  16. Proceedings of the University of Wyoming Trustee Symposium (Jackson, Wyoming, August 3-6, 1986).

    ERIC Educational Resources Information Center

    Wyoming Univ., Jackson.

    The 1986 University of Wyoming Trustees Symposium examined five broad topics. Keynote speakers and topics are as follows: "An Introduction to the University of Wyoming" (Donald L. Veal); "What Is a University and What Is Its Role in Society?" (Walter Eggers); "Challenges for Universities in the Decades Ahead" (Jack H. Schuster); "Alternatives for…

  17. Proceedings of the University of Wyoming Trustees Symposium. (Jackson, Wyoming, August 2-5, 1987).

    ERIC Educational Resources Information Center

    Wyoming Univ., Jackson.

    The 1987 University of Wyoming (UW) Trustees Symposium focused on five major topics. The topics and keynote speakers are as follows: "An Introduction to the University of Wyoming--The Perspective of a Newcomer," (Terry P. Roark); "College: Making the Connections" (Ernest L. Boyer); "A Quality Faculty for the Second Century" (Jack H. Schuster);…

  18. 77 FR 65379 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... 13, 2005, the final Cross-Media Electronic Reporting Rule (CROMERR) was published in the Federal Register (70 FR 59848) and codified as part 3 of title 40 of the CFR. CROMERR establishes electronic... AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Wyoming...

  19. Southeastern Wyoming's Country Schools. Country School Legacy: Humanities on the Frontier.

    ERIC Educational Resources Information Center

    Riske, Milton

    Information from 22 oral history interviews, periodicals, unpublished manuscripts, and school records provides an indication of the role played by country schools in the history of southeastern Wyoming and forms part of an 8-state research effort to locate and preserve information related to country schools. The report focuses on six aspects of…

  20. The Spirit Is Willing, but the Flesh Is Weak: Criterion-Referenced Testing in Wyoming.

    ERIC Educational Resources Information Center

    Moore, Alan D.; Cross, Tracy L.

    The perceived needs of public school personnel in Wyoming with respect to the development and use of criterion-referenced tests (CRTs) as part of a district-wide testing program were assessed using a survey designed for the study. Questionnaires were sent to all superintendents, assistant superintendents, and curriculum directors in the state. Of…

  1. CLOUD PEAK PRIMITIVE AREA AND ADJACENT AREAS, WYOMING.

    USGS Publications Warehouse

    Kiilsgaard, Thor H.; Patten, Lowell L.

    1984-01-01

    The results of a mineral survey of the Cloud Peak Primitive Area and adjacent areas in Wyoming indicated little promise for the occurrence of mineral resources. There are some prospect workings, particularly in the northern part of the area, but in none of them were there indications that ore had been mined. Samples from the workings, from nearby rocks and sediments from streams that drain the area did not yield any metal values of significance. The crystalline rocks that underlie the area do not contain oil and gas or coal, products that are extracted from the younger rocks that underlie basins on both sides of the study area.

  2. Zircon geochronology of the Webb Canyon Gneiss and the Mount Owen Quartz Monzonite, Teton Range, Wyoming: Significance to dating late Archean metamorphism in the Wyoming craton

    USGS Publications Warehouse

    Zartman, R.E.; Reed, J.C.

    1998-01-01

    The Webb Canyon Gneiss is a strongly foliated and lineated orthogneiss intercalated with layered Archean gneisses in the northern part of the Teton Range in northwestern Wyoming. The Mount Owen Quartz Monzonite is a non-foliated or weakly flow foliated rock which forms a discordant pluton exposed in the central part of the range and that cuts the Webb Canyon Gneiss and the associated layered gneisses. U-Pb zircon geochronology reported here indicates that euhedral pink zircon grew in the Webb Canyon Gneiss at about 2680 Ma, probably during the peak of regional metamorphism and that the Mount Owen was emplaced at 2547??3 Ma. These dates provide the best constraints so far reported on the age of Late Archean regional metamorphism in the western part of the Wyoming craton.

  3. Water resources of Sweetwater County, Wyoming

    USGS Publications Warehouse

    Mason, Jon P.; Miller, Kirk A.

    2004-01-01

    Sweetwater County is located in the southwestern part of Wyoming and is the largest county in the State. A study to quantify the availability and describe the chemical quality of surface-water and ground-water resources in Sweetwater County was conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineers Office. Most of the county has an arid climate. For this reason a large amount of the flow in perennial streams within the county is derived from outside the county. Likewise, much of the ground-water recharge to aquifers within the county is from flows into the county, and occurs slowly. Surface-water data were not collected as part of the study. Evaluations of streamflow and stream-water quality were limited to analyses of historical data and descriptions of previous investigations. Forty-six new ground-water-quality samples were collected as part of the study and the results from an additional 782 historical ground-water-quality samples were reviewed. Available hydrogeologic characteristics for various aquifers throughout the county also are described. Flow characteristics of streams in Sweetwater County vary substantially depending on regional and local basin characteristics and anthropogenic factors. Because precipitation amounts in the county are small, most streams in the county are ephemeral, flowing only as a result of regional or local rainfall or snowmelt runoff. Flows in perennial streams in the county generally are a result of snowmelt runoff in the mountainous headwater areas to the north, west, and south of the county. Flow characteristics of most perennial streams are altered substantially by diversions and regulation. Water-quality characteristics of selected streams in and near Sweetwater County during water years 1974 through 1983 were variable. Concentrations of dissolved constituents, suspended sediment, and bacteria generally were smallest at sites on the Green River because of resistant geologic units, increased

  4. Water resources of Carbon County, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.; Mason, Jon P.; Norris, Jodi R.; Miller, Kirk A.

    2006-01-01

    Carbon County is located in the south-central part of Wyoming and is the third largest county in the State. A study to describe the physical and chemical characteristics of surface-water and ground-water resources in Carbon County was conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office. Evaluations of streamflow and stream-water quality were limited to analyses of historical data and descriptions of previous investigations. Surface-water data were not collected as part of the study. Forty-five ground-water-quality samples were collected as part of the study and the results from an additional 618 historical ground-water-quality samples were reviewed. Available hydrogeologic characteristics for various aquifers in hydrogeologic units throughout the county also are described. Flow characteristics of streams in Carbon County vary substantially depending on regional and local basin char-acteristics and anthropogenic factors. Precipitation in the county is variable with high mountainous areas receiving several times the annual precipitation of basin lowland areas. For this reason, streams with headwaters in mountainous areas generally are perennial, whereas most streams in the county with headwaters in basin lowland areas are ephemeral, flowing only as a result of regional or local rainfall or snowmelt runoff. Flow characteristics of most perennial streams are altered substantially by diversions and regulation. Water-quality characteristics of selected streams in and near Carbon County during water years 1966 through 1986 varied. Concentrations of dissolved constituents and suspended sediment were smallest at sites on streams with headwaters in mountainous areas because of resistant geologic units, large diluting streamflows, and increased vegetative cover compared to sites on streams with headwaters in basin lowlands. Both water-table and artesian conditions occur in aquifers within the county. Shallow ground water is

  5. Reclamation techniques in southwestern wyoming.

    PubMed

    Parady, F E

    1985-03-01

    Bridger Coal Company operates a 5.8 million tpy surface coal mine thrity five miles northeast of Rock Springs. Wyoming. Approximately 20.000 acres are under permit, with disturbance over the life of the mine projected to reach 10,000 acres. Located on the western rim of the continental divide, the mine receives less than 8.5 inches of precipitation annually. Soils in the area are coarse-textured. and problems associated with elevated salinity and sodicity arc encountered.A variety of common reclamation techniques have been modified to reflect these conditions. Soil horizons are segregated during salvage operations (the surface six inches as topsoil and the balance as subsoil). Unsuitable materials are not salvaged. Direct application of soil is used (over 130 acres in 1983) to maximize native plant regeneration and conserve soil fertility. Inter-seeding of seeding failures has proven to be significantly more successful than chisel plowing and reseeding. Broadcast seeding has been ineffective because of strong winds, and a no till drill has been modified to handle diverse seed mixes and rock conditions. The utility of fertilization under typically xeric moisture regimes is being evaluated. A research project has been initiated to assess establishment of a predominately native, diverse seed mix under irrigation, as well as to determine irrigation rates and duration.

  6. Reclamation techniques in southwestern wyoming.

    PubMed

    Parady, F E

    1985-03-01

    Bridger Coal Company operates a 5.8 million tpy surface coal mine thrity five miles northeast of Rock Springs. Wyoming. Approximately 20.000 acres are under permit, with disturbance over the life of the mine projected to reach 10,000 acres. Located on the western rim of the continental divide, the mine receives less than 8.5 inches of precipitation annually. Soils in the area are coarse-textured. and problems associated with elevated salinity and sodicity arc encountered.A variety of common reclamation techniques have been modified to reflect these conditions. Soil horizons are segregated during salvage operations (the surface six inches as topsoil and the balance as subsoil). Unsuitable materials are not salvaged. Direct application of soil is used (over 130 acres in 1983) to maximize native plant regeneration and conserve soil fertility. Inter-seeding of seeding failures has proven to be significantly more successful than chisel plowing and reseeding. Broadcast seeding has been ineffective because of strong winds, and a no till drill has been modified to handle diverse seed mixes and rock conditions. The utility of fertilization under typically xeric moisture regimes is being evaluated. A research project has been initiated to assess establishment of a predominately native, diverse seed mix under irrigation, as well as to determine irrigation rates and duration. PMID:24221682

  7. Wyoming Cloud Lidar: instrument description and applications.

    PubMed

    Wang, Zhien; Wechsler, Perry; Kuestner, William; French, Jeffrey; Rodi, Alfred; Glover, Brent; Burkhart, Matthew; Lukens, Donal

    2009-08-01

    The Wyoming Cloud Lidar (WCL), a compact two-channel elastic lidar, was designed to obtain cloud measurements together with the Wyoming Cloud Radar (WCR) on the University of Wyoming King Air and the National Science Foundation/National Center of Atmospheric Research C-130 aircraft. The WCL has been deployed in four field projects under a variety of atmospheric and cloud conditions during the last two years. Throughout these campaigns, it has exhibited the needed reliability for turn-key operation from aircraft. We provide here an overview of the instrument and examples to illustrate the measurements capability of the WCL. Although the WCL as a standalone instrument can provide unique measurements for cloud and boundary layer aerosol studies, the synergy of WCL and WCR measurements coupled with in situ sampling from an aircraft provide a significant step forward in our ability to observe and understand cloud microphysical property evolution.

  8. Tongue River in Wyoming: a baseline fisheries assessment, Monarch to the state line

    SciTech Connect

    Wesche, T.A.; Johnson, L.S.

    1981-04-01

    A baseline study of fish populations was conducted in northeastern Wyoming's Tongue River and Goose Creek as part of a research project on the ecological effects of a large surface coal mine near Sheridan, Wyoming. The study area is a transition zone between the cold-water, torrential habitat in the Bighorn Mountains and the warm-water, quiet-zone habitat of the lower Tongue River. Fauna of the study area form one of the most diverse fisheries in Wyoming and include brown and rainbow trout, sauger, smallmouth bass, and black bullhead. Diversity generally increases in a downstream direction. Sauger and northern pike are extending their ranges from Montana into Wyoming to spawn; sauger in the study area are very fast-growing, probably due to the abundance of forage species. Studies should continue on the effect of the new Tongue River channel at the Big Horn Mine site in order to determine if recolonization is occurring. Spawning movements of sauger and northern pike in the Tongue River should be followed so that the effects of future mining along the Tongue River may be evaluated.

  9. 77 FR 34894 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... 76 FR 80310, is withdrawn June 12, 2012. FOR FURTHER INFORMATION CONTACT: Jeffrey Fleischman..., Federal Register (45 FR 78637). You can also find later actions concerning Wyoming's program and program... receipt of the proposed amendment in the December 23, 2011, Federal Register (76 FR 80310). In the...

  10. Wyoming Community Colleges Annual Partnership Report, 2007

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2008

    2008-01-01

    The "Annual Partnership Report" catalogs all partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships…

  11. Wyoming Community Colleges Annual Partnership Report, 2006

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2007

    2007-01-01

    The "Annual Partnership Report" catalogs all partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships…

  12. Wyoming Community Colleges Annual Partnership Report, 2009

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2009

    2009-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships assist…

  13. Wyoming Community Colleges Annual Partnership Report, 2008

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2009

    2009-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships assist…

  14. Wyoming: Open Range for Library Technology.

    ERIC Educational Resources Information Center

    Maul, Helen Meadors

    1996-01-01

    Describes the development of library technology and the need for telecommunications in a state with a lack of population density. Topics include the state library's role; shared library resources and library networks; government information; the Wyoming State Home Page on the World Wide Web; Ariel software; network coordinating; and central…

  15. 76 FR 34815 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ..., Federal Register (45 FR 78637). You can also find later actions concerning Wyoming's program and program... Register (75 FR 6332). In the same document, we opened the public comment period and provided an... Rules and Regulations and was approved by OSMRE in a November 24, 1986, Federal Register notice (51...

  16. Optimization at Wyoming gas plant improves profitability

    SciTech Connect

    Saha, L.E. ); Chontos, A.J. ); Hatch, D.R. )

    1990-05-28

    This paper reports on a computer-aided manufacturing system for on-line optimization implemented at the Painter complex (Wyoming) gas-processing plant. The system is based on rigorous process modeling techniques using real time data. Early results show significant potential for improving the plant's profitability.

  17. Wyoming: The State and Its Educational System.

    ERIC Educational Resources Information Center

    Hodgkinson, Harold L.

    Wyoming is a state of great natural beauty with only five people per square mile and a unique way of life that deserves to be preserved. The economy, though, is almost totally dependent on energy extraction, an area that has not done well of late. The state's small population makes "boutique" products and services not very profitable, and efforts…

  18. 76 FR 45643 - Wyoming Disaster #WY-00017

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... State of Wyoming (FEMA- 4007-DR), dated 07/22/2011. Incident: Severe Storms, Flooding, and Landslides... major disaster declaration on 07/22/2011, Private Non- Profit organizations that provide essential... Rates are: Percent For Physical Damage: Non-Profit Organizations with Credit Available Elsewhere....

  19. Wyoming Community Colleges Annual Partnership Report, 2014

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2014

    2014-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships…

  20. Wyoming Community College Commission Agency Annual Report.

    ERIC Educational Resources Information Center

    Wyoming Community Coll. Commission, Cheyenne.

    This paper reports on outcomes of community college programs monitored by the Wyoming Community College Commission (WCCC). The document covers the following WCCC objectives: (1) Study of tuition rates for the community colleges; (2) Negotiation of contracts and provision of financial support for administrative computing system components and…

  1. Wyoming Community Colleges Annual Partnership Report, 2005

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2006

    2006-01-01

    The "Annual Partnership Report" catalogs all partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships…

  2. 75 FR 42470 - Wyoming Disaster #WY-00014

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... ADMINISTRATION Wyoming Disaster WY-00014 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for the..., Fort Worth, TX 76155. FOR FURTHER INFORMATION CONTACT: A. Escobar, Office of Disaster Assistance,...

  3. Wyoming Career and Technical Education Policy Analysis

    ERIC Educational Resources Information Center

    MPR Associates, Inc., 2009

    2009-01-01

    This policy analysis was produced for the Wyoming Department of Administration and Information by MPR Associates, Inc. Its purpose was to examine federal and state policy related to career and technical education (CTE) to determine whether existing policy (in the form of statutes, rules, regulations, and guidance) could either promote or impede…

  4. 78 FR 13004 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... approval of the Wyoming program in the November 26, 1980, Federal Register (45 FR 78637). You can also find... provision concerning variable topsoil depths during reclamation, and addresses four deficiencies that were... variable topsoil depths during reclamation and addresses four deficiencies that OSM identified in...

  5. Causes of mortality of the Wyoming toad.

    PubMed

    Taylor, S K; Williams, E S; Thorne, E T; Mills, K W; Withers, D I; Pier, A C

    1999-01-01

    Wyoming toads (Bufo baxteri) that died from January 1989 to June 1996 were submitted to the Wyoming State Veterinary Laboratory (Laramie, Wyoming, USA) for postmortem evaluation. These consisted of 108 free-ranging toads and 170 animals from six captive populations. Ninety-seven (90%) of 108 free-ranging toad carcasses were submitted during September and October. From 1989 to 1992, 27 (77%) of 35 mortalities in the captive populations occurred in October, November, and December. From 1993 to 1996, mortality in captive toads occurred without a seasonal pattern and coincided with changes in hibernation protocols that no longer mimicked natural cycles. Cause of mortality was determined in 147 (53%) of the 278 cases. Mycotic dermatitis with secondary bacterial septicemia was the most frequent diagnosis in 104 (71%) of 147 toads. Basidiobolus ranarum was found by microscopic examination of skin sections in 100 (96%) of 104 of these mortalities. This fungus was isolated from 30 (56%) of 54 free-ranging and 24 (48%) of 50 captive toads. This research documents the causes of mortality for both free-ranging and captive endangered Wyoming toads over a 7 yr period. PMID:10073345

  6. 78 FR 63243 - Notice of Public Meeting; Wyoming Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... be at the University of Wyoming BP Collaboration Center, 1020 East Lewis Street, Laramie, Wyoming... include discussions on National Environmental Policy Act cooperating agency issues, reclamation and mitigation initiatives by the University of Wyoming Ruckleshaus Institute, the University of...

  7. Analysis of regional aquifers in the central Midwest of the United States in Kansas, Nebraska, and parts of Arkansas, Colorado, Missouri, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming :summary

    USGS Publications Warehouse

    Jorgensen, Donald G.; Helgesen, J.O.; Signor, D.C.; Leonard, R.B.; Imes, J.L.; Christenson, S.C.

    1996-01-01

    Large quantities of ground water are available for use from three regional aquifer systems in the central Midwest of the United States. Parts of the lowermost aquifer contain nearly immobile brine and may be hydrologically suitable for material storage or waste disposal. Results of numerical modeling and geochemical analyses confirm general concepts of ground-water flow in the regional aquifer systems.

  8. Paleoproterozoic metamorphism in the northern Wyoming province: Implications for the assembly of Laurentia

    USGS Publications Warehouse

    Mueller, P.A.; Burger, H.R.; Wooden, J.L.; Brady, J.B.; Cheney, J.T.; Hamrs, T.A.; Heatherington, A.L.; Mogk, D.W.

    2005-01-01

    U-Pb ages measured on zircons from the Tobacco Root Mountains and monazite from the Highland Mountains indicate that the northwestern Wyoming province experienced an episode of high-grade metamorphism at ???1.77 Ga. Leucosome emplaced in Archean gneisses from the Tobacco Root Mountains contains a distinctive population of zircons with an age of 1.77 Ga but also contains zircons to ???3.5 Ga; it is interpreted to have been derived primarily by anatexis of nearby Archean schist. A granulite facies mafic dike that cuts across Archean gneissic banding in the Tobacco Root Mountains contains two distinct populations of zircons. A group of small (<50 ??m) nonprismatic grains is interpreted to be metamorphic and yields an age of 1.76 Ga; a group of slightly larger prismatic grains yields an age of 2.06 Ga, which is interpreted to be the time of crystallization of the dike. Monazite from a leucogranite from the Highland Mountains yields a well-defined age of 1.77 Ga, which is interpreted as the time of partial melting and emplacement of the leucogranite. These results suggest that the northwestern Wyoming province, which largely lies within the western part of the Great Falls tectonic zone, experienced a metamorphic maximum at 1.77 Ga. This age is ???100 m.yr. younger than the proposed time of Wyoming-Hearne collision in the central Great Falls tectonic zone (1.86 Ga) and suggests that the northwestern Wyoming province may have been involved in a separate, younger collisional event at ???1.77 Ga. An event at this time is essentially coeval with collisions proposed for the eastern and southeastern margins of the province and suggests a multiepisodic model for the incorporation of the Wyoming craton into Laurentia. ?? 2005 by The University of Chicago. All rights reserved.

  9. Local Re-Cratonization of the Wyoming Province and the Uplift of the Black Hills

    NASA Astrophysics Data System (ADS)

    Bezada, M.; Humphreys, E.; Schmandt, B.

    2015-12-01

    The Archean Wyoming Craton is a primary building block of the core of the North American continent. It resisted tectonic deformation for over a billion years, but during the Laramide orogeny significant crustal shortening was accommodated by basement-involved thrusting. Xenoliths suggest that ~50 km of cratonic mantle were removed from the Wyoming Province by basal erosion during this time. This orogenic event resulted in the formation of several mountain ranges in Wyoming which are part of the Rocky Mountains. The eastern limit of the Rocky Mountains in Wyoming is typically defined by the Big Horn and Laramie ranges. The Black Hills represent a topographic anomaly having a similar trend to the Big Horn and the Laramie Mts, but lying ~200 km NE of the Rocky Mountain Front (RMF); while the intervening region is relatively undeformed. Subduction of the conjugate to the Shatsky Rise is the leading hypothesis to explain the flattening of the Farallon slab that lead to the Laramide orogeny. The leading edge of the Shatsky conjugate would have been the conjugate to the Tamu Massif, the largest known single volcano on the planet. The reconstructed path of the Tamu conjugate plausibly places it beneath the region between the RMF and the Black Hills, where a high seismic velocity anomaly is observed by body wave tomography to depths exceeding 200 km. We propose that subcretion of the highly depleted mantle lithosphere of the Tamu cojugate re-cratonized a region of the Wyoming Province forming a distinct rigid block. We further suggest that the new block successfully resisted tectonic deformation and transferred the stresses of the Laramide orogeny northeastward to generate the basement-cored uplift of the Black Hills.

  10. Heat flow studies in Wyoming: 1979 to 1981

    SciTech Connect

    Heasler, H.P.; Decker, E.R.; Buelow, K.L.; Ruscetta, C.A.

    1982-05-01

    Heat flow values and updated maps of flux in Wyoming, northern Colorado, and southern Montana are presented. It is concluded that most of the heat flow values in the Wyoming Basin-Southern Rocky Mountains region in Southern Wyoming are low or normal, excluding the Saratoga Valley; that the regional flux in the Owl Creek Mountains area is above normal; and that the Meadow Creek Basin area is in a zone of high flux. (MJF)

  11. A Training Package for Implementing the IEP Process in Wyoming. Volume IV. Compilation of Successful Training Strategies.

    ERIC Educational Resources Information Center

    Foxworth-Mott, Anita; Moore, Caroline

    Volume IV of a four volume series offers strategies for implementing effective inservice workshops to train administrators, assessment personnel, and others involved in the development and implementation of individualized education programs (IEPs) for handicapped children in Wyoming. Part 1 addresses points often overlooked in delivering training,…

  12. Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin

    USGS Publications Warehouse

    Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.

    2010-01-01

    The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined

  13. Hanna, Wyoming underground coal gasification data base. Volume 1. General information and executive summary

    SciTech Connect

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation. This report covers: (1) history of underground coal gasification leading to the Hanna tests; (2) area characteristics (basic meteorological and socioeconomic data); (3) site selection history; (4) site characteristics; (5) permitting; and (6) executive summary. 5 figs., 15 tabs.

  14. BRIDGER WILDERNESS AND GREEN-SWEETWATER ROADLESS AREA, WYOMING.

    USGS Publications Warehouse

    Worl, Ronald G.; Ryan, George S.

    1984-01-01

    A mineral-resource appraisal of the Bridger Wilderness and contiguous Green-Sweetwater Roadless Area in Wyoming was made. This rugged and remote region is mostly Precambrian crystalline granitic rocks that contain only small and discontinuous areas of mineralization. The area is considered to have little promise for metallic mineral deposits. Sedimentary rocks in the area have minor coal seams and beds of phosphate rock, but the coal beds are thin and of limited extent, and the phosphate rock is low-grade compared to similar rocks elsewhere in the region. A probable potential for oil and gas at depth, assigned to part of the area, is based on the assumption that oil- and gas-bearing rocks exist at depth below a low-angle thrust fault and a wedge of Precambrian crystalline rock.

  15. The copper deposits of the Encampment District, Wyoming

    USGS Publications Warehouse

    Spencer, A.C.

    1904-01-01

    During the last few years prospecting in the Medicine Bow and Park ranges in northern Colorado and southern Wyoming has proved that copper-bearing minerals occur frequently and are very generally distributed over a wide region in this portion of the Rocky Mountains. This has gradually become known through the discovery of several more or less promising copper deposits and also through the exploitation of a few properties which have produced ore on a commercial scale. The increase in the number of prospectors has kept pace with the increasing interest in the region, until now every part of it has been at least cursorily examined. In spite of this activity and of a considerable amount of development work at several localities, the productive mines in actual operation are few, but the search for valuable deposits continues, and it is to be expected that other mines will eventually be discovered. 

  16. Stratigraphic framework of the upper Fort Union Formation, TA Hills, Western Powder River basin, Wyoming

    USGS Publications Warehouse

    Weaver, Jean N.; Flores, Romeo M.

    1985-01-01

    The purpose of this study is to interpret a relationship between the stratigraphy and the environment of deposition of the upper part of the Fort Union Formation in the TA Hills in the western part of the Powder River Basin, Johnson County, Wyoming.  This framework was used to map and correlate coal beds with those mapped by Hose (1955) and Mapel (1959) in the southern and northern parts of the study area, respectively.  More specifically, the established stratigraphic and environmental relationships of the coal beds and associated rocks contribute to a depositional model for the upper part of the Fort Union Formation in the TA Hills.

  17. Estimated Water Use in Wyoming During 2000

    USGS Publications Warehouse

    Boughton, Gregory K.; Remley, Kendra R.; Bartos, Timothy T.

    2006-01-01

    The U.S. Geological Survey (USGS) has compiled and published estimates of water withdrawals every 5 years since 1950. This series of water-use reports serves as one of the few sources of information about regional or national trends in water withdrawals (Hutson and others, 2004). In Wyoming, six categories - irrigation, mining, thermoelectric power, public supply, self-supplied domestic, and industrial - were included in the most recent (2000) USGS compilation of estimated water use. For each category, withdrawal volumes were compiled by water source (surface water or ground water), and by county. Irrigation, public supply, and industrial ground-water withdrawals also were compiled by aquifer. With the exception of saline ground-water mining withdrawals totaling 222 million gallons per day (Mgal/d), all withdrawals in Wyoming were freshwater. Estimated withdrawals are listed from largest to smallest throughout this fact sheet.

  18. Geology and mineralization of the Wyoming Province

    USGS Publications Warehouse

    Hausel, W.D.; Edwards, B.R.; Graff, P.J.; ,

    1991-01-01

    The Wyoming Province is an Archean craton which underlies portions of Idaho, Montana, Nevada, Utah, and much of Wyoming. The cratonic block consists of Archean age granite-gneiss with interspersed greenstone belts and related supracrustal terranes exposed in the cores of several Laramide uplifts. Resources found in the Province and in the adjacent accreted Proterozoic terrane include banded iron formation, Au, Pt, Pd, W, Sn, Cr, Ni, Zn, Cu, and diamonds. The Province shows many similarities to the mineral-rich cratons of the Canadian shield, the Rhodesian and Transvaal cratons of southern Africa, and the Pilbara and Yilgarn blocks of Western Australia, where much of the world's precious and strategic metal and gemstone resources are located.

  19. Gas desorption and adsorption isotherm studies of coals in the Powder River basin, Wyoming and adjacent basins in Wyoming and North Dakota

    USGS Publications Warehouse

    Stricker, Gary D.; Flores, Romeo M.; McGarry, Dwain E.; Stillwell, Dean P.; Hoppe, Daniel J.; Stillwell, Cathy R.; Ochs, Alan M.; Ellis, Margaret S.; Osvald, Karl S.; Taylor, Sharon L.; Thorvaldson, Marjorie C.; Trippi, Michael H.; Grose, Sherry D.; Crockett, Fred J.; Shariff, Asghar J.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with the State Office, Reservoir Management Group (RMG), of the Bureau of Land Management (BLM) in Casper (Wyoming), investigated the coalbed methane resources (CBM) in the Powder River Basin, Wyoming and Montana, from 1999 to the present. Beginning in late 1999, the study also included the Williston Basin in Montana and North and South Dakota and Green River Basin and Big Horn Basin in Wyoming. The rapid development of CBM (referred to as coalbed natural gas by the BLM) during the early 1990s, and the lack of sufficient data for the BLM to fully assess and manage the resource in the Powder River Basin, in particular, gave impetus to the cooperative program. An integral part of the joint USGS-BLM project was the participation of 25 gas operators that entered individually into confidential agreements with the USGS, and whose cooperation was essential to the study. The arrangements were for the gas operators to drill and core coal-bed reservoirs at their cost, and for the USGS and BLM personnel to then desorb, analyze, and interpret the coal data with joint funding by the two agencies. Upon completion of analyses by the USGS, the data were to be shared with both the BLM and the gas operator that supplied the core, and then to be released or published 1 yr after the report was submitted to the operator.

  20. Hydrochemistry of aquifer systems and relation to regional flow patterns in Cretaceous and older rocks underlying Kansas, Nebraska, and parts of Arkansas, Colorado, Missouri, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Baker, Claud H.; Leonard, Robert B.

    1995-01-01

    Aquifer systems in Cretaceous and older rocks of the Central Midwest are divided on the basis of hydrochemistry and ground-water flow patterns in the Plains subregion, the Western Interior Plains aquifer system contains sodium chloride type water with large concentrations of dissolved solids. Ion ratios suggest that the water was derived from seawater by concentration and by depletion of calcium and sulfate ions. In the overlying Western Interior Plains confining system, concentrations of depositional sea water and dissolution of extensive evaporite deposits have resulted in sodium chloride type water with large concentrations of dissolved solids and sodium. Overlying this confining system in the northwest part of the study area, the Great Plains aquifer system yields water that generally is less mineralized and more variable in water type than the underlying systems. Recharge of meteoric water, concentration of brackish water in which the rocks were deposited, and dissolution of underlying evaporite deposits have contributed to the observed water chemistry. The Great Plains confining system restricts the exchange of water between the underlying Great Plains aquifer system and the overlying unconfined aquifers. In the Ozark subregion, geological units equivalent to the Western Interior Plains aquifer system comprise the Ozark Plateaus aquifer system. Units of this aquifer system are exposed at the land surface, and fresh meteoric water moves rapidly through fractures and solution openings. Water chemistry in this system reflects primarily the dissolution of the predominately carbonate rocks.

  1. Analysis of ERTS-1 imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.

    1973-01-01

    The author has identified the following significant results. Significant results of the Wyoming investigation during the first six months include: (1) successful segregation of Precambrian metasedimentary/metavolcanic rocks from igneous rocks; (2) discovery of iron formation within the metasedimentary sequence; (3) mapping of previously unreported tectonic elements of major significance; (4) successful mapping of large scale fractures of the Wind River Mountains; (5) sucessful distinction of some metamorphic, igneous, and sedimentary lithologies by color-additive viewing of ERTS images; (6) mapping and interpretation of glacial features in western Wyoming; and (7) development of techniques for mapping small urban areas.

  2. Water-level changes in the high plains aquifer underlying parts of South Dakota, Wyoming, Nebraska, Colorado, Kansas, New Mexico, Oklahoma, and Texas; predevelopment through nonirrigation season 1987-88

    USGS Publications Warehouse

    Kastner, W.M.; Schild, D.E.; Spahr, D.S.

    1989-01-01

    The changes in water levels in the High Plains aquifer from the nonirrigation season 1986-87 through the nonirrigation season 1987-88 and from the nonirrigation season 1979-80 through the nonirrigation season 1987-88 are presented in maps for the entire High Plains aquifer area. Water level changes are caused by interacting changes in precipitation, land use, and annual pumpage. Water levels declined from conditions prior to development until 1980 through parts of the High Plains of Nebraska, Colorado, New Mexico, Oklahoma, and Texas. From 1980 through 1987 water level changes were mixed, with declines of more than 10 ft in the highly developed areas of Kansas, New Mexico, Oklahoma, and Texas and relatively stable to rising water tables throughout the remaining aquifer area. The net change was a rise of 0.8 ft. The 1981-87 period was generally wetter than normal and pumping for irrigated agriculture was therefore reduced. Water level changes were mixed during 1987. Declines continued in some highly developed areas, but water levels generally rose throughout most of the aquifer. The average area-weighted change was a rise of 0.28 ft. This rise was due to the generally greater than normal precipitation, decreased acreage under irrigation, and decreased pumpage for those areas irrigated. At the end of the growing season, the drought in the Midwest in 1988 affected only limited areas of the High Plains. The effects of the drought on water levels can not be assessed until the water-level measurements for the nonirrigation season of 1988-89 are compiled. (USGS)

  3. Geology of tight oil and potential tight oil reservoirs in the lower part of the Green River Formation, Uinta, Piceance, and Greater Green River Basins, Utah, Colorado, and Wyoming

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.

    2016-01-01

    The recent successful development of a tight oil play in the Eocene-age informal Uteland Butte member of the lacustrine Green River Formation in the Uinta Basin, Utah, using modern horizontal drilling and hydraulic fracturing techniques has spurred a renewed interest in the tight oil potential of lacustrine rocks. The Green River Formation was deposited by two large lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. These three basins contain the world’s largest in-place oil shale resources with recent estimates of 1.53 trillion, 1.33 trillion, and 1.44 trillion barrels of oil in place in the Piceance, Uinta, and Greater Green River Basins, respectively. The Uteland Butte member was deposited during an early freshwater stage of the lake in the Uinta Basin prior to deposition of the assessed oil shale intervals. This report only presents information on the early freshwater interval and overlying brackish-water interval in all three basins because these intervals are most likely to have tight oil potential. Burial histories of the three basins were reconstructed to study (1) variations in subsidence and lake development, and (2) post deposition burial that led to the development of a petroleum system in only the Uinta Basin. The Uteland Butte member is a successful tight oil play because it is thermally mature for hydrocarbon generation and contains organic-rich shale, brittle carbonate, and porous dolomite. Abnormally high pressure in parts of the Uteland Butte is also important to production. Variations in organic richness of the Uteland Butte were studied using Fischer assay analysis from oil shale assessments, and pressures were studied using drill-stem tests. Freshwater lacustrine intervals in the Piceance and Greater Green River Basins are immature for hydrocarbon generation and contain much less carbonate than the Uteland Butte member. The brackish-water interval in the Uinta Basin is thermally mature for

  4. Geology of tight oil and potential tight oil reservoirs in the lower part of the Green River Formation, Uinta, Piceance, and Greater Green River Basins, Utah, Colorado, and Wyoming

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.

    2016-05-02

    The recent successful development of a tight oil play in the Eocene-age informal Uteland Butte member of the lacustrine Green River Formation in the Uinta Basin, Utah, using modern horizontal drilling and hydraulic fracturing techniques has spurred a renewed interest in the tight oil potential of lacustrine rocks. The Green River Formation was deposited by two large lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. These three basins contain the world’s largest in-place oil shale resources with recent estimates of 1.53 trillion, 1.33 trillion, and 1.44 trillion barrels of oil in place in the Piceance, Uinta, and Greater Green River Basins, respectively. The Uteland Butte member was deposited during an early freshwater stage of the lake in the Uinta Basin prior to deposition of the assessed oil shale intervals. This report only presents information on the early freshwater interval and overlying brackish-water interval in all three basins because these intervals are most likely to have tight oil potential. Burial histories of the three basins were reconstructed to study (1) variations in subsidence and lake development, and (2) post deposition burial that led to the development of a petroleum system in only the Uinta Basin. The Uteland Butte member is a successful tight oil play because it is thermally mature for hydrocarbon generation and contains organic-rich shale, brittle carbonate, and porous dolomite. Abnormally high pressure in parts of the Uteland Butte is also important to production. Variations in organic richness of the Uteland Butte were studied using Fischer assay analysis from oil shale assessments, and pressures were studied using drill-stem tests. Freshwater lacustrine intervals in the Piceance and Greater Green River Basins are immature for hydrocarbon generation and contain much less carbonate than the Uteland Butte member. The brackish-water interval in the Uinta Basin is thermally mature for

  5. Wyoming's Early Settlement and Ethnic Groups, Unit IV.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on Wyoming's early settlement and ethnic groups provides concepts, activities, stories, charts, and graphs for elementary school students. Concepts include the attraction Wyoming held for trappers; the major social, economic, and religious event called "The Rendezvous"; the different ethnic and religious groups that presently inhabit…

  6. 77 FR 31385 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: Notice is hereby given that certain coal resources in the North Porcupine Coal Tract described below in Campbell County, Wyoming, will be offered for...

  7. 77 FR 3790 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: Notice is hereby given that certain coal resources in the South Porcupine Coal Tract described below in Campbell County, Wyoming, will be offered for...

  8. 76 FR 35465 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of competitive coal lease sale. SUMMARY: Notice is hereby given that certain coal resources in the Caballo West Coal Tract described below in Campbell County, Wyoming, will...

  9. 77 FR 22607 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: Notice is hereby given that certain coal resources in the South Porcupine Coal Tract described below in Campbell County, Wyoming, will be reoffered...

  10. 76 FR 28063 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: Notice is hereby given that certain coal resources in the Belle Ayr North Coal Tract described below in Campbell County, Wyoming, will be offered for...

  11. The Impact of New Informational Technology on Education in Wyoming.

    ERIC Educational Resources Information Center

    Dolly, John; And Others

    Educational changes in Wyoming that are linked to the emergence of new informational technologies are considered. Attention is directed to the following topics: assumptions for Wyoming educators as they plan to respond to the impact of technology on teacher education; the importance of educational goals and objectives; the national climate…

  12. Stratigraphic sections of the Phosphoria formation in Wyoming, 1949-50

    USGS Publications Warehouse

    Sheldon, R.P.; Waring, R.G.; Warner, M.A.; Smart, R.A.

    1953-01-01

    As part of a comprehensive investigation of the phosphate deposits of the western field begun in 1947, the U.S. Geological Survey has measured and sampled the Phosphoria formation of Permian age at many localities in Wyoming and adjacent states. These data will not be fully synthesized for many years, but segments of the data, accompanied by little or no interpretation, are published as preliminary reports as they are assembled. This report, which contains abstracts of the sections measured in western Wyoming (figs 1 and 2) in 1949 and 1950, is the second Wyoming report of this series. The field and laboratory procedures adopted in these investigations are described rather fully in a previous report (McKelvey and others, 1953a). Many people have taken part in this investigation, which was organized and supervised by V. E. McKelvey and most of the field program was supervised by R. W. Swanson. F. J. Anderson, D. F. Davidson, A. M. Gutstadt, J. W. Hill, H. W. Peirce, W. R. Record and M. E. Thompson participated in the description of strata and the collection of samples referred to in this report. T. K. Rigby assisted in the preparation of exposures and the crushing and splitting of samples in the field. The laboratory preparation of samples for chemical analysis was done in Denver, Colo., under the direction of W. P. Huleatt.

  13. 30 CFR 950.35 - Approval of Wyoming abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... STATE WYOMING § 950.35 Approval of Wyoming abandoned mine land reclamation plan amendments. (a) Wyoming... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of Wyoming abandoned mine land reclamation plan amendments. 950.35 Section 950.35 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION...

  14. Process-scale modeling of elevated wintertime ozone in Wyoming.

    SciTech Connect

    Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division

    2007-12-31

    Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusually high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.

  15. Regional geology of eastern Idaho and western Wyoming

    SciTech Connect

    Link, P.K.; Kuntz, M.A.; Platt, L.B.

    1993-01-01

    The first section, Regional Synthesis, consists of a single 53-page chapter entitled The track of the Yellowstone hot spot: Volcanism faulting, and uplift.'' The authors' approach is to interpret major features or regional geology as resulting in large part from the last 16 Ma of southwesterly migration by the North American plate over a stationary thermal plume in the mantle. Evidence that may relate to the Yellowstone hot spot model is presented under headings dealing with volcanic track of the hot spot, neotectonic faulting associated with the hot spot, and regional topographic anomalies which may have resulted from hot spot-induced uplift or subsidence. The second section of the book deals with the Idaho-Wyoming thrust belt. Each chapter is a separate article by different authors, so coverage is of selected topics in the Idaho-Wyoming thrust belt rather than a comprehensive overview. Extensional tectonics is the topic of the book's third section. Field investigations of two major structures, the Grand Valley fault and the Teton normal fault, are presented in chapters eight and nine, respectively. Chapter ten focuses on surficial gravity slide sheets that are well-exposed in the area, with particular emphasis on their structural features and mechanisms of emplacement. The final 90 pages of the book make up a four-chapter section that deals with the eastern Snake River plain (ESRP). Topical coverage is quite varied, ranging from details of Quaternary stratigraphy at one site to an overview of the eastern Snake River plain basaltic volcanism and an investigation of ignimbrites of the Heise volcanic field.

  16. Pesticides in Wyoming Groundwater, 2008-10

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Bartos, Timothy T.; Taylor, Michelle L.

    2013-01-01

    Groundwater samples were collected from 296 wells during 1995-2006 as part of a baseline study of pesticides in Wyoming groundwater. In 2009, a previous report summarized the results of the baseline sampling and the statistical evaluation of the occurrence of pesticides in relation to selected natural and anthropogenic (human-related) characteristics. During 2008-10, the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, resampled a subset (52) of the 296 wells sampled during 1995-2006 baseline study in order to compare detected compounds and respective concentrations between the two sampling periods and to evaluate the detections of new compounds. The 52 wells were distributed similarly to sites used in the 1995-2006 baseline study with respect to geographic area and land use within the geographic area of interest. Because of the use of different types of reporting levels and variability in reporting-level values during both the 1995-2006 baseline study and the 2008-10 resampling study, analytical results received from the laboratory were recensored. Two levels of recensoring were used to compare pesticides—a compound-specific assessment level (CSAL) that differed by compound and a common assessment level (CAL) of 0.07 microgram per liter. The recensoring techniques and values used for both studies, with the exception of the pesticide 2,4-D methyl ester, were the same. Twenty-eight different pesticides were detected in samples from the 52 wells during the 2008-10 resampling study. Pesticide concentrations were compared with several U.S. Environmental Protection Agency drinking-water standards or health advisories for finished (treated) water established under the Safe Drinking Water Act. All detected pesticides were measured at concentrations smaller than U.S. Environmental Protection Agency drinking-water standards or health advisories where applicable (many pesticides did not have standards or advisories). One or more pesticides

  17. What Does Energy Development Mean for Wyoming? A Community Study at Hanna, Wyoming.

    ERIC Educational Resources Information Center

    Nellis, Lee

    The enormous but often overlooked impact of energy resource development on small Western United States communities can be illustrated by the experiences of the traditional coal mining town of Hanna, Wyoming. Coal development doubled the population between 1970 and 1972, and required the addition of a sewer system and a police force, plus the…

  18. Healthy Wyoming: Start with Youth Today. Results of the 1991 Wyoming Youth Risk Behavior and School Health Education Survey.

    ERIC Educational Resources Information Center

    Utah Univ., Salt Lake City. Health Behavior Lab.

    This report presents results of the 1991 Wyoming Youth Risk Behavior Survey (YRBS) and the 1991 Wyoming School Health Education Survey (SHES). Thirty-five schools participated in the YRBS, with 3,513 students in grades 9-12; 92 public schools with students in grades 7-12 participated in the SHES. Statistical data from the YRBS are provided in the…

  19. Observing team from the University of Wyoming

    NASA Technical Reports Server (NTRS)

    2002-01-01

    July 19, 1994An observing team from the University of Wyoming , the University of Rochester, and the University of Minnesota is obtaining infrared images of the recent comet impacts on Jupiter. The observations are being made with the Wyoming Infrared Observatory 2.3-meter telescope near Laramie, using an infrared camera developed at Rochester. The accompanying image of Jupiter, obtained on the evening of Sunday July 17, shows three bright spots near the lower left. These are the impact sites of (from left to right) fragments C, A, and E. The other features visible are the bright polar and equatorial regions, and also the Great Red Spot, located below the equator and somewhat to the right.At this relatively short infrared wavelength (2.2 micrometers) the planet it mostly dark because the methane in the Jupiter atmosphere absorbs any sunlight which passes through a significant depth of that atmosphere. Bright regions usually correspond to high altitude clouds which reflect the sunlight before it can penetrate the deeper atmosphere and be absorbed. The bright nature of the impact spots therefore indicates the presence of high altitude haze or clouds -- material carried up from the lower atmosphere by the fireball and plume from the comet impact. More detailed measurements at a variety of wavelengths should reveal the chemical composition of the haze material. The observing team will be continuing their work throughout the comet impact period and expect to obtain images of the plumes from the other comet fragments which will be striking Jupiter later this week.Co ntact: Robert R. Howell Department of Physics and Astronomy University of Wyoming Laramie, WY 82070 307-766-6150

  20. Wyoming geo-notes No. 2

    SciTech Connect

    Glass, G.B.

    1984-01-01

    After a general overview of the mineral industry in Wyoming, activities and data are given on petroleum, natural gas, coal, uranium, trona, thorium, and other industrial minerals, metals, and precious stones. Coal production figures by county and basin are given. Maps are included showing regions containing subbituminous, bituminous, lignite, and strippable deposits of coal; major active and inactive uranium deposits; oil, gas, and oil shale deposits and pipeline corridors; and selected mineral occurrences of bentonite, trona, and jade. Production forecasts are given for uranium, trona, oil, gas, and coal. Reserve estimates are given for petroleum, natural gas, coal, trona, uranium, and oil shale. 8 references, 4 figures, 7 tables.

  1. Bedload measurements, East Fork River, Wyoming

    PubMed Central

    Leopold, Luna B.; Emmett, William W.

    1976-01-01

    A bedload trap in the riverbed provided direct quantitative measurement of debris-transport rate in the East Fork River, Wyoming, a basin of 466 km2 drainage area. Traction load moves only during the spring snow melt season. Data collected in three spring runoff seasons during which a peak flow of 45 m3/s occurred showed that transport rate is correlated with power expenditure of the flowing water and at high flows becomes directly proportional to power as suggested by Bagnold. PMID:16592302

  2. Minerals outlook for Wyoming, September 1983: overview

    SciTech Connect

    Glass, G.B.

    1983-01-01

    An update of Wyoming's geological survey notes the possibility that new gas and oil drilling could reverse the state's economic decline, but federal intervention was needed when the sudden natural gas glut caused contract cancellations and the Colorado Interstate Gas Company had to resort to emergency flaring. Little or no improvement is indicated in coal, trona, gypsum, and limestone production, while uranium production continued its decline. Only bentonite drilling should improve, and the last iron ore operation closed. The survey produced a preliminary geologic map showing 284 rock formations. 4 figures, 4 tables. (DCK)

  3. Wyoming Carbon Capture and Storage Institute

    SciTech Connect

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  4. Heat flow, radioactivity, gravity, and geothermal resources in northern Colorado and southern Wyoming

    SciTech Connect

    Decker, E.R.; Buelow, K.L.

    1981-12-01

    The surface heat flow values in the Sierra Madre-Medicine Bow-Laramie Mountains region are in the range 0.6 to 1.5 HFU. When the heat from local bedrock radioactivity is considered, the reduced flux in these mountains is low to normal (0.6 to 1.2 HFU). These data and the low to normal gradients (10 to 25/sup 0/C/km) in the studied drill holes strongly suggest that the resource potential of the Southern Rockies in Wyoming is low. The geothermal resource potential of the sedimentary basins in Wyoming that border these mountains also appears to be low because preliminary estimates for the flux in these areas are less than or equal to 1.5 HFU and the average gradients in analyzed drill holes are generally less than or equal to 30/sup 0/C/km. In contrast to southern Wyoming, the high surface and reduced heat flows strongly suggest that the Park areas and other parts of the Southern Rockies in northern Colorado are potentially valuable geothermal resource areas. The narrow northerly borders (less than or equal to 50 km) of these positive anomalies suggest that some of the resources could be shallow, as does the evidence for regional igneous and tectonic activity in the late Cenozoic. The small number of combined heat flow and radioactivity stations precludes detailed site-specific evaluations in these regions, but a few generalizations are made.

  5. Occurrence of fecal coliform bacteria in selected streams in Wyoming, 1990-99

    USGS Publications Warehouse

    Clark, Melanie L.; Norris, Jodi R.

    2000-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Wyoming Department of Environmental Quality (WDEQ), is collecting water samples for analysis of fecal coliform bacteria at 18 stream sites as part of a statewide network. Contamination by bacteria of fecal origin in streams where contact recreation is a designated water use is a concern because of potential public-health risk from the presence of enteric pathogens. Fecal coliform concentrations are temporally and spatially variable in Wyoming streams-concentrations ranged from less than 1 to 45,000 colonies per 100 milliliters of water during 1990-99. Fecal coliform concentrations were less than the water-quality criterion of 400 colonies per 100 milliliters in 83 percent of the samples, indicating fecal coliform contamination is not a widespread problem in these Wyoming streams. However, 14 of the 18 monitoring sites had at least one sample in which the fecal coliform concentration exceeded 400 colonies per 100 milliliters at some time during the 10-year period. Fecal coliform concentrations generally are higher during April through September than during October through March. The higher concentrations coincide with the time period when the public-health risk is higher because summer months are when contact recreation use is more likely occurring. Fecal coliform concentrations were positively correlated with discharge and stream temperature and generally were negatively correlated with pH, specific conductance, and dissolved oxygen.

  6. Use of dye tracing in water-resources investigations in Wyoming, 1967-94

    USGS Publications Warehouse

    Wilson, J.F.; Rankl, J.G.

    1996-01-01

    During 1967-94, the U.S. Geological Survey made numerous applications of dye tracing for water-resources investigations in Wyoming. Many of the dye tests were done in cooperation with other agencies. Results of all applications, including some previously unpublished, are described. A chronology of past applications in Wyoming and a discussion of potential future applications are included. Time-of-travel and dispersion measurements were made in a 113-mile reach of the Wind/Bighorn River below Boysen Dam; a 117-mile reach of the Green River upstream from Fontenelle Reservoir and a 70-mile reach downstream; parts of four tributaries to the Green (East Fork River, 39 miles; Big Sandy River, 112 miles; Horse Creek, 14 miles; and Blacks Fork, 14 miles); a 75-mile reach of the Little Snake River along the Wyoming-Colorado State line; and a 95-mile reach of the North Platte River downstream from Casper. Reaeration measurements were made during one of the time-of-travel measurements in the North Platte River. Sixty-eight dye-dilution measurements of stream discharge were made at 22 different sites. These included 17 measurements for verifying the stage-discharge relations for streamflow-gaging stations on North and South Brush Creeks near Saratoga, and total of 29 discharge measurements at 12 new stations at remote sites on steep, rough mountain streams crossing limestone outcrops in northeastern Wyoming. The largest discharge measured by dye tracing was 2,300 cubic feet per second. In karst terrane, four losing streams-North Fork Powder River, North Fork Crazy Woman Creek, Little Tongue River, and Smith Creek-were dye-tested. In the Middle Popo Agie River, a sinking stream in Sinks Canyon State Park, a dye test verified the connection of the sink (Sinks of Lander Cave) to the rise, where flow in the stream resumes.

  7. Interfingering of the Frontier Formation and Aspen Shale, Cumberland Gap, Wyoming.

    USGS Publications Warehouse

    M'gonigle, J.

    1982-01-01

    The basal part, or the Chalk Creek Member, of the non-marine lower Frontier Formation (Upper Cretaceous) includes a thin coal bed that grades S into a carbonaceous shale. The latter plus associated sandstones and shales pinch out S of Cumberland Gap and lie stratigraphically below the top of the Aspen Shale. The beds in the upper part of the Aspen, in turn, pinch out within the Frontier Formation. The coal bed and equivalent carbonaceous shale represent in-place accumulation of peat. The interfingering suggests that in SW Wyoming the Lower/Upper Cretaceous boundary is within the Chalk Creek Member. -from Author

  8. Cretaceous biostratigraphy in the Wyoming thrust belt

    SciTech Connect

    Nichols, D.J.; Jacobson, S.R.

    1982-07-01

    Biostratigraphy is essential to exploration for oil and gas in the Wyoming thrust belt because fossils provide a temporal framework for interpretation of events of faulting, erosion, sedimentation, and the development of hydrocarbon traps and migration pathways. In the Cretaceous section, fossils are especially useful for dating and correlating repetitive facies of different ages in structurally complex terrain. The biostratigraphic zonation for the region is based on megafossils (chiefly ammonites), which permit accurate dating and correlation of outcrop sections, and which have been calibrated with the radiometric time scale for the Western Interior. Molluscan and vertebrate zone fossils are difficult to obtain from the subsurface, however, and ammonities are restricted to rocks of margin origin. Palynomorphs (plant microfossils) have proven to be the most valuable fossils in investigations of stratigraphy and structures in the subsurface of the thrust belt because palynomorphs can be recovered from drill cuttings. Palynomorphs also are found in both marine and nonmarine rocks and can be used for correlation between facies. In this paper, stratigraphic ranges of selected Cretaceous marine and nonmarine palynomorphs in previously designated reference sections in Fossil Basin, Wyoming, are correlated with the occurrence of ammonities and other zone fossils in the same sections. These correlations can be related to known isotopic ages, and they contribute to the calibration of palynomorph ranges in the Cretaceous of the Western Interior.

  9. Ground-water quality in Wyoming

    USGS Publications Warehouse

    Larson, L.R.

    1984-01-01

    This report graphically summarizes ground-water quality from selected chemical-quality data for about 2,300 ground-water sites in Wyoming. Dissolved-solids, nitrate, fluoride, arsenic, barium, cadmium, chromium, lead, mercury, selenium, iron, and manganese concentrations are summarized on a statewide basis. The major chemical-quality problem that limits the use of Wyoming ground-water is excessive dissolved-solids concentrations. The aquifers with the best quality water, based on the lowest median dissolved-solids concentration of water in aquifers with 20 or more sampled sites, are Holocene lacustrine deposits, the upper Testiary Ogallala Formation and Arikaree Formation, and the Mississippian Madison Limestone. The counties with the best quality water, based on the lowest median dissolved-solids concentrations are Teton County and Laramie County. Hot Springs County and Natrona County have the highest median dissolved-solids concentrations. About 3 percent of the nitrate concentrations of ground-water samples exceeded the national primary drinking-water standard of 10 milligrams per liter. Fluoride concentrations exceeded the national primary drinking-water standard in 14 percent of the ground-water samples. Except for selenium, toxic trace elements generally have not been found in concentrations in excess of the drinking-water standards. About 19 percent of the iron and about 30 percent of the manganese concentrations in ground-water samples exceeded the national secondary drinking-water standards. (USGS)

  10. Geohydrology of the Albin and La Grange Areas, Southeastern Wyoming

    USGS Publications Warehouse

    Borchert, W.B.

    1976-01-01

    The Albin and La Grange areas in southeastern Wyoming are two adjoining different hydrologic areas. Since ground water is the only source of water for irrigation in the Albin area, 34 irrigation wells have been drilled since 1968 and developed in conjunction mostly with center-pivot sprinkler systems that in 1974 irrigated about 6,980 acres. Most irrigation wells are developed in channel deposits of the Ogallala Formation of late Miocene. Water levels in parts of these channel deposits have declined about 4 to 7 feet since pumping began in 1968. In the La Grange area, lands are irrigated by surface water, ground water or a combination of both. The best producing wells are those completed in both the Brule Formation of Oligocene age and the alluvium. Secondary porosity was located and elevated in the Brule using caliper logs, an Acoustic Borehole Televiewer and geophysical logs. From the spring of 1970 to the spring of 1974, hydrographs of wells in parts of the La Grange area show water-level rises of about 5 feet resulting from the net effect of surface-water recharge and groundwater pumpage. Throughout the La Grange area no significant annual water-table declines have occurred. It is unlikely that irrigation wells pumping near Horse Creek have caused significant direct streamflow depletion. (Woodard-USGS)

  11. Ground-water resources of Natrona County, Wyoming

    USGS Publications Warehouse

    Crist, Marvin A.; Lowry, Marlin E.

    1972-01-01

    Natrona County covers an area of 5.369 square miles in central Wyoming. The climate is arid except in the mountainous areas. The county includes parts of the Great Plains, Middle Rocky Mountains, Wyoming Basin, and Southern Rocky Mountains physiographic provinces. There is wide variation of topography. More than 30 geologic formations are exposed in the county, 28 of which are known to yield water to wells and springs. The formations range in age from Precambrian to Holocene. Ground water in approximately 40 percent of the county contains more than 1.000 mg/l (milligrams per liter) of dissolved solids. Water chemically suitable for livestock can be developed at depths of less than 1,000 feet throughout most of the area. Many of the geologic formations were deposited under similar conditions and have similar water-bearing properties; also. water from these rocks deposited under similar conditions tends to have similar chemical characteristics. For this report, the stratigraphic section has been arbitrarily divided into six rock units based on similarity of deposition. The igneous and metamorphic rock unit includes rocks of Precambrian age and igneous intrusives and extrusives of Tertiary age. These rocks probably would not yield more than about 5 gpm (gallons per minute) to wells. The water is usually calcium bicarbonate type and contains less than 500 mg/l of dissolved solids. The marine rock unit includes formations of Cambrian, Mississippian, and Pennsylvanian and Permian age, having a maximum total thickness of about 1,900 feet. The Madison Limestone of Mississippian age and the Tensleep Sandstone and the Casper Formation of Pennsylvanian and Permian age supply the largest yields to wells and springs in the county. In the northeastern part of the county, flow from each of three wells in the Madison reportedly is more than 4.000 gpm. Each of three wells in the Tensleep in the same area flows more than 400 gpm. Yields of springs in the Casper Formation near Casper

  12. UPR, DOE team to find gas deposits in Wyoming`s Green River Basin

    SciTech Connect

    Clinton, C.L.; Guennewig, V.B.

    1996-04-01

    Union Pacific and the U.S. Department of Energy have entered into a project in an effort to find a more economic and technologically efficient method of drilling for and producing the exceptionally large gas resources trapped in tight sands in the Greater Green River Basin. The project will be conducted in the Frontier Formation in Southwestern Wyoming. A vertical well will be drilled and tested to evaluate the economic benefit of various technologies.

  13. Geology of photo linear elements, Great Divide Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Ground examination of photo linear elements in the Great Divide Basin, Wyoming indicates little if any tectonic control. Aeolian aspects are more widespread and pervasive than previously considered.

  14. Surface owner's estate becomes dominant: Wyoming's surface owner consent statute

    SciTech Connect

    Reese, T.

    1981-01-01

    This comment discusses the constitutionality of Wyoming's surface owner consent law in three areas. The first is whether Wyoming's statute is an unconstitutional taking without compensation of the dominant position of the mineral estate holder. The second theory will be that the federal government has preempted the area of mineral lands regulation and therefore Wyoming's statute is void. The third theory is that Wyoming's statute is unconstitutional because it denies equal protection of the law under the fourteenth amendment to the US Constitution. This comment will deal primarily with the reservations of mineral rights under lands the federal government disposed of to private interests. It will not deal with reservations of mineral estates by private parties.

  15. 15. CLOSEUP OF THE SWITCHGEAR, LOOKING SOUTHEAST. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. CLOSEUP OF THE SWITCHGEAR, LOOKING SOUTHEAST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  16. Uranium assessment for the Precambrian pebble conglomerates in southeastern Wyoming

    SciTech Connect

    Borgman, L.E.; Sever, C.; Quimby, W.F.; Andrew, M.E.; Karlstrom, K.E.; Houston, R.S.

    1981-03-01

    This volume is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates, and is a companion to Volume 1: The Geology and Uranium Potential to Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 2: Drill-Hole Data, Drill-Site Geology, and Geochemical Data from the Study of Precambrian Uraniferous Conglomerates of the Medicine Bow Mountains and the Sierra Madre of Southeastern Wyoming.

  17. Geothermal resources of the Washakie and Great Divide basins, Wyoming

    SciTech Connect

    Heasler, H.P.; Buelow, K.L.

    1985-01-01

    The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

  18. Wyoming Basin Ecoregion: Chapter 25 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Hawbaker, Todd J.

    2012-01-01

    The Wyoming Basin Ecoregion (Omernik 1987; U.S. Environmental Protection Agency, 1999) covers approximately 128,914 km2 (49,774 mi2) in Wyoming and parts of northwestern Colorado, northeastern Utah, southeastern Idaho, and southern Montana (fig. 1). The ecoregion is bounded on the east by the Northwestern Great Plains Ecoregion; on the south and east by the Southern Rockies Ecoregion; on the south by the Colorado Plateaus Ecoregion; on the south and west by the Wasatch and Uinta Mountains Ecoregion; and on the north by the Middle Rockies Ecoregion and parts of the Montana Valley and Foothill Prairies Ecoregion (fig. 1). The ecoregion generally consists of broad intermountain basins dominated by arid grasslands and shrublands, as well as isolated hills and low mountains that merge to the south into a dissected plateau.

  19. US hydropower resource assessment for Wyoming

    SciTech Connect

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Wyoming.

  20. The Wyoming Infrared Observatory telescope software system

    NASA Astrophysics Data System (ADS)

    Spillar, Earl J.; Dumbrill, Daniel; Grasdalen, G. L.; Howell, R. R.

    1993-06-01

    We describe the University of Wyoming telescope control and data- acquisition software system. The software was designed to be maintainable, portable, and inexpensive. Moreover, the software was designed to allow rapid communication between the hardware, the data- acquisition processes, and the tracking processes, while leaving each distinct. We show how the new real-time features embodied in the POSIX.4 standard and implemented in the Unix compatible LynxOS operating system allow us to perform all of our tasks on a single 80486 machine with a standard Unix-like environment, with outstanding real-time performance. We discuss our telescope pointing model, which allows us to point with a root-mean-square error of less than 5 arcsec over the sky with the 2.3-m telescope. For more detailed investigation and use, we will make the software available through anonymous FTP.

  1. Mucormycotic dermatitis in captive adult Wyoming toads.

    PubMed

    Taylor, S K; Williams, E S; Pier, A C; Mills, K W; Bock, M D

    1999-01-01

    During late May 1995, 50 adult captive endangered Wyoming toads (Bufo baxteri) were brought out of hibernation. Approximately 3 to 10 days after hibernation emergence, all toads were hormonally induced to breed, and paired. Each pair was placed in their own breeding tank. Four toads developed clinical signs of disease which included lethargy and multiple (4 to 12) small (2 mm) raised hyperemic nodules with white fuzzy caps on the ventral skin. The condition progressively worsened until death occurred, within 3 to 6 days. Mycotic dermatitis caused by Mucor sp. was diagnosed in the four toads through histology and isolation of the organism. This is the first case report of a Mucor sp. causing a fatal dermatitis in an amphibian without significant inflammatory response and without systemic involvement. PMID:10073348

  2. Geologic structure and altitude of the top of the Minnelusa Formation, northern Black Hills, South Dakota and Wyoming, and Bear Lodge Mountains, Wyoming

    USGS Publications Warehouse

    Peter, Kathy D.; Kyllonen, David P.; Mills, K.R.

    1987-01-01

    Beginning in 1981, a 3-yr project was conducted to determine the availability and quality of groundwater in the sedimentary bedrock aquifers in the Black Hills of South Dakota and Wyoming. The project was limited to three bedrock units in order of increasing age: the Cretaceous Inyan kara Group, Permian and Pennsylvanian Minnelusa Formation, and Mississippian Madison (or Pahasapa) Limestone. This map shows the altitude of the top of the Minnelusa Formation in the northern Black Hills, and shows the configuration of the structural features in the northern part of the Black Hills and the eastern part of the Bear Lodge Mountains. In general, the Minnelusa Formation dips away from the Black Hills uplift, either to the northeast and the Williston Basin or, south of the Bear Lodge Mountains, to the southwest and the Powder River basin, which is outside the map area. In the map area, the upper beds of the Minnelusa Formation are an aquifer and the lower beds are a confining or semi-confining unit. The upper part of the Minnelusa Formation has a greater percentage of coarse-grained sandstone beds than the lower part. Furthermore, solution and removal of anhydrite, brecciation, and solution of cement binding the sandstone grains may have increased the permeability of the upper part of the Minnelusa Formation in the Black Hills. Wells completed in the upper part of the Minnelusa have yields that exceed 100 gal/min in some areas and at least one large diameter well is reported to flow 1,000 gal/min in some areas and at least one large diameter well is reported to flow 1,000 gal/min. Flowing wells have been completed in the Minnelusa aquifer in most of the study area in South Dakota and in about the northern one-half of Crook County, Wyoming. (Lantz-PTT)

  3. Geology and resource appraisal of the Felix coal deposit, Powder River basin, Wyoming

    SciTech Connect

    Kent, B.H.; Weaver, J.N.; Boberts, S.B. ); Ming, T.; Shu, L.; Bangzhuo, M.

    1988-01-01

    The Powder River basin in Wyoming and Montana and the Ordos Basin in the Shaanxi Province of China were selected for study as part of Project 6, a joint program for coal basin exploration and analysis between the United States and the People's Republic of China. Some of the largest coal deposits in the world occur in Paleocene and Eocene rocks on the eastern flank of the Powder River basin. The authors report that the Felix coal is small compared to underlying deposits such as the Wyodak coal in upper Paleocene rocks.

  4. Interpretation of aircraft multispectral scanner images for mapping of alteration with uranium mineralization, Copper Mountain, Wyoming

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1983-01-01

    NS-001 multispectral scanner data (0.45-2.35 micron) combined as principal components were utilized to map distributions of surface oxidation/weathering in Precambrian granitic rocks at Copper Mountain, Wyoming. Intense oxidation is found over granitic outcrops in partly exhumed pediments along the southern margin of the Owl Creek uplift, and along paleodrainages higher in the range. Supergene(?) uranium mineralization in the granites is localized beneath remnant Tertiary sediments covering portions of the pediments. The patterns of mineralization and oxidation are in agreement, but the genetic connections between the two remain in doubt.

  5. Oil and Gas Development in Southwestern Wyoming - Energy Data and Services for the Wyoming Landscape Conservation Initiative (WLCI)

    USGS Publications Warehouse

    Biewick, Laura R.H.

    2009-01-01

    The purpose of this report is to explore current oil and gas energy development in the area encompassing the Wyoming Landscape Conservation Initiative. The Wyoming Landscape Conservation Initiative is a long-term science-based effort to ensure southwestern Wyoming's wildlife and habitat remain viable in areas facing development pressure. Wyoming encompasses some of the highest quality wildlife habitats in the Intermountain West. At the same time, this region is an important source of natural gas. Using Geographic Information System technology, energy data pertinent to the conservation decision-making process have been assembled to show historical oil and gas exploration and production in southwestern Wyoming. In addition to historical data, estimates of undiscovered oil and gas are included from the 2002 U.S. Geological Survey National Assessment of Oil and Gas in the Southwestern Wyoming Province. This report is meant to facilitate the integration of existing data with new knowledge and technologies to analyze energy resources development and to assist in habitat conservation planning. The well and assessment data can be accessed and shared among many different clients including, but not limited to, an online web-service for scientists and resource managers engaged in the Initiative.

  6. Evaluation of base widening methods on flexible pavements in Wyoming

    NASA Astrophysics Data System (ADS)

    Offei, Edward

    The surface transportation system forms the biggest infrastructure investment in the United States of which the roadway pavement is an integral part. Maintaining the roadways can involve rehabilitation in the form of widening, which requires a longitudinal joint between the existing and new pavement sections to accommodate wider travel lanes, additional travel lanes or modification to shoulder widths. Several methods are utilized for the joint construction between the existing and new pavement sections including vertical, tapered and stepped joints. The objective of this research is to develop a formal recommendation for the preferred joint construction method that provides the best base layer support for the state of Wyoming. Field collection of Dynamic Cone Penetrometer (DCP) data, Falling Weight Deflectometer (FWD) data, base samples for gradation and moisture content were conducted on 28 existing and 4 newly constructed pavement widening projects. A survey of constructability issues on widening projects as experienced by WYDOT engineers was undertaken. Costs of each joint type were compared as well. Results of the analyses indicate that the tapered joint type showed relatively better pavement strength compared to the vertical joint type and could be the preferred joint construction method. The tapered joint type also showed significant base material savings than the vertical joint type. The vertical joint has an 18% increase in cost compared to the tapered joint. This research is intended to provide information and/or recommendation to state policy makers as to which of the base widening joint techniques (vertical, tapered, stepped) for flexible pavement provides better pavement performance.

  7. Paleotectonics and hydrocarbon accumulation, Powder River basin, Wyoming

    SciTech Connect

    Slack, P.B.

    1981-04-01

    The Belle Fourche arch, a subtle northeast-trending paleoarch, extends across the central part of the Powder River basin, Wyoming, to the Black Hills uplift. The arch is the result of differential vertical uplift, primarily during Cretaceous time, on numerous northeast-trending structural lineaments. Stratigraphic evidence suggests that the structural lineaments which form the Belle Fourche arch have rejuvenated periodically throughout the Phanerozoic. Evidence includes: (1) localization of Minnelusa Formation (Permian) hydrocarbon production along the crest of the arch; (2) localization of Dakota Formation (Cretaceous) alluvial point-bar production on the crest of the arch; (3) localization of lower Muddy Formation (Cretaceous) channel deposits parallel with, and on the downthrown sides of, lineament trends; (4) abrupt change in depositional strike of upper Muddy Formation (Cretaceous) marine bars close to the arch; (5) superposition of Turner sandstone (Cretaceous) channel deposits along the trends of Muddy channels; and (6) localization of virtually all significant Upper Cretaceous Shannon and Sussex sandstone offshore marine-bar production along the crest of the arch. Subtle uplift along the arch was persistent during at least lower Muddy through Sussex deposition, a period of about 35 m.y. 14 figures.

  8. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These two radar images show the majestic Yellowstone National Park, Wyoming, the oldest national park in the United States and home to the world's most spectacular geysers and hot springs. The region supports large populations of grizzly bears, elk and bison. In 1988, the park was burned by one of the most widespread fires to occur in the northern Rocky Mountains in the last 50 years. Surveys indicated that 793,880 acres of land burned. Of that, 41 percent was burned forest, with tree canopies totally consumed by the fire; 35 percent was a combination of unburned, scorched and blackened trees; 13 percent was surface burn under an unburned canopy; 6 percent was non-forest burn; and 5 percent was undifferentiated burn. Six years later, the burned areas are still clearly visible in these false-color radar images obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at the left was obtained using the L-band radar channel, horizontally received and vertically transmitted, on the shuttle's 39th orbit on October 2, 1994. The area shown is 45 kilometers by 71 kilometers (28 miles by 44 miles) in size and centered at 44.6 degrees north latitude, 110.7 degrees west longitude. North is toward the top of the image (to the right). Most trees in this area are lodge pole pines at different stages of fire succession. Yellowstone Lake appears as a large dark feature at the bottom of the scene. At right is a map of the forest crown, showing its biomass, or amount of vegetation, which includes foliage and branches. The map was created by inverting SIR-C data and using in situ estimates of crown biomass gathered by the Yellowstone National Biological Survey. The map is displayed on a color scale from blue (rivers and lakes with no biomass) to brown (non-forest areas with crown biomass of less than 4 tons per hectare) to light brown (areas of canopy burn with biomass of between 4 and 12 tons per hectare). Yellow

  9. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These two radar images show the majestic Yellowstone National Park, Wyoming, the oldest national park in the United States and home to the world's most spectacular geysers and hot springs. The region supports large populations of grizzly bears, elk and bison. In 1988, the park was burned by one of the most widespread fires to occur in the northern Rocky Mountains in the last 50 years. Surveys indicated that 793,880 acres of land burned. Of that, 41 percent was burned forest, with tree canopies totally consumed by the fire; 35 percent was a combination of unburned, scorched and blackened trees; 13 percent was surface burn under an unburned canopy; 6 percent was non-forest burn; and 5 percent was undifferentiated burn. Six years later, the burned areas are still clearly visible in these false-color radar images obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at the left was obtained using the L-band radar channel, horizontally received and vertically transmitted, on the shuttle's 39th orbit on October 2, 1994. The area shown is 45 kilometers by 71 kilometers (28 miles by 44 miles) in size and centered at 44.6 degrees north latitude, 110.7 degrees west longitude. North is toward the top of the image (to the right). Most trees in this area are lodge pole pines at different stages of fire succession. Yellowstone Lake appears as a large dark feature at the bottom of the scene. At right is a map of the forest crown, showing its biomass, or amount of vegetation, which includes foliage and branches. The map was created by inverting SIR-C data and using in situ estimates of crown biomass gathered by the Yellowstone National Biological Survey. The map is displayed on a color scale from blue (rivers and lakes with no biomass) to brown (non-forest areas with crown biomass of less than 4 tons per hectare) to light brown (areas of canopy burn with biomass of between 4 and 12 tons per hectare). Yellow

  10. 76 FR 14058 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... National Park Service Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human... University of Wyoming Anthropology Department, Human Remains Repository, Laramie, WY. The human remains were..., Anthropology Department, Human Remains Repository, professional staff in consultation with representatives...

  11. 76 FR 77829 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... AGENCY Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming AGENCY... of Ground Water Contamination near Pavillion, Wyoming.'' The draft research report was prepared by... at the site is potential ground water contamination, based on resident complaints about...

  12. Southwestward weakening of Wyoming lithosphere during the Laramide orogeny

    NASA Astrophysics Data System (ADS)

    Gao, Min; Fan, Majie; Moucha, Robert

    2016-08-01

    The mechanism of Laramide deformation in the central Rocky Mountains remains enigmatic. It is generally agreed that the deformation resulted from low-angle subduction of the Farallon plate beneath the North American plate during the latest Cretaceous-early Eocene; however, recent studies have suggested the importance of slab removal or slab rollback in causing this deformation. Here we infer Wyoming lithosphere structure and surface deformation pattern by conducting 2-D flexural subsidence modeling in order to provide constraints on the mechanism of Laramide deformation. We assume that Wyoming lithosphere behaved as an infinite elastic plate subject to tectonic loading of mountain ranges and conduct 2-D flexural subsidence modeling to major Laramide basins to document lithospheric stiffness and mountain load height. Our results show that the stiffness of Wyoming lithosphere varied slightly in each basin during the ~30 Myr duration of the Laramide deformation and decreased from northeastern Wyoming (Te = 32-46 km) to southwestern Wyoming (Te = 6-9 km). Our results also imply that the increase of equivalent load height of major Laramide ranges accelerated during the early Eocene. We propose that the bending stresses induced by the topographic load of the Sevier fold-and-thrust belt combined with crust-mantle decoupling initiated by the overthickened Sevier hinterland and the end loads due to the low-angle subduction at the western edge of the thick Wyoming craton have caused the southwestward decrease of lithospheric stiffness in Wyoming. Moreover, we attribute the accelerated load height gain during the early Eocene to both dynamic and isostatic effects associated with slab rollback.

  13. 75 FR 66787 - Notice of Filing of Plats of Survey, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... Bureau of Land Management Notice of Filing of Plats of Survey, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of filing of plats of survey, Wyoming. SUMMARY: The Bureau of Land Management (BLM) has filed the plats of survey of the lands described below in the BLM Wyoming State Office,...

  14. Office Practice/Procedures Course Titles and Content in the State of Wyoming and Selected States.

    ERIC Educational Resources Information Center

    Marrs, Glenna

    In an effort to provide consistency in office practice/procedures course titles and content, a study was conducted in Wyoming that found that at least 40 Wyoming high schools (55 percent) offer office practice, office procedures, or a similar class. Wyoming junior/community colleges provided information showing that four junior/community colleges…

  15. 30 CFR 950.35 - Approval of Wyoming abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of Wyoming abandoned mine land reclamation plan amendments. 950.35 Section 950.35 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE WYOMING § 950.35 Approval of Wyoming abandoned mine land reclamation plan amendments. (a)...

  16. 30 CFR 950.30 - Approval of Wyoming abandoned mine land reclamation plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of Wyoming abandoned mine land... § 950.30 Approval of Wyoming abandoned mine land reclamation plan. The Wyoming Abandoned Mine Land..., Department of Environmental Quality, Abandoned Mine Lands Division, Herschler Building, Third Floor West,...

  17. 30 CFR 950.30 - Approval of Wyoming abandoned mine land reclamation plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of Wyoming abandoned mine land... § 950.30 Approval of Wyoming abandoned mine land reclamation plan. The Wyoming Abandoned Mine Land..., Department of Environmental Quality, Abandoned Mine Lands Division, Herschler Building, Third Floor West,...

  18. 30 CFR 950.35 - Approval of Wyoming abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Wyoming abandoned mine land reclamation plan amendments. 950.35 Section 950.35 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE WYOMING § 950.35 Approval of Wyoming abandoned mine land reclamation plan amendments. (a)...

  19. 30 CFR 950.35 - Approval of Wyoming abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of Wyoming abandoned mine land reclamation plan amendments. 950.35 Section 950.35 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE WYOMING § 950.35 Approval of Wyoming abandoned mine land reclamation plan amendments. (a)...

  20. 30 CFR 950.35 - Approval of Wyoming abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of Wyoming abandoned mine land reclamation plan amendments. 950.35 Section 950.35 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE WYOMING § 950.35 Approval of Wyoming abandoned mine land reclamation plan amendments. (a)...

  1. 30 CFR 950.30 - Approval of Wyoming abandoned mine land reclamation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Wyoming abandoned mine land... § 950.30 Approval of Wyoming abandoned mine land reclamation plan. The Wyoming Abandoned Mine Land..., Department of Environmental Quality, Abandoned Mine Lands Division, Herschler Building, Third Floor West,...

  2. 30 CFR 950.30 - Approval of Wyoming abandoned mine land reclamation plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of Wyoming abandoned mine land... § 950.30 Approval of Wyoming abandoned mine land reclamation plan. The Wyoming Abandoned Mine Land..., Department of Environmental Quality, Abandoned Mine Lands Division, Herschler Building, Third Floor West,...

  3. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  4. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  5. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  6. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  7. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  8. Wyoming Community College System 2001-2002 Performance Report: Core Indicators of Effectiveness.

    ERIC Educational Resources Information Center

    Wyoming Community Coll. Commission, Cheyenne.

    This document focuses on the performance of some of Wyoming's community colleges as measured by 13 indicators chosen by the American Association of Community Colleges (AACC). Seven Wyoming community colleges and the Wyoming community college commission use these indicators. The core indicators are as follows: (1) student goal attainment; (2)…

  9. 30 CFR 950.30 - Approval of Wyoming abandoned mine land reclamation plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 950.30 Approval of Wyoming abandoned mine land reclamation plan. The Wyoming Abandoned Mine Land... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of Wyoming abandoned mine land reclamation plan. 950.30 Section 950.30 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND...

  10. Wyoming Community Colleges. Annual Performance Report: Core Indicators of Effectiveness 2009-2010

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2011

    2011-01-01

    The "Core Indicators of Effectiveness Report" delineates the performance of Wyoming's community colleges as measured by the 14 indicators set forth by the American Association of Community Colleges (AACC) and adopted by the seven Wyoming community colleges and the Wyoming Community College Commission in 2002. These indicators, while providing some…

  11. Regional disconformities in Turonian and Coniacian (Upper Cretaceous) strata in Colorado, Wyoming, and adjoining states - Biochronological evidence

    USGS Publications Warehouse

    Merewether, E.A.; Cobban, W.A.; Obradovich, J.D.

    2007-01-01

    Siliciclastic and calcareous sedimentary rocks of early Late Cretaceous age in the Western Interior of the United States have been assigned to, in ascending order, the Graneros Shale, Greenhorn Formation, Carlile Shale, Niobrara Formation, and their lateral equivalents (including members of the Frontier Formation and overlying formations). This sequence of formations was deposited intermittently within and near an epicontinental seaway during the Cenomanian, Turonian, and Coniacian stages of the Cretaceous. It encloses three conspicuous and widespread disconformities that reflect regional marine regressions and transgressions as well as moderate tectonism. The disconformities and associated lacunae occupy three large areas within Wyoming, Colorado, and adjoining states. In parts of that region, as in northwestern Wyoming, a lacuna can represent more than one period of erosion and more than a single disconformity. Evidence for these disconformities was obtained from about 175 collections of molluscan fossils and from sedimentological studies of outcrops and borehole logs, supplemented by previously published data.

  12. Estimated use of water in Lincoln County, Wyoming, 1993

    USGS Publications Warehouse

    Ogle, K.M.; Eddy-Miller, C. A.; Busing, C.J.

    1996-01-01

    Total water use in Lincoln County, Wyoming in 1993 was estimated to be 405,000 Mgal (million gallons). Water use estimates were divided into nine categories: public supply, self-supplied domestic, commercial, irrigation, livestock, indus ial, mining, thermoelectric power, and hydro- electric power. Public supply water use, estimated to be 2,160 Mgal, primarily was obtained from springs and wells. Shallow ground water wells were the primary source of self-supplied domestic water, estimate to be 1.7 Mgal, and 53 percent of those wells were drilled to a depth of 100 feet or less. Commercial water use, estimated to be 117 Mgal, was obtained from public-supply systems. Surface water supplied an estimated 153,000 Mgal of the total estimated water use of 158,000 Mgal for irrigation in 1993. Sprinkler and flood irrigation technology were used about equally in the northern part of Lincoln County and flood irrigation was the primary technology used in the southern part. Livestock, industrial, and mining were not major water users in Lincoln County in 1993. Livestock water use totaled an estimated 203 Mgal. Industrial water use was estimated to be 120 Mgal from self-supplied water sources and 27 Mgal from public supplied water source Mining water use was an estimated 153 Mgal. Thermoelectric and hydroelectric power generation used surface water sources. Thermoelectric power water use was an estimated 5,900 Mgal. An estimated 238,000 Mgal of water was used to generate hydroelectc power at Fontenelle Reservoir on the Green River.

  13. Wyoming Landscape Conservation Initiative Science and Management Workshop Proceedings, May 12-14, 2009, Laramie, Wyoming

    USGS Publications Warehouse

    Nuccio, Vito F.; D'Erchia, Frank D.; Parady, K.(compiler); Mellinger, A.

    2010-01-01

    The U.S. Geological Survey (USGS) hosted the second Wyoming Landscape Conservation Initiative (WLCI) Science and Management Workshop at the University of Wyoming Conference Center and Hilton Garden Inn on May 12, 13, and 14, 2009, in Laramie, Wyo. The workshop focused on six topics seen as relevant to ongoing WLCI science and management activities: mapping and modeling resources for decisionmaking; data information and management; fish and wildlife research; changing landscapes; monitoring; and reclamation and offsite mitigation. Panelists gave presentations on ongoing research in these six areas during plenary sessions followed by audience discussions. Three breakout groups focused on discussing wildlife, reclamation, and monitoring. Throughout the plenary sessions, audience discussions, and breakout groups, several needs were repeatedly emphasized by panelists and workshop participants: developing a conservation plan and identifying priority areas and species for conservation actions; gaining a deeper understanding of sagebrush ecology; identifying thresholds for wildlife that can be used to create an 'early warning system' for managers; continuing to collect basic data across the landscape; facilitating even greater communication and partnership across agencies and between scientists and land managers; and engaging proactively in understanding new changes on the landscape such as wind energy development and climate change. Detailed proceedings from the workshop are captured and summarized in this report.

  14. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect

    Not Available

    1992-07-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES&H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES&H requirements, root causes for noncompliance, adequacy of DOE and contractor ES&H management programs, response actions to address the identified problem areas, and DOE-wide ES&H compliance trends and root causes.

  15. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect

    Not Available

    1992-07-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  16. Upper Almond and Lewis reservoir geometries, southwestern Wyoming and northwestern Colorado

    SciTech Connect

    Hendricks, M.L.

    1996-06-01

    Upper Almond marine sandstones are major petroleum reservoirs in southwestern Wyoming. These sandstones were deposited as part of a transgressive systems tract which capped fluvial and coastal plain sediments of the upper Ericson and lower Almond formations. Marine sandstone reservoirs were deposited in shoreface and tidal channel environments. Shoreface environments in the Echo Springs-Standard Draw trend are extensive and constitute major gas reserves in Carbon County. Shoreface and tidal channel deposits are major oil and gas reservoirs at Patrick Draw Field, Sweetwater County. Major gas resources in upper Almond marine sandstones are yet to be exploited in the deeper portions of the Great Divide, Washakie, and Sand Wash basins. Tapping this basin centered gas resource will require careful reservoir modeling and fracture treatments that significantly increase permeability and reservoir flow. Lewis sandstones are also petroleum reservoirs in the Great Divide, Washakie, and Sand Wash basins. The sandstones are part of the final Cretaceous regressive systems tract in southwestern Wyoming and northwestern Colorado. Well developed clinoforms accompany Lewis and Fox Hills progradation and basin fill. Associated with these progradational systems are correlative density flow and turbidite deposits that locally form reservoirs. These reservoirs commonly occur near the toe of prograding clinoforms and are trapped by rapid facies changes to impermeable siltstones and basinal shales.

  17. Deformational stress fields of Casper Mountain, Wyoming

    SciTech Connect

    Burfod, A.E.; Gable, D.J.

    1985-01-01

    Casper Mountain is an east-west-trending Laramide feature located immediately west of the north termination of the Laramie Mountains in central Wyoming. Precambrian rocks are exposed as its core; off-dipping Paleozoic and Mesozoic strata characterize the flanks and ends. The north side is abruptly downthrown along a major east-west fault or faults. A complex of stress fields of Precambrian and younger ages is indicated by high-angle shears and shear zones, steep-dip foliations, and multiple joint systems. One or more of the indicated Precambrian stress fields may be equivalent to that of the Cheyenne belt of the southern Laramie Mountains. In addition, at least two well-developed Laramide stress fields were active during the formation of the mountain structure. The principal maximum compressive stress of each was oriented north-south; the mean compressive axis of one was vertical whereas in the other the minimum compressive axis was vertical. Some structural features of Precambrian age, faulting in particular, appear to have influenced structures of younger ages. Prominent east-northeast-trending, high-angle faults lie approximately parallel to the Precambrian structural grain; they offset structural features of Laramide age and may be of late Laramide and/or post-Laramide age.

  18. Wyoming Basin Rapid Ecoregional Assessment: Work Plan

    USGS Publications Warehouse

    Carr, Natasha B.; Garman, Steven L.; Walters, Annika; Ray, Andrea; Melcher, Cynthia P.; Wesner, Jeff S.; O’Donnell, Michael S.; Sherrill, Kirk R.; Babel, Nils C.; Bowen, Zachary H.

    2013-01-01

    The overall goal of the Rapid Ecoregional Assessments (REAs) being conducted for the Bureau of Land Management (BLM) is to provide information that supports regional planning and analysis for the management of ecological resources. The REA provides an assessment of baseline ecological conditions, an evaluation of current risks from drivers of ecosystem change, and a predictive capacity for evaluating future risks. The REA also may be used for identifying priority areas for conservation or restoration and for assessing the cumulative effects of a variety of land uses. There are several components of the REAs. Management Questions, developed by the BLM and partners for the ecoregion, identify the information needed for addressing land-management responsibilities. Conservation Elements represent regionally significant aquatic and terrestrial species and communities that are to be conserved and (or) restored. The REA also will evaluate major drivers of ecosystem change (Change Agents) currently affecting or likely to affect the status of Conservation Elements. We selected 8 major biomes and 19 species or species assemblages to be included as Conservation Elements. We will address the four primary Change Agents—development, fire, invasive species, and climate change—required for the REA. The purpose of the work plan for the Wyoming Basin REA is to document the selection process for, and final list of, Management Questions, Conservation Elements, and Change Agents. The work plan also presents the overall assessment framework that will be used to assess the status of Conservation Elements and answer Management Questions.

  19. Headcut Erosion in Wyoming's Sweetwater Subbasin

    NASA Astrophysics Data System (ADS)

    Cox, Samuel E.; Booth, D. Terrance; Likins, John C.

    2016-02-01

    Increasing human population and intensive land use combined with a warming climate and chronically diminished snowpacks are putting more strain on water resources in the western United States. Properly functioning riparian systems slow runoff and store water, thus regulating extreme flows; however, riparian areas across the west are in a degraded condition with a majority of riparian systems not in proper functioning condition, and with widespread catastrophic erosion of water-storing peat and organic soils. Headcuts are the leading edge of catastrophic channel erosion. We used aerial imagery (1.4-3.3-cm pixel) to locate 163 headcuts in riparian areas in the Sweetwater subbasin of central Wyoming. We found 1-m—the generally available standard resolution for land management—and 30-cm pixel imagery to be inadequate for headcut identification. We also used Structure-from-Motion models built from ground-acquired imagery to model 18 headcuts from which we measured soil loss of 425-720 m3. Normalized by channel length, this represents a loss of 1.1-1.8 m3 m-1 channel. Monitoring headcuts, either from ground or aerial imagery, provides an objective indicator of sustainable riparian land management and identifies priority disturbance-mitigation areas. Image-based headcut monitoring must use data on the order of 3.3 cm ground sample distance, or greater resolution, to effectively capture the information needed for accurate assessments of riparian conditions.

  20. Headcut Erosion in Wyoming's Sweetwater Subbasin.

    PubMed

    Cox, Samuel E; Booth, D Terrance; Likins, John C

    2016-02-01

    Increasing human population and intensive land use combined with a warming climate and chronically diminished snowpacks are putting more strain on water resources in the western United States. Properly functioning riparian systems slow runoff and store water, thus regulating extreme flows; however, riparian areas across the west are in a degraded condition with a majority of riparian systems not in proper functioning condition, and with widespread catastrophic erosion of water-storing peat and organic soils. Headcuts are the leading edge of catastrophic channel erosion. We used aerial imagery (1.4-3.3-cm pixel) to locate 163 headcuts in riparian areas in the Sweetwater subbasin of central Wyoming. We found 1-m-the generally available standard resolution for land management-and 30-cm pixel imagery to be inadequate for headcut identification. We also used Structure-from-Motion models built from ground-acquired imagery to model 18 headcuts from which we measured soil loss of 425-720 m3. Normalized by channel length, this represents a loss of 1.1-1.8 m3 m(-1) channel. Monitoring headcuts, either from ground or aerial imagery, provides an objective indicator of sustainable riparian land management and identifies priority disturbance-mitigation areas. Image-based headcut monitoring must use data on the order of 3.3 cm ground sample distance, or greater resolution, to effectively capture the information needed for accurate assessments of riparian conditions. PMID:26410166

  1. Human Rabies - Wyoming and Utah, 2015.

    PubMed

    Harrist, Alexia; Styczynski, Ashley; Wynn, DonRaphael; Ansari, Safdar; Hopkin, Justin; Rosado-Santos, Harry; Baker, JoDee; Nakashima, Allyn; Atkinson, Annette; Spencer, Melanie; Dean, Debbie; Teachout, Leslie; Mayer, Jeanmarie; Condori, Rene E; Orciari, Lillian; Wadhwa, Ashutosh; Ellison, James; Niezgoda, Michael; Petersen, Brett; Wallace, Ryan; Musgrave, Karl

    2016-06-03

    In September 2015, a Wyoming woman was admitted to a local hospital with a 5-day history of progressive weakness, ataxia, dysarthria, and dysphagia. Because of respiratory failure, she was transferred to a referral hospital in Utah, where she developed progressive encephalitis. On day 8 of hospitalization, the patient's family told clinicians they recalled that, 1 month before admission, the woman had found a bat on her neck upon waking, but had not sought medical care. The patient's husband subsequently had contacted county invasive species authorities about the incident, but he was not advised to seek health care for evaluation of his wife's risk for rabies. On October 2, CDC confirmed the patient was infected with a rabies virus variant that was enzootic to the silver-haired bat (Lasionycteris noctivagans). The patient died on October 3. Public understanding of rabies risk from bat contact needs to be improved; cooperation among public health and other agencies can aid in referring persons with possible bat exposure for assessment of rabies risk.

  2. Multidisciplinary study on Wyoming test sites

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.; Borgman, L. E.

    1975-01-01

    The author has identified the following significant results. Ten EREP data passes over the Wyoming test site provided excellent S190A and S190B coverage and some useful S192 imagery. These data were employed in an evaluation of the EREP imaging sensors in several earth resources applications. Boysen Reservoir and Hyattsville were test areas for band to band comparison of the S190 and S192 sensors and for evaluation of the image data for geologic mapping. Contrast measurements were made from the S192 image data for typical sequence of sedimentary rocks. Histograms compiled from these measurements show that near infrared S192 bands provide the greatest amount of contrast between geologic units. Comparison was also made between LANDSAT imagery and S190B and aerial photography for regional land use mapping. The S190B photography was found far superior to the color composite LANDSAT imagery and was almost as effective as the 1:120,000 scale aerial photography. A map of linear elements prepared from LANDSAT and EREP imagery of the southwestern Bighorn Mountains provided an important aid in defining the relationship between fracture and ground water movement through the Madison aquifer.

  3. Water resources of Weston County, Wyoming

    USGS Publications Warehouse

    Lowry, M.E.; Head, W.J.; Rankl, J.G.; Busby, J.F.

    1986-01-01

    Surface water is scarce in Weston County, Wyoming. Groundwater has been developed from rocks ranging in age from Mississippian to Holocene. Adequate supplies for domestic or stock use can be developed from wells generally less than 1,000 ft deep, except in the area underlain by a thick sequence of predominantly marine shale that will yield only small quantities of very mineralized water. In the early 1960 's decreases in artesian pressures occurred in some wells completed in the Lakota Formation of Early Cretaceous age and Pahasapa Limestone of Early Mississippian age. Only the decrease in the Lakota was attributed to development of water from the formation. Extensive development of either of these aquifers, however, may result in significant interference between nearby wells completed within the same aquifer. There are other aquifers within a few hundred feet of the overlying Lakota Formation that could be developed as an alternative to the Lakota to help limit the loss of pressure. The much deeper Pahasapa Limestone generally is developed because of the large supplies that are possible. Because there are no other large yield aquifers, there are no alternatives to limit the loss of pressure of the Pahasapa in the event of increased development. (USGS)

  4. Cretaceous biostratigraphy in the Wyoming thrust belt.

    USGS Publications Warehouse

    Nichols, D.J.; Jacobson, S.R.

    1982-01-01

    In the Cretaceous section of the thrust belt, fossils are especially useful for dating and correlating repetitive facies of different ages in structurally complex terrain. The biostratigraphic zonation for the region is based on megafossils (chiefly ammonites) , which permit accurate dating and correlation of outcrop sections, and which have been calibrated with the radiometric time scale for the Western Interior. Molluscan and vertebrate zone fossils are difficult to obtain from the subsurface, however, and ammonites are restricted to rocks of marine origin. Palynomorphs (plant microfossils) have proven to be the most valuable fossils in the subsurface because they can be recovered from drill cuttings. Palynomorphs also are found in both marine and nonmarine rocks and can be used for correlation between facies. Stratigraphic ranges of selected Cretaceous marine and nonmarine palynomorphs in previously designated reference sections in Fossil Basin, Wyoming are correlated with the occurrence of ammonites and other zone fossils in the same sections. These correlations can be related to known isotopic ages, and they contribute to the calibration of palynomorph ranges in the Cretaceous of the Western Interior. -from Authors

  5. Case studies on direct liquefaction of low rank Wyoming coal

    SciTech Connect

    Adler, P.; Kramer, S.J.; Poddar, S.K.

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  6. Spatial mapping and attribution of Wyoming wind turbines

    USGS Publications Warehouse

    O'Donnell, Michael S.; Fancher, Tammy S.

    2010-01-01

    This Wyoming wind-turbine data set represents locations of wind turbines found within Wyoming as of August 1, 2009. Each wind turbine is assigned to a wind farm. For each turbine, this report contains information about the following: potential megawatt output, rotor diameter, hub height, rotor height, land ownership, county, wind farm power capacity, the number of units currently associated with its wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some attributes are estimates based on information that was obtained through the American Wind Energy Association and miscellaneous online reports. The locations are derived from August 2009 true-color aerial photographs made by the National Agriculture Imagery Program; the photographs have a positional accuracy of approximately ?5 meters. The location of wind turbines under construction during the development of this data set will likely be less accurate than the location of turbines already completed. The original purpose for developing the data presented here was to evaluate the effect of wind energy development on seasonal habitat used by greater sage-grouse. Additionally, these data will provide a planning tool for the Wyoming Landscape Conservation Initiative Science Team and for other wildlife- and habitat-related projects underway at the U.S. Geological Survey's Fort Collins Science Center. Specifically, these data will be used to quantify disturbance of the landscape related to wind energy as well as quantifying indirect disturbances to flora and fauna. This data set was developed for the 2010 project 'Seasonal predictive habitat models for greater sage-grouse in Wyoming.' This project's spatially explicit seasonal distribution models of sage-grouse in Wyoming will provide resource managers with tools for conservation planning. These

  7. An evaluation of the Wyoming gauge system for snowfall measurement

    USGS Publications Warehouse

    Yang, D.; Kane, D.L.; Hinzman, L.D.; Goodison, B.E.; Metcalfe, J.R.; Louie, P.Y.T.; Leavesley, G.H.; Emerson, D.G.; Hanson, C.L.

    2000-01-01

    The Wyoming snow fence (shield) has been widely used with precipitation gauges for snowfall measurement at more than 25 locations in Alaska since the late 1970s. This gauge's measurements have been taken as the reference for correcting wind-induced gauge undercatch of snowfall in Alaska. Recently, this fence (shield) was tested in the World Meteorological Organization Solid Precipitation Measurement Intercomparison Project at four locations in the United States of America and Canada for six winter seasons. At the Intercomparison sites an octagonal vertical Double Fence with a Russian Tretyakov gauge or a Universal Belfort recording gauge was installed and used as the Intercomparison Reference (DFIR) to provide true snowfall amounts for this intercomparison experiment. The intercomparison data collected were compiled at the four sites that represent a variety of climate, terrain, and exposure. On the basis of these data sets the performance of the Wyoming gauge system for snowfall observations was carefully evaluated against the DFIR and snow cover data. The results show that (1) the mean snow catch efficiency of the Wyoming gauge compared with the DFIR is about 80-90%, (2) there exists a close linear relation between the measurements of the two gauge systems and this relation may serve as a transfer function to adjust the Wyoming gauge records to obtain an estimate of the true snowfall amount, (3) catch efficiency of the Wyoming gauge does not change with wind speed and temperature, and (4) Wyoming gauge measurements are generally compatible to the snowpack water equivalent at selected locations in northern Alaska. These results are important to our effort of determining true snowfall amounts in the high latitudes, and they are also useful for regional hydrologic and climatic analyses.

  8. Generalized potentiometric surface, estimated depth to water, and estimated saturated thickness of the High Plains aquifer system, March–June 2009, Laramie County, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.

    2011-01-01

    The High Plains aquifer system, commonly called the High Plains aquifer in many publications, is a nationally important water resource that underlies a 111-million-acre area (173,000 square miles) in parts of eight States including Wyoming. Through irrigation of crops with groundwater from the High Plains aquifer system, the area that overlies the aquifer system has become one of the major agricultural regions in the world. In addition, the aquifer system also serves as the primary source of drinking water for most residents of the region. The High Plains aquifer system is one of the largest aquifers or aquifer systems in the world. The High Plains aquifer system underlies an area of 8,190 square miles in southeastern Wyoming. Including Laramie County, the High Plains aquifer system is present in parts of five counties in southeastern Wyoming. The High Plains aquifer system underlies 8 percent of Wyoming, and 5 percent of the aquifer system is located within the State. Based on withdrawals for irrigation, public supply, and industrial use in 2000, the High Plains aquifer system is the most utilized source of groundwater in Wyoming. With the exception of the Laramie Mountains in western Laramie County, the High Plains aquifer system is present throughout Laramie County. In Laramie County, the High Plains aquifer system is the predominant groundwater resource for agricultural (irrigation), municipal, industrial, and domestic uses. Withdrawal of groundwater for irrigation (primarily in the eastern part of the county) is the largest use of water from the High Plains aquifer system in Laramie County and southeastern Wyoming. Continued interest in groundwater levels in the High Plains aquifer system in Laramie County prompted a study by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office to update the potentiometric-surface map of the aquifer system in Laramie County. Groundwater levels were measured in wells completed in the High Plains

  9. Petroleum exploration in Absaroka basin of northwestern Wyoming

    SciTech Connect

    Sundell, K.A.

    1986-08-01

    A new, virtually unexplored petroleum province with large potential resources can be defined in northwestern Wyoming. Structurally, the Absaroka basin is bounded on the north by the Beartooth uplift, to the west by the Gallatin and Washakie uplifts, to the south by the Washakie and Owl Creek uplifts, and to the east by the Cody arch. The Cody arch connects the southern Beartooth uplift with the northwesternmost Owl Creek uplift and separates the Bighorn basin to the east from the Absaroka basin to the west. The eastern flank of the cody arch is bounded by a major west-dipping thrust fault. The western flank is locally a subhorizontal shelf but overall gently dips to the west-southwest into deeper parts of the Absaroka basin. In contrast to most petroleum basins, the Absaroka basin is topographically a rugged mountain range, created by erosion of a thick sequence of Eocene volcanic rocks that fill the center of the basin and lap onto the adjacent uplifts. Mesozoic and Paleozoic rocks that have produced several billion barrels of oil from the adjacent Bighorn and Wind River basins are probably present within the Absaroka basin and should have similar production capabilities. The Absaroka basin may have greater potential than adjacent basins because the volcanics provide additional traps and reservoirs. Domes in Mesozoic and Paleozoic rocks beneath the volcanics and stratigraphic traps at the angular unconformity between the volcanics and underlying reservoirs are primary exploration targets. Unique geologic, geophysical, permitting, access, and drilling problems are encountered in all aspects of exploration.

  10. National Uranium Resource Evaluation: Torrington Quadrangle, Wyoming and Nebraska

    SciTech Connect

    Seeland, D

    1982-09-01

    The Torrington 1/sup 0/ x 2/sup 0/ Quadrangle in southeastern Wyoming and western Nebraska was evaluated to identify areas favorable for the occurrence of uranium deposits likely to contain 100 tons of uranium with an average grade of not less than 100 ppM (0.01 percent) U/sub 3/O/sub 8/. Almost all uranium occurrences reported in the literature were visited and sampled. Geochemical analyses of rock samples collected during the study were used in the evaluation. Hydrogeochemical and stream-sediment analyses were not available. Aerial-radiometric, and helium soil-gas surveys were analyzed. Much of the quadrangle is covered by Tertiary rocks. To assess the uranium potential of the Tertiary and pre-Tertiary rocks 270 well logs were studied and both contour and geologic maps made of the pre-Oligocene surface east and north of the Laramie Mountains. Five environments favorable for uranium deposits were outlined. The first is in the coarse-grained arkosic sandstone facies of the Wasatch Formation and the Lebo Member of the Fort Union Formation in the southern Powder River Basin. The second is in the Wind River Formation in the Shirley Basin, a stratigraphic and lithologic equivalent of the Wasatch. The third is the Lower Cretaceous Cloverly Formation in the northeastern part of the quadrangle. The fourth is in the Upper Cretaceous Lance (Laramie) Formation and the Fox Hills Sandstone in the southeastern corner of the quadrangle. The fifth favorable environment is in Precambrian rocks in the Laramie Mountains and Hartville uplift.

  11. Crustal structure of the Bighorn Mountains region: Precambrian influence on Laramide shortening and uplift in north-central Wyoming

    NASA Astrophysics Data System (ADS)

    Worthington, Lindsay L.; Miller, Kate C.; Erslev, Eric A.; Anderson, Megan L.; Chamberlain, Kevin R.; Sheehan, Anne F.; Yeck, William L.; Harder, Steven H.; Siddoway, Christine S.

    2016-01-01

    The crustal structure of north-central Wyoming records a history of complex lithospheric evolution from Precambrian accretion to Cretaceous-Paleogene Laramide shortening. We present two active source P wave velocity model profiles collected as part of the Bighorn Arch Seismic Experiment in 2010. Analyses of these velocity models and single-fold reflection data, together with potential field modeling of regional gravity and magnetic signals, constrain crustal structure and thickness of the Bighorn region. We image a west dipping reflection boundary and model a sharp magnetic contact east of the Bighorn Arch that together may delineate a previously undetected Precambrian suture zone. Localized patches of a high-velocity, high-density lower crustal layer (the "7.× layer") occur across the study area but are largely absent beneath the Bighorn Arch culmination. Moho topography is relatively smooth with no large-scale offsets, with depths ranging from ~50 to 37 km, and is largely decoupled from Laramide basement topography. These observations suggest that (1) the edge of the Archean Wyoming craton lies just east of the Bighorn Mountains, approximately 300 km west of previous interpretations, and (2) Laramide deformation localized in an area with thin or absent 7.× layer, due to its relatively weak lower crust, leading to detachment faulting. Our findings show that Precambrian tectonics in northern Wyoming may be more complicated than previously determined and subsequent Laramide deformation may have been critically dependent on laterally heterogeneous crustal structure that can be linked to Precambrian origins.

  12. Selenium mobilization in a surface coal mine, Powder River Basin, Wyoming, U.S.A.

    USGS Publications Warehouse

    Dreher, G.B.; Finkelman, R.B.

    1992-01-01

    Elevated concentrations (0.6-0.9 mg/l) of selenium were detected in the groundwater of a small backfill area at a surface mine in the Powder River Basin, Wyoming. This report focuses on the source of selenium, its modes of occurrence in overburden deposits and backfill groundwater, and its fate. The immediate source of the selenium appeared to be the dissolution of preexisting soluble salts from the unsaturated zone of the overburden. The ultimate source of selenium was probably the oxidation of selenium-bearing pyrite in the geologic past. Overburden was placed partially in the saturated zone of the backfill where, upon resaturation, soluble salts dissolved in the groundwater. Water standing in the pit at the time of backfilling might have contributed to the elevated concentrations of selenium and other solutes. Selenium was found in an ash-rich coal and in clastic sediments in seven different modes of occurrence. The concentration of soluble selenium in the groundwater at this site has been decreasing since monitoring began in late 1982, and at the present rate of decrease, the concentration should drop below the State of Wyoming guideline of 0.05 mg/l for selenium in water intended for use by livestock by about mid-1992. The decrease in soluble selenium concentration may in part be due to microbially assisted reduction of selenate followed by sorption on clays and other sorbents. ?? 1992 Springer-Verlag New York Inc.

  13. Depositional history of the Lower Triassic Dinwoody Formation in the Wind River basin area, Wyoming

    SciTech Connect

    Paul, R.K.; Paull, R.A. )

    1993-04-01

    Thirty-three measured sections of the Dinwoody Formation, including five from the literature, provide information on thickness, lithology, paleontology, and stratigraphic relations within the Wind River basin and immediately adjacent areas of Wyoming. Most of these sections are in Fremont County, and some lie within the Wind River Indian Reservation. The Dinwoody becomes progressively thinner eastward, from a maximum thickness of 54.6 m in the northwestern Wind River Mountains to zero near the Natrona County line. The formation is characterized by yellowish-weathering, gray siltstone and silty shale. Variable amounts of limestone, sandstone, gypsum, and claystone are also present. Marine bivalves, gastropods, brachiopods (Lingula), and conodonts are common in the western part of the study area, but are absent to the northeast in gypsiferous strata, and near the eastern limit of Dinwoody deposition. The Dinwoody in the Wind River Basin area was deposited unconformably on the Upper Permian Ervary Member of the Park City Formation during the initial Mesozoic flood onto the Wyoming shelf during the Griesbachian, and represents the first of three Lower Triassic transgressive sequences in the western miogeocline. Conodonts of the Isarcica Chronozone document the rapid nature of this eastward transgression. The Permian surface underlying the Dinwoody rarely shows evidence of the long hiatus separating rocks of this age and earliest Triassic deposits. The Dinwoody transgression was followed by westward progradation of the Red Peak Formation of the Chugwater Group across the study area.

  14. Geospatial data for coal beds in the Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Kinney, Scott A.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.

    2015-01-01

    The purpose of this report is to provide geospatial data for various layers and themes in a Geographic Information System (GIS) format for the Powder River Basin, Wyoming and Montana. In 2015, as part of the U.S. Coal Resources and Reserves Assessment Project, the U.S. Geological Survey (USGS) completed an assessment of coal resources and reserves within the Powder River Basin, Wyoming and Montana. This report is supplemental to USGS Professional Paper 1809 and contains GIS data that can be used to view digital layers or themes, including the Tertiary limit of the Powder River Basin boundary, locations of drill holes, clinker, mined coal, land use and technical restrictions, geology, mineral estate ownership, coal thickness, depth to the top of the coal bed (overburden), and coal reliability categories. Larger scale maps may be viewed using the GIS data provided in this report supplemental to the page-size maps provided in USGS Professional Paper 1809. Additionally, these GIS data can be exported to other digital applications as needed by the user. The database used for this report contains a total of 29,928 drill holes, of which 21,393 are in the public domain. The public domain database is linked to the geodatabase in this report so that the user can access the drill-hole data through GIS applications. Results of this report are available at the USGS Energy Resources Program Web site,http://energy.usgs.gov/RegionalStudies/PowderRiverBasin.aspx.

  15. Reconnaissance geology and geochronology of the Precambrian of the Granite Mountains, Wyoming

    USGS Publications Warehouse

    Peterman, Zell E.; Hildreth, Robert A.

    1978-01-01

    The Precambrian of the western part of the Granite Mountains, Wyoming, contains a metamorphic complex of gneisses, schists, and amphibolites that were derived through amphibolite-grade metamorphism from a sedimentary-volcanic sequence perhaps similar to that exposed in the southeastern Wind River Mountains. Whole-rock Rb-Sr dating places the time of metamorphism at 2,860?80 million years. A high initial 87Sr/ 86 S r ratio of 0.7048 suggests that either the protoliths or the source terrane of the sedimentary component is several hundred million years older than the time of metamorphism. Following an interval of 300:t100 million years for which the geologic record is lacking or still undeciphered, the metamorphic complex was intruded by a batholith and satellite bodies of medium- to coarse-grained, generally massive biotite granite and related pegmatite and aplite. The main body of granite is dated at 2,550?60 million years by the Rb-Sr method. Limited data suggest that diabase dikes were emplaced and nephrite veins were formed only shortly after intrusion of the granite. Emplacement of the granite at about 2,550 million years ago appears to be related to a major period of regional granitic plutonism in the Precambrian of southern and western Wyoming. Granites, in the strict sense, that are dated between 2,450 and 2,600 million years occur in the Teton Range, the Sierra Madre, the Medicine Bow Mountains and the Laramie Range. This episode of granitic plutonism occured some 50 to 100 million years later than the major tonalitic to granitic plutonism in the Superior province of northern Minnesota and adjacent Ontario-the nearest exposed Precambrian W terrane that is analogous to the Wyoming province. Initial 87Sr / 86Sr ratios of some of the Wyoming granites are higher than expected if the rocks had been derived from juvenile magmas and it is likely that older crustal rocks were involved to some degree in the generation of these granites. Slightly to highly disturbed

  16. Wyoming Community College System Summer 2007 Enrollment Report

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2008

    2008-01-01

    This report includes Summer 2007 semester enrollment information for Wyoming's seven comprehensive community colleges. Selected data includes student counts by credit hours, county, full-time students (FTE), program or study, ethnicity and a ten-year history. (Contains 12 tables.) [For the Spring 2007 enrollment report, see ED502750.

  17. Wyoming Community College System Spring 2007 Enrollment Report

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2007

    2007-01-01

    This report includes Spring 2007 semester enrollment information for Wyoming's seven comprehensive community colleges. Selected data includes student counts by credit hours, county, full-time students (FTE), program or study, ethnicity and a ten-year history. (Contains 12 tables.) [For the Fall 2006 enrollment report, see ED502749.

  18. Wyoming Community College System Fall 2006 Enrollment Report

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2007

    2007-01-01

    This report includes Fall 2006 semester enrollment information for Wyoming's seven comprehensive community colleges. Selected data includes student counts by credit hours, county, full-time students (FTE), program or study, ethnicity and a 10-year history. (Contains 12 tables.) [For the Fall 2005 edition of this report, see ED502745.

  19. INVESTIGATION OF GROUND WATER CONTAMINATION NEAR PAVILLION, WYOMING

    EPA Science Inventory

    In response to complaints by domestic well owners regarding objectionable taste and odor problems in well water, the U.S. Environmental Protection Agency initiated a ground water investigation near the town of Pavillion, Wyoming under authority of the Comprehensive Environmental ...

  20. Woody fuels reduction in Wyoming big sagebrush communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) ecosystems historically have been subject to disturbances that reduce or remove shrubs primarily by fire, although insect outbreaks and disease have also been important. Depending on site productivity, fire return in...

  1. Precision fertilization of Wyoming sugar beets: A case study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field Studies were conducted on a farm in northwest Wyoming to compare variable-rate fertilization (VRF) with uniform-rate fertilization (URF) of sugar beets. Results from this study failed to show an economic advantage from VRF compared to URF, implying producers should be very cautious to adopt VR...

  2. A HANDBOOK FOR TEACHERS OF MIGRANT CHILDREN IN WYOMING, 1967.

    ERIC Educational Resources Information Center

    BENITENDI, WILMA LEE; AND OTHERS

    A SURVEY MADE DURING THE SUMMER OF 1967 SHOWED THAT ALMOST ONE THOUSAND SCHOOL-AGE MIGRANT CHILDREN WERE IN THE STATE OF WYOMING FOR 6 TO 8 WEEKS DURING THE SUGAR BEET SEASON. THIS HANDBOOK, PREPARED FOR THE USE OF THOSE TEACHERS AND ADMINISTRATORS WHO WORK IN SUMMER SCHOOL PROGRAMS, IS DIVIDED INTO FIVE CHAPTERS. CHAPTERS 1 AND 2 DEAL WITH THE…

  3. Wyoming big sagebrush associations of eastern Oregon; vegetation attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report provides a synopsis of several vegetative characteristics for the Wyoming big sagebrush complex in eastern Oregon covering the High Desert , Snake River, and Owyhee Ecological Provinces in Harney, Lake, and Malheur Counties. The complex has been grouped into six associations defined by t...

  4. National Environmental/Energy Workforce Assessment for Wyoming.

    ERIC Educational Resources Information Center

    National Field Research Center Inc., Iowa City, IA.

    This report presents existing workforce levels, training programs and career potentials and develops staffing level projections (1976-1982) based on available information for the State of Wyoming. The study concerns itself with the environmental pollution control areas of air, noise, potable water, pesticides, radiation, solid waste, wastewater,…

  5. Wyoming Landscape Conservation Initiative data management and integration

    USGS Publications Warehouse

    Latysh, Natalie; Bristol, R. Sky

    2011-01-01

    Six Federal agencies, two State agencies, and two local entities formally support the Wyoming Landscape Conservation Initiative (WLCI) and work together on a landscape scale to manage fragile habitats and wildlife resources amidst growing energy development in southwest Wyoming. The U.S. Geological Survey (USGS) was tasked with implementing targeted research and providing scientific information about southwest Wyoming to inform the development of WLCI habitat enhancement and restoration projects conducted by land management agencies. Many WLCI researchers and decisionmakers representing the Bureau of Land Management, U.S. Fish and Wildlife Service, the State of Wyoming, and others have overwhelmingly expressed the need for a stable, robust infrastructure to promote sharing of data resources produced by multiple entities, including metadata adequately describing the datasets. Descriptive metadata facilitates use of the datasets by users unfamiliar with the data. Agency representatives advocate development of common data handling and distribution practices among WLCI partners to enhance availability of comprehensive and diverse data resources for use in scientific analyses and resource management. The USGS Core Science Informatics (CSI) team is developing and promoting data integration tools and techniques across USGS and partner entity endeavors, including a data management infrastructure to aid WLCI researchers and decisionmakers.

  6. 76 FR 18240 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of competitive coal lease sale. SUMMARY: Notice is hereby given that certain coal resources in the West Antelope II South Coal Tract described below in Converse...

  7. 76 FR 11258 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Competitive Coal Lease Sale. SUMMARY: Notice is hereby given that certain coal resources in the West Antelope II North Coal Tract described below in Campbell...

  8. 76 FR 64099 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of competitive coal lease sale. SUMMARY: Notice is hereby given that certain coal resources in the South Hilight Field Coal Tract described below in Campbell County,...

  9. Wyoming Tombstone Symbolism: A Reflection of Western Culture.

    ERIC Educational Resources Information Center

    Cochenour, John; Rezabek, Landra L.

    Eleven cemeteries in Wyoming are examined for visuals pertaining to life in the West. The purpose is to demonstrate the importance of Western culture tradition evidenced through tombstone symbolism--representations of the activities and environments of the living through the memory provided by the deceased. The visual symbols found on the…

  10. The Earthworms (Oligochaeta: Lumbricidae)of Wyoming, USA, Revisited.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This survey of the earthworms from 22 of the 23 counties of Wyoming recorded 13 species of terrestrial Oligochaeta, all members of the family Lumbricidae. One of these species, Aporrectodea limicola, is reported for the first time from the state. Current nomenclature is applied to historical records...

  11. Contribution to CCN Workshop report from University of Wyoming group

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.; Politovich, M. K.

    1981-01-01

    The group's CCN counter is described. It is a static, horizontal, parallel plate thermal gradient diffusion chamber. Examples of the application of the CCN are presented and include the CCN spectra measured during the winter of 1978-79 near Elk Mountain, Wyoming. Comparisons of droplet concentrations derived from upwind CCN spectra are covered.

  12. Ethnic Medicine on the Frontier: A Case Study in Wyoming.

    ERIC Educational Resources Information Center

    Meredith, John D.

    1984-01-01

    Utilizing both quantitative and qualitative approaches, the study assessed the strengths of selected components of the Mexican American ethnic medical system within the local community of Casper, Wyoming. Findings indicated that few local Hispanics adhered to much of the system, except in the realm of some easily available home remedies.…

  13. Fischer Assays of Oil-Shale Drill Cores and Rotary Cuttings from the Greater Green River Basin, Southwestern Wyoming

    USGS Publications Warehouse

    ,

    2008-01-01

    ,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data are from analyses performed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, with some analyses made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet that is included in the CD-ROM. These Wyoming Fischer assays and histograms are part of a much larger collection of oil-shale information, including geophysical and lithologic logs, water data, chemical and X-ray diffraction analyses on the Green River oil-shale deposits in Colorado, Utah, and Wyoming held by the U.S. Geological Survey. Because of an increased interest in oil shale, this CD-ROM containing Fischer assay data and oil-yield histograms for the Green River oil-shale deposits in southwestern Wyoming is being released to the public. Microsoft Excel spreadsheets included with Chapter 2 contain the Fischer assay data from the 426 holes and data on the company name and drill-hole name, and location. Histograms of the oil yields obtained from the Fischer assays are presented in both Grapher and PDF format. Fischer assay text data files are also included in the CD-ROM.

  14. Molluscan record from a Mid-Cretaceous borehole in Weston County, Wyoming

    USGS Publications Warehouse

    Cobban, William Aubrey

    1984-01-01

    A core borehole in the Osage oilfield on the west flank of the Black Hills uplift in eastern Wyoming penetrated, in decending order, most of the Carlile Shale, all of the Greenhorn Formation, and the upper part of the underlying Belle Fourche Shale. Molluscan fossils are abundant in parts of the core and indicate an age span of early Coniacian to the middle Cenomanian. Most of the fossils are bivalves and ammonites; gastropods are scarce. Fossils in the cores indicate the following zones: Lower Coniacian Cremnoceramus? waltersdorfensis Upper Turonian Scaphites coroensis S. nigricollensis S. whiifieldi S. warreni Middle Turonian Collignoniceras woollgari Lower Turonian Mytiloides mytiloides Mytiloides aff. M. duplicostatus Upper Cenomanian Sciponoceras gracile Dunveganoceras albertense D. pondi Middle Cenomanian Acanthoceras amphibolum

  15. Wyoming Indian High School [WIHS], Ethete, Wyoming. Evaluation Report, May 1973. Research and Evaluation Report Series No. 04-B.

    ERIC Educational Resources Information Center

    Streiff, Paul; And Others

    The first full year of the Wyoming Indian High School at Ethete is evaluated in this report which presents area recommendations calling for programs and/or adjustments as follows: (1) Goals and Objectives (needs assessment and community involvement in school philosophy); (2) Cultural Awareness (student enrollment; Native art and the Traditional…

  16. Ground-water resources of Sheridan County, Wyoming

    USGS Publications Warehouse

    Lowry, Marlin E.; Cummings, T. Ray

    1966-01-01

    Sheridan County is in the north-central part of Wyoming and is an area of about 2,500 square miles. The western part of the county is in the Bighorn Mountains, and the eastern part is in the Powder River structural basin. Principal streams are the Powder and Tongue Rivers, which are part of the Yellowstone River system. The climate is semiarid, and the mean annual precipitation at Sheridan is about 16 inches. Rocks of Precambrian age are exposed in the central part of the Bighorn Mountains, and successively younger rocks are exposed eastward. Rocks of Tertiary age, which are the most widespread, are exposed throughout a large part of the Powder River structural basin. Deposits of Quaternary age underlie the flood plains and terraces along the larger streams, particularly in the western part of the basin. Aquifers of pre-Tertiary age are exposed in the western part of the county, but they dip steeply and are deeply buried just a few miles east of their outcrop. Aquifers that might yield large supplies of water include the Bighorn Dolomite, Madison Limestone, Amsden Formation, and Tensleep Sandstone. The Flathead Sandstone, Sundance Formation, Morrison Formation, Cloverly Formation,. Newcastle Sandstone, Frontier Formation, Parkman Sandstone, Bearpaw Shale, .and Lance Formation may yield small or, under favorable conditions, moderate supplies of water. Few wells tap aquifers of pre-Tertiary age, and these are restricted to the outcrop area. The meager data available indicate that the water from the Lance Formation, Bearpaw Shale, Parkman Sandstone, Tensleep Sandstone and Amsden Formation, and Flathead Standstone is of suitable quality for domestic or stock purposes, and that water from the Tensleep Sandstone and Amsden Formation and the Flathead Sandstone is of good quality for irrigation. Samples could not be obtained from other aquifers of pre-Tertiary age; so the quality of water in these aquifers could not be determined. Adequate supplies of ground water for

  17. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    ,

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  18. Specific Conductance and Dissolved-Solids Characteristics for the Green River and Muddy Creek, Wyoming, Water Years 1999-2008

    USGS Publications Warehouse

    Clark, Melanie L.; Davidson, Seth L.

    2009-01-01

    Southwestern Wyoming is an area of diverse scenery, wildlife, and natural resources that is actively undergoing energy development. The U.S. Department of the Interior's Wyoming Landscape Conservation Initiative is a long-term science-based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy development through local collaboration and partnerships. Water-quality monitoring has been conducted by the U.S. Geological Survey on the Green River near Green River, Wyoming, and Muddy Creek near Baggs, Wyoming. This monitoring, which is being conducted in cooperation with State and other Federal agencies and as part of the Wyoming Landscape Conservation Initiative, is in response to concerns about potentially increased dissolved solids in the Colorado River Basin as a result of energy development. Because of the need to provide real-time dissolved-solids concentrations for the Green River and Muddy Creek on the World Wide Web, the U.S. Geological Survey developed regression equations to estimate dissolved-solids concentrations on the basis of continuous specific conductance using relations between measured specific conductance and dissolved-solids concentrations. Specific conductance and dissolved-solids concentrations were less varied and generally lower for the Green River than for Muddy Creek. The median dissolved-solids concentration for the site on the Green River was 318 milligrams per liter, and the median concentration for the site on Muddy Creek was 943 milligrams per liter. Dissolved-solids concentrations ranged from 187 to 594 milligrams per liter in samples collected from the Green River during water years 1999-2008. Dissolved-solids concentrations ranged from 293 to 2,485 milligrams per liter in samples collected from Muddy Creek during water years 2006-08. The differences in dissolved-solids concentrations in samples collected from the Green River compared to samples collected from Muddy

  19. Ground Water Atlas of the United States: Segment 8, Montana, North Dakota, South Dakota, Wyoming

    USGS Publications Warehouse

    Whitehead, R.L.

    1996-01-01

    The States of Montana, North Dakota, South Dakota, and Wyoming compose the 392,764-square-mile area of Segment 8, which is in the north-central part of the continental United States. The area varies topographically from the high rugged mountain ranges of the Rocky Mountains in western Montana and Wyoming to the gently undulating surface of the Central Lowland in eastern North Dakota and South Dakota (fig. 1). The Black Hills in southwestern South Dakota and northeastern Wyoming interrupt the uniformity of the intervening Great Plains. Segment 8 spans the Continental Divide, which is the drainage divide that separates streams that generally flow westward from those that generally flow eastward. The area of Segment 8 is drained by the following major rivers or river systems: the Green River drains southward to join the Colorado River, which ultimately discharges to the Gulf of California; the Clark Fork and the Kootenai Rivers drain generally westward by way of the Columbia River to discharge to the Pacific Ocean; the Missouri River system and the North Platte River drain eastward and southeastward to the Mississippi River, which discharges to the Gulf of Mexico; and the Red River of the North and the Souris River drain northward through Lake Winnipeg to ultimately discharge to Hudson Bay in Canada. These rivers and their tributaries are an important source of water for public-supply, domestic and commercial, agricultural, and industrial uses. Much of the surface water has long been appropriated for agricultural use, primarily irrigation, and for compliance with downstream water pacts. Reservoirs store some of the surface water for flood control, irrigation, power generation, and recreational purposes. Surface water is not always available when and where it is needed, and ground water is the only other source of supply. Ground water is obtained primarily from wells completed in unconsolidated-deposit aquifers that consist mostly of sand and gravel, and from wells

  20. Water resources data, Wyoming, water year 2004; Volume 1. Surface water; with List of discontinued and active surface-water, water-quality, sediment, and biological stations

    USGS Publications Warehouse

    Watson, K.R.; Woodruff, R.E.; Laidlaw, G.A.; Clark, M.L.; Miller, K.A.

    2005-01-01

    Water resources data for the 2004 water year for Wyoming consist of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 164 gaging stations; water quality for 43 gaging stations and 45 ungaged stations, and stage and contents for one reservoir. Volume 2 of this report contains water levels records for 64 wells. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent part of the National Water Information System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  1. Economic Development from New Generation and Transmission in Wyoming and Colorado (Fact Sheet)

    SciTech Connect

    Not Available

    2013-03-01

    This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

  2. Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)

    SciTech Connect

    Not Available

    2011-05-01

    Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

  3. Jobs and Economic Development from New Transmission and Generation in Wyoming Fact Sheet

    SciTech Connect

    2011-05-10

    Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.

  4. Economic Development from New Generation and Transmission in Wyoming and Colorado

    SciTech Connect

    Keyser, D.; Lantz, E.

    2013-03-01

    This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

  5. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative: 2012 annual report

    USGS Publications Warehouse

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bern, Carleton R.; Biewick, Laura R.H.; Boughton, Gregory K.; Carr, Natasha B.; Chalfoun, Anna D.; Chong, Geneva W.; Clark, Melanie L.; Fedy, Bradford C.; Foster, Katharine; Garman, Steven L.; Germaine, Stephen S.; Hethcoat, Matthew G.; Homer, Collin G.; Kauffman, Matthew J.; Keinath, Douglas; Latysh, Natalie; Manier, Daniel J.; McDougal, Robert R.; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Potter, Christopher J.; Schell, Spencer; Shafer, Sarah L.; Smith, David B.; Sweat, Michael J.; Wilson, Anna B.

    2014-01-01

    Southwest Wyoming contains abundant energy resources, wildlife, habitat, open spaces, and outdoor recreational opportunities. Although energy exploration and development have been taking place in the region since the late 1800s, the pace of development for fossil fuels and renewable energy increased significantly in the early 2000s. This and the associated urban and exurban development are leading to landscape-level environmental and socioeconomic changes that have the potential to diminish wildlife habitat and other natural resources, and the quality of human lives, in Southwest Wyoming. The potential for negative effects of these changes prompted Federal, State, and local agencies to undertake the Wyoming Landscape Conservation Initiative for Southwest Wyoming.

  6. Radiological survey of the inactive uranium-mill tailings at the Spook site, Converse County, Wyoming

    SciTech Connect

    Haywood, F.F.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Lorenzo, D.; Shinpaugh, W.H.

    1980-05-01

    Results of a radiological survey performed at the Spook site in Converse County, Wyoming, in June 1976, are presented. The mill at this site was located a short distance from the open-pit mine where the ore was obtained and where part of the tailings was dumped into the mine. Several piles of overburden or low-grade ore in the vicinity were included in the measurements of above-ground gamma exposure rate. The average exposure rate over these piles varied from 14 ..mu..R/hr, the average background exposure rate for the area, to 140 ..mu..R/hr. The average exposure rate for the tailings and former mill area was 220 ..mu..R/hr. Movement of tailings particles down dry washes was evident. The calculated concentration of /sup 226/Ra in ten holes as a function of depth is presented graphically.

  7. Painter Reservoir, east Painter Reservoir and Clear Creek Fields, Uinta County, Wyoming

    SciTech Connect

    Frank, J.R.; Cluff, S.; Bauman, J.M.

    1982-01-01

    Painter Reservoir, East Painter Reservoir, and Clear Creek fields are part of a series of recent major hydrocarbon discoveries in the Thrust Belt Province of NE. Utah-SW. Wyoming that began with the discovery of the Pineview field in Utah. Oil and gas production in the fields is from the Triassic-Jurassic Nugget Sandstone. There the Nugget is a varicolored, fine- to medium-grained quartz arenite believed to be of eolian origin. Core porosity averages 12.5% and core permeability averages ca 5.4 md. All 3 fields occur in reverse-faulted, asymmetric folds on the hanging wall of the Absaroka thrust and overlie Cretaceous source rocks. The Painter Reservoir and Clear Creek structures are much steeper on the east whereas the East Painter structure is much steeper on the west.

  8. U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2014 annual report

    USGS Publications Warehouse

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bartos, Timothy T.; Biewick, Laura R; Boughton, Gregory K.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Eddy-Miller, Cheryl A.; Garman, Steven L.; Germaine, Stephen S.; Homer, Collin G.; Huber, Christopher; Kauffman, Matthew J.; Latysh, Natalie; Manier, Daniel; Melcher, Cynthia P.; Miller, Alexander; Miller, Kirk A.; Olexa, Edward M.; Schell, Spencer; Walters, Annika W.; Wilson, Anna B.; Wyckoff, Teal B.

    2015-01-01

    Other highlights of FY2014 included a renewed effort to gather and analyze wildlife and habitat status and trend data for the WLCI Interagency Monitoring Database (IAMD) to assess long-term trends and cumulative effects associated with land-use and climate changes. Water-monitoring efforts included drilling four new groundwater-monitoring wells in the Green and New Fork River basins near the proposed Normally Pressured Lance Formation energy development, and continued data collection at established water-monitoring sites. Three additional wells were sampled as part of the Wyoming Groundwater Monitoring Network, bringing the total to 19 Network wells sampled in the WLCI region since 2010. Combined, these water-monitoring efforts can help to identify potential changes in water quality or levels that may result from land-use changes. Major terrestri

  9. Mineral resources of the Raymond Mountain Wilderness Study Area, Lincoln county, Wyoming

    SciTech Connect

    Lund, K.; Evans, J.P.; Hill, R.H.; Bankey, V.; Lane, E.

    1990-01-01

    The paper reports on the Raymond Mountain Wilderness Study Area which encompasses most of the Sublette Range of western Lincoln County, Wyo. The study area consists of upper Paleozoic and Mesozoic sedimentary rocks that form part of the Idaho-Wyoming-Utah overthrust belt. There are no identified mineral or energy resources in the wilderness study area. The study area has moderate energy resource potential for oil and gas. Mineral resource potential for vanadium and phosphate is low because the Phosphoria Formation is deeply buried beneath the wilderness study area and contains unweathered units having low P{sub 2}O{sub 5} values. The mineral resource potential for coal, other metals, including uranium, high-purity limestone or dolostone, and geothermal energy is low.

  10. Drill hole data for coal beds in the Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    Haacke, Jon E.; Scott, David C.

    2013-01-01

    This report by the U.S. Geological Survey (USGS) of the Powder River Basin (PRB) of Montana and Wyoming is part of the U.S. Coal Resources and Reserves Assessment Project. Essential to that project was the creation of a comprehensive drill hole database that was used for coal bed correlation and for coal resource and reserve assessments in the PRB. This drill hole database was assembled using data from the USGS National Coal Resources Data System, several other Federal and State agencies, and selected mining companies. Additionally, USGS personnel manually entered lithologic picks into the database from geophysical logs of coalbed methane, oil, and gas wells. Of the 29,928 drill holes processed, records of 21,393 are in the public domain and are included in this report. The database contains location information, lithology, and coal bed names for each drill hole.

  11. Geochemical maps of stream sediments in central Colorado, from New Mexico to Wyoming

    USGS Publications Warehouse

    Eppinger, Robert G.; Giles, Stuart A.; Klein, Terry L.

    2015-01-01

    The U.S. Geological Survey has completed a series of geologic, mineral resource, and environmental assessment studies in the Rocky Mountains of central Colorado, from Leadville eastward to the range front and from New Mexico to the Wyoming border. Regional stream-sediment geochemical maps, useful for assessing mineral resources and environmental effects of historical mining activities, were produced as part of the study. The data portrayed in this 56-parameter portfolio of landscape geochemical maps serve as a geochemical baseline for the region, indicate element abundances characteristic of various lithologic terranes, and identify gross anthropogenic effects of historical mining. However, although reanalyzed in this study by modern, sensitive methods, the majority of the stream-sediment samples were collected in the 1970s. Thus, metal concentrations portrayed in these maps represent stream-sediment geochemistry at the time of collection.

  12. An assessment of low flows in streams in northeastern Wyoming

    USGS Publications Warehouse

    Armentrout, G.W.; Wilson, J.F.

    1987-01-01

    Low flows were assessed and summarized in the following basins in northeastern Wyoming: Little Bighorn, Tongue, Powder, Little Missouri, Belle Fourche, Cheyenne, and Niobrara River, and about 200 river miles of the North Platte River and its tributaries. Only existing data from streamflow stations and miscellaneous observation sites during the period, 1930-80, were used. Data for a few stations in Montana and South Dakota were used in the analysis. Data were available for 56 perennial streams, 38 intermittent streams, and 34 ephemeral streams. The distribution of minimum observed flows of record at all stations and sites and the 7-day, 10-year low flows at mountain stations and main-stem plains stations are shown on a map. Seven day low flows were determined by fitting the log Pearsons Type III distribution to the data; results are tabulated only for the stations with at least 10 years of record that included at least one major drought. Most streams that originate in the foothills and plains have no flow during part of every year, and are typical of much of the study area. For stations on these streams , the frequency of the annual maximum number of consecutive days of no flow was determined, as an indicator of the likelihood of extended periods of no flow or drought. For estimates at ungaged sites on streams in the Bighorn Mountains only, a simple regression of 7-day, 10-year low flow on drainage area has a standard error of 64%, based on 19 stations with drainage areas of 2 to 200 sq mi. The 7-day, 10-year low flow in main-stem streams can be interpolated from graphs of 7-day, 10-year low flow versus distance along the main channel. Additional studies of low flow are needed. The data base, particularly synoptic baseflow information, needs considerable expansion. Also, the use of storage-analysis procedures should be considered as a means of assessing the availability of water in streams that otherwise are fully appropriated or that are ephemeral. (Author 's

  13. Pesticides in Ground Water of Wyoming, 1995-2006

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Bartos, Timothy T.; Hallberg, Laura L.

    2009-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticides Strategy Committee (GPSC) to prepare the State of Wyoming Generic Management Plan for Pesticides in Ground Water. Little existing information was available describing pesticide occurrence in ground water; therefore, statewide baseline ground-water sampling was considered a high priority by the GPSC. The GPSC identified 20 pesticides and degradates for baseline ground-water sampling (referred to herein as focal pesticides). Sampling focused on the State's most vulnerable ground water (Wyoming Ground-water and Pesticides Strategy Committee, 1999) as determined by Hamerlinck and Arneson (1998; fig. 1). Ground-water vulnerability is based on inherent sensitivity of the hydrogeology (such as a shallow water table or highly permeable aquifer materials) and overlying land use.

  14. 79. Conoco Gas Station (1927) at the intersection of Wyoming ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. Conoco Gas Station (1927) at the intersection of Wyoming and Granite Streets. This was one of the first gas stations in Butte, and has a wooden canopy supported on steel beams on brick piers, with a pressed metal ceiling. The roof turns upwards on the north side, and the east and west ends have jerkin-headed gables. The pumps date from the 1950s. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT

  15. Further studies on trypanosomes in game animals in Wyoming II.

    PubMed

    Kingston, N; Thorne, E T; Thomas, G M; McHolland, L; Trueblood, M S

    1981-10-01

    Further studies on moose revealed trypanosomes in two captive moose (Alces alces shirasi) and in 4 of 7 free-ranging moose in Wyoming by blood culture. Two free-ranging moose from Utah were negative. One of two additional captive moose calves was positive for trypanosomes. Trypanosomes also were detected in blood cultures of 8 of 39 American Bison (Bison bison) being brought into Wyoming from Nebraska. Nineteen additional bison were negative for trypanosomes by blood cultures. Identification of species was not possible due to the failure to obtain bloodstream trypomastigotes from this host. Trypanosomes were recovered from 8 of 57 pronghorn antelope (Antilocapra americana). This is the first report of Trypanosoma sp. from bison and from pronghorn; the trypanosome from moose was identified as Trypanosoma cervi from bloodstream trypomastigotes. In 1978, natural transplacental transmission of trypanosomes was found to occur in 1 of 15 mule deer (Odocoileus hemionus) fetuses, examined near term by blood culture. No trypanosomes were found in 18 male deer fetuses examined in 1979. Of 100 free-ranging elk from western Wyoming examined by blood culture in 1979, 71 were infected. These data are compared with data from 1973-74. PMID:7338978

  16. [DOE/EPSCoR traineeship program for Wyoming: Progress report

    SciTech Connect

    Not Available

    1992-08-01

    In the first year of the traineeship program supported by the Department of Energy EPSCoR funding, the University of Wyoming has made outstanding progress toward the objective of increasing the supply of highly trained engineers and scientists with interests in energy related disciplines. The scope of the traineeship program has already broadened to encompass both more departments than originally expected and nearly twice as many graduate students as expected. Further, since the primary emphasis was on new students, most of those recruited have developed ties to the DOE labs that would not have otherwise existed. This portion of this Progress Report gives an overall summary of the University of Wyoming`s approach to the DOE Traineeship Program implementation. It also provides an overview of the results so far and vision of how this program fits with the broader objectives for development of the University and its academic programs. Subsequent sections describe very briefly the impact of the traineeship students in each department that was successful in obtaining funds through the competitive process that was adopted. Finally, the report ends with a summary of both the academic status of the participants and the budget expenditures to date.

  17. 40 CFR 81.351 - Wyoming.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... areas defined as the Pacific Power and Light Area, the Hampshire Energy Area, and the Kennecott/Puron..., 35 of T49N, R70W.—Hampshire Energy Area 11/15/90 Unclassifiable Campbell County (part), That area... Classification Date 1 Type Upper Green River Basin Area, WY: 2 Nonattainment Marginal. Lincoln County (part)...

  18. Jonah field, sublette county, Wyoming: Gas production from overpressured Upper Cretaceous Lance sandstones of the Green River basin

    USGS Publications Warehouse

    Montgomery, S.L.; Robinson, J.W.

    1997-01-01

    Jonah field, located in the northwestern Green River basin, Wyoming, produces gas from overpressured fluvial channel sandstones of the Upper Cretaceous Lance Formation. Reservoirs exist in isolated and amalgamated channel facies 10-100 ft (3-30 m) thick and 150-4000 ft (45-1210 m) wide, deposited by meandering and braided streams. Compositional and paleocurrent studies indicate these streams flowed eastward and had their source area in highlands associated with the Wyoming-Idaho thrust belt to the west. Productive sandstones at Jonah have been divided into five pay intervals, only one of which (Jonah interval) displays continuity across most of the field. Porosities in clean, productive sandstones range from 8 to 12%, with core permeabilities of .01-0.9 md (millidarcys) and in-situ permeabilities as low as 3-20 ??d (microdarcys), as determined by pressure buildup analyses. Structurally, the field is bounded by faults that have partly controlled the level of overpressuring. This level is 2500 ft (758 m) higher at Jonah field than in surrounding parts of the basin, extending to the top part of the Lance Formation. The field was discovered in 1975, but only in the 1990s did the area become fully commercial, due to improvements in fracture stimulation techniques. Recent advances in this area have further increased recoverable reserves and serve as a potential example for future development of tight gas sands elsewhere in the Rocky Mountain region.

  19. Middle Jurassic (Bajocian and Bathonian) dinosaur megatracksites, Bighorn Basin, Wyoming, USA

    USGS Publications Warehouse

    Kvale, E.P.; Johnson, G.D.; Mickelson, D.L.; Keller, K.; Furer, L.; Archer, A.

    2001-01-01

    Two previously unknown rare Middle Jurassic dinosaur megatracksites are reported from the Bighorn Basin of northern Wyoming in the Western Interior of the United States. These trace fossils occur in carbonate units once thought to be totally marine in origin, and constitute the two most extensive Middle Jurassic dinosaur tracksites currently known in North America. The youngest of these occurs primarily along a single horizon at or near the top of the "basal member" of the "lower" Sundance Formation, is mid-Bathonian in age, and dates to ??? 167 ma. This discovery necessitates a major change in the paleogeographic reconstructions for Wyoming for this period. The older tracksites occur at multiple horizons within a 1 m interval in the middle part of the Gypsum Spring Formation. This interval is uppermost Bajocian in age and dates to ??? 170 ma. Terrestrial tracks found, to date, have been all bipedal tridactyl dinosaur prints. At least some of these prints can be attributed to the theropods. Possible swim tracks of bipedal dinosaurs are also present in the Gypsum Spring Formation. Digitigrade prints dominate the Sundance trackways, with both plantigrade and digitigrade prints being preserved in the Gypsum Spring trackways. The Sundance track-bearing surface locally covers 7.5 square kilometers in the vicinity of Shell, Wyoming. Other tracks occur apparently on the same horizon approximately 25 kilometers to the west, north of the town of Greybull. The Gypsum Spring megatracksite is locally preserved across the same 25 kilometer east-west expanse, with the Gypsum Spring megatracksite more extensive in a north-south direction with tracks occurring locally across a 100 kilometer extent. Conservative estimates for the trackway density based on regional mapping in the Sundance tracksite discovery area near Shell suggests that over 150, 000 in situ tracks may be preserved per square kilometer in the Sundance Formation in this area. Comparable estimates have not been made

  20. Potentiometric surfaces, altitudes of the tops, and hydrogeology of the Minnelusa and Madison aquifers, Black Hills area, Wyoming

    USGS Publications Warehouse

    Bartos, T.T.; Hallberg, L.L.; Ogle, Kathy Muller

    2002-01-01

    This project was conducted by the USGS in cooperation with the Wyoming State Engineer's Office (WSEO). The study area was almost entirely within Crook and Weston Counties in Wyoming and was bordered on the east by the Wyoming-South Dakota State line.

  1. 76 FR 3926 - Notice and Request for Comments: LSC Elimination of the Nevada, South Dakota, and Wyoming Migrant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... Notice and Request for Comments: LSC Elimination of the Nevada, South Dakota, and Wyoming Migrant Service... Comments--LSC Elimination of the Nevada, South Dakota, and Wyoming Migrant Service Areas. SUMMARY: The Legal Services Corporation will eliminate the Nevada, South Dakota, and Wyoming migrant service...

  2. Ammonia emission inventory for the state of Wyoming

    SciTech Connect

    Kirchstetter, Thomas W.; Maser, Colette R.; Brown, Nancy J.

    2003-12-17

    Ammonia (NH{sub 3}) is the only significant gaseous base in the atmosphere and it has a variety of impacts as an atmospheric pollutant, including the formation of secondary aerosol particles: ammonium sulfate and ammonium nitrate. NH{sub 3} preferentially forms ammonium sulfate; consequently ammonium nitrate aerosol formation may be limited by the availability of NH{sub 3}. Understanding the impact of emissions of oxides of sulfur and nitrogen on visibility, therefore, requires accurately determined ammonia emission inventories for use in air quality models, upon which regulatory and policy decisions increasingly depend. This report presents an emission inventory of NH{sub 3} for the state of Wyoming. The inventory is temporally and spatially resolved at the monthly and county level, and is comprised of emissions from individual sources in ten categories: livestock, fertilizer, domestic animals, wild animals, wildfires, soil, industry, mobile sources, humans, and publicly owned treatment works. The Wyoming NH{sub 3} inventory was developed using the Carnegie Mellon University (CMU) Ammonia Model as framework. Current Wyoming-specific activity data and emissions factors obtained from state agencies and published literature were assessed and used as inputs to the CMU Ammonia Model. Biogenic emissions from soils comprise about three-quarters of the Wyoming NH{sub 3} inventory, though emission factors from soils are highly uncertain. Published emission factors are scarce and based on limited measurements. In Wyoming, agricultural land, rangeland, and forests comprise 96% of the land area and essentially all of the estimated emissions from soils. Future research on emission rates of NH{sub 3} for these land categories may lead to a substantial change in the magnitude of soil emissions, a different inventory composition, and reduced uncertainty in the inventory. While many NH{sub 3} inventories include annual emissions, air quality modeling studies require finer temporal

  3. The Wyoming Infant Stimulation Program--Go WISP, Young Baby, Go WISP.

    ERIC Educational Resources Information Center

    Jelinek, Janis A.; Flamboe, Thomas C.

    The Wyoming Infant Stimulation Program (WISP) provides a comprehensive preschool program utilizing both center-based and home-based intervention for handicapped preschool children (age 0-3 years) and their families in rural Wyoming. A developmental-prescriptive model is used and the curriculum objective is that each child will progress according…

  4. Library of the Year 2008: Laramie County Library System, Wyoming--The Impact Library

    ERIC Educational Resources Information Center

    Berry, John N., III

    2008-01-01

    This article features Laramie County Library System (LCLS) of Cheyenne, Wyoming, which is named as Gale/"Library Journal" 2008 Library of the Year. It is not just strong, effective publicity or the fine new building or even a staff built around its ability to connect with the people, although all of those things add to the impact of Wyoming's…

  5. 77 FR 35475 - Genesee & Wyoming Inc.-Continuance in Control Exemption-Columbus & Chattahoochee Railroad, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Surface Transportation Board Genesee & Wyoming Inc.--Continuance in Control Exemption-- Columbus....S.C. 11323-25 for Genesee & Wyoming Inc. (GWI), a noncarrier, to continue in control of Columbus... Class III carrier controlled by GWI. \\1\\ See Columbus & Chattahoochee R.R.--Lease & Operation...

  6. WyomingView: No-Cost Remotely Sensed Data for Geographic Education

    ERIC Educational Resources Information Center

    Sivanpillai, Ramesh; Driese, Kenneth L.

    2008-01-01

    Learning enhanced by visual examples and remotely sensed imagery is a valuable classroom resource for teaching students geographic concepts in a meaningful context. Barriers to the use of imagery include difficulty finding appropriate imagery and the cost of moderate resolution satellite imagery. A program in Wyoming called WyomingView and…

  7. An Examination of Development of Wyoming's Alternative Assessment System, the Body of Evidence

    ERIC Educational Resources Information Center

    Dowding, Sharla Kay

    2011-01-01

    The overarching purpose of this qualitative study is to explore the patterns of development and implementation of Body of Evidence (BOE) science systems throughout the state of Wyoming, using an emerging and relatively open mixed methods design. BOEs were first launched throughout Wyoming a decade ago, and are ongoing today. Through interviews…

  8. 75 FR 41521 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease, Wyoming... from CKT Energy LLC for competitive oil and gas lease WYW164386 for land in Campbell County, Wyoming... terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver,...

  9. 75 FR 35082 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease, Wyoming... and Gas Lease. SUMMARY: Under the provisions of the Mineral Lands Leasing Act of 1920, the Bureau of... oil and gas lease WYW146295 for land in Sheridan County, Wyoming. The petition was timely filed...

  10. 75 FR 53981 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease, Wyoming... from Royal Oil, LLC for competitive oil and gas lease WYW174414 for land in Niobrara County, Wyoming... terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver,...

  11. 75 FR 22840 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: Pursuant to Federal law, the Bureau... Company for non-competitive oil and gas lease WYW136450 in Natrona County, Wyoming. The petition was...

  12. Wyoming Academic Libraries Resource Project: Developing a Statewide Ariel Document Delivery Network. Final Report.

    ERIC Educational Resources Information Center

    Lange, Karen

    The Wyoming Academic Libraries Resource Project was initiated to improve cooperation and resource sharing by developing an interconnected information access and delivery system among Wyoming's academic libraries and the State Library. The goal was to formalize communication, cooperation, and resource sharing by developing an Ariel document…

  13. 77 FR 43612 - Proposed Reinstatement of Terminated Oil and Gas Lease WYW179184, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... Bureau of Land Management Proposed Reinstatement of Terminated Oil and Gas Lease WYW179184, Wyoming... from Legacy Energy, Inc., for competitive oil and gas lease WYW179184 for land in Park County, Wyoming... terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver,...

  14. Thermal history determined by fission-track dating for three sedimentary basins in California and Wyoming

    USGS Publications Warehouse

    Naeser, Nancy D.

    1984-01-01

    The use of fission-tracks is demonstrated in studies of time-temperature relationships in three sedimentary basins in the western United States; in the Tejon Oil Field area of the southern San Joaquin Valley, California; in the northeastern Green River basin, Wyoming, and in drill holes in the southern Powder River Basin, Wyoming.

  15. 75 FR 32812 - Notice of Invitation To Participate; Coal Exploration License Application WYW179006, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ...- sharing basis, in its program for the exploration of coal deposits owned by the United States of America... under number WYW179006): Bureau of Land Management, Wyoming State Office, 5353 Yellowstone Road, P.O... Bureau of Land Management, Wyoming State Office, Branch of Solid Minerals, Attn: Joyce Gulliver, P.O....

  16. 77 FR 33235 - Public Land Order No. 7791; Extension of Public Land Order No. 6928; Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Schurman, Bureau Land Management, Wyoming State Office, 5353 Yellowstone Road, Cheyenne, Wyoming 82009, 307..., 43 U.S.C. 1714, it is ordered as follows: Public Land Order No. 6928 (57 FR 22659, (1992)), which withdrew 30 acres of National Forest System land from location and entry under the United States...

  17. 78 FR 48461 - Notice of Competitive Coal Lease Sale, WYW172684, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, WYW172684, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: Notice is hereby given that certain coal resources in the Hay Creek II Coal Tract described below in Campbell County, Wyoming, will be offered...

  18. Wyoming's Instructional Facilitator Program: Teachers' Beliefs about the Impact of Coaching on Practice

    ERIC Educational Resources Information Center

    Rush, Leslie S.; Young, Suzanne

    2011-01-01

    In 2006, the Wyoming state government allocated monies for the Department of Education to fund the work of Instructional Facilitators, or coaches, in schools across the state (Wyoming Department of Education, 2008). In Spring 2009, after the program had been in place for two years, an ex-post facto study was designed to examine the impact of the…

  19. Literacy Coaching in Wyoming Secondary Schools: A Situational Analysis of Roles in Context

    ERIC Educational Resources Information Center

    Rush, Leslie S.

    2013-01-01

    In 2006, The Wyoming state legislature allocated monies to fund Instructional Facilitators (IFs) in schools around the state. This interview study, developed through situational analysis, explores the roles and responsibilities of IFs in Wyoming secondary schools, and the contextual factors of those schools that impact the work of IFs,…

  20. A WATERBORNE OUTBREAK OF NORWALK-LIKE VIRUS AMONG SNOWMOBILERS - WYOMING, 2001

    EPA Science Inventory

    In February 2001, episodes of acute gastroenteritis were reported to the Wyoming Department of Health from persons who had recently vacationed at a snowmobile lodge in Wyoming. A retrospective cohort study found a significant association between water consumption and illness, a...

  1. Now and for the Future: Adequate and Equitable K-12 Facilities in Wyoming

    ERIC Educational Resources Information Center

    21st Century School Fund, 2015

    2015-01-01

    This white paper provides the conclusion of the 21st Century School Fund and JFW, Inc. inquiry into and analysis of Wyoming's current programs for managing and funding its K-12 public school facilities. The Wyoming School Facilities Department engaged 21CSF and JFW, Inc. to provide an independent analysis of the state's current building portfolio…

  2. The New Teacher Education Program at the University of Wyoming. Final Evaluation Report.

    ERIC Educational Resources Information Center

    Moore, Alan D.; And Others

    A new teacher education program implemented at the University of Wyoming in the Fall of 1992, made radical changes in the preexisting program. To take the place of student teaching, the program involves students in field experiences in schools participating as Wyoming Centers for Teaching and Learning. In the Fall of 1993 an in-house formative…

  3. Depositional history of Lower Triassic Dinwoody Formation, Bighorn basin, Wyoming and Montana

    SciTech Connect

    Paull, R.A.; Paull, R.K.

    1986-08-01

    The Lower Triassic Dinwoody Formation in the Bighorn basin of Wyoming and Montana records the northeasternmost extent of the widespread and rapid Griesbachian transgression onto the Wyoming shelf. Depositional patterns document a progressive change from sparsely fossiliferous, inner-shelf marine conditions in the southwest and west to restricted, marginal-marine environments to the north and east. Characteristic lithologies include greenish-gray calcareous or dolomitic mudstone and siltstone, very thin to thick beds of gypsum, and thin-bedded, commonly laminated dolomite. A formation thickness of approximately 20 m persists throughout most of the basin but diminishes abruptly near the northern and eastern limits of deposition. The Dinwoody is disconformable on the Ervay Member of the Permian Park City Formation except in the northeasternmost part of the basin, where it locally overlies the Pennsylvanian Tensleep Sandstone. Considering the significant time interval involved, physical evidence at the Permian-Triassic boundary is generally limited to an abrupt lithologic change from light-colored shallow marine or intertidal Permian dolomite to greenish-gray Dinwoody siltstone. The Dinwoody grades vertically as well as laterally to the east and north into red beds of the Lower Triassic Red Peak Formation of the Chugwater Group. The Early Triassic depositional environment in the present-day Bighorn basin was hostile. A sparse molluscan fauna was observed at only one of the 20 sections studied, and no conodonts were recovered from Dinwoody carbonates. Significant amounts of gypsum within the Dinwoody suggest periodic high evaporation from hypersaline waters on a low-energy shallow shelf during intervals of reduced terrigenous sediment supply from the north and east. However, sufficient organic material was present to create reducing conditions, as evidenced by greenish rock color and abundant pyrite.

  4. Preliminary report on uranium deposits in the Miller Hill area, Carbon County, Wyoming

    USGS Publications Warehouse

    Love, J.D.

    1953-01-01

    A sequence of radioactive rocks of Miocene (?) age, the Browns Park formation, in the Miller Hill area of southern Wyoming is more than 1,000 feet thick. The formation crops out in an area of approximately 600 square miles, and consists of a basal conglomerate, tuffs, tuffaceous limy sandstones, and thin persistent radioactive algal limestones. Uranium is concentrated in both algal limestones and in tuffaceous limy sandstones. The uranium is believed to have been deposited. at least in part with the sediments, rather than to have come in at a later date. The highest uranium values were found in a widespread algal limestone bed, which contains as much as 0. 15 percent uranium. Values of 0.01 percent uranium or more were obtained from 8 samples taken from approximately 220 feet of stratigraphic section in the Browns Park formation. This is the first reported occurrence of limestone source rock from Wyoming that has been found to contain a commercial grade of uranium. The economic possibilities of the area have not been determined adequately and no estimates of tonnage are warranted at the present time. An airborne radiometric survey was made by the Geophysics Branch of the Geological Survey, of the west half of the area, recommended by the writer for investigation. Ground check of all anomalies reported at that time showed that they were in localities where the background radiation was much higher than average. Additional localities with high background radiation were found on the ground in the area east of that which was flown.

  5. National Assessment of Oil and Gas Project: petroleum systems and geologic assessment of oil and gas in the Southwestern Wyoming Province, Wyoming, Colorado and Utah

    USGS Publications Warehouse

    ,

    2005-01-01

    The U.S. Geological Survey (USGS) completed an assessment of the undiscovered oil and gas potential of the Southwestern Wyoming Province of southwestern Wyoming, northwestern Colorado, and northeastern Utah (fig. 1). The USGS Southwestern Wyoming Province for this assessment included the Green River Basin, Moxa arch, Hoback Basin, Sandy Bend arch, Rock Springs uplift, Great Divide Basin, Wamsutter arch, Washakie Basin, Cherokee ridge, and the Sand Wash Basin. The assessment of the Southwestern Wyoming Province is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation, and migration), reservoir rocks (sequence stratigraphy, petrophysical properties), and hydrocarbon traps (trap types, formation, and timing). Using this geologic framework, the USGS defined 9 total petroleum systems (TPS) and 23 assessment units (AU) within these TPSs, and quantitatively estimated the undiscovered oil and gas resources within 21 of the 23 AUs.

  6. 40 CFR 81.351 - Wyoming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... County Campbell County Carbon County Converse County Crook County Fremont County Goshen County Hot... County Big Horn County Campbell County Carbon County Converse County Crook County Fremont County Goshen.../90 Moderate. Trona Industrial Area 11/15/90 Unclassifiable Campbell County (part)...

  7. 40 CFR 81.351 - Wyoming.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Hampshire Energy Area, and the Kennecott/Puron PSD Baseline Area—Powder River Basin. Campbell County (part..., 20, 21, 22, 27, 28, 29, 30, 31, 32, 33, 34, 35 of T49N, R70W.—Hampshire Energy Area 11/15/90... area Designation Date 1 Type Classification Date 1 Type Upper Green River Basin Area, WY:...

  8. 40 CFR 81.351 - Wyoming.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... areas defined as the Pacific Power and Light Area, the Hampshire Energy Area, and the Kennecott/Puron..., 35 of T49N, R70W.—Hampshire Energy Area 11/15/90 Unclassifiable Campbell County (part), That area...(Primary and secondary) Designated area Designation Date 1 Type Classification Date 1 Type Upper...

  9. Opportunities to protect instream flows in Colorado and Wyoming

    USGS Publications Warehouse

    Trembly, Terrence L.

    1987-01-01

    This document combines the efforts of several individuals, agencies, and organizations toward a common objective: the identification, description, and preliminary evaluation of promising opportunities for protecting instream uses of water under existing laws in Colorado and Wyoming. This report is intended for the use of State and Federal planning and management personnel who need an overview of potential opportunities for preserving instream flows. It is not intended to replace or challenge the advice of agency counsel, nor it is written to provide legal advice. Instead, it is designed as a guide for the person trying to find his or her way among sometimes bewildering State statues and administrative practices. This report is not, and should not be taken as, official policy or prediction of future actions by any agency. It is simply a summary of some potential opportunities for protecting instream uses. Toward these objectives, the U.S. Fish and Wildlife Service, through its Water Resources Analysis Project, contracted in 1977 with Richard Dewsnup and Dallin Jensen to identify available strategies under State and Federal laws, interstate compacts, and water quality laws. A second firm, Enviro Control, Inc., was contracted to evaluate the most promising strategies. Two of the resulting documents were Instream Flow Strategies for Colorado and Instream Flow Strategies for Wyoming, which have been revised, updated, and combined in this report. Discussion of instream flow programs ad opportunities for each State--Colorado and Wyoming-- are written so that each report can be read independently, with minimal cross referencing from one State report to another.

  10. Evaluation of selected surface-water-quality stations in Wyoming

    USGS Publications Warehouse

    Rucker, S.J.; DeLong, L.L.

    1987-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, has conducted a surface-water-quality program in Wyoming since 1965. The purpose has been to determine the chemical quality of the water in terms of the major dissolved constituents (salinity). Changing agricultural techniques and energy development have stimulated a need for an expanded program involving additional types of data. This report determines the adequacy of the data collected thus far to describe the chemical quality. The sampling program was evaluated by determining how well the data describe the dissolved-solids load of the streams. Monthly mean loads were estimated at 16 stations throughout the network where daily streamflow and daily specific conductance were available. Monthly loads were then compared with loads estimated from daily streamflow and data derived from analyses of samples collected on a monthly basis at these same stations. Agreement was good. Solute-load hydrographs were constructed for 37 stations and from some reaches where streamflow records were available. Because stations where no discharge records are available are not amenable to this type of analysis, data collected at these stations are of limited usefulness. This report covers analyses of data for all qualifying sites in Wyoming except those in the Green River Basin, which were analyzed in U.S. Geological Survey Water Resources Investigations 77-103. The salinity in most of the streams evaluated is adequately described by the data collected. Reduced sampling is feasible, and time and money can be diverted to collecting other data. (USGS)

  11. Foam frac is successful, sets new record. [Wyoming

    SciTech Connect

    Not Available

    1981-04-01

    Santa Fe Energy Corp. recently successfully completed the largest known foam frac in terms of the amount of nitrogen equipment and pumping capacity used. Stimulation of the Mesa Verde formation in the Wild Rose Federal No. 1-8 in Wild Rose field, Sweetwater County, Wyoming, resulted in a 6-fold increase in natural gas production. The foam frac treatment consisted of pumping a total of 177,500 lb of proppant and 1173 bbl of foamed fluid. Total amount of nitrogen pumped was approx. 6 million cu ft. The treatment sequence is described.

  12. Food Gardeners’ Productivity in Laramie, Wyoming: More Than a Hobby

    PubMed Central

    Conk, Shannon J.

    2016-01-01

    Objectives. We quantified the productivity of food gardens in Laramie, Wyoming, over 3 growing seasons. Methods. From 2012 to 2014, 33 participating gardening households weighed and recorded each harvest. Academic partners measured plot sizes and converted reported harvest weights to volume in cups. Results. The yield of the average 253-square-foot plot was enough to supply an adult with the daily US Department of Agriculture–recommended amount of vegetables for 9 months. Conclusions. Gardeners produced nutritionally meaningful quantities of food; thus, food gardening offers promise as an effective public health intervention for improving food security and nutritional health. PMID:26985621

  13. Redescription of Bellerophon bittneri (Gastropoda: Triassic) from Wyoming.

    USGS Publications Warehouse

    Yochelson, E.L.; Boyd, D.W.; Wardlaw, B.

    1985-01-01

    Bellerophon bittneri Newell and Kummel is an Early Triassic bellerophontacean from the Dinwoody Formation in the Wind River Mountains. The available type material consists of one fair, but incomplete, external mold, which resembles a Bellerophon but is actually a Retispira. After repeated search, additional specimens were found at one locality in the southern Wind River Range of Wyoming; Retispira bittneri is redescribed from this new material. Like other Triassic bellerophontaceans, there is nothing unusual about the species apart from occurrence in the Mesozoic; it is clearly congeneric with Permian Retispira from underlying rocks. -Authors

  14. Bathymetry and temperature of some glacial lakes in Wyoming

    PubMed Central

    Leopold, Luna B.

    1980-01-01

    On the west flank of the Wind River Mountains, Wyoming, are several large lakes occupying glacially scoured depressions dammed by terminal moraines. Fremont, Willow, and New Fork Lakes, having maximal depths of 185, 85, and 62 m, respectively, are not only deep, but in 1970-1978 they had no measurable coliform. They have exceptionally low values of total dissolved solids; Fremont Lake has only 12.8 mg/liter, probably the second most dilute large lake in coterminus United States. Summer mixing is restricted to the uppermost 10 m, below which the lakes are essentially isothermal at the maximum density temperature, about 3.9°C. PMID:16592797

  15. Bathymetry and temperature of some glacial lakes in Wyoming.

    PubMed

    Leopold, L B

    1980-04-01

    On the west flank of the Wind River Mountains, Wyoming, are several large lakes occupying glacially scoured depressions dammed by terminal moraines. Fremont, Willow, and New Fork Lakes, having maximal depths of 185, 85, and 62 m, respectively, are not only deep, but in 1970-1978 they had no measurable coliform. They have exceptionally low values of total dissolved solids; Fremont Lake has only 12.8 mg/liter, probably the second most dilute large lake in coterminus United States. Summer mixing is restricted to the uppermost 10 m, below which the lakes are essentially isothermal at the maximum density temperature, about 3.9 degrees C.

  16. Use and availability of continuous streamflow records in Wyoming

    USGS Publications Warehouse

    Schuetz, J.R.

    1986-01-01

    This report documents a survey that identifies local, State, and Federal uses of data from 139 continuous-record, surface-water stations, presently (1984) operated by the Wyoming District of the U. S. Geological Survey; identifies sources of funding pertaining to collections of streamflow data; and presents frequency of data availability. Uses of data from the 139 stations are categorized into seven classes: Regional Hydrology, Hydrology Systems, Legal Obligations, Planning and Design, Project Operation, Hydrologic Forecasts, and Water Quality Monitoring. Sufficient use of surface water data collected from the stations justifies the continued operation of all stations. (USGS)

  17. Bathymetry and temperature of some glacial lakes in Wyoming.

    PubMed

    Leopold, L B

    1980-04-01

    On the west flank of the Wind River Mountains, Wyoming, are several large lakes occupying glacially scoured depressions dammed by terminal moraines. Fremont, Willow, and New Fork Lakes, having maximal depths of 185, 85, and 62 m, respectively, are not only deep, but in 1970-1978 they had no measurable coliform. They have exceptionally low values of total dissolved solids; Fremont Lake has only 12.8 mg/liter, probably the second most dilute large lake in coterminus United States. Summer mixing is restricted to the uppermost 10 m, below which the lakes are essentially isothermal at the maximum density temperature, about 3.9 degrees C. PMID:16592797

  18. New vitrinite reflectance data for the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range and Owl Creek and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, and the Granite Mountains on the south, and Wind River Range on the west. The purpose of this report is to present new vitrinite reflectance data collected mainly from Cretaceous marine shales in the Wind River Basin to better characterize their thermal maturity and hydrocarbon potential.

  19. Paleomagnetism of the Wyoming Craton: A Pre-Laurentian Puzzle

    NASA Astrophysics Data System (ADS)

    Kilian, T.; Chamberlain, K.; Mitchell, R. N.; Evans, D. A.; Bleeker, W.; Lecheminant, A. N.

    2010-12-01

    The Archean Wyoming craton is mostly buried beneath Phanerozoic sediments in the Rocky Mountains of the west central United States. Exposures of the craton are entirely in thrust-bounded Laramide uplifts and contain numerous swarms of Neoarchean-Proterozoic mafic dikes. U-Pb ages from these dikes include ~2685 Ma from a dike in the Owl Creek Mountains (Frost et al., 2006) as well as another in the Bald Mountain region of the Bighorn Mountains (this study), ~2170 Ma from the Wind River Mountain quartz diorite (Harlan et al., 2003), ~2110 Ma from a dike in the Granite Mountains (Bowers and Chamberlain, 2006), ~2010 Ma from a Kennedy dike in the Laramie Range (Cox et al., 2000), and ~780 Ma for dikes in the Beartooth and Teton Mountains (Harlan et al., 1997). These possible age ranges of magmatic events will allow a detailed comparison with other cratons, especially Superior and Slave. Prior to the assembly of Laurentia, Wyoming may have been connected with Slave in supercraton Sclavia (Bleeker, 2003; Frost et al., 2007), or alternatively, Wyoming may have been attached to the present southern margin of Superior in the supercraton Superia, as judged by similarities of the thrice-glaciated Huronian and Snowy Pass sedimentary successions (Roscoe and Card, 1993). Paleomagnetic results will be presented from over 150 dikes in the Wyoming craton. All dikes were from the basement uplifts of the Beartooth Mountains, Bighorn Mountains, Owl Creek Mountains, Granite Mountains, Ferris Mountains and Laramie Range. Dikes range in widths from 1 to >100 meters, and trends vary across all orientations. Stable remanence is observed in majority of sites with at least 8 different directions from the various uplifts. Structural corrections are applied when necessary to restore shallowly dipping Cambrian strata to horizontal. The paleomagnetic study is being integrated with precise U-Pb geochronology of dikes that bear stable remanence directions. Results will eventually allow a

  20. Characterization of Fish Creek, Teton County, Wyoming, 2004-08

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Leemon, Daniel J.

    2010-01-01

    Fish Creek, a tributary to the Snake River, is about 15 river miles long and is located in Teton County in western Wyoming near the town of Wilson (fig. 1). Public concern about nuisance growths of aquatic plants in Fish Creek has been increasing since the early 2000s. To address this concern, the U.S. Geological Survey, in cooperation with the Teton Conservation District, began studying Fish Creek in 2004 to describe the hydrology of the creek and later (2007?08) to characterize the water quality and the biological communities. The purpose of this fact sheet is to summarize the study results from 2004 to 2008.

  1. Bank stability and channel width adjustment, East Fork River, Wyoming.

    USGS Publications Warehouse

    Andrews, E.D.

    1982-01-01

    Frequent surveys of eight cross sections located in self-formed reaches of the East Fork River, Wyoming, during the 1974 snowmelt flood showed a close relation between channel morphology and scour and fill. Those cross sections narrower than the mean reach width filled at discharges less than bankfull and scoured at discharges greater than bankfull. Those cross sections wider than the mean reach width scoured at discharges less than bankfull and filled at discharges greater than bankfull. Bank stability, and to some extent the adjustment of stream channel width, in the East Fork River study reach appears to be controlled by the processes of scour and fill. -from Author

  2. North Fork well, Shoshone National Forest, Park County, Wyoming

    SciTech Connect

    Not Available

    1984-01-01

    A summary of the draft environmental impact statement for a proposed exploratory oil drilling operation in Shoshone National Forest in Wyoming describes the drilling equipment and support facilities required for the operation. Marathon Oil Company's purpose is to test the gas and oil potential of underlying geologic structures. Although Marathon plans a reclamation and revegetation program, there would be erosion during the operation. Noise from the drilling and helicopter activity would disrupt wildlife and vacationers in nearby Yellowstone Park. Confrontations with the grizzly bear population would increase. The legal mandate for the assessment was the Mineral Leasing Act of 1920.

  3. Biotoxicity characterization of a produced-water discharge in Wyoming

    SciTech Connect

    Mancini, E.R.; Stilwell, C.T. )

    1992-06-01

    The objectives of this paper are to document the physicochemical and aquatic toxicological quality of a beneficial-use produced-water discharge and its effect on a receiving stream in Wyoming. Fish and water-flea survival, growth, and reproduction tests indicated that the discharge and all other sampling stations passed the state effluent biomonitoring acute toxicity testing endpoints. while benthic macroinvertebrates were absent at the discharge point designated by the Natl. Pollutant Discharge Elimination System (NPDES), productive and reproducing populations were present at all other downstream and mixing-zone stations. This investigation confirmed the validity of the beneficial-use subcategory for this oilfield discharge.

  4. Stability of highwalls in surface coal mines, western Powder Ridge Basin, Wyoming and Montana

    USGS Publications Warehouse

    Lee, Fitzhugh T.; Smith, William K.; Savage, William Z.

    1976-01-01

    Preliminary results from the first part of a two-part investigation of the stability of highwalls in open-pit coal mines in the Fort Union Formation of the western Powder River Basin of Wyoming and Montana indicate that these highwalls are subject to time-dependent deformation. Field investigations and laboratory physical-properties tests of coal and overburden rocks suggest that several factors influence highwall stability. Some of these factors are rebound of overconsolidated rocks, desiccation, water, orientation and spacing of fractures, and strength and deformation properties. Factors of safety for a typical highwall in the study area (calculated by the finite-element method) may be less than 1.0 when open fractures are present and the highwall has degraded. Although it is concluded that most open-pit mines in the Fort Union Formation within the study area have generally stable highwalls, these highwalls do deteriorate and become progressively less stable. Because of this, postmining failures are common and could be critical if mining were delayed and then resumed after a period of several months. The second part of the investigation will utilize field measurements of rock-mass properties and instrumentation of actively mined highwalls to obtain data for comparison with the results of the initial investigation. Because the height of highwalls will increase as the more shallow coal is exhausted, these data will also be used to predict the behavior of slopes higher than those presently found in the western Powder River Basin.

  5. Recent crustal subsidence at Yellowstone Caldera, Wyoming

    USGS Publications Warehouse

    Dzurisin, D.; Savage, J.C.; Fournier, R.O.

    1990-01-01

    Following a period of net uplift at an average rate of 15??1 mm/year from 1923 to 1984, the east-central floor of Yellowstone Caldera stopped rising during 1984-1985 and then subsided 25??7 mm during 1985-1986 and an additional 35??7 mm during 1986-1987. The average horizontal strain rates in the northeast part of the caldera for the period from 1984 to 1987 were: {Mathematical expression}1 = 0.10 ?? 0.09 ??strain/year oriented N33?? E??9?? and {Mathematical expression}2 = 0.20 ?? 0.09 ??strain/year oriented N57?? W??9?? (extension reckoned positive). A best-fit elastic model of the 1985-1987 vertical and horizontal displacements in the eastern part of the caldera suggests deflation of a horizontal tabular body located 10??5 km beneath Le Hardys Rapids, i.e., within a deep hydrothermal system or within an underlying body of partly molten rhyolite. Two end-member models each explain most aspects of historical unrest at Yellowstone, including the recent reversal from uplift to subsidence. Both involve crystallization of an amount of rhyolitic magma that is compatible with the thermal energy requirements of Yellowstone's vigorous hydrothermal system. In the first model, injection of basalt near the base of the rhyolitic system is the primary cause of uplift. Higher in the magmatic system, rhyolite crystallizes and releases all of its magmatic volatiles into the shallow hydrothermal system. Uplift stops and subsidence starts whenever the supply rate of basalt is less than the subsidence rate produced by crystallization of rhyolite and associated fluid loss. In the second model, uplift is caused primarily by pressurization of the deep hydrothermal system by magmatic gas and brine that are released during crystallization of rhyolite and them trapped at lithostatic pressure beneath an impermeable self-sealed zone. Subsidence occurs during episodic hydrofracturing and injection of pore fluid from the deep lithostatic-pressure zone into a shallow hydrostatic-pressure zone

  6. Geology of Devils Tower National Monument, Wyoming

    USGS Publications Warehouse

    Robinson, Charles Sherwood

    1956-01-01

    Devils Tower is a steep-sided mass of igneous rock that rises above the surrounding hills and the valley of the Belle Fourche River in Crook County, Wyo. It is composed of a crystalline rock, classified as phonolite porphyry, that when fresh is gray but which weathers to green or brown. Vertical joints divide the rock mass into polygonal columns that extend from just above the base to the top of the Tower. The hills in the vicinity and at the base of the Tower are composed of red, yellow, green, or gray sedimentary rocks that consist of sandstone, shale, or gypsum. These rocks, in aggregate about 400 feet thick, include, from oldest to youngest, the upper part of the Spearfish formation, of Triassic age, the Gypsum Spring formation, of Middle Jurassic age, and the Sundance formation, of Late Jurassic age. The Sundance formation consists of the Stockade Beaver shale member, the Hulett sandstone member, the Lak member, and the Redwater shale member. The formations have been only slightly deformed by faulting and folding. Within 2,000 to 3.000 feet of the Tower, the strata for the most part dip at 3 deg - 5 deg towards the Tower. Beyond this distance, they dip at 2 deg - 5 deg from the Tower. The Tower is believed to have been formed by the intrusion of magma into the sedimentary rocks, and the shape of the igneous mass formed by the cooled magma is believed to have been essentially the same as the Tower today. Devils Tower owes its impressiveness to its resistance to erosion as compared with the surrounding sedimentary rocks, and to the contrast of the somber color of the igneous column to the brightly colored bands of sedimentary rocks.

  7. Pesticide data for selected Wyoming streams; 1976-78

    USGS Publications Warehouse

    Butler, D.L.

    1987-01-01

    In 1976, the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, started a monitoring program to determine pesticide concentrations in Wyoming streams. This program was incorporated into the water-quality data-collection system already in operation. Samples were collected at 20 sites for analysis of various insecticides, herbicides, polychlorinated biphenyls, and polychlorinated napthalenes. The results through 1978 revealed small concentrations of pesticides in water and bottom-material samples were DDE (39 percent of the concentrations equal to or greater than the minimum reported concentrations of the analytical methods), DDD (20 percent), dieldrin (21 percent), and polychlorinated biphenyls (29 percent). The herbicides most commonly found in water samples were 2,4-D (29 percent of the concentrations equal to or greater than the minimum reported concentrations of the analytical method) and picloram (23 percent). Most concentrations were significantly less than concentrations thought to be harmful to freshwater aquatic life based on available toxicity data. However for some pesticides, U.S. Environmental Protection Agency water-quality criteria for freshwater aquatic life are based on bioaccumulation factors that result in criteria concentrations less than the minimum reported concentrations of the analytical methods. It is not known if certain pesticides were present at concentrations less than the minimum reported concentrations that exceeded these criteria. (USGS)

  8. Analysis of runoff from small drainage basins in Wyoming

    USGS Publications Warehouse

    Craig, Gordon S.; Rankl, James G.

    1978-01-01

    A flood-hydrograph study has defined the magnitude and frequency of flood volumes and flood peaks that can be expected from drainage basins smaller than 11 square miles in the plains and valley areas of Wyoming. Rainfall and runoff data, collected for 9 years on a seasonal basis (April through September), were used to calibrate a rainfall-runoff model on each of 22 small basins. Long-term records of runoff volume and peak discharge were synthesized for these 22 basins. Flood volumes and flood peaks of specific recurrence intervals (2, 5, 10, 25, 50, and 100 years) were then related to basin characteristics with a high degree of correlation. Flood volumes were related to drainage area, maximum relief, and basin slope. Flood peaks were related to drainage area, maximum relief, basin slope, and channel slope. An investigation of ponding behind a highway embankment, with available storage capacity and with a culvert to allow outflow, has shown that the single fast-rising peak is most important in culvert design. Consequently, a dimensionless hydrograph defines the characteristic shape of flood hydrographs to be expected from small drainage basins in Wyoming. For design purposes, a peak and volume can be estimated from basin characteristics and used with the dimensionless hydrograph to produce a synthetic single-peak hydrograph. Incremental discharges of the hydrograph can be routed along a channel, where a highway fill and culvert are to be placed, to help determine the most economical size of culvert if embankment storage is to be considered.

  9. Water quality of streams and springs, Green River Basin, Wyoming

    USGS Publications Warehouse

    DeLong, L.L.

    1986-01-01

    Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)

  10. (DOE/EPSCoR traineeship program for Wyoming: Progress report)

    SciTech Connect

    Not Available

    1992-01-01

    In the first year of the traineeship program supported by the Department of Energy EPSCoR funding, the University of Wyoming has made outstanding progress toward the objective of increasing the supply of highly trained engineers and scientists with interests in energy related disciplines. The scope of the traineeship program has already broadened to encompass both more departments than originally expected and nearly twice as many graduate students as expected. Further, since the primary emphasis was on new students, most of those recruited have developed ties to the DOE labs that would not have otherwise existed. This portion of this Progress Report gives an overall summary of the University of Wyoming's approach to the DOE Traineeship Program implementation. It also provides an overview of the results so far and vision of how this program fits with the broader objectives for development of the University and its academic programs. Subsequent sections describe very briefly the impact of the traineeship students in each department that was successful in obtaining funds through the competitive process that was adopted. Finally, the report ends with a summary of both the academic status of the participants and the budget expenditures to date.

  11. Water-quality characteristics, including sodium-adsorption ratios, for four sites in the Powder River drainage basin, Wyoming and Montana, water years 2001-2004

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to

  12. Bison basin, central Wyoming - geologic overview

    SciTech Connect

    Pinnell, M.L.

    1984-07-01

    The northeastern part of the Great Divide basin is a separate, unique, and until recently, little-explored subbasin sometimes called the Bison basin. It is bounded by the Wind River Mountains, Sweetwater-Granite Mountain foreland uplift, Lost Soldier-Wertz structure, and a little-studied very positive east-west structural arch approximately coincident with the Sweetwater-Fremont county line. A comprehensive seismic, Landsat, and subsurface geologic examination or, better, dissection of the Bison basin was initiated in 1978. Numerous oil and gas prospects were delineated by this study. Since this small, 12 by 40 mi (19 by 64 km) basin is bordered by known reserves of 260 million bbl of oil and 90 million bcf of gas, these prospects proved to be a popular target of the drill bit. At least one of these prospects appears to be productive; others are currently being drilled. The presence of major east-west wrench faults, a well-documented foreland uplift, until recently undrilled surface and subsurface structures, faults with throw measured in tens of thousands of feet, and an oil seep indicate possible additional hydrocarbon potential in the Bison basin that could exceed presently known reserves. Currently drilling wells and abundant already acquired reflection seismic data are the beginning step in an ongoing exploration program of an interesting, complex, and rewarding small basin with a lot of promise.

  13. A 50 kilowatt distributed grid-connected photovoltaic generation system for the University of Wyoming

    SciTech Connect

    Chowdhury, B.H.; Muknahallipatna, S.; Cupal, J.J.; Hamann, J.C.; Dinwoodie, T.; Shugar, D.

    1997-12-31

    The University of Wyoming (UW) campus is serving as the site for a 50 kilowatt solar photovoltaic (PV) system. Three sub-systems were sited and built on the UW campus in 1996. The first sub-system, a 10 kW roof-integrated system of PV roof tiles is located on the roof of the Engineering building. The second sub-system--a 5 kW rack-mounted, ballasted PV system is on a walkway roof of the Engineering building. The third sub-system is a 35 kW shade structure system and located adjacent to the parking lot of the university`s football stadium. The three sub-systems differ in their design strategy since each is being used for research and education at the university. Each sub-system, being located at some distance away from one another, supplies a different part of the campus grid. Efforts continue at setting up a central monitoring system which will receive data remotely from all locations. A part of this monitoring system is complete. While the initial monitoring data shows satisfactory performance, a number of reliability problems with PV modules and inverters have delayed full functionality of the system.

  14. Mineral resources of the Sweetwater Canyon Wilderness Study Area, Fremont County, Wyoming

    SciTech Connect

    Day, W.C.; Hill, R.H.; Kulik, D.M.; Scott, D.C.; Hausel, W.D.

    1988-01-01

    The combined investigations of the US Geological Survey, the US Bureau of Mines, and the Geological Survey of Wyoming have identified gold resources in a lode-type gold vein west of the Sweetwater Canyon Wilderness Study Area in the adjacent Lewiston mining district. Extensions of this vein into the study area may contain 20,000 tons of gold resources; however, subsurface sampling is needed to determine if such resources are present in the study area. A high resource potential for placer-type gold deposits and a low resource potential for placer-type tin and tungsten deposits in the Quaternary gravels along the Sweetwater River and Strawberry Creek exists. In the Precambrian greenstone rocks of the western part of the study area, there is a high mineral resource potential for lode-type gold and a low resource potential for lode-type tin and tungsten deposits. In the Precambrian granitoid rocks of the eastern part of the study area, a low potential for lode-type tin and tungsten exists, and in the entire study area, a low resource potential for uranium exists. There is no resource potential for oil, gas, or geothermal energy in the entire study area.

  15. Results of Electrical Resistivity Data Collected near the Town of Guernsey, Platte County, Wyoming

    USGS Publications Warehouse

    McDougal, Robert R.; Abraham, Jared D.; Bisdorf, Robert J.

    2004-01-01

    As part of a study to investigate subsurface geologic conditions as they relate to ground-water flow in an abandoned landfill near the town of Guernsey, Wyoming, geophysical direct current (DC) resistivity data were collected. Eight vertical resistivity soundings and eight horizontal resistivity profiles were made using single channel and multi-channel DC instruments. Data collected in the field were converted from apparent resistivity to inverted resistivity with depth using a numerical inversion of the data. Results of the inverted resistivity data are presented as horizontal profiles and as profiles derived from the combined horizontal profile and vertical sounding data. The data sets collected using the single-channel and multi-channel DC systems provided for the resistivity investigation to extend to greater depth. Similarity of the electrical properties of the bedrock formations made interpretation of the resistivity profiles more difficult. High resistivity anomalies seen in the profiles are interpreted as quartzite lenses and as limestone or metadolomite structures in the eastern part of the study area. Terrace gravels were mapped as resistive where dry and less resistive in the saturated zone. The DC resistivity methods used in this study illustrate that multi-electrode DC resistivity surveying and more traditional methodologies can be merged and used to efficiently map anomalies of hydrologic interest in geologically complex terrain.

  16. Water resources of Teton County, Wyoming, exclusive of Yellowstone National Park

    USGS Publications Warehouse

    Nolan, B.T.; Miller, K.A.

    1995-01-01

    Surface- and ground-water data were collected and analyzed to describe the water resources of that part of Teton County, Wyoming located south of Yellowstone National Park. Wells and springs inventoried in the Teton County study area most commonly were completed in or issued from Quaternary unconsolidated deposits and Tertiary, Mesozoic, and Paleozoic rocks. The largest measured, reported, or estimated discharges were from Quaternary uncon- solidated deposits (3,000 gallons per minute), the Bacon Ridge Sandstone of Cretaceous age (800 gallons per minute), and the Madison Limestone of Mississippian age (800 gallons per minute). Dissolved-solids concentrations in water samples from Quaternary unconsolidated deposits and Tertiary, Mesozoic, and Paleozoic rocks ranged from 80 to 1,060 milligrams per liter. A time-domain electromagnetic survey of Jackson Hole indicated that the depth of Quaternary unconsolidated deposits ranged from about 380 feet in the northern part of Antelope Flats to about 2,400 feet near the Potholes area in Grand Teton National Park. A streamflow gain-and-loss study indicated that the ground-water discharge to the Snake River between gaging stations near Moran and south of the Flat Creek confluence, near Jackson, was 395 cubic feet per second. Water level contours generated from 137 water-level measurements and 118 stream altitudes indicated that water in Quaternary unconsolidated deposits flows southwest in the general direction of the Snake River.

  17. Geologic history and palynologic dating of Paleocene deposits, western Rock Springs uplift, Sweetwater County, Wyoming

    USGS Publications Warehouse

    Kirschbaum, M.A.; Nelson, S.N.

    1988-01-01

    During the latest Cretaceous or earliest Paleocene, a northwest-southeast trending anticline developed in the area of the present Rock springs uplift in southwestern Wyoming. This ancestral structure was eroded to a surface of fairly low relief on which a paleosol developed. The surface was formed on the Upper Cretaceous Almond Formation throughout the study area. In the early middle Paleocene (P3 palynomorph zone), topographic lows on the erosion surface were infilled by alluvial deposits that accumulated in channel, floodplain, and backswamp environments. An organic-rich facies contains numerous coal beds and is middle to late Paleocene in age (P3 to P5 zones). The assemblage of pollen that defines the late middle Paleocene (P4 zone) is absent from the area suggesting a hiatus, although no lithologic break was observed at this boundary. The younger organic-poor facies begins in the late Paleocene (P5 zone) and continues to the top of the studied sequence. This change in facies has been used to map the contact between the Fort Union Formation of Paleocene age in this area, and the Wasatch Formation which was though to be of Eocene age. This study demonstrates that, as currently mapped, the lower part of the Wasatch Formation is Paleocene in age. Stratigraphically higher parts of the Wasatch, which presumably contain rocks of latest Paleocene (P6 zone) and earliest Eocene age, were not studied. -Authors

  18. Geology and mineral resources of the Mud Springs Ranch Quadrangle, Sweetwater County, Wyoming

    USGS Publications Warehouse

    Roehler, Henry W.

    1979-01-01

    The Mud Springs Ranch quadrangle occupies an area of 56 mF (square miles) on the southeast flank of the Rock Springs uplift in southwestern Wyoming. The climate is arid and windy. The landscape is mostly poorly vegetated and consists of north-trending ridges and valleys that are dissected by dry drainages. Sedimentary rocks exposed in the quadrangle are 5,400 ft (feet) thick and are mostly gray sandstone, siltstone, and shale, gray and brown carbonaceous shale, and thin beds of coal. They compose the Blair, Rock Springs, Ericson, Almond, and Lewis Formations of Cretaceous age and the Fort Union Formation of Paleocene age. The structure is mostly homoclinal, having southeast dips of 5?-12? in the northern part of the quadrangle, but minor plunging folds and one small fault are present in the southern part of the quadrangle. Three coal beds in the Fort Union Formation and 15 coal beds in the Almond Formation exceed 2.5 ft in thickness, are under less than 3,000 ft of overburden, and are potentially minable. Geographic stratigraphic, and resource data are present for each bed of minable coal. The total minable coal resources are estimated to be about 283 million short tons. Nine coal and rock samples from outcrops were analyzed to determine their quality and chemical composition. Four dry oil and gas test wells have been drilled within the quadrangle area, but structurally controlled stratigraphic-trap prospects remain untested.

  19. Stratigraphic sections of the Phosphoria formation in Wyoming, 1947-48

    USGS Publications Warehouse

    McKelvey, Vincent Ellis; Smith, L.E.; Hoppin, R.A.; Armstrong, F.C.

    1952-01-01

    As part of a comprehensive investigation of the phosphate deposits of the western field begun in 1947, the U. S. Geological Survey has measured and sampled the Permian Phosphoria formation at many localities in Wyoming and adjacent states. Because these data will not be fully synthesized for many years, segments of the data, accompanied by little or no interpretation, will be published as preliminary reports as they are assembled. This report, which contains abstracts of some of the sections measured in western Wyoming (pl. 1), is one of this series. The field and laboratory procedures adopted in these investigations are described rather fully in a companion report (McKelvey and others, 1952a). Many people have taken part in this investigation. R. M. Campbell, R. A. Gulbrandsen, R. A. Harris, D. M. Larrabee, F. W. O'Malley, O. A. Payne, R. S. Sears, R. P. Sheldon, and R. A. Smart participated in the description of the strata and the collection of the samples referred to in this report. D. B. Dimick, H. A. Larsen, and T. K. Rigby assisted in the preparation of exposures and the crushing and splitting of samples in the field. The laboratory preparation of samples for chemical analysis was done in Denver, Colo., under the direction of W. P. Huleatt. Most of the P2O5 and acid-insoluble analyses were made for the Survey by the U. S. Bureau of Mines at the Northwest Electrodevelopment Laboratory, Albany, Oreg., under the direction of S. M. Shelton and M. L. Wright. Most of the Al2O3, Fe2O3, and loss-on-ignition analyses were made by the Trace Elements Section laboratory of the Survey in Washington, D. C., under the direction of J. C. Rabbitt by chemists I. Barlow, A. Caemmerer, J. Greene, F. S. Grimadli, N. Guttag, H. Levine, H. Mela, Jr., and R. G. Milkey, and most of the spectrographic reports were prepared in this laboratory by C. L. Waring. The samples from one locality (Coal Canyon) were analyzed for P2O5, Al2O3, Fe2O3, V2O5, F, loss on ignition, and acid insoluble

  20. Hydrologic conditions near Glendo, Platte County, Wyoming

    USGS Publications Warehouse

    Welder, G.E.; Weeks, Edwin P.

    1965-01-01

    The Glendo area of Platte and Carbon Counties, Wyo., about 250 square miles in extent, is in the Great Plains physiographic province. It is bordered on the west by the Laramie Range and on the east by the Hartville uplift. The North Platte River and Horseshoe and Middle Bear Creeks are the principal streams that drain the area. Gentle to steep hills, which lie between 4,450 and 6,360 feet above sea level, characterize the topography. Approximately 7,600 acres of land is cultivated in the Horseshoe Creek valley and 1,000 or more acres in the Cassa Flats of the North Platte River and Middle Bear Creek valleys. The average annual precipitation of 13.15 inches and the streamflow diverted for irrigation from Horseshoe Creek and the North Platte River are usually inadequate to sustain crops during the entire growing season. Sedimentary rocks, which underlie about 99 percent of the Glendo area, range in age from Cambrian(?) to Recent and in thickness from about 3,000 to 4,700 feet. Beds of Paleozoic and Mesozoic age dip steeply away from the Laramie Range and the Hartville uplift to form a large syncline, which is interrupted by the Elkhorn anticline in the central part of the area. Beds of Tertiary and Quaternary age that were deposited over the older structural features and later were partly removed by erosion have dips of less than 6 ? . The 'Converse sand' of local usage at the top of the Hartville Formation of Mississippian(7), Pennsylvanian, and Permian age, the White River Formation of Oligocene age, and the flood-plain deposits of Recent .age are the most important aquifers in the Glendo area. The Hartville Formation consists predominantly of hard limestone and dolomite and of lesser amounts of sandstone and shale ; its thickness ranges from 850 to 1,050 feet throughout most of the area. The 'Converse sand' is an artesian aquifer consisting of fine- to medium-grained porous sandstone having an average thickness of about 80 feet. Recharge to the Hartville Formation

  1. 76 FR 65534 - Call for Nominations for the Pinedale Anticline Working Group, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... planning, management across jurisdictional boundaries, data sharing, information exchange, and partnerships... Bureau of Land Management Call for Nominations for the Pinedale Anticline Working Group, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: Nominations are being solicited for...

  2. 78 FR 55694 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming AGENCY... review of the draft research report titled, ``Investigation of Ground Water Contamination near...

  3. Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)

    SciTech Connect

    Lantz, E.

    2011-05-23

    This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

  4. 20. Top 30/3. Plan of exposed substructure elevations. Wyoming ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Top 30/3. Plan of exposed substructure elevations. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  5. 24. Top 30/7. Plan of superstructure details. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Top 30/7. Plan of superstructure details. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  6. 22. Top 30/5. Plan of superstructure elevations. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Top 30/5. Plan of superstructure elevations. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  7. 23. Top 30/6. Plan of superstructure sections. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Top 30/6. Plan of superstructure sections. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  8. Wyoming State Briefing Book for low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

  9. Jobs and Economic Development from New Transmission and Generation in Wyoming

    SciTech Connect

    Lantz, Eric; Tegen, Suzanne

    2011-03-31

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  10. Jobs and Economic Development from New Transmission and Generation in Wyoming

    SciTech Connect

    Lantz, E.; Tegen, S.

    2011-03-01

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  11. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    SciTech Connect

    Kaszuba, John P.; Sims, Kenneth W.W.; Pluda, Allison R.

    2014-06-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  12. Element concentrations in bed sediment of the Yellowstone River basin, Montana, North Dakota, and Wyoming; a retrospective analysis

    USGS Publications Warehouse

    Peterson, D.A.; Zelt, R.B.

    1999-01-01

    Chemical data for bed sediment were analyzed as part of the U.S. Geological Survey National Water-Quality Assessment Program investigation of the Yellowstone River Basin in parts of Montana, North Dakota, and Wyoming. The primary data set consisted of about 13,000 samples collected during 1974-79 for the National Uranium Resource Evaluation program. Data were available for 50 elements, although not all samples were analyzed for all elements. Element concentrations varied spatially and were associated with geologic settings or ecoregions. Factor analysis indicated three groups of associated elements: factor 1 elements were strongly correlated with basaltic rocks, factor 2 elements were strongly correlated with granitic rocks, and factor 3 elements were strongly correlated with carbonate rocks. Scores for factor 1 were highest for bed-sediment samples associated with volcanic rocks of Tertiary and Cretaceous age in the Absaroka volcanic field and crystalline rocks of Precambrian age in the Beartooth Mountains. Scores for factor 2 were highest for samples associated with volcanic rocks of Quaternary age on the Yellowstone Plateau, crystalline rocks of Precambrian age, and sedimentary rocks of Tertiary age in the Wyoming Basin ecoregion. Scores for factor 3 were highest in samples associated with sedimentary rocks of Paleozoic age and volcanic rocks of Cretaceous and Tertiary age. Descriptive statistics are presented to serve as a baseline for element concentrations in bed sediment associated with eight geologic settings or ecoregions in the study unit. Some of the concentrations of chromium, copper, lead, nickel, and zinc in bed-sediment samples from areas of crystalline rocks in the Beartooth Mountains and other formations in the western part of the study unit exceeded sediment-quality assessment values associated with toxic effects to aquatic life.

  13. McFadden, Wyoming: A case study in narrating our changing energy landscapes

    NASA Astrophysics Data System (ADS)

    Anderson, Carly-Ann Marie

    This thesis uses McFadden, Wyoming, and the Rock Creek Valley to discuss Wyoming's changing energy landscapes and argues that a cultural landscape approach to documenting our historic and cultural resources can contribute to properly siting energy developments. Though Wyoming stands to gain from the construction of wind farms, they should be carefully sited in order to balance environmental and cultural resource preservation with energy needs. Wyoming has a long history as an energy hinterland and provides a significant portion of energy to the U.S. However, the nation's demand for energy should not take precedence over preserving the cultural resources and vast open landscapes that represent Wyoming's heritage. A history of the Rock Creek Valley as a home to Native Americans, a transportation corridor, oil field, and wind farm site is presented along with a discussion of energy consumption and Wyoming's role in the energy market. The thesis also considers the importance of education, public discourse, and narrative as tools for planning a sustainable future with regard to energy, the environment, and cultural resources.

  14. Are There Benefits to Mowing Wyoming Big Sagebrush Plant Communities? An Evaluation in Southeastern Oregon

    NASA Astrophysics Data System (ADS)

    Davies, Kirk W.; Bates, Jon D.; Nafus, Aleta M.

    2011-09-01

    Wyoming big sagebrush ( Artemisia tridentata ssp. wyomingensis Beetle & Young) communities frequently are mowed in an attempt to increase perennial herbaceous vegetation. However, there is limited information as to whether expected benefits of mowing are realized when applied to Wyoming big sagebrush communities with intact understory vegetation. We compared vegetation and soil nutrient concentrations in mowed and undisturbed reference plots in Wyoming big sagebrush plant communities at eight sites for three years post-treatment. Mowing generally did not increase perennial herbaceous vegetation cover, density, or biomass production ( P > 0.05). Annual forbs and exotic annual grasses were generally greater in the mowed compared to the reference treatment ( P < 0.05). By the third year post-treatment annual forb and annual grass biomass production was more than nine and sevenfold higher in the mowed than reference treatment, respectively. Our results imply that the application of mowing treatments in Wyoming big sagebrush plant communities does not increase perennial herbaceous vegetation, but may increase the risk that exotic annual grasses will dominate the herbaceous vegetation. We suggest that mowing Wyoming big sagebrush communities with intact understories does not produce the expected benefits. However, the applicability of our results to Wyoming big sagebrush communities with greater sagebrush cover and/or degraded understories needs to be evaluated.

  15. Paleomagnetism and geochronology of an Early Proterozoic quartz diorite in the southern Wind River Range, Wyoming, USA

    USGS Publications Warehouse

    Harlan, S.S.; Geisman, J.W.; Premo, W.R.

    2003-01-01

    separation of the Wyoming Craton and Laurentia prior to about 1.8 Ga. Correcting the quartz diorite pole for the possible effects of Laramide-age tilting of the Wind River Range, based on the attitude of nearby overlying Cambrian Flathead Sandstone (dip=20??, N20??E), gives a tilt corrected pole of 75??N, 58??E (??m=4??, ??p=6??), which is also discordant with respect to time-equivalent poles from the Superior Province. Reconstruction of the Superior and Wyoming Province using a rotation similar to that proposed by Roscoe and Card [Can. J. Earth Sci. 46(1993)2475] is problematic, but reconstruction of the Superior and Wyoming Provinces based on restoring them to their correct paleolatitude and orientation using a closest approach fit indicates that the two cratons could have been adjacent at about 2.17 Ga prior to rifting at about 2.15 Ga. The paleomagnetic data presented are consistent with the hypothesis that the Huronian and Snowy Pass Supergroups could have evolved as part of a single epicratonic sedimentary basin during the Early Proterozoic. ?? 2002 Elsevier Science B.V. All rights reserved.

  16. National Uranium Resource Evaluation: Ashton Quadrangle, Idaho, Montana, and Wyoming

    SciTech Connect

    Suekawa, H.S.; Merrick, D.; Clayton, J.; Rumba, S.

    1982-07-01

    The Ashton Quadrangle, Idaho, Montana, and Wyoming, was evaluated to identify and delineate areas containing environments favorable for uranium deposits, using criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, radiometric traverses, and geochemical sampling were carried out in all geologic environments within the quadrangle. Aerial radiometric data were evaluated, and anomalies were examined in the field. Fourteen uranium occurrences were noted in the study area. Only one environment, the phosphorites of the Permian Phosphoria Formation, is considered favorable for uranium deposition. The unfavorable environments include: limestones, sandstones, coal and carbonaceous shales, volcanics, Precambrian metamorphics, and Tertiary basins. Unevaluated areas include the John D. Rockefeller Jr. Memorial Parkway and Yellowstone and Grand Teton National Parks, where park service regulations prohibit detailed investigations.

  17. Geothermal modeling of Jackson Hole, Teton County Wyoming: Final report

    SciTech Connect

    Heasler, H.P.

    1987-04-01

    This study investigated the possibility of high-temperature-heat sources (greater than 300/sup 0/C) in the area of Jackson Hole, northwestern Wyoming. Analytical and finite-difference numerical models describing conductive and convective terrestrial heat transport were utilized in an attempt to define the thermal regime of this area. This report presents data which were used as constraints for the analytic and numerical thermal models. These data include a general discussion of geology of the area, thermal spring information, subsurface temperature information, and hydrology of the area. Model results are presented with a discussion of interpretations and implications for the existence of high-temperature heat sources in the Jackson Hole area.

  18. Ectoparasites from elk (Cervus elaphus nelsoni) from Wyoming.

    PubMed

    Samuel, W M; Welch, D A; Smith, B L

    1991-07-01

    Hides of nine elk, collected during the winter of 1986-1987 from the National Elk Refuge, Wyoming (USA) were examined for ectoparasites. Parasites recovered were mites, Psoroptes sp. (five elk); lice, Solenopotes ferrisi and Bovicola (Bovicola) longicornis (seven elk); and winter ticks, Dermacentor albipictus (nine elk). Three elk with severe scabies had an estimated 0.6 x 10(6), 3.8 x 10(6) and 6.5 x 10(6) mites, respectively. Densities of mites were much higher in skin regions with severe dermatitis. Skin lesions on elk with scabies consisted of dense, often moist, scabs extending along the dorsal and lateral thoracic regions of the body. Lesions attributed to winter ticks consisted of broken hair and alopecia on the dorsal portion of the lower neck, often extending in a "collar" around the neck. PMID:1920665

  19. Outplanting Wyoming big sagebrush following wldfire: stock performance and economics

    USGS Publications Warehouse

    Dettweiler-Robinson, Eva; Bakker, Jonathan D.; Evans, James R.; Newsome, Heidi; Davies, G. Matt; Wirth, Troy A.; Pyke, David A.; Easterly, Richard T.; Salstrom, Debra; Dunwiddle, Peter W.

    2013-01-01

    mycorrhizal amendments. Most mortality occurred during the first year after planting; this period is the greatest barrier to establishment of sagebrush stock. The proportion of healthy stock in Year 1 was positively related to subsequent survival to Year 3. Costs were minimized, and survival maximized, by planting container stock or bare-root stock with a hydrogel dip. Our results indicate that outplanting is an ecologically and economically effective way of establishing Wyoming big sagebrush. However, statistical analyses were limited by the fact that data about initial variables (stock quality, site conditions, weather) were often unrecorded and by the lack of a replicated experimental design. Sharing consistent data and using an experimental approach would help land managers and restoration practitioners maximize the success of outplanting efforts.

  20. Vitrinite Reflectance Data for the Wind River Basin, Central Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.; Roberts, Laura N.R.; Pawlewicz, Mark J.

    2006-01-01

    Introduction: The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 mi2 in central Wyoming. The basin boundaries are defined by fault-bounded Laramide uplifts that surround it, including the Owl Creek and Bighorn Mountains to the north, Wind River Range to the west, Granite Mountains to the south, and Casper Arch to the east. The purpose of this report is to present new vitrinite reflectance data to be used in support of the U.S Geological Survey assessment of undiscovered oil and gas resources of the Wind River Basin. One hundred and nineteen samples were collected from Jurassic through Tertiary rocks, mostly coal-bearing strata, in an effort to better understand and characterize the thermal maturation and burial history of potential source rocks.

  1. Swift fox survival and production in southeastern Wyoming

    USGS Publications Warehouse

    Olson, T.L.; Lindzey, F.G.

    2002-01-01

    We estimated annual survival rates of swift foxes (Vulpes velox) and documented number of young per pair in a transition zone between shortgrass prairie and sagebrush steppe plant communities in southeastern Wyoming during 1996-2000. Annual adult survival ranged from 40% to 69%, with predation by coyotes (Canis latrans) the primary cause of deaths. Two foxes died of canine distemper virus. Annual survival rates did not differ among years (P>0.12). Nineteen of 24 (79%) swift fox pairs were observed with young over 3 years. Mean minimum litter size was 4.6 based on these 19 litters and 6 others not associated with our radiocollared foxes. Adult survival was similar and litter size slightly larger than observed elsewhere in the species range, suggesting that viable swift fox populations can be supported by sagebrush steppe and shortgrass prairie transition habitat.

  2. Leopard frog and wood frog reproduction in Colorado and Wyoming

    USGS Publications Warehouse

    Corn, Paul Stephen; Livo, Lauren J.

    1989-01-01

    Between 1978 and 1988, we recorded reproductive information from populations of ranid frogs in Colorado and Wyoming. Egg masses from five plains and montane populations of northern leopard frogs (Rana pipiens) contained 645-6272 eggs (x̄ = 3045, N = 68 egg masses). In two montane populations of wood frogs (Rana sylvatica) numbers of eggs per egg mass varied from 711-1248 (x̄ = 876, N = 15) and probably were equal to total clutch size. Mean hatching success was 90% in egg masses from one R. sylvatica population and ranged from 70% to 99% in R. pipiens egg masses. Rana pipiens egg masses from one location were assigned to three overlapping size distributions, which we believe reflects the underlying age structure of female frogs.

  3. California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis

    SciTech Connect

    Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

    2014-03-01

    This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

  4. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    SciTech Connect

    Damp, J N; Jennings, M D

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated.

  5. Glaciation of northwestern Wyoming interpreted from ERTS-1

    NASA Technical Reports Server (NTRS)

    Breckenridge, R. M.

    1973-01-01

    Analysis of ERTS Imagery has shown a number of alpine glacial features can be recognized and mapped successfully. Although the Wyoming mountains are generally regarded as the type locality for Rocky Mountain glaciation some areas have not been studied from a glacial standpoint because of inaccessibility or lack of topographic control. ERTS imagery provides an excellent base for this type of regional geomorphic study. A map of maximum extent of Wisconsin Ice, flow directions and major glacial features was compiled from interpretation of the ERTS imagery. Features which can be mapped are large moraines, outwash fans and terraces. Present-day glaciers and snowfields are easily discriminated and mapped. Glaciers and glacial deposits which serve as aquifers play a significant role in the hydrologic cycle and are important because of the increasing demand placed on our water resources. ERTS provides a quick and effective method for change detection and inventory of these vital resources.

  6. Forecasting and evaluating patterns of energy development in southwestern Wyoming

    USGS Publications Warehouse

    Garman, Steven L.

    2015-01-01

    The effects of future oil and natural gas development in southwestern Wyoming on wildlife populations are topical to conservation of the sagebrush steppe ecosystem. To aid in understanding these potential effects, the U.S. Geological Survey developed an Energy Footprint simulation model that forecasts the amount and pattern of energy development under different assumptions of development rates and well-drilling methods. The simulated disturbance patterns produced by the footprint model are used to assess the potential effects on wildlife habitat and populations. A goal of this modeling effort is to use measures of energy production (number of simulated wells), well-pad and road-surface disturbance, and potential effects on wildlife to identify build-out designs that minimize the physical and ecological footprint of energy development for different levels of energy production and development costs.

  7. Subsurface stratigraphic cross sections of cretaceous and lower tertiary rocks in the Wind River Basin, central Wyoming: Chapter 9 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.

    2007-01-01

    The stratigraphic cross sections presented in this report were constructed as part of a project conducted by the U.S. Geological Survey to characterize and evaluate the undiscovered oil and gas resources of the Wind River Basin (WRB) in central Wyoming. The primary purpose of the cross sections is to show the stratigraphic framework and facies relations of Cretaceous and lower Tertiary rocks in this large, intermontane structural and sedimentary basin, which formed in the Rocky Mountain foreland during the Laramide orogeny (Late Cretaceous through early Eocene time). The WRB is nearly 200 miles (mi) long, 70 mi wide, and encompasses about 7,400 square miles (mi2) (fig. 1). The basin is structurally bounded by the Owl Creek and Bighorn Mountains on the north, the Casper arch on the east, the Granite Mountains on the south, and the Wind River Range on the west.

  8. Field guide to Muddy Formation outcrops, Crook County, Wyoming

    SciTech Connect

    Rawn-Schatzinger, V.

    1993-11-01

    The objectives of this research program are to (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline bamer reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. This report contains the data and analyses collected from outcrop exposures of the Muddy Formation, located in Crook County, Wyoming, 40 miles south of Bell Creek oil field. The outcrop data set contains permeability, porosity, petrographic, grain size and geologic data from 1-inch-diameter core plugs chilled from the outcrop face, as well as geological descriptions and sedimentological interpretations of the outcrop exposures. The outcrop data set provides information about facies characteristics and geometries and the spatial distribution of permeability and porosity on interwell scales. Appendices within this report include a micropaleontological analyses of selected outcrop samples, an annotated bibliography of papers on the Muddy Formation in the Powder River Basin, and over 950 permeability and porosity values measured from 1-inch-diameter core plugs drilled from the outcrop. All data contained in this resort are available in electronic format upon request. The core plugs drilled from the outcrop are available for measurement.

  9. Analysis of runoff from small drainage basins in Wyoming

    USGS Publications Warehouse

    Craig, Gordon S.; Rankl, James G.

    1977-01-01

    A flood-hydrograph study has defined the magnitude and frequency of flood volumes and flood peaks that can be expected from drainage basins smaller than 11 square miles in the plains and valley areas of Wyoming. Rainfall and runoff data, collected for 9 years on a seasonal basis (April through September), were used to calibrate a rainfall-runoff model on each of 22 small basins. Long-term records of runoff volume and peak discharge were synthesized for these 22 basins. Flood volumes and flood peaks of specific recurrence intervals (2, 5, 10, 25, 50, and 100 years) were then related to basin characteristics with a high degree of correlation. Flood volumes were related to drainage area, maximum relief, and basin slope. Flood peaks were related to drainage area, maximum relief, basin slope, and channel slope. An investigation of ponding behind a highway embankment, with available storage capacity and with a culvert to allow outflow, has shown that the single fast-rising peak is most important in culvert design. Consequently, a dimensionless hydrograph defines the characteristic shape of flood hydrographs to be expected from small drainage basins in Wyoming. For design purposes, a peak and volume can be estimated from basin characteristics and used with the dimensionless hydrograph to produce a synthetic single-peak hydrograph. Incremental discharges of the hydrograph can be routed along a channel, where a highway fill and culvert are to be placed, to help determine the most economical size of culvert if embankment storage is to be considered. (Woodard-USGS)

  10. Tailings basin reclamation: Atlantic City Iron Mine, Wyoming

    SciTech Connect

    Gusek, J.J.; Richmond, T.C.

    1999-07-01

    An 81 ha (200 ac) tailings impoundment at a taconite operation in Wyoming abandoned in 1985 has been a source of blowing dust. The site qualified for reclamation under Wyoming's Abandoned Mine Land program. The reclamation design included: incorporating commercially available organic amendments and fertilizers into a 300 mm (12 in.) thick cap of a sterile gravelly clay loam cover material, planting trees in the protective wind/snow shadows of rock beams and rock snow fences, lowering the water level n a flooded mine pit that was feeding uncontrolled seeps, and constructing a wide tailings pond spillway that allows flood control while minimizing seasonal water level fluctuations in the pond. The construction of the earthwork aspects of the design were completed over two construction seasons, including work during the winter at this high-altitude (2,470 m [8,100 ft.]) site. This occurred because snow from an early winter storm that collected behind the rock beams and rock snow fences was slow to melt. Furthermore, the increased snow catch made the site too wet the following spring to allow seeding during the normal seeding window; a fall planting was necessary. The rocky nature of the cover material prompted the development of innovative reclamation approaches, including fabricating a rock rake bulldozer blade and applying organic soil amendments by aerial spraying. A randomly-configured two-acre test plot was installed to evaluate the benefits of various soil amendments as the site matures. Future work on the site will include tree seedling planting and plugging of a decant pipeline.

  11. Ground-water and stream-water interaction in the Owl Creek basin, Wyoming

    USGS Publications Warehouse

    Ogle, K.M.

    1996-01-01

    Understanding of the interaction of ground-water and surface-water resources is vital to water management when water availability is limited.Inflow of ground water is the primary source ofwater during stream base flow. The water chemistry of streams may substantially be affected by that inflow of ground water. This report is part of a study to examine ground-water and surface-water interaction in the Owl Creek Basin, Wyoming, completed by the U.S. Geological Survey incooperation with the Northern Arapaho Tribe and the Shoshone Tribe. During a low flow period between November\\x1113 - 17, 1991, streamflowmeasurements and water-quality samples were collected at 16 selected sites along major streams and tributaries in the Owl Creek Basin,Wyoming. The data were used to identify stream reaches receiving ground-water inflow and to examine causes of changes in stream chemistry.Streamflow measurements, radon-222 activity load, and dissolved solids load were used to identified stream reaches receiving ground-water inflow.Streamflow measurements identified three stream reaches receiving ground-water inflow. Analysis of radon-222 activity load identified five stream reaches receiving ground-water inflow. Dissolvedsolids load identified six stream reaches receiving ground-water inflow. When these three methods were combined, stream reaches in two areas, theEmbar Area and the Thermopolis Anticline Area, were identified as receiving ground-water inflow.The Embar Area and the Thermopolis Anticline Area were then evaluated to determine the source of increased chemical load in stream water. Three potential sources were analyzed: tributary inflow, surficial geology, and anticlines. Two sources,tributary inflow and surficial geology, were related to changes in isotopic ratios and chemical load in the Embar Area. In two reaches in the Embar Area, isotopic ratios of 18O/16O, D/H, and 34S/32S indicated that tributary inflow affected stream-water chemistry. Increased chemical load of

  12. Rare, large earthquakes at the laramide deformation front - Colorado (1882) and Wyoming (1984)

    USGS Publications Warehouse

    Spence, W.; Langer, C.J.; Choy, G.L.

    1996-01-01

    The largest historical earthquake known in Colorado occurred on 7 November 1882. Knowledge of its size, location, and specific tectonic environment is important for the design of critical structures in the rapidly growing region of the Southern Rocky Mountains. More than one century later, on 18 October 1984, an mb 5.3 earthquake occurred in the Laramie Mountains, Wyoming. By studying the 1984 earthquake, we are able to provide constraints on the location and size of the 1882 earthquake. Analysis of broadband seismic data shows the 1984 mainshock to have nucleated at a depth of 27.5 ?? 1.0 km and to have ruptured ???2.7 km updip, with a corresponding average displacement of about 48 cm and average stress drop of about 180 bars. This high stress drop may explain why the earthquake was felt over an area about 3.5 times that expected for a shallow earthquake of the same magnitude in this region. A microearthquake survey shows aftershocks to be just above the mainshock's rupture, mostly in a volume measuring 3 to 4 km across. Focal mechanisms for the mainshock and aftershocks have NE-SW-trending T axes, a feature shared by most earthquakes in western Colorado and by the induced Denver earthquakes of 1967. The only data for the 1882 earthquake were intensity reports from a heterogeneously distributed population. Interpretation of these reports also might be affected by ground-motion amplification from fluvial deposits and possible significant focal depth for the mainshock. The primary aftershock of the 1882 earthquake was felt most strongly in the northern Front Range, leading Kirkham and Rogers (1985) to locate the epicenters of the aftershock and mainshock there. The Front Range is a geomorphic extension of the Laramie Mountains. Both features are part of the eastern deformation front of the Laramide orogeny. Based on knowledge of regional tectonics and using intensity maps for the 1984 and the 1967 Denver earthquakes, we reinterpret prior intensity maps for the 1882

  13. Structural development of high-temperature mylonites in the Archean Wyoming province, northwestern Madison Range, Montana

    USGS Publications Warehouse

    Kellogg, Karl S.; Mogk, David W.

    2009-01-01

    The Crooked Creek mylonite, in the northwestern Madison Range, southwestern Montana, is defined by several curved lenses of high non-coaxial strain exposed over a 7-km-wide, northeast-trending strip. The country rocks, part of the Archean Wyoming province, are dominantly trondhjemitic to granitic orthogneiss with subordinate amphibolite, quartzite, aluminous gneiss, and sills of metabasite (mafic granulite). Data presented here support an interpretation that the mylonite formed during a period of rapid, heterogeneous strain at near-peak metamorphic conditions during an early deformational event (D1) caused by northwest–southeast-directed transpression. The mylonite has a well-developed L-S tectonite fabric and a fine-grained, recrystallized (granoblastic) texture. The strong linear fabric, interpreted as the stretching direction, is defined by elongate compositional “fish,” fold axes, aligned elongate minerals, and mullion axes. The margins of the mylonitic zones are concordant with and grade into regions of unmylonitized gneiss. A second deformational event (D2) has folded the mylonite surface to produce meter- to kilometer-scale, tight-to-isoclinal, gently plunging folds in both the mylonite and country rock, and represents a northwest–southeast shortening event. Planar or linear fabrics associated with D2 are remarkably absent. A third regional deformational event (D3) produced open, kilometer-scale folds generally with gently north-plunging fold axes. Thermobarometric measurements presented here indicate that metamorphic conditions during D1 were the same in both the mylonite and the country gneiss, reaching upper amphibolite- to lower granulite-facies conditions: 700 ± 50° C and 8.5 ± 0.5 kb. Previous geochronological studies of mylonitic and cross-cutting rocks in the Jerome Rock Lake area, east of the Crooked Creek mylonite, bracket the timing of this high-grade metamorphism and mylonitization between 2.78 and 2.56 Ga, nearly a billion years

  14. Revised Subsurface Stratigraphic Framework of the Fort Union and Wasatch Formations, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Flores, Romeo M.; Spear, Brianne D.; Purchase, Peter A.; Gallagher, Craig M.

    2010-01-01

    Described in this report is an updated subsurface stratigraphic framework of the Paleocene Fort Union Formation and Eocene Wasatch Formation in the Powder River Basin (PRB) in Wyoming and Montana. This framework is graphically presented in 17 intersecting west-east and north-south cross sections across the basin. Also included are: (1) the dataset and all associated digital files and (2) digital files for all figures and table 1 suitable for large-format printing. The purpose of this U.S. Geological Survey (USGS) Open-File Report is to provide rapid dissemination and accessibility of the stratigraphic cross sections and related digital data to USGS customers, especially the U.S. Bureau of Land Management (BLM), to facilitate their modeling of the hydrostratigraphy of the PRB. This report contains a brief summary of the coal-bed correlations and database, and is part of a larger ongoing study that will be available in the near future.

  15. Glacial ice composition: A potential long-term record of the chemistry of atmospheric deposition, Wind River Range, Wyoming

    SciTech Connect

    Naftz, D.L. ); Rice, J.A. ); Ranville, J.R. )

    1991-06-01

    During a reconnaissance study, ice samples were collected from Knife Point glacier to determine if glaciers in the Wind River Range Could provide a long-term record of the chemical composition of wet deposition. Eight annual ice layers comprising the years 1980-1987 were identified. The concentration of calcium, chloride, and sulfate in the annual-weighted wet deposition samples collected at the National Atmospheric deposition Program (NADP) station near Pinedale, Wyoming, showed a significant, positive correlation to the concentration of the same major ions in composite samples from the annual ice layers. results of the study imply that continuous ice cores reaching to the deeper parts of glaciers in the Wind River Range could provide long-term records of the chemical composition of wet deposition.

  16. Present and potential sediment yields in the Yampa River Basin, Colorado and Wyoming

    USGS Publications Warehouse

    Andrews, Edmund D.

    1978-01-01

    Average annual suspended- and total-sediment loads in streamflow were determined by the flow-duration sediment-transport-curve method at 18 sites in the Yampa River basin, Colorado and Wyoming. These computations indicate that about 2.0 million tons of sediment are carried by the Yampa River at Deerlodge Park during an average year. Significant areal differences in the sediment yield from various parts of the basin also were determined. The lower Little Snake River subbasin contributes about 60 percent of the total basin sediment yield, although it represents less than 35 percent of the area and supplies less than 3 percent of the streamflow. In contrast, the upland (eastern) one-third of the basin contributes only about 14 percent of the sediment yield but 76 percent of the streamflow. Projected economic development of the basin, especially surface mining of coal, will impact the physical environment. Depending upon the amount and location of land disturbed, an estimated 10 ,000 to 30,000 tons per year of additional sediment will be contributed to the main-stem Yampa River. (Woodard-USGS)

  17. Sedimentology and reservoir characteristics of tight gas sandstones, Frontier formation, southwestern Wyoming

    SciTech Connect

    Moslow, T.F.; Tillman, R.W.

    1984-04-01

    The lower Frontier Formation, Moxa arch area, southwestern Wyoming, is one of the most prolific gas-producing formations in the Rocky Mountain region. Lowr Frontier sediments were deposited as strandplains and coalescing wave-dominated deltas that prograding into the western margin of the Cretaceous interior seaway during the Cenomanian. In this study, sedimentologic, petrologic, and stratigraphic analyses were conducted on cores and logs of Frontier wells from the Whiskey Buttes and Moxa fields. Twelve sedimentary facies have been identified. The most common sequence consists of burrowed to cross-bedded near shore marine (delta-front and inner-shelf) sandstones disconformably overlain by crossbedded (active) to deformed (abandoned) distributary-channel sandstones and conglomerates. The sequence is capped by delta-plain mudstones and silty sandstones. Tight-gas sandstone reservoir facies are nonhomogenous and include crevasse splay, abandoned and active distributary channel, shoreface, foreshore, and inner shelf sandstones. Distributary-channel facies represent 80% of perforated intervals in wells in the southern part of the Moxa area, but only 50% to the north. Channel sandstone bodies are occasionally stacked, occur on the same stratigraphic horizon, and are laterally discontinuous with numerous permeability barriers. Percentage of perforated intervals in upper shoreface and foreshore facies increases from 20% in the south to 50% in the north.

  18. Sedimentology and reservoir characteristics of tight gas sandstones, Frontier formation, southwestern Wyoming

    SciTech Connect

    Moslow, T.F.; Tillman, R.W.

    1984-04-01

    The lower Frontier Formation, Moxa arch area, southwestern Wyoming, is one of the most prolific gas-producing formations in the Rocky Mountain region. Lower Frontier sediments were deposited as strandplains and coalescing wave-dominated deltas that prograding into the western margin of the Cretaceous interior seaway during the Cenomanian. In this study, sedimentologic, petrologic, and stratigraphic analyses were conducted on cores and logs of Frontier wells from the Whiskey Buttes and Moxa fields. Twelve sedimentary facies have been identified. The most common sequence consists of burrowed to cross-bedded near shore marine (delta-front and inner-shelf) sandstones disconformably overlain by cross-bedded (active) to deformed (abandoned) distributary-channel sandstones and conglomerates. The sequence is capped by delta-plain mudstones and silty sandstones. Tight-gas sandstone reservoir facies are non-homogenous and include crevasse splay, abandoned and active distributary channel, shoreface, foreshore, and inner shelf sandstones. Distributary-channel facies represent 80% of perforated intervals in wells in the southern part of the Moxa area, but only 50% to the north. Channel sandstone bodies are occasionally stacked, occur on the same stratigraphic horizon, and are laterally discontinuous with numerous permeability barriers. Percentage of perforated intervals in upper shoreface and foreshore facies increases from 20% in the south to 50% in the north.

  19. Tectonic evolution of Hanna Basin, Wyoming: Laramide block rotation in the Rocky Mountain foreland

    SciTech Connect

    LeFebre, G.B.

    1988-01-01

    From late Early Cretaceous through late Early Eocene time the Hanna Basin area of south-central Wyoming developed in response to regional and local tectonic forces. Subsidence history, flexural modeling, depositional setting and history, coal moisture content of Tertiary coal and fission-track thermochronology document the evolutionary history of this small ({approx}2600 km{sup 2}), deep ({approx}16 km offset on the Precambrian basement) intermontane basin. The present geologic configuration of Hanna Basin is the result of five evolutionary phases: (1) initial regional subsidence ({approx}119 Ma) as part of the expanding foredeep in front of the Sevier Orogenic belt, (2) breakup of this foredeep into discrete depocenters and nascent uplifts began between 88.5 Ma and 97.5 Ma (locally, uplift of the Sweetwater Arch and downwarp of the Hanna trough are most important), (3) breakup of the Hanna trough and development of the Hanna Basin by basement block rotation facilitated by sediment loading (began at 68-70 Ma and continued through {approx}52 Ma), (4) late Early Eocene - early Middle Eocene uplift of Shirley Mountains area and final destruction of the old Hanna trough (final movement on the Shirley Thrust) and (5) post Early Eocene sedimentary fill of about 2.4 km and its subsequent erosion prior to {approx}29 Ma.

  20. Geologic Map of the Eaton Reservoir Quadrangle, Larimer County, Colorado and Albany County, Wyoming

    USGS Publications Warehouse

    Workman, Jeremiah B.

    2008-01-01

    New geologic mapping of the Eaton Reservoir 7.5' quadrangle defines geologic relationships in the northern Front Range along the Colorado/Wyoming border approximately 35 km south of Laramie, Wyo. Previous mapping within the quadrangle was limited to regional reconnaissance mapping (Tweto, 1979; Camp, 1979; Burch, 1983) and some minor site-specific studies (Carlson and Marsh, 1986; W. Braddock, unpub. mapping, 1982). Braddock and others (1989) mapped the Diamond Peak 7.5' quadrangle to the east, Burch (1983) mapped rocks of the Rawah batholith to the south, W. Braddock (unpub. mapping, 1981) mapped the Sand Creek Pass 7.5' quadrangle to the west, and Ver Ploeg and Boyd (2000) mapped the Laramie 30' x 60' quadrangle to the north. Field work was completed during 2005 and 2006 and the mapping was compiled at a scale of 1:24,000. Minimal petrographic work and isotope dating was done in connection with the present mapping, but detailed petrographic and isotope studies were carried out on correlative map units in surrounding areas as part of a related regional study of the northern Front Range. Classification of Proterozoic rocks is primarily based upon field observation of bulk mineral composition, macroscopic textural features, and field relationships that allow for correlation with rocks studied in greater detail outside of the map area.

  1. Seismic detection of Upper Cretaceous stratigraphic oil traps in the Powder River Basin, Wyoming

    SciTech Connect

    Fuller, B.N.

    1988-01-01

    Upper Cretaceous sand ridges that serve as stratigraphic oil traps in the Powder River Basin, Wyoming have been difficult to find by standard seismic techniques, largely because the sands average less than 10 m in thickness. A direct detection approach to seismic exploration for the sands was taken by using amplitude-with-offset and pattern recognition analyses of seismic reflection data. The seismic data presented were recorded at Hartzog Draw oil field where oil is produced from a sand ridge complex that is enveloped in marine shells. Known reservoir sands a thin a 5 m were detected by the amplitude-with-offset method. The amplitude-with-offset variation was caused by a large difference in Poisson's ratio between the reservoir sands and the enveloping marine shale; reflection coefficients are known to vary significantly with angle of incidence when a large change in Poisson's ratio occurs upon crossing a reflecting boundary. The pattern recognition analysis was carried out to test the effectiveness of the pattern recognition method in defining the edges of oil fields and in recognizing prospective new hydrocarbon reserves. The pattern recognition software performed well in precisely identifying the western edge of Hartzog Draw field and in recognizing a large part of the eastern side of the field. The methods discussed have promise for seismic exploration and exploitation around the world.

  2. Regional modeling of large wildfires under current and potential future climates in Colorado and Wyoming, USA

    USGS Publications Warehouse

    West, Amanda; Kumar, Sunil; Jarnevich, Catherine S.

    2016-01-01

    Regional analysis of large wildfire potential given climate change scenarios is crucial to understanding areas most at risk in the future, yet wildfire models are not often developed and tested at this spatial scale. We fit three historical climate suitability models for large wildfires (i.e. ≥ 400 ha) in Colorado andWyoming using topography and decadal climate averages corresponding to wildfire occurrence at the same temporal scale. The historical models classified points of known large wildfire occurrence with high accuracies. Using a novel approach in wildfire modeling, we applied the historical models to independent climate and wildfire datasets, and the resulting sensitivities were 0.75, 0.81, and 0.83 for Maxent, Generalized Linear, and Multivariate Adaptive Regression Splines, respectively. We projected the historic models into future climate space using data from 15 global circulation models and two representative concentration pathway scenarios. Maps from these geospatial analyses can be used to evaluate the changing spatial distribution of climate suitability of large wildfires in these states. April relative humidity was the most important covariate in all models, providing insight to the climate space of large wildfires in this region. These methods incorporate monthly and seasonal climate averages at a spatial resolution relevant to land management (i.e. 1 km2) and provide a tool that can be modified for other regions of North America, or adapted for other parts of the world.

  3. Well-preserved cut-bank slumps from Paleocene sediments, Powder River basin, Wyoming

    SciTech Connect

    Pierce, F.W.; Johnson, E.A.

    1989-03-01

    Slump blocks are associated with bases of fluvial channels in the Paleocene Tongue River Member of the Fort Union Formation, southeastern Powder River basin, Wyoming. These blocks are composed of thin to medium beds of very fine-grained sandstone containing finer grained organic-rich partings. Slump blocks described from other areas are composed of very cohesive silt and clay; blocks composed predominantly of sand are rare or absent. Our blocks are significant in that the sands were cohesive enough to fail by slumping rather than flow. The sandstone beds within the blocks exhibit small-scale tensional and compressional deformation. Strikes of beds within the blocks are subparallel to paleocurrent measurements from overlying channels, and the average dip of 36/degrees/ is significantly greater than regional dip. The blocks, commonly wedge shaped and averaging 18 m long and 4 m thick, occur in horizontal zones that can be traced for as much as 400 m. The blocks are bounded by arcuate surfaces at the base and sides and commonly overlie mudstone or coaly carbonaceous shale. The tops are unconformably overlain by a chaotic layer averaging 0.8 m thick, composed of randomly oriented fragments of sandstone and abundant plant debris. Active channel fill erosionally overlies the chaotic layer.

  4. Basin-wide architecture of sandstone reservoirs in the Fort Union Formation, Wind River basin, Wyoming

    SciTech Connect

    Flores, R.M.; Keighin, C.W.; Keefer, W.R. )

    1991-06-01

    Architecture of hydrocarbon-bearing sandstone reservoirs of the Paleocene Fort Union Formation in the Wind River basin, Wyoming, was studied using lithofacies, grain size, bounding surfaces, sedimentary structures, internal organization, and geometry. Two principal groups of reservoirs, both erosionally based and fining upward, consist of either conglomeratic sandstone or sandstone lithofacies. Two types of architecture were recognized in conglomeratic sandstone reservoirs: (1) heterogeneous, multistacked, lenticular and (2) homogeneous, multiscoured, wedge-sheet bodies. Three types of architecture were recognized in sandstone reservoirs: (3) heterogeneous, multistacked, elongate; (4) homogeneous, multilateral, lenticular; and (5) homogeneous, ribbon-lensoid bodies. Conglomeratic sandstone reservoirs in the southern and southwestern parts of the basin suggest deposition in gravel-bedload fluvial systems influenced by provenance uplift of the Granite and southern Wind River mountains. Type 2 reservoirs represent deposits of eastward-flowing braided streams aggrading an alluvial valley in response to base level rise. Thus, to determine basin-wide architecture of reservoirs requires understanding the interplay between base level conditions, basin subsidence, and provenance uplift. These interrelated factors, in turn, control differences in hierarchies of fluvial systems throughout the basin.

  5. Pumpage data from irrigation wells in eastern Laramie County, Wyoming, and Kimball County, Nebraska

    USGS Publications Warehouse

    Avery, Charles

    1983-01-01

    Quantitative information concerning pumpage by irrigation wells is an integral component of the U.S. Geological Survey High Plains Regional Aquifer System Analysis. Thus, operation time, discharge rate, and irrigated acreage were measured at approximately 450 randomly selected irrigation wells within 10 areas of the High Plains during the 1980 irrigation season. The data were used to estimate the seasonal mean application of water to crops and to project total pumpage by irrigation wells in 1980 throughout the High Plains area. As part of the sampling effort, 50 irrigation wells were randomly chosen from the area of eastern Laramie County, Wyoming, and Kimball County, Nebraska. Required information was collected on only 40 of the wells. For these wells, the seasonal mean application of water on the irrigated land was 15.2 inches. For the major crop types, the seasonal mean application, in inches, were as follows: alfalfa, 19.8; corn, 15.4; potatoes, 13.8; beans, 12.8; and small grains 10.2. (USGS)

  6. Site observational work plan for the UMTRA Project site at Spook, Wyoming

    SciTech Connect

    1995-05-01

    The Spook, Wyoming, site observational work plan proposes site-specific activities to achieve compliance with Subpart B of 40 CFR Part 192 (1994) of the final US Environmental Protection Agency (EPA) ground water protection standards 60 FR 2854 (1995) at this Uranium Mill Tailing Remedial Action (UMTRA) Project site. This draft SOWP presents a comprehensive summary of existing site characterization data, a conceptual site model of the nature and extent of ground water contamination, exposure pathways, and potential impact to human health and the environment. Section 2.0 describes the requirements for meeting ground water standards at UMTRA Project sites. Section 3.0 defines past and current conditions, describes potential environmental and human health risks, and provides site-specific data that supports the selection of a proposed ground water compliance strategy. Section 4.0 provides the justification for selecting the proposed ground water compliance strategy based on the framework defined in the ground water programmatic environmental impact statement (PEIS).

  7. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect

    Not Available

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  8. School Principal Evaluation in Wyoming: Alignment between Instruments Used to Evaluate School Principals in Wyoming and the ISLLC 2008 Standards for School Leaders

    ERIC Educational Resources Information Center

    Woodford, Rick

    2012-01-01

    This study is premised on the discrepancy that exists in the standards used to train and credential school principals and the elements of principal evaluation found on evaluation instruments used to evaluate the performance of school principals in Wyoming school districts. The purpose of this study was to explore the alignment between the ISLLC…

  9. Economics and a novel voltage conversion technique associated with exporting Wyoming's energy by HVDC transmission

    NASA Astrophysics Data System (ADS)

    Xu, Kaili

    Wyoming is by far the largest coal producing state in the US, but local utilization is extremely low. As much as 92% of Wyoming's coal is shipped to the other states and is mainly consumed by their electricity producers. Coal accounts for more than 50% of the US electricity generation and is one of the least expensive energy sources. Wyoming could utilize its coal better by exporting electricity instead of exporting the coal only in its raw form. Natural gas is another important energy resource in Wyoming but local utilization is even lower. As a result of the development in coalbed methane fields, natural gas production in Wyoming is almost in pace with its coal production. In addition to constructing more new pipelines, new transmission lines should be considered as an alternative way of exporting this energy. Because of their enormous electricity market sizes and high electricity prices, California, Texas and Illinois are chosen to be the target markets for Wyoming's electricity. The proposed transmission schemes use High Voltage DC (HVDC) lines, which are suitable for long distance and cross-system power transmission. Technical and economic feasibilities are studied in details. The Wyoming-California scheme has a better return of investment than both the Wyoming-Texas and the Wyoming-Illinois schemes. A major drawback of HVDC transmission is the high level of harmonics generated by the converters. Elaborate filtering is required at both the AC and the DC sides. A novel pulse-multiplication method is proposed in the thesis to reduce the harmonics from the converter source. By introducing an averaging inductor, the proposed method uses less thyristors to achieve the same high-pulse operation as the existing series scheme. The reduction of thyristors makes the switching circuit more reliable and easier to control and maintain. Harmonic analysis shows that the harmonic level can be reduced to about one third of the original system. The proposed method is also

  10. Multiscale sagebrush rangeland habitat modeling in southwest Wyoming

    USGS Publications Warehouse

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Coan, Michael J.; Bowen, Zachary H.

    2009-01-01

    Sagebrush-steppe ecosystems in North America have experienced dramatic elimination and degradation since European settlement. As a result, sagebrush-steppe dependent species have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, would improve the ability to maintain existing sagebrush habitats. However, current data only identify resource availability locally, with rigorous spatial tools and models that accurately model and map sagebrush habitats over large areas still unavailable. Here we report on an effort to produce a rigorous large-area sagebrush-habitat classification and inventory with statistically validated products and estimates of precision in the State of Wyoming. This research employs a combination of significant new tools, including (1) modeling sagebrush rangeland as a series of independent continuous field components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground-measured plot data on 2.4-meter imagery in the same season the satellite imagery is acquired; (3) effective modeling of ground-measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of an additional two spatial scales of imagery (30 meter and 56 meter) for optimal large-area modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution sensors; and (6) employing rigorous accuracy assessment of model predictions to enable users to understand the inherent uncertainties. First-phase results modeled eight rangeland components (four primary targets and four secondary targets) as continuous field predictions. The primary targets included percent bare ground, percent herbaceousness, percent shrub, and percent litter. The

  11. Depth of the base of the Jackson aquifer, based on geophysical exploration, southern Jackson Hole, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Nolan, Bernard T.; Campbell, David L.; Senterfit, Robert M.

    A geophysical survey was conducted to determine the depth of the base of the water-table aquifer in the southern part of Jackson Hole, Wyoming, USA. Audio-magnetotellurics (AMT) measurements at 77 sites in the study area yielded electrical-resistivity logs of the subsurface, and these were used to infer lithologic changes with depth. A 100-600ohm-m geoelectric layer, designated the Jackson aquifer, was used to represent surficial saturated, unconsolidated deposits of Quaternary age. The median depth of the base of the Jackson aquifer is estimated to be 200ft (61m), based on 62 sites that had sufficient resistivity data. AMT-measured values were kriged to predict the depth to the base of the aquifer throughout the southern part of Jackson Hole. Contour maps of the kriging predictions indicate that the depth of the base of the Jackson aquifer is shallow in the central part of the study area near the East and West Gros Ventre Buttes, deeper in the west near the Teton fault system, and shallow at the southern edge of Jackson Hole. Predicted, contoured depths range from 100ft (30m) in the south, near the confluences of Spring Creek and Flat Creek with the Snake River, to 700ft (210m) in the west, near the town of Wilson, Wyoming. Résumé Une campagne géophysique a été entreprise pour préciser la profondeur du mur de l'aquifère dans le secteur sud de Jackson Hole (Wyoming, États-Unis). Des mesures audio-magnétotelluriques (audio MT) sur 77 sites de ce secteur ont fourni des logs de résistivitéélectrique du sous-sol ; les variations de la lithologie en fonction de la profondeur en ont été déduites. Un niveau géoélectrique à 100-600ohm.m, dénommé "aquifère de Jackson", a servi à définir des dépôts superficiels quaternaires saturés en eau et non consolidés. La profondeur médiane de la base de l'aquifère de Jackson est de l'ordre de 61m, à partir des 62 sites ayant fourni suffisamment de données de résistivité. Les valeurs audio MT mesur

  12. Escherichia coli O157 Exposure in Wyoming and Seattle: Serologic Evidence of Rural Risk

    PubMed Central

    Haack, Jason P.; Jelacic, Srdjan; Besser, Thomas E.; Weinberger, Edward; Kirk, Donald J.; McKee, Garry L.; Harrison, Shannon M.; Musgrave, Karl J.; Miller, Gayle; Price, Thomas H.

    2003-01-01

    We tested the hypothesis that rural populations have increased exposure to Escherichia coli O157:H7. We measured circulating antibodies against the O157 lipopolysaccharide in rural Wyoming residents and in blood donors from Casper, Wyoming, and Seattle, Washington, by enzyme immunoassay (EIA). EIA readings were compared by analysis of variance and the least squares difference multiple comparison procedure. Rural Wyoming residents had higher antibody levels to O157 LPS than did Casper donors, who, in turn, had higher levels than did Seattle donors (respective least squares means: 0.356, 0.328, and 0.310; p<0.05, Seattle vs. Casper, p<0.001, rural Wyoming vs. either city). Lower age was significantly correlated with EIA scores; gender; and, in rural Wyoming, history of bloody diarrhea, town, duration of residence, and use of nontreated water at home were not significantly correlated. These data suggest that rural populations are more exposed to E. coli O157:H7 than urban populations. PMID:14609456

  13. Annotated bibliography of selected publications, through 1996, Cheyenne municipal well field areas, Cheyenne, Wyoming

    USGS Publications Warehouse

    Ogle, K.M.; Jordan, B.J.

    1997-01-01

    Annotated bibliographies for 55 hydrology and geology manuscripts pertaining to the Cheyenne municipal wells fields are listed in this report. For each manuscript, a citation is provided, a summaryparagraph is presented, key words are listed, and a location of the report is given. The report lists manuscripts, conference proceedings, and guidebooks published by the U. S. Geological Survey, State of Wyoming, Geological Society of America, Wyoming State Geological Survey,private consultants, and University of Wyoming.Information on geological formations, structural geology, aquifer characteristics, water levels, well- field production, water-demand projections, and water quality is included in the manuscripts. The Cheyenne Board of Public Utilities, the University of Wyoming, and the U. S. Geological Surveycooperatively produced this annotated bibliography to allow easy access and efficient utilization of existing data. The manuscripts were authored between 1910 and 1996, reflecting work completed over a long period of development in the Cheyenne, Wyoming area. Some manuscripts did not receive broad distribution and indexing, thus they have been difficult to locate in the past. By having the references and summaries within one report, time and effort to gather previous study results will be minimized.

  14. Geodatabase of Wyoming statewide oil and gas drilling activity to 2010

    USGS Publications Warehouse

    Biewick, Laura R.H.

    2011-01-01

    The U.S. Geological Survey (USGS) compiled a geographic information system (GIS) of Wyoming statewide historical oil and gas drilling activity for the Wyoming Landscape Conservation Initiative (WLCI). The WLCI is representative of the partnerships being formed by the USGS with other Department of the Interior bureaus, State and local agencies, industry, academia, and private landowners that are committed to maintaining healthy landscapes, sustaining wildlife, and preserving recreational and grazing uses as energy resources development progresses in southwestern Wyoming. This product complements the 2009 USGS publication on oil and gas development in southwestern Wyoming http://pubs.usgs.gov/ds/437/) by approximating, based on database attributes, the time frame of drilling activity for each well (start and stop dates). This GIS product also adds current oil and gas drilling activity not only in the area encompassing the WLCI, but also statewide. Oil and gas data, documentation, and spatial data processing capabilities are available and can be downloaded from the USGS website. These data originated from the Wyoming Oil and Gas Conservation Commission (WOGCC), represent decades of oil and gas drilling (1900 to 2010), and will facilitate a landscape-level approach to integrated science-based assessments, resource management and land-use decision making.

  15. Is it topsoil or overburden? Case study of a small mine in Wyoming

    SciTech Connect

    Vance, G.F.; Spackman, L.K.

    1999-07-01

    Recent disputes over the classification of topsoil as overburden have reached the Wyoming Supreme Court. The high court upheld an earlier decision by the Environmental Quality Council that topsoil is overburden according to Wyoming statutes. During the 1999 Wyoming legislative session, bills with amendments to the current statutes failed to reach the floor of the house and senate bodies. The statute amendments would have enhanced the importance of topsoil as a separate material that must be handled in a manner to preserve its integrity for reclamation efforts. Topsoil and subsoil materials from a small gravel mine that was the focus of concerned citizens, Wyoming Department of Environmental Quality, Environmental Quality Council, and the Wyoming Supreme Court were examined to evaluate their suitability o reclamation/revegetation efforts. Soil chemical/physical properties suggested the topsoil and subsoil were suitable as a plant growth media. A greenhouse study using a cool-season and a warm-season grass was conducted to determine the potential for revegetation using the topsoil and subsoil materials as reclamation surface cover. Except for specific materials collected from the gravel/subsoil interface in the native area, revegetation efforts using seed mixtures with the grasses studied would probably be successful.

  16. 77 FR 25664 - Endangered and Threatened Wildlife and Plants; Removal of the Gray Wolf in Wyoming From the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... FR 61782) to remove the gray wolf (Canis lupus) in Wyoming from the List of Endangered and Threatened... Wyoming from the List of Endangered and Threatened Wildlife (76 FR 61782). This proposal relied heavily on... published in the Federal Register on July 1, 1994 (59 FR 34270), we intend to subject this proposal to...

  17. 78 FR 79004 - Notice of Availability of the Wyoming Greater Sage-Grouse Draft Land Use Plan Amendments and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... Bureau of Land Management Notice of Availability of the Wyoming Greater Sage-Grouse Draft Land Use Plan Amendments and Draft Environmental Impact Statement AGENCY: Bureau of Land Management, Interior. ACTION... (BLM) and the US Forest Service (USFS) have prepared the Wyoming Greater Sage-Grouse Draft Land...

  18. 78 FR 73858 - FPL Energy Wyoming, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission FPL Energy Wyoming, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding, of FPL Energy Wyoming, LLC's application for market-based rate authority, with...

  19. 76 FR 61781 - Endangered and Threatened Wildlife and Plants; Removal of the Gray Wolf in Wyoming From the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ... framework has been developed. However, additional changes to Wyoming State law and Wyoming Game and Fish... with our joint policy on peer review published in the Federal Register on July 1, 1994 (59 FR 34270... additive to, the previous action delisting wolves in the NRM DPS (74 FR 15123, April 2, 2009; 76 FR...

  20. 78 FR 20146 - Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project, Sweetwater County, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... COMMISSION Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project, Sweetwater County, Wyoming... considering an amendment to Source Materials License SUA-1598 for continued uranium production operations and in-situ recovery (ISR) of uranium at the Lost Creek Project in Sweetwater County, Wyoming....

  1. Large uraniferous springs and associated uranium minerals, Shirley Mountains, Carbon County, Wyoming -- A preliminary report

    USGS Publications Warehouse

    Love, J.D.

    1963-01-01

    Ten springs along the southeast flank of the Shirley Mountains, Carbon County, Wyoming, have water containing from 12 to 27 parts per billion uranium, have a total estimated flow of 3 million gallons of clear fresh water per day, and have a combined annual output that may be as much as 166 pounds of uranium. These springs emerge from Pennsylvanian, Permian, and Triassic rocks on the east flank of a faulted anticlinal fold. In the vicinity of several springs, metatyuyamunite occurs locally in crystalline calcite veins averaging 3 feet in width but reaching a maximum of 24 feet. The veins are as much as several hundred feet long-and cut vertically through sandstones of Pennsylvanian age overlying the Madison Limestone (Mississippian). This limestone is believed to be the source of the calcite. A 3-foot channel sample cross one calcite vein contains 0.089 percent uranium. Lesser amounts of uranium were obtained from other channel samples. Selected samples contain from 0.39 to 2.2 percent uranium and from 0.25 to 0.86 percent vanadium. Three possible sources of the uranium are: (1) Precambrian rocks, (2) Paleozoic rocks, (3) Pliocene(?) tuffaceous strata that were deposited unconformably across older .rocks in both the graphically high and low parts of the area, but were subsequently removed by erosion except for a few small remnants, one of which contains carnotite. There is apparently a close genetic relation between the uraniferous springs and uranium mineralization in the calcite veins. Data from this locality illustrate how uraniferous ground water can be used as a guide in the exploration for areas where uranium deposits may occur. Also demonstrated is the fact that significant quantities of uranium are present in water of some large flowing springs.

  2. Distribution of bromine in bedded halite in the Green River Formation, southwestern Wyoming

    USGS Publications Warehouse

    Higley, D.K.

    1983-01-01

    The Wilkins Peak Member of the Eocene Green River Formation of southwestern Wyoming contains a series of halite-trona beds deposited in ancestral Lake Gosiute. X-ray fluorescence analysis of 311) salt samples from 10 core holes revealed bromine contents ranging from 11 to 174 ppm. The average concentration, corrected to 100 percent sodium chloride, is approximately 80 ppm. The bromine content of most halite beds increases from the base upward. Variations or 'spikes' in the bromine profile and reversals of the upward increase in bromine are evidenced within several salt beds. Bromine of bed 10 salt zones exhibits a high degree of correlation laterally. No increase in bromine concentration for correlated salt zones was noted from the basin margins to the depositional center in the northeastern part of the study area. A great disparity in salt thickness from the depositional center to the margins suggests stratified lake conditions in which denser, sodium-chloride-saturated bottom brines did not extend to the margins during part of the depositional history of bed 10. Paleosalinity trends of Lake Gosiute determined from the bromine distribution include the following: (1) chemically stratified lake conditions with dense, highly saline bottom waters and a fresher water zone above during much of the depositional history of the halites, (2) gradual evaporation of lake waters in a closed basin with resultant upward increase in salinity for most intervals studied, and (3) absence of lateral lake-bottom salinity gradients or postdepositional salt alteration as determined by the lateral constancy of bromine concentrations for correlated bed 10 halite.

  3. Environmental assessment of ground water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming. Revision 0

    SciTech Connect

    1996-03-01

    This document is an environmental assessment of the Spook, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site. It analyzes the impacts of the U.S. Department of Energy (DOE) proposed action for ground water compliance. The proposed action is to comply with the U.S. Environmental Protection Agency (EPA) standards for the UMTRA Project sites (40 CFR Part 192) by meeting supplemental standards based on the limited use ground water at the Spook site. This proposed action would not require site activities, including ground water monitoring, characterization, or institutional controls. Ground water in the uppermost aquifer was contaminated by uranium processing activities at the Spook site, which is in Converse County, approximately 48 miles (mi) (77 kilometers [km]) northeast of Casper, Wyoming. Constituents from the site infiltrated and migrated into the uppermost aquifer, forming a plume that extends approximately 2500 feet (ft) (800 meters [m]) downgradient from the site. The principal site-related hazardous constituents in this plume are uranium, selenium, and nitrate. Background ground water in the uppermost aquifer at the site is considered limited use. It is neither a current nor a potential source of drinking water because of widespread, ambient contamination that cannot be cleaned up using treatment methods reasonably employed in public water supply systems (40 CFR {section} 192.11 (e)). Background ground water quality also is poor due to first, naturally occurring conditions (natural uranium mineralization associated with an alteration front), and second, the effects of widespread human activity not related to uranium milling operations (uranium exploration and mining activities). There are no known exposure pathways to humans, animals, or plants from the contaminated ground water in the uppermost aquifer because it does not discharge to lower aquifers, to the surface, or to surface water.

  4. Ecological assessment of streams in the Powder River Structural Basin, Wyoming and Montana, 2005-06

    USGS Publications Warehouse

    Peterson, D.A.; Wright, P.R.; Edwards, G.P.; Hargett, E.G.; Feldman, D.L.; Zumberge, J.R.; Dey, Paul

    2009-01-01

    .Macroinvertebrate communities showed similarity at the river-drainage scale. Macroinvertebrate communities at sites with mountainous headwaters and snowmelt-driven hydrology, such as Clear Creek, Crazy Woman Creek, and Goose Creek, showed similarity with communities from the main-stem Tongue River. The data also indicated similarity among sites on the main-stem Powder River and among small tributaries of the Tongue River. Data analyses using macroinvertebrate observed/expected models and multimetric indices developed by the States of Wyoming and Montana indicated a tendency toward declining biological condition in the downstream direction along the Tongue River. Biological condition for the main-stem Powder River generally improved downstream, from below Salt Creek to near the Wyoming/Montana border, followed by a general decline downstream from the border to the confluence with the Yellowstone River. The biological condition generally was not significantly different between 2005 and 2006, although streamflow was less in 2006 because of drought.Algal communities showed similarity at the river-drainage scale with slight differences from the pattern observed in the macroinvertebrate communities. Although the algal communities from Clear Creek and Goose Creek were similar to those from the main-stem Tongue River, as was true of the macroinvertebrate communities, the algal communities from Crazy Woman Creek had more similarity to those of main-stem Powder River sites than to the Tongue River sites, contrary to the macroinvertebrates. Ordination of algal communities, as well as diatom metrics including salinity and dominant taxa, indicated substantial variation at two sites along the main stem of the Powder River.Fish communities of the PRB were most diverse in the Tongue River drainage. In part due to the effects of Tongue River Reservoir, 15 species of fish were found in the Tongue River drainage that were not found in the Cheyenne, Belle Fourche, or Little Powder River drainages. The number of

  5. Invertebrate communities of small streams in northeastern Wyoming

    USGS Publications Warehouse

    Peterson, D.A.

    1990-01-01

    Invertebrate communities of small streams in an energy-mineral- development area in the Powder River structural basin of northeastern Wyoming were studied during 1980-81. The largest average density of benthic invertebrates among 11 sites was 983 invertebrates/sq ft at a site on a perennial stream, the Little Powder River at State Highway 59. The smallest average densities were 3.4 invertebrates/sq ft in Salt Creek and 16.6 invertebrates/sq ft in the Cheyenne River, two streams where the invertebrates were stressed by degraded water quality or inadequate substrate or both. The rates of invertebrate drift were fastest in three perennial streams, compared to the rates in intermittent and ephemeral streams. Analysis of the invertebrate communities using the Jaccard coefficient of community similarity and a cluster diagram showed communities inhabiting perennial streams were similar to each other, because of the taxa adapted to flowing water in riffles and runs. Communities from sites on ephemeral streams were similar to each other, because of the taxa adapted to standing water and vegetation in pools. Communities of intermittent streams did not form a group; either they were relatively similar to those of perennial or ephemeral streams or they were relatively dissimilar to other communities. The communities of the two streams stressed by degraded water quality or inadequate substrate or both, Salt Creek and the Cheyenne River, were relatively dissimilar to communities of the other streams in the study. (USGS)

  6. Dismembered Archean ophiolite in the SE. Wind River Mountains, Wyoming

    SciTech Connect

    Harper, G.D.

    1985-01-01

    Ophiolitic rocks occur as wall rocks of the 2.7 Ga Louis Lake batholith near Atlantic City, Wyoming. All of the Archean rocks are strongly deformed and metamorphosed to a greenschist and amphibolite facies, but relict structures and textures are commonly preserved. These include the following, from west to east: (1) metadiabase with rare coarse-grained metagabbro; (2) ultramafic rocks and metagabbro; (3) amphibolite, locally pillowed, overlain(.) by pelitic schist, banded iron formation, and quartzite; and (4) pillow lavas, massive sills or flows, and minor metasedimentary rocks. Slice 1 locally contains parallel dike margins and rare metagabbro screens; these features suggest that it may represent a sheeted dike complex. Slice 2 locally contains ultramafic rocks having relict cumulus textures and igneous layering, corresponding to the cumulus portion of an ophiolite. The pillow lavas of slice 4 and possibly slice 3 are interpreted as comprising the extrusive portion of the ophiolite. The immobile trace element chemistry (Ti, V, Zr, Y, Cr, Ni) of slice 1 and 4 is very similar and supports a cogenetic origin, whereas pillow lavas of slice 3 are somewhat distinct. The metadiabases and lavas of slices 1 and 4 are similar to modern mid-ocean ridge basalt, whereas lavas of slice 3 are more similar to island-arc tholeiites. Rare high-Ti basaltic komatiites occur in slices 1 and 4, but have very distinct trace element chemistry and probably represent later off-axis dikes. The ophiolitic rocks are interpreted to represent the remains of Archean oceanic crust.

  7. View of north central Wyoming and southern Montana

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A view of approximately 3,600 square miles of north central Wyoming and southern Montana as seen in this Skylab 3 Earth Resources Experiments Package S190-B (five-inch earth terrain camera) photograph taken from the Skylab space station in Earth orbit. The Big Horn River flowing northward crosses between the northwest trending Big Horn Mountains and the Pryor Mountains. Yellowtail Reservoir, in the center of the picture, is impounded by a dam across the Big Horn River. A sharp contrast is clearly evident between the small rectangular crop areas along the Big Horn River (upper right) and the strip farming (yellow) practiced on the rolling hill along the Big Horn River and its tributaries (upper left corner and right edge). The low sun angle enhances the structural features of the mountains as well as the drainage patterns in the adjacent basins. Rock formations appear in this color photograph as they would to the eye from this altitude. The distinctive redbeds can be traced along the fr

  8. Mule deer and pronghorn migration in western Wyoming

    USGS Publications Warehouse

    Sawyer, H.; Lindzey, F.; McWhirter, D.

    2005-01-01

    Migratory mule deer (Odocoileus hemionus) and pronghorn (Antilocapra americana) populations rely on seasonal ranges to meet their annual nutritional and energetic requirements. Because seasonal ranges often occur great distances apart and across a mix of vegetation types and land ownership, maintaining migration corridors to and from these ranges can be difficult, especially if managers do not have detailed information on mule deer and pronghorn seasonal movements. We captured, radiomarked, and monitored mule deer (n = 171) and pronghorn (n = 34) in western Wyoming to document seasonal distribution patterns and migration routes. Mule deer and pronghorn migrated 20-158 km and 116-258 km, respectively, between seasonal ranges. These distances represented the longest recorded migrations for either species. We identified a number of bottlenecks along the migration routes of mule deer and pronghorn, but the most critical appeared to be the 1.6-km-wide Trapper's Point bottleneck, which was used by both mule deer and pronghorn during their spring and autumn migrations. Housing developments and roadways apparently have reduced the effective width of this bottleneck to <0.8 km. We estimate 2,500-3,500 mule deer and 1,500-2,000 pronghorn move through the bottleneck twice a year during spring and autumn migrations. Identification and protection of migration corridors and bottlenecks will be necessary to maintain mule deer and pronghorn populations throughout their range.

  9. Mesotidal barrier complex, Sundance Formation, north-central Wyoming

    SciTech Connect

    Uhlir, D.M.; Vondra, C.F.; Akers, A.; Elliott, T.

    1986-08-01

    The sandstones and coquinas of the upper 20 m of the Sundance Formation are a tidal inlet, back-barrier shoal, and sandy tidal-flat sequence deposited at the close of marine Jurassic sedimentation in north-central Wyoming. The lateral migration of these interbarrier tidal inlets along the regressive shoreline of the late Sundance sea caused the coquinas and sandstones of the uppermost Sundance Formation to be deposited as tabular, laterally extensive units. Earlier models, which attach an offshore environment of deposition to this sequence, fail to explain the tabular gross geometry of the unit and its conformable stratigraphic relationship with the overlying nonmarine sediments of the Morrison Formation. Within the sandstone of the uppermost Sundance Formation, tidal bundles, sigmoidal reactivation surfaces, herringbone cross-lamination, and abundant mud drapes present considerable evidence for tidal influence during the deposition of the unit. The neap-spring cyclicity of the tidal bundles implies they were developed in a diurnal tidal setting. A meso-paleotidal range along the Late Jurassic shoreline is estimated, based on calculations of sediment transport rates during the tidal bundle development.

  10. Spatial mapping and attribution of Wyoming wind turbines, 2012

    USGS Publications Warehouse

    O'Donnell, Michael S.; Fancher, Tammy S.

    2014-01-01

    These data represent locations of wind turbines found within Wyoming as of August 2012. We assigned each wind turbine to a wind farm and, in these data, provide information about each turbine’s potential megawatt output, rotor diameter, hub height, rotor height, the status of the land ownership where the turbine exists, the county each turbine is located in, wind farm power capacity, the number of units currently associated with each wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some of the attributes are estimates based on the information we found via the American Wind Energy Association and other on-line reports. The locations are derived from National Agriculture Imagery Program (2009 and 2012) true color aerial photographs and have a positional accuracy of approximately +/-5 meters. These data will provide a planning tool for wildlife- and habitat-related projects underway at the U.S. Geological Survey’s Fort Collins Science Center and other government and non-government organizations. Specifically, we will use these data to support quantifying disturbances of the landscape as related to wind energy as well as to quantify indirect disturbances to flora and fauna. This data set represents an update to a previous version by O’Donnell and Fancher (2010).

  11. WEST AND EAST PALISADES ROADLESS AREAS, IDAHO AND WYOMING.

    USGS Publications Warehouse

    Oriel, Steven S.; Benham, John R.

    1984-01-01

    Studies of the West and East Palisades Roadless Areas, which lie within the Idaho-Wyoming thrust belt, document structures, reservoir formations, source beds, and thermal maturities comparable to those in producing oil and gas field farther south in the belt. Therefore, the areas are highly favorable for the occurrence of oil and gas. Phosphate beds of appropriate grade within the roadless areas are thinner and less accessible than those being mined from higher thrust sheets to the southwest; however, they contain 98 million tons of inferred phosphate rock resources in areas of substantiated phosphate resource potential. Sparsely distributed thin coal seams occur in the roadless areas. Although moderately pure limestone is present, it is available from other sources closer to markets. Geochemical anomalies from stream-sediment and rock samples for silver, copper, molydenum, and lead occur in the roadless areas but they offer little promise for the occurrence of metallic mineral resources. A possible geothermal resource is unproven, despite thermal phenomena at nearby sites.

  12. Oil and gas seeps within Absaroka volcanics of northwestern Wyoming

    SciTech Connect

    Sundell, K.A.; Love, J.D.

    1986-08-01

    Three new occurrences of asphaltic, liquid, and gaseous hydrocarbons have been discovered in the southeastern Absaroka Range. These petroleum seeps are 40 to 110 mi southeast of previously known seeps within Eocene volcaniclastic rocks at Calcite Springs, Tower Junction, and Sweetwater Mineral Springs, Wyoming. The Middle Fork seep and Castle Rocks seep are near the headwaters of the Middle and North Forks of Owl Creek, respectively. The Chimney Rock asphalt locality is along the South Fork of the Wood River. Water samples from the Middle Fork seep fluoresce greenish-orange and contain 6 to 8 mg/L of extractable bituminous hydrocarbons. An iridescent oily film forms on the water surface and on abundant gas bubbles trapped within moss. The Castle Rocks seep, in Quaternary gravels along the bed of the North Fork of Owl Creek, shows iridescent oily bubbles in emerging spring water and black, sooty lenses of carbon-coated gravels in overlying dry deposits. The Middle Fork and Castle Rocks seeps rise through thin Quaternary deposits overlying the Aycross Formation (Eocene). The Chimney Rock asphalt locality is in a northwest-trending paleovalley fill consisting of highly deformed masses of volcanic strata in the Tepee Trail and Wiggins Formations. Thin (< 1 in. thick), discontinuous, subvertical veins of asphaltum cut through these rocks. These petroleum seeps demonstrate migration of hydrocarbons after the volcaniclastic strata were emplaced and suggest that significant petroleum resources may occur elsewhere within Eocene volcaniclastic rocks and/or within Mesozoic and Paleozoic reservoirs beneath the volcanics.

  13. Carbonate formation in Wyoming montmorillonite under high pressure carbon dioxide

    SciTech Connect

    Hur, Tae-Bong; Baltrus, John P.; Howard, Bret H.; Harbert, William P.; Romanov, Vyacheslav N.

    2013-03-01

    Carbonation reaction with silicate minerals that are common components of the host rock and cap rock within geological storage reservoirs and the associated structural deformation were investigated for better understanding of the geochemical reactions associated with geologic CO2 storage. Exposure of a model expanding clay, Wyoming montmorillonite, SWy-2, to high-pressure CO2 resulted in the formation of a mineral carbonate phase via dry CO2–clay mineral interactions at two different temperatures. The experimental evidence suggests that the properties of CO2 fluid at 70 °C provide more favorable conditions for carbonate formation at the clay surface less accessible to CO2 at 22 °C. The carbonation reaction occurred predominantly within the first couple of days of exposure to the fluid and then proceeded slower with continuing exposure. As compared to the as-received clay under the same ambient conditions, the (0 0 1) basal spacing of the clay bearing carbonates (after the CO2 exposure) was slightly expanded at a relative humidity (RH) level of 12% but it was slightly collapsed at the RH level of 40%. Finally, experimental observations suggest that the carbonation reaction occurs at the external surface as well as internal surface (interlayer) of the clay particles.

  14. Digital model of the Arikaree Aquifer near Wheatland, southeastern Wyoming

    USGS Publications Warehouse

    Hoxie, Dwight T.

    1977-01-01

    A digital model that mathematically simulates the flow of ground water, approximating the flow system as two-dimensional, has been applied to predict the long-term effects of irrigation and proposed industrial pumping from the unconfined Arikaree aquifer in a 400 square-mile area in southeastern Wyoming. Three cases that represent projected maximum, mean, and minimum combined irrigation and industrial ground-water withdrawals at annual rates of 16,176, 11,168, and 6,749 acre-feet, respectively, were considered. Water-level declines of more than 5 feet over areas of 124, 120, and 98 square miles and depletions in streamflow of 14.4, 8.9, and 7.2 cfs from the Laramie and North Laramie Rivers were predicted to occur at the end of a 40-year simulation period for these maximum, mean, and minimum withdrawal rates, respectively. A tenfold incrase in the vertical hydraulic conductivity that was assumed for the streambeds results in smaller predicted drawdowns near the Laramie and North Laramie Rivers and a 36 percent increase in the predicted depletion in streamflow for the North Laramie River. (Woodard-USGS)

  15. Paleoecology of Early eocene strata near Buffalo, Wyoming

    SciTech Connect

    Durkin, T.V.; Rich, F.J.

    1986-08-01

    Palynological investigation has helped illustrate the paleoecology of a vertical section of strata from the Wasatch Formation between the Healy and Walters coal burns near Buffalo, Wyoming. Numerous silicified logs and stumps of cypress and sequoia have been preserved at the site and drew initial attention to it. Flood-basin deposits enclose the trees and include sandstones, siltstones, shale, and coal beds that accumulated as channel, levee, crevasse-splay, and swamp/marsh sediments. Detrital sediments were probably derived from the Bighorn Mountains and accumulated as they were carried into the Powder River basin fluvial system. One hundred five polynomorph taxa have been distinguished, as well as 10 types of fungal spores. Platycarya, Tilia, Sparganium, and Platanus pollen indicate an early Eocene age for the strata. Other pollen, as well as the genera of trees and megafossil remains from a clinker bed several miles from the study area, reinforce the interpretation of a warm-temperature or subtropical climate at the time of deposition. The megafossil assemblage includes pinnae of the aquatic fern Marsilea, never before described from the fossil record. Variations in the species composition of the polynomorph assemblages show that several plant communities existed in succession at the site. These varied from pond or marsh types to mature forests.

  16. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    SciTech Connect

    Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

    1982-09-01

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

  17. Hydrology of Park County, Wyoming, exclusive of Yellowstone National Park

    USGS Publications Warehouse

    Lowry, M.E.; Smalley, M.L.; Mora, K.L.; Stockdale, R.G.; Martin, M.W.

    1993-01-01

    The climate of Park County, Wyoming, ranges from desert to alpine tundra. Average annual precipitation ranges from 6 to 40 inches. Ground water is present throughout most of the county, but supplies adequate for stock or domestic use are not readily available in areas of greatest need. The chemical quality of most of the water sampled was of suitable quality for livestock, but most of the water was not suitable for drinking, and the water from bedrock aquifers generally was not suitable for irrigation. Unconsolidated deposits are a principal source of ground water in the county. However, ground water is found in deposits topographically higher than stream level only where surface water has been applied for irrigation; those unconsolidated deposits beneath areas that are not irrigated, such as Polecat Bench, are dry. The conversion of irrigated land to urban development poses problems in some areas because yields of water-supply wells will be adversely affected by reduced recharge. The trend toward urban development also increases the risk of contamination of the ground water by septic tanks, petroleum products, and toxic and hazardous wastes. Perennial streams originate in the mountains and in areas where drainage from irrigated land is adequate to sustain flow. The average annual runoff from streams originating in the mountains is as large as 598 acre-feet per square mile, and the average annual runoff from streams originating in badlands and plains is as low as 14.8 acre-feet per square mile.

  18. BOREAS AFM-2 Wyoming King Air 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team used the University of Wyoming King Air aircraft during IFCs 1, 2, and 3 in 1994 to collected pass-by-pass fluxes (and many other statistics) for the large number of level (constant altitude), straight-line passes used in a variety of flight patterns over the SSA and NSA and areas along the transect between these study areas. The data described here form a second set, namely soundings that were incorporated into nearly every research flight by the King Air in 1994. These soundings generally went from near the surface to above the inversion layer. Most were flown immediately after takeoff or immediately after finishing the last flux pattern of that particular day's flights. The parameters that were measured include wind direction, wind speed, west wind component (u), south wind component (v), static pressure, air dry bulb temperature, potential temperature, dewpoint, temperature, water vapor mixing ratio, and CO2 concentration. Data on the aircraft's location, attitude, and altitude during data collection are also provided. These data are stored in tabular ASCH files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  19. Remote sensing applied to land-use studies in Wyoming

    NASA Technical Reports Server (NTRS)

    Breckenridge, R. M.; Marrs, R. W.; Murphy, D. J.

    1973-01-01

    Impending development of Wyoming's vast fuel resources requires a quick and efficient method of land use inventory and evaluation. Preliminary evaluations of ERTS-1 imagery have shown that physiographic and land use inventory maps can be compiled by using a combination of visual and automated interpretation techniques. Test studies in the Powder River Basin showed that ERTS image interpretations can provide much of the needed physiographic and land use information. Water impoundments as small as one acre were detected and water bodies larger than five acres could be mapped and their acreage estimated. Flood plains and irrigated lands were successfully mapped, and some individual crops were identified and mapped. Coniferous and deciduous trees were mapped separately using color additive analysis on the ERTS multispectral imagery. Gross soil distinctions were made with the ERTS imagery, and were found to be closely related to the bedrock geology. Several broad unstable areas were identified. These were related to specific geologic and slope conditions and generally extended through large regions. Some new oil fields and all large open-cut coal mines were mapped. The most difficult task accomplished was that of mapping urban areas. Work in the urban areas provides a striking example of snow enhancement and the detail available from a snow enhanced image.

  20. Depositional environments of Fort Union Formation, Bison Basin, Wyoming

    SciTech Connect

    Southwell, E.H.; Steidtmann, J.R.; Middleton, L.

    1983-08-01

    The Paleocene Fort Union Formation crops out in the vicinity of the Bison basin, approximately equidistant from the southeast terminus of the Wind River Range and the southwestern edge of the Granite Mountains uplift in central Wyoming. Early Laramide tectonic activity produced a series of uplifts north of the area forming a platform separating the Wind River and Great Divide basins. During middle to late Paleocene, aggrading fluvial systems flowing southward, rapidly deposited a sequence of thin, lenticular conglomerates and medium to coarse-grained planar-bedded sandstones in braided and anastomosing stream channels and carbonaceous overbank silt and claystones. Subaerially exposed interchannel areas developed cyclic pedogenic horizons. Early diagenetic cementation preserved tubular burrows and rhizoliths as well as impressions of fruits, nuts, leaves, and wood. Anomalous silicic cementation of mudstone, sandstone, and conglomerates probably are silcrete soil horizons developed in a warm temperature to subtropical humid climate. The sandstones are multicyclic containing fragments of preexisting siliceous sedimentary rocks (e.g., Tensleep Sandstone, Mowry Shale, and cherts from the Madison, Morrison, and Phosphoria Formations). Reworked glauconite is locally abundant in some Fort Union sandstones, reflecting the proximity of Paleozoic sources. Altered and embayed feldspars are present in trace amounts throughout most of the section, but significant accumulations of fresh feldspar are present near the top, indicating unroofing of Precambrian source before the Eocene.

  1. Multidisciplinary studies of uranium deposits in the Red Desert, Wyoming

    SciTech Connect

    Not Available

    1983-01-01

    Related exploration disciplines of earth science were applied during the late 1970x by Bendix Field Engineering Corporation (Bendix) to the investigation of known uranium deposits in portions of the Red Desert area of Sweetwater County, Wyoming. Principal efforts of the Red Desert project were directed toward the major objective of mineral halo identification; subsidiary tasks included the recognition of genetic criteria and the appraisal of cost-effective exploration methods for use in the search for blind uranium deposits. Detailed studies were focused on the known ENQ deposit, a relatively deep concentration of low-grade uranium in a Tertiary sedimentary environment that presents a series of challenging problems to the mineral explorationist. Bendix and its subcontractors conducted in-house investigations under the major categories of geologic, geochemical, geophysical, and emanometric studies. Geologic field investigations included subsurface data acquisition by drilling, sampling, and logging/ surface studies were implemented by aerial, surface, and subsurface methods. The efficiency rating versus expense of the investigative methods used in the Red Desert project area were compared to determine a relative cost-effectiveness of these methods. The following six papers in this volumne have been abstracted for the energy data base: geologic studies; geochemical studies; geophysical studies; emanometric studies; and structure and metallogeny.

  2. Status report: USGS coal assessment of the Powder River, Wyoming

    USGS Publications Warehouse

    Luppens, James A.; Rohrbacher, Timothy J.; Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.

    2006-01-01

    Summary: This publication reports on the status of the current coal assessment of the Powder River Basin (PRB) in Wyoming and Montana. This slide program was presented at the Energy Information Agency's 2006 EIA Energy Outlook and Modeling Conference in Washington, DC, on March 27, 2006. The PRB coal assessment will be the first USGS coal assessment to include estimates of both regional coal resources and reserves for an entire coal basin. Extensive CBM and additional oil and gas development, especially in the Gillette coal field, have provided an unprecedented amount of down-hole geological data. Approximately 10,000 new data points have been added to the PRB database since the last assessment (2002) which will provide a more robust evaluation of the single most productive U.S. coal basin. The Gillette coal field assessment, including the mining economic evaluation, is planned for completion by the end of 2006. The geologic portion of the coal assessment work will shift to the northern and northwestern portions of the PRB before the end of 2006 while the Gillette engineering studies are finalized.

  3. Reclamation planning for sensitive species in southwest Wyoming

    SciTech Connect

    Harshbarger, R.M.

    1997-12-31

    Surface coal mine land reclamation can be enhanced to improve its attractiveness and usability for sensitive wildlife species. Enhancements for sensitive wildlife have been incorporated into reclamation at the Jim Bridger Coal mine, located in southwest Wyoming. A diverse wildlife population occupies various habitats within the mine`s study area and includes several species listed as sensitive by the United States Fish and Wildlife Service. The defined postmine land use is wildlife habitat and livestock grazing. The potential for postmine land use by sensitive species is assessed by documenting the species present during premining baseline studies and monitoring their use of habitat on the permit during mining. The collected wildlife information allows the company to adjust and fine-tune the reclamation plan to create and place habitat where it will attract and accommodate indigenous sensitive species, since extensive lead time is often needed to develop enhanced habitats. Examples would be placement of special vegetative mixes to reestablish historic sage grouse (Centrocercus urophasianus) leks or construction of physical entities such as rock structures within current nesting territories for permanent ferruginous hawk (Buteo regalis) nest sites. Analysis of the species present, and their habitat requirements during the mining process, also allows time to request variances or modifications in the permitted reclamation plan for enhancements not originally accepted by the regulatory authorities.

  4. Stability of leaning column at Devils Tower National Monument, Wyoming

    USGS Publications Warehouse

    Harp, Edwin L.; Lindsay, Charles R.

    2006-01-01

    In response to reports from climbers that an 8-meter section (referred to as the leaning column) of the most popular climbing route on Devils Tower in northeastern Wyoming is now moving when being climbed, scientists from the U.S. Geological Survey inspected the site to determine the stability of the column and the underlying column that serves as a support pedestal. Evidence of a recent tensile spalling failure was observed on the pedestal surface immediately beneath the contact with the overlying leaning column. The spalling of a flake-shaped piece of the pedestal, probably due to the high stress concentration exerted by the weight of the leaning column along a linear contact with the pedestal, is likely causing the present movement of the leaning column. Although it is unlikely that climbers will dislodge the leaning column by their weight alone, the possibility exists that additional spalling failures may occur from the pedestal surface and further reduce the stability of the leaning column and result in its toppling. To facilitate detection of further spalling failures from the pedestal, its surface has been coated with a layer of paint. Any new failures from the pedestal could result in the leaning column toppling onto the climbing route or onto the section of the Tower trail below.

  5. Seismic investigations in Wyoming as part of the Wagon Wheel definition studies

    USGS Publications Warehouse

    Bayer, Kenneth C.; Wuollet, Geraldine M.

    1974-01-01

    One hundred and twenty nine (129) natural and man -made events identifiable as located within a radius of 100 km from the station were recorded during tile eleven-month study. Calculated magnitudes ranged from ML - 0. 6 toML 2.6.

  6. Nuclear fuel and precious-metal occurrences in Precambrian rocks of southeast Wyoming

    SciTech Connect

    Graff, P.

    1986-08-01

    Studies done on Precambrian metasediments in southeast Wyoming show the occurrence of quartz-pebble conglomerates containing subeconomic amounts of uranium and thorium. These conglomerates were marginal deposits in the late 1970s when uranium prices reached $50/lb. Fuel minerals occur in silicate phases and complicate milling operations. Because of the additional cost of processing and underground mining, no attempt to develop these resources was made. Additional studies show a favorable comparison of the rocks in Wyoming to the auriferous Witwatersrand section of South Africa. Exploration for gold in the Wyoming conglomerates has been done in a preliminary manner, but assay values to 10 ppm are reported. Both fuel minerals and gold are deposited as fossil placers by fluvial systems operating in an anoxic environment. Lag gravel and meander deposits contain heavy-mineral suites formed of coffinite, pyrite, thorite, gold, and uraninite. Available studies have not considered producing fuel and precious minerals as coproducts of surface mining methods.

  7. Bankfull-channel geometry and discharge curves for the Rocky Mountains Hydrologic Region in Wyoming

    USGS Publications Warehouse

    Foster, Katharine

    2012-01-01

    Regional curves relate bankfull-channel geometry and bankfull discharge to drainage area in regions with similar runoff characteristics and are used to estimate the bankfull discharge and bankfull-channel geometry when the drainage area of a stream is known. One-variable, ordinary least-squares regressions relating bankfull discharge, cross-sectional area, bankfull width, and bankfull mean depth to drainage area were developed from data collected at 35 streamgages in or near Wyoming. Watersheds draining to these streamgages are within the Rocky Mountains Hydrologic Region of Wyoming and neighboring states.

  8. Hydrologic data for the Cache Creek-Bear Thrust environmental impact statement near Jackson, Wyoming

    USGS Publications Warehouse

    Craig, G.S.; Ringen, B.H.; Cox, E.R.

    1981-01-01

    Information on the quantity and quality of surface and ground water in an area of concern for the Cache Creek-Bear Thrust Environmental Impact Statement in northwestern Wyoming is presented without interpretation. The environmental impact statement is being prepared jointly by the U.S. Geological Survey and the U.S. Forest Service and concerns proposed exploration and development of oil and gas on leased Federal land near Jackson, Wyoming. Information includes data from a gaging station on Cache Creek and from wells, springs, and miscellaneous sites on streams. Data include streamflow, chemical and suspended-sediment quality of streams, and the occurrence and chemical quality of ground water. (USGS)

  9. Lithospheric Deformation Along the Southern and Western Suture Zones of the Wyoming Province

    NASA Astrophysics Data System (ADS)

    Nuyen, C.; Porritt, R. W.; O'Driscoll, L.

    2014-12-01

    The Wyoming Province is an Archean craton that played an early role in the construction and growth of the North American continent. This region, which encompasses the majority of modern day Wyoming and southern Montana, initially collided with other Archean blocks in the Paleoproterozoic (2.0-1.8 Ga), creating the Canadian Shield. From 1.8-1.68 Ga, the Yavapai Province crashed into the Wyoming Province, suturing the two together. The accretion of the Yavapai Province gave way to the Cheyenne Belt, a deformational zone that exists along the southern border of the Wyoming Province where earlier studies have found evidence for crustal imbrication and double a Moho. Current deformation within the Wyoming province is due to its interaction with the Yellowstone Hotspot, which is currently located in the northwest portion of the region. This study images the LAB along the western and southern borders of the Wyoming Province in order to understand how the region's Archean lithosphere has responded to deformation over time. These results shed light on the inherent strength of Archean cratonic lithosphere in general. We employ two methods for this study: common conversion point (CCP) stacking of S to P receiver functions and teleseismic and ambient Rayleigh wave dispersion. The former is used to image the LAB structure while the latter is used to create a velocity gradient for the region. Results from both of the methods reveal a notably shallower LAB depth to the west of the boundary. The shallower LAB west of the Wyoming Province is interpreted to be a result of lithospheric thinning due to the region's interaction with the Yellowstone Hotspot and post-Laramide deformation and extension of the western United States. We interpret the deeper LAB east of the boundary to be evidence for the Wyoming Province's resistance to lithospheric deformation from the hotspot and tectonic processes. CCP images across the Cheyenne Belt also reveal a shallower LAB under the western

  10. Forfeiture proceedings in Wyoming water law: the legislature revives private standing

    SciTech Connect

    Harris, E.W.

    1985-01-01

    Wyoming's prior appropriation system allocates water efficiently and produces the maximum economic benefit for its citizens. The Supreme Court redefined rules under water law in 1984 by holding that private parties must show injury to their water rights to have standing in forfeiture proceedings. The court destroyed the private action for forfeiture and imposed on the state the burden of regulating water rights without the help of interested private parties. The 1985 legislature session amended the statute. If the court recalls this dedication to current Wyoming water policies, it will be careful to amend the rules without changing the policies.

  11. Petrophysical Properties of Cody, Mowry, Shell Creek, and Thermopolis Shales, Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Nelson, P. H.

    2013-12-01

    The petrophysical properties of four shale formations are documented from well-log responses in 23 wells in the Bighorn Basin in Wyoming. Depths of the examined shales range from 4,771 to 20,594 ft. The four formations are the Thermopolis Shale (T), the Shell Creek Shale (SC), the Mowry Shale (M), and the lower part of the Cody Shale (C), all of Cretaceous age. These four shales lie within a 4,000-ft, moderately overpressured, gas-rich vertical interval in which the sonic velocity of most rocks is less than that of an interpolated trendline representing a normal increase of velocity with depth. Sonic velocity, resistivity, neutron, caliper, and gamma-ray values were determined from well logs at discrete intervals in each of the four shales in 23 wells. Sonic velocity in all four shales increases with depth to a present-day depth of about 10,000 ft; below this depth, sonic velocity remains relatively unchanged. Velocity (V), resistivity (R), neutron porosity (N), and hole diameter (D) in the four shales vary such that: VM > VC > VSC > VT, RM > RC > RSC > RT, NT > NSC ≈ NC > NM, and DT > DC ≈ DSC > DM. These orderings can be partially understood on the basis of rock compositions. The Mowry Shale is highly siliceous and by inference comparatively low in clay content, resulting in high sonic velocity, high resistivity, low neutron porosity, and minimal borehole enlargement. The Thermopolis Shale, by contrast, is a black fissile shale with very little silt--its high clay content causes low velocity, low resistivity, high neutron response, and results in the greatest borehole enlargement. The properties of the Shell Creek and lower Cody Shales are intermediate to the Mowry and Thermopolis Shales. The sonic velocities of all four shales are less than that of an interpolated trendline that is tied to velocities in shales above and below the interval of moderate overpressure. The reduction in velocity varies among the four shales, such that the amount of offset (O) from

  12. Burial History, Thermal Maturity, and Oil and Gas Generation History of Source Rocks in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Roberts, Laura N.R.; Finn, Thomas M.; Lewan, Michael D.; Kirschbaum, Mark A.

    2008-01-01

    Burial history, thermal maturity, and timing of oil and gas generation were modeled for seven key source-rock units at eight well locations throughout the Bighorn Basin in Wyoming and Montana. Also modeled was the timing of cracking to gas of Phosphoria Formation-sourced oil in the Permian Park City Formation reservoirs at two well locations. Within the basin boundary, the Phosphoria is thin and only locally rich in organic carbon; it is thought that the Phosphoria oil produced from Park City and other reservoirs migrated from the Idaho-Wyoming thrust belt. Other petroleum source rocks include the Cretaceous Thermopolis Shale, Mowry Shale, Frontier Formation, Cody Shale, Mesaverde and Meeteetse Formations, and the Tertiary (Paleocene) Fort Union Formation. Locations (wells) selected for burial history reconstructions include three in the deepest parts of the Bighorn Basin (Emblem Bench, Red Point/Husky, and Sellers Draw), three at intermediate depths (Amoco BN 1, Santa Fe Tatman, and McCulloch Peak), and two at relatively shallow locations (Dobie Creek and Doctor Ditch). The thermal maturity of source rocks is greatest in the deep central part of the basin and decreases to the south, east, and north toward the basin margins. The Thermopolis and Mowry Shales are predominantly gas-prone source rocks, containing a mix of Type-III and Type-II kerogens. The Frontier, Cody, Mesaverde, Meeteetse, and Fort Union Formations are gas-prone source rocks containing Type-III kerogen. Modeling results indicate that in the deepest areas, (1) the onset of petroleum generation from Cretaceous rocks occurred from early Paleocene through early Eocene time, (2) peak petroleum generation from Cretaceous rocks occurred during Eocene time, and (3) onset of gas generation from the Fort Union Formation occurred during early Eocene time and peak generation occurred from late Eocene to early Miocene time. Only in the deepest part of the basin did the oil generated from the Thermopolis and

  13. Tectonic evolution of a Laramide transverse structural zone: Sweetwater Arch, south central Wyoming

    NASA Astrophysics Data System (ADS)

    Weil, Arlo Brandon; Yonkee, Adolph; Schultz, Mary

    2016-05-01

    Structural, anisotropy of magnetic susceptibility (AMS), and paleomagnetic data record patterns of layer-parallel shortening (LPS), vertical-axis rotation, and regional fault-fold evolution across the Sweetwater Arch, a major west to WNW trending, basement-cored Laramide uplift in Wyoming. The southern arch flank is bounded by a WNW striking reverse fault zone that imbricated basement and cover rocks, the northern flank is bounded by a west striking fault zone with a component of strike-slip and NW trending en echelon folds, and the eastern plunge transitions into an area of multiple-trending faults and folds. Synorogenic strata record major arch uplift from Maastrichtian to Early Eocene time, followed by arch collapse. LPS, with development of systematic minor fault sets and AMS lineations, preceded large-scale folding. LPS directions, estimated from both minor fault and AMS data, were oriented WSW along the northern flank, subparallel to Laramide regional shortening, but were refracted to the SSW along the southern flank, and to the west along the eastern arch plunge. Additional minor faults developed along steep fold limbs during continued shortening, with directions remaining SSW along the southern flank but becoming more variable along the eastern plunge where an increasingly heterogeneous stress field developed as additional faults were activated along basement heterogeneities. Vertical-axis rotation was limited along the arch flanks, whereas the eastern plunge underwent counterclockwise rotation. Deflections in shortening directions were partly related to basement heterogeneities, including weak supracrustal belts on the arch flanks, a strong granitic core, and local reactivation of Precambrian shear zones.

  14. The nature of Archean terrane boundaries: an example from the northern Wyoming Province

    USGS Publications Warehouse

    Mogk, D.W.; Mueller, P.A.; Wooden, J.L.

    1992-01-01

    The Archean northern Wyoming Province can be subdivided into two geologically distinct terranes, the Beartooth-Bighorn magmatic terrane (BBMT) and the Montana metasedimentary terrane (MMT). The BBMT is characterized by voluminous Late Archean (2.90-2.74 Ga) magmatic rocks (primarily tonalite, trondhjemite, and granite); metasedimentary rocks are preserved only as small, rare enclaves in this magmatic terrane. The magmatic rocks typically have geochemical and isotopic signatures that suggest petrogenesis in a continental magmatic arc environment. The MMT, as exposed in the northern Gallatin and Madison Ranges, is dominated by Middle Archean trondhjemitic gneisses (3.2-3.0 Ga); metasedimentary rocks, however, are significantly more abundant than in the BBMT. Each terrane has experienced a separate and distinct geologic history since at least 3.6 Ga ago based on differences in metamorphic and structural styles, composition of magmatic and metasupracrustal rocks, and isotopic ages; consequently, these may be described as discrete terranes in the Cordilleran sense. Nonetheless, highly radiogenic and distinctive Pb-Pb isotopic signatures in rocks of all ages in both terranes indicate that the two terranes share a significant aspect of their history. This suggests that these two Early to Middle Archean crustal blocks, that initially evolved as part of a larger crustal province, experienced different geologic histories from at least 3.6 Ga until their juxtaposition in the Late Archean (between 2.75 to 2.55 Ga ago). Consequently, the boundary between the BBMT and MMT appears to separate terranes that are not likely to be exotic in the sense of their Phanerozoic counterparts. Other Archean provinces do appear to contain crustal blocks with different isotopic signatures (e.g. West Greenland, India, South Africa). The use of the term exotic, therefore, must be cautious in situations where geographic indicators such as paleontologic and/or paleomagnetic data are not available

  15. Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    2016-01-01

    Scientific Investigations Report 2016–5089 and accompanying data releases are the products of the U.S. Geological Survey (USGS) Sagebrush Mineral-Resource Assessment (SaMiRA). The assessment was done at the request of the Bureau of Land Management (BLM) to evaluate the mineral-resource potential of some 10 million acres of Federal and adjacent lands in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming. The need for this assessment arose from the decision by the Secretary of the Interior to pursue the protection of large tracts of contiguous habitat for the greater sage-grouse (Centrocercus urophasianus) in the Western United States. One component of the Department of Interior plan to protect the habitat areas includes withdrawing selected lands from future exploration and development of mineral and energy resources, including copper, gold, silver, rare earth elements, and other commodities used in the U.S. economy. The assessment evaluates the potential for locatable minerals such as gold, copper, and lithium and describes the nature and occurrence of leaseable and salable minerals for seven Sagebrush Focal Areas and additional lands in Nevada (“Nevada additions”) delineated by BLM. Supporting data are available in a series of USGS data releases describing mineral occurrences (the USGS Mineral Deposit Database or “USMIN”), oil and gas production and well status, previous mineral-resource assessments that covered parts of the areas studied, and a compilation of mineral-use cases based on data provided by BLM, as well as results of the locatable mineral-resource assessment in a geographic information system. The present assessment of mineral-resource potential will contribute to a better understanding of the economic and environmental trade-offs that would result from closing the designated 10 million acres of Federal lands to mineral entry.

  16. Nature of natural gas in anomalously thick coal beds, Powder River basin, Wyoming

    SciTech Connect

    Rice, D.D.; Flores, R.M. )

    1989-09-01

    Anomalously thick coal beds (as much as 250 ft thick) occur in the Paleocene Tongue River Member of the Fort Union Formation in the Powder River basin, Wyoming. These laterally discontinuous coal beds were deposited in raised, ombrotrophic peat bogs of fluvial environments. The coal beds include the Anderson-Canyon, Wyodak-Anderson, and Big George zones in the Powder River-Recluse area, Gillette area, and central part of the basin, respectively. The coal resources in these areas are approximately 155 billion short tons. The average maceral composition of the coals is 88% huminite (vitrinite), 5% liptinite, and 7% inertinite. The coals vary in rank from subbituminous C to A (R{sub 0} values of 0.4 to 0.5%). Natural gas desorbed and produced from the coal beds and adjacent sandstones is composed mainly of methane with lesser amounts of CO{sub 2} (less than 10%). The methane is isotopically light ({delta}{sup 13}C{sup 1} values of {minus}56.7 to {minus}60.9%). Based on the chemical and isotopic composition of the gases and on the low rank of the coals, the gases are interpreted to be microbial in origin: they were generated by anaerobic bacteria that broke down the coals at low temperatures, prior to the main phase of thermogenic methane generation by devolatilization. The adsorbed amounts of methane-rich microbial gas per unit of coal in the Powder River basin are relatively low compared to amounts of thermogenic coal-bed gases from other basins. However, the total coal-bed gas resource is considered to be large (as much as several trillion cubic feet) because of the vast coal resources.

  17. Leachate migration from an in situ oil-shale retort near Rock Springs, Wyoming

    USGS Publications Warehouse

    Glover, K.C.

    1986-01-01

    Geohydrologic factors influencing leachate movement from an in situ oil shale retort near Rock Springs, Wyoming, were investigated by developing models of groundwater flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed 1/2 mi downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-ft sandstone at the top of the aquifer. Groundwater flow in the study area is complexly 3-D and is characterized by large vertical variations in hydraulic head. The solute transport model was used to predict the concentration of thiocyanate at a point where groundwater discharges to the land surface. Leachates with peak concentrations of thiocyanate--45 mg/L or approximately one-half the initial concentration of retort water--were estimated to reach the discharge area during January 1985. Advantages as well as the problems of site specific studies are described. Data such as the distribution of thin permeable beds or fractures may introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily in site specific models. Solute migration in the study area primarily occurs in thin permeable beds rather than in oil shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and groundwater velocity will be estimated poorly. (Author 's abstract)

  18. Leachate migration from an in-situ oil-shale retort near Rock Springs, Wyoming

    USGS Publications Warehouse

    Glover, Kent C.

    1988-01-01

    Hydrogeologic factors influencing leachate movement from an in-situ oil-shale retort near Rock Springs, Wyoming, were investigated through models of ground-water flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed ? mile downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-foot sandstone at the top of the aquifer. Ground-water flow in the study area is complexly three dimensional and is characterized by large vertical variations in hydraulic head. The solute-transport model was used to predict the concentration of thiocyanate at a point where ground water discharges to the land surface. Leachate with peak concentrations of thiocyanate--45 milligrams per liter or approximately one-half the initial concentration of retort water--was estimated to reach the discharge area during January 1985. This report describes many of th3 advantages, as well as the problems, of site-specific studies. Data such as the distribution of thin, permeable beds or fractures might introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily into site-specific models. Solute migration in the study area occurs primarily in thin, permeable beds rather than in oil-shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site-specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site-specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and ground-water velocity will be poorly estimated.

  19. Gas, Oil, and Water Production in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Nelson, Philip H.; Trainor, Patrick K.; Finn, Thomas M.

    2009-01-01

    Gas, oil, and water production data were collected from the Fuller Reservoir, Cooper Reservoir, Frenchie Draw, Cave Gulch, and Madden fields in the Wind River Basin, Wyoming. These fields produce from the Mississippian Madison Limestone, the Upper Cretaceous Cody Shale and Mesaverde Formation, and the Paleocene lower unnamed member and Shotgun Member of the Fort Union Formation. Diagrams of water and gas production from tight gas accumulations in three formations in the Madden field show that (1) water production either increased or decreased with time in all three formations, (2) increases and decreases in water production were greater in the Cody Shale than in either the Mesaverde Formation or the lower unnamed member of the Fort Union Formation, (3) the gas production rate declined more slowly in the lower part of the Fort Union Formation than in the Cody Shale or the Mesaverde Formation, (4) changes in gas and water production were not related to their initial production rates, and (5) there appears to be no relation between well location and the magnitudes or trends of gas and water production. To explain the apparent independence of gas and water production in the Cody Shale and Mesaverde Formation, a two-step scenario is proposed: gas was generated and emplaced under the compressive stress regime resulting from Laramide tectonism; then, fractures formed during a subsequent period of stress relaxation and extension. Gas is produced from the pore and fracture system near the wellbore, whereas water is produced from a larger scale system of extension fractures. The distribution of gas and water in the lower Fort Union resulted from a similar scenario, but continued generation of gas during post-Laramide extension may have allowed its more widespread distribution.

  20. Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Day, Warren C.; Frost, Thomas P.; Hammarstrom, Jane M.; Zientek, Michael L.

    2016-08-19

    Scientific Investigations Report 2016–5089 and accompanying data releases are the products of the U.S. Geological Survey (USGS) Sagebrush Mineral-Resource Assessment (SaMiRA). The assessment was done at the request of the Bureau of Land Management (BLM) to evaluate the mineral-resource potential of some 10 million acres of Federal and adjacent lands in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming. The need for this assessment arose from the decision by the Secretary of the Interior to pursue the protection of large tracts of contiguous habitat for the greater sage-grouse (Centrocercus urophasianus) in the Western United States. One component of the Department of the Interior plan to protect the habitat areas includes withdrawing selected lands from future exploration and development of mineral and energy resources, including copper, gold, silver, rare earth elements, and other commodities used in the U.S. economy. The assessment evaluates the potential for locatable minerals such as gold, copper, and lithium and describes the nature and occurrence of leaseable and salable minerals for seven Sagebrush Focal Areas and additional lands in Nevada (“Nevada additions”) delineated by BLM. Supporting data are available in a series of USGS data releases describing mineral occurrences (the USGS Mineral Deposit Database or “USMIN”), oil and gas production and well status, previous mineral-resource assessments that covered parts of the areas studied, and a compilation of mineral-use cases based on data provided by BLM, as well as results of the locatable mineral-resource assessment in a geographic information system. The present assessment of mineral-resource potential will contribute to a better understanding of the economic and environmental trade-offs that would result from closing approximately 10 million acres of Federal lands to mineral entry.

  1. Broadband Seismic Observations of Lone Star Geyser, Yellowstone National Park, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Nayak, A.; Hurwitz, S.; Johnson, H. E., III; Manga, M.; Gomez, F. G.

    2014-12-01

    Geysers are natural phenomena that episodically erupt water and steam. Geophysical observations at geysers are analyzed to shed light on subsurface multi-phase mass and heat exchange processes and geometries controlling geyser eruptions, which are still are not completely understood. Lone Star Geyser (LSG) in Yellowstone National Park, Wyoming, USA erupts every ~3 hours, with brief episodes (~5-10 min) of water and steam fountaining (preplays) leading up to the main eruption (~28 min), and the discharge evolves from a water-dominated phase to a steam-dominated phase as the main eruption proceeds in time. We describe observations from multiple seismometers deployed around LSG as part of a comprehensive geophysical survey conducted in April 2014. 3-component seismograms were continuously recorded at 250 samples per second by 6 Nanometrics Trillium 120 P/PA broadband seismometers (lower corner frequency at 120 seconds) and Taurus dataloggers at distances ~10 to 25 m from the geyser cone for a period of 3 days. We identify distinct episodes of hydrothermal tremor associated with preplay events and main eruptions. We find that the dominant tremor frequencies during main eruptions are consistently higher (> 10.0 Hz) than those during preplays (> 1.0 Hz) indicating slightly different source locations or processes controlling the two phenomena. Unlike seismic observations at the Old Faithful Geyser, we also observe subtle harmonic tremor and spectral gliding in the frequency range ~1.0-8.0 Hz towards the end of both main eruption and preplay tremor episodes. We interpret long-period pulses on horizontal components of the seismometers located close to the geyser and synchronous with preplays, as pseudo-tilts resulting from deformation of the sinter terrace. We also compare the evolution of hydrothermal tremor in time with synchronous changes in temperature, acoustic emission and discharge for interpretation of the possible tremor source processes.

  2. Hydrogeologic and geochemical characteristics of the Ogallala and White River aquifers, Cheyenne, Wyoming

    USGS Publications Warehouse

    Ogle, K.M.; Hallberg, L.L.

    2000-01-01

    The Ogallala aquifer and the underlying White River aquifer are important ground-water resources of public and private drinking water in the Cheyenne, Wyoming area. In 1997, as part of a cooperative project between the Cheyenne Board of Public Utilities and the U.S. Geological Survey, a well was installed to develop information for those two aquifers. Information provided for the Ogallala aquifer included core descriptions, geophysical logs, water levels, aquifer transmissivity, water quality, isotopic analysis, and geochemical modeling. Information for the White River aquifer was limited to core descriptions and geophysical logs.Evaluation of the core obtained from the drill hole showed the sediments to be primarily sands, silts, and clays. The thickness of the Ogallala Formation at the well site was estimated to be 246 feet. Water levels and precipitation from October 1, 1998 to September 30, 1999 indicated that water levels responded to precipitation. During that time, water levels ranged from 6,002.41 feet to 6,004.27 feet above mean sea level. The transmissivity was estimated to be 1.1 feet squared/day. The temperature differences between the municipal water and the Ogallala aquifer water were examined in relation to selected hydraulic conductivities and it was found that the warmer municipal water would slightly increase the hydraulic conductivity if the water were injected into the Ogallala aquifer.The water quality of a sample from the Ogallala 1 well indicated the predominant major ions were calcium, magnesium, and bicarbonate. Isotopic analyses of hydrogen-2, tritium, chlorine-36, carbon-14, and carbon-13 indicated the water was a mixture of pre- and post-1953 recharge. A simple geochemical mixing model indicated there was the potential for dissolution of anhydrite, calcite, gypsum, and dolomite and precipitation of goethite, hematite, pyrolusite, and amorphous ferric hydroxide if municipal and Ogallala aquifer waters were mixed.

  3. Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.

    1985-01-01

    Y-3, a U.S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, reached a depth of 156.7 m. The recovered drill core consists of 42.2 m of surficial (mostly glacial) sediments and two rhyolite flows (Nez Perce Creek flow and an older, unnamed rhyolite flow) of the Central Plateau Member of the Pleistocene Plateau Rhyolite. Hydrothermal alteration is fairly extensive in most of the drill core. The surficial deposits are largely cemented by silica and zeolite minerals; and the two rhyolite flows are, in part, bleached by thermal water that deposited numerous hydrothermal minerals in cavities and fractures. Hydrothermal minerals containing sodium as a dominant cation (analcime, clinoptilolite, mordenite, Na-smectite, and aegirine) are more abundant than calcium-bearing minerals (calcite, fluorite, Ca-smectite, and pectolite) in the sedimentary section of the drill core. In the volcanic section of drill core Y-3, calcium-rich minerals (dachiardite, laumontite, yugawaralite, calcite, fluorite, Ca-smectite, pectolite, and truscottite) are predominant over sodium-bearing minerals (aegirine, mordenite, and Na-smectite). Hydrothermal minerals that contain significant amounts of potassium (alunite and lepidolite in the sediments and illitesmectite in the rhyolite flows) are found in the two drill-core intervals. Drill core y:.3 also contains hydrothermal silica minerals (opal, [3-cristobalite, chalcedony, and quartz), other clay minerals (allophane, halloysite, kaolinite, and chlorite), gypsum, pyrite, and hematite. The dominance of calcium-bearing hydrothermal minerals in the lower rhyolitic section of the y:.3 drill core appears to be due to loss of calcium, along with potassium, during adiabatic cooling of an ascending boiling water.

  4. Landscape consequences of natural gas extraction in Sullivan and Wyoming Counties, Pennsylvania, 2004–2010

    USGS Publications Warehouse

    Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Malizia, Alexander R.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Sullivan County and Wyoming County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  5. Maps showing thermal maturity of Upper Cretaceous marine shales in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Finn, Thomas M.; Pawlewicz, Mark J.

    2014-01-01

    The Bighorn Basin is one of many structural and sedimentary basins that formed in the Rocky Mountain foreland during the Laramide orogeny, a period of crustal instability and compressional tectonics that began in latest Cretaceous time and ended in the Eocene. The basin is nearly 180 mi long, 100 mi wide, and encompasses about 10,400 mi2 in north-central Wyoming and south-central Montana. The basin is bounded on the northeast by the Pryor Mountains, on the east by the Bighorn Mountains, and on the south by the Owl Creek Mountains). The north boundary includes a zone of faulting and folding referred to as the Nye-Bowler lineament. The northwest and west margins are formed by the Beartooth Mountains and Absaroka Range, respectively. Important conventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Cambrian through Tertiary. In addition, a potential unconventional basin-centered gas accumulation may be present in Cretaceous reservoirs in the deeper parts of the basin. It has been suggested by numerous authors that various Cretaceous marine shales are the principal source rock for these accumulations. Numerous studies of various Upper Cretaceous marine shales in the Rocky Mountain region have led to the general conclusion that these rocks have generated or are capable of generating oil and (or) gas. In recent years, advances in horizontal drilling and multistage fracture stimulation have resulted in increased exploration and completion of wells in Cretaceous marine shales in other Rocky Mountain Laramide basins that were previously thought of only as hydrocarbon source rocks. Important parameters controlling hydrocarbon production from these shale reservoirs include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for selected Upper Cretaceous marine

  6. Tar yields from low-temperature carbonization of coal facies from the Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Stanton, R.W.; Warwick, P.D.; Swanson, S.M.

    2005-01-01

    Tar yields from low-temperature carbonization correlate with the amount of crypto-eugelinite in samples selected to represent petrographically distinct coal facies of the Wyodak-Anderson coal zone. Tar yields from Fischer Assay range from <1 to 11 wt.% on a dry basis and correspond (r = 0.72) to crypto-eugelinite contents of the coal that range from 15 to 60 vol.%. Core and highwall samples were obtained from active surface mines in the Gillette field, Powder River Basin, Wyoming. Because the rank of the samples is essentially the same, differences in low-temperature carbonization yields are interpreted from compositional differences, particularly the crypto-eugelinite content. In the Wyodak-Anderson coal zone, crypto-eugelinite probably was derived from degraded humic matter which absorbed decomposition products from algae, fungi, bacteria, and liptinitic plant parts (materials possibly high in hydrogen). Previous modeling of the distribution of crypto-eugelinite in the discontinuous Wyodak-Anderson coal zone indicated that tar yields should be greater from coal composing the upper part and interior areas than from coal composing the lower parts and margins of the individual coal bodies. It is possible that hydrocarbon yields from natural coalification processes would be similar to yields obtained from laboratory pyrolysis. If so, the amount of crypto-eugelinite may also be an important characteristic when evaluating coal as source rock for migrated hydrocarbons.

  7. Petrographic characteristics of the Wyodak-Anderson coal bed (Paleocene), Powder River Basin, Wyoming, U.S.A.

    USGS Publications Warehouse

    Warwick, P.D.; Stanton, R.W.

    1988-01-01

    Six lithofacies of the thick ( > 30 m) Wyodak-Anderson subbituminous coal bed of the Fort Union Formation (Paleocene), Powder River Basin, Wyoming, can be delimited using megascopic and petrographic data. Previous lithofacies analysis of the rock types associated with the Wyodak-Anderson bed suggested that raised peat accumulated in restricted parts of an inland flood plain. The peat bodies were separated by deposits of contemporaneous, possibly anastomosed channels. In this study, megascopic descriptions from four mine highwalls of the Wyodak-Anderson coal bed were found to be similar to facies defined by microscopic data from core and highwall samples. The data indicate that the upper and lower parts of the coal bed are rich in preserved wood remains (for instance, humotelinite), whereas the middle part of the bed contains comparatively larger amounts of material that resulted from degradation and comminution of the peat (e.g. eugelinite). The facies are interpreted to be the result of different chemical and biological environments at the time of peat formation. ?? 1988.

  8. Data from selected Almond Formation outcrops -- Sweetwater County, Wyoming

    SciTech Connect

    Jackson, S.R.; Rawn-Schatzinger, V.

    1993-12-01

    The objectives of this research program are to: (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline barrier reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana, that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. A report similar to this one presents the Muddy Formation outcrop data and analyses performed in the course of this study (Rawn-Schatzinger, 1993). Two outcrop localities, RG and RH, previously described by Roehler (1988) provided good exposures of the Upper Almond shoreline barrier facies and were studied during 1990--1991. Core from core well No. 2 drilled approximately 0.3 miles downdip of outcrop RG was obtained for study. The results of the core study will be reported in a separate volume. Outcrops RH and RG, located about 2 miles apart were selected for detailed description and drilling of core plugs. One 257-ft-thick section was measured at outcrop RG, and three sections {approximately}145 ft thick located 490 and 655 feet apart were measured at the outcrop RH. Cross-sections of these described profiles were constructed to determine lateral facies continuity and changes. This report contains the data and analyses from the studied outcrops.

  9. Large scale Wyoming transportation data: a resource planning tool

    USGS Publications Warehouse

    O'Donnell, Michael S.; Fancher, Tammy S.; Freeman, Aaron T.; Ziegler, Abra E.; Bowen, Zachary H.; Aldridge, Cameron L.

    2014-01-01

    The U.S. Geological Survey Fort Collins Science Center created statewide roads data for the Bureau of Land Management Wyoming State Office using 2009 aerial photography from the National Agriculture Imagery Program. The updated roads data resolves known concerns of omission, commission, and inconsistent representation of map scale, attribution, and ground reference dates which were present in the original source data. To ensure a systematic and repeatable approach of capturing roads on the landscape using on-screen digitizing from true color National Agriculture Imagery Program imagery, we developed a photogrammetry key and quality assurance/quality control protocols. Therefore, the updated statewide roads data will support the Bureau of Land Management’s resource management requirements with a standardized map product representing 2009 ground conditions. The updated Geographic Information System roads data set product, represented at 1:4,000 and +/- 10 meters spatial accuracy, contains 425,275 kilometers within eight attribute classes. The quality control of these products indicated a 97.7 percent accuracy of aspatial information and 98.0 percent accuracy of spatial locations. Approximately 48 percent of the updated roads data was corrected for spatial errors of greater than 1 meter relative to the pre-existing road data. Twenty-six percent of the updated roads involved correcting spatial errors of greater than 5 meters and 17 percent of the updated roads involved correcting spatial errors of greater than 9 meters. The Bureau of Land Management, other land managers, and researchers can use these new statewide roads data set products to support important studies and management decisions regarding land use changes, transportation and planning needs, transportation safety, wildlife applications, and other studies.

  10. Abundance of adult saugers across the Wind River watershed, Wyoming

    USGS Publications Warehouse

    Amadio, C.J.; Hubert, W.A.; Johnson, K.; Oberlie, D.; Dufek, D.

    2006-01-01

    The abundance of adult saugers Sander canadensis was estimated over 179 km of continuous lotic habitat across a watershed on the western periphery of their natural distribution in Wyoming. Three-pass depletions with raft-mounted electrofishing gear were conducted in 283 pools and runs among 19 representative reaches totaling 51 km during the late summer and fall of 2002. From 2 to 239 saugers were estimated to occur among the 19 reaches of 1.6-3.8 km in length. The estimates were extrapolated to a total population estimate (mean ?? 95% confidence interval) of 4,115 ?? 308 adult saugers over 179 km of lotie habitat. Substantial variation in mean density (range = 1.0-32.5 fish/ha) and mean biomass (range = 0.5-16.8 kg/ha) of adult saugers in pools and runs was observed among the study reaches. Mean density and biomass were highest in river reaches with pools and runs that had maximum depths of more than 1 m, mean daily summer water temperatures exceeding 20??C, and alkalinity exceeding 130 mg/L. No saugers were captured in the 39 pools or runs with maximum water depths of 0.6 m or less. Multiple-regression analysis and the information-theoretic approach were used to identify watershed-scale and instream habitat features accounting for the variation in biomass among the 244 pools and runs across the watershed with maximum depths greater than 0.6 m. Sauger biomass was greater in pools than in runs and increased as mean daily summer water temperature, maximum depth, and mean summer alkalinity increased and as dominant substrate size decreased. This study provides an estimate of adult sauger abundance and identifies habitat features associated with variation in their density and biomass across a watershed, factors important to the management of both populations and habitat. ?? Copyright by the American Fisheries Society 2006.

  11. Boron toxicity of coal mining areas in southwestern Wyoming

    SciTech Connect

    Hanson, R.L.; Smith, P.W.; Smith, J.A.

    1990-12-31

    Boron tolerance of native plant species is not generally known. This study was conducted to determine the B tolerance of thickspike wheatgrass [Agropyron dasystachyum (Hook.) Scribn.], a species commonly used to reclaim minelands in the semiarid and arid West. Pre-germinated thickspike wheatgrass seeds were planted in three soil materials obtained from a coal mine in southwestern Wyoming. Soils were taken from an undisturbed bottomland (clay), a topsoil stockpile (sand), and a carbonaceous shale outcrop (shale) with inherent hot water extractable-B (HWE-B) levels of 2.8, 1.3, and 3.5 mg/kg soil, respectively. Each soil material was treated with boric acid solutions to produce seven different HWE-B levels. B levels ranged from inherent conditions up to 57.9 mg/kg. Plants were grown under greenhouse conditions for 100 days in pots containing 2.9 kg of clay or shale or 3.4 kg sand. Wheatgrass shoot and root dry matter production were measured. Toxicity symptoms (leaf tip necrosis) were observed in all treatments but the controls during the study. Levels of 11.6 and 20.5 mg/kg HWE-B produced an average of 10 and 20% reductions in shoot production, respectively. Ten and 20% reductions in root growth were observed with 3.8 and 6.6 mg/kg HWE-B, respectively. Plants grown in the sand were most B sensitive. This is postulated to be a result of the drier conditions attendant in that soil. Results indicate that thickspike wheatgrass can tolerate HWE-B levels in excess of 5 mg/kg. However, actual field tolerance levels will be dependent on climatic and soil environmental conditions, particularly moisture availability.

  12. Immobilization of Wyoming bears using carfentanil and xylazine.

    PubMed

    Kreeger, Terry J; Bjornlie, Dan; Thompson, Dan; Clapp, Justin; Clark, Colby; Hansen, Cole; Huizenga, Matt; Lockwood, Sam

    2013-07-01

    Seven grizzly (Ursus arctos; four male, three female) and three black (Ursus americanus; two male, one female) bears caught in culvert traps or leg snares were immobilized in northwestern Wyoming with carfentanil and xylazine at doses, respectively, of 0.011 ± 0.001 and 0.12 ± 0.01 mg/kg for grizzly bears and 0.014 ± 0.002 and 0.15 ± 0.04 mg/kg for black bears. These drugs were antagonized with 1 mg/kg naltrexone and 2 mg/kg tolazoline. Induction and recovery times, respectively, were 4.3 ± 0.5 and 7.1 ± 0.8 min for grizzly bears and 5.2 ± 0.4 and 9.1 ± 2.2 min for black bears. Inductions were smooth and uneventful. Recoveries were characterized initially by increased respiration followed by raising of the head, which quickly led to a full recovery, with the bears recognizing and avoiding humans and moving away, maneuvering around obstacles. All bears experienced respiratory depression, which did not significantly improve with supplemental oxygen on the basis of pulse oximetry (P=0.56). Rectal temperatures were normothermic. Carfentanil-xylazine immobilization of bears provided significant advantages over other drug regimens, including small drug volumes, predictable inductions, quick and complete recoveries, and lower costs. On the basis of these data, both grizzly and black bears can be immobilized effectively with 0.01 mg/kg carfentanil and 0.1 mg/kg xylazine.

  13. Immobilization of Wyoming bears using carfentanil and xylazine.

    PubMed

    Kreeger, Terry J; Bjornlie, Dan; Thompson, Dan; Clapp, Justin; Clark, Colby; Hansen, Cole; Huizenga, Matt; Lockwood, Sam

    2013-07-01

    Seven grizzly (Ursus arctos; four male, three female) and three black (Ursus americanus; two male, one female) bears caught in culvert traps or leg snares were immobilized in northwestern Wyoming with carfentanil and xylazine at doses, respectively, of 0.011 ± 0.001 and 0.12 ± 0.01 mg/kg for grizzly bears and 0.014 ± 0.002 and 0.15 ± 0.04 mg/kg for black bears. These drugs were antagonized with 1 mg/kg naltrexone and 2 mg/kg tolazoline. Induction and recovery times, respectively, were 4.3 ± 0.5 and 7.1 ± 0.8 min for grizzly bears and 5.2 ± 0.4 and 9.1 ± 2.2 min for black bears. Inductions were smooth and uneventful. Recoveries were characterized initially by increased respiration followed by raising of the head, which quickly led to a full recovery, with the bears recognizing and avoiding humans and moving away, maneuvering around obstacles. All bears experienced respiratory depression, which did not significantly improve with supplemental oxygen on the basis of pulse oximetry (P=0.56). Rectal temperatures were normothermic. Carfentanil-xylazine immobilization of bears provided significant advantages over other drug regimens, including small drug volumes, predictable inductions, quick and complete recoveries, and lower costs. On the basis of these data, both grizzly and black bears can be immobilized effectively with 0.01 mg/kg carfentanil and 0.1 mg/kg xylazine. PMID:23778620

  14. Candy Draw: significant new Minnelusa field, Powder River basin, Wyoming

    SciTech Connect

    Gallivan, L.B.; Bjorlie, S.C.

    1986-08-01

    Candy Draw field is located in T53N, R69W, Campbell County, Wyoming. It was discovered by Santa Fe Energy Company in June 1985. Production is from a stratigraphic trap in the lower B sandstone of the Permian Minnelusa Formation. Nine wells are capable of production, and further development is underway. Proven reserves are 9 million bbl of oil. Primary recoverable reserves are calculated at 1 million bbl, or 11% of oil in place. An additional 2 million bbl are estimated to be recoverable from secondary waterflood. Gross ultimate reserves from the nine producing wells are 3 million bbl, or 33% of oil in place. Candy Draw field was discovered by utilizing seismic stratigraphy to confirm regional geologic mapping of the lower B sandstone and overlying Opeche Shale. A lower B sandstone buildup was projected on trend and modeled after Wagonspoke field. Sonic logs were used to construct synthetic seismic models, which indicated that a lower B sandstone buildup could be seen on seismic data. Two seismic lines were acquired with data in the 55 to 65-Hz frequency range. A strike line showed a strong-amplitude anomaly present over the field which matched models that indicated 35 ft of lower B sandstone was present with 25% porosity. Computer modeling indicated that less than 20 ft of sandstone with porosity values of 10 to 12% could not be resolved due to the similar velocity of the Opeche Shale. This was confirmed by development drilling. Modeling from existing well control is critical due to the complex lithology of the Minnelusa Formation. Pitfalls exist, but seismic data have become a valuable tool for Minnelusa exploration.

  15. Megascopic lithologic studies of coals in the Powder River basin in Wyoming and in adjacent basins in Wyoming and North Dakota

    USGS Publications Warehouse

    Trippi, Michael H.; Stricker, Gary D.; Flores, Romeo M.; Stanton, Ronald W.; Chiehowsky, Lora A.; Moore, Timothy A.

    2010-01-01

    Between 1999 and 2007, the U.S. Geological Survey (USGS) investigated coalbed methane (CBM) resources in the Wyoming portion of the Powder River Basin. The study also included the CBM resources in the North Dakota portion of the Williston Basin of North Dakota and the Wyoming portion of the Green River Basin of Wyoming. This project involved the cooperation of the State Office, Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) in Casper, Wyo., and 16 independent gas operators in the Powder River, Williston, and Green River Basins. The USGS and BLM entered into agreements with these CBM operators to supply samples for the USGS to analyze and provide the RMG with rapid, timely results of total gas desorbed, coal quality, and high-pressure methane adsorption isotherm data. This program resulted in the collection of 963 cored coal samples from 37 core holes. This report presents megascopic lithologic descriptive data collected from canister samples extracted from the 37 wells cored for this project.

  16. Hydrology of area 53, Northern Great Plains and Rocky Mountain coal provinces, Colorado, Wyoming, and Utah

    USGS Publications Warehouse

    Driver, N.E.; Norris, J.M.; Kuhn, Gerhard; ,

    1984-01-01

    Hydrologic information and analysis are needed to aid in decisions to lease Federally owned coal and for the preparation of the necessary Environmental Assessments and Impact Study Reports. This need has become even more critical with the enactment of the Surface Mining Control and Reclamation Act of 1977 (Public Law 95-87). This report, one in a series of nationwide coal province reports, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The report broadly characterizes the hydrology of Area 53 in northwestern Colorado, south-central Wyoming, and northeastern Utah. The report area, located primarily in the Wyoming Basin and Colorado Plateau physiographic provinces, consists of 14,650 square miles of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics. The two major rivers, the Yampa and the White Rivers, originate in humid granitic and basaltic mountains, then flow over sedimentary rocks underlying semiarid basins to their respective confluences with the Green River. Altitudes range from 4,800 to greater than 12,000 feet above sea level. Annual precipitation in the mountains, as much as 60 inches, is generally in the form of snow. Snowmelt produces most streamflow. Precipitation in the lower altitude sedimentary basins, ranging from 8 to 16 inches, is generally insufficient to sustain streamflow; therefore, most streams originating in the basins (where most of the streams in coal-mining areas originate) are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are small. As streams flow across the sedimentary basins, mineral dissolution from the sedimentary rocks and irrigation water with high mineral content increase the dissolved-solids concentrations in a downstream direction. Due to the semiarid climate of the basins, soils are not adequately leached

  17. Hydrology of area 54, Northern Great Plains, and Rocky Mountain coal provinces, Colorado and Wyoming

    USGS Publications Warehouse

    Kuhn, Gerhard; Daddow, P.D.; Craig, G.S.; ,

    1983-01-01

    A nationwide need for information characterizing hydrologic conditions in mined and potential mine areas has become paramount with the enactment of the Surface Mining Control and Reclamation Act of 1977. This report, one in a series covering the coal provinces nationwide, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The summation of the topical discussions provides a description of the hydrology of the area. Area 54, in north-central Colorado and south-central Wyoming, is 1 of 20 hydrologic reporting areas of the Northern Great Plains and Rocky Mountain coal provinces. Part of the Southern Rocky Mountains and Wyoming Basin physiographic provinces, the 8,380-square-mile area is one of contrasting geology, topography, and climate. This results in contrasting hydrologic characteristics. The major streams, the North Platte, Laramie, and Medicine Bow Rivers, and their principal tributaries, all head in granitic mountains and flow into and through sedimentary basins between the mountain ranges. Relief averages 2,000 to 3,000 feet. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, which produces deep snowpacks. Snowmelt in spring and summer provides most streamflow. Precipitation in the basins averages 10 to 16 inches annually, insufficient for sustained streamflow; thus, streams originating in the basins are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are least. These concentrations increase as streams flow through sedimentary basins. The increases are mainly natural, but some may be due to irrigation in and adjacent to the flood plains. In the North Platte River, dissolved-solids concentrations are usually less than 300 milligrams per liter; in the Laramie and the Medicine Bow Rivers, the concentrations may average 500 to 850 milligrams per liter. However

  18. The United State of Wyoming: Teacher-to-Teacher Initiative Boosts Reading Scores Statewide

    ERIC Educational Resources Information Center

    Lain, Sheryl

    2014-01-01

    When teachers collaborate in schools, taking collective responsibility to improve instruction and achieve goals, student performance improves and good results happen. Wyoming is one example of a state that uses peer-to-peer professional learning with notable results. Teachers joined together to form a statewide professional community and saw the…

  19. A Self-Concept Comparison of Indian and Anglo Delinquency in Wyoming.

    ERIC Educational Resources Information Center

    Forslund, Morris A.

    The study is a continuation of previous research into the nature and magnitude of the delinquency problem among Wind River Indian Reservation youths in Wyoming. The study is based on responses to a self-report questionnaire concerning delinquent acts, alcohol use and drug use which was administered to 9-12 grade students in high schools in the…

  20. A Training Package for Implementing the IEP Process in Wyoming. Volume I. Trainers' Guide.

    ERIC Educational Resources Information Center

    Jacobs, Beverly; And Others

    Volume I of a four volume series presents a trainers' guide designed for administrators, assessment personnel, and others involved in the development and implementation of individualized education programs (IEPs) for handicapped children in Wyoming. The training content is divided into the following seven topics (with sample subtopics in…

  1. WY KIDS COUNT in Wyoming Factbook, 2000: A County-by-County Factbook.

    ERIC Educational Resources Information Center

    Stewart, Shelli, Ed.

    This KIDS COUNT factbook details statewide trends in the well-being of Wyoming's children. Following an overview of key indicators and data sources, the factbook documents trends by county for 23 indicators: (1) child and youth population; (2) births; (3) low birth-weight babies; (4) early prenatal care; (5) infants deaths; (6) child deaths; (7)…

  2. Growing spearmint, thyme, oregano, and rosemary in Northern Wyoming using plastic tunnels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing perennial herbs in northern climate such as Northern Wyoming is a challenge. Due to short frost-free period, high wind, and inclement weather it is impossible to harvest any herbs twice a year (summer and late fall) without using any form of season extension methods. Hence, we set up an expe...

  3. WY KIDS COUNT in Wyoming Factbook, 2001: A County-by-County Factbook.

    ERIC Educational Resources Information Center

    Stewart, Shelli, Ed.

    This KIDS COUNT factbook details statewide trends in the well-being of Wyoming's children. Following an overview of key indicators, the factbook documents state trends for 36 indicators: (1) child and youth population; (2) births; (3) unintended pregnancy; (4) low birth weight babies; (5) early prenatal care; (6) immunizations; (7) chronic…

  4. WY KIDS COUNT in Wyoming Factbook, 2002: A County-By-County Factbook.

    ERIC Educational Resources Information Center

    Stewart, Shelli, Ed.

    This KIDS COUNT factbook details statewide and county trends in the well-being of Wyoming's children. Following an overview of key indicators, the factbook documents state trends for 36 indicators: (1) child and youth population; (2) births; (3) unintended pregnancy; (4) low birth weight babies; (5) early prenatal care; (6) immunizations; (7)…

  5. Assessment of Vaccine Exemptions among Wyoming School Children, 2009 and 2011

    ERIC Educational Resources Information Center

    Pride, Kerry R.; Geissler, Aimee L.; Kolasa, Maureen S.; Robinson, Byron; Van Houten, Clay; McClinton, Reginald; Bryan, Katie; Murphy, Tracy

    2014-01-01

    During 2010-2011, varicella vaccination was an added requirement for school entrance in Wyoming. Vaccination exemption rates were compared during the 2009-2010 and 2011-2012 school years, and impacts of implementing a new childhood vaccine requirement were evaluated. All public schools, grades K-12, were required to report vaccination status of…

  6. Project Senior. Innovations in Educational Programming for the Elderly. A Pilot Project: Thermopolis, Wyoming. [Final Report].

    ERIC Educational Resources Information Center

    Owsley, Jean

    A pilot project, entitled Project Senior, was developed and implemented to provide innovative educational programing for older adults in the small rural setting of Thermopolis, Wyoming. Included among the major project activities were the following: a door-to-door survey of 759 persons over 55 years old to determine those courses most desired by…

  7. 77 FR 49020 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW173225, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW173225... reinstatement from WYNR, LLC, for competitive oil and gas lease WYW173225 for land in Washakie County, Wyoming... terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver,...

  8. 77 FR 49018 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW173254, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW173254... reinstatement from WYNR, LLC, for competitive oil and gas lease WYW173254 for land in Park County, Wyoming. The... under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver, Chief,...

  9. 77 FR 48528 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164513, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164513... reinstatement from WYNR, LLC, for competitive oil and gas lease WYW164513 for land in Big Horn County, Wyoming... terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver,...

  10. 77 FR 49018 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164510, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164510... reinstatement from WYNR, LLC, for competitive oil and gas lease WYW164510 for land in Big Horn County, Wyoming... terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver,...

  11. 78 FR 758 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164393, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164393... reinstatement from Linc Energy (Wyoming), Inc., for competitive oil and gas lease WYW164393 for land in Converse... the lease terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management,...

  12. 77 FR 49020 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164747, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164747... reinstatement from WYNR, LLC, for competitive oil and gas lease WYW164747 for land in Washakie County, Wyoming... terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver,...

  13. 77 FR 49018 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164514, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164514... reinstatement from WYNR, LLC, for competitive oil and gas lease WYW164514 for land in Big Horn County, Wyoming... terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver,...

  14. 77 FR 49017 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW173223, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW173223... reinstatement from WYNR, LLC, for competitive oil and gas lease WYW173223 for land in Washakie County, Wyoming... terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver,...

  15. 77 FR 49019 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164508, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164508... reinstatement from WYNR, LLC, for competitive oil and gas lease WYW164508 for land in Big Horn County, Wyoming... terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver,...

  16. 77 FR 49019 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164511, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW164511... reinstatement from WYNR, LLC, for competitive oil and gas lease WYW164511 for land in Big Horn County, Wyoming... terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver,...

  17. 77 FR 37706 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW177129, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW177129... reinstatement from Ridgeland Wyoming Inc., for competitive oil and gas lease WYW177129 for land in Converse... the lease terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management,...

  18. 77 FR 43611 - Proposed Reinstatement of Terminated Oil and Gas Lease WYW156551, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... Bureau of Land Management Proposed Reinstatement of Terminated Oil and Gas Lease WYW156551, Wyoming... from EnCana Oil & Gas (USA) for competitive oil and gas lease WYW156551 for land in Natrona County... lease terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie...

  19. 75 FR 57496 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease, Wyoming... from EOG Resources, Inc. for competitive oil and gas lease WYW174006 for land in Converse County... lease terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie...

  20. 77 FR 49017 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW173224, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW173224... reinstatement from WYNR, LLC, for competitive oil and gas lease WYW173224 for land in Washakie County, Wyoming... terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver,...