Incorporating Skew into RMS Surface Roughness Probability Distribution
NASA Technical Reports Server (NTRS)
Stahl, Mark T.; Stahl, H. Philip.
2013-01-01
The standard treatment of RMS surface roughness data is the application of a Gaussian probability distribution. This handling of surface roughness ignores the skew present in the surface and overestimates the most probable RMS of the surface, the mode. Using experimental data we confirm the Gaussian distribution overestimates the mode and application of an asymmetric distribution provides a better fit. Implementing the proposed asymmetric distribution into the optical manufacturing process would reduce the polishing time required to meet surface roughness specifications.
Modeling and experiments of the adhesion force distribution between particles and a surface.
You, Siming; Wan, Man Pun
2014-06-17
Due to the existence of surface roughness in real surfaces, the adhesion force between particles and the surface where the particles are deposited exhibits certain statistical distributions. Despite the importance of adhesion force distribution in a variety of applications, the current understanding of modeling adhesion force distribution is still limited. In this work, an adhesion force distribution model based on integrating the root-mean-square (RMS) roughness distribution (i.e., the variation of RMS roughness on the surface in terms of location) into recently proposed mean adhesion force models was proposed. The integration was accomplished by statistical analysis and Monte Carlo simulation. A series of centrifuge experiments were conducted to measure the adhesion force distributions between polystyrene particles (146.1 ± 1.99 μm) and various substrates (stainless steel, aluminum and plastic, respectively). The proposed model was validated against the measured adhesion force distributions from this work and another previous study. Based on the proposed model, the effect of RMS roughness distribution on the adhesion force distribution of particles on a rough surface was explored, showing that both the median and standard deviation of adhesion force distribution could be affected by the RMS roughness distribution. The proposed model could predict both van der Waals force and capillary force distributions and consider the multiscale roughness feature, greatly extending the current capability of adhesion force distribution prediction.
NASA Astrophysics Data System (ADS)
Kim, Youngmo; Park, Jiwoo; Sohn, Hyunchul
2018-01-01
Si1- x Ge x (:B) epitaxial layers were deposited by using reduced pressure chemical vapor deposition with SiH4, GeH4, and B2H6 source gases, and the dependences of the surface roughness of undoped Si1- x Ge x on the GeH4 flow rate and of Si1- x Ge x :B on the B2H6 flow rate were investigated. The root-mean-square (RMS) roughness value of the undoped Si1- x Ge x at constant thickness increased gradually with increasing Ge composition, resulting from an increase in the amplitude of the wavy surface before defect formation. At higher Ge compositions, the residual strain in Si1- x Ge x significantly decreased through the formation of defects along with an abrupt increase in the RMS roughness. The variation of the surface roughness of Si1- x Ge x :B depended on the boron (B) concentration. At low B concentrations, the RMS roughness of Si1- x Ge x remained constant regardless of Ge composition, which is similar to that of undoped Si1- x Ge x . However, at high B concentrations, the RMS roughness of Si1- x Ge x :B increased greatly due to B islanding. In addition, at very high B concentrations ( 9.9 at%), the RMS roughness of Si1- x Ge x :B decreased due to non-epitaxial growth.
Roughness Perception of Haptically Displayed Fractal Surfaces
NASA Technical Reports Server (NTRS)
Costa, Michael A.; Cutkosky, Mark R.; Lau, Sonie (Technical Monitor)
2000-01-01
Surface profiles were generated by a fractal algorithm and haptically rendered on a force feedback joystick, Subjects were asked to use the joystick to explore pairs of surfaces and report to the experimenter which of the surfaces they felt was rougher. Surfaces were characterized by their root mean square (RMS) amplitude and their fractal dimension. The most important factor affecting the perceived roughness of the fractal surfaces was the RMS amplitude of the surface. When comparing surfaces of fractal dimension 1.2-1.35 it was found that the fractal dimension was negatively correlated with perceived roughness.
Measuring Skew in Average Surface Roughness as a Function of Surface Preparation
NASA Technical Reports Server (NTRS)
Stahl, Mark T.
2015-01-01
Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces grinding saving both time and money and allows the science requirements to be better defined. In this study various materials are polished from a fine grind to a fine polish. Each sample's RMS surface roughness is measured at 81 locations in a 9x9 square grid using a Zygo white light interferometer at regular intervals during the polishing process. Each data set is fit with various standard distributions and tested for goodness of fit. We show that the skew in the RMS data changes as a function of polishing time.
Cheap and fast measuring roughness on big surfaces with an imprint method
NASA Astrophysics Data System (ADS)
Schopf, C.; Liebl, J.; Rascher, R.
2017-10-01
Roughness, shape and structure of a surface offer information on the state, shape and surface characteristics of a component. Particularly the roughness of the surface dictates the subsequent polishing of the optical surface. The roughness is usually measured by a white light interferometer, which is limited by the size of the components. Using a moulding method of surfaces that are difficult to reach, an imprint is taken and analysed regarding to roughness and structure. This moulding compound method is successfully used in dental technology. In optical production, the moulding compound method is advantageous in roughness determination in inaccessible spots or on large components (astrological optics). The "replica method" has been around in metal analysis and processing. Film is used in order to take an impression of a surface. Then, it is analysed for structures. In optical production, compound moulding seems advantageous in roughness determination in inaccessible spots or on large components (astrological optics). In preliminary trials, different glass samples with different roughness levels were manufactured. Imprints were taken from these samples (based on DIN 54150 "Abdruckverfahren für die Oberflächenprüfung"). The objective of these feasibility tests was to determine the limits of this method (smallest roughness determinable / highest roughness). The roughness of the imprint was compared with the roughness of the glass samples. By comparing the results, the uncertainty of the measuring method was determined. The spectrum for the trials ranged from rough grind (0.8 μm rms), over finishing grind (0.6 μm rms) to polishing (0.1 μm rms).
Novel MRF fluid for ultra-low roughness optical surfaces
NASA Astrophysics Data System (ADS)
Dumas, Paul; McFee, Charles
2014-08-01
Over the past few years there have been an increasing number of applications calling for ultra-low roughness (ULR) surfaces. A critical demand has been driven by EUV optics, EUV photomasks, X-Ray, and high energy laser applications. Achieving ULR results on complex shapes like aspheres and X-Ray mirrors is extremely challenging with conventional polishing techniques. To achieve both tight figure and roughness specifications, substrates typically undergo iterative global and local polishing processes. Typically the local polishing process corrects the figure or flatness but cannot achieve the required surface roughness, whereas the global polishing process produces the required roughness but degrades the figure. Magnetorheological Finishing (MRF) is a local polishing technique based on a magnetically-sensitive fluid that removes material through a shearing mechanism with minimal normal load, thus removing sub-surface damage. The lowest surface roughness produced by current MRF is close to 3 Å RMS. A new ULR MR fluid uses a nano-based cerium as the abrasive in a proprietary aqueous solution, the combination of which reliably produces under 1.5Å RMS roughness on Fused Silica as measured by atomic force microscopy. In addition to the highly convergent figure correction achieved with MRF, we show results of our novel MR fluid achieving <1.5Å RMS roughness on fused silica and other materials.
Surface roughness effects on bidirectional reflectance
NASA Technical Reports Server (NTRS)
Smith, T. F.; Hering, R. G.
1972-01-01
An experimental study of surface roughness effects on bidirectional reflectance of metallic surfaces is presented. A facility capable of irradiating a sample from normal to grazing incidence and recording plane of incidence bidirectional reflectance measurements was developed. Samples consisting of glass, aluminum alloy, and stainless steel materials were selected for examination. Samples were roughened using standard grinding techniques and coated with a radiatively opaque layer of pure aluminum. Mechanical surface roughness parameters, rms heights and rms slopes, evaluated from digitized surface profile measurements are less than 1.0 micrometers and 0.28, respectively. Rough surface specular, bidirectional, and directional reflectance measurements for selected values of polar angle of incidence and wavelength of incident energy within the spectral range of 1 to 14 micrometers are reported. The Beckmann bidirectional reflectance model is compared with reflectance measurements to establish its usefulness in describing the magnitude and spatial distribution of energy reflected from rough surfaces.
Nanostructures on fused silica surfaces produced by ion beam sputtering with Al co-deposition
NASA Astrophysics Data System (ADS)
Liu, Ying; Hirsch, Dietmar; Fechner, Renate; Hong, Yilin; Fu, Shaojun; Frost, Frank; Rauschenbach, Bernd
2018-01-01
The ion beam sputtering (IBS) of smooth mono-elemental Si with impurity co-deposition is extended to a pre-rippled binary compound surface of fused silica (SiO2). The dependence of the rms roughness and the deposited amount of Al on the distance from the Al source under Ar+ IBS with Al co-deposition was investigated on smooth SiO2, pre-rippled SiO2, and smooth Si surfaces, using atomic force microscopy and X-ray photoelectron spectroscopy. Although the amounts of Al deposited on these three surfaces all decreased with increasing distance from the Al target, the morphology and rms roughness of the smooth Si surface did not demonstrate a strong distance dependence. In contrast to smooth Si, the rms roughness of both the smooth and pre-rippled SiO2 surfaces exhibited a similar distance evolution trend of increasing, decreasing, and final stabilization at the distance where the results were similar to those obtained without Al co-deposition. However, the pre-rippled SiO2 surfaces showed a stronger modulation of rms roughness than the smooth surfaces. At the incidence angles of 60° and 70°, dot-decorated ripples and roof-tiles were formed on the smooth SiO2 surfaces, respectively, whereas nanostructures of closely aligned grains and blazed facets were generated on the pre-rippled SiO2, respectively. The combination of impurity co-deposition with pre-rippled surfaces was found to facilitate the formation of novel types of nanostructures and morphological growth. The initial ripples act as a template to guide the preferential deposition of Al on the tops of the ripples or the ripple sides facing the Al wedge, but not in the valleys between the ripples, leading to 2D grains and quasi-blazed grating, which offer significant promise in optical applications. The rms roughness enhancement is attributed not to AlSi, but to AlOxFy compounds originating mainly from the Al source.
Sensing roughness and polish direction
NASA Astrophysics Data System (ADS)
Jakobsen, M. L.; Olesen, A. S.; Larsen, H. E.; Stubager, J.; Hanson, S. G.; Pedersen, T. F.; Pedersen, H. C.
2016-04-01
As a part of the work carried out on a project supported by the Danish council for technology and innovation, we have investigated the option of smoothing standard CNC machined surfaces. In the process of constructing optical prototypes, involving custom-designed optics, the development cost and time consumption can become relatively large numbers in a research budget. Machining the optical surfaces directly is expensive and time consuming. Alternatively, a more standardized and cheaper machining method can be used, but then the object needs to be manually polished. During the polishing process the operator needs information about the RMS-value of the surface roughness and the current direction of the scratches introduces by the polishing process. The RMS-value indicates to the operator how far he is from the final finish, and the scratch orientation is often specified by the customer in order to avoid complications during the casting process. In this work we present a method for measuring the RMS-values of the surface roughness while simultaneously determining the polishing direction. We are mainly interested in the RMS-values in the range from 0 - 100 nm, which corresponds to the finish categories of A1, A2 and A3. Based on simple intensity measurements we estimates the RMS-value of the surface roughness, and by using a sectioned annual photo-detector to collect the scattered light we can determine the direction of polishing and distinguish light scattered from random structures and light scattered from scratches.
Hong, Hailong; Liu, Qiang; Huang, Lei; Gong, Mali
2013-03-25
We demonstrate the improvement and formation of UV-induced damage on LBO crystal output surface during long-term (130 h) high-power (20 W) high-repetition-rate (80 kHz) third-harmonic generation. The output surface was super-polished (RMS surface roughness <0.6 nm) to sub-nanometer scale super smooth roughness. The surface lifetime has been improved more than 20-fold compared with the as-polished ones (RMS surface roughness 4.0~8.0 nm). The damage could be attributed to the consequence of thermal effects resulted from impurity absorptions. Simultaneously, it was verified that the impurities originated in part from the UV-induced deposition.
Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy.
D'Antò, Vincenzo; Rongo, Roberto; Ametrano, Gianluca; Spagnuolo, Gianrico; Manzo, Paolo; Martina, Roberto; Paduano, Sergio; Valletta, Rosa
2012-09-01
To compare the surface roughness of different orthodontic archwires. Four nickel-titanium wires (Sentalloy(®), Sentalloy(®) High Aesthetic, Titanium Memory ThermaTi Lite(®), and Titanium Memory Esthetic(®)), three β-titanium wires (TMA(®), Colored TMA(®), and Beta Titanium(®)), and one stainless-steel wire (Stainless Steel(®)) were considered for this study. Three samples for each wire were analyzed by atomic force microscopy (AFM). Three-dimensional images were processed using Gwiddion software, and the roughness average (Ra), the root mean square (Rms), and the maximum height (Mh) values of the scanned surface profile were recorded. Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Tukey's post hoc test (P < .05). The Ra, Rms, and Mh values were expressed as the mean ± standard deviation. Among as-received archwires, the Stainless Steel (Ra = 36.6 ± 5.8; Rms = 48 ± 7.7; Mh = 328.1 ± 64) archwire was less rough than the others (ANOVA, P < .05). The Sentalloy High Aesthetic was the roughest (Ra = 133.5 ± 10.8; Rms = 165.8 ± 9.8; Mh = 949.6 ± 192.1) of the archwires. The surface quality of the wires investigated differed significantly. Ion implantation effectively reduced the roughness of TMA. Moreover, Teflon(®)-coated Titanium Memory Esthetic was less rough than was ion-implanted Sentalloy High Aesthetic.
Float polishing of optical materials.
Bennett, J M; Shaffer, J J; Shibano, Y; Namba, Y
1987-02-15
The float-polishing technique has been studied to determine its suitability for producing supersmooth surfaces on optical materials, yielding a roughness of <2 A rms. An attempt was made to polish six different materials including fused quartz, Zerodur, and sapphire. The low surface roughness was achieved on fused quartz, Zerodur, and Corning experimental glass-ceramic materials, and a surface roughness of <1 A rms was obtained on O-cut single-crystal sapphire. Presumably, similar surface finishes can also be obtained on CerVit and ULE quartz, which could not be polished satisfactorily in this set of experiments because of a mismatch between sample mounting and machine configuration.
NASA Astrophysics Data System (ADS)
Peng, W. Q.; Li, Y.; Wang, Z.; Li, S. Y.
2018-01-01
Hydrodynamic effect polishing (HEP), in which the material removal relies on the chemisorption between nanoparticles and the workpiece surface in elastic mode, can realize automatic level smooth surface without surface/subsurface damage. The machinability of different types of optical material (such as monocrystalline silicon and crystalline quartz, amorphous silicate glass, Zerodur and so on) were investigated experimentally. The workpiece surfaces before and after being polished by HEP was observed by atomic force microscopy. The experimental results show the surface roughness of monocrystalline silicon and quartz, amorphous silicate glass have decreased from Rms 0.737nm to Rms 0.175nm, Rms 0.490nm to Rms 0.187nm, Rms 0.469nm to Rms 0.157nm respectively, and meanwhile all the defects and bumpy structures have been removed clearly. However the surface roughness has increased from Rms 0.213nm to Rms 0.321nm with the obvious increment of micro unevenness. By comparison, we can conclude that excellent performance is shown when HEP is applied on the optical material structure with a single monocrystalline or amorphous component. However the ultrasmooth surface cannot be obtained when HEP was applied on the combinational materials such as Zerodur glass. The micro unevenness increases gradually along with polishing process due to the different material removal of the monocrystalline and amorphous component.
2D scaling behavior of nanotextured GaN surfaces: A case study of hillocked and terraced surfaces
NASA Astrophysics Data System (ADS)
Mutta, Geeta Rani; Carapezzi, Stefania
2018-07-01
The 2D scaling properties of GaN surfaces have been studied by means of the 2D height-height correlation function (HHCF). The GaN layers under investigation presented exemplar morphologies, generated by distinct growth methods: a molecular beam epitaxy (MBE) grown surface decorated by hillocks and a metal organic vapor phase epitaxy (MOVPE) grown surface with terraced structure. The 2D statistical analysis of these surfaces has allowed assessing quantitatively the degree of morphological variability along all the different directions across each surface, their corresponding roughness exponents and correlation lengths. A scaling anisotropy as well as correlation length anisotropy has been detected for both hillocked and terraced surfaces. Especially, a marked dependence of correlation length from the direction across the terraced surface has been observed. Additionally, the terraced surfaces showed the lower root mean square (RMS) roughness value and at the same time, the lower roughness exponent value. This could appear as a contradiction, given that a low RMS value is associated to a smooth surface, and usually the roughness exponent is interpreted as a "measure" of the smoothness of the surface, the smoother the surface, the higher (approaching the unity) is the roughness exponent. Our case study is an experimental demonstration in which the roughness exponent should be, more appropriately, interpreted as a quantification of how the roughness changes with length scale.
Choukourov, A; Kylián, O; Petr, M; Vaidulych, M; Nikitin, D; Hanuš, J; Artemenko, A; Shelemin, A; Gordeev, I; Kolská, Z; Solař, P; Khalakhan, I; Ryabov, A; Májek, J; Slavínská, D; Biederman, H
2017-02-16
A layer of 14 nm-sized Ag nanoparticles undergoes complex transformation when overcoated by thin films of a fluorocarbon plasma polymer. Two regimes of surface evolution are identified, both with invariable RMS roughness. In the early regime, the plasma polymer penetrates between and beneath the nanoparticles, raising them above the substrate and maintaining the multivalued character of the surface roughness. The growth (β) and the dynamic (1/z) exponents are close to zero and the interface bears the features of self-affinity. The presence of inter-particle voids leads to heterogeneous wetting with an apparent water contact angle θ a = 135°. The multivalued nanotopography results in two possible positions for the water droplet meniscus, yet strong water adhesion indicates that the meniscus is located at the lower part of the spherical nanofeatures. In the late regime, the inter-particle voids become filled and the interface acquires a single valued character. The plasma polymer proceeds to grow on the thus-roughened surface whereas the nanoparticles keep emerging away from the substrate. The RMS roughness remains invariable and lateral correlations propagate with 1/z = 0.27. The surface features multiaffinity which is given by different evolution of length scales associated with the nanoparticles and with the plasma polymer. The wettability turns to the homogeneous wetting state.
Krishnan, Manu; Saraswathy, Seema; Sukumaran, Kalathil; Abraham, Kurian Mathew
2013-01-01
To evaluate the changes in surface roughness and frictional features of 'ion-implanted nickel titanium (NiTi) and titanium molybdenum alloy (TMA) arch wires' from its conventional types in an in-vitro laboratory set up. 'Ion-implanted NiTi and low friction TMA arch wires' were assessed for surface roughness with scanning electron microscopy (SEM) and 3 dimensional (3D) optical profilometry. Frictional forces were studied in a universal testing machine. Surface roughness of arch wires were determined as Root Mean Square (RMS) values in nanometers and Frictional Forces (FF) in grams. Mean values of RMS and FF were compared by Student's 't' test and one way analysis of variance (ANOVA). SEM images showed a smooth topography for ion-implanted versions. 3D optical profilometry demonstrated reduction of RMS values by 58.43% for ion-implanted NiTi (795.95 to 330.87 nm) and 48.90% for TMA groups (463.28 to 236.35 nm) from controls. Nonetheless, the corresponding decrease in FF was only 29.18% for NiTi and 22.04% for TMA, suggesting partial correction of surface roughness and disproportionate reduction in frictional forces with ion-implantation. Though the reductions were highly significant at P < 0.001, relations between surface roughness and frictional forces remained non conclusive even after ion-implantation. The study proved that ion-implantation can significantly reduce the surface roughness of NiTi and TMA wires but could not make a similar reduction in frictional forces. This can be attributed to the inherent differences in stiffness and surface reactivity of NiTi and TMA wires when used in combination with stainless steel brackets, which needs further investigations.
Yılmaz, K; Uslu, G; Özyürek, T
2018-02-13
To compare the effect of autoclave cycles on the surface topography and roughness of HyFlex CM and HyFlex EDM instruments using atomic force microscopy (AFM) analysis. Eight new files of each brand were subdivided into four subgroups (n = 2/each subgroup). One group was allocated as the control group and not subjected to autoclave sterilization. The other three groups were subjected to different numbers (1, 5, and 10) of autoclave sterilization cycles. After the cycle instruments were subjected to AFM analysis. Roughness average (Ra) and the root mean square (RMS) values were chosen to investigate the surface features of endodontic files. The data was analyzed using one-way ANOVA and post hoc Tamhane tests at 5% significant level. The lowest Ra and RMS values were observed in the HyFlex EDM files that served as the control and in those subjected to a single cycle of autoclave sterilization (P < 0.05). The highest Ra and RMS values were observed in the HyFlex CM and HyFlex EDM files that were subjected to 10 cycles of autoclave sterilization (P < 0.05). The surface roughness values of the HyFlex CM group showed a significant increase after ten autoclave cycles, whereas those of the HyFlex EDM group exhibited a significant change after five autoclave cycles (P < 0.05). Although the initial surface roughness values of the HyFlex EDM files were lower than those of the HyFlex CM files, the surface roughness values of the EDM files showed a statistically significant increase after 5 cycles of autoclave sterilization. In contrast, the surface roughness values of the HyFlex CM files did not increase until 10 cycles of autoclave sterilization. Present study indicated that autoclave sterilization negatively affected the surface roughness of the tested NiTi files.
Development of CFRP mirrors for space telescopes
NASA Astrophysics Data System (ADS)
Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo
2013-09-01
CFRP (Caron fiber reinforced plastics) have superior properties of high specific elasticity and low thermal expansion for satellite telescope structures. However, difficulties to achieve required surface accuracy and to ensure stability in orbit have discouraged CFRP application as main mirrors. We have developed ultra-light weight and high precision CFRP mirrors of sandwich structures composed of CFRP skins and CFRP cores using a replica technique. Shape accuracy of the demonstrated mirrors of 150 mm in diameter was 0.8 μm RMS (Root Mean Square) and surface roughness was 5 nm RMS as fabricated. Further optimization of fabrication process conditions to improve surface accuracy was studied using flat sandwich panels. Then surface accuracy of the flat CFRP sandwich panels of 150 mm square was improved to flatness of 0.2 μm RMS with surface roughness of 6 nm RMS. The surface accuracy vs. size of trial models indicated high possibility of fabrication of over 1m size mirrors with surface accuracy of 1μm. Feasibility of CFRP mirrors for low temperature applications was examined for JASMINE project as an example. Stability of surface accuracy of CFRP mirrors against temperature and moisture was discussed.
Surface roughness scattering of electrons in bulk mosfets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuverink, Amanda Renee
2015-11-01
Surface-roughness scattering of electrons at the Si-SiO 2 interface is a very important consideration when analyzing Si metal-oxide-semiconductor field-effect transistors (MOSFETs). Scattering reduces the mobility of the electrons and degrades the device performance. 250-nm and 50-nm bulk MOSFETs were simulated with varying device parameters and mesh sizes in order to compare the effects of surface-roughness scattering in multiple devices. The simulation framework includes the ensemble Monte Carlo method used to solve the Boltzmann transport equation coupled with a successive over-relaxation method used to solve the two-dimensional Poisson's equation. Four methods for simulating the surface-roughness scattering of electrons were implemented onmore » both devices and compared: the constant specularity parameter, the momentum-dependent specularity parameter, and the real-space-roughness method with both uniform and varying electric fields. The specularity parameter is the probability of an electron scattering speculariy from a rough surface. It can be chosen as a constant, characterizing partially diffuse scattering of all electrons from the surface the same way, or it can be momentum dependent, where the size of rms roughness and the normal component of the electron wave number determine the probability of electron-momentum randomization. The real-space rough surface method uses the rms roughness height and correlation length of an actual MOSFET to simulate a rough interface. Due to their charge, electrons scatter from the electric field and not directly from the surface. If the electric field is kept uniform, the electrons do not perceive the roughness and scatter as if from a at surface. However, if the field is allowed to vary, the electrons scatter from the varying electric field as they would in a MOSFET. These methods were implemented for both the 50-nm and 250-nm MOSFETs, and using the rms roughness heights and correlation lengths for real devices. The current-voltage and mobility-electric field curves were plotted for each method on the two devices and compared. The conclusion is that the specularity-parameter methods are valuable as simple models for relatively smooth interfaces. However, they have limitations, as they cannot accurately describe the drastic reduction in the current and the electron mobility that occur in MOSFETs with very rough Si-SiO 2 interfaces.« less
Wind tunnel model surface gauge for measuring roughness
NASA Technical Reports Server (NTRS)
Vorburger, T. V.; Gilsinn, D. E.; Teague, E. C.; Giauque, C. H. W.; Scire, F. E.; Cao, L. X.
1987-01-01
The optical inspection of surface roughness research has proceeded along two different lines. First, research into a quantitative understanding of light scattering from metal surfaces and into the appropriate models to describe the surfaces themselves. Second, the development of a practical instrument for the measurement of rms roughness of high performance wind tunnel models with smooth finishes. The research is summarized, with emphasis on the second avenue of research.
NASA Astrophysics Data System (ADS)
Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.
2015-10-01
We carried out a series of simulations analyzing the dependence of mirror reflectance, threshold current density, and differential efficiency on the scattering loss caused by the roughness of tin-doped indium oxide (ITO) intracavity contacts for 405 nm flip-chip III-nitride vertical-cavity surface-emitting lasers (VCSELs). From these results, we determined that the ITO root-mean-square (RMS) roughness should be <1 nm to minimize scattering losses in VCSELs. Motivated by this requirement, we investigated the surface morphology and optoelectronic properties of electron-beam (e-beam) evaporated ITO films, as a function of substrate temperature and oxygen flow and pressure. The transparency and conductivity were seen to increase with increasing temperature. Decreasing the oxygen flow and pressure resulted in an increase in the transparency and resistivity. Neither the temperature, nor oxygen flow and pressure series on single-layer ITO films resulted in highly transparent and conductive films with <1 nm RMS roughness. To achieve <1 nm RMS roughness with good optoelectronic properties, a multi-layer ITO film was developed, utilizing a two-step temperature scheme. The optimized multi-layer ITO films had an RMS roughness of <1 nm, along with a high transparency (˜90% at 405 nm) and low resistivity (˜2 × 10-4 Ω-cm). This multi-layer ITO e-beam deposition technique is expected to prevent p-GaN plasma damage, typically observed in sputtered ITO films on p-GaN, while simultaneously reducing the threshold current density and increasing the differential efficiency of III-nitride VCSELs.
NASA Astrophysics Data System (ADS)
Shi, Fan; Lowe, Mike; Craster, Richard
2017-06-01
Elastic waves scattered by random rough interfaces separating two distinct media play an important role in modeling phonon scattering and impact upon thermal transport models, and are also integral to ultrasonic inspection. We introduce theoretical formulas for the diffuse field of elastic waves scattered by, and transmitted across, random rough solid-solid interfaces using the elastodynamic Kirchhoff approximation. The new formulas are validated by comparison with numerical Monte Carlo simulations, for a wide range of roughness (rms σ ≤λ /3 , correlation length λ0≥ wavelength λ ), demonstrating a significant improvement over the widely used small-perturbation approach, which is valid only for surfaces with small rms values. Physical analysis using the theoretical formulas derived here demonstrates that increasing the rms value leads to a considerable change of the scattering patterns for each mode. The roughness has different effects on the reflection and the transmission, with a strong dependence on the material properties. In the special case of a perfect match of the wave speed of the two solid media, the transmission is the same as the case for a flat interface. We pay particular attention to scattering in the specular direction, often used as an observable quantity, in terms of the roughness parameters, showing a peak at an intermediate value of rms; this rms value coincides with that predicted by the Rayleigh parameter.
Colloidal CuInSe2 nanocrystals thin films of low surface roughness
NASA Astrophysics Data System (ADS)
de Kergommeaux, Antoine; Fiore, Angela; Faure-Vincent, Jérôme; Pron, Adam; Reiss, Peter
2013-03-01
Thin-film processing of colloidal semiconductor nanocrystals (NCs) is a prerequisite for their use in (opto-)electronic devices. The commonly used spin-coating is highly materials consuming as the overwhelming amount of deposited matter is ejected from the substrate during the spinning process. Also, the well-known dip-coating and drop-casting procedures present disadvantages in terms of the surface roughness and control of the film thickness. We show that the doctor blade technique is an efficient method for preparing nanocrystal films of controlled thickness and low surface roughness. In particular, by optimizing the deposition conditions, smooth and pinhole-free films of 11 nm CuInSe2 NCs have been obtained exhibiting a surface roughness of 13 nm root mean square (rms) for a 350 nm thick film, and less than 4 nm rms for a 75 nm thick film. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November 2012, Ha Long, Vietnam.
Limits in measurements of contact lens surface profile using atomic force microscopy.
Brygoła, Rafał; Sęk, Sławomir; Sokołowski, Maciej; Kowalczyk-Hernández, Marek; Pniewski, Jacek
2018-05-01
In the paper the results of AFM surface profile measurements of seven new long-wear contact lenses (CL) available in Poland are presented. Calculated statistical roughness parameters are shown, namely standard deviation (RMS), mean roughness, maximum difference between peak and valley, skewness, and kurtosis. It is demonstrated that CLs manufactured using recent methods, such as two-stage polimerisation or extending silicon chains exhibit small RMS, less than 10 nm, in comparison with older generation CLs which maintains RMS on the level of tens of nanometers. Then, a comparison of results obtained using a typical silicon tip and a silicon tip covered with alkylsilane is also demonstrated. As a result, roughness parameters, such as RMS, are higher for the case of alkylsilane-coated tip than for a typical silicon tip, 8.39 ± 0.16 nm vs. 6.22 ± 0.9 nm, which leads to the conclusion that the proper choice of the tip material significantly influences the outcome of the experiment. Finally, the reliability and limits of such measurements are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Optical scattering from rough-rolled aluminum surfaces.
Rönnelid, M; Adsten, M; Lindström, T; Nostell, P; Wäckelgård, E
2001-05-01
Bidirectional, angular resolved scatterometry was used to evaluate the feasibility of using rolled aluminum as reflectors in solar thermal collectors and solar cells. Two types of rolled aluminum with different surface roughnesses were investigated. The results show that the smoother of the two samples [rms height, (0.20 ? 0.02) mum] can be used as a nonimaging, concentrating reflector with moderate reflection losses compared with those of optically smooth aluminum reflectors. The sample with the rougher surface [rms height, (0.6 ? 0.1) mum] is not suitable as a concentrating element but can be used as planar reflectors. The orientation of the rolling grooves is then of importance for minimizing reflection losses in the system.
NASA Astrophysics Data System (ADS)
Forooghi, Pourya; Stroh, Alexander; Schlatter, Philipp; Frohnapfel, Bettina
2018-04-01
Direct numerical simulations are used to investigate turbulent flow in rough channels, in which topographical parameters of the rough wall are systematically varied at a fixed friction Reynolds number of 500, based on a mean channel half-height h and friction velocity. The utilized roughness generation approach allows independent variation of moments of the surface height probability distribution function [thus root-mean-square (rms) surface height, skewness, and kurtosis], surface mean slope, and standard deviation of the roughness peak sizes. Particular attention is paid to the effect of the parameter Δ defined as the normalized height difference between the highest and lowest roughness peaks. This parameter is used to understand the trends of the investigated flow variables with departure from the idealized case where all roughness elements have the same height (Δ =0 ). All calculations are done in the fully rough regime and for surfaces with high slope (effective slope equal to 0.6-0.9). The rms roughness height is fixed for all cases at 0.045 h and the skewness and kurtosis of the surface height probability density function vary in the ranges -0.33 to 0.67 and 1.9 to 2.6, respectively. The goal of the paper is twofold: first, to investigate the possible effect of topographical parameters on the mean turbulent flow, Reynolds, and dispersive stresses particularly in the vicinity of the roughness crest, and second, to investigate the possibility of using the wall-normal turbulence intensity as a physical parameter for parametrization of the flow. Such a possibility, already suggested for regular roughness in the literature, is here extended to irregular roughness.
Influence of Roughness-Induced Slip on Colloid Transport: Experimental and Modelling Insights
NASA Astrophysics Data System (ADS)
Rasmuson, J. A.; Johnson, W. P.
2017-12-01
A limitation of classic colloid filtration theory is that it applies only to smooth surfaces, yet most natural surfaces present some degree of nano- to micro-scale roughness. A large volume of research has been dedicated to understanding the effects of roughness on particle attachment at the nano-scale since these interactions dictate field scale transport behavior. It has been previously demonstrated that roughness imposes a finite slip vector at the surface that causes particles to experience higher near-surface velocities than would be expected over a smooth surface. Slip near a rough surface can affect two primary mechanisms of particle attenuation: 1) interception of the surface (finding a landing spot) and 2) arrest on the surface (sticking the landing). However, a clear designation on how slip affects particle transport near rough surfaces is missing. The goal of this study was to provide a guide for the height of the slip layer and contact surface in reference to the mean-plane for rough surfaces. Direct observation was used to measure near-surface velocities of particles translating near surfaces of varying roughness spanning three orders of magnitude. The influence of roughness on particle transport was investigated using computational fluid dynamics (CFD) modeling with rough surfaces measured with atomic force microscopy (AFM). The CFD and experimental results were used to calibrate a Lagrangian particle transport model that utilizes simple modifications to the flow field for a smooth surface using statistically based roughness parameters. Advantages of the Lagrangian model are significantly decreased computation times and applicability to a wide range of natural surfaces without explicitly simulating individual asperities. The results suggest that the no-slip boundary should be placed at the bottom of the maximum asperity valleys, and that the contact surface should be placed at the root mean square (RMS) roughness above the mean plane. Collector surfaces with the greatest RMS roughness had the highest sensitivity to the placement of the contact surface. These findings highlight the need for accurate and representative AFM measurements and have important implications for future transport models.
Lava flow topographic measurements for radar data interpretation
NASA Technical Reports Server (NTRS)
Campbell, Bruce A.; Garvin, James B.
1993-01-01
Topographic profiles at 25- and 5-cm horizontal resolution for three sites along a lava flow on Kilauea Volcano are presented, and these data are used to illustrate techniques for surface roughness analysis. Height and slope distributions and the height autocorrelation function are evaluated as a function of varying lowpass filter wavelength for the 25-cm data. Rms slopes are found to increase rapidly with decreasing topographic scale and are typically much higher than those found by modeling of Magellan altimeter data for Venus. A more robust description of the surface roughness appears to be the ratio of rms height to surface height correlation length. For all three sites this parameter falls within the range of values typically found from model fits to Magellan altimeter waveforms. The 5-cm profile data are used to estimate the effect of small-scale roughness on quasi-specular scattering.
Stock, H J; Hamelmann, F; Kleineberg, U; Menke, D; Schmiedeskamp, B; Osterried, K; Heidemann, K F; Heinzmann, U
1997-03-01
Zerodur and BK7 glass substrates (developed by Fa. Glaswerke Schott, D-55014 Mainz, Germany) from Carl Zeiss Oberkochen polished to a standard surface roughness of varsigma = 0.8 nm rms were coated with a C layer by electron-beam evaporation in the UHV. The roughness of the C-layer surfaces is reduced to 0.6 nm rms. A normal-incidence reflectance of 50% at a wavelength of 13 nm was measured for a Mo/Si multilayer soft-x-ray mirror with 30 double layers (N = 30) deposited onto the BK7/C substrate, whereas a similar Mo/Si multilayer (N = 30) evaporated directly onto the bare BK7 surface turned out to show a reflectance of only 42%.
Pt thermal atomic layer deposition for silicon x-ray micropore optics.
Takeuchi, Kazuma; Ezoe, Yuichiro; Ishikawa, Kumi; Numazawa, Masaki; Terada, Masaru; Ishi, Daiki; Fujitani, Maiko; Sowa, Mark J; Ohashi, Takaya; Mitsuda, Kazuhisa
2018-04-20
We fabricated a silicon micropore optic using deep reactive ion etching and coated by Pt with atomic layer deposition (ALD). We confirmed that a metal/metal oxide bilayer of Al 2 O 3 ∼10 nm and Pt ∼20 nm was successfully deposited on the micropores whose width and depth are 20 μm and 300 μm, respectively. An increase of surface roughness of sidewalls of the micropores was observed with a transmission electron microscope and an atomic force microscope. X-ray reflectivity with an Al Kα line at 1.49 keV before and after the deposition was measured and compared to ray-tracing simulations. The surface roughness of the sidewalls was estimated to increase from 1.6±0.2 nm rms to 2.2±0.2 nm rms. This result is consistent with the microscope measurements. Post annealing of the Pt-coated optic at 1000°C for 2 h showed a sign of reduced surface roughness and better angular resolution. To reduce the surface roughness, possible methods such as the annealing after deposition and a plasma-enhanced ALD are discussed.
Annealing effects on electron-beam evaporated Al 2O 3 films
NASA Astrophysics Data System (ADS)
Shuzhen, Shang; Lei, Chen; Haihong, Hou; Kui, Yi; Zhengxiu, Fan; Jianda, Shao
2005-04-01
The effects of post-deposited annealing on structure and optical properties of electron-beam evaporated Al 2O 3 single layers were investigated. The films were annealed in air for 1.5 h at different temperatures from 250 to 400 °C. The optical constants and cut-off wavelength were deduced. Microstructure of the samples was characterized by X-ray diffraction (XRD). Profile and surface roughness measurement instrument was used to determine the rms surface roughness. It was found that the cut-off wavelength shifted to short wavelength as the annealing temperature increased and the total optical loss decreased. The film structure remained amorphous even after annealing at 400 °C temperature and the samples annealed at higher temperature had the higher rms surface roughness. The decreasing total optical loss with annealing temperature was attributed to the reduction of absorption owing to oxidation of the film by annealing. Guidance to reduce the optical loss of excimer laser mirrors was given.
Measuring Nanoscale Heat Transfer for Gold-(Gallium Oxide)-Gallium Nitride Interfaces as a Function
NASA Astrophysics Data System (ADS)
Szwejkowski, Chester; Sun, Kai; Constantin, Costel; Giri, Ashutosh; Saltonstall, Christopher; Hopkins, Patrick; NanoSynCh Team; Exsite Team
2014-03-01
Gallium nitride (GaN) is considered the most important semiconductor after the discovery of Silicon. Understanding the properties of GaN is imperative in determining the utility and applicability of this class of materials to devices. We present results of time domain thermoreflectance (TDTR) measurements as a function of surface root mean square (RMS) roughness. We used commercially available 5mm x 5mm, single-side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a Wurtzite crystal structure and are slightly n-type doped. The GaN substrates were annealed in the open atmosphere for 10 minutes (900-1000 °C). This high-temperature treatment produced RMS values from 1-60 nm and growth of gallium oxide (GaO) as measured with an atomic force microscopy and transmission electron microscopy respectively. A gold film (80nm) was deposited on the GaN surface using electron beam physical vapor deposition which was verified using ellipsometry and profilometry. The TDTR measurements suggest that the thermal conductivity decays exponentially with RMS roughness and that there is a minimum value for thermal boundary conductance at a roughness of 15nm.
Methods for the quantification of pseudo-vibration sensitivities in laser vibrometry
NASA Astrophysics Data System (ADS)
Martin, P.; Rothberg, S. J.
2011-03-01
Pseudo-vibration sensitivities in laser vibrometry are the consequence of measurement noise generated by surface motions other than that on-axis with the incident laser beam(s), such as transverse and tilt vibrations or rotation. On rougher surfaces, laser speckle is the cause but similar noise is observed in measurements from smoother surfaces. This paper's principal aim is to introduce two experimental methods for quantification, including dedicated data processing, to deliver sensitivities in three forms: a spectral map, a mean level per order and a total rms level. Single and parallel beam vibrometers and different surface roughness or treatment are accommodated, with sensitivities presented for two commercial instruments (beam diameters 90 and 520 µm). For transverse sensitivity, a total rms level around 0.05% is found for the larger beam, a quarter of the level for the smaller beam. For tilt sensitivity, advantage shifts to the smaller beam with a total rms level around 0.45 µm s-1/deg s-1, less than one-third of that for the larger beam. Levels hold fairly constant across the rougher surfaces, reducing only for a polished surface. For rotation sensitivities (radial vibrations), advantage remains with the smaller beam with a total rms level around 2 µm s-1/deg s-1, compared to 5 µm s-1/deg s-1 for the larger beam, while sensitivity reduces with diminishing roughness. These sensitivities are especially valuable to vibrometer users in instrumentation selection and data analysis.
The surface roughness of (433) Eros as measured by thermal-infrared beaming
NASA Astrophysics Data System (ADS)
Rozitis, B.
2017-01-01
In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (I.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (I.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an `almost pole-on' illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterized by an rms slope of 38 ± 8° at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the rms slope of 25 ± 5° implied by the NEAR Shoemaker laser ranging results when extrapolated to this spatial scale, and indicates that other surface shaping processes might operate, in addition to collisions and gravity, at spatial scales under one metre in order to make asteroid surfaces rougher. For other high-obliquity asteroids observed during `pole-on' illumination conditions, the thermal-infrared beaming effect allows surface roughness to be constrained when the sub-solar latitude is greater than 60°, and if the asteroids are observed at phase angles of less than 40°. They will likely exhibit near-Earth asteroid thermal model beaming parameters that are lower than expected for a typical asteroid at all phase angles up to 100°.
Inversion of surface parameters using fast learning neural networks
NASA Technical Reports Server (NTRS)
Dawson, M. S.; Olvera, J.; Fung, A. K.; Manry, M. T.
1992-01-01
A neural network approach to the inversion of surface scattering parameters is presented. Simulated data sets based on a surface scattering model are used so that the data may be viewed as taken from a completely known randomly rough surface. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) are tested on the simulated backscattering data. The RMS error of training the FL network is found to be less than one half the error of the BP network while requiring one to two orders of magnitude less CPU time. When applied to inversion of parameters from a statistically rough surface, the FL method is successful at recovering the surface permittivity, the surface correlation length, and the RMS surface height in less time and with less error than the BP network. Further applications of the FL neural network to the inversion of parameters from backscatter measurements of an inhomogeneous layer above a half space are shown.
Surface Roughness of the Moon Derived from Multi-frequency Radar Data
NASA Astrophysics Data System (ADS)
Fa, W.
2011-12-01
Surface roughness of the Moon provides important information concerning both significant questions about lunar surface processes and engineering constrains for human outposts and rover trafficabillity. Impact-related phenomena change the morphology and roughness of lunar surface, and therefore surface roughness provides clues to the formation and modification mechanisms of impact craters. Since the Apollo era, lunar surface roughness has been studied using different approaches, such as direct estimation from lunar surface digital topographic relief, and indirect analysis of Earth-based radar echo strengths. Submillimeter scale roughness at Apollo landing sites has been studied by computer stereophotogrammetry analysis of Apollo Lunar Surface Closeup Camera (ALSCC) pictures, whereas roughness at meter to kilometer scale has been studied using laser altimeter data from recent missions. Though these studies shown lunar surface roughness is scale dependent that can be described by fractal statistics, roughness at centimeter scale has not been studied yet. In this study, lunar surface roughnesses at centimeter scale are investigated using Earth-based 70 cm Arecibo radar data and miniature synthetic aperture radar (Mini-SAR) data at S- and X-band (with wavelengths 12.6 cm and 4.12 cm). Both observations and theoretical modeling show that radar echo strengths are mostly dominated by scattering from the surface and shallow buried rocks. Given the different penetration depths of radar waves at these frequencies (< 30 m for 70 cm wavelength, < 3 m at S-band, and < 1 m at X-band), radar echo strengths at S- and X-band will yield surface roughness directly, whereas radar echo at 70-cm will give an upper limit of lunar surface roughness. The integral equation method is used to model radar scattering from the rough lunar surface, and dielectric constant of regolith and surface roughness are two dominate factors. The complex dielectric constant of regolith is first estimated globally using the regolith composition and the relation among the dielectric constant, bulk density, and regolith composition. The statistical properties of lunar surface roughness are described by the root mean square (RMS) height and correlation length, which represent the vertical and horizontal scale of the roughness. The correlation length and its scale dependence are studied using the topography data from laser altimeter observations from recent lunar missions. As these two parameters are known, surface roughness (RMS slope) can be estimated by minimizing the difference between the observed and modeled radar echo strength. Surface roughness of several regions over Oceanus Procellarum and southeastern highlands on lunar nearside are studied, and preliminary results show that maira is smoother than highlands at 70 cm scale, whereas the situation turns opposite at 12 and 4 cm scale. Surface roughness of young craters is in general higher than that of maria and highlands, indicating large rock population produced during impacting process.
NASA Astrophysics Data System (ADS)
Grima, Cyril; Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.
2014-11-01
The potential for a nadir-looking radar sounder to retrieve significant surface roughness/permittivity information valuable for planetary landing site selection is demonstrated using data from an airborne survey of the Thwaites Glacier Catchment, West Antarctica using the High Capability Airborne Radar Sounder (HiCARS). The statistical method introduced by Grima et al. (2012. Icarus 220, 84-99. http://dx.doi.org/10.1007/s11214-012-9916-y) for surface characterization is applied systematically along the survey flights. The coherent and incoherent components of the surface signal, along with an internally generated confidence factor, are extracted and mapped in order to show how a radar sounder can be used as both a reflectometer and a scatterometer to identify regions of low surface roughness compatible with a planetary lander. These signal components are used with a backscattering model to produce a landing risk assessment map by considering the following surface properties: Root mean square (RMS) heights, RMS slopes, roughness homogeneity/stationarity over the landing ellipse, and soil porosity. Comparing these radar-derived surface properties with simultaneously acquired nadir-looking imagery and laser-altimetry validates this method. The ability to assess all of these parameters with an ice penetrating radar expands the demonstrated capability of a principle instrument in icy planet satellite science to include statistical reconnaissance of the surface roughness to identify suitable sites for a follow-on lander mission.
Adsorption of silica colloids onto like-charged silica surfaces of different roughness
Dylla-Spears, R.; Wong, L.; Shen, N.; ...
2017-01-17
Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less
NASA Astrophysics Data System (ADS)
Marzahn, P.; Ludwig, R.
2016-06-01
In this Paper the potential of multi parametric polarimetric SAR (PolSAR) data for soil surface roughness estimation is investigated and its potential for hydrological modeling is evaluated. The study utilizes microwave backscatter collected from the Demmin testsite in the North-East Germany during AgriSAR 2006 campaign using fully polarimetric L-Band airborne SAR data. For ground truthing extensive soil surface roughness in addition to various other soil physical properties measurements were carried out using photogrammetric image matching techniques. The correlation between ground truth roughness indices and three well established polarimetric roughness estimators showed only good results for Re[ρRRLL] and the RMS Height s. Results in form of multitemporal roughness maps showed only satisfying results due to the fact that the presence and development of particular plants affected the derivation. However roughness derivation for bare soil surfaces showed promising results.
Cai, J-J; Tang, X-N; Ge, J-Y
2017-07-01
To investigate the effect of irrigation on the surface roughness and fatigue resistance of HyFlex and M3 controlled memory (CM) wire nickel-titanium instruments. Two new files of each brand were analysed by atomic force microscopy (AFM). Then, the instruments were dynamically immersed in either 5.25% sodium hypochlorite (NaOCl) or 17% ethylene diamine tetraacetic acid (EDTA) solution for 10 min, followed by AFM analysis. The roughness average (Ra) and root mean square (RMS) values were analysed statistically using an independent sample t-test. Then, 36 files of each brand were randomly assigned to three groups (n = 12). Group 1 (the control group) was composed of new instruments. Groups 2 and 3 were dynamically immersed in 5.25% NaOCl and 17% EDTA solutions for 10 min, respectively. The number of rotations to failure for various groups was analysed using the one-way analysis of variance software. For M3 files, the Ra and RMS values significantly increased (P < 0.05) after the immersion. For the HyFlex file, the Ra and RMS values significantly increased (P < 0.05) only in EDTA, but not (P > 0.05) NaOCl. The resistance to cyclic fatigue of both HyFlex and M3 files did not significantly decrease (P > 0.05) by immersing in 5.25% NaOCl and 17% EDTA solutions. Except the HyFlex files immersed in NaOCl, the surface roughness of other files exposed to irrigants increased. However, a change in the surface tomography of CM wire instruments caused by contact with irrigants for 10 min did not trigger a decrease in cyclic fatigue resistance. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
RF plasma based selective modification of hydrophilic regions on super hydrophobic surface
NASA Astrophysics Data System (ADS)
Lee, Jaehyun; Hwang, Sangyeon; Cho, Dae-Hyun; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung
2017-02-01
Selective modification and regional alterations of the surface property have gained a great deal of attention to many engineers. In this paper, we present a simple, a cost-effective, and amendable reforming method for disparate patterns of hydrophilic regions on super-hydrophobic surfaces. Uniform super-hydrophobic layer (Contact angle; CA > 150°, root mean square (RMS) roughness ∼0.28 nm) can be formed using the atmospheric radio frequency (RF) plasma on top of the selective hydrophilic (CA ∼ 70°, RMS roughness ∼0.34 nm) patterns imprinted by electrohydrodynamic (EHD) jet printing technology with polar alcohols (butyl carbitol or ethanol). The wettability of the modified surface was investigated qualitatively utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), and wavelength scanning interferometer (WSI). Secondary ion mass spectroscopy (SIMS) analysis showed that the alcohol addiction reaction changed the types of radicals on the super-hydrophobic surface. The wettability was found to depend sensitively on chemical radicals on the surface, not on surface morphology (particle size and surface roughness). Furthermore, three different kinds of representative hydrophilic samples (polystyrene nano-particle aqueous solution, Salmonella bacteria medium, and poly(3,4-ethylenediocythiophene) ink) were tested for uniform deposition onto the desired hydrophilic regions. This simple strategy would have broad applications in various research fields that require selective deposition of target materials.
Quantitative evaluation of performance of three-dimensional printed lenses
NASA Astrophysics Data System (ADS)
Gawedzinski, John; Pawlowski, Michal E.; Tkaczyk, Tomasz S.
2017-08-01
We present an analysis of the shape, surface quality, and imaging capabilities of custom three-dimensional (3-D) printed lenses. 3-D printing technology enables lens prototypes to be fabricated without restrictions on surface geometry. Thus, spherical, aspherical, and rotationally nonsymmetric lenses can be manufactured in an integrated production process. This technique serves as a noteworthy alternative to multistage, labor-intensive, abrasive processes, such as grinding, polishing, and diamond turning. Here, we evaluate the quality of lenses fabricated by Luxexcel using patented Printoptical©; technology that is based on an inkjet printing technique by comparing them to lenses made with traditional glass processing technologies (grinding, polishing, etc.). The surface geometry and roughness of the lenses were evaluated using white-light and Fizeau interferometers. We have compared peak-to-valley wavefront deviation, root mean square (RMS) wavefront error, radii of curvature, and the arithmetic roughness average (Ra) profile of plastic and glass lenses. In addition, the imaging performance of selected pairs of lenses was tested using 1951 USAF resolution target. The results indicate performance of 3-D printed optics that could be manufactured with surface roughness comparable to that of injection molded lenses (Ra<20 nm). The RMS wavefront error of 3-D printed prototypes was at a minimum 18.8 times larger than equivalent glass prototypes for a lens with a 12.7 mm clear aperture, but, when measured within 63% of its clear aperture, the 3-D printed components' RMS wavefront error was comparable to glass lenses.
Multiscale Modeling of Stiffness, Friction and Adhesion in Mechanical Contacts
2012-02-29
over a lateral length l scales as a power law: h lH, where H is called the Hurst exponent . For typical experimental surfaces, H ranges from 0.5 to 0.8...surfaces with a wide range of Hurst exponents using fully atomistic calculations and the Green’s function method. A simple relation like Eq. (2...described above to explore a full range of parameter space with different rms roughness h0, rms slope h’0, Hurst exponent H, adhesion energy
NASA Technical Reports Server (NTRS)
Chow, L. S. H.; Cheng, H. S.
1976-01-01
The Christensen theory of a stochastic model for hydrodynamic lubrication of rough surfaces was extended to elastohydrodynamic lubrication between two rollers. Solutions for the reduced pressure at the entrance as a function of the ratio of the average nominal film thickness to the rms surface roughness, were obtained numerically. Results were obtained for purely transverse as well as purely longitudinal surface roughness for cases with or without slip. The reduced pressure was shown to decrease slightly by considering longitudinal surface roughness. The same approach was used to study the effect of surface roughness on lubrication between rigid rollers and lubrication of an infinitely wide slider bearing. Using the flow balance concept, the perturbed Reynolds equation, was derived and solved for the perturbed pressure distribution. In addition, Cheng's numerical scheme was modified to incorporate a single two-dimensional elastic asperity on the stationary surface. The perturbed pressures obtained by these three different models were compared.
NASA Technical Reports Server (NTRS)
Li, C. J.; Devries, W. R.; Ludema, K. C.
1983-01-01
Measurements made with a stylus surface tracer which provides a digitized representation of a surface profile are discussed. Parameters are defined to characterize the height (e.g., RMS roughness, skewness, and kurtosis) and length (e.g., autocorrelation) of the surface topography. These are applied to the characterization of crank shaft journals which were manufactured by different grinding and lopping procedures known to give significant differences in crank shaft bearing life. It was found that three parameters (RMS roughness, skewness, and kurtosis) are necessary to adequately distinguish the character of these surfaces. Every surface specimen has a set of values for these three parameters. They can be regarded as a set coordinate in a space constituted by three characteristics axes. The various journal surfaces can be classified along with the determination of a proper wavelength cutoff (0.25 mm) by using a method of separated subspace. The finite radius of the stylus used for profile tracing gives an inherent measurement error as it passes over the fine structure of the surface. A mathematical model is derived to compensate for this error.
Effect of drop volume and surface statistics on the superhydrophobicity of randomly rough substrates
NASA Astrophysics Data System (ADS)
Afferrante, L.; Carbone, G.
2018-01-01
In this paper, a simple theoretical approach is developed with the aim of evaluating shape, interfacial pressure, apparent contact angle and contact area of liquid drops gently deposed on randomly rough surfaces. This method can be useful to characterize the superhydrophobic properties of rough substrates, and to investigate the contact behavior of impacting drops. We assume that (i) the size of the apparent liquid-solid contact area is much larger than the micromorphology of the substrate, and (ii) a composite interface is always formed at the microscale. Results show apparent contact angle and liquid-solid area fraction are slightly influenced by the drop volume only at relatively high values of the root mean square roughness h rms, whereas the effect of volume is practically negligible at small h rms. The main statistical quantity affecting the superhydrophobic properties is found to be the Wenzel roughness parameter r W, which depends on the average slope of the surface heights. Moreover, transition from the Cassie-Baxter state to the Wenzel one is observed when r W reduces below a certain critical value, and theoretical predictions are found to be in good agreement with experimental data. Finally, the present method can be conveniently exploited to evaluate the occurrence of pinning phenomena in the case of impacting drops, as the Wenzel critical pressure for liquid penetration gives an estimation of the maximum impact pressure tolerated by the surface without pinning occurring.
NASA Astrophysics Data System (ADS)
Palmer, E. M.; Heggy, E.; Kofman, W. W.
2016-12-01
The first orbital bistatic radar experiment was conducted by Dawn at Asteroid Vesta, where Dawn's HGA was used to transmit X-band radio waves and Earth's Deep Space Network (DSN) 70-meter antennas were used to receive. Due to the opportunistic nature of the experiment, the HGA remained in a fixed orientation toward the Earth such that surface radar reflections occurred at grazing incidence angles of 89° just before and after Dawn's occultation behind Vesta. Among the 16 observed echo sites, we find that σ0ranges from -12 dB to -20 dB and has corresponding RMS slopes ranging from 1°- 8°. To assess potential volatile presence, we compare the distribution of RMS slopes to subsurface hydrogen concentrations observed by Dawn's Gamma Ray and Neutron Detector (GRaND) to 1 m depth. While Vesta's surface is thought to have been largely depleted of volatiles during its differentiation, observations by Dawn'sGRaND and VIR instruments suggest the potential introduction of hydrated material through meteoritic impacts. We identify seven sites of potential volatile occurrence—where low roughness (<5°) is observed to be coupled with high content of hydrated materials (0.025 - 0.04 wt%). Such sites support the possibility of volatile presence, as the regolith should otherwise be particularly rough in the absence of smoothening processes such as the melting, run-off and recrystallization of water ice after an impact. The sites correspond to occultation entry orbit numbers 635, 644 and 719—which overlap Divalia Fossae, Marcia crater ejecta and Octavia crater, respectively—and exit orbit numbers 377, 406, 407 and 720—overlapping northern cratered trough terrain, dark material near Aruntia crater and the cratered highlands. Toward comparing volatile occurrence on other small bodies, Dawn'sBSR experiment at Asteroid Ceres raises new questions. How does the range of decimeter-scale RMS slopes compare with Vesta's surface? How well does the distribution of RMS slopes correlate with GRaND's map of subsurface hydrogen concentration? In addition to optimizing future missions' landing and surface trafficability, characterizing small body surface roughness using BSR will enable further investigation into the relationship between volatile presence and decimeter-scale surface roughness.
Chemical method for producing smooth surfaces on silicon wafers
Yu, Conrad
2003-01-01
An improved method for producing optically smooth surfaces in silicon wafers during wet chemical etching involves a pre-treatment rinse of the wafers before etching and a post-etching rinse. The pre-treatment with an organic solvent provides a well-wetted surface that ensures uniform mass transfer during etching, which results in optically smooth surfaces. The post-etching treatment with an acetic acid solution stops the etching instantly, preventing any uneven etching that leads to surface roughness. This method can be used to etch silicon surfaces to a depth of 200 .mu.m or more, while the finished surfaces have a surface roughness of only 15-50 .ANG. (RMS).
Relating Vegetation Aerodynamic Roughness Length to Interferometric SAR Measurements
NASA Technical Reports Server (NTRS)
Saatchi, Sassan; Rodriquez, Ernesto
1998-01-01
In this paper, we investigate the feasibility of estimating aerodynamic roughness parameter from interferometric SAR (INSAR) measurements. The relation between the interferometric correlation and the rms height of the surface is presented analytically. Model simulations performed over realistic canopy parameters obtained from field measurements in boreal forest environment demonstrate the capability of the INSAR measurements for estimating and mapping surface roughness lengths over forests and/or other vegetation types. The procedure for estimating this parameter over boreal forests using the INSAR data is discussed and the possibility of extending the methodology over tropical forests is examined.
Pinel, Nicolas; Bourlier, Christophe; Saillard, Joseph
2005-08-01
Energy conservation of the scattering from one-dimensional strongly rough dielectric surfaces is investigated using the Kirchhoff approximation with single reflection and by taking the shadowing phenomenon into account, both in reflection and transmission. In addition, because no shadowing function in transmission exists in the literature, this function is presented here in detail. The model is reduced to the high-frequency limit (or geometric optics). The energy conservation criterion is investigated versus the incidence angle, the permittivity of the lower medium, and the surface rms slope.
NASA Technical Reports Server (NTRS)
Schroeder, Lyle C.; Bailey, M. C.; Mitchell, John L.
1992-01-01
Methods for increasing the electromagnetic (EM) performance of reflectors with rough surfaces were tested and evaluated. First, one quadrant of the 15-meter hoop-column antenna was retrofitted with computer-driven and controlled motors to allow automated adjustment of the reflector surface. The surface errors, measured with metric photogrammetry, were used in a previously verified computer code to calculate control motor adjustments. With this system, a rough antenna surface (rms of approximately 0.180 inch) was corrected in two iterations to approximately the structural surface smoothness limit of 0.060 inch rms. The antenna pattern and gain improved significantly as a result of these surface adjustments. The EM performance was evaluated with a computer program for distorted reflector antennas which had been previously verified with experimental data. Next, the effects of the surface distortions were compensated for in computer simulations by superimposing excitation from an array feed to maximize antenna performance relative to an undistorted reflector. Results showed that a 61-element array could produce EM performance improvements equal to surface adjustments. When both mechanical surface adjustment and feed compensation techniques were applied, the equivalent operating frequency increased from approximately 6 to 18 GHz.
NASA Astrophysics Data System (ADS)
Jiang, Xiaolong; Zhang, Lijuan; Bai, Yang; Liu, Ying; Liu, Zhengkun; Qiu, Keqiang; Liao, Wei; Zhang, Chuanchao; Yang, Ke; Chen, Jing; Jiang, Yilan; Yuan, Xiaodong
2017-07-01
In this work, we experimentally investigate the surface nano-roughness during the inductively coupled plasma etching of fused silica, and discover a novel bi-stage time evolution of surface nano-morphology. At the beginning, the rms roughness, correlation length and nano-mound dimensions increase linearly and rapidly with etching time. At the second stage, the roughening process slows down dramatically. The switch of evolution stage synchronizes with the morphological change from dual-scale roughness comprising long wavelength underlying surface and superimposed nano-mounds to one scale of nano-mounds. A theoretical model based on surface morphological change is proposed. The key idea is that at the beginning, etched surface is dual-scale, and both larger deposition rate of etch inhibitors and better plasma etching resistance at the surface peaks than surface valleys contribute to the roughness development. After surface morphology transforming into one-scale, the difference of plasma resistance between surface peaks and valleys vanishes, thus the roughening process slows down.
Optical surface evaluation by soft X-ray scattering
NASA Technical Reports Server (NTRS)
Green, James C.; Finley, David S.; Bowyer, Stuart; Malina, Roger F.
1986-01-01
During the fabrication of the mirrors for the Extreme Ultraviolet Explorer (EUVE), methods for evaluating the surface quality of the optics have been developed. Measurement of soft X-ray scattering profiles allows for the determination of the surface roughness and correlation lengths for highly polished metal surfaces. With this method, the surface parameters for one of the Wolter Schwarzschild type I mirrors that had been fabricated for the EUVE mission have been determined. The techniques employed, the theoretical basis for the method, and the data that had been taken are presented. The measurements show that the best mirrors have a surface roughness of 20A rms or less.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dylla-Spears, R.; Wong, L.; Shen, N.
Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less
Spin Hall effect originated from fractal surface
NASA Astrophysics Data System (ADS)
Hajzadeh, I.; Mohseni, S. M.; Movahed, S. M. S.; Jafari, G. R.
2018-05-01
The spin Hall effect (SHE) has shown promising impact in the field of spintronics and magnonics from fundamental and practical points of view. This effect originates from several mechanisms of spin scatterers based on spin–orbit coupling (SOC) and also can be manipulated through the surface roughness. Here, the effect of correlated surface roughness on the SHE in metallic thin films with small SOC is investigated theoretically. Toward this, the self-affine fractal surface in the framework of the Born approximation is exploited. The surface roughness is described by the k-correlation model and is characterized by the roughness exponent H , the in-plane correlation length ξ and the rms roughness amplitude δ. It is found that the spin Hall angle in metallic thin film increases by two orders of magnitude when H decreases from H = 1 to H = 0. In addition, the source of SHE for surface roughness with Gaussian profile distribution function is found to be mainly the side jump scattering while that with a non-Gaussian profile suggests both of the side jump and skew scatterings are present. Our achievements address how details of the surface roughness profile can adjust the SHE in non-heavy metals.
NASA Astrophysics Data System (ADS)
Barros, Julio; Schultz, Michael; Flack, Karen
2016-11-01
Engineering systems are affected by surface roughness which cause an increase in drag leading to significant performance penalties. One important question is how to predict frictional drag purely based upon surface topography. Although significant progress has been made in recent years, this has proven to be challenging. The present work takes a systematic approach by generating surface roughness in which surfaces parameters, such as rms , skewness, can be controlled. Surfaces were produced using the random Fourier modes method with enforced power-law spectral slopes. The surfaces were manufactured using high resolution 3D-printing. In this study three surfaces with constant amplitude and varying slope, P, were investigated (P = - 0 . 5 , - 1 . 0 , - 1 . 5). Skin-friction measurements were conducted in a high Reynolds number turbulent channel flow facility, covering a wide range of Reynolds numbers, from hydraulic-smooth to fully-rough regimes. Results show that some long wavelength roughness scales do not contribute significantly to the frictional drag, thus highlighting the need for filtering in the calculation of surface statistics. Upon high-pass filtering, it was found that krms is highly correlated with the measured ks.
Validation of SMAP Radar Vegetation Data Cubes from Agricultural Field Measurements
NASA Astrophysics Data System (ADS)
Tsang, L.; Xu, X.; Liao, T.; Kim, S.; Njoku, E. G.
2012-12-01
The NASA Soil Moisture Active/Passive (SMAP) Mission will be launched in October 2014. The objective of the SMAP mission is to provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. In the active algorithm, the retrieval is performed based on the backscattering data cube, which are characterized by two surface parameters, which are soil moisture and soil surface rms height, and one vegetation parameter, the vegetation water content. We have developed a physical-based forward scattering model to generate the data cube for agricultural fields. To represent the agricultural crops, we include a layer of cylinders and disks on top of the rough surface. The scattering cross section of the vegetation layer and its interaction with the underground soil surface were calculated by the distorted Born approximation, which give explicitly three scattering mechanisms. A) The direct volume scattering B) The double bounce effect as, and C) The double bouncing effects. The direct volume scattering is calculated by using the Body of Revolution code. The double bounce effects, exhibited by the interaction of rough surface with the vegetation layer is considered by modifying the rough surface reflectivity using the coherent wave as computed by Numerical solution of Maxwell equations of 3 Dimensional simulations (NMM3D) of bare soil scattering. The rough surface scattering of the soil was calculated by NMM3D. We have compared the physical scattering models with field measurements. In the field campaign, the measurements were made on soil moisture, rough surface rms heights and vegetation water content as well as geometric parameters of vegetation. The three main crops lands are grassland, cornfield and soybean fields. The corresponding data cubes are validated using SGP99, SMEX02 and SMEX 08 field experiments.
High quality optically polished aluminum mirror and process for producing
NASA Technical Reports Server (NTRS)
Lyons, III, James J. (Inventor); Zaniewski, John J. (Inventor)
2005-01-01
A new technical advancement in the field of precision aluminum optics permits high quality optical polishing of aluminum monolith, which, in the field of optics, offers numerous benefits because of its machinability, lightweight, and low cost. This invention combines diamond turning and conventional polishing along with india ink, a newly adopted material, for the polishing to accomplish a significant improvement in surface precision of aluminum monolith for optical purposes. This invention guarantees the precise optical polishing of typical bare aluminum monolith to surface roughness of less than about 30 angstroms rms and preferably about 5 angstroms rms while maintaining a surface figure accuracy in terms of surface figure error of not more than one-fifteenth of wave peak-to-valley.
High quality optically polished aluminum mirror and process for producing
NASA Technical Reports Server (NTRS)
Lyons, III, James J. (Inventor); Zaniewski, John J. (Inventor)
2002-01-01
A new technical advancement in the field of precision aluminum optics permits high quality optical polishing of aluminum monolith, which, in the field of optics, offers numerous benefits because of its machinability, lightweight, and low cost. This invention combines diamond turning and conventional polishing along with india ink, a newly adopted material, for the polishing to accomplish a significant improvement in surface precision of aluminum monolith for optical purposes. This invention guarantees the precise optical polishing of typical bare aluminum monolith to surface roughness of less than about 30 angstroms rms and preferably about 5 angstroms rms while maintaining a surface figure accuracy in terms of surface figure error of not more than one-fifteenth of wave peak-to-valley.
Chen, Shaoshan; Li, Shengyi; Hu, Hao; Li, Qi; Tie, Guipeng
2014-11-01
A new nonaqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing potassium dihydrogen phosphate (KDP) crystal due to its low hardness, high brittleness, temperature sensitivity, and water solubility. This paper researches the influence of structural characteristics on the surface roughness of MRF-finished KDP crystal. The material removal by dissolution is uniform layer by layer when the polishing parameters are stable. The angle between the direction of the polishing wheel's linear velocity and the initial turning lines will affect the surface roughness. If the direction is perpendicular to the initial turning lines, the polishing can remove the lines. If the direction is parallel to the initial turning lines, the polishing can achieve better surface roughness. The structural characteristic of KDP crystal is related to its internal chemical bonds due to its anisotropy. During the MRF finishing process, surface roughness will be improved if the structural characteristics of the KDP crystal are the same on both sides of the wheel. The processing results of (001) plane crystal show we can get the best surface roughness (RMS of 0.809 nm) if the directions of cutting and MRF polishing are along the (110) direction.
Ultra-precision process of CaF2 single crystal
NASA Astrophysics Data System (ADS)
Yin, Guoju; Li, Shengyi; Xie, Xuhui; Zhou, Lin
2014-08-01
This paper proposes a new chemical mechanical polishing (CMP) process method for CaF2 single crystal to get ultraprecision surface. The CMP processes are improving polishing pad and using alkaline SiO2 polishing slurry with PH=8, PH=11 two phases to polish, respectively, and the roughness can be 0.181nm Rq (10μm×10μm). The CMP process can't get high surface figure, so we use ion beam figuring (IBF) technology to obtain high surface figure. However, IBF is difficult to improve the CaF2 surface roughness. We optimize IBF process to improve surface figure and keep good surface roughness too. Different IBF incident ion energy from 400ev to 800ev does not affect on the surface roughness obviously but the depth of material removal is reverse. CaF2 single crystal can get high precision surface figure (RMS=2.251nm) and still keep ultra-smooth surface (Rq=0.207nm) by IBF when removal depth is less than 200nm. The researches above provide important information for CaF2 single crystal to realize ultra-precision manufacture.
NASA Astrophysics Data System (ADS)
Schmidt, C. M.; Bürgler, D. E.; Schaller, D. M.; Meisinger, F.; Güntherodt, H.-J.; Temst, K.
2001-01-01
A Cr(001)/Fe(001) superlattice with ten bilayers grown by molecular beam epitaxy on a Ag(001) substrate is studied by in situ scanning tunneling microscopy (STM) and ex situ x-ray diffraction (XRD). Layer-resolved roughness parameters determined from STM images taken in various stages of the superlattice fabrication are compared with average values reported in the literature or obtained from the fits of our XRD data. Good agreement is found for the rms roughnesses describing vertical roughness and for the lateral correlation lengths characterizing correlated as well as uncorrelated interface roughness if peculiarities of STM and XRD are taken into account. We discuss in detail (i) the possible differences between the STM topography of a free surface and the morphology of a subsequently formed interface, (ii) contributions due to chemical intermixing at the interfaces, (iii) the comparison of XRD parameters averaged over all interfaces versus layer-resolved STM parameters, and (iv) the question of the coherent field of view for the determination of rms values.
A two-scale roughness model for the gloss of coated paper
NASA Astrophysics Data System (ADS)
Elton, N. J.
2008-08-01
A model for gloss is developed for surfaces with two-scale random roughness where one scale lies in the wavelength region (microroughness) and the other in the geometrical optics limit (macroroughness). A number of important industrial materials such as coated and printed paper and some paints exhibit such two-scale rough surfaces. Scalar Kirchhoff theory is used to describe scattering in the wavelength region and a facet model used for roughness features much greater than the wavelength. Simple analytical expressions are presented for the gloss of surfaces with Gaussian, modified and intermediate Lorentzian distributions of surface slopes, valid for gloss at high angle of incidence. In the model, gloss depends only on refractive index, rms microroughness amplitude and the FWHM of the surface slope distribution, all of which may be obtained experimentally. Model predictions are compared with experimental results for a range of coated papers and gloss standards, and found to be in fair agreement within model limitations.
Surface smoothing of indium tin oxide film by laser-induced photochemical etching
NASA Astrophysics Data System (ADS)
Kang, JoonHyun; Kim, Young-Hwan; Kwon, Seok Joon; Park, Joon-Suh; Park, Kyoung Wan; Park, Jae-Gwan; Han, Il Ki
2017-12-01
Surface smoothing of indium tin oxide (ITO) film by laser irradiation was demonstrated. The ITO surface was etched by choline radicals, which were activated by laser irradiation at a wavelength of 532 nm. The RMS surface roughness was improved from 5.6 to 4.6 nm after 10 min of laser irradiation. We also showed the changes in the surface morphology of the ITO film with various irradiation powers and times.
NASA Astrophysics Data System (ADS)
Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun
2016-02-01
Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.
Friction and wear of plasma-deposited diamond films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.
1993-01-01
Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.
Pre-polishing on a CNC platform with bound abrasive contour tools
NASA Astrophysics Data System (ADS)
Schoeffer, Adrienne E.
2003-05-01
Deterministic micorgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-51.tm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an OptiproTM CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.
Prepolishing on a CNC platform with bound abrasive contour tools
NASA Astrophysics Data System (ADS)
Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.
2003-05-01
Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.
NASA Technical Reports Server (NTRS)
Wang, L.; Shin, R. T.; Kong, J. A.; Yueh, S. H.
1993-01-01
This paper investigates the potential application of neural network to inversion of soil moisture using polarimetric remote sensing data. The neural network used for the inversion of soil parameters is multi-layer perceptron trained with the back-propagation algorithm. The training data include the polarimetric backscattering coefficients obtained from theoretical surface scattering models together with an assumed nominal range of soil parameters which are comprised of the soil permittivity and surface roughness parameters. Soil permittivity is calculated from the soil moisture and the assumed soil texture based on an empirical formula at C-, L-, and P-bands. The rough surface parameters for the soil surface, which is described by the Gaussian random process, are the root-mean-square (rms) height and correlation length. For the rough surface scattering, small perturbation method is used for the L-band frequency, and Kirchhoff approximation is used for the C-band frequency to obtain the corresponding backscattering coefficients. During the training, the backscattering coefficients are the inputs to the neural net and the output from the net are compared with the desired soil parameters to adjust the interconnecting weights. The process is repeated for each input-output data entry and then for the entire training data until convergence is reached. After training, the backscattering coefficients are applied to the trained neural net to retrieve the soil parameters which are compared with the desired soil parameters to verify the effectiveness of this technique. Several cases are examined. First, for simplicity, the correlation length and rms height of the soil surface are fixed while soil moisture is varied. Soil moisture obtained using the neural networks with either L-band or C-band backscattering coefficients for the HH and VV polarizations as inputs is in good agreement with the desired soil moisture. The neural net output matches the desired output for the soil moisture range of 16 to 60 percent for the C-band case. The next case investigated is to vary both soil moisture and rms height while keeping the correlation length fixed. For this case, C-band backscattering coefficients are not sufficient for retrieving two parameters because the Kirchhoff approximation gives the same HH and VV backscattering coefficients. Therefore, the backscattering coefficients at two different frequency bands are necessary to find both the soil moisture and rms height. Finally, the neural nets are also applied to simultaneously invert soil moisture, rms height, and correlation length. Overall, the soil moisture retrieved from the neural network agrees very well with the desired soil moisture. This suggests that the neural network shows potential for retrieval of soil parameters from remote sensing data.
Morales, Alfredo M.
2002-01-01
A microdevice having interior cavity with high aspect ratio features and ultrasmooth surfaces, and associated method of manufacture and use is described. An LIGA-produced shaped bit is used to contour polish the surface of a sacrificial mandrel. The contoured sacrificial mandrel is subsequently coated with a structural material and the mandrel removed to produce microdevices having micrometer-sized surface features and sub-micrometer RMS surface roughness.
NASA Astrophysics Data System (ADS)
Wheatcroft, Robert A.
1994-08-01
Time-lapse stereophotographs were taken over a 90-day period from mid-November 1990 to late-February 1991 at a 90-m silt-bottom site on the central California shelf as part of the STRESS (Sediment Transport Events on Shelves and Slopes) project. Five distinct bed configurations were observed, in order of decreasing abundance, these are: (1) bioturbated bed; (2) smoothed bed; (3) current-rippled bed; (4) scour-pitted bed; and (5) wave-rippled bed. Concurrent measurements of the flow field implicate along-shelf currents, rather than waves, as the primary agent forming the physical bed configurations. The presence of a wave-induced cross-shelf gradient in near-bottom suspended sediment during storm events and the redistribution of this sediment by upwelling or downwelling currents is postulated to control the appearance of depositional current-ripples (northwest poleward flow, downwelling) and erosional scour-pits (southeast equatorward flow, upwelling). All physical bed forms are destroyed by bioturbation processes in periods of hours to days. Analytical photogrammetric techniques were used to extract high-resolution sea floor height data from the stereophotographs. Results indicate maximal relief over a 0.25-m 2 area at this site never exceeded 5 cm. Root-mean-square (rms) height varied by a factor of 3 (3.2-9.2 mm) and is a weak function of bed configuration. Current ripples have the largest rms-height, smoothed and scour-pitted beds the smallest. Rms-heights of bioturbated beds are variable and appear to depend on the previously produced physical bed configuration. Changes in rms-height can be abrupt with factor of 2 changes observed over a 12-h period. Horizontal descriptors of roughness such as peak spacing or peak width cannot separate bed configurations. Results from surface slope distributions are broadly coherent with the rms-height data, in that surfaces with large rms-heights have broad slope distributions and vice versa. Slope distribution data also indicate that all bed configurations except the current-rippled bed are isotropic. These preliminary data suggest that time series information is needed to adequately resolve both the micro-scale roughness of the sea floor on continental shelves and the presence of short lived, but potentially flow-diagnostic bed configurations.
Nanoscale Roughness and Morphology Affect the IsoElectric Point of Titania Surfaces
Borghi, Francesca; Vyas, Varun; Podestà, Alessandro; Milani, Paolo
2013-01-01
We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces. PMID:23874708
Quantitative evaluation of performance of 3D printed lenses
Gawedzinski, John; Pawlowski, Michal E.; Tkaczyk, Tomasz S.
2017-01-01
We present an analysis of the shape, surface quality, and imaging capabilities of custom 3D printed lenses. 3D printing technology enables lens prototypes to be fabricated without restrictions on surface geometry. Thus, spherical, aspherical and rotationally non-symmetric lenses can be manufactured in an integrated production process. This technique serves as a noteworthy alternative to multistage, labor-intensive, abrasive processes such as grinding, polishing and diamond turning. Here, we evaluate the quality of lenses fabricated by Luxexcel using patented Printoptical© technology that is based on an inkjet printing technique by comparing them to lenses made with traditional glass processing technologies (grinding, polishing etc.). The surface geometry and roughness of the lenses were evaluated using white-light and Fizeau interferometers. We have compared peak-to-valley wavefront deviation, root-mean-squared wavefront error, radii of curvature and the arithmetic average of the roughness profile (Ra) of plastic and glass lenses. Additionally, the imaging performance of selected pairs of lenses was tested using 1951 USAF resolution target. The results indicate performance of 3D printed optics that could be manufactured with surface roughness comparable to that of injection molded lenses (Ra < 20 nm). The RMS wavefront error of 3D printed prototypes was at a minimum 18.8 times larger than equivalent glass prototypes for a lens with a 12.7 mm clear aperture, but when measured within 63% of its clear aperture, 3D printed components’ RMS wavefront error was comparable to glass lenses. PMID:29238114
Radar, visual and thermal characteristics of Mars: Rough planar surfaces
Schaber, G.G.
1980-01-01
High-resolution Viking Orbiter images (10 to 15 m/pixel) contain significant information on Martian surface roughness at 25- to 100-m lateral scales, whereas Earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m, or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns (low peak radar cross section) are qualitatively confirmed by the Viking image data. Large-scale, curvilinear (but parallel) ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows south and west of Arsia Mons, and within the large region of low thermal inertia centered on Tharsis Montes (H. H. Kieffer et al., 1977, J. Geophys. Res.82, 4249-4291), were found to possess such a recent mantle. At predawn residual temperatures ??? -10K (south boundary of this low-temperature region), lava flows are shown to have relatively old eolian mantles. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin. ?? 1980.
The Extreme Ultraviolet Explorer - Optics fabrication and performance
NASA Technical Reports Server (NTRS)
Green, J.; Finley, D.; Bowyer, S.; Malina, R. F.
1986-01-01
The fabrication methods, testing and evaluation techniques, and performance results are presented for the mirrors for the Extreme Ultraviolet Explorer (EUVE). The finest mirror produced to date has a measured half energy width of 8 arcsec at optical wavelengths. With a polished nickel surface, the telescope throughput was 35 percent at 44 A and 60 percent at 256 A. The surface roughness is 20 A rms.
Tsaousis, Konstantinos T; Werner, Liliana; Perez, Jesus Paulo; Li, He J; Reiter, Nicholas; Guan, Jia J; Mamalis, Nick
2016-09-01
To evaluate the elemental composition of phacoemulsification tips and their surface roughness in the microscale. John A. Moran Eye Center and Utah Nanofab, College of Engineering, University of Utah, Salt Lake City, Utah, USA. Experimental study. Seven types of phacoemulsification tips were studied. The phaco tips were examined through energy-dispersive x-ray spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) for elemental composition. In addition, the roughness of the opening in all tips was assessed through 3-dimensional white-light interferometry. Elemental analysis showed considerable differences in the surface layers between manufacturers. Alcon tips had a thinner oxidized titanium (Ti) layer in their surface. Through XPS, vanadium was not detected in the superficial layers of any tip, but only in deeper levels. The microroughness surface analysis showed comparable results regarding their root-mean-square (RMS) metric. Maximum peak valley distance values varied and appeared to be dependent on the quality of material process rather than the material itself. Phacoemulsification tips are made of Ti alloys and showed differences between models, especially regarding their composition in the superficial layers. Their opening end roughness showed an overall appropriate RMS value of less than 1.0 μm in all cases. The existence of small defected areas highlights the importance of adequate quality control of these critical surgical instruments. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Feng; Shu, Yong; Dai, Yifan; Peng, Xiaoqiang; Li, Shengyi
2013-07-01
Based on the elastic-plastic deformation theory, status between abrasives and workpiece in magnetorheological finishing (MRF) process and the feasibility of elastic polishing are analyzed. The relationship among material removal mechanism and particle force, removal efficiency, and surface topography are revealed through a set of experiments. The chemical dominant elastic super-smooth polishing can be fulfilled by changing the components of magnetorheological (MR) fluid and optimizing polishing parameters. The MR elastic super-smooth finishing technology can be applied in polishing high-power laser-irradiated components with high efficiency, high accuracy, low damage, and high laser-induced damage threshold (LIDT). A 430×430×10 mm fused silica (FS) optic window is polished and surface error is improved from 538.241 nm [peak to valley (PV)], 96.376 nm (rms) to 76.372 nm (PV), 8.295 nm (rms) after 51.6 h rough polishing, 42.6 h fine polishing, and 54.6 h super-smooth polishing. A 50×50×10 mm sample is polished with exactly the same parameters. The roughness is improved from 1.793 nm [roughness average (Ra)] to 0.167 nm (Ra) and LIDT is improved from 9.77 to 19.2 J/cm2 after MRF elastic polishing.
Electro and Magneto-Electropolished Surface Micro-Patterning on Binary and Ternary Nitinol
Munroe, Norman; McGoron, Anthony
2012-01-01
In this study, an Atomic Force Microscopy (AFM) roughness analysis was performed on non-commercial Nitinol alloys with Electropolished (EP) and Magneto-Electropolished (MEP) surface treatments and commercially available stents by measuring Root-Mean-Square (RMS), Average Roughness (Ra), and Surface Area (SA) values at various dimensional areas on the alloy surfaces, ranging from (800 × 800 nm) to (115 × 115μm), and (800 × 800 nm) to (40 × 40 μm) on the commercial stents. Results showed that NiTi-Ta 10 wt% with an EP surface treatment yielded the highest overall roughness, while the NiTi-Cu 10 wt% alloy had the lowest roughness when analyzed over (115 × 115 μm). Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis revealed unique surface morphologies for surface treated alloys, as well as an aggregation of ternary elements Cr and Cu at grain boundaries in MEP and EP surface treated alloys, and non-surface treated alloys. Such surface micro-patterning on ternary Nitinol alloys could increase cellular adhesion and accelerate surface endothelialization of endovascular stents, thus reducing the likelihood of in-stent restenosis and provide insight into hemodynamic flow regimes and the corrosion behavior of an implantable device influenced from such surface micro-patterns. PMID:22754200
NASA Astrophysics Data System (ADS)
Anderson, William; Meneveau, Charles
2010-05-01
A dynamic subgrid-scale (SGS) parameterization for hydrodynamic surface roughness is developed for large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow over multiscale, fractal-like surfaces. The model consists of two parts. First, a baseline model represents surface roughness at horizontal length-scales that can be resolved in the LES. This model takes the form of a force using a prescribed drag coefficient. This approach is tested in LES of flow over cubes, wavy surfaces, and ellipsoidal roughness elements for which there are detailed experimental data available. Secondly, a dynamic roughness model is built, accounting for SGS surface details of finer resolution than the LES grid width. The SGS boundary condition is based on the logarithmic law of the wall, where the unresolved roughness of the surface is modeled as the product of local root-mean-square (RMS) of the unresolved surface height and an unknown dimensionless model coefficient. This coefficient is evaluated dynamically by comparing the plane-average hydrodynamic drag at two resolutions (grid- and test-filter scale, Germano et al., 1991). The new model is tested on surfaces generated through superposition of random-phase Fourier modes with prescribed, power-law surface-height spectra. The results show that the method yields convergent results and correct trends. Limitations and further challenges are highlighted. Supported by the US National Science Foundation (EAR-0609690).
45 MPH 6,000-Pound and 10,000-Pound Rough Terrain Fork Lift Truck Feasibility Study.
1986-06-24
Airport Post Office Box 66911 Chicago, IL 60666 NPN Security Classification of This Page REPORT DOCUMENTATION PAGE la . Report Security Classification...HOP Unausended Duadin., 20 - I: - 1 1.8 Inch RMS Road 14 la -3 * Clam C (0.93 Inch RMS) Rod w 12 10 10 Per~cent 9 P 7 U. 3 Percent 3 2 0 20 40 SPM...elm 10 67- * * 3 o *" - .2 0 20 40 W (mph) 4/2/ SOJA Figure 75. Rear Wheel Hop on Four Road Surfaces (10K RTFLT Unsuspended Baseline) " Page 93 Adding
Ion-Implanted Diamond Films and Their Tribological Properties
NASA Technical Reports Server (NTRS)
Wu, Richard L. C.; Miyoshi, Kazuhisa; Korenyi-Both, Andras L.; Garscadden, Alan; Barnes, Paul N.
1993-01-01
This paper reports the physical characterization and tribological evaluation of ion-implanted diamond films. Diamond films were produced by microwave plasma, chemical vapor deposition technique. Diamond films with various grain sizes (0.3 and 3 microns) and roughness (9.1 and 92.1 nm r.m.s. respectively) were implanted with C(+) (m/e = 12) at an ion energy of 160 eV and a fluence of 6.72 x 10(exp 17) ions/sq cm. Unidirectional sliding friction experiments were conducted in ultrahigh vacuum (6.6 x 10(exp -7)Pa), dry nitrogen and humid air (40% RH) environments. The effects of C(+) ion bombardment on fine and coarse-grained diamond films are as follows: the surface morphology of the diamond films did not change; the surface roughness increased (16.3 and 135.3 nm r.m.s.); the diamond structures were damaged and formed a thin layer of amorphous non-diamond carbon; the friction coefficients dramatically decreased in the ultrahigh vacuum (0.1 and 0.4); the friction coefficients decreased slightly in the dry nitrogen and humid air environments.
Oshima, Ryuji; France, Ryan M.; Geisz, John F.; ...
2016-10-13
The growth of quaternary Ga 0.68In 0.32As 0.35P 0.65 by metal-organic vapor phase epitaxy is very sensitive to growth conditions because the composition is within a miscibility gap. In this investigation, we fabricated 1 um-thick lattice-matched GaInAsP films grown on GaAs(001) for application to solar cells. In order to characterize the effect of the surface diffusion of adatoms on the material quality of alloys, the growth temperature and substrate miscut are varied. Transmission electron microscopy and two-dimensional in-situ multi-beam optical stress determine that growth temperatures of 650 degrees C and below enhance the formation of the CuPtB atomic ordering andmore » suppress material decomposition, which is found to occur at the growth surface. The root-mean-square (RMS) roughness is reduced from 33.6 nm for 750 degrees C to 1.62 nm for 650 degrees C, determined by atomic force microscopy. Our initial investigations show that the RMS roughness can be further reduced using increased miscut angle, and substrates miscut toward (111)A, leading to an RMS roughness of 0.56 nm for the sample grown at 600 degrees C on GaAs miscut 6 degrees toward (111)A. Using these conditions, we fabricate an inverted hetero-junction 1.62 eV Ga 0.68In 0.32As 0.35P 0.65 solar cell without an anti-reflection coating with a short-circuit current density, open-circuit voltage, fill factor, and efficiency of 12.23 mA/cm2, 1.12 V, 86.18%, and 11.80%, respectively.« less
NASA Astrophysics Data System (ADS)
Felix, T.; Cassini, F. A.; Benetoli, L. O. B.; Dotto, M. E. R.; Debacher, N. A.
2017-05-01
The experiments presented in this communication have the purpose to elaborate an explanation for the morphological evolution of the growth of polymeric surfaces provided by the treatment of non-thermal plasma. According to the roughness analysis and the model proposed by scaling laws it is possible relate to a predictable or merely random effect. Polyethylene terephthalate (PET) and poly(etherether)ketone (PEEK) samples were exposed to a non-thermal plasma discharge and the resulting surfaces roughness were analyzed based on the measurements from contact angle, scanning electron microscopy and atomic force microscopy coupled with scaling laws analysis which can help to describe and understand the dynamic of formation of a wide variety of rough surfaces. The roughness, RRMS (RMS- Root Mean Square) values for polymer surface range between 19.8 nm and 110.9 nm. The contact angle and the AFM (Atomic Force Microscopy) measurements as a function of the plasma exposure time were in agreement with both polar and dispersive components according to the surface roughness and also with the morphology evaluated described by Wolf-Villain model, with proximate values of α between 0.91(PET) and 0.88(PEEK), β = 0.25(PET) and z = 3,64(PET).
Combined dry plasma etching and online metrology for manufacturing highly focusing x-ray mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berujon, S., E-mail: berujon@esrf.eu; Ziegler, E., E-mail: ziegler@esrf.eu; Cunha, S. da
A new figuring station was designed and installed at the ESRF beamline BM05. It allows the figuring of mirrors within an iterative process combining the advantage of online metrology with dry etching. The complete process takes place under a vacuum environment to minimize surface contamination while non-contact surfacing tools open up the possibility of performing at-wavelength metrology and eliminating placement errors. The aim is to produce mirrors whose slopes do not deviate from the stigmatic profile by more than 0.1 µrad rms while keeping surface roughness in the acceptable limit of 0.1-0.2 nm rms. The desired elliptical mirror surface shapemore » can be achieved in a few iterations in about a one day time span. This paper describes some of the important aspects of the process regarding both the online metrology and the etching process.« less
Small-Angle Scatter Measurement.
NASA Astrophysics Data System (ADS)
Wein, Steven Jay
The design, analysis, and performance of a small -angle scatterometer are presented. The effects of the diffraction background, geometrical aberrations and system scatter at the small-angles are separated. Graphs are provided that quantify their contribution. The far-field irradiance distributions of weakly truncated and untruncated Gaussian beams are compared. The envelope of diffraction ringing is shown to decrease proportionately with the level of truncation in the pupil. Spherical aberration and defocus are shown to have little effect on the higher-order diffraction rings of Gaussian apertures and as such will have a negligible effect on most scatter measurements. A method is presented for determining the scattered irradiance level for a given BRDF in relation to the peak irradiance of the point spread function. A method of Gaussian apodization is presented and tested that allows the level of diffraction ringing to become a design parameter. Upon sufficient reduction of the diffraction background, the scattered light from the scatterometers' primary mirror is seen to be the limiting component of the small-angle instrument profile. The scatterometer described was able to make a meaningful measurement close enough to the specular direction at 0.6328mum in order to observe the characteristic height and width of the scatter function. This allowed the rms roughness and autocorrelation length of the surface to be determined from the scatter data at this wavelength. The inferred rms roughness agreed well with an independent optical profilometer measurement of the surface. The BRDF of the samples were also measured at 10.6mum. The rms roughness inferred from this scatter data did not agree with the other measurements. The BRDF did not scale in accordance with the scaler diffraction theory of microrough surfaces. The scattering in the visible was dominated by the effects of surface roughness whereas the scattering in the far-infrared was apparently dominated by the effects of contaminants and surface defects. The model for the surface statistics is investigated. A K_0 (modified Bessel function) autocorrelation function is shown to predict the scattered light distribution of these samples much better than the conventional negative -exponential function. Additionally, a sampling theory is developed that addresses the negative-exponentially correlated output of lock-in amplifiers, detectors, and electronic circuits in general. It is shown that the optimum sampling rate is approximately one sample per time constant and at this rate the improvement in SNR is sqrt {N/2} where N is the number of measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Sijun, E-mail: sluo1@tulane.edu; Riggs, Brian C.; Shipman, Joshua T.
Direct integration of proton conductor films on Pt-coated substrates opens the way to film-based proton transport devices. Columnar SrZr{sub 0.95}Y{sub 0.05}O{sub 3−δ} (SZY) films with dense microstructure were deposited on Pt-coated MgO(100) substrates at 830 °C by pulsed laser deposition. The optimal window of ambient O{sub 2} pressure for good crystallinity of SZY films is from 400 to 600 mTorr. The ambient O{sub 2} compresses the plasma plume of SZY and increases the deposition rate. The 10 nm thick Ti adhesion layer on MgO(100) greatly affects the orientation of the sputtered Pt layers. Pt deposited directly on MgO shows a highly (111)-preferredmore » orientation and leads to preferentially oriented SZY films while the addition of a Ti adhesion layer makes Pt show a less preferential orientation that leads to randomly oriented SZY films. The RMS surface roughness of preferentially oriented SZY films is larger than that of randomly oriented SZY films deposited under the same ambient O{sub 2} pressure. As the O{sub 2} pressure increased, the RMS surface roughness of preferentially oriented SZY films increased, reaching 45.7 nm (2.61% of film thickness) at 600 mTorr. This study revealed the ambient O{sub 2} pressure and orientation dependent surface roughness of SZY films grown on Pt-coated MgO substrates, which provides the potential to control the surface microstructure of SZY films for electrochemical applications in film-based hydrogen devices.« less
Wood variables affecting the friction coefficient of spruce pine on steel
Truett J. Lemoine; Charles W. McMillin; Floyd G. Manwiller
1970-01-01
Wood of spruce pine, Pinus glabra Walk., was factorially segregated by moisture content (0, 10, and 18 percent), specific gravity (less than 0.45 and more than 0.45), and extractive content (unextracted and extractive-freE), and the kinetic coefficient of friction on steel (having surface roughness of 9 microinches RMS) determined for tangential...
An approximate JKR solution for a general contact, including rough contacts
NASA Astrophysics Data System (ADS)
Ciavarella, M.
2018-05-01
In the present note, we suggest a simple closed form approximate solution to the adhesive contact problem under the so-called JKR regime. The derivation is based on generalizing the original JKR energetic derivation assuming calculation of the strain energy in adhesiveless contact, and unloading at constant contact area. The underlying assumption is that the contact area distributions are the same as under adhesiveless conditions (for an appropriately increased normal load), so that in general the stress intensity factors will not be exactly equal at all contact edges. The solution is simply that the indentation is δ =δ1 -√{ 2 wA‧ /P″ } where w is surface energy, δ1 is the adhesiveless indentation, A‧ is the first derivative of contact area and P‧‧ the second derivative of the load with respect to δ1. The solution only requires macroscopic quantities, and not very elaborate local distributions, and is exact in many configurations like axisymmetric contacts, but also sinusoidal waves contact and correctly predicts some features of an ideal asperity model used as a test case and not as a real description of a rough contact problem. The solution permits therefore an estimate of the full solution for elastic rough solids with Gaussian multiple scales of roughness, which so far was lacking, using known adhesiveless simple results. The result turns out to depend only on rms amplitude and slopes of the surface, and as in the fractal limit, slopes would grow without limit, tends to the adhesiveless result - although in this limit the JKR model is inappropriate. The solution would also go to adhesiveless result for large rms amplitude of roughness hrms, irrespective of the small scale details, and in agreement with common sense, well known experiments and previous models by the author.
Hirano, Takashi; Osaka, Taito; Sano, Yasuhisa; Inubushi, Yuichi; Matsuyama, Satoshi; Tono, Kensuke; Ishikawa, Tetsuya; Yabashi, Makina; Yamauchi, Kazuto
2016-06-01
We have developed a method of fabricating speckle-free channel-cut crystal optics with plasma chemical vaporization machining, an etching method using atmospheric-pressure plasma, for coherent X-ray applications. We investigated the etching characteristics to silicon crystals and achieved a small surface roughness of less than 1 nm rms at a removal depth of >10 μm, which satisfies the requirements for eliminating subsurface damage while suppressing diffuse scattering from rough surfaces. We applied this method for fabricating channel-cut Si(220) crystals for a hard X-ray split-and-delay optical system and confirmed that the crystals provided speckle-free reflection profiles under coherent X-ray illumination.
Comparison of the GHSSmooth and the Rayleigh-Rice surface scatter theories
NASA Astrophysics Data System (ADS)
Harvey, James E.; Pfisterer, Richard N.
2016-09-01
The scalar-based GHSSmooth surface scatter theory results in an expression for the BRDF in terms of the surface PSD that is very similar to that provided by the rigorous Rayleigh-Rice (RR) vector perturbation theory. However it contains correction factors for two extreme situations not shared by the RR theory: (i) large incident or scattered angles that result in some portion of the scattered radiance distribution falling outside of the unit circle in direction cosine space, and (ii) the situation where the relevant rms surface roughness, σrel, is less than the total intrinsic rms roughness of the scattering surface. Also, the RR obliquity factor has been discovered to be an approximation of the more general GHSSmooth obliquity factor due to a little-known (or long-forgotten) implicit assumption in the RR theory that the surface autocovariance length is longer than the wavelength of the scattered radiation. This assumption allowed retaining only quadratic terms and lower in the series expansion for the cosine function, and results in reducing the validity of RR predictions for scattering angles greater than 60°. This inaccurate obliquity factor in the RR theory is also the cause of a complementary unrealistic "hook" at the high spatial frequency end of the predicted surface PSD when performing the inverse scattering problem. Furthermore, if we empirically substitute the polarization reflectance, Q, from the RR expression for the scalar reflectance, R, in the GHSSmooth expression, it inherits all of the polarization capabilities of the rigorous RR vector perturbation theory.
Computer Generated Diffraction Patterns Of Rough Surfaces
NASA Astrophysics Data System (ADS)
Rakels, Jan H.
1989-03-01
It is generally accepted, that optical methods are the most promising for the in-process measurement of surface finish. These methods have the advantages of being non-contacting and fast data acquisition. In the Micro-Engineering Centre at the University of Warwick, an optical sensor has been devised which can measure the rms roughness, slope and wavelength of turned and precision ground surfaces. The operation of this device is based upon the Kirchhoff-Fresnel diffraction integral. Application of this theory to ideal turned surfaces is straightforward, and indeed the theoretically calculated diffraction patterns are in close agreement with patterns produced by an actual optical instrument. Since it is mathematically difficult to introduce real surface profiles into the diffraction integral, a computer program has been devised, which simulates the operation of the optical sensor. The program produces a diffraction pattern as a graphical output. Comparison between computer generated and actual diffraction patterns of the same surfaces show a high correlation.
Texture discrimination and multi-unit recording in the rat vibrissal nerve
Albarracín, Ana L; Farfán, Fernando D; Felice, Carmelo J; Décima, Emilio E
2006-01-01
Background Rats distinguish objects differing in surface texture by actively moving their vibrissae. In this paper we characterized some aspects of texture sensing in anesthetized rats during active touch. We analyzed the multifiber discharge from a deep vibrissal nerve when the vibrissa sweeps materials (wood, metal, acrylic, sandpaper) having different textures. We polished these surfaces with sandpaper (P1000) to obtain close degrees of roughness and we induced vibrissal movement with two-branch facial nerve stimulation. We also consider the change in pressure against the vibrissa as a way to improve the tactile information acquisition. The signals were compared with a reference signal (control) – vibrissa sweeping the air – and were analyzed with the Root Mean Square (RMS) and the Power Spectrum Density (PSD). Results We extracted the information about texture discrimination hidden in the population activity of one vibrissa innervation, using the RMS values and the PSD. The pressure level 3 produced the best differentiation for RMS values and it could represent the "optimum" vibrissal pressure for texture discrimination. The frequency analysis (PSD) provided information only at low-pressure levels and showed that the differences are not related to the roughness of the materials but could be related to other texture parameters. Conclusion Our results suggest that the physical properties of different materials could be transduced by the trigeminal sensory system of rats, as are shown by amplitude and frequency changes. Likewise, varying the pressure could represent a behavioral strategy that improves the information acquisition for texture discrimination. PMID:16719904
Texture discrimination and multi-unit recording in the rat vibrissal nerve.
Albarracín, Ana L; Farfán, Fernando D; Felice, Carmelo J; Décima, Emilio E
2006-05-23
Rats distinguish objects differing in surface texture by actively moving their vibrissae. In this paper we characterized some aspects of texture sensing in anesthetized rats during active touch. We analyzed the multifiber discharge from a deep vibrissal nerve when the vibrissa sweeps materials (wood, metal, acrylic, sandpaper) having different textures. We polished these surfaces with sandpaper (P1000) to obtain close degrees of roughness and we induced vibrissal movement with two-branch facial nerve stimulation. We also consider the change in pressure against the vibrissa as a way to improve the tactile information acquisition. The signals were compared with a reference signal (control)--vibrissa sweeping the air--and were analyzed with the Root Mean Square (RMS) and the Power Spectrum Density (PSD). We extracted the information about texture discrimination hidden in the population activity of one vibrissa innervation, using the RMS values and the PSD. The pressure level 3 produced the best differentiation for RMS values and it could represent the "optimum" vibrissal pressure for texture discrimination. The frequency analysis (PSD) provided information only at low-pressure levels and showed that the differences are not related to the roughness of the materials but could be related to other texture parameters. Our results suggest that the physical properties of different materials could be transduced by the trigeminal sensory system of rats, as are shown by amplitude and frequency changes. Likewise, varying the pressure could represent a behavioral strategy that improves the information acquisition for texture discrimination.
Investigation of wall-bounded turbulence over regularly distributed roughness
NASA Astrophysics Data System (ADS)
Placidi, Marco; Ganapathisubramani, Bharathram
2012-11-01
The effects of regularly distributed roughness elements on the structure of a turbulent boundary layer are examined by performing a series of Planar (high resolution l+ ~ 30) and Stereoscopic Particle Image Velocimetry (PIV) experiments in a wind tunnel. An adequate description of how to best characterise a rough wall, especially one where the density of roughness elements is sparse, is yet to be developed. In this study, rough surfaces consisting of regularly and uniformly distributed LEGO® blocks are used. Twelve different patterns are adopted in order to systematically examine the effects of frontal solidity (λf, frontal area of the roughness elements per unit wall-parallel area) and plan solidity (λp, plan area of roughness elements per unit wall-parallel area), on the turbulence structure. The Karman number, Reτ , is approximately 4000 across the different cases. Spanwise 3D vector fields at two different wall-normal locations (top of the canopy and within the log-region) are also compared to examine the spanwise homogeneity of the flow across different surfaces. In the talk, a detailed analysis of mean and rms velocity profiles, Reynolds stresses, and quadrant decomposition for the different patterns will be presented.
Investigation of wall-bounded turbulence over sparsely distributed roughness
NASA Astrophysics Data System (ADS)
Placidi, Marco; Ganapathisubramani, Bharath
2011-11-01
The effects of sparsely distributed roughness elements on the structure of a turbulent boundary layer are examined by performing a series of Particle Image Velocimetry (PIV) experiments in a wind tunnel. From the literature, the best way to characterise a rough wall, especially one where the density of roughness elements is sparse, is unclear. In this study, rough surfaces consisting of sparsely and uniformly distributed LEGO® blocks are used. Five different patterns are adopted in order to examine the effects of frontal solidity (λf, frontal area of the roughness elements per unit wall-parallel area), plan solidity (λp, plan area of roughness elements per unit wall-parallel area) and the geometry of the roughness element (square and cylindrical elements), on the turbulence structure. The Karman number, Reτ , has been matched, at the value of approximately 2300, in order to compare across the different cases. In the talk, we will present detailed analysis of mean and rms velocity profiles, Reynolds stresses and quadrant decomposition.
Visible light scatter measurements of the Advanced X-ray Astronomical Facility /AXAF/ mirror samples
NASA Technical Reports Server (NTRS)
Griner, D. B.
1981-01-01
NASA is studying the properties of mirror surfaces for X-ray telescopes, the data of which will be used to develop the telescope system for the Advanced X-ray Astronomical Facility. Visible light scatter measurements, using a computer controlled scanner, are made of various mirror samples to determine surface roughness. Total diffuse scatter is calculated using numerical integration techniques and used to estimate the rms surface roughness. The data measurements are then compared with X-ray scatter measurements of the same samples. A summary of the data generated is presented, along with graphs showing changes in scatter on samples before and after cleaning. Results show that very smooth surfaces can be polished on the common substrate materials (from 2 to 10 Angstroms), and nickel appears to give the lowest visible light scatter.
Fractal Properties of Some Machined Surfaces
NASA Astrophysics Data System (ADS)
Thomas, T. R.; Rosén, B.-G.
Many surface profiles are self-affine fractals defined by fractal dimension D and topothesy Λ. Traditionally these parameters are derived laboriously from the slope and intercept of the profile's structure function. Recently a quicker and more convenient derivation from standard roughness parameters has been suggested. Based on this derivation, it is shown that D and Λ depend on two dimensionless numbers: the ratio of the mean peak spacing to the rms roughness, and the ratio of the mean local peak spacing to the sampling interval. Using this approach, values of D and Λ are calculated for 125 profiles produced by polishing, plateau honing and various single-point machining processes. Different processes are shown to occupy different regions in D-Λ space, and polished surfaces show a relationship between D and Λ which is independent of the surface material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Koshiishi, Masaki
2010-02-20
The x-ray reflectivity of an ultralightweight and low-cost x-ray optic using anisotropic wet etching of Si (110) wafers is evaluated at two energies, C K{alpha}0.28 keV and Al K{alpha}1.49 keV. The obtained reflectivities at both energies are not represented by a simple planar mirror model considering surface roughness. Hence, an geometrical occultation effect due to step structures upon the etched mirror surface is taken into account. Then, the reflectivities are represented by the theoretical model. The estimated surface roughness at C K{alpha} ({approx}6 nm rms) is significantly larger than {approx}1 nm at Al K{alpha}. This can be explained by differentmore » coherent lengths at two energies.« less
Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Koshiishi, Masaki; Mita, Makoto; Maeda, Yoshitomo; Yamasaki, Noriko Y; Mitsuda, Kazuhisa; Shirata, Takayuki; Hayashi, Takayuki; Takano, Takayuki; Maeda, Ryutaro
2010-02-20
The x-ray reflectivity of an ultralightweight and low-cost x-ray optic using anisotropic wet etching of Si (110) wafers is evaluated at two energies, C K(alpha)0.28 keV and Al K(alpha)1.49 keV. The obtained reflectivities at both energies are not represented by a simple planar mirror model considering surface roughness. Hence, an geometrical occultation effect due to step structures upon the etched mirror surface is taken into account. Then, the reflectivities are represented by the theoretical model. The estimated surface roughness at C K(alpha) (approximately 6 nm rms) is significantly larger than approximately 1 nm at Al K(alpha). This can be explained by different coherent lengths at two energies.
Surface quality of silicon wafer improved by hydrodynamic effect polishing
NASA Astrophysics Data System (ADS)
Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi
2014-08-01
Differing from the traditional pad polishing, hydrodynamic effect polishing (HEP) is non-contact polishing with the wheel floated on the workpiece. A hydrodynamic lubricated film is established between the wheel and the workpiece when the wheel rotates at a certain speed in HEP. Nanoparticles mixed with deionized water are employed as the polishing slurry, and with action of the dynamic pressure, nanoparticles with high chemisorption due to the high specific surface area can easily reacted with the surface atoms forming a linkage with workpiece surface. The surface atoms are dragged away when nanoparticles are transported to separate by the flow shear stress. The development of grand scale integration put extremely high requirements on the surface quality on the silicon wafer with surface roughness at subnanometer and extremely low surface damage. In our experiment a silicon sample was processed by HEP, and the surface topography before and after polishing was observed by the atomic force microscopy. Experiment results show that plastic pits and bumpy structures on the initial surface have been removed away clearly with the removal depth of 140nm by HEP process. The processed surface roughness has been improved from 0.737nm RMS to 0.175nm RMS(10μm×10μm) and the section profile shows peaks of the process surface are almost at the same height. However, the machining ripples on the wheel surface will duplicate on the silicon surface under the action of the hydrodynamic effect. Fluid dynamic simulation demonstrated that the coarse surface on the wheel has greatly influence on the distribution of shear stress and dynamic pressure on the workpiece surface.
Kafiah, Feras; Khan, Zafarullah; Ibrahim, Ahmed; Atieh, Muataz; Laoui, Tahar
2017-01-21
In this work, we report the transfer of graphene onto eight commercial microfiltration substrates having different pore sizes and surface characteristics. Monolayer graphene grown on copper by the chemical vapor deposition (CVD) process was transferred by the pressing method over the target substrates, followed by wet etching of copper to obtain monolayer graphene/polymer membranes. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle (CA) measurements were carried out to explore the graphene layer transferability. Three factors, namely, the substrate roughness, its pore size, and its surface wetting (degree of hydrophobicity) are found to affect the conformality and coverage of the transferred graphene monolayer on the substrate surface. A good quality graphene transfer is achieved on the substrate with the following characteristics; being hydrophobic (CA > 90°), having small pore size, and low surface roughness, with a CA to RMS (root mean square) ratio higher than 2.7°/nm.
Hard X-ray mirrors for Nuclear Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Descalle, M. A.; Brejnholt, N.; Hill, R.
Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a newmore » type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed. Finally, we conducted the first demonstration that reflective multilayer mirrors could be used as diagnostic for HED experiment with an order of magnitude improvement in signal-to-noise ratio for the multilayer optic compared a transmission crystal spectrometer.« less
Super-polishing of Zerodur aspheres by means of conventional polishing technology
NASA Astrophysics Data System (ADS)
Polak, Jaroslav; Klepetková, Eva; Pošmourný, Josef; Šulc, Miroslav; Procháska, František; Tomka, David; Matoušek, Ondřej; Poláková, Ivana; Šubert, Eduard
2015-01-01
This paper describes a quest to find simple technique to superpolish Zerodur asphere (55μm departure from best fit sphere) that could be employed on old fashion way 1-excenter optical polishing machine. The work focuses on selection of polishing technology, study of different polishing slurries and optimization of polishing setup. It is demonstrated that either by use of fine colloidal CeO2 slurry or by use of bowl-feed polishing setup with CeO2 charged pitch we could reach 0.4nm RMS roughness while removing <30nm of surface layer. This technique, although not optimized, was successfully used to improve surface roughness on already prepolished Zerodur aspheres without necessity to involve sophisticated super-polishing technology and highly trained manpower.
Arecibo radar observations of Mars surface characteristics in the Northern Hemisphere
NASA Technical Reports Server (NTRS)
Simpson, R. A.; Tyler, G. L.; Campbell, D. B.
1978-01-01
Mars surface characteristics at and near the Viking Chryse and Tritonis Lacus landing areas were determined by radio scatter using the 12.6-cm radar at the Arecibo Observatory during 1975-76. Interpretation of each power spectrum suggests rms surface tilts of 4 deg at the final A1WNW (47.9 deg W, 22.5 deg N) site, 5 deg near the original A1 site, and 6 deg between the two. At the back-up site (A2) surface-roughness estimates were about 4 deg. Striking changes in surface texture have been found near the eastern bases of Tharsis Montes and Albor Tholus, each volcanic feature marking the western boundary of very smooth surface units. The roughness sensed at 1- to 100-m scales by radar appears to be relatively independent of the surface units defined at large scale lengths by photogeologists. Radar properties thus provide an additional means by which planetary surfaces may be characterized.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Irannejad, Mehrdad; Yavuz, Mustafa; Cui, Bo
2015-05-01
Nanofabrication technology plays an important role in the performance of surface plasmonic devices such as extraordinary optical transmission (EOT) sensor. In this work, a double liftoff process was developed to fabricate a series of nanohole arrays of a hole diameter between 150 and 235 nm and a period of 500 nm in a 100-nm-thick gold film on a silica substrate. To improve the surface quality of the gold film, thermal annealing was conducted, by which an ultra-smooth gold film with root-mean-square (RMS) roughness of sub-1 nm was achieved, accompanied with a hole diameter shrinkage. The surface sensitivity of the nanohole arrays was measured using a monolayer of 16-mercaptohexadecanoic acid (16-MHA) molecule, and the surface sensitivity was increased by 2.5 to 3 times upon annealing the extraordinary optical transmission (EOT) sensor.
Controlled nanopatterning & modifications of materials by energetic ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, O. P.
Compound semiconductors (InP, InAs and GaSb) has been exposed to energetic 3 keV Ar{sup +} ions for a varying fluence range of 10{sup 13} ions/cm{sup 2} to 10{sup 18} ions/cm{sup 2} at room temperature. Morphological modifications of the irradiated surfaces have been investigated by Scanning Tunneling Microscopy (STM) in UHV conditions. It is observed that InP and GaSb have fluence dependent nanopattering e.g. nanoneedle, aligned nanodots, superimposed nanodots ripple like structures while InAs has little fluence dependent behaviour indicating materials dependent growth of features on irradiated surfaces. Moreover, surface roughness and wavelength of the features are also depending on themore » materials and fluences. The RMS surface roughness has been found to be increased rapidly in the early stage of irradiation followed by slower escalate rate and later tends to saturate indicating influence of the nonlinear processes.« less
Järn, Mikael; Areva, Sami; Pore, Viljami; Peltonen, Jouko; Linden, Mika
2006-09-12
Heterogeneous nucleation and growth of calcium phosphate (CaP) on sol-gel derived TiO(2) coatings was investigated in terms of surface topography and surface energy. The topography of the coatings was derived from AFM measurements, while the surface energy was determined with contact angle measurements. The degree of precipitation was examined with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The precipitation of CaP was found to be dependent on both topography and surface energy. A high roughness value when combining the RMS roughness parameter S(q) with the number of local maxima per unit area parameter S(ds) enhances CaP formation. The hydrophilicity of the coating was also found to be of importance for CaP formation. We suggest that the water contact angle, which is a direct measure of the hydrophilicity of the surface, may be used to evaluate the surface energy dependent precipitation kinetics rather than using the often applied Lewis base parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahlovy, Shahjada A.; Mahmud, S. F.; Yanagimoto, K.
The authors have conducted research regarding ripple formation on an atomically flat cleaved Si surface by low-energy Ar{sup +} ion bombardment. The cleaved atomically flat and smooth plane of a Si wafer was obtained by cutting vertically against the orientation of a Si (100) wafer. Next, the cleaved surface was sputtered by a 1 keV Ar{sup +} ion beam at ion-incidence angles of 0 deg., 60 deg., 70 deg., and 80 deg. The results confirm the successful ripple formation at ion-incidence angles of 60 deg. - 80 deg. and that the wavelength of the ripples increases with the increase ofmore » the ion-incidence angle, as well as the inverse of ion doses. The direction of the ripple also changes from perpendicular to parallel to the projection of the ion-beam direction along the surface with the increasing ion-incidence angle. The authors have also observed the dose effects on surface roughness of cleaved Si surface at the ion-incidence angle of 60 deg., where the surface roughness increases with the increased ion dose. Finally, to understand the roughening mechanism, the authors studied the scaling behavior, measured the roughness exponent {alpha}, and compared the evolution of scaling regimes with Cuerno's one-dimensional simulation results.« less
Optimum deposition conditions of ultrasmooth silver nanolayers
2014-01-01
Reduction of surface plasmon-polariton losses due to their scattering on metal surface roughness still remains a challenge in the fabrication of plasmonic devices for nanooptics. To achieve smooth silver films, we study the dependence of surface roughness on the evaporation temperature in a physical vapor deposition process. At the deposition temperature range 90 to 500 K, the mismatch of thermal expansion coefficients of Ag, Ge wetting layer, and sapphire substrate does not deteriorate the metal surface. To avoid ice crystal formation on substrates, the working temperature of the whole physical vapor deposition process should exceed that of the sublimation at the evaporation pressure range. At optimum room temperature, the root-mean-square (RMS) surface roughness was successfully reduced to 0.2 nm for a 10-nm Ag layer on sapphire substrate with a 1-nm germanium wetting interlayer. Silver layers of 10- and 30-nm thickness were examined using an atomic force microscope (AFM), X-ray reflectometry (XRR), and two-dimensional X-ray diffraction (XRD2). PACS 63.22.Np Layered systems; 68. Surfaces and interfaces; thin films and nanosystems (structure and nonelectronic properties); 81.07.-b Nanoscale materials and structures: fabrication and characterization PMID:24685115
NASA Astrophysics Data System (ADS)
Rawat, Kishan Singh; Sehgal, Vinay Kumar; Pradhan, Sanatan; Ray, Shibendu S.
2018-03-01
We have estimated soil moisture (SM) by using circular horizontal polarization backscattering coefficient (σ o_{RH}), differences of circular vertical and horizontal σ o (σ o_{RV} {-} σ o_{RH}) from FRS-1 data of Radar Imaging Satellite (RISAT-1) and surface roughness in terms of RMS height ({RMS}_{height}). We examined the performance of FRS-1 in retrieving SM under wheat crop at tillering stage. Results revealed that it is possible to develop a good semi-empirical model (SEM) to estimate SM of the upper soil layer using RISAT-1 SAR data rather than using existing empirical model based on only single parameter, i.e., σ o. Near surface SM measurements were related to σ o_{RH}, σ o_{RV} {-} σ o_{RH} derived using 5.35 GHz (C-band) image of RISAT-1 and {RMS}_{height}. The roughness component derived in terms of {RMS}_{height} showed a good positive correlation with σ o_{RV} {-} σ o_{RH} (R2 = 0.65). By considering all the major influencing factors (σ o_{RH}, σ o_{RV} {-} σ o_{RH}, and {RMS}_{height}), an SEM was developed where SM (volumetric) predicted values depend on σ o_{RH}, σ o_{RV} {-} σ o_{RH}, and {RMS}_{height}. This SEM showed R2 of 0.87 and adjusted R2 of 0.85, multiple R=0.94 and with standard error of 0.05 at 95% confidence level. Validation of the SM derived from semi-empirical model with observed measurement ({SM}_{Observed}) showed root mean square error (RMSE) = 0.06, relative-RMSE (R-RMSE) = 0.18, mean absolute error (MAE) = 0.04, normalized RMSE (NRMSE) = 0.17, Nash-Sutcliffe efficiency (NSE) = 0.91 ({≈ } 1), index of agreement (d) = 1, coefficient of determination (R2) = 0.87, mean bias error (MBE) = 0.04, standard error of estimate (SEE) = 0.10, volume error (VE) = 0.15, variance of the distribution of differences ({S}d2) = 0.004. The developed SEM showed better performance in estimating SM than Topp empirical model which is based only on σ o. By using the developed SEM, top soil SM can be estimated with low mean absolute percent error (MAPE) = 1.39 and can be used for operational applications.
NASA Astrophysics Data System (ADS)
Ling, Hangjian; Katz, Joseph; Srinivasan, Siddarth; McKinley, Gareth; Golovin, Kevin; Tuteja, Anish; Pillutla, Venkata; Abhijeet, Abhijeet; Choi, Wonjae
2016-11-01
Digital holographic microscopy is used for measuring the mean velocity and stress in the inner part of turbulent boundary layers over sprayed or etched super-hydrophobic surfaces (SHSs). The slip velocity and wall friction are calculated directly from the mean velocity and its gradient along with the Reynolds shear stress at the top of SHSs "roughness". Effects of the normalized rms roughness height krms+, facility pressure p and streamwise distance x from the beginning of SHSs on mean flow are examined. For krms+<1 and pkrms / σ <1 (σ is surface tension), the SHSs show 10-28% wall friction reduction, 15-30% slip velocity and λ+ = 3-10 slip length. Increasing Reynolds number and/or krms to establish krms+>1, and increasing p to achieve pkrms / σ >1 suppress the drag reduction, as roughness effects and associated near wall Reynolds stress increase. When the roughness effect is not dominant, the measurements agree with previous theoretical predictions of the relationships between drag reduction and slip velocity. The significance of spanwise slip relative to streamwise slip varies with the SHSs texture. Transitions from a smooth wall to a SHS involve overshoot of Reynolds stress and undershoot of viscous stress, trends that diminish with x. Sponsored by ONR.
NASA Astrophysics Data System (ADS)
Billingsley, Daniel; Henderson, Walter; Doolittle, W. Alan
2010-05-01
The effect of high-temperature growth on the crystalline quality and surface morphology of GaN and Al x Ga1- x N grown by ammonia-based metalorganic molecular-beam epitaxy (NH3-MOMBE) has been investigated as a means of producing atomically smooth films suitable for device structures. The effects of V/III ratio on the growth rate and surface morphology are described herein. The crystalline quality of both GaN and AlGaN was found to mimic that of the GaN templates, with (002) x-ray diffraction (XRD) full-widths at half- maximum (FWHMs) of ~350 arcsec. Nitrogen-rich growth conditions have been found to provide optimal surface morphologies with a root-mean-square (RMS) roughness of ~0.8 nm, yet excessive N-rich environments have been found to reduce the growth rate and result in the formation of faceted surface pitting. AlGaN exhibits a decreased growth rate, as compared with GaN, due to increased N recombination as a result of the increased pyrolysis of NH3 in the presence of Al. AlGaN films grown directly on GaN templates exhibited Pendellösung x-ray fringes, indicating an abrupt interface and a planar AlGaN film. AlGaN films grown for this study resulted in an optimal RMS roughness of ~0.85 nm with visible atomic steps.
Describing soil surface microrelief by crossover length and fractal dimension
NASA Astrophysics Data System (ADS)
Vidal Vázquez, E.; Miranda, J. G. V.; Paz González, A.
2007-05-01
Accurate description of soil surface topography is essential because different tillage tools produce different soil surface roughness conditions, which in turn affects many processes across the soil surface boundary. Advantages of fractal analysis in soil microrelief assessment have been recognised but the use of fractal indices in practice remains challenging. There is also little information on how soil surface roughness decays under natural rainfall conditions. The objectives of this work were to investigate the decay of initial surface roughness induced by natural rainfall under different soil tillage systems and to compare the performances of a classical statistical index and fractal microrelief indices. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil). Six tillage treatments, namely, disc harrow, disc plow, chisel plow, disc harrow + disc level, disc plow + disc level and chisel plow + disc level were tested. Measurements were made four times, firstly just after tillage and subsequently with increasing amounts of natural rainfall. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental surfaces. The sampling scheme was a square grid with 25×25 mm point spacing and the plot size was 1350×1350 mm, so that each data set consisted of 3025 individual elevation points. Statistical and fractal indices were calculated both for oriented and random roughness conditions, i.e. after height reading have been corrected for slope and for slope and tillage tool marks. The main drawback of the standard statistical index random roughness, RR, lies in its no spatial nature. The fractal approach requires two indices, fractal dimension, D, which describes how roughness changes with scale, and crossover length, l, specifying the variance of surface microrelief at a reference scale. Fractal parameters D and l, were estimated by two independent self-affine models, semivariogram (SMV) and local root mean square (RMS). Both algorithms, SMV and RMS, gave equivalent results for D and l indices, irrespective of trend removal procedure, even if some bias was present which is in accordance with previous work. Treatments with two tillage operations had the greatest D values, irrespective of evolution stage under rainfall and trend removal procedure. Primary tillage had the greatest initial values of RR and l. Differences in D values between treatments with primary tillage and those with two successive tillage operations were significant for oriented but not for random conditions. The statistical index RR and the fractal indices l and D decreased with increasing cumulative rainfall following different patterns. The l and D decay from initial value was very sharp after the first 24.4 mm cumulative rainfall. For five out of six tillage treatments a significant relationship between D and l was found for the random microrelief conditions allowing a covariance analysis. It was concluded that using RR or l together with D best allow joint description of vertical and horizontal soil roughness variations.
Wave optics simulation of statistically rough surface scatter
NASA Astrophysics Data System (ADS)
Lanari, Ann M.; Butler, Samuel D.; Marciniak, Michael; Spencer, Mark F.
2017-09-01
The bidirectional reflectance distribution function (BRDF) describes optical scatter from surfaces by relating the incident irradiance to the exiting radiance over the entire hemisphere. Laboratory verification of BRDF models and experimentally populated BRDF databases are hampered by sparsity of monochromatic sources and ability to statistically control the surface features. Numerical methods are able to control surface features, have wavelength agility, and via Fourier methods of wave propagation, may be used to fill the knowledge gap. Monte-Carlo techniques, adapted from turbulence simulations, generate Gaussian distributed and correlated surfaces with an area of 1 cm2 , RMS surface height of 2.5 μm, and correlation length of 100 μm. The surface is centered inside a Kirchhoff absorbing boundary with an area of 16 cm2 to prevent wrap around aliasing in the far field. These surfaces are uniformly illuminated at normal incidence with a unit amplitude plane-wave varying in wavelength from 3 μm to 5 μm. The resultant scatter is propagated to a detector in the far field utilizing multi-step Fresnel Convolution and observed at angles from -2 μrad to 2 μrad. The far field scatter is compared to both a physical wave optics BRDF model (Modified Beckmann Kirchhoff) and two microfacet BRDF Models (Priest, and Cook-Torrance). Modified Beckmann Kirchhoff, which accounts for diffraction, is consistent with simulated scatter for multiple wavelengths for RMS surface heights greater than λ/2. The microfacet models, which assume geometric optics, are less consistent across wavelengths. Both model types over predict far field scatter width for RMS surface heights less than λ/2.
Measurement of surface microtopography
NASA Technical Reports Server (NTRS)
Wall, S. D.; Farr, T. G.; Muller, J.-P.; Lewis, P.; Leberl, F. W.
1991-01-01
Acquisition of ground truth data for use in microwave interaction modeling requires measurement of surface roughness sampled at intervals comparable to a fraction of the microwave wavelength and extensive enough to adequately represent the statistics of a surface unit. Sub-centimetric measurement accuracy is thus required over large areas, and existing techniques are usually inadequate. A technique is discussed for acquiring the necessary photogrammetric data using twin film cameras mounted on a helicopter. In an attempt to eliminate tedious data reduction, an automated technique was applied to the helicopter photographs, and results were compared to those produced by conventional stereogrammetry. Derived root-mean-square (RMS) roughness for the same stereo-pair was 7.5 cm for the automated technique versus 6.5 cm for the manual method. The principal source of error is probably due to vegetation in the scene, which affects the automated technique but is ignored by a human operator.
Fabrication of GaN doped ZnO nanocrystallines by laser ablation.
Gopalakrishnan, N; Shin, B C; Bhuvana, K P; Elanchezhiyan, J; Balasubramanian, T
2008-08-01
Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nm and it is 41 nm while doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.
Effects of Suction on Swept-Wing Transition
NASA Technical Reports Server (NTRS)
Saric, William S.
1998-01-01
Stability experiments are conducted in the Arizona State University Unsteady Wind Tunnel on a 45 deg swept airfoil. The pressure gradient is designed to provide purely crossflow-dominated transition; that is, the boundary layer is subcritical to Tollmien-Schlichting disturbances. The airfoil surface is hand polished to a 0.25 microns rms finish. Under these conditions, stationary crossflow disturbances grow to nonuniform amplitude due to submicron surface irregularities near the leading edge. Uniform stationary crossflow waves are produced by controlling the initial conditions with spanwise arrays of micron-sized roughness elements near the attachment line. Hot-wire measurements provide detailed maps of the crossflow wave structure, and accurate spectral decompositions isolate individual-mode growth rates for the fundamental and harmonic disturbances. Roughness spacing, roughness height, and Reynolds number are varied to investigate the growth of all amplified wavelengths. The measurements show early nonlinear mode interaction causing amplitude saturation well before transition. Comparisons with nonlinear parabolized stability equations calculations show excellent agreement in both the disturbance amplitude and the mode-shape profiles.
X-ray microfocusing with off-axis ellipsoidal mirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa; Matsuyama, Satoshi
2016-07-27
High-precision ellipsoidal mirrors for two-dimensionally focusing X-rays to nanometer sizes have not been realized because of technical problems in their fabrication processes. The objective of the present study is to develop fabrication techniques for ellipsoidal focusing mirrors in the hard-X-ray region. We design an off-axis ellipsoidal mirror for use under total reflection conditions up to the X-ray energy of 8 keV. We fabricate an ellipsoidal mirror with a surface roughness of 0.3 nm RMS (root-mean-square) and a surface figure error height of 3.0 nm RMS by utilizing a surface profiler and surface finishing method developed by us. The focusing propertiesmore » of the mirror are evaluated at the BL29XUL beamline in SPring-8. A focusing beam size of 270 nm × 360 nm FWHM (full width at half maximum) at an X-ray energy of 7 keV is observed with the use of the knife-edge scanning method. We expect to apply the developed fabrication techniques to construct ellipsoidal nanofocusing mirrors.« less
Nair, Ashish Shashikant; Tilakchand, Mahima; Naik, Balaram Damodar
2015-01-01
Aims: To observe and study the effect of multiple autoclave sterilization cycles, on the surface of nickel-titanium (NiTi) files. Materials and Methods: The file used for this study was the Mtwo file (VDW) and ProTaper (Dentsply). The apical 5 mm of the files were attached to a silicon wafer and subjected to autoclave cycles under standardized conditions. They were scanned with an AFM after 1, 5, and 10 cycles. The unsterilized files were used as control, before start of the study. Three vertical topographic parameters namely maximum height (MH), root mean square (RMS) of surface roughness, and arithmetic mean roughness (AMR)were measured with the atomic force microscope (AFM). Analysis of variance along with Tukey's test was used to test the differences. Results: The vertical topographic parameters were higher for both the files, right after the first cycle, when compared with the control (P < 0.01). The surface roughness increased sharply for Mtwo when compared to ProTaper, though ProTaper had a rougher surface initially. Conclusions: The study confirmed that the irregularities present on the surface of the file became more prominent with multiple autoclave cycles, a fact that should be kept in mind during their reuse. PMID:26069408
Nair, Ashish Shashikant; Tilakchand, Mahima; Naik, Balaram Damodar
2015-01-01
To observe and study the effect of multiple autoclave sterilization cycles, on the surface of nickel-titanium (NiTi) files. The file used for this study was the Mtwo file (VDW) and ProTaper (Dentsply). The apical 5 mm of the files were attached to a silicon wafer and subjected to autoclave cycles under standardized conditions. They were scanned with an AFM after 1, 5, and 10 cycles. The unsterilized files were used as control, before start of the study. Three vertical topographic parameters namely maximum height (MH), root mean square (RMS) of surface roughness, and arithmetic mean roughness (AMR)were measured with the atomic force microscope (AFM). Analysis of variance along with Tukey's test was used to test the differences. The vertical topographic parameters were higher for both the files, right after the first cycle, when compared with the control (P < 0.01). The surface roughness increased sharply for Mtwo when compared to ProTaper, though ProTaper had a rougher surface initially. The study confirmed that the irregularities present on the surface of the file became more prominent with multiple autoclave cycles, a fact that should be kept in mind during their reuse.
Iron Cycling at Corroding Carbon Steel Surfaces
2013-01-01
product corrosion was examined using ESEM. Samples were also sent to CSIRO (Floreat Park, WA, Australia) for selected area electron diffraction (SAED...penetration and RMS roughness values ɚ.0 μm. Discussion Corrosion product mineralogy can be used to interpret the role of microorganisms in MIC (McNeil & Odom...investigate corrosion using defined mixed cultures of FeOB and FeRB. Different combinations of organisms and marine media were chosen to provide a
Rupture Dynamics and Ground Motion from Earthquakes on Rough Faults in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Bydlon, S. A.; Kozdon, J. E.; Duru, K.; Dunham, E. M.
2013-12-01
Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the amplitude of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. Our goal is to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. Using a 2D high order finite difference rupture dynamics code, we nucleate ruptures on either flat or rough faults that obey strongly rate-weakening friction laws. These faults are embedded in domains with spatially varying material properties characterized by Von Karman autocorrelation functions and their associated power spectral density functions, with variations in wave speed of approximately 5 to 10%. Flat fault simulations demonstrate that off-fault material heterogeneity, at least with this particular form and amplitude, has only a minor influence on the rupture process (i.e., fluctuations in slip and rupture velocity). In contrast, ruptures histories on rough faults in both homogeneous and heterogeneous media include much larger short-wavelength fluctuations in slip and rupture velocity. We therefore conclude that source complexity is dominantly influenced by fault geometric complexity. To examine contributions of scattering versus fault geometry on ground motions, we compute spatially averaged root-mean-square (RMS) acceleration values as a function of fault perpendicular distance for a homogeneous medium and several heterogeneous media characterized by different statistical properties. We find that at distances less than ~6 km from the fault, RMS acceleration values from simulations with homogeneous and heterogeneous media are similar, but at greater distances the RMS values associated with heterogeneous media are larger than those associated with homogeneous media. The magnitude of this divergence increases with the amplitude of the heterogeneities. For instance, for a heterogeneous medium with a 10% standard deviation in material property values relative to mean values, RMS accelerations are ~50% larger than for a homogeneous medium at distances greater than 6 km. This finding is attributed to the scattering of coherent pulses into multiple pulses of decreased amplitude that subsequently arrive at later times. In order to understand the robustness of these results, an extension of our dynamic rupture and wave propagation code to 3D is underway.
NASA Astrophysics Data System (ADS)
Maloney, Chris; Lormeau, Jean Pierre; Dumas, Paul
2016-07-01
Many astronomical sensing applications operate in low-light conditions; for these applications every photon counts. Controlling mid-spatial frequencies and surface roughness on astronomical optics are critical for mitigating scattering effects such as flare and energy loss. By improving these two frequency regimes higher contrast images can be collected with improved efficiency. Classically, Magnetorheological Finishing (MRF) has offered an optical fabrication technique to correct low order errors as well has quilting/print-through errors left over in light-weighted optics from conventional polishing techniques. MRF is a deterministic, sub-aperture polishing process that has been used to improve figure on an ever expanding assortment of optical geometries, such as planos, spheres, on and off axis aspheres, primary mirrors and freeform optics. Precision optics are routinely manufactured by this technology with sizes ranging from 5-2,000mm in diameter. MRF can be used for form corrections; turning a sphere into an asphere or free form, but more commonly for figure corrections achieving figure errors as low as 1nm RMS while using careful metrology setups. Recent advancements in MRF technology have improved the polishing performance expected for astronomical optics in low, mid and high spatial frequency regimes. Deterministic figure correction with MRF is compatible with most materials, including some recent examples on Silicon Carbide and RSA905 Aluminum. MRF also has the ability to produce `perfectly-bad' compensating surfaces, which may be used to compensate for measured or modeled optical deformation from sources such as gravity or mounting. In addition, recent advances in MRF technology allow for corrections of mid-spatial wavelengths as small as 1mm simultaneously with form error correction. Efficient midspatial frequency corrections make use of optimized process conditions including raster polishing in combination with a small tool size. Furthermore, a novel MRF fluid, called C30, has been developed to finish surfaces to ultra-low roughness (ULR) and has been used as the low removal rate fluid required for fine figure correction of mid-spatial frequency errors. This novel MRF fluid is able to achieve <4Å RMS on Nickel-plated Aluminum and even <1.5Å RMS roughness on Silicon, Fused Silica and other materials. C30 fluid is best utilized within a fine figure correction process to target mid-spatial frequency errors as well as smooth surface roughness 'for free' all in one step. In this paper we will discuss recent advancements in MRF technology and the ability to meet requirements for precision optics in low, mid and high spatial frequency regimes and how improved MRF performance addresses the need for achieving tight specifications required for astronomical optics.
Atomic Force Microscope (AFM) measurements and analysis on Sagem 05R0025 secondary substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufli, R; Baker, S L; Robinson, J C
2006-02-22
The summary of Atomic Force Microscope (AFM) on Sagem 05R0025 secondary substrate: (1) 2 x 2 {micro}m{sup 2} and 10 x 10 {micro}m{sup 2} AFM measurements and analysis on Sagem 05R0025 secondary substrate at LLNL indicate rather uniform and extremely isotropic finish across the surface, with high-spatial frequency roughness {sigma} in the range 5.1-5.5 {angstrom} rms; (2) the marked absence of pronounced long-range polishing marks in any direction, combined with increased roughness in the very high spatial frequencies, are consistent with ion-beam polishing treatment on the surface. These observations are consistent with all earlier mirrors they measured from the samemore » vendor; and (3) all data were obtained with a Digital Instruments Dimension 5000{trademark} atomic force microscope.« less
Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers
NASA Astrophysics Data System (ADS)
Bollmann, Tjeerd R. J.
2018-04-01
Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.
Fine figure correction and other applications using novel MRF fluid designed for ultra-low roughness
NASA Astrophysics Data System (ADS)
Maloney, Chris; Oswald, Eric S.; Dumas, Paul
2015-10-01
An increasing number of technologies require ultra-low roughness (ULR) surfaces. Magnetorheological Finishing (MRF) is one of the options for meeting the roughness specifications for high-energy laser, EUV and X-ray applications. A novel MRF fluid, called C30, has been developed to finish surfaces to ULR. This novel MRF fluid is able to achieve <1.5Å RMS roughness on fused silica and other materials, but has a lower material removal rate with respect to other MRF fluids. As a result of these properties, C30 can also be used for applications in addition to finishing ULR surfaces. These applications include fine figure correction, figure correcting extremely soft materials and removing cosmetic defects. The effectiveness of these new applications is explored through experimental data. The low removal rate of C30 gives MRF the capability to fine figure correct low amplitude errors that are usually difficult to correct with higher removal rate fluids. The ability to figure correct extremely soft materials opens up MRF to a new realm of materials that are difficult to polish. C30 also offers the ability to remove cosmetic defects that often lead to failure during visual quality inspections. These new applications for C30 expand the niche in which MRF is typically used for.
NASA Astrophysics Data System (ADS)
Zhong, Xianyun; Hou, Xi; Yang, Jinshan
2016-09-01
Nickel is the unique material in the X-ray telescopes. And it has the typical soft material characteristics with low hardness high surface damage and low stability of thermal. The traditional fabrication techniques are exposed to lots of problems, including great surface scratches, high sub-surface damage and poor surface roughness and so on. The current fabrication technology for the nickel aspheric mainly adopt the single point diamond turning(SPDT), which has lots of advantages such as high efficiency, ultra-precision surface figure, low sub-surface damage and so on. But the residual surface texture of SPDT will cause great scattering losses and fall far short from the requirement in the X-ray applications. This paper mainly investigates the magnetorheological finishing (MRF) techniques for the super-smooth processing on the nickel optics. Through the study of the MRF polishing techniques, we obtained the ideal super-smooth polishing technique based on the self-controlled MRF-fluid NS-1, and finished the high-precision surface figure lower than RMS λ/80 (λ=632.8nm) and super-smooth roughness lower than Ra 0.3nm on the plane reflector and roughness lower than Ra 0.4nm on the convex cone. The studying of the MRF techniques makes a great effort to the state-of-the-art nickel material processing level for the X-ray optical systems applications.
Rational nanostructuring of surfaces for extraordinary icephobicity
NASA Astrophysics Data System (ADS)
Eberle, Patric; Tiwari, Manish K.; Maitra, Tanmoy; Poulikakos, Dimos
2014-04-01
Icing of surfaces is commonplace in nature, technology and everyday life, bringing with it sometimes catastrophic consequences. A rational methodology for designing materials with extraordinary resistance to ice formation and adhesion remains however elusive. We show that ultrafine roughnesses can be fabricated, so that the ice nucleation-promoting effect of nanopits on surfaces is effectively counteracted in the presence of an interfacial quasiliquid layer. The ensuing interface confinement strongly suppresses the stable formation of ice nuclei. We explain why such nanostructuring leads to the same extremely low, robust nucleation temperature of ~-24 °C for over three orders of magnitude change in RMS size (~0.1 to ~100 nm). Overlaying such roughnesses on pillar-microtextures harvests the additional benefits of liquid repellency and low ice adhesion. When tested at a temperature of -21 °C, such surfaces delayed the freezing of a sessile supercooled water droplet at the same temperature by a remarkable 25 hours.Icing of surfaces is commonplace in nature, technology and everyday life, bringing with it sometimes catastrophic consequences. A rational methodology for designing materials with extraordinary resistance to ice formation and adhesion remains however elusive. We show that ultrafine roughnesses can be fabricated, so that the ice nucleation-promoting effect of nanopits on surfaces is effectively counteracted in the presence of an interfacial quasiliquid layer. The ensuing interface confinement strongly suppresses the stable formation of ice nuclei. We explain why such nanostructuring leads to the same extremely low, robust nucleation temperature of ~-24 °C for over three orders of magnitude change in RMS size (~0.1 to ~100 nm). Overlaying such roughnesses on pillar-microtextures harvests the additional benefits of liquid repellency and low ice adhesion. When tested at a temperature of -21 °C, such surfaces delayed the freezing of a sessile supercooled water droplet at the same temperature by a remarkable 25 hours. Electronic supplementary information (ESI) available: Thermodynamic framework and statistical methods for data analyses; details of ice nucleation delay measurements and prediction of the delays around the median nucleation temperature; additional SEM and AFM images not shown in the main paper and complete contact angle characterization; derivation of the nanoscale interface confinement effect; an error assessment, detailed results of droplet impact experiments on hydrophilic and hydrophobic substrates; methods for surface preparation and characterization; description of the experimental set-up and protocols; five videos supporting the text. See DOI: 10.1039/c3nr06644d
NASA Astrophysics Data System (ADS)
Zhang, K.; Brötzmann, M.; Hofsäss, H.
2012-09-01
We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30° incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2×1015 Fe/cm2) over dot patterns (2-8×1015 Fe/cm2), ripples patterns (8-17×1015 Fe/cm2), pill bug structures (1.8×1016 Fe/cm2) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8×1016 Fe/cm2). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness ˜ 18 nm) to a rather flat surface (rms roughness ˜ 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8×1016 Fe/cm2, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi2. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.
NASA Astrophysics Data System (ADS)
Özden, Selin; Koc, Mumin Mehmet
2018-03-01
CdTe epitaxial thin films, for use as a buffer layer for HgCdTe defectors, were grown on GaAs (211)B using the molecular beam epitaxy method. Wet chemical etching (Everson method) was applied to the epitaxial films using various concentrations and application times to quantify the crystal quality and dislocation density. Surface characterization of the epitaxial films was achieved using Atomic force microscopy and Scanning electron microscopy (SEM) before and after each treatment. The Energy Dispersive X-Ray apparatus of SEM was used to characterize the chemical composition. Untreated CdTe films show smooth surface characteristics with root mean square (RMS) roughnesses of 1.18-3.89 nm. The thicknesses of the CdTe layers formed were calculated via FTIR spectrometry and obtained by ex situ spectroscopic ellipsometry. Raman spectra were obtained for various temperatures. Etch pit densities (EPD) were measured, from which it could be seen that EPD changes between 1.7 × 108 and 9.2 × 108 cm-2 depending on the concentration of the Everson etch solution and treatment time. Structure, shape and depth of pits resulting from each etch pit implementation were also evaluated. Pit widths varying between 0.15 and 0.71 µm with heights varying between 2 and 80 nm were observed. RMS roughness was found to vary by anything from 1.56 to 26 nm.
Direct observation of bacterial deposition onto clean and organic-fouled polyamide membranes.
Subramani, Arun; Huang, Xiaofei; Hoek, Eric M V
2009-08-01
Nanofiltration (NF) and reverse osmosis (RO) membranes are commonly applied to produce highly purified water from municipal wastewater effluents. In these applications, biofouling limits overall process performance and increases the cost of operation. Initial bacteria adhesion onto a membrane surface is a critical early step in the overall process of membrane biofouling. However, adsorption of effluent organic matter onto the membrane may precede bacterial deposition and change membrane surface properties. Herein we employed direct microscopic observation to elucidate mechanisms governing bacterial cell deposition onto clean and organic-fouled NF and RO membranes. Bovine serum albumin (BSA) and alginic acid (AA) were used as models for protein and polysaccharide rich organic matter in secondary wastewater effluents. In all experiments, organic fouling increased membrane hydraulic resistance and salt rejection, in addition to interfacial hydrophilicity and roughness. Even though surface hydrophilicity increased, the rougher surfaces presented by organic-fouled membranes produced nano-scale features that promoted localized bacterial deposition. An extended DLVO analysis of bacterial cells and membrane surface properties suggested that bacterial deposition correlated most strongly with the Lewis acid-base free energy of adhesion and root mean square (RMS) roughness, whereas van der Waals and electrostatic free energies were weakly correlated. This was true for both clean and organic-fouled membranes. Bacterial deposition rates were clearly influenced by an antagonistic interplay between macroscopic surface hydrophilicity and nano-scale surface roughness.
Study of a wide-aperture combined deformable mirror for high-power pulsed phosphate glass lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samarkin, V V; Aleksandrov, A G; Romanov, P N
2015-12-31
A deformable mirror with the size of 410 × 468 mm controlled by bimorph piezoceramic plates and multilayer piezo stacks is developed. The response functions of individual actuators and the measurements of the flatness of the deformable mirror surface are presented. The study of mirrors with an interferometer and a wavefront sensor has shown that it is possible to improve the surface flatness down to a residual roughness of 0.033 μm (RMS). The possibility of correction of beam aberrations in an ultra-high-power laser using the created bimorph mirror is demonstrated. (letters)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Min-Cherl; Zhang, Dongrong; Nikiforov, Gueorgui O.
Ultrathin (<6 nm) polycrystalline films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-P) are deposited with a two-step spin-coating process. The influence of spin-coating conditions on morphology of the resulting film was examined by atomic force microscopy. Film thickness and RMS surface roughness were in the range of 4.0–6.1 and 0.6–1.1 nm, respectively, except for small holes. Polycrystalline structure was confirmed by grazing incidence x-ray diffraction measurements. Near-edge x-ray absorption fine structure measurements suggested that the plane through aromatic rings of TIPS-P molecules was perpendicular to the substrate surface.
NASA Astrophysics Data System (ADS)
Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi; Wang, Zhuo
2016-10-01
Surface and subsurface damage in optical element will greatly decrease the laser induced damage threshold (LIDT) in the intense laser optical system. Processing damage on the workpiece surface can be inevitably caused when the material is removed in brittle or plastic mode. As a non-contact polishing technology, hydrodynamic effect polishing (HEP) shows very good performance on generating an ultra-smooth surface without damage. The material is removed by chemisorption between nanoparticle and workpiece surface in the elastic mode in HEP. The subsurface damage and surface scratches can be effectively removed after the polishing process. Meanwhile ultra-smooth surface with atomic level surface roughness can be achieved. To investigate the improvement of LIDT of optical workpiece, polishing experiment was conducted on a magnetorheological finishing (MRF) silica glass sample. AFM measurement results show that all the MRF directional plastic marks have been removed clearly and the root-mean-square (rms) surface roughness has decreased from 0.673nm to 0.177nm after HEP process. Laser induced damage experiment was conducted with laser pulse of 1064nm wavelength and 10ns time width. Compared with the original state, the LEDT of the silica glass sample polished by HEP has increased from 29.78J/cm2 to 45.47J/cm2. It demonstrates that LIDT of optical element treated by HEP can be greatly improved for ultra low surface roughness and nearly defect-free surface/subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Man, E-mail: man.nie@helmholtz-berlin.de; Ellmer, Klaus
2014-02-28
Cu(In,Ga)S{sub 2} (CIGS) films were deposited on Mo coated soda lime glass substrates using an electron cyclotron resonance plasma enhanced one-step reactive magnetron co-sputtering process (ECR-RMS). The crystalline quality and the morphology of the Cu(In,Ga)S{sub 2} films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray fluorescence. We also compared these CIGS films with films previously prepared without ECR assistance and find that the crystallinity of the CIGS films is correlated with the roughness evolution during deposition. Atomic force microscopy was used to measure the surface topography and to derive one-dimensional power spectral densities (1DPSD). Allmore » 1DPSD spectra of CIGS films exhibit no characteristic peak which is typical for the scaling of a self-affine surface. The growth exponent β, characterizing the roughness R{sub q} evolution during the film growth as R{sub q} ∼ d{sup β}, changes with film thickness. The root-mean-square roughness at low temperatures increases only slightly with a growth exponent β = 0.013 in the initial growth stage, while R{sub q} increases with a much higher exponent β = 0.584 when the film thickness is larger than about 270 nm. Additionally, we found that the H{sub 2}S content of the sputtering atmosphere and the Cu- to-(In + Ga) ratio has a strong influence of the morphology of the CIGS films in this one-step ECR-RMS process.« less
NASA Astrophysics Data System (ADS)
Kunimura, Shinsuke; Ohmori, Hitoshi
We present a rapid process for producing flat and smooth surfaces. In this technical note, a fabrication result of a carbon mirror is shown. Electrolytic in-process dressing (ELID) grinding with a metal bonded abrasive wheel, then a metal-resin bonded abrasive wheel, followed by a conductive rubber bonded abrasive wheel, and finally magnetorheological finishing (MRF) were performed as the first, second, third, and final steps, respectively in this process. Flatness over the whole surface was improved by performing the first and second steps. After the third step, peak to valley (PV) and root mean square (rms) values in an area of 0.72 x 0.54 mm2 on the surface were improved. These values were further improved after the final step, and a PV value of 10 nm and an rms value of 1 nm were obtained. Form errors and small surface irregularities such as surface waviness and micro roughness were efficiently reduced by performing ELID grinding using the above three kinds of abrasive wheels because of the high removal rate of ELID grinding, and residual small irregularities were reduced by short time MRF. This process makes it possible to produce flat and smooth surfaces in several hours.
New fabrication method for an ellipsoidal neutron focusing mirror with a metal substrate.
Guo, Jiang; Takeda, Shin; Morita, Shin-ya; Hino, Masahiro; Oda, Tatsuro; Kato, Jun-ichi; Yamagata, Yutaka; Furusaka, Michihiro
2014-10-06
We propose an ellipsoidal neutron focusing mirror using a metal substrate made with electroless nickel-phosphorus (NiP) plated material for the first time. Electroless NiP has great advantages for realizing an ellipsoidal neutron mirror because of its amorphous structure, good machinability and relatively large critical angle of total reflection for neutrons. We manufactured the mirror by combining ultrahigh precision cutting and fine polishing to generate high form accuracy and low surface roughness. The form accuracy of the mirror was estimated to be 5.3 μm P-V and 0.8 μm P-V for the minor-axis and major-axis direction respectively, while the surface roughness was reduced to 0.2 nm rms. The effect of form error on focusing spot size was evaluated by using a laser beam and the focusing performance of the mirror was verified by neutron experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broitman, Esteban, E-mail: esbro@ifm.liu.se; Flores-Ruiz, Francisco J.; Di Giulio, Massimo
2016-03-15
In this work, the authors compare the morphological, structural, nanomechanical, and microtribological properties of Pb films deposited by thermal evaporation (TE) and pulsed laser deposition (PLD) techniques onto Si (111) substrates. Films were investigated by scanning electron microscopy, surface probe microscopy, and x-ray diffraction in θ-2θ geometry to determine their morphology, root-mean-square (RMS) roughness, and microstructure, respectively. TE films showed a percolated morphology with densely packed fibrous grains while PLD films had a granular morphology with a columnar and tightly packed structure in accordance with the zone growth model of Thornton. Moreover, PLD films presented a more polycrystalline structure withmore » respect to TE films, with RMS roughness of 14 and 10 nm, respectively. Hardness and elastic modulus vary from 2.1 to 0.8 GPa and from 14 to 10 GPa for PLD and TE films, respectively. A reciprocal friction test has shown that PLD films have lower friction coefficient and wear rate than TE films. Our study has demonstrated for first time that, at the microscale, Pb films do not show the same simple lubricious properties measured at the macroscale.« less
Large-aperture ground glass surface profile measurement using coherence scanning interferometry.
Bae, Eundeok; Kim, Yunseok; Park, Sanguk; Kim, Seung-Woo
2017-01-23
We present a coherence scanning interferometer configured to deal with rough glass surfaces exhibiting very low reflectance due to severe sub-surface light scattering. A compound light source is prepared by combining a superluminescent light-emitting diode with an ytterbium-doped fiber amplifier. The light source is attuned to offer a short temporal coherence length of 15 μm but with high spatial coherence to secure an adequate correlogram contrast by delivering strongly unbalanced optical power to the low reflectance target. In addition, the infrared spectral range of the light source is shifted close to the visible side at a 1,038 nm center wavelength, so a digital camera of multi-mega pixels available for industrial machine vision can be used to improve the correlogram contrast further with better lateral image resolutions. Experimental results obtained from a ground Zerodur mirror of 200 mm aperture size and 0.9 μm rms roughness are discussed to validate the proposed interferometer system.
AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic
NASA Astrophysics Data System (ADS)
Luo, X.-P.; Silikas, N.; Allaf, M.; Wilson, N. H. F.; Watts, D. C.
2001-10-01
The aim of this study was to investigate the effects of increasing etching time on the surface of the new dental material, IPS-Empress 2 TM glass ceramic. Twenty one IPS-Empress 2 TM glass ceramic samples were made from IPS-Empress 2 TM ingots through lost-wax, hot-pressed ceramic fabrication technology. All samples were highly polished and cleaned ultrasonically for 5 min in acetone before and after etching with 9.6% hydrofluoric acid gel. The etching times were 0, 10, 20, 30, 60, 90 and 120 s respectively. Microstructure was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to evaluate the surface roughness and topography. Observations with SEM showed that etching with hydrofluoric acid resulted in preferential dissolution of glass matrix, and that partially supported crystals within the glass matrix were lost with increasing etching time. AFM measurements indicated that etching increased the surface roughness of the glass-ceramic. A simple least-squares linear regression was used to establish a relationship between surface roughness parameters ( Ra, RMS), and etching time, for which r2>0.94. This study demonstrates the benefits of combining two microscopic methods for a better understanding of the surface. SEM showed the mode of action of hydrofluoric acid on the ceramic and AFM provided valuable data regarding the extent of surface degradation relative to etching time.
Retrieval of Soil Moisture and Roughness from the Polarimetric Radar Response
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Ulaby, Fawwaz T.
1997-01-01
The main objective of this investigation was the characterization of soil moisture using imaging radars. In order to accomplish this task, a number of intermediate steps had to be undertaken. In this proposal, the theoretical, numerical, and experimental aspects of electromagnetic scattering from natural surfaces was considered with emphasis on remote sensing of soil moisture. In the general case, the microwave backscatter from natural surfaces is mainly influenced by three major factors: (1) the roughness statistics of the soil surface, (2) soil moisture content, and (3) soil surface cover. First the scattering problem from bare-soil surfaces was considered and a hybrid model that relates the radar backscattering coefficient to soil moisture and surface roughness was developed. This model is based on extensive experimental measurements of the radar polarimetric backscatter response of bare soil surfaces at microwave frequencies over a wide range of moisture conditions and roughness scales in conjunction with existing theoretical surface scattering models in limiting cases (small perturbation, physical optics, and geometrical optics models). Also a simple inversion algorithm capable of providing accurate estimates of soil moisture content and surface rms height from single-frequency multi-polarization radar observations was developed. The accuracy of the model and its inversion algorithm is demonstrated using independent data sets. Next the hybrid model for bare-soil surfaces is made fully polarimetric by incorporating the parameters of the co- and cross-polarized phase difference into the model. Experimental data in conjunction with numerical simulations are used to relate the soil moisture content and surface roughness to the phase difference statistics. For this purpose, a novel numerical scattering simulation for inhomogeneous dielectric random surfaces was developed. Finally the scattering problem of short vegetation cover above a rough soil surface was considered. A general scattering model for grass-blades of arbitrary cross section was developed and incorporated in a first order random media model. The vegetation model and the bare-soil model are combined and the accuracy of the combined model is evaluated against experimental observations from a wheat field over the entire growing season. A complete set of ground-truth data and polarimetric backscatter data were collected. Also an inversion algorithm for estimating soil moisture and surface roughness from multi-polarized multi-frequency observations of vegetation-covered ground is developed.
Far-infrared reflectance spectra of optical black coatings
NASA Technical Reports Server (NTRS)
Smith, S. M.
1983-01-01
Far-infrared specular reflectance spectra of six optically black coatings near normal incidence are presented. The spectra were obtained using nine bandpass transmission filters in the wavelength range between 12 and 300 microns. Data on the construction, thickness, and rms surface roughness of the coatings are also presented. The chemical composition of two coatings can be distinguished from that of the others by a strong absorption feature between 20 and 40 microns which is attributed to amorphous silicate material. Inverse relationships between these spectra and coating roughness and thickness are noted and lead to development of a reflecting-layer model for the measured reflectance. The model is applied to the spectra of several coatings whose construction falls within its constraints.
NASA Technical Reports Server (NTRS)
Chang, L.; Hall, P. B.; Thom, R.
1996-01-01
This research reports on an experimental study of the effects of materials and surface roughness on the scuffing characteristics of rolling/sliding contacts cooled and lubricated with liquid oxygen. Experiments were carried out under heavy loading with a Hertzian pressure in the range of 2.0 GPa to 3.0 GPa and with a high rolling velocity of up to 48 m/s. For contacts between AISI 440 C stainless-steel elements, the results showed that the scuffing behavior of the system was fairly consistent under a wide range of rolling velocity. Scuffing commenced at a small slide-to-roll ratio of around 0.02, and the scuffing behavior of the contact was not sensitive to surface roughness for the test-sample RMS roughness ranging from 0.02 microns to 0.10 microns. For contacts between 440 C and Si3N4 elements, on the other hand, the scuffing behavior of the system was not very consistent and somewhat unpredictable. The results were sensitive to surface roughness particularly that of the Si3N4 test sample. With well polished test samples, consistent results were obtained; the level of traction was lower than that with a 440 C toroid and scuffing did not take place up to a slide-to-roll ratio of near 0.03. The results strongly suggest that significant hydrodynamic effect can be generated by liquid oxygen under heavy loading and high velocity conditions. The results also suggest that the hydrodynamic action is likely generated by the conventional viscous mechanism as it can be largely destroyed by a narrow circumferential surface scratch running through the central region of the contact.
Effect of fault roughness on aftershock distribution and post co-seismic strain accumulation.
NASA Astrophysics Data System (ADS)
Aslam, K.; Daub, E. G.
2017-12-01
We perform physics-based simulations of earthquake rupture propagation on geometrically complex strike-slip faults. We consider many different realization of the fault roughness and obtain heterogeneous stress fields by performing dynamic rupture simulation of large earthquakes. We calculate the Coulomb failure function (CFF) for all these realizations so that we can quantify zones of stress increase/shadows surrounding the main fault and compare our results to seismic catalogs. To do this comparison, we use relocated earthquake catalogs from Northern and Southern California. We specify the range of fault roughness parameters based on past observational studies. The Hurst exponent (H) varies in range from 0.5 to 1 and RMS height to wavelength ratio ( RMS deviation of a fault profile from planarity) has values between 10-2 to 10-3. For any realization of fault roughness, the Probability density function (PDF) values relative to the mean CFF change show a wider spread near the fault and this spread squeezes into a narrow band as we move away from fault. For lower value of RMS ratio ( 10-3), we see bigger zones of stress change near the hypocenter and for higher value of RMS ratio ( 10-2), we see alternate zones of stress increase/decrease surrounding the fault to have comparable lengths. We also couple short-term dynamic rupture simulation with long-term tectonic modelling. We do this by giving the stress output from one of the dynamic rupture simulation (of a single realization of fault roughness) to long term tectonic model (LTM) as initial condition and then run LTM over duration of seismic cycle. This short term and long term coupling enables us to understand how heterogeneous stresses due to fault geometry influence the dynamics of strain accumulation in the post-seismic and inter-seismic phase of seismic cycle.
Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces.
Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin
2014-01-13
Ion sputtering of Zerodur material often results in the formation of nanoscale microstructures on the surfaces, which seriously influences optical surface quality. In this paper, we describe the microscopic morphology evolution during ion sputtering of Zerodur surfaces through experimental researches and theoretical analysis, which shows that preferential sputtering together with curvature-dependent sputtering overcomes ion-induced smoothing mechanisms leading to granular nanopatterns formation in morphology and the coarsening of the surface. Consequently, we propose a new method for ion beam smoothing (IBS) of Zerodur optics assisted by deterministic ion beam material adding (IBA) technology. With this method, Zerodur optics with surface roughness down to 0.15 nm root mean square (RMS) level is obtained through the experimental investigation, which demonstrates the feasibility of our proposed method.
Direct laser writing of microstructures on optically opaque and reflective surfaces
NASA Astrophysics Data System (ADS)
Rekštytė, S.; Jonavičius, T.; Malinauskas, M.
2014-02-01
Direct laser writing (DLW) based on ultra-localized polymerization is an efficient way to produce three-dimensional (3D) micro/nano-structures for diverse applications in science and industry. It is attractive for its flexibility to materialize CAD models out of wide spectrum of materials on the desired substrates. In case of direct laser lithography, photo-crosslinking can be achieved by tightly focusing ultrashort laser pulses to a photo- or thermo-polymers. Selectively exposing material to laser radiation allows creating fully 3D structures with submicrometer spatial resolution. In this paper we present DLW results of hybrid organic-inorganic material SZ2080 on optically opaque and reflective surfaces, such as silicon and various metals (Cr, Ti, Au). Our studies prove that one can precisely fabricate 2D and 3D structures with lower than 1 μm spatial resolution even on glossy or rough surfaces (surface roughness rms 0.068-0.670 μm) using sample translation velocities of up to 1 mm/s. Using femtosecond high pulse repetition rate laser, sample translation velocity can reach over 1 mm/s ensuring repeatable submicrometer structuring resolution.
Surface roughness evaluation on mandrels and mirror shells for future X-ray telescopes
NASA Astrophysics Data System (ADS)
Sironi, Giorgia; Spiga, D.
2008-07-01
More X-ray missions that will be operating in near future, like particular SIMBOL-X, e-Rosita, Con-X/HXT, SVOM/XIAO and Polar-X, will be based on focusing optics manufactured by means of the Ni electroforming replication technique. This production method has already been successfully exploited for SAX, XMM and Swift-XRT. Optical surfaces for X-ray reflection have to be as smooth as possible also at high spatial frequencies. Hence it will be crucial to take under control microroughness in order to reduce the scattering effects. A high rms microroughness would cause the degradation of the angular resolution and loss of effective area. Stringent requirements have therefore to be fixed for mirror shells surface roughness depending on the specific energy range investigated, and roughness evolution has to be carefully monitored during the subsequent steps of the mirror-shells realization. This means to study the roughness evolution in the chain mandrel, mirror shells, multilayer deposition and also the degradation of mandrel roughness following iterated replicas. Such a study allows inferring which phases of production are the major responsible of the roughness growth and could help to find solutions optimizing the involved processes. The exposed study is carried out in the context of the technological consolidation related to SIMBOL-X, along with a systematic metrological study of mandrels and mirror shells. To monitor the roughness increase following each replica, a multiinstrumental approach was adopted: microprofiles were analysed by means of their Power Spectral Density (PSD) in the spatial frequency range 1000-0.01 μm. This enables the direct comparison of roughness data taken with instruments characterized by different operative ranges of frequencies, and in particular optical interferometers and Atomic Force Microscopes. The performed analysis allowed us to set realistic specifications on the mandrel roughness to be achieved, and to suggest a limit for the maximum number of a replica a mandrel can undergo before being refurbished.
NASA Astrophysics Data System (ADS)
Enya, Keigo; Kataza, Hirokazu; Fukushima, Mitsuhiro; Mitsui, Kenji; Okada, Norio; Iwashita, Hikaru; Haze, Kanae; Takahashi, Aoi; Kotani, Takayuki; Yamamuro, Tomoyasu; Kobayashi, Hitomi
2014-09-01
We present the concept, design, fabrication, and evaluation of a new deformable mirror (DM), which is latchable, compact, and designed to be applicable for cryogenic environments. The main body of a prototype DM was fabricated from a monolithic cuboid of aluminum using wire electrical discharge machining (EDM). A flexible structure was constructed inside the block by 3-dimensionally crossed hollowing using the EDM. The prototype has 6 × 6 channels, and its volume is 27 mm × 27 mm × 30 mm. The mirror was formed on the surface of the aluminum block using a highprecision NC lathe. The surface figure of the mirror was evaluated and 34 nm rms was obtained. The evaluated surface roughness for the center and off-center areas of the mirror was 9.2 nm rms and 7.6 nm rms, respectively Screws set at the back of the block deform the mirror via springs and the internal flexible structure. We present our first demonstration of deformation of the mirror carried out at ambient temperature. The relationship between the displacement of the screws and the deformation of the mirror was evaluated. Consequently, a linear relationship was confirmed, and no significant hysteresis was found. The application of such mirrors to telescopes used for various different objectives is discussed. We conclude that a DM based on our concept can be used for wavefront correction of space-borne telescopes, especially in the infrared wavelength region.
In situ roughening of polymeric microstructures.
Shadpour, Hamed; Allbritton, Nancy L
2010-04-01
A method to perform in situ roughening of arrays of microstructures weakly adherent to an underlying substrate was presented. SU8, 1002F, and polydimethylsiloxane (PDMS) microstructures were roughened by polishing with a particle slurry. The roughness and the percentage of dislodged or damaged microstructures was evaluated as a function of the roughening time for both SU8 and 1002F structures. A maximal RMS roughness of 7-18 nm for the surfaces was obtained within 15-30 s of polishing with the slurry. This represented a 4-9 fold increase in surface roughness relative to that of the native surface. Less than 0.8% of the microstructures on the array were removed or damaged after 5 min of polishing. Native and roughened arrays were assessed for their ability to support fibronectin adhesion and cell attachment and growth. The quantity of adherent fibronectin was increased on roughened arrays by two-fold over that on native arrays. Cell adhesion to the roughened surfaces was also increased compared to native surfaces. Surface roughening with the particle slurry also improved the ability to stamp molecules onto the substrate during microcontact printing. Roughening both the PDMS stamp and substrate resulted in up to a 20-fold improvement in the transfer of BSA-Alexa Fluor 647 from the stamp to the substrate. Thus roughening of micrometer-scale surfaces with a particle slurry increased the adhesion of biomolecules as well as cells to microstructures with little to no damage to largescale arrays of the structures.
In-Situ Roughening of Polymeric Microstructures
Shadpour, Hamed; Allbritton, Nancy L.
2010-01-01
A method to perform in-situ roughening of arrays of microstructures weakly adherent to an underlying substrate was presented. SU8, 1002F, and polydimethylsiloxane (PDMS) microstructures were roughened by polishing with a particle slurry. The roughness and the percentage of dislodged or damaged microstructures was evaluated as a function of the roughening time for both SU8 and 1002F structures. A maximal RMS roughness of 7-18 nm for the surfaces was obtained within 15 to 30 s of polishing with the slurry. This represented a 4-9 fold increase in surface roughness relative to that of the native surface. Less than 0.8% of the microstructures on the array were removed or damage after 5 min of polishing. Native and roughened arrays were assessed for their ability to support fibronectin adhesion and cell attachment and growth. The quantity of adherent fibronectin was increased on roughened arrays by two-fold over that on native arrays. Cell adhesion to the roughened surfaces was also increased compared to native surfaces. Surface roughening with the particle slurry also improved the ability to stamp molecules onto the substrate during microcontact printing. Roughening both the PDMS stamp and substrate resulted in up to a 20-fold improvement in the transfer of BSA-Alexa Fluor 647 from the stamp to the substrate. Thus roughening of micron-scale surfaces with a particle slurry increased the adhesion of biomolecules as well as cells to microstructures with little to no damage to large scale arrays of the structures. PMID:20423129
Cho, Sang-Jin; Nguyen, Trieu; Boo, Jin-Hyo
2011-06-01
Microwave (MW) plasma was applied to the surface of polyimide (PI) films as a treatment to enhance the adhesion between copper deposition layer and PI surface for electroless plating. The influences of nitrogen MW plasma treatment on chemical composition of the PI surface were investigated by using X-Ray photoelectron spectroscopy (XPS). The wettability was also investigated by water contact angle measurement. The surface morphologies of PI films before and after treatment were characterized with atomic force microscopy (AFM). The contact angle results show that was dramatically decreased to 16.1 degrees at the optimal treatment condition from 72.1 degrees (untreated PI). However, the root mean square (RMS) roughness of treated PI film was almost unchanged. The AFM roughness was stayed from 1.0 to 1.2 with/without plasma treatment. XPS data show a nitrogen increase when PI films exposed to N2 MW plasma. Electroless copper depositions were carried out with the free-formaldehyde method using glyoxylic acid as the reducing reagent and mixture palladium chloride, tin chloride as activation solution. Adhesion property between polyimide surface and copper layer was investigated by tape test.
Rheology of surface granular flows
NASA Astrophysics Data System (ADS)
Orpe, Ashish V.; Khakhar, D. V.
Surface granular flow, comprising granular material flowing on the surface of a heap of the same material, occurs in several industrial and natural systems. The rheology of such a flow was investigated by means of measurements of velocity and number-density profiles in a quasi-two-dimensional rotating cylinder, half-filled with a model granular material monosize spherical stainless-steel particles. The measurements were made at the centre of the cylinder, where the flow is fully developed, using streakline photography and image analysis. The stress profile was computed from the number-density profile using a force balance which takes into account wall friction. Mean-velocity and root-mean-square (r.m.s.)-velocity profiles are reported for different particle sizes and cylinder rotation speeds. The profiles for the mean velocity superimpose when distance is scaled by the particle diameter d and velocity by a characteristic shear rate dot{gamma}_C = [gsin(beta_m-beta_s)/dcosbeta_s](1/2) and the particle diameter, where beta_m is the maximum dynamic angle of repose and beta_s is the static angle of repose. The maximum dynamic angle of repose is found to vary with the local flow rate. The scaling is also found to work for the r.m.s. velocity profiles. The mean velocity is found to decay exponentially with depth in the bed, with decay length lambda=1.1d. The r.m.s. velocity shows similar behaviour but with lambda=1.7d. The r.m.s. velocity profile shows two regimes: near the free surface the r.m.s. velocity is nearly constant and below a transition point it decays linearly with depth. The shear rate, obtained by numerical differentiation of the velocity profile, is not constant anywhere in the layer and has a maximum which occurs at the same depth as the transition in the r.m.s. velocity profile. Above the transition point the velocity distributions are Gaussian and below the transition point the velocity distributions gradually approach a Poisson distribution. The shear stress increases roughly linearly with depth. The variation in the apparent viscosity eta with r.m.s. velocity u shows a relatively sharp transition at the shear-rate maximum, and in the region below this point the apparent viscosity eta˜ u(-1.5) . The measurements indicate that the flow comprises two layers: an upper low-viscosity layer with a nearly constant r.m.s. velocity and a lower layer of increasing viscosity with a decreasing r.m.s. velocity. The thickness of the upper layer depends on the local flow rate and is independent of particle diameter while the reverse is found to hold for the lower-layer thickness. The experimental data is compared with the predictions of three models for granular flow.
Wind flow modulation due to variations of the water surface roughness
NASA Astrophysics Data System (ADS)
Shomina, Olga; Ermakov, Stanislav; Kapustin, Ivan; Lazareva, Tatiana
2016-04-01
Air-ocean interaction is a classical problem in atmosphere and ocean physics, which has important geophysical applications related to calculation of vertical and horizontal humidity, aerosol and gas fluxes, development of global climate models and weather forecasts. The structure of wind flow over fixed underlying surfaces, such as forestry, buildings, mountains, is well described, while the interaction between a rough water surface and turbulent wind is far more complicated because of the presence of wind waves with different wavelength and amplitudes and propagating with different velocities and directions. The aim of this study was to investigate experimentally the variability of the wind profile structure due to variations of wave characteristics. The surface roughness variations were produced using a) surfactant films (oleic acid) spread on the water surface and b) mechanically generated waves superimposed on wind waves. The first case is related to oil slicks on sea surface, the second one - to the sea swell, which propagates into zones with lower wind velocities and interacts with wind flow. Laboratory experiments were conducted in the Oval Wind Wave Tank (OWWT) at the Institute of Applied Physics, cross-section of the wind channel is 30 cm x30 cm. Wave amplitude and the spectrum of surface waves were measured by a wire wave gauge, the wind speed was measured using a hot-wire anemometer DISA and a Pitot tube. In the experiments with surfactants, two frequencies of dripping of the oleic acid were studied, so that low concentration films with the elasticity parameters of about 19 mN/m and the high concentration ("thick") films with the elasticity of 34 mN/m were formed. In the experiments with mechanically generated waves (MGW) different regimes were studied with MGW amplitude of 3.4 mm and of 4.4 mm, and with MGW frequencies of 3.3 Hz and 3.7 Hz. It was shown, that: a) the mean velocity of the wind flow in the presence of surfactant and MGW can be described by a logarithmic profile; b) in the presence of a surfactant film an increase of wind speed was revealed; the more elastic films was deployed on the surface - the stronger wind acceleration was detected; c) MGW result in deceleration of wind flow, the larger MGW amplitude the stronger wind flow reduction is; d) the wind deceleration effect is more pronounced for MGW with higher frequency, i.e. for slower propagating MGW. e) experimental dependencies of the logarithmic wind profile characteristics as functions of the rout mean square (RMS) wave height were obtained demonstrating the growth of the wind friction velocity and the roughness coefficient with RMS. The work has been supported by the Russian Foundation of Basic Research (Projects № 14-05-31535, 14-05-00876, 15-35-20992).
Kim, Do Yun; Santbergen, Rudi; Jäger, Klaus; Sever, Martin; Krč, Janez; Topič, Marko; Hänni, Simon; Zhang, Chao; Heidt, Anna; Meier, Matthias; van Swaaij, René A C M M; Zeman, Miro
2014-12-24
Thin-film silicon solar cells are often deposited on textured ZnO substrates. The solar-cell performance is strongly correlated to the substrate morphology, as this morphology determines light scattering, defective-region formation, and crystalline growth of hydrogenated nanocrystalline silicon (nc-Si:H). Our objective is to gain deeper insight in these correlations using the slope distribution, rms roughness (σ(rms)) and correlation length (lc) of textured substrates. A wide range of surface morphologies was obtained by Ar plasma treatment and wet etching of textured and flat-as-deposited ZnO substrates. The σ(rms), lc and slope distribution were deduced from AFM scans. Especially, the slope distribution of substrates was represented in an efficient way that light scattering and film growth direction can be more directly estimated at the same time. We observed that besides a high σ(rms), a high slope angle is beneficial to obtain high haze and scattering of light at larger angles, resulting in higher short-circuit current density of nc-Si:H solar cells. However, a high slope angle can also promote the creation of defective regions in nc-Si:H films grown on the substrate. It is also found that the crystalline fraction of nc-Si:H solar cells has a stronger correlation with the slope distributions than with σ(rms) of substrates. In this study, we successfully correlate all these observations with the solar-cell performance by using the slope distribution of substrates.
Modelling of nanoscale multi-gate transistors affected by atomistic interface roughness
NASA Astrophysics Data System (ADS)
Nagy, Daniel; Aldegunde, Manuel; Elmessary, Muhammad A.; García-Loureiro, Antonio J.; Seoane, Natalia; Kalna, Karol
2018-04-01
Interface roughness scattering (IRS) is one of the major scattering mechanisms limiting the performance of non-planar multi-gate transistors, like Fin field-effect transistors (FETs). Here, two physical models (Ando’s and multi-sub-band) of electron scattering with the interface roughness induced potential are investigated using an in-house built 3D finite element ensemble Monte Carlo simulation toolbox including parameter-free 2D Schrödinger equation quantum correction that handles all relevant scattering mechanisms within highly non-equilibrium carrier transport. Moreover, we predict the effect of IRS on performance of FinFETs with realistic channel cross-section shapes with respect to the IRS correlation length (Λ) and RMS height (Δ_RMS ). The simulations of the n-type SOI FinFETs with the multi-sub-band IRS model shows its very strong effect on electron transport in the device channel compared to the Ando’s model. We have also found that the FinFETs are strongly affected by the IRS in the ON-region. The limiting effect of the IRS significantly increases as the Fin width is reduced. The FinFETs with <1 1 0> channel orientation are affected more by the IRS than those with the <1 0 0> crystal orientation. Finally, Λ and Δ_RMS are shown to affect the device performance similarly. A change in values by 30% (Λ) or 20% (Δ_RMS ) results in an increase (decrease) of up to 13% in the drive current.
Focused ion beam micromachining of TiNi film on Si( 1 1 1 )
NASA Astrophysics Data System (ADS)
Xie, D. Z.; Ngoi, B. K. A.; Ong, A. S.; Fu, Y. Q.; Lim, B. H.
2003-11-01
Having an excellent shape memory effect, titanium-nickel (TiNi) thin films are often used for fabrication of microactuators in microelectromechanical systems. In this work, the Ga + focused ion beam (FIB) etching characteristics of TiNi thin films has been investigated. The thin films were deposited on Si(1 1 1) wafers by co-sputtering NiTi and Ti targets using a magnetron-sputtering system. Some patterns have been etched on the surface of the films by FIB. Atomic force microscopy has been used to analyze the surface morphology of the etched areas. It is found that the etched depth depends linearly on the ion dose per area with a slope of 0.259 μm/(nC/μm 2). However, the etching depth decreases with increasing the ion beam current. The root-mean-square (RMS) surface roughness changes nonlinearly with ion dose and reaches a minimum of about 5.00 nm at a dose of about 0.45 nC/μm 2. The RMS decreases with increasing ion beam current and reaches about 4.00 nm as the ion beam current is increased to 2 nA.
Cryogenic Target-Implosion Experiments on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, D.R.; Meyerhofer, D.D.; Sangster, T.C.
The University of Rochester’s Laboratory for Laser Energetics has been imploding thick cryogenic targets for six years. Improvements in the Cryogenic Target Handling System and the ability to accurately design laser pulse shapes that properly time shocks and minimize electron preheat, produced high fuel areal densities in deuterium cryogenic targets (202+/-7 mg/cm^2). The areal density was inferred from the energy loss of secondary protons in the fuel (D2) shell. Targets were driven on a low final adiabat (alpha = 2) employing techniques to radially grade the adiabat (the highest adiabat at the ablation surface). The ice layer meets the target-designmore » toughness specification for DT ice of 1-um rms (all modes), while D2 ice layers average 3.0-um-rms roughness. The implosion experiments and the improvements in the quality and understanding of cryogenic targets are presented.« less
Modeling and validation of spectral BRDF on material surface of space target
NASA Astrophysics Data System (ADS)
Hou, Qingyu; Zhi, Xiyang; Zhang, Huili; Zhang, Wei
2014-11-01
The modeling and the validation methods of the spectral BRDF on the material surface of space target were presented. First, the microscopic characteristics of the space targets' material surface were analyzed based on fiber-optic spectrometer using to measure the direction reflectivity of the typical materials surface. To determine the material surface of space target is isotropic, atomic force microscopy was used to measure the material surface structure of space target and obtain Gaussian distribution model of microscopic surface element height. Then, the spectral BRDF model based on that the characteristics of the material surface were isotropic and the surface micro-facet with the Gaussian distribution which we obtained was constructed. The model characterizes smooth and rough surface well for describing the material surface of the space target appropriately. Finally, a spectral BRDF measurement platform in a laboratory was set up, which contains tungsten halogen lamp lighting system, fiber optic spectrometer detection system and measuring mechanical systems with controlling the entire experimental measurement and collecting measurement data by computers automatically. Yellow thermal control material and solar cell were measured with the spectral BRDF, which showed the relationship between the reflection angle and BRDF values at three wavelengths in 380nm, 550nm, 780nm, and the difference between theoretical model values and the measured data was evaluated by relative RMS error. Data analysis shows that the relative RMS error is less than 6%, which verified the correctness of the spectral BRDF model.
Extraction of quantitative surface characteristics from AIRSAR data for Death Valley, California
NASA Technical Reports Server (NTRS)
Kierein-Young, K. S.; Kruse, F. A.
1992-01-01
Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were collected for the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley, California, USA, in Sep. 1989. AIRSAR is a four-look, quad-polarization, three frequency instrument. It collects measurements at C-band (5.66 cm), L-band (23.98 cm), and P-band (68.13 cm), and has a GIFOV of 10 meters and a swath width of 12 kilometers. Because the radar measures at three wavelengths, different scales of surface roughness are measured. Also, dielectric constants can be calculated from the data. The AIRSAR data were calibrated using in-scene trihedral corner reflectors to remove cross-talk; and to calibrate the phase, amplitude, and co-channel gain imbalance. The calibration allows for the extraction of accurate values of rms surface roughness, dielectric constants, sigma(sub 0) backscatter, and polarization information. The radar data sets allow quantitative characterization of small scale surface structure of geologic units, providing information about the physical and chemical processes that control the surface morphology. Combining the quantitative information extracted from the radar data with other remotely sensed data sets allows discrimination, identification and mapping of geologic units that may be difficult to discern using conventional techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, K.; Broetzmann, M.; Hofsaess, H.
We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30 Degree-Sign incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}) over dot patterns (2-8 Multiplication-Sign 10{sup 15}more » Fe/cm{sup 2}), ripples patterns (8-17 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}), pill bug structures (1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness {approx} 18 nm) to a rather flat surface (rms roughness {approx} 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi{sub 2}. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.« less
NASA Astrophysics Data System (ADS)
Addonizio, M. L.; Fusco, L.; Antonaia, A.; Cominale, F.; Usatii, I.
2015-12-01
Aluminium induced texture (AIT) method has been used for obtaining highly textured glass substrate suitable for silicon based thin film solar cell technology. Wet etch step parameters of AIT process have been varied and effect of different etchants and different etching times on morphological and optical properties has been analyzed. The resulting morphology features (shape, size distribution, inclination angle) have been optimized in order to obtain the best scattering properties. ZnO:Ga (GZO) films have been deposited by sputtering technique on AIT-processed glass. Two different ZnO surface morphologies have been obtained, strongly depending on the underlying glass substrate morphology induced by different etching times. Very rough and porous texture (σrms ∼ 150 nm) was obtained on glass etched 2 min showing cauliflower-like structure, whereas a softer texture (σrms ∼ 78 nm) was obtained on glass etched 7 min giving wider and smoother U-shaped craters. The effect of different glass textures on optical confinement has been tested in amorphous silicon based p-i-n devices. Devices fabricated on GZO/high textured glass showed a quantum efficiency enhancement due to both an effective light trapping phenomenon and an effective anti-reflective optical behaviour. Short etching time produce smaller cavities (<1 μm) with deep U-shape characterized by high roughness, high inclination angle and low autocorrelation length. This surface morphology promoted a large light scattering phenomenon, as evidenced by haze value and by angular resolved scattering (ARS) behaviour, into a large range of diffraction angles, giving high probability of effective light trapping inside a PV device.
Compact Submillimeter-Wave Receivers Made with Semiconductor Nano-Fabrication Technologies
NASA Technical Reports Server (NTRS)
Jung, C.; Thomas, B.; Lee, C.; Peralta, A.; Chattopadhyay, G.; Gill, J.; Cooper, K.; Mehdi, I.
2011-01-01
Advanced semiconductor nanofabrication techniques are utilized to design, fabricate and demonstrate a super-compact, low-mass (<10 grams) submillimeter-wave heterodyne front-end. RF elements such as waveguides and channels are fabricated in a silicon wafer substrate using deep-reactive ion etching (DRIE). Etched patterns with sidewalls angles controlled with 1 deg precision are reported, while maintaining a surface roughness of better than 20 nm rms for the etched structures. This approach is being developed to build compact 2-D imaging arrays in the THz frequency range.
NASA Astrophysics Data System (ADS)
Yoshida, Wayne Hiroshi
Nanostructural engineering of inorganic substrates by free radical graft polymerization was studied with the goal of developing new membrane materials for pervaporation. Graft polymerization consisted of modification of surface hydroxyls with vinyl trimethoxysilane, followed by solution graft polymerization reaction using either vinyl acetate (VAc) or vinyl pyrrolidone (VP). The topology of the modified surfaces was studied by atomic force microscopy (AFM) on both atomically smooth silicon wafer substrates and microporous inorganic membrane supports in order to deduce the effects of modification on the nanostructural properties of the membrane. While unmodified wafers showed a root-mean-square (RMS) surface roughness of 0.21 +/- 0.03 nm, roughness increased to 3.15 +/- 0.23 nm upon silylation. Under poor solvent conditions (i.e., air), surfaces modified with higher poly(vinyl acetate) (PVAc) or poly(vinyl pyrrolidone) (PVP) polymer graft yields displayed lateral inhomogeneities in the polymer layer. Although RMS surface roughness was nearly identical (0.81--0.85 nm) for PVAc-modified surfaces grafted at different monomer concentrations, the skewness of the height distribution decreased from 2.22 to 0.78 as polymer graft yield increased from 0.8 to 3.5 mg/m2. The polymer-modified surfaces were used to create inorganic pervaporation membranes consisting of a single macromolecular separation layer formed by graft polymerization. PVAc grafted silica membranes (500A native pore size) were found selective for MTBE in the separation of 0.1--1% (v/v) MTBE from water, achieving MTBE enrichment factors as high as 371 at a permeate flux of 0.38 l/m2 hr and a Reynolds number of 6390; however, these membranes could not separate anhydrous organic mixtures. Pervaporative separation of methanol/MTBE mixtures was possible with PVAc and PVP-modified alumina supports of 50A native pore size, where the separation layer consisted of grafted polymer chains with estimated radius of gyration 4.5--6.8 times larger than the membrane pore radius. Methanol separation factors for the PVP and PVAc-grafted alumina pervaporation membranes reached values of 26 and 100 (respectively) at total permeate fluxes of 0.055--1.26 kg/m 2 hr and 0.55--6.19 kg/m2 hr. The present study demonstrated that selective pervaporation membranes for separation of both organic/organic and organic/aqueous mixtures can be effectively designed by careful selection of the surface-grafted polymer chain density and the ratio of the polymer chain size to the native support pore size.
Study on combined polishing process of aspherical aluminum mirrors
NASA Astrophysics Data System (ADS)
Deng, Jinqiu; Peng, Xiaoqiang; Hu, Hao; Ge, Kunpeng
2017-10-01
The aluminum mirrors are widely used as important optical components in some vital fields such as astronomical instruments or military installations due to the unique advantages of aluminum alloy. In order to simplify the structure of optical system and improve the performance at the same time, it's a tendency that the optics will be designed to aspherical or other freeform shapes. However, the traditional techniques are falling to have adequate abilities to deal with the increasing demands of aluminum optics. For example, the tool marks leaved on the surface from single point diamond turning (SPDT) has obvious adverse effects to optical system. The deterministic and sub-aperture polishing process has showed the potential to fabricate complex shapes over the few years. But it's still recognized as a problem to polish bare aluminum directly because of its soft surface and active chemical characteristics. Therefore, a combination of magnetorheological finishing (MRF) and small tool polishing (STP) is applied to obtain high performance aluminum optics in this paper. A paraboloid aluminum mirror was polished with this proposed method, and the results showed that the surface texture of the sample is restrained from rms 0.409λ (λ=632.8nm) to rms 0.025λ, and the surface roughness is improved from average Ra 6 7nm to Ra 3 4nm.
NASA Technical Reports Server (NTRS)
Wentz, F. J.
1977-01-01
The general problem of bistatic scattering from a two scale surface was evaluated. The treatment was entirely two-dimensional and in a vector formulation independent of any particular coordinate system. The two scale scattering model was then applied to backscattering from the sea surface. In particular, the model was used in conjunction with the JONSWAP 1975 aircraft scatterometer measurements to determine the sea surface's two scale roughness distributions, namely the probability density of the large scale surface slope and the capillary wavenumber spectrum. Best fits yield, on the average, a 0.7 dB rms difference between the model computations and the vertical polarization measurements of the normalized radar cross section. Correlations between the distribution parameters and the wind speed were established from linear, least squares regressions.
Ion beam figuring of CVD silicon carbide mirrors
NASA Astrophysics Data System (ADS)
Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.
2017-11-01
Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.
NASA Astrophysics Data System (ADS)
Raczkowska, Joanna; Stetsyshyn, Yurij; Awsiuk, Kamil; Lekka, Małgorzata; Marzec, Monika; Harhay, Khrystyna; Ohar, Halyna; Ostapiv, Dmytro; Sharan, Mykola; Yaremchuk, Iryna; Bodnar, Yulia; Budkowski, Andrzej
2017-06-01
The novel temperature-responsive poly(cholesteryl methacylate) (PChMa) coatings derived from renewable sources were synthesized and characterized. Temperature induced changes in wettability were accompanied by surface roughness modifications, traced with AFM. Topographies recorded for temperatures increasing from 5 to 25 °C showed a slight but noticeable increase of calculated root mean square (RMS) roughness by a factor of 1.5, suggesting a horizontal rearrangement in the structure of PChMa coatings. Another structural reordering was observed in the 55-85 °C temperature range. The recorded topography changed noticeably from smooth at 55 °C to very structured and rough at 60 °C and returned eventually to relatively smooth at 85 °C. In addition, temperature transitions of PChMa molecules were revealed by DSC measurements. The biocompatibility of the PChMa-grafted coatings was shown for cultures of granulosa cells and a non malignant bladder cancer cell (HCV29 line) culture.
Plastic strain and grain size effects in the surface roughening of a model aluminum alloy
NASA Astrophysics Data System (ADS)
Moore, Eric Joseph
To address issues surrounding improved automotive fuel economy, an experiment was designed to study the effect of uniaxial plastic tensile deformation on surface roughness and on slip and grain rotation. Electron backscatter diffraction (EBSD) and scanning laser confocal microscopy (SLCM) were used to track grain size, crystallographic texture, and surface topography as a function of incremental true strain for a coarse-grained binary alloy that is a model for AA5xxx series aluminum alloys. One-millimeter thick sheets were heat treated at 425°C to remove previous rolling texture and to grow grains to sizes in the range ˜10-8000 mum. At five different strain levels, 13 sample regions, containing 43 grains, were identified in both EBSD and SLCM micrographs, and crystallographic texture and surface roughness were measured. After heat treatment, a strong cube texture matrix emerged, with bands of generally non-cube grains embedded parallel to the rolling direction (RD). To characterize roughness, height profiles from SLCM micrographs were extracted and a filtered Fourier transform approach was used to separate the profiles into intergranular (long wavelength) and intragranular (short wavelength) signatures. The commonly-used rms roughness parameter (Rq) characterized intragranular results. Two important parameters assess intergranular results in two grain size regimes: surface tilt angle (Deltatheta) and surface height discontinuity (DeltazH) between neighboring grains at a boundary. In general, the magnitude of Rq and Deltatheta increase monotonically with strain and indicate that intergranular roughness is the major contributor to overall surface roughness for true strains up to epsilon = 0.12. Surface height discontinuity DeltazH is defined due to exceptions in surface tilt angle analyses. The range of observed Deltatheta= 1-10° are consistent with the observed 3-12° rotation of individual grains as measured with EBSD. For some grain boundaries with Deltatheta< 4°, the surface height discontinuity DeltazH characterizes the response of adjacent grains in which one or more are large (˜1000-2000 mum), making a 3-12° rotation of the grain highly unlikely. This can be understood by postulating that the energy associated with rotating large grains would exceed the energy to shear along the boundary. Slip and grain boundary shearing are the active mechanisms in these instances.
Analysis of Airborne Radar Altimetry Measurements of the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Ferraro, Ellen J.
1994-01-01
This dissertation presents an analysis of airborne altimetry measurements taken over the Greenland ice sheet with the 13.9 GHz Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter. This Ku-band instrument was refurbished in 1990 by the Microwave Remote Sensing Laboratory at the University of Massachusetts to obtain high-resolution altitude measurements and to improve the tracking, speed, storage and display capabilities of the radar. In 1991 and 1993, the AAFE altimeter took part in the NASA Multisensor Airborne Altimetry Experiments over Greenland, along with two NASA laser altimeters. Altitude results from both experiments are presented along with comparisons to the laser altimeter and calibration passes over the Sondrestroem runway in Greenland. Although it is too early to make a conclusion about the growth or decay of the ice sheet, these results show that the instrument is capable of measuring small-scale surface changes to within 14 centimeters. In addition, results from these experiments reveal that the radar is sensitive to the different diagenetic regions of the ice sheet. Return waveforms from the wet- snow, percolation and dry-snow zones show varying effects of both surface scattering and sub-surface or volume scattering. Models of each of the diagenetic regions of Greenland are presented along with parameters such as rms surface roughness, rms surface slope and attenuation coefficient of the snow pack obtained by fitting the models to actual return waveforms.
Smooth and vertical facet formation for AlGaN-based deep-UV laser diodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogart, Katherine Huderle Andersen; Shul, Randy John; Stevens, Jeffrey
2008-10-01
Using a two-step method of plasma and wet chemical etching, we demonstrate smooth, vertical facets for use in Al{sub x} Ga{sub 1-x} N-based deep-ultraviolet laser-diode heterostructures where x = 0 to 0.5. Optimization of plasma-etching conditions included increasing both temperature and radiofrequency (RF) power to achieve a facet angle of 5 deg from vertical. Subsequent etching in AZ400K developer was investigated to reduce the facet surface roughness and improve facet verticality. The resulting combined processes produced improved facet sidewalls with an average angle of 0.7 deg from vertical and less than 2-nm root-mean-square (RMS) roughness, yielding an estimated reflectivity greatermore » than 95% of that of a perfectly smooth and vertical facet.« less
MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.
2010-01-01
In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672
NASA Astrophysics Data System (ADS)
Zhang, Yunfei; Huang, Wen; Zheng, Yongcheng; Ji, Fang; Xu, Min; Duan, Zhixin; Luo, Qing; Liu, Qian; Xiao, Hong
2016-03-01
Zinc sulfide is a kind of typical infrared optical material, commonly produced using single point diamond turning (SPDT). SPDT can efficiently produce zinc sulfide aspheric surfaces with micro-roughness and acceptable figure error. However the tool marks left by the diamond turning process cause high micro-roughness that degrades the optical performance when used in the visible region of the spectrum. Magnetorheological finishing (MRF) is a deterministic, sub-aperture polishing technology that is very helpful in improving both surface micro-roughness and surface figure.This paper mainly investigates the MRF technology of large aperture off-axis aspheric optical surfaces for zinc sulfide. The topological structure and coordinate transformation of a MRF machine tool PKC1200Q2 are analyzed and its kinematics is calculated, then the post-processing algorithm model of MRF for an optical lens is established. By taking the post-processing of off-axis aspheric surfacefor example, a post-processing algorithm that can be used for a raster tool path is deduced and the errors produced by the approximate treatment are analyzed. A polishing algorithm of trajectory planning and dwell time based on matrix equation and optimization theory is presented in this paper. Adopting this algorithm an experiment is performed to machining a large-aperture off-axis aspheric surface on the MRF machine developed by ourselves. After several times' polishing, the figure accuracy PV is proved from 3.3λ to 2.0λ and RMS from 0.451λ to 0.327λ. This algorithm is used to polish the other shapes including spheres, aspheres and prisms.
NASA Astrophysics Data System (ADS)
Durda, E.; Jaglarz, J.; Kąc, S.; Przybylski, K.; El Kouari, Y.
2016-06-01
The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF48) film was deposited on Crofer 22 APU ferritic stainless steel by pulsed laser deposition (PLD). Morphological studies of the sample were performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Information about film thickness and surface topography of the film and the steel substrate were obtained using following optical methods: spectroscopic ellipsometry (SE), bidirectional reflection distribution function (BRDF) and total integrated reflectometry (TIS). In particular, the BRDF study, being complementary to atomic force microscopy, yielded information about surface topography. Using the previously mentioned methods, the following statistic surface parameters were determined: root-mean square (rms) roughness and autocorrelation length by determining the power spectral density (PSD) function of surface irregularities.
NASA Astrophysics Data System (ADS)
Zhong, Xianyun; Fan, Bin; Wu, Fan
2017-10-01
Single crystal calcium fluoride (CaF2) is the excellent transparent optical substance that has extremely good permeability and refractive index from 120nm wavelength ultraviolet range to 12μm wavelength infrared range and it has widely used in the applications of various advanced optical instrument, such as infrared optical systems (IR), short wavelength optical lithography systems (DUV), as well as high power UV laser systems. Nevertheless, the characteristics of CaF2 material, including low fracture toughness, low hardness, low thermal conductivity and high thermal expansion coefficient, result in that the conventional pitch polishing techniques usually expose to lots of problems, such as subsurface damage, scratches, digs and so on. Single point diamond turning (SPDT) is a prospective technology for manufacture the brittle material, but the residual surface textures or artifacts of SPDT will cause great scattering losses. Meanwhile, the roughness also falls far short from the requirement in the short wavelength optical systems. So, the advanced processing technologies for obtaining the shape accuracy, roughness, surface flaw at the same time need to put forward. In this paper, the authors investigate the Magnetorheological Finishing (MRF) technology for the high precision processing of CaF2 material. We finish the surface accuracy RMS λ/150 and roughness Rq 0.3nm on the concave aspheric from originate shape error 0.7λ and roughness 17nm by the SPDT. The studying of the MRF techniques makes a great effort to the processing level of CaF2 material for the state-of-the-art DUV lithography systems applications.
The improvement of surface roughness for OAP aluminum mirrors: from terahertz to ultraviolet
NASA Astrophysics Data System (ADS)
Peng, Jilong; Yu, Qian; Shao, Yajun; Wang, Dong; Yi, Zhong; Wang, Shanshan
2018-01-01
Aluminum reflector, especially OAP (Off-Axis Parabolic) reflector, has been widely used in terahertz and infrared systems for its low cost, lightweight, good machinability, small size, simple structure, and having the same thermal expansion and contraction with the system structure which makes it have a wide temperature adaptability. Thorlabs, Daheng and other large optical components companies even have Aluminum OAP sold on shelf. Most of the precision Aluminum OAP is fabricated by SPDT (single point diamond turing). Affected by intermittent shock, the roughness of aluminum OAP mirrors through conventional single-point diamond lathes is around 7 nm which limits the scope of application for aluminum mirrors, like in the high power density terahertz/infrared systems and visible/UV optical systems. In this paper, a continuous process frock is proposed, which effectively reduces the influence of turning impact on the mirror roughness. Using this process, an off-axis parabolic aluminum reflector with an effective diameter of 50 mm, off-axis angle of 90 degree is fabricated, and the performances are validated. Measurement by VEECO NT1100 optical profiler with 20× objects, the surface roughness achieves 2.3 nm, and the surface figure error is within λ/7 RMS (λ= 632.8 nm) tested by FISB Aμ Phase laser interferometer with the help of a standard flat mirror. All these technical specifications are close to the traditional glass-based reflectors, and make it possible for using Aluminum reflectors in the higher LIDT (laser induced damage threshold) systems and even for the micro sensor of ionospheric for vacuum ultraviolet micro nano satellites.
NASA Astrophysics Data System (ADS)
Liu, Shuo; Han, Hongjun; Liu, Yanping; Wang, Baozhen
2008-10-01
To investigate the fouling characteristics of modified PES membrane in submerged Membrane Bioreactor (MBR) for domestic wastewater treatment, Atomic Force Microscope (AFM) study was conducted to analyze the microstructure characteristics of PES membrane. Surface roughness and section analysis of both virgin and fouled membrane were achieved by software of NanoScope 6.12. Compared to the virgin membrane, the average roughness (Ra), square average roughness (Rms) and ten points average roughness (Rz) of fouled membrane were increased by 100.6nm, 133.7nm and 330.7nm respectively. The section analysis results indicated that the cake layer formed and membrane pore blocked were the main causes for the increase of TMP. Micro-filtration resistance analysis was conducted to support the results of AFM analysis. It is showed that membrane resistance, cake resistance, pore blocking and irreversible fouling resistance is 0.755, 1.721 and 1.386 respectively, which contributed 20%, 44%, and 36%, respectively, to total resistance of submerged MBR (at MLSS 6000mg/L and flux 21.9L/m2Â.h). The results proved that AFM could be used to properly describe the fouling characteristics of modified PES membrane in submerged MBR through roughness and section analysis.
Park, Yong Seob; Kang, Ki-Noh; Kim, Young-Baek; Hwang, Sung Hwan; Lee, Jaehyeong
2018-09-01
Cr metal electrode was suggested as the working electrode material to fabricate DSSCs without the TCO, and thin films were fabricated by an unbalanced magnetron sputtering system. The surface morphologies show uniform and smooth surfaces regardless of various film thicknesses, and the small crystallites of various sizes were showed with the vertical direction on the surface of Cr thin films with the increase of film thickness. And also, the root mean square (RMS) surface roughness value of Cr thin films increased, and the sheet resistance is decreased with the increase of film thickness. The maximum cell efficiency of the TCO-less DSSC was observed when a Cr working electrode with a thickness of 80 nm was applied to the TCO-less DSSC. Consequently, these results are related to the result of the optimization of conduction characteristics, transmission properties and surface properties of Cr thin films.
Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang
2015-11-13
2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices.
Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan
2015-01-01
Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.
Super-hydrophobic coatings with nano-size roughness prepared with simple PECVD method
NASA Astrophysics Data System (ADS)
Choi, Yoon S.; Lee, Joon S.; Jin, Su B.; Han, Jeon G.
2013-08-01
A simple and conventional method to synthesize nearly flat super-hydrophobic coatings was studied. Conventional plasma enhanced chemical vapour deposition (PECVD) was adopted to synthesize hydrophobic coatings on plastic and glass substrates at room temperature. Hexamethyldisilane was used as a precursor, and hydrogen gas was added to modulate the surface roughness and passivate defects, such as dangling bond and electrically uncovered polar sites rendering non-hydrophobicity. The static water contact angle (WCA) was controlled in the range 120°-160° by adjusting process parameters, especially the hydrogen flow rate and power. AFM showed that the film with a WCA of 145° has as small as 2.5 nm roughness in rms value. In the resistance test of salt water and cosmetics, this film showed excellent results owing to super-hydrophobicity and defect passivation which keeps the surface isolated from external agents. In order to exploit these results, Rare gas analysis was used to examine the process plasma and Fourier transform infrared (FTIR) was used to analyse the chemical structures of the super-hydrophobic films. In the FTIR results, the remarkable increase in the modes of Si-Hx and Si-C bonds as well as Si-CH2-Si in the film was observed indicating the defect passivation and closely packed dense film structure.
Automated Figuring and Polishing of Replication Mandrels for X-Ray Telescopes
NASA Technical Reports Server (NTRS)
Krebs, Carolyn (Technical Monitor); Content, David; Fleetwood, Charles; Wright, Geraldine; Arsenovic, Petar; Collela, David; Kolos, Linette
2003-01-01
In support of the Constellation X mission the Optics Branch at Goddard Space Flight Center is developing technology for precision figuring and polishing of mandrels used to produce replicated mirrors that will be used in X-Ray telescopes. Employing a specially built machine controlled in 2 axes by a computer, we are doing automated polishing/figuring of 15 cm long, 20 cm diameter cylindrical, conical and Wolter mandrels. A battery of tests allow us to fully characterize all important aspects of the mandrels, including surface figure and finish, mid-frequency errors, diameters and cone angle. Parts are currently being produced with surface roughnesses at the .5nm RMS level, and half-power diameter slope error less than 2 arcseconds.
Kozhinova, Irina A; Romanofsky, Henry J; Maltsev, Alexander; Jacobs, Stephen D; Kordonski, William I; Gorodkin, Sergei R
2005-08-01
The polishing performance of magnetorheological (MR) fluids prepared with a variety of magnetic and nonmagnetic ingredients was studied on four types of initial surface for chemical vapor deposition (CVD) ZnS flats from domestic and foreign sources. The results showed that it was possible to greatly improve smoothing performance of magnetorheological finishing (MRF) by altering the fluid composition, with the best results obtained for nanoalumina abrasive used with soft carbonyl iron and altered MR fluid chemistry. Surface roughness did not exceed 20 nm peak to valley and 2 nm rms after removal of 2 microm of material. The formation of orange peel and the exposure of a pebblelike structure inherent in ZnS from the CVD process were suppressed.
NASA Astrophysics Data System (ADS)
Sugawara, Jun; Maloney, Chris
2016-07-01
NEXCERATM cordierite ceramics, which have ultra-low thermal expansion properties, are perfect candidate materials to be used for light-weight satellite mirrors that are used for geostationary earth observation and for mirrors used in ground-based astronomical metrology. To manufacture the high precision aspheric shapes required, the deterministic aspherization and figure correction capabilities of Magnetorheological Finishing (MRF) are tested. First, a material compatibility test is performed to determine the best method for achieving the lowest surface roughness of RMS 0.8nm on plano surfaces made of NEXCERATM ceramics. Secondly, we will use MRF to perform high precision figure correction and to induce a hyperbolic shape into a conventionally polished 100mm diameter sphere.
NASA Astrophysics Data System (ADS)
Zare, Maryam; Shokrollahi, Abbas; Seraji, Faramarz E.
2011-09-01
Porous silicon (PS) layers were fabricated by anodization of low resistive (highly doped) p-type silicon in HF/ethanol solution, by varying current density, etching time and HF concentration. Atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) analyses were used to investigate the physical properties and reflection spectrum was used to investigate the optical behavior of PS layers in different fabrication conditions. Vertically aligned mesoporous morphology is observed in fabricated films and with HF concentration higher than 20%. The dependence of porosity, layer thickness and rms roughness of the PS layer on current density, etching time and composition of electrolyte is also observed in obtained results. Correlation between reflectivity and fabrication parameters was also explored. Thermal oxidation was performed on some mesoporous layers that resulted in changes of surface roughness, mean height and reflectivity of the layers.
Ultra-flexible and robust transparent electrodes by embedding silver nanowires into polyimide matrix
NASA Astrophysics Data System (ADS)
Zhao, Rong Rong; Yu, Ming Shi; Wang, Guan Cheng; Liu, Wei; Chen, Tong Lai
2018-06-01
Silver nanowires (AgNWs) percolated films have been extensively considered as promising candidates for alternative transparent electrodes. However, due to their high surface roughness, poor adhesion and thermal stability, their practical use in transparent conducting film application is still heavily limited. In this paper, we report ultra-flexible transparent electrodes by imbedding AgNWs into polyimide (PI) thin films to achieve smooth surface, pronounced thermal stability, and high adhesion. Besides the excellent electrical conductivity of about 7-13Ω/□ in sheet resistance, the obtained AgNWs/PI films have excellent transparency and mechanical resilience due to the intrinsic physical and chemical properties of PI organic polymer. By embedding AgNWs into PI, the surface roughness of AgNWs percolated films can be reduced from 39.5 nm to 6 nm (RMS values), and the adhesion of AgNWs to PI is greatly enhanced if compared to the case of only AgNWs onto glass or plastic substrates. Additionally, the AgNWs/PI films show extraordinary stability in terms of electrical conductivity after the arbitrary twisting and thermal heating test, respectively, which are demonstrated by the electrical-thermal measurements via thermal IR imaging.
The effect of self-assembled monolayers on graphene conductivity and morphology
NASA Astrophysics Data System (ADS)
Moore, T. L.; Chen, J. H.; Riddick, B.; Williams, E. D.
2009-03-01
Graphene transport properties are limited by charge defects in SiO2, and by large charge density due to strong interaction with SiC. To modify these effects we have treated 300 nm SiO2 with tricholosilanes with different termination groups including pure and fluoro and amino-terminated hydrocarbons for use as substrates for mechanical exfoliation of graphene. XPS measurements verify the presence of the expected termination groups. AFM measurements reveal modified monolayer roughness and correlation lengths; for a fluorinated carbon chain the RMS roughness is 0.266 ± 0.017 nm and the correlation length is 10.2 ± 0.7 nm compared to 0.187 ± 0.011 nm and 19.8 ± 2.5 nm for SiO2. Surface free energies of the monolayers and the SiO2 blank have been computed from static contact angle measurements and all decrease the SiO2 surface free energy; for the fluorinated carbon chain monolayer a decrease of 20 mJ/m^2 from SiO2. We will discuss the ease of exfoliation, and the morphology and conductivity of graphene on these monolayers.
Cesium lead iodide solar cells controlled by annealing temperature.
Kim, Yu Geun; Kim, Tae-Yoon; Oh, Jeong Hyeon; Choi, Kyoung Soon; Kim, Youn-Jea; Kim, Soo Young
2017-02-22
An inorganic lead halide perovskite film, CsPbI 3 , used as an absorber in perovskite solar cells (PSCs) was optimized by controlling the annealing temperature and the layer thickness. The CsPbI 3 layer was synthesized by one-step coating of CsI mixed with PbI 2 and a HI additive in N,N-dimethylformamide. The annealing temperature of the CsPbI 3 film was varied from 80 to 120 °C for different durations and the thickness was controlled by changing the spin-coating rpm. After annealing the CsPbI 3 layer at 100 °C under dark conditions for 10 min, a black phase of CsPbI 3 was formed and the band gap was 1.69 eV. Most of the yellow spots disappeared, the surface coverage was almost 100%, and the rms roughness was minimized to 3.03 nm after annealing at 100 °C. The power conversion efficiency (PCE) of the CsPbI 3 based PSC annealed at 100 °C was 4.88%. This high PCE value is attributed to the low yellow phase ratio, high surface coverage, low rms roughness, lower charge transport resistance, and lower charge accumulation. The loss ratio of the PCE of the CH 3 NH 3 PbI x Cl 3-x and CsPbI 3 based PSCs after keeping in air was 47 and 26%, respectively, indicating that the stability of the CsPbI 3 based PSC is better than that of the CH 3 NH 3 PbI x Cl 3-x based PSC. From these results, it is evident that CsPbI 3 is a potential candidate for solar cell applications.
Aspheric figure generation using feedback from an infrared phase-shifting interferometer
NASA Astrophysics Data System (ADS)
Stahl, H. P.; Ketelsen, D.
An infrared phase-shifting interferometric system has been integrated with a novel optical figure generator at the University of Arizona Optical Sciences Center. This unique generator facility can produce generalized axially symmetric surface figures in a timely and cost-effective manner. The success of this facility depends on both its ability to efficiently remove material while forming the surface figure, and its ability to monitor the surface figure during the generation process to provide feedback to the optician. The facility has been used on several occasions to custom-generate off-axis parabolic segments. Figures to within 0.30 microns rms of the desired figure have been obtained. This paper discusses the usefulness of the infrared phase-shifting interferometric system for providing figure correcting feedback to the optician during the generation of the off-axis parabolic segments, and how it is affected by the surface roughness produced by each generator tool.
NASA Astrophysics Data System (ADS)
Bourlier, C.; Berginc, G.
2004-07-01
In this paper the first- and second-order Kirchhoff approximation is applied to study the backscattering enhancement phenomenon, which appears when the surface rms slope is greater than 0.5. The formulation is reduced to the geometric optics approximation in which the second-order illumination function is taken into account. This study is developed for a two-dimensional (2D) anisotropic stationary rough dielectric surface and for any surface slope and height distributions assumed to be statistically even. Using the Weyl representation of the Green function (which introduces an absolute value over the surface elevation in the phase term), the incoherent scattering coefficient under the stationary phase assumption is expressed as the sum of three terms. The incoherent scattering coefficient then requires the numerical computation of a ten- dimensional integral. To reduce the number of numerical integrations, the geometric optics approximation is applied, which assumes that the correlation between two adjacent points is very strong. The model is then proportional to two surface slope probabilities, for which the slopes would specularly reflect the beams in the double scattering process. In addition, the slope distributions are related with each other by a propagating function, which accounts for the second-order illumination function. The companion paper is devoted to the simulation of this model and comparisons with an 'exact' numerical method.
Smoothing and roughening of slip surfaces in direct shear experiments
NASA Astrophysics Data System (ADS)
Sagy, Amir; Badt, Nir; Hatzor, Yossef H.
2015-04-01
Faults in the upper crust contain discrete slip surfaces which have absorbed a significant part of the shear displacement along them. Field measurements demonstrate that these surfaces are rough at all measurable scales and indicate that surfaces of relatively large-slip faults are statistically smoother than those of small-slip faults. However, post faulting and surface erosion process that might affect the geometry of outcrops cannot be discounted in such measurements. Here we present experimental results for the evolution of shear surface topography as function of slip distance and normal stress in direct shear experiments. A single prismatic fine grain limestone block is first fractured in tension mode using the four-point bending test methodology and then the fracture surface topography is scanned using a laser profilometer. We then shear the obtained tensile fracture surfaces in direct shear, ensuring the original fracture surfaces are in a perfectly matching configuration at the beginning of the shear test. First, shearing is conducted to distances varying from 5 to 15 mm under constant normal stress of 2MPa and a constant displacement rate of 0.05 mm/s using two closed-loop servo controlled hydraulic pistons, supplying normal and shear forces (Davidesko et al., 2014). In the tested configuration peak shear stress is typically attained after a shear displacement of about 2-3 mm, beyond which lower shear stress is required to continue shearing at the preset displacement rate of 0.05 mm/s as is typical for initially rough joints. Following some initial compression the interface begins to dilate and continues to do so until the end of the test. The sheared tensile fracture surface is then scanned again and the geometrical evolution, in term of RMS roughness and power spectral density (PSD) is analyzed. We show that shearing smooth the surface along all our measurements scales. The roughness ratio, measured by initial PSD / final PSD for each wavelength, increases as a function of slip amount. The roughness measured after slip can be fitted by a power-law similar to that of the initial tensile surface. In the next series of experiments a similar procedure is applied when the roughness evolution is measured as a function of increasing normal stress for a fixed displacement amount of 10 mm. While samples sheared under a constant normal stress of 5 MPa generated surface smoothing, shearing under normal stress of 7.5 MPa to 15 MPa exhibited surface roughening at the measured range of scales. We find that roughening is correlated with the attained peak shear stress values, stress drop (peak shear stress minus residual shear stress) and with wear accumulation, a novel measurement procedure of which is developed here. Analysis of the sheared samples shows that roughening is generated by sets of dense fractures that significantly damaged the sample in the immediate proximity to large asperities. This roughening is related to penetrative damage during transient wear in rough surfaces.
A new polishing process for large-aperture and high-precision aspheric surface
NASA Astrophysics Data System (ADS)
Nie, Xuqing; Li, Shengyi; Dai, Yifan; Song, Ci
2013-07-01
The high-precision aspheric surface is hard to be achieved due to the mid-spatial frequency error in the finishing step. The influence of mid-spatial frequency error is studied through the simulations and experiments. In this paper, a new polishing process based on magnetorheological finishing (MRF), smooth polishing (SP) and ion beam figuring (IBF) is proposed. A 400mm aperture parabolic surface is polished with this new process. The smooth polishing (SP) is applied after rough machining to control the MSF error. In the middle finishing step, most of low-spatial frequency error is removed by MRF rapidly, then the mid-spatial frequency error is restricted by SP, finally ion beam figuring is used to finish the surface. The surface accuracy is improved from the initial 37.691nm (rms, 95% aperture) to the final 4.195nm. The results show that the new polishing process is effective to manufacture large-aperture and high-precision aspheric surface.
Peng, Ping; Kumar, Sunil; Voelcker, Nicolas H; Szili, Endre; Smart, Roger St C; Griesser, Hans J
2006-02-01
Adherent and optically semitransparent thin calcium phosphate (CaP) films were electrochemically deposited on titanium substrates in a modified simulated body fluid at 37 degrees C. Coatings deposited by using periodic pulsed potentials showed better adhesion and better mechanical properties than coatings deposited with use of a constant potential. Scanning electron microscopy was used to study the morphology of the coatings. The coatings displayed a polydispersed porous structure with pores in the range of a few nanometers to 1 mum. Furthermore, X-ray diffractometry and the O(1s) satellite peaks in X-ray photoelectron spectroscopy indicated that the coatings possessed a similar surface chemistry to that of natural bone minerals. These results were confirmed by inductively coupled plasma optical emission spectrometry, which yielded a Ca:P ratio of 1.65, close to that of hydroxyapatite. Contact mode atomic force microscopy (AFM) showed the average thickness of the coatings was in the order of 200 nm. Root-mean-square (RMS) roughness values, also derived by AFM, were shown to be much higher on the titanium-CaP surfaces in comparison with untreated titanium substrates, with RMS values of about 300 and 110 nm, respectively. Cell culture experiments showed that the CaP surfaces are nontoxic to MG63 osteoblastic cells in vitro and were able to support cell growth for up to 4 days, outperforming the untreated titanium surface in a direct comparison. These easily prepared coatings show promise for hard-tissue biomaterials. (c) 2005 Wiley Periodicals, Inc.
Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang
2015-01-01
2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices. PMID:26563573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin Yunpeng; Sawin, Herbert H.
The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO{sub 2}), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followedmore » the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide.« less
Radar altimeter waveform modeled parameter recovery. [SEASAT-1 data
NASA Technical Reports Server (NTRS)
1981-01-01
Satellite-borne radar altimeters include waveform sampling gates providing point samples of the transmitted radar pulse after its scattering from the ocean's surface. Averages of the waveform sampler data can be fitted by varying parameters in a model mean return waveform. The theoretical waveform model used is described as well as a general iterative nonlinear least squares procedures used to obtain estimates of parameters characterizing the modeled waveform for SEASAT-1 data. The six waveform parameters recovered by the fitting procedure are: (1) amplitude; (2) time origin, or track point; (3) ocean surface rms roughness; (4) noise baseline; (5) ocean surface skewness; and (6) altitude or off-nadir angle. Additional practical processing considerations are addressed and FORTRAN source listing for subroutines used in the waveform fitting are included. While the description is for the Seasat-1 altimeter waveform data analysis, the work can easily be generalized and extended to other radar altimeter systems.
Surface Modification of Polyimide for Improving Adhesion Strength by Inductively Coupled Plasma
NASA Astrophysics Data System (ADS)
Byun, Tae Joon; Kim, Sung Il; Kim, Youn Joon; Choi, Yoon Suk; Choi, In Sik; Setsuhara, Yuichi; Geon Han, Jeon
2009-08-01
This study examined the effect of an inductively coupled plasma (ICP) treatment using an argon and helium gas mixture on the adhesion between polyimide and a copper film. Optical emission spectroscopy (OES) of the ICP revealed the emission intensity of helium and argon at various intensities with the helium mixing ratio. The treated polyimide surface was analyzed using a contact angle analyzer, Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The contact angle and RMS roughness ranged from 66 to 31° and 2.3 to 4.1 nm, respectively. XPS showed an increase in C-O bonding. The highest peel strength was 0.43 kgf/cm at a 40% of helium mixing ratio, which contained the highest level of activate species. Overall, an ICP treatment of a polyimide surface with a 40% helium gas mixture improves the adhesion strength between copper and polyimide significantly.
Figuring process of potassium dihydrogen phosphate crystal using ion beam figuring technology.
Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin
2017-09-01
Currently, ion beam figuring (IBF) technology has presented many excellent performances in figuring potassium dihydrogen phosphate (KDP) crystals, such as it is a noncontact figuring process and it does not require polishing fluid. So, it is a very clean figuring process and does not introduce any impurities. However, the ion beam energy deposited on KDP crystal will heat the KDP crystal and may generate cracks on it. So, it is difficult directly using IBF technology to figure KDP crystal, as oblique incident IBF (OI-IBF) has lower heat deposition, higher removal rate, and smoother surface roughness compared to normal incident IBF. This paper studied the process of using OI-IBF to figure KDP crystal. Removal rates and removal functions at different incident angles were first investigated. Then heat depositions on a test work piece were obtained through experiments. To validate the figuring process, a KDP crystal with a size of 200 mm×200 mm×12 mm was figured by OI-IBF. After three iterations using the OI-IBF process, the surface error decreases from the initial values with PV 1.986λ RMS 0.438λ to PV 0.215λ RMS 0.035λ. Experimental results indicate that OI-IBF is feasible and effective to figure KDP crystals.
Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David
2014-09-01
Limbal ring (also known as 'circle') contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or 'enclosed' within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of 'circle' contact lenses. Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.
Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David
2014-01-01
Background Limbal ring (also known as ‘circle’) contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or ‘enclosed’ within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of ‘circle’ contact lenses. Methods Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. Results SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. Conclusions SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. PMID:24689948
I Situ Surface X-Ray Diffraction Studies of Electrochemically Deposited Monolayers
NASA Astrophysics Data System (ADS)
Yee, Dennis
1995-01-01
In situ x-ray diffraction has been used to determine the detailed atomic structure of electrochemically deposited lead, thallium, and bismuth monolayers on the silver (111) electrode surface. A review of our previously published lead and thallium monolayer results and the first in situ surface x-ray crystallographic study of the bismuth monolayer structure is presented. The crystallographic analysis of the bismuth Bragg rod intensities and the interference between the bismuth Bragg rod and silver crystal truncation rod scattering were used to determine the detailed atomic structure of the bismuth on silver (111) system at the liquid-solid interface. Our previous in situ x-ray diffraction studies showed that the bismuth monolayer lattice is rectangular and uniaxially incommensurate with the underlying hexagonal silver surface. A crystallographic analysis of the measured structure factor magnitudes reveals that the monolayer forms chains of atoms on the silver surface, similar to the bulk Bi(110)_{rh} plane, with a near neighbor distance of 3.12 +/- 0.01 A and a bond angle of 93 +/- 1^circ, consistent with the bulk Bi(110) _{rh} plane values. The crystallographic refinement also shows that the bismuth monolayer atoms are anisotropically disordered with a rms disorder of 0.25 +/- 0.03 A in the incommensurate direction and 0.09 +/- 0.03 A rms in the commnensurate direction. The interference between the Bi(20) Bragg rod and the Ag(10L)_ {h} crystal truncation rod scattering reveals that one set of bismuth atoms is registered near the bridge sites of the silver (111) surface while another set is registered near the 3-fold hollow sites. In addition, the Bi-Ag d-spacing (3.1 +/- 0.1 A) is found to be consistent with the bulk bismuth near neighbor distance. The bismuth z-direction rms disorder (1.01 +/- 0.08 A) is found to be dominated by the roughness of the underlying silver (sigma_{Ag} = 0.9 +/- 0.1 A rms). Using the estimated bismuth-bismuth spring constant of 1.41 +/- 0.07 eV/A^2 from our measured bismuth two-dimensional compressibility, two simple models are used to try and understand the origin of the anisotropic disorder. A simple two-dimensional isotropic thermal fluctuation model shows that thermal fluctuations are not large enough to account for all of the measured excess disorder in the incommensurate direction. A simple one-dimensional Frenkel-Kontorova model shows that the substrate-induced disorder can account for the anisotropic disorder, assuming a substrate sinusoidal potential strength of 0.35 +/- 0.02 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Hui; Endo, Katsuyoshi; Yamamura, Kazuya, E-mail: yamamura@upst.eng.osaka-u.ac.jp
2015-08-03
Chemical mechanical polishing (CMP) combined with atmospheric-pressure plasma pretreatment was applied to a GaN (0001) substrate. The irradiation of a CF{sub 4}-containing plasma was proven to be very useful for modifying the surface of GaN. When CMP was conducted on a plasma-irradiated surface, a modified layer of GaF{sub 3} acted as a protective layer on GaN by preventing the formation of etch pits. Within a short duration (8 min) of CMP using a commercially available CeO{sub 2} slurry, an atomically flat surface with a root mean square (rms) roughness of 0.11 nm was obtained. Moreover, etch pits, which are inevitably introduced inmore » conventional CMP, could not be observed at the dislocation sites on the polished GaN surface. It was revealed that CMP combined with the plasma pretreatment was very effective for obtaining a pit-free and atomically flat GaN surface.« less
NASA Astrophysics Data System (ADS)
Staple, Bevan D.; Muller, Lilac; Miller, David C.
2003-01-01
We introduce the Network Photonics" CrossWave as the first commercially-available, MEMS-based wavelength selective switch. The CrossWave combines the functionality of signal de-multiplexing, switching and re-multiplexing in a single all-optical operation using a dispersive element and 1-D MEMS. 1-D MEMS, where micromirrors are configured in a single array with a single mirror per wavelength, are fabricated in a standard surface micromachining process. In this paper we present three generations of micromirror designs. With proper design optimization and process improvements we have demonstrated exceptional mirror flatness (<16.2m-1 curvature), surface error (
NASA Astrophysics Data System (ADS)
Maciel, M. J.; Costa, C. G.; Silva, M. F.; Gonçalves, S. B.; Peixoto, A. C.; Ribeiro, A. Fernando; Wolffenbuttel, R. F.; Correia, J. H.
2016-08-01
This paper reports on the development of a technology for the wafer-level fabrication of an optical Michelson interferometer, which is an essential component in a micro opto-electromechanical system (MOEMS) for a miniaturized optical coherence tomography (OCT) system. The MOEMS consists on a titanium dioxide/silicon dioxide dielectric beam splitter and chromium/gold micro-mirrors. These optical components are deposited on 45° tilted surfaces to allow the horizontal/vertical separation of the incident beam in the final micro-integrated system. The fabrication process consists of 45° saw dicing of a glass substrate and the subsequent deposition of dielectric multilayers and metal layers. The 45° saw dicing is fully characterized in this paper, which also includes an analysis of the roughness. The optimum process results in surfaces with a roughness of 19.76 nm (rms). The actual saw dicing process for a high-quality final surface results as a compromise between the dicing blade’s grit size (#1200) and the cutting speed (0.3 mm s-1). The proposed wafer-level fabrication allows rapid and low-cost processing, high compactness and the possibility of wafer-level alignment/assembly with other optical micro components for OCT integrated imaging.
Spagnuolo, G; Ametrano, G; D'Antò, V; Rengo, C; Simeone, M; Riccitiello, F; Amato, M
2012-12-01
To evaluate the effects of repeated autoclave sterilization cycles on surface topography of conventional nickel-titanium ( NiTi ) and titanium nitride ( TiN )-coated rotary instruments. A total of 60 NiTi rotary instruments, 30 ProTaper (Dentsply Maillefer) and 30 TiN -coated AlphaKite (Komet/Gebr. Brasseler), were analysed. Instruments were evaluated in the as-received condition and after 1, 5 and 10 sterilization cycles. After sterilization, the samples were observed using scanning electron microscope (SEM), and surface chemical analysis was performed on each instrument with energy dispersive X-ray spectroscopy (EDS). Moreover, the samples were analysed by atomic force microscopy (AFM), and roughness average (Ra) and the root mean square value (RMS) of the scanned surface profiles were recorded. Data were analysed by means of anova followed by Tukey's test. Scanning electron microscope observations revealed the presence of pitting and deep milling marks in all instruments. EDS analysis confirmed that both types of instruments were composed mainly of nickel and titanium, whilst AlphaKite had additional nitride. After multiple autoclave sterilization cycles, SEM examinations revealed an increase in surface alterations, and EDS values indicated changes in chemical surface composition in all instruments. Ra and RMS values of ProTaper significantly increased after 5 (P = 0.006) and 10 cycles (P = 0.002) with respect to the as-received instruments, whilst AlphaKite showed significant differences compared with the controls after 10 cycles (P = 0.03). Multiple autoclave sterilization cycles modified the surface topography and chemical composition of conventional and TiN -coated NiTi rotary instruments. © 2012 International Endodontic Journal.
Scalable and durable polymeric icephobic and hydrate-phobic coatings.
Sojoudi, Hossein; Arabnejad, Hadi; Raiyan, Asif; Shirazi, Siamack A; McKinley, Gareth H; Gleason, Karen K
2018-05-09
Ice formation and accumulation on surfaces can result in severe problems for solar photovoltaic installations, offshore oil platforms, wind turbines and aircrafts. In addition, blockage of pipelines by formation and accumulation of clathrate hydrates of natural gases has safety and economical concerns in oil and gas operations, particularly at high pressures and low temperatures such as those found in subsea or arctic environments. Practical adoption of icephobic/hydrate-phobic surfaces requires mechanical robustness and stability under harsh environments. Here, we develop durable and mechanically robust bilayer poly-divinylbenzene (pDVB)/poly-perfluorodecylacrylate (pPFDA) coatings using initiated chemical vapor deposition (iCVD) to reduce the adhesion strength of ice/hydrates to underlying substrates (silicon and steel). Utilizing a highly-cross-linked polymer (pDVB) underneath a very thin veneer of fluorine-rich polymer (pPFDA) we have designed inherently rough bilayer polymer films that can be deposited on rough steel substrates resulting in surfaces which exhibit a receding water contact angle (WCA) higher than 150° and WCA hysteresis as low as 4°. Optical profilometer measurements were performed on the films and root mean square (RMS) roughness values of Rq = 178.0 ± 17.5 nm and Rq = 312.7 ± 23.5 nm were obtained on silicon and steel substrates, respectively. When steel surfaces are coated with these smooth hard iCVD bilayer polymer films, the strength of ice adhesion is reduced from 1010 ± 95 kPa to 180 ± 85 kPa. The adhesion strength of the cyclopentane (CyC5) hydrate is also reduced from 220 ± 45 kPa on rough steel substrates to 34 ± 12 kPa on the polymer-coated steel substrates. The durability of these bilayer polymer coated icephobic and hydrate-phobic substrates is confirmed by sand erosion tests and examination of multiple ice/hydrate adhesion/de-adhesion cycles.
Precision Control of Thermal Transport in Cryogenic Single-Crystal Silicon Devices
NASA Technical Reports Server (NTRS)
Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.
2014-01-01
We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than, even when the surface is fairly smooth, 510 nm rms, and the peak thermal wavelength is 0.6 microns. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of +/-8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.
Growth of high-quality AlN epitaxial film by optimizing the Si substrate surface
NASA Astrophysics Data System (ADS)
Huang, Liegen; Li, Yuan; Wang, Wenliang; Li, Xiaochan; zheng, Yulin; Wang, Haiyan; Zhang, Zichen; Li, Guoqiang
2018-03-01
High-quality AlN epitaxial films have been grown on Si substrates by optimizing the hydrofluoric acid (HF) solution for cleaning of Si substrates. Effect of the Si substrate surface on the surface morphology and structural property of AlN epitaxial films is investigated in detail. It is revealed that as the concentration of HF solution increases from 0 to 2.0%, the surface morphology and the crystalline quality are initially improved and then get worse, and show an optimized value at 1.5%. The as-grown ∼200 nm-thick AlN epitaxial films on Si substrates grown with HF solution of 1.5% reveal the root-mean-square (RMS) surface roughness of 0.49 nm and the full-width at half-maximum for AlN(0002) X-ray rocking curve of 0.35°, indicating the smooth surface morphology and the high crystalline quality. The corresponding mechanism is proposed to interpret the effect of Si substrate surface on surface morphology and structural property of AlN epitaxial films, and provides an effective approach for the perspective fabrication of AlN-based devices.
NASA Astrophysics Data System (ADS)
Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng
2017-10-01
Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.
Ultra-Smooth Nanostructured Diamond Films Deposited from He/H2/CH4/N2 Microwave Plasmas
Konovalov, Valery V.; Melo, Andrew; Catledge, Shane A.; Chowdhury, Shafiul
2008-01-01
Addition of He to a high CH4 content (10.7 vol%) H2/CH4/N2 feedgas mixture for microwave plasma chemical vapor deposition produced hard (56–72 GPa), ultra-smooth nanostructured diamond films on Ti-6Al-4V alloy substrates. Upon increase in He content up to 71 vol%, root mean squared (RMS) surface roughness of the film decreased to 9–10 nm and average diamond grain size to 5–6 nm. Our studies show that increased nanocrystallinity with He addition in plasma is related to plasma dilution, enhanced fragmentation of carbon containing species, and enhanced formation of CN radical. PMID:16573106
The effects of the structure characteristics on Magnetic Barkhausen noise in commercial steels
NASA Astrophysics Data System (ADS)
Deng, Yu; Li, Zhe; Chen, Juan; Qi, Xin
2018-04-01
This study has been done by separately measuring Magnetic Barkhausen noise (MBN) under different structure characteristics, namely the carbon content, hardness, roughness, and elastic modulus in commercial steels. The result of the experiments shows a strong dependence of MBN parameters (peak height, Root mean square (RMS), and average value) on structure characteristics. These effects, according to this study, can be explained by two kinds of source mechanisms of the MBN, domain wall nucleation and wall propagation. The discovery obtained in this paper can provide basic knowledge to understand the existing surface condition problem of Magnetic Barkhausen noise as a non-destructive evaluation technique and bring MBN into wider application.
Permeation fill-tube design for inertial confinement fusion target capsules
Rice, B. S.; Ulreich, J.; Fella, C.; ...
2017-03-22
A unique approach for permeation filling of nonpermeable inertial confinement fusion target capsules with deuterium–tritium (DT) is presented. This process uses a permeable capsule coupled into the final target capsule with a 0.03-mm-diameter fill tube. Leak free permeation filling of glow-discharge polymerization (GDP) targets using this method have been successfully demonstrated, as well as ice layering of the target, yielding an inner ice surface roughness of 1-more » $$\\unicode[STIX]{x03BC}$$m rms (root mean square). Finally, the measured DT ice-thickness profile for this experiment was used to validate a thermal model’s prediction of the same thickness profile.« less
NASA Astrophysics Data System (ADS)
Kao, I.-Ling; Ku, Chun-Neng; Chen, Yi-Ping; Lin, Ding-Zheng
2012-09-01
We proposed an internal nanostructure with a high reflective index planarization layer to solve the optical loss due to the reflective index mismatch between ITO and glass substrate. In our experiments, we found the electrical property of OLED device was significantly influenced by the internal nanostructures without planarization layer. Moreover, the internal extraction structure (IES) is not necessarily beneficial for light extraction. Therefore, we proposed a new substrate combine both internal and external extraction structure (EES) to extract trapping light. We successfully developed a high refractive index (N 1.7) planarization material with flat surface (RMS roughness < 2 nm), and improved about 70% device efficiency compared to traditional glass substrate.
Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard
2016-11-01
A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.
Feasibilty of a Multi-bit Cell Perpendicular Magnetic Tunnel Junction Device
NASA Astrophysics Data System (ADS)
Kim, Chang Soo
The ultimate objective of this research project was to explore the feasibility of making a multi-bit cell perpendicular magnetic tunnel junction (PMTJ) device to increase the storage density of spin-transfer-torque random access memory (STT-RAM). As a first step toward demonstrating a multi-bit cell device, this dissertation contributed a systematic and detailed study of developing a single cell PMTJ device using L10 FePt films. In the beginning of this research, 13 up-and-coming non-volatile memory (NVM) technologies were investigated and evaluated to see whether one of them might outperform NAND flash memories and even HDDs on a cost-per-TB basis in 2020. This evaluation showed that STT-RAM appears to potentially offer superior power efficiency, among other advantages. It is predicted that STTRAM's density could make it a promising candidate for replacing NAND flash memories and possibly HDDs if STTRAM could be improved to store multiple bits per cell. Ta/Mg0 under-layers were used first in order to develop (001) L1 0 ordering of FePt at a low temperature of below 400 °C. It was found that the tradeoff between surface roughness and (001) L10 ordering of FePt makes it difficult to achieve low surface roughness and good perpendicular magnetic properties simultaneously when Ta/Mg0 under-layers are used. It was, therefore, decided to investigate MgO/CrRu under-layers to simultaneously achieve smooth films with good ordering below 400°C. A well ordered 4 nm L10 FePt film with RMS surface roughness close to 0.4 nm, perpendicular coercivity of about 5 kOe, and perpendicular squareness near 1 was obtained at a deposition temperature of 390 °C on a thermally oxidized Si substrate when MgO/CrRu under-layers are used. A PMTJ device was developed by depositing a thin MgO tunnel barrier layer and a top L10 FePt film and then being postannealed at 450 °C for 30 minutes. It was found that the sputtering power needs to be minimized during the thin MgO tunnel barrier deposition because the high sputtering power can degrade perpendicular magnetic anisotropy of the bottom L1 0 FePt film and also increase RMS film surface roughness of the MgO tunnel barrier layer. From a lithographically unpatterned PMTJ sample, MR ratio and RA were measured at room temperature by the CIPT method and found to be 138% and 6.4 kOmicrom2, respectively. A completed PMTJ test pattern with a junction size of 80x40 microm2 was fabricated and showed a measured MR ratio and RA product of 108% and 4~6 kOmicrom 2, respectively. These values agree relatively well with the corresponding values of 138% and 6.4 kOmicrom2 obtained from the unpatterned PMTJ sample measured by a current-in-plane tunneling (CIPT) method.
Preparation of a Non-Polar ZnO Film on a Single-Crystal NdGaO3 Substrate by the RF Sputtering Method
NASA Astrophysics Data System (ADS)
Kashiwaba, Y.; Tanaka, Y.; Sakuma, M.; Abe, T.; Imai, Y.; Kawasaki, K.; Nakagawa, A.; Niikura, I.; Kashiwaba, Y.; Osada, H.
2018-04-01
Preparation of non-polar ZnO ( 11\\overline{2} 0 ) films on single-crystal NdGaO3 (NGO) (001) substrates was successfully achieved by the radio frequency (RF) sputtering method. Orientation, deposition rate, and surface roughness of ZnO films strongly depend on the working pressure. Characteristics of ZnO films deposited on single-crystal NGO (001) substrates were compared with those of ZnO films deposited on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. An x-ray diffraction peak of the ZnO ( 11\\overline{2} 0 ) plane was observed on ZnO films deposited on single-crystal NGO (001) substrates under working pressure of less than 0.5 Pa. On the other hand, uniaxially oriented ZnO ( 11\\overline{2} 0 ) films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates were observed under working pressure of 0.1 Pa. The mechanism by which the diffraction angle of the ZnO ( 11\\overline{2} 0 ) plane on single-crystal NGO (001) substrates was shifted is discussed on the basis of anisotropic stress of lattice mismatch. The deposition rate of ZnO films decreased with an increase in working pressure, and the deposition rate on single-crystal NGO (001) substrates was larger than that on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. Root mean square (RMS) roughness of ZnO films increased with an increase in working pressure, and RMS roughness of ZnO films on single-crystal NGO (001) substrates was smaller than that of ZnO films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates even though the film thickness on single-crystal NGO (001) substrates was greater than that on sapphire substrates. It is thought that a single-crystal NGO (001) substrate is useful for deposition of non-polar ZnO ( 11\\overline{2} 0 ) films.
NASA Astrophysics Data System (ADS)
Si Abdallah, F.; Chérif, S. M.; Bouamama, Kh.; Roussigné, Y.; Hsu, J.-H.
2018-03-01
Morphological, magnetic and elastic properties of 5 nm-thick Co49Pt51 films, sputtered on glass substrates, with 20 nm-thick Ta (seed) and Pt (buffer) layers were studied as function of the deposition temperature Td ranging between room temperature and 350° C. Atomic and magnetic force microscopy, vibrating sample magnetometer and Brillouin light scattering techniques were used to investigate the root mean square (RMS) roughness, the magnetic domain configuration, the coercive field (Hc), the perpendicular magnetic anisotropy (PMA), and the dynamic magnetic and elastic properties of the films with Td. The results show that surface uniformity was enhanced since the RMS roughness decreases with Td while magnetic domains typical of films with high PMA are observed. Hc and PMA are found to sensibly increase with Td. The dynamic magnetization behavior is characterized by magnetic modes related with the co-existence of hard and soft magnetic areas within the samples. The elastic properties of the stack were first analyzed by means of a model describing the main variation of the elastic wave frequencies within the frame of weighted average thickness, density, Young's modulus and Poisson coefficient of all the layers constituting the stacks. However, while Hc and PMA keep increasing with Td, a more precise experimental analysis of the mechanical behavior shows that the group velocity starts increasing and finally decreases with Td, suggesting that knowledge of the influence of Td on the mechanical properties of each individual layer composing the stack is required to obtain a more accurate analysis.
Segmenting the Femoral Head and Acetabulum in the Hip Joint Automatically Using a Multi-Step Scheme
NASA Astrophysics Data System (ADS)
Wang, Ji; Cheng, Yuanzhi; Fu, Yili; Zhou, Shengjun; Tamura, Shinichi
We describe a multi-step approach for automatic segmentation of the femoral head and the acetabulum in the hip joint from three dimensional (3D) CT images. Our segmentation method consists of the following steps: 1) construction of the valley-emphasized image by subtracting valleys from the original images; 2) initial segmentation of the bone regions by using conventional techniques including the initial threshold and binary morphological operations from the valley-emphasized image; 3) further segmentation of the bone regions by using the iterative adaptive classification with the initial segmentation result; 4) detection of the rough bone boundaries based on the segmented bone regions; 5) 3D reconstruction of the bone surface using the rough bone boundaries obtained in step 4) by a network of triangles; 6) correction of all vertices of the 3D bone surface based on the normal direction of vertices; 7) adjustment of the bone surface based on the corrected vertices. We evaluated our approach on 35 CT patient data sets. Our experimental results show that our segmentation algorithm is more accurate and robust against noise than other conventional approaches for automatic segmentation of the femoral head and the acetabulum. Average root-mean-square (RMS) distance from manual reference segmentations created by experienced users was approximately 0.68mm (in-plane resolution of the CT data).
NASA Technical Reports Server (NTRS)
Vandemack, Douglas; Crawford, Tim; Dobosy, Ron; Elfouhaily, Tanos; Busalacchi, Antonio J. (Technical Monitor)
1999-01-01
Ocean surface remote sensing techniques often rely on scattering or emission linked to shorter- scale gravity-capillary ocean wavelets. However, it is increasingly apparent that slightly longer wavelengths of O(10 to 500 cm) are vital components in the robust sea surface description needed to link varied global remote sensing data sets. This paper describes a sensor suite developed to examine sea surface slope variations in the field using an aircraft flying at very low altitude (below 30 m) and will also provide preliminary measurements detailing changes in slope characteristics versus sea state and friction velocity. Two-dimensional surface slope is measured using simultaneous range measurements from three compact short-range laser altimeters mounted in an equilateral triangle arrangement with spacing of about 1 m. In addition, all three lasers provide independent wave elevation profiles after GPS-aided correction for aircraft altitude. Laser range precision is 1 cm rms while vertical motion correction is 15 cm rms. The measurements are made along-track at approximately 1 m intervals setting the spatial scale of the measurement to cover waves of intermediate to long scale. Products available for this array then include surface elevation, two-dimensional slope distribution, and the cross- and along-track 1-D slope distributions. To complement the laser, a down-looking mm-wave radar scatterometer is centered within the laser array to measure radar backscatter simultaneously with the laser slope. The radar's footprint is nominally 1 m in diameter. Near-vertical radar backscatter is inversely proportional to the small-scale surface slope variance and to the tilt of the underlying (laser-measured) surface facet. Together the laser and radar data provide information on wave roughness from the longest scales down to about 1 cm. These measurements are complemented by aircraft turbulence probe data that provides robust surface flux information.
High Temperature Superconducting Thick Films
Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Holesinger, Terry G.; Jia, Quanxi
2005-08-23
An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.
Manufacturing of the 1070mm F/1.5 ellipsoid mirror
NASA Astrophysics Data System (ADS)
Guo, Peiji; Yu, Jingchi; Zhang, Yaoming; Qiu, Gufeng
2009-05-01
The manufacturing procedure of a φ1070mm in diameter F/1.5 ellipsoid mirror is introduced in detail. For testing the rough-ground surface, guiding shaping and fine grinding, a three dimension X-θ-Z profilometer is developed, the instrument measures surface profiles with 1μm accuracy and the biggest mirror being tested is φ1200mm in diameter. During polishing and fine figuring, we chose null test by null corrector with point source at infinity, the designed null corrector includes two piece of lenses and the designed residual wave front aberration is less than 0.008λ(λ=0.6328μm)PV. For avoiding the influence of gravity deformation during polishing and testing, a kind of support system with multipoint unequal support force is developed by applying FEA-based optimization. The mirror was finally figured to the shape accuracy of 0.016λRMS.
Zirconium doped TiO{sub 2} thin films: A promising dielectric layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Arvind; Mondal, Sandip, E-mail: sandipmondal@physics.iisc.ernet.in; Rao, K. S. R. Koteswara
2016-05-06
In the present work, we have fabricated the zirconium doped TiO{sub 2} thin (ZTO) films from a facile spin – coating method. The addition of Zirconium in TiO{sub 2} offers conduction band offset to Si and consequently decreased the leakage current density by approximately two orders as compared to pure TiO{sub 2} thin (TO) films. The ZTO thin film shows a high dielectric constant 27 with a very low leakage current density ∼10{sup −8} A/cm{sup 2}. The oxide capacitate, flat band voltage and change in flat band voltage are 172 pF, -1.19 V and 54 mV. The AFM analysis confirmed the compactmore » and pore free flat surface. The RMS surface roughness is found to be 1.5 Å. The ellipsometry analysis also verified the fact with a high refractive index 2.21.« less
First and Higher Order Effects on Zero Order Radiative Transfer Model
NASA Astrophysics Data System (ADS)
Neelam, M.; Mohanty, B.
2014-12-01
Microwave radiative transfer model are valuable tool in understanding the complex land surface interactions. Past literature has largely focused on local sensitivity analysis for factor priotization and ignoring the interactions between the variables and uncertainties around them. Since land surface interactions are largely nonlinear, there always exist uncertainties, heterogeneities and interactions thus it is important to quantify them to draw accurate conclusions. In this effort, we used global sensitivity analysis to address the issues of variable uncertainty, higher order interactions, factor priotization and factor fixing for zero-order radiative transfer (ZRT) model. With the to-be-launched Soil Moisture Active Passive (SMAP) mission of NASA, it is very important to have a complete understanding of ZRT for soil moisture retrieval to direct future research and cal/val field campaigns. This is a first attempt to use GSA technique to quantify first order and higher order effects on brightness temperature from ZRT model. Our analyses reflect conditions observed during the growing agricultural season for corn and soybeans in two different regions in - Iowa, U.S.A and Winnipeg, Canada. We found that for corn fields in Iowa, there exist significant second order interactions between soil moisture, surface roughness parameters (RMS height and correlation length) and vegetation parameters (vegetation water content, structure and scattering albedo), whereas in Winnipeg, second order interactions are mainly due to soil moisture and vegetation parameters. But for soybean fields in both Iowa and Winnipeg, we found significant interactions only to exist between soil moisture and surface roughness parameters.
NASA Astrophysics Data System (ADS)
Niamsuwan, N.; Johnson, J. T.; Jezek, K. C.; Gogineni, P.
2008-12-01
The Global Ice Sheet Mapping Orbiter (GISMO) mission was developed to address scientific needs to understand the polar ice subsurface structure. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an interferometric SAR (InSAR) strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. These signals are further processed to produce 3D-images representing basal topography of the ice sheet. In the past three years, the GISMO airborne field campaigns that have been conducted provide a set of useful data for studying geophysical properties of the Greenland ice sheet. While topography information can be obtained using interferometric SAR processing techniques, ice sheet roughness statistics can also be derived by a relatively simple procedure that involves analyzing power levels and the shape of the radar impulse response waveforms. An electromagnetic scattering model describing GISMO impulse responses has previously been proposed and validated. This model suggested that rms-heights and correlation lengths of the upper surface profile can be determined from the peak power and the decay rate of the pulse return waveform, respectively. This presentation will demonstrate a procedure for estimating the roughness of ice surfaces by fitting the GISMO impulse response model to retrieved waveforms from selected GISMO flights. Furthermore, an extension of this procedure to estimate the scattering coefficient of the glacier bed will be addressed as well. Planned future applications involving the classification of glacier bed conditions based on the derived scattering coefficients will also be described.
Stability of ice on the Moon with rough topography
NASA Astrophysics Data System (ADS)
Rubanenko, Lior; Aharonson, Oded
2017-11-01
The heat flux incident upon the surface of an airless planetary body is dominated by solar radiation during the day, and by thermal emission from topography at night. Motivated by the close relationship between this heat flux, the surface temperatures, and the stability of volatiles, we consider the effect of the slope distribution on the temperature distribution and hence prevalence of cold-traps, where volatiles may accumulate over geologic time. We develop a thermophysical model accounting for insolation, reflected and emitted radiation, and subsurface conduction, and use it to examine several idealized representations of rough topography. We show how subsurface conduction alters the temperature distribution of bowl-shaped craters compared to predictions given by past analytic models. We model the dependence of cold-traps on crater geometry and quantify the effect that while deeper depressions cast more persistent shadows, they are often too warm to trap water ice due to the smaller sky fraction and increased reflected and reemitted radiation from the walls. In order to calculate the temperature distribution outside craters, we consider rough random surfaces with a Gaussian slope distribution. Using their derived temperatures and additional volatile stability models, we estimate the potential area fraction of stable water ice on Earth's Moon. For example, surfaces with slope RMS ∼15° (corresponding to length-scales ∼10 m on the lunar surface) located near the poles are found to have a ∼10% exposed cold-trap area fraction. In the subsurface, the diffusion barrier created by the overlaying regolith increases this area fraction to ∼40%. Additionally, some buried water ice is shown to remain stable even beneath temporarily illuminated slopes, making it more readily accessible to future lunar excavation missions. Finally, due to the exponential dependence of stability of ice on temperature, we are able to constrain the maximum thickness of the unstable layer to a few decimeters.
Kang, Ki-Noh; Jeong, Hyejeong; Lee, Jaehyeong; Park, Yong Seob
2018-09-01
A good medical guidewires are used to introduce stents, catheters, and other medical devices inside the human body. In this study, diamond-like carbon (DLC) film was proposed to solve the poor adhesion problem of guidewire and to improve the tribological performance of guidewire. DLC films were fabricated on Si substrate by using FVA (Filtered Vacuum Arc) method. In this work, the tribological, structural, and electrical properties of the fabricated DLC films with various arc currents were experimentally investigated. All DLC films showed smooth and uniform surface with increasing applied arc current. The rms surface roughness was increased and the value of contact angle on the film surface was decreased with increasing arc current. The hardness and elastic modulus of DLC films were improved, and the resistivity value of DLC films were decreased with increasing arc current. These results are associated with ion bombardment effects by the applied arc current and bias voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napari, Mari, E-mail: mari.napari@jyu.fi; Malm, Jari; Lehto, Roope
ZnO films were grown by atomic layer deposition at 35 °C on poly(methyl methacrylate) substrates using diethylzinc and water precursors. The film growth, morphology, and crystallinity were studied using Rutherford backscattering spectrometry, time-of-flight elastic recoil detection analysis, atomic force microscopy, scanning electron microscopy, and x-ray diffraction. The uniform film growth was reached after several hundreds of deposition cycles, preceded by the precursor penetration into the porous bulk and island-type growth. After the full surface coverage, the ZnO films were stoichiometric, and consisted of large grains (diameter 30 nm) with a film surface roughness up to 6 nm (RMS). The introduction of Al{sub 2}O{submore » 3} seed layer enhanced the initial ZnO growth substantially and changed the surface morphology as well as the crystallinity of the deposited ZnO films. Furthermore, the water contact angles of the ZnO films were measured, and upon ultraviolet illumination, the ZnO films on all the substrates became hydrophilic, independent of the film crystallinity.« less
Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp; Micro System Integration Center; Isobe, Shigehito
2015-09-01
We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10{sup −2} Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R{sub RMS} of ∼0.4 nm.
Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; ...
2016-04-27
Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke
Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.
Toworfe, G.K.; Bhattacharyya, S.; Composto, R.J.; Adams, C.S.; Shapiro, I.M.; Ducheyne, P.
2008-01-01
Bioactive glass (BG) can directly bond to living bone without fibrous tissue encapsulation. Key mechanistic steps of BG’s activity are attributed to calcium phosphate formation, surface hydroxylation and fibronectin (FN) adsorption. In the present study, self-assembled monolayers (SAMs) of alkanesilanes with different surface chemistry (OH, NH2, and COOH) were used as a model system to mimic BG’s surface activity. Calcium phosphate (Ca-P) was formed on SAMs by immersion in a solution which simulates the electrolyte content of physiological fluids. FN adsorption kinetics and monolayer coverage was determined on SAMs with or without Ca-P coating. The surface roughness was also examined on these substrates before and after FN adsorption. The effects of FN-adsorbed, Ca-P coated SAMs on the function of MC3T3-E1 were evaluated by cell growth, expression of alkaline phosphatase activity, and actin cytoskeleton formation. We demonstrate that, although the FN monolayer coverage and the rms roughness are similar on −OH and −COOH terminated SAMs with or without Ca-P coating, higher levels of ALP activity, more actin cytoskeleton formation and more cell growth are obtained on −OH and −COOH terminated SAMs with Ca-P coating. In addition, although the FN monolayer coverage is higher on Ca-P coated −NH2 terminated SAMs and SiOx surfaces, higher levels of ALP activity and more cell growth are obtained on Ca-P coated −OH and −COOH terminated SAMs. Thus with same Ca-P coatings, different surface functional groups have different effects on the function of osteoblastic cells. These findings represent new insights into the mechanism of bioactivity of BG and, thereby, may lead to designing superior constructs for bone grafting. PMID:19012271
Specular reflectance of optical-black coatings in the far infrared
NASA Technical Reports Server (NTRS)
Smith, S. M.
1984-01-01
Far-infrared specular reflectance spectra of seven optically black coatings near normal incidence are presented. Seven photometric spectra were obtained using eleven bandpass transmission filters in the wavelength range between 12 and 500 microns, and three interferometric spectra were obtained for corroboration. Data on the construction, thickness, and rms surface roughness of the coatings are also presented. The chemical composition of three coatings can be distinguished from that of the others by a strong absorption feature between 20 and 40 microns, which can be largely attributed to amorphous silicate material. At 100 microns, the most and least reflective coatings differ by nearly 3 orders of magnitude. Inverse relationships observed between the spectra and the roughness and thickness of the coatings led to development of a reflecting-layer model for the measured reflectance. The model successfully describes the spectra at wavelengths outside the silicate absorption, and optical constants are deduced from a nonlinear least squares fit to the data. Parametric errors are estimated by chi-square analysis, and sensitivity tests are performed to determine which parameters control reflectance in different spectral regions.
RIS4E at Kilauea's December 1974 Flow: Lava Flow Texture LiDAR Signatures
NASA Astrophysics Data System (ADS)
Whelley, P.; Garry, W. B.; Scheidt, S. P.; Bleacher, J. E.; Hamilton, C.
2015-12-01
High-resolution point clouds and digital terrain models (DTMs) are used to investigate lava textures on the Big Island of Hawaii. Lava texture (e.g., ´áā and pāhoehoe) depends significantly on eruption conditions, and it is therefore instructive, if accurately determined. In places where field investigations are prohibitive (e.g., on other planets and remote regions of Earth) lava texture must be assessed from remote sensing data. A reliable method for doing so remains elusive. The December 1974 flow from Kilauea, in the Kau desert, presents an excellent field site to develop techniques for identifying lava texture. The eruption is young and the textures are well preserved. We present results comparing properties of lava textures observed in Terrestrial Laser Scanning (TLS) data. The authors collected the TLS data during May 2014 and June 2015 field seasons. Scans are a quantitative representation of what a geologist, or robotic system, sees "on the ground" and provides "ground truth" for airborne or orbital remote sensing analysis by enabling key parameters of lava morphology to be quantified. While individual scans have a heterogeneous point density, multiple scans are merged such that sub-cm lava textures can be quantified. Results indicate that TLS-derived surface roughness (i.e., de-trended RMS roughness) is useful for differentiating lava textures and assists volcanologic interpretations. As many lava types are quite rough, it is not simply roughness that is the most advantageous parameter for differentiating lava textures; rather co-occurrence patterns in surface roughness are used. Gradually forming textures (e.g., pāhoehoe) are elevated in statistics that measure smoothness (e.g., homogeneity) while lava with disrupted crusts (e.g., slabby and platy flow) have more random distributions of roughness (i.e., high entropy). A similar technique will be used to analyze high-resolution DTMs of martian lava flows using High Resolution Imaging Science Experiment DTMs. This work will lead to faster and more reliable volcanic mapping efforts for planetary exploration as well as terrestrial geohazards.
Optimization of IBF parameters based on adaptive tool-path algorithm
NASA Astrophysics Data System (ADS)
Deng, Wen Hui; Chen, Xian Hua; Jin, Hui Liang; Zhong, Bo; Hou, Jin; Li, An Qi
2018-03-01
As a kind of Computer Controlled Optical Surfacing(CCOS) technology. Ion Beam Figuring(IBF) has obvious advantages in the control of surface accuracy, surface roughness and subsurface damage. The superiority and characteristics of IBF in optical component processing are analyzed from the point of view of removal mechanism. For getting more effective and automatic tool path with the information of dwell time, a novel algorithm is proposed in this thesis. Based on the removal functions made through our IBF equipment and the adaptive tool-path, optimized parameters are obtained through analysis the residual error that would be created in the polishing process. A Φ600 mm plane reflector element was used to be a simulation instance. The simulation result shows that after four combinations of processing, the surface accuracy of PV (Peak Valley) value and the RMS (Root Mean Square) value was reduced to 4.81 nm and 0.495 nm from 110.22 nm and 13.998 nm respectively in the 98% aperture. The result shows that the algorithm and optimized parameters provide a good theoretical for high precision processing of IBF.
2005-11-07
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility Bay 1 at NASA Kennedy Space Center, a crane lifts the remote manipulator system boom out of Atlantis’ payload bay. The boom will be temporarily stored. The RMS includes the electromechanical arm that maneuvers a payload from the payload bay of the orbiter to its deployment position and then releases it. It can also grapple a free-flying payload, maneuver it to the payload bay of the orbiter and berth it in the orbiter. The RMS arm is 50 feet 3 inches long and 15 inches in diameter. It weighs 905 pounds, and the total system weighs 994 pounds. The RMS has six joints that correspond roughly to the joints of the human arm, with shoulder yaw and pitch joints; an elbow pitch joint; and wrist pitch, yaw and roll joints. The end effector is the unit at the end of the wrist that actually grabs, or grapples, the payload.
2005-11-07
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility Bay 1 at NASA Kennedy Space Center, the remote manipulator system boom is lifted away from Atlantis’ payload bay and will be temporarily stored. The RMS includes the electromechanical arm that maneuvers a payload from the payload bay of the orbiter to its deployment position and then releases it. It can also grapple a free-flying payload, maneuver it to the payload bay of the orbiter and berth it in the orbiter. The RMS arm is 50 feet 3 inches long and 15 inches in diameter. It weighs 905 pounds, and the total system weighs 994 pounds. The RMS has six joints that correspond roughly to the joints of the human arm, with shoulder yaw and pitch joints; an elbow pitch joint; and wrist pitch, yaw and roll joints. The end effector is the unit at the end of the wrist that actually grabs, or grapples, the payload.
NASA Technical Reports Server (NTRS)
Katow, S. M.
1979-01-01
The computer analysis of the 34-m HA-DEC antenna by the IDEAS program provided the rms distortions of the surface panels support points for full gravity loadings in the three directions of the basic coordinate system of the computer model. The rms distortions for the gravity vector not in line with any of the three basic directions were solved and contour plotted starting from three surface panels setting declination angle. By inspections of the plots, it was concluded that the setting or rigging angle of -15 degrees declination minimized the rms distortions for sky coverage of plus or minus 22 declination angles to 10 degrees of ground mask.
NASA Astrophysics Data System (ADS)
Schulte, K. L.; Zutter, B. T.; Wood, A. W.; Babcock, S. E.; Kuech, T. F.
2014-03-01
Thick InxGa1-xAs metamorphic buffer layers (MBLs) grown by hydride vapor phase epitaxy (HVPE) were studied. Relationships between MBL properties and growth parameters such as grading rate, cap layer thickness, final xInAs, and deposition temperature (TD) were explored. The MBLs were characterized by measurement of in-plane residual strain (ɛ¦¦), surface etch pit density (EPD), and surface roughness. Capping layer thickness had a strong effect on strain relaxation, with thickly capped samples exhibiting the lowest ɛ¦¦. EPD was higher in samples with thicker caps, reflecting their increased relaxation through dislocation generation. ɛ¦¦ and EPD were weakly affected by the grading rate, making capping layer thickness the primary structural parameter which controls these properties. MBLs graded in discrete steps had similar properties to MBLs with continuous grading. In samples with identical thickness and 10-step grading style, ɛ¦¦ increased almost linearly with final xInAs, while total relaxation stayed relatively constant. Relaxation as a function of xInAs could be described by an equilibrium model in which dislocation nucleation is impeded by the energy of the existing dislocation array. EPD was constant from xInAs = 0 to 0.24 then increased exponentially, which is related to the increased dislocation interaction and blocking seen at higher dislocation densities. RMS roughness increased with xInAs above a certain strain rate (0.15%/µm) samples grown below this level possessed large surface hillocks and high roughness values. The elimination of hillocks at higher values of xInAs is attributed to increased density of surface steps and is related to the out-of-plane component of the burgers vector of the dominant type of 60° dislocation. TD did not affect ɛ¦¦ for samples with a given xInAs. EPD tended to increase with TD, indicating dislocation glide likely is impeded at higher temperatures.
Geologic map of the Hecate Chasma quadrangle (V-28), Venus
Stofan, Ellen R.; Guest, John E.; Brian, Antony W.
2012-01-01
The overall topography of V–28 consists of plains located slightly below mean planetary radius (MPR, 6051.84). The lowest regions are found in the rift trough (3.3 m below MPR), and the highest along the rift rim (4.3 km above MPR). The regions that are the roughest at Magellan radar wavelengths in the quadrangle occur along Hecate Chasma (root mean square [rms] slopes >10°), with most regions being relatively smooth (roughnesses comparable to the average Venus surface value of 2.84°). Emissivity values in the quadrangle are typical of most venusian plains regions, with a range in values for the quadrangle of 0.68–0.91. The highest emissivity values in the quadrangle lie at the highest elevations in the quadrangle (corona rims and interiors).
Optoelectronic Characterization of Infrared Photodetector Fabricated on Ge-on-Si Substrate.
Khurelbaatar, Zagarzusem; Kil, Yeon-Ho; Kim, Taek Sung; Shim, Kyu-Hwan; Hong, Hyobong; Choi, Chel-Jong
2015-10-01
We report on the optoelectronic characterization of Ge p-i-n infrared photodetector fabricated on Ge-on-Si substrate using rapid thermal chemical vapor deposition (RTCVD). The phosphorous doping concentration and the root mean square (RMS) surface roughness of epitaxial layer was estimated to be 2 x 10(18) cm(-3) and 1.2 nm, respectively. The photodetector were characterized with respect to their dark, photocurrent and responsivities in the wavelength range of 1530-1630 nm. At 1550 nm wavelength, responsivity of 0.32 A/W was measured for a reverse bias of 1 V, corresponding to 25% external quantum efficiency, without an optimal antireflection coating. Responsivity drastically reduced from 1560 nm wavelength which could be attributed to decreased absorption of Ge at room temperature.
Optical measurements of degradation in aircraft boundary layers
NASA Technical Reports Server (NTRS)
Kelsall, D.
1980-01-01
Visible wavelength measurements of the degradation of optical beams when transmitted through the thin aerodynamic boundary layers around an aircraft are reviewed. The measured results indicated degradation levels for the KC-135 airplanes between 0.10 to 0.13 lambda increasing to 0.18 lambda (rms wavefront distortion). For the Lear Jet, degradation with a 25 mm diameter optics was roughly 0.07 lambda. The corresponding infinite aperture degradation levels are also calculated. The corresponding measured correlation lengths of roughly 12 mm for the KC-135 aircraft and 6 mm for the Lear Jet scale to roughly 20 and 25 mm, respectively, for infinite apertures. These boundary layer correlation lengths do not appear to reflect the different boundary layer thicknesses on the two different aircraft.
First Search for an X-Ray-Optical Reverberation Signal in an Ultraluminous X-Ray Source
NASA Technical Reports Server (NTRS)
Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley; Trippe, Margaret L.; Mushotzky, Richard F.; Gandhi, Poshak
2016-01-01
Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 +/- 0.5%), the optical emission does not show any statistically significant variations. We set a 3s upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is approximately equal to 2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3 sigma) for optical variability on an approximately 24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries.
Development of advanced micromirror arrays by flip-chip assembly
NASA Astrophysics Data System (ADS)
Michalicek, M. Adrian; Bright, Victor M.
2001-10-01
This paper presents the design, commercial prefabrication, modeling and testing of advanced micromirror arrays fabricated using a novel, simple and inexpensive flip-chip assembly technique. Several polar piston arrays and rectangular cantilever arrays were fabricated using flip-chip assembly by which the upper layers of the array are fabricated on a separate chip and then transferred to a receiving module containing the lower layers. Typical polar piston arrays boast 98.3% active surface area, highly planarized surfaces, low address potentials compatible with CMOS electronics, highly standardized actuation between devices, and complex segmentation of mirror surfaces which allows for custom aberration configurations. Typical cantilever arrays boast large angles of rotation as well as an average surface planarity of only 1.779 nm of RMS roughness across 100 +m mirrors. Continuous torsion devices offer stable operation through as much as six degrees of rotation while binary operation devices offer stable activated positions with as much as 20 degrees of rotation. All arrays have desirable features of costly fabrication services like five structural layers and planarized mirror surfaces, but are prefabricated in the less costly MUMPs process. Models are developed for all devices and used to compare empirical data.
Lens capsule structure assessed with atomic force microscopy
Sueiras, Vivian M.; Moy, Vincent T.
2015-01-01
Purpose To image the ultrastructure of the anterior lens capsule at the nanoscale level using atomic force microscopy (AFM). Methods Experiments were performed on anterior lens capsules maintained in their in situ location surrounding the lens from six human cadavers (donor age range: 44–88 years), four cynomolgus monkeys (Macaca fascicularis age range: 4.83–8.92 years), and seven pigs (<6 months). Hydration of all samples was maintained using Dulbecco’s Modified Eagle Medium (DMEM). Whole lenses were removed from the eye and placed anterior side up in agarose gel before gel hardening where only the posterior half of the lens was contained within the gel. After the gel hardened, the Petri dish was filled with DMEM until the point where the intact lens was fully submerged. AFM was used to image the anterior lens surface in contact mode. An integrated analysis program was used to calculate the interfibrillar spacing, fiber diameter, and surface roughness of the samples. Results The AFM images depict a highly ordered fibrous structure at the surface of the lens capsule in all three species. The interfibrillar spacing for the porcine, cynomolgus monkey, and human lens capsules was 0.68±0.25, 1.80±0.39, and 1.08±0.25 μm, respectively. In the primate, interfibrillar spacing significantly decreased linearly as a function of age. The fiber diameters ranged from 50 to 950 nm. Comparison of the root mean square (RMS) and average deviation demonstrate that the surface of the porcine lens capsule is the smoothest, and that the human and cynomolgus monkey capsules are significantly rougher. Conclusions AFM was successful in providing high-resolution images of the nanostructure of the lens capsule samples. Species-dependent differences were observed in the overall structure and surface roughness. PMID:25814829
Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films
NASA Astrophysics Data System (ADS)
Hassan, Ali; Jin, Yuhua; Irfan, Muhammad; Jiang, Yijian
2018-03-01
Fermi-Dirac distribution for doped semiconductors and Burstein-Moss effect have been correlated first time to figure out the conductivity type of ZnO. Hall Effect in the Van der Pauw configuration has been applied to reconcile our theoretical estimations which evince our assumption. Band-gap narrowing has been found in all p-type samples, whereas blue Burstein-Moss shift has been recorded in the n-type films. Atomic Force Microscopic (AFM) analysis shows that both p-type and n-type films have almost same granular-like structure with minor change in average grain size (˜ 6 nm to 10 nm) and surface roughness rms value 3 nm for thickness ˜315 nm which points that grain size and surface roughness did not play any significant role in order to modulate the conductivity type of ZnO. X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) have been employed to perform the structural, chemical and elemental analysis. Hexagonal wurtzite structure has been observed in all samples. The introduction of nitrogen reduces the crystallinity of host lattice. 97% transmittance in the visible range with 1.4 × 107 Ω-1cm-1 optical conductivity have been detected. High absorption value in the ultra-violet (UV) region reveals that NZOs thin films can be used to fabricate next-generation high-performance UV detectors.
Enhancement of structural stiffness in MEMS structures
NASA Astrophysics Data System (ADS)
Ilias, Samir; Picard, Francis; Topart, Patrice; Larouche, Carl; Jerominek, Hubert
2006-01-01
Many optical applications require smooth micromirror reflective surfaces with large radius of curvature. Usually when using surface micromachining technology and as a result of residual stress and stress gradient in thin films, the control of residual curvature is a difficult task. In this work, two engineering approaches were developed to enhance structural stiffness of micromirrors. 1) By integrating stiffening structures and thermal annealing. The stiffening structures consist of U-shaped profiles integrated with the mirror (dimension 200×300 μm2). 2) By combining selective electroplating and flip-chip based technologies. Nickel was used as electroplated material with optimal stress values around +/-10 MPa for layer thicknesses of about 10 μm. With the former approach, typical curvature radii of about 1.5 cm and 0.6 cm along mirror width and length were obtained, respectively. With the latter approach, an important improvement in the micromirror planarity and flatness was achieved with curvature radius up to 23 cm and roughness lower than 5 nm rms for typical 1000×1000 μm2 micromirrors.
Tapsir, Zafirah; Jamaludin, Farah H; Pingguan-Murphy, Belinda; Saidin, Syafiqah
2018-02-01
The utilisation of hydroxyapatite and collagen as bioactive coating materials could enhance cells attachment, proliferation and osseointegration. However, most methods to form crystal hydroxyapatite coating do not allow the incorporation of polymer/organic compound due to production phase of high sintering temperature. In this study, a polydopamine film was used as an intermediate layer to immobilise hydroxyapatite-collagen without the introduction of high sintering temperature. The surface roughness, coating adhesion, bioactivity and osteoblast attachment on the hydroxyapatite-collagen coating were assessed as these properties remains unknown on the polydopamine grafted film. The coating was developed by grafting stainless steel 316L disks with a polydopamine film. Collagen type I fibres were then immobilised on the grafted film, followed by the biomineralisation of hydroxyapatite. The surface roughness and coating adhesion analyses were later performed by using AFM instrument. An Alamar Blue assay was used to determine the cytotoxicity of the coating, while an alkaline phosphatase activity test was conducted to evaluate the osteogenic differentiation of human fetal osteoblasts on the coating. Finally, the morphology of cells attachment on the coating was visualised under FESEM. The highest RMS roughness and coating adhesion were observed on the hydroxyapatite-collagen coating (hydroxyapatite-coll-dopa). The hydroxyapatite-coll-dopa coating was non-toxic to the osteoblast cells with greater cells proliferation, greater level of alkaline phosphate production and more cells attachment. These results indicate that the immobilisation of hydroxyapatite and collagen using an intermediate polydopamine is identical to enhance coating adhesion, osteoblast cells attachment, proliferation and differentiation, and thus could be implemented as a coating material on orthopaedic and dental implants.
Caporizzo, M. A.; Ezzibdeh, R. M.
2016-01-01
This study systematically investigates how polymer composition changes nanoparticle (NP) grafting and diffusion in solvated random copolymer thin films. By thermal annealing from 135 to 200 °C, thin films with a range of hydrophobicity are generated by varying acrylic acid content from 2% (SAA2) to 29% (SAA29). Poly(styrene-random-tert butyl acrylate) films, 100 nm thick, that are partially converted to poly(styrene-random-acrylic acid), SAA, reversibly swell in ethanol solutions containing amine-functionalized SiO2 nanoparticles with a diameter of 45 nm. The thermodynamics and kinetics of NP grafting are directly controlled by the AA content in the SAA films. At low AA content, namely SAA4, NP attachment saturates at a monolayer, consistent with a low solubility of NPs in SAA4 due to a weakly negative χ parameter. When the AA content exceeds 4%, NPs sink into the film to form multilayers. These films exhibit hierarchical surface roughness with a RMS roughness greater than the NP size. Using a quartz crystal microbalance, NP incorporation in the film is found to saturate after a mass equivalence of about 3 close-packed layers of NPs have been incorporated within the SAA. The kinetics of NP grafting is observed to scale with AA content. The surface roughness is greatest at intermediate times (5–20 min) for SAA13 films, which also exhibit superhydrophobic wetting. Because clustering and aggregation of the NPs within SAA29 films reduce film transparency, SAA13 films provide both maximum hydrophobicity and transparency. The method in this study is widely applicable because it can be applied to many substrate types, can cover large areas, and retains the amine functionality of the particles which allows for subsequent chemical modification. PMID:25689222
Path planning and parameter optimization of uniform removal in active feed polishing
NASA Astrophysics Data System (ADS)
Liu, Jian; Wang, Shaozhi; Zhang, Chunlei; Zhang, Linghua; Chen, Huanan
2015-06-01
A high-quality ultrasmooth surface is demanded in short-wave optical systems. However, the existing polishing methods have difficulties meeting the requirement on spherical or aspheric surfaces. As a new kind of small tool polishing method, active feed polishing (AFP) could attain a surface roughness of less than 0.3 nm (RMS) on spherical elements, although AFP may magnify the residual figure error or mid-frequency error. The purpose of this work is to propose an effective algorithm to realize uniform removal of the surface in the processing. At first, the principle of the AFP and the mechanism of the polishing machine are introduced. In order to maintain the processed figure error, a variable pitch spiral path planning algorithm and the dwell time-solving model are proposed. For suppressing the possible mid-frequency error, the uniformity of the synthesis tool path, which is generated by an arbitrary point at the polishing tool bottom, is analyzed and evaluated, and the angular velocity ratio of the tool spinning motion to the revolution motion is optimized. Finally, an experiment is conducted on a convex spherical surface and an ultrasmooth surface is finally acquired. In conclusion, a high-quality ultrasmooth surface can be successfully obtained with little degradation of the figure and mid-frequency errors by the algorithm.
NASA Astrophysics Data System (ADS)
May, P. W.; Harvey, J. N.; Allan, N. L.; Richley, J. C.; Mankelevich, Yu. A.
2010-12-01
A one-dimensional kinetic Monte Carlo (KMC) model has been developed to simulate the chemical vapor deposition of a diamond (100) surface under conditions used to grow single-crystal diamond (SCD), microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films. The model considers adsorption, etching/desorption, lattice incorporation and surface migration but not defect formation or renucleation processes. Two methods have been devised for estimation of the gas phase concentrations of species at the growing diamond surface, and are used to determine adsorption rates for C1Hx hydrocarbons for the different conditions. The rate of migration of adsorbed carbon species is governed by the availability of neighboring radical sites, which, in turn, depend upon the rates of H abstraction and of surface-radical migration. The KMC model predicts growth rates and surface roughness for each of diamond types consistent with experiment. In the absence of defect formation and renucleation the average surface diffusion length, ℓ, is a key parameter controlling surface morphology. When ℓ <2, surface migration is limited by the lack of availability of surface radical sites, and the migrating surface species simply hop back and forth between two adjacent sites but do not travel far beyond their initial adsorption site. Thus, Eley-Rideal processes dominate the growth, leading to the rough surfaces seen in NCD and UNCD. The maximum or "intrinsic" surface roughness occurs for nominally zero-migration conditions (ℓ =0) with an rms value of approximately five carbon atoms. Conversely, when migration occurs over greater distances (ℓ >2), Langmuir-Hinshelwood processes dominate the growth producing the smoother surfaces of MCD and SCD. By extrapolation, we predict that atomically smooth surfaces over large areas should occur once migrating species can travel approximately five sites (ℓ ˜5). β-scission processes are found to be unimportant for MCD and SCD growth conditions, but can remove up to 5% of the adsorbing carbon for NCD and UNCD growth. C1Hx insertion reactions also contribute <1% to the growth for nearly all conditions, while C2Hx (x <2) insertion reactions are negligible due their very low concentrations at the surface. Finally, the predictions for growth rate and morphology for UNCD deposition in a microwave system were found to be anomalous compared to those for all the other growth conditions, suggesting that carbonaceous particulates created in these plasmas may significantly affect the gas chemistry.
2005-11-07
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility Bay 1 at NASA Kennedy Space Center, a crane is lowered toward the remote manipulator system boom in Atlantis’ payload bay. The boom is being removed from Atlantis and will be temporarily stored. The RMS includes the electromechanical arm that maneuvers a payload from the payload bay of the orbiter to its deployment position and then releases it. It can also grapple a free-flying payload, maneuver it to the payload bay of the orbiter and berth it in the orbiter. The RMS arm is 50 feet 3 inches long and 15 inches in diameter. It weighs 905 pounds, and the total system weighs 994 pounds. The RMS has six joints that correspond roughly to the joints of the human arm, with shoulder yaw and pitch joints; an elbow pitch joint; and wrist pitch, yaw and roll joints. The end effector is the unit at the end of the wrist that actually grabs, or grapples, the payload.
2005-11-07
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility Bay 1 at NASA Kennedy Space Center, workers secure a crane to the remote manipulator system boom in Atlantis’ payload bay. The boom is being removed from Atlantis and will be temporarily stored.. The RMS includes the electromechanical arm that maneuvers a payload from the payload bay of the orbiter to its deployment position and then releases it. It can also grapple a free-flying payload, maneuver it to the payload bay of the orbiter and berth it in the orbiter. The RMS arm is 50 feet 3 inches long and 15 inches in diameter. It weighs 905 pounds, and the total system weighs 994 pounds. The RMS has six joints that correspond roughly to the joints of the human arm, with shoulder yaw and pitch joints; an elbow pitch joint; and wrist pitch, yaw and roll joints. The end effector is the unit at the end of the wrist that actually grabs, or grapples, the payload.
2005-11-07
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility Bay 1 at NASA Kennedy Space Center, the remote manipulator system boom that was removed from Atlantis’ payload bay is lifted out of the way. The boom will be temporarily stored. The RMS includes the electromechanical arm that maneuvers a payload from the payload bay of the orbiter to its deployment position and then releases it. It can also grapple a free-flying payload, maneuver it to the payload bay of the orbiter and berth it in the orbiter. The RMS arm is 50 feet 3 inches long and 15 inches in diameter. It weighs 905 pounds, and the total system weighs 994 pounds. The RMS has six joints that correspond roughly to the joints of the human arm, with shoulder yaw and pitch joints; an elbow pitch joint; and wrist pitch, yaw and roll joints. The end effector is the unit at the end of the wrist that actually grabs, or grapples, the payload.
2005-11-07
KENNEDY SPACE CENTER, FLA. -In the Orbiter Processing Facility Bay 1 at NASA Kennedy Space Center, a crane is attached to the remote manipulator system boom in Atlantis’ payload bay. The boom is being removed from Atlantis and will be temporarily stored. The RMS includes the electromechanical arm that maneuvers a payload from the payload bay of the orbiter to its deployment position and then releases it. It can also grapple a free-flying payload, maneuver it to the payload bay of the orbiter and berth it in the orbiter. The RMS arm is 50 feet 3 inches long and 15 inches in diameter. It weighs 905 pounds, and the total system weighs 994 pounds. The RMS has six joints that correspond roughly to the joints of the human arm, with shoulder yaw and pitch joints; an elbow pitch joint; and wrist pitch, yaw and roll joints. The end effector is the unit at the end of the wrist that actually grabs, or grapples, the payload.
Formula for the rms blur circle radius of Wolter telescope based on aberration theory
NASA Technical Reports Server (NTRS)
Shealy, David L.; Saha, Timo T.
1990-01-01
A formula for the rms blur circle for Wolter telescopes has been derived using the transverse ray aberration expressions of Saha (1985), Saha (1984), and Saha (1986). The resulting formula for the rms blur circle radius over an image plane and a formula for the surface of best focus based on third-, fifth-, and seventh-order aberration theory predict results in good agreement with exact ray tracing. It has also been shown that one of the two terms in the empirical formula of VanSpeybroeck and Chase (1972), for the rms blur circle radius of a Wolter I telescope can be justified by the aberration theory results. Numerical results are given comparing the rms blur radius and the surface of best focus vs the half-field angle computed by skew ray tracing and from analytical formulas for grazing incidence Wolter I-II telescopes and a normal incidence Cassegrain telescope.
Polishability of thin electrolytic and electroless NiP layers
NASA Astrophysics Data System (ADS)
Kinast, Jan; Beier, Matthias; Gebhardt, Andreas; Risse, Stefan; Tünnermann, Andreas
2015-10-01
Ultra-precise metal optics are key components of sophisticated scientific instrumentation in astronomy and space applications, covering a wide spectral range. Especially for applications in the visible or ultra-violet spectral ranges, a low roughness of the optics is required. Therefore, a polishable surface is necessary. State of the art is an amorphous nickel-phosphorus (NiP) layer, which enables several polishing techniques achieving a roughness of <1 nm RMS. Typically, these layers are approximately 30 μm to 60 μm thick. Deposited on Al6061, the bimetallic effect leads to a restricted operational temperature, caused by different coefficients of thermal expansion of Al6061 and NiP. Thinner NiP layers reduce the bimetallic effect. Hence, the possible operating temperature range. A deterministic shape correction via Magnetorheological Finishing of the substrate Al6061 leads to low shape deviations prior to the NiP deposition. This allows for depositing thin NiP-layers, which are polishable via a chemical mechanical polishing technique aiming at ultra-precise metal optics. The present article shows deposition processes and polishability of electroless and electrolytic NiP layers with thicknesses between 1 μm and 10 μm.
NASA Technical Reports Server (NTRS)
Truong-Loi, My-Linh; Saatchi, Sassan; Jaruwatanadilok, Sermsak
2012-01-01
A semi-empirical algorithm for the retrieval of soil moisture, root mean square (RMS) height and biomass from polarimetric SAR data is explained and analyzed in this paper. The algorithm is a simplification of the distorted Born model. It takes into account the physical scattering phenomenon and has three major components: volume, double-bounce and surface. This simplified model uses the three backscattering coefficients ( sigma HH, sigma HV and sigma vv) at low-frequency (P-band). The inversion process uses the Levenberg-Marquardt non-linear least-squares method to estimate the structural parameters. The estimation process is entirely explained in this paper, from initialization of the unknowns to retrievals. A sensitivity analysis is also done where the initial values in the inversion process are varying randomly. The results show that the inversion process is not really sensitive to initial values and a major part of the retrievals has a root-mean-square error lower than 5% for soil moisture, 24 Mg/ha for biomass and 0.49 cm for roughness, considering a soil moisture of 40%, roughness equal to 3cm and biomass varying from 0 to 500 Mg/ha with a mean of 161 Mg/ha
Skill Assessment of a Spectral Ocean-Atmosphere Radiative Model
NASA Technical Reports Server (NTRS)
Gregg, Watson, W.; Casey, Nancy W.
2009-01-01
Ocean phytoplankton, detrital material, and water absorb and scatter light spectrally. The Ocean- Atmosphere Spectral Irradiance Model (OASIM) is intended to provide surface irradiance over the oceans with sufficient spectral resolution to support ocean ecology, biogeochemistry, and heat exchange investigations, and of sufficient duration to support inter-annual and decadal investigations. OASIM total surface irradiance (integrated 200 nm to 4 microns) was compared to in situ data and three publicly available global data products at monthly 1-degree resolution. OASIM spectrally-integrated surface irradiance had root mean square (RMS) difference= 20.1 W/sq m (about 11%), bias=1.6 W/sq m (about 0.8%), regression slope= 1.01 and correlation coefficient= 0.89, when compared to 2322 in situ observations. OASIM had the lowest bias of any of the global data products evaluated (ISCCP-FD, NCEP, and ISLSCP 11), and the best slope (nearest to unity). It had the second best RMS, and the third best correlation coefficient. OASIM total surface irradiance compared well with ISCCP-FD (RMS= 20.7 W/sq m; bias=-11.4 W/sq m, r=0.98) and ISLSCP II (RMS =25.2 W/sq m; bias= -13.8 W/sq m; r=0.97), but less well with NCEP (RMS =43.0 W/sq m ;bias=-22.6 W/sq m; x=0.91). Comparisons of OASIM photosynthetically available radiation (PAR) with PAR derived from SeaWiFS showed low bias (-1.8 mol photons /sq m/d, or about 5%), RMS (4.25 mol photons /sq m/d ' or about 12%), near unity slope (1.03) and high correlation coefficient (0.97). Coupled with previous estimates of clear sky spectral irradiance in OASIM (6.6% RMS at 1 nm resolution), these results suggest that OASIM provides reasonable estimates of surface broadband and spectral irradiance in the oceans, and can support studies on ocean ecosystems, carbon cycling, and heat exchange.
Wang, Chun-Min; Huang, Chun-Chieh; Kuo, Jui-Chao; Sahu, Dipti Ranjan; Huang, Jow-Lay
2015-08-14
Tin oxide (SnO 2-x ) thin films were prepared under various flow ratios of O₂/(O₂ + Ar) on unheated glass substrate using the ion beam sputtering (IBS) deposition technique. This work studied the effects of the flow ratio of O₂/(O₂ + Ar), chamber pressures and post-annealing treatment on the physical properties of SnO₂ thin films. It was found that annealing affects the crystal quality of the films as seen from both X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. In addition, the surface RMS roughness was measured with atomic force microscopy (AFM). Auger electron spectroscopy (AES) analysis was used to obtain the changes of elemental distribution between tin and oxygen atomic concentration. The electrical property is discussed with attention to the structure factor.
NASA Astrophysics Data System (ADS)
Lee, SeungGeun; Mishkat-Ul-Masabih, Saadat; Leonard, John T.; Feezell, Daniel F.; Cohen, Daniel A.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.
2017-01-01
We investigate the photo-electrochemical (PEC) etching of Si-doped GaN samples grown on nonpolar GaN substrates, using a KOH/K2S2O8 solution and illuminated by a Xe arc lamp or a Q-switched 355 nm laser. The etch rate with the arc lamp decreased as the doping concentration increased, and the etching stopped for concentrations above 7.7 × 1018 cm-3. The high peak intensity of the Q-switched laser extended the etchable concentration to 2.4 × 1019 cm-3, with an etch rate of 14 nm/min. Compositionally selective etching was demonstrated, with an RMS surface roughness of 1.6 nm after etching down to an n-Al0.20Ga0.80N etch stop layer.
Alhussein, Akram; Achache, Sofiane; Deturche, Regis; Sanchette, Frederic; Pulgarin, Cesar; Kiwi, John; Rtimi, Sami
2017-04-01
This article presents the evidence for the significant effect of copper accelerating the bacterial inactivation on Ti-Nb-Ta-Zr (TNTZ) sputtered films on glass up to a Cu content of 8.3 at.%. These films were deposited by dc magnetron co-sputtering of an alloy target Ti-23Nb-0.7Ta-2Zr (at.%) and a Cu target. The fastest bacterial inactivation of E. coli on this later TNTZ-Cu surface proceeded within ∼75min. The films deposited by magnetron sputtering are chemically homogenous. The film roughness evaluated by atomic force spectroscopy (AFM) on the TNTZ-Cu 8.3 at.% Cu sample presented an RMS-value of 20.1nm being the highest RMS of any Cu-sputtered TNTZ sample. The implication of the RMS value found for this sample leading to the fastest interfacial bacterial inactivation kinetics is also discussed. Values for the Young's modulus and hardness are reported for the TNTZ films in the presence of various Cu-contents. Evaluation of the bacterial inactivation kinetics of E. coli under low intensity actinic hospital light and in the dark was carried out. The stable repetitive bacterial inactivation was consistent with the extremely low Cu-ion release from the samples of 0.4 ppb. Evidence is presented by the bacterial inactivation dependence on the applied light intensity for the intervention of Cu as semiconductor CuO during the bacterial inactivation at the TNTZ-Cu interface. The mechanism of CuO-intervention under light is suggested based on the pH/and potential changes registered during bacterial disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.
Mapping lava flow textures using three-dimensional measures of surface roughness
NASA Astrophysics Data System (ADS)
Mallonee, H. C.; Kobs-Nawotniak, S. E.; McGregor, M.; Hughes, S. S.; Neish, C.; Downs, M.; Delparte, D.; Lim, D. S. S.; Heldmann, J. L.
2016-12-01
Lava flow emplacement conditions are reflected in the surface textures of a lava flow; unravelling these conditions is crucial to understanding the eruptive history and characteristics of basaltic volcanoes. Mapping lava flow textures using visual imagery alone is an inherently subjective process, as these images generally lack the resolution needed to make these determinations. Our team has begun mapping lava flow textures using visual spectrum imagery, which is an inherently subjective process involving the challenge of identifying transitional textures such as rubbly and slabby pāhoehoe, as these textures are similar in appearance and defined qualitatively. This is particularly problematic for interpreting planetary lava flow textures, where we have more limited data. We present a tool to objectively classify lava flow textures based on quantitative measures of roughness, including the 2D Hurst exponent, RMS height, and 2D:3D surface area ratio. We collected aerial images at Craters of the Moon National Monument (COTM) using Unmanned Aerial Vehicles (UAVs) in 2015 and 2016 as part of the FINESSE (Field Investigations to Enable Solar System Science and Exploration) and BASALT (Biologic Analog Science Associated with Lava Terrains) research projects. The aerial images were stitched together to create Digital Terrain Models (DTMs) with resolutions on the order of centimeters. The DTMs were evaluated by the classification tool described above, with output compared against field assessment of the texture. Further, the DTMs were downsampled and reevaluated to assess the efficacy of the classification tool at data resolutions similar to current datasets from other planetary bodies. This tool allows objective classification of lava flow texture, which enables more accurate interpretations of flow characteristics. This work also gives context for interpretations of flows with comparatively low data resolutions, such as those on the Moon and Mars. Textural maps based on quantitative measures of roughness are a valuable asset for studies of lava flows on Earth and other planetary bodies.
Epitaxial ZnO/LiNbO{sub 3}/ZnO stacked layer waveguide for application to thin-film Pockels sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp; Fukuda, Hiroshi
We produced slab waveguides consisting of a LiNbO{sub 3} (LN) core layer that was sandwiched with Al-doped ZnO cladding layers. The ZnO/LN/ZnO stacked layers were grown on sapphire C-planes by electron cyclotron resonance (ECR) plasma sputtering and were subjected to structural, electrical, and optical characterizations. X-ray diffraction confirmed that the ZnO and LN layers were epitaxial without containing misoriented crystallites. The presence of 60°-rotational variants of ZnO and LN crystalline domains were identified from X-ray pole figures. Cross-sectional transmission electron microscopy images revealed a c-axis orientated columnar texture for LN crystals, which ensured operation as electro-optic sensors based on opticalmore » anisotropy along longitudinal and transversal directions. The interfacial roughness between the LN core and ZnO bottom layers as well as that between the ZnO top and the LN core layers was less than 20 nm, which agreed with surface images observed with atomic force microscopy. Outgrowth of triangular LN crystalline domains produced large roughness at the LN film surface. The RMS roughness of the LN film surface was twice that of the same structure grown on sapphire A-planes. Vertical optical transmittance of the stacked films was higher than 85% within the visible and infrared wavelength range. Following the approach adopted by Teng and Man [Appl. Phys. Lett. 56, 1734 (1990)], ac Pockels coefficients of r{sub 33} = 24-28 pm/V were derived for c-axis oriented LN films grown on low-resistive Si substrates. Light propagation within a ZnO/LN/ZnO slab waveguide as well as within a ZnO single layer waveguide was confirmed. The birefringence of these waveguides was 0.11 for the former and 0.05 for the latter.« less
Advanced light-scattering materials: Double-textured ZnO:B films grown by LP-MOCVD
NASA Astrophysics Data System (ADS)
Addonizio, M. L.; Spadoni, A.; Antonaia, A.
2013-12-01
Double-textured ZnO:B layers with enhanced optical scattering in both short and long wavelength regions have been successfully fabricated using MOCVD technique through a three step process. Growth of double-textured structures has been induced by wet etching on polycrystalline ZnO surface. Our double-layer structure consists of a first ZnO:B layer wet etched and subsequently used as substrate for a second ZnO:B layer deposition. Polycrystalline ZnO:B layers were etched by utilizing diluted solutions of fluoridic acid (HF), chloridric acid (HCl) and phosphoric acid (H3PO4) and their effect on surface morphology modification was systematically investigated. The morphology of the second deposited ZnO layer strongly depended on the surface properties of the etched ZnO first layer. Growth of cauliflower-like texture was induced by protrusions presence on the HCl etched surface. Optimized double-layer structure shows a cauliflower-like double texture with higher RMS roughness and increased spectral haze values in both short and long wavelength regions, compared to conventional pyramidal-like single texture. Furthermore, this highly scattering structure preserves excellent optical and electrical properties.
NASA Astrophysics Data System (ADS)
Awe, Thomas
2017-10-01
Implosions on the Z Facility assemble high-energy-density plasmas for radiation effects and ICF experiments, but achievable stagnation pressures and temperatures are degraded by the Magneto-Rayleigh-Taylor (MRT) instability. While the beryllium liners (tubes) used in Magnetized Liner Inertial Fusion (MagLIF) experiments are astonishingly smooth (10 to 50 nm RMS roughness), they also contain distributed micron-scale resistive inclusions, and large MRT amplitudes are observed. Early in the implosion, an electrothermal instability (ETI) may provide a perturbation which greatly exceeds the initial surface roughness of the liner. Resistive inhomogeneities drive nonuniform current density and Joule heating, resulting in locally higher temperature, and thus still higher resistivity. Such unstable temperature and pressure growth produce density perturbations which seed MRT. For MagLIF liners, ETI seeding of MRT has been inferred by evaluating late-time MRT, but a direct observation of ETI is not made. ETI is directly observed on the surface of 1.0-mm-diameter solid Al rods pulsed to 1 MA in 100 ns via high resolution gated optical imaging (2 ns temporal and 3 micron spatial resolution). Aluminum 6061 alloy rods, with micron-scale resistive inclusions, consistently first demonstrate overheating from distinct, 10-micron-scale, sub-eV spots, which 5-10 ns later merge into azimuthally stretched elliptical spots and discrete strata (40-100 microns wide by 10 microns tall). Axial plasma filaments form shortly thereafter. Surface plasma can be suppressed for rods coated with dielectric, enabling extended study of the evolution of stratified ETI structures, and experimental inference of ETI growth rates. This fundamentally new and highly 3-dimensional dataset informs ETI physics, including when the ETI seed of MRT may be initiated.
NASA Astrophysics Data System (ADS)
Sugawara, Jun; Kamiya, Tomohiro; Mikashima, Bumpei
2017-09-01
Ultra-low thermal expansion ceramics NEXCERATM is regarded as one of potential candidate materials crucial for ultralightweight and thermally-stable optical mirrors for space telescopes which are used in future optical missions satisfying extremely high observation specifications. To realize the high precision NEXCERA mirrors for space telescopes, it is important to develop a deterministic aspheric shape polishing and a precise figure correction polishing method for the NEXCERA. Magnetorheological finishing (MRF) was tested to the NEXCERA aspheric mirror from best fit sphere shape, because the MRF technology is regarded as the best suited process for a precise figure correction of the ultralightweight mirror with thin sheet due to its advantage of low normal force polishing. As using the best combination of material and MR fluid, the MRF was performed high precision figure correction and to induce a hyperbolic shape from a conventionally polished 100mm diameter sphere, and achieved the sufficient high figure accuracy and the high quality surface roughness. In order to apply the NEXCERA to a large scale space mirror, for the next step, a middle size solid mirror, 250 mm diameter concave parabola, was machined. It was roughly ground in the parabolic shape, and was lapped and polished by a computer-controlled polishing machine using sub-aperture polishing tools. It resulted in the smooth surface of 0.6 nm RMS and the figure accuracy of λ/4, being enough as pre-MRF surface. A further study of the NEXCERA space mirrors should be proceeded as a figure correction using the MRF to lightweight mirror with thin mirror sheet.
NASA Astrophysics Data System (ADS)
Fries, Marc Douglas
A course of research has been performed to assess the suitability of nanocrystal-line diamond (NCD) films on Ti-6Al-4V alloy as wear-resistant coatings in biomedical implant use. A series of temporomandibular (TMJ) joint condyle simulants were polished and acid-passivated as per ASTM F86 standard for surface preparation of implants. A 3-mum-thick coating of NCD film was deposited by microwave plasma chemical vapor deposition (MPCVD) over the hemispherical articulation surfaces of the simulants. Plasma chemistry conditions were measured and monitored by optical emission spectroscopy (OES), using hydrogen as a relative standard. The films consist of diamond grains around 20 nm in diameter embedded in an amorphous carbon matrix, free of any detectable film stress gradient. Hardness averages 65 GPa and modulus measures 600 GPa at a depth of 250 nm into the film surface. A diffuse film/substrate boundary produces a minimal film adhesion toughness (GammaC) of 158 J/m2. The mean RMS roughness is 14.6 +/- 4.2 nm, with an average peak roughness of 82.6 +/- 65.9 nm. Examination of the surface morphology reveals a porous, dendritic surface. Wear testing resulted in two failed condylar coatings out of three tests. No macroscopic delamination was found on any sample, but micron-scale film pieces broke away, exposing the substrate. Electrochemical corrosion testing shows a seven-fold reduction in corrosion rate with the application of an NCD coating as opposed to polished, passivated Ti-6Al-4V, producing a corrosion rate comparable to wrought Co-Cr-Mo. In vivo biocompatibility testing indicates that implanted NCD films did not elicit an immune response in the rabbit model, and osteointegration was apparent for both compact and trabecular bone on both NCD film and bare Ti-6Al-4V. Overall, NCD thin film material is reasonably smooth, biocompatible, and very well adhered. Wear testing indicates that this material is unacceptable for use in demanding TMJ applications without improvements to wear resistance behavior. Identified problems include high surface roughness due to an inadequate seeding procedure and a porous film surface. It is believed that these problems can be solved by future research, in which case NCD thin films should prove to-be well-suited as wear resistant coatings in biomedical applications.
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.
1983-01-01
Based on the works of Ruze (1966) and Vu (1969), a novel mathematical model has been developed to determine efficiently the average power pattern degradations caused by random surface errors. In this model, both nonuniform root mean square (rms) surface errors and nonuniform illumination functions are employed. In addition, the model incorporates the dependence on F/D in the construction of the solution. The mathematical foundation of the model rests on the assumption that in each prescribed annular region of the antenna, the geometrical rms surface value is known. It is shown that closed-form expressions can then be derived, which result in a very efficient computational method for the average power pattern. Detailed parametric studies are performed with these expressions to determine the effects of different random errors and illumination tapers on parameters such as gain loss and sidelobe levels. The results clearly demonstrate that as sidelobe levels decrease, their dependence on the surface rms/wavelength becomes much stronger and, for a specified tolerance level, a considerably smaller rms/wavelength is required to maintain the low sidelobes within the required bounds.
NASA Astrophysics Data System (ADS)
Li, Hongbo
2007-09-01
With the worldwide growing concern about reliable energy supply and the environmental problems of fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic systems, can play a major role in the urgently needed energy transition in electricity production. Solar cells based on thin film silicon and its alloys are a promising candidate that is capable of fulfilling the fast increasing demand of a reliable solar cell supply. The conventional method to deposit silicon thin films is based on plasma enhanced chemical vapour deposition (PECVD) techniques, which have the disadvantage of increasing film inhomogeneity at a high deposition rate when scaling up for the industrial production. In this thesis, we study the possibility of making high efficiency single and multijunction thin film silicon solar cells with the so-called hot-wire CVD technique, in which no strong electromagnetic field is involved in the deposition. Therefore, the up-scaling for industrial production is straightforward. We report and discuss our findings on the correlation of substrate surface rms roughness and the main output parameter of a solar cell, the open circuit voltage Voc of c-Si:H n i p cells. By considering all the possible reasons that could influence the Voc of such cells, we conclude that the near linear correlation of Voc and substrate surface rms roughness is the result the two most probable reasons: the unintentional doping through the cracks originated near the valleys of the substrate surface due to the in-diffusion of impurities, and the high density electrical defects formed by the collision of columnar silicon structures. Both of them relate to the morphology of substrate surface. Therefore, to have the best cell performance on a rough substrate surface, a good control on the substrate surface morphology is necessary. Another issue influencing the performance of c-Si:H solar cells is the change in layer crystallinity during the growth of the c-Si:H i-layer. For PECVD deposited cells, it is often found that the layer crystallinity is enhanced with increasing film thickness. We found for Hot-wire deposited cells, however, the opposite development in material structure: the material becomes amorphous near the end of the deposition. This results in a deterioration of cell performance. We therefore introduce a so-called H2 reverse profiling technique, in which H2 is increased during the c-Si:H i-layer deposition. With this technique, a cell with an efficiency of 8.5% has been reached, which is in line with the best reported PECVD cells deposited on the same type of substrate. In the literature, carrier transport in c-Si:H cells has been a topic for debate. In this thesis, we present our finding of photogating effect on the spectral response of c-Si:H solar cells. When measured under coloured bias light, the apparent quantum efficiency value of a c-Si:H cell can be largely enhanced. This phenomenon is a typical result of trapping induced field modification in the bulk of a drift type solar cell. The discovery of this phenomenon has experimentally proved that field-driven transport to a large extend exist in a c-Si:H solar cell.
Scattering from very rough layers under the geometric optics approximation: further investigation.
Pinel, Nicolas; Bourlier, Christophe
2008-06-01
Scattering from very rough homogeneous layers is studied in the high-frequency limit (under the geometric optics approximation) by taking the shadowing effect into account. To do so, the iterated Kirchhoff approximation, recently developed by Pinel et al. [Waves Random Complex Media17, 283 (2007)] and reduced to the geometric optics approximation, is used and investigated in more detail. The contributions from the higher orders of scattering inside the rough layer are calculated under the iterated Kirchhoff approximation. The method can be applied to rough layers of either very rough or perfectly flat lower interfaces, separating either lossless or lossy media. The results are compared with the PILE (propagation-inside-layer expansion) method, recently developed by Déchamps et al. [J. Opt. Soc. Am. A23, 359 (2006)], and accelerated by the forward-backward method with spectral acceleration. They highlight that there is very good agreement between the developed method and the reference numerical method for all scattering orders and that the method can be applied to root-mean-square (RMS) heights at least down to 0.25lambda.
Allowable SEM noise for unbiased LER measurement
NASA Astrophysics Data System (ADS)
Papavieros, George; Constantoudis, Vassilios; Gogolides, Evangelos
2018-03-01
Recently, a novel method for the calculation of unbiased Line Edge Roughness based on Power Spectral Density analysis has been proposed. In this paper first an alternative method is discussed and investigated, utilizing the Height-Height Correlation Function (HHCF) of edges. The HHCF-based method enables the unbiased determination of the whole triplet of LER parameters including besides rms the correlation length and roughness exponent. The key of both methods is the sensitivity of PSD and HHCF on noise at high frequencies and short distance respectively. Secondly, we elaborate a testbed of synthesized SEM images with controlled LER and noise to justify the effectiveness of the proposed unbiased methods. Our main objective is to find out the boundaries of the method in respect to noise levels and roughness characteristics, for which the method remains reliable, i.e the maximum amount of noise allowed, for which the output results cope with the controllable known inputs. At the same time, we will also set the extremes of roughness parameters for which the methods hold their accuracy.
Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirkarimi, Paul B.; Bajt, Sasa; Wall, Mark A.
2000-04-01
Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decreasemore » more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar. (c) 2000 Optical Society of America.« less
Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography.
Mirkarimi, P B; Bajt, S; Wall, M A
2000-04-01
Multilayer-coated Zerodur optics are expected to play a pivotal role in an extreme-ultraviolet (EUV) lithography tool. Zerodur is a multiphase, multicomponent material that is a much more complicated substrate than commonly used single-crystal Si or fused-silica substrates. We investigate the effect of Zerodur substrates on the performance of high-EUV reflectance Mo/Si and Mo/Be multilayer thin films. For Mo/Si the EUV reflectance had a nearly linear dependence on substrate roughness for roughness values of 0.06-0.36 nm rms, and the FWHM of the reflectance curves (spectral bandwidth) was essentially constant over this range. For Mo/Be the EUV reflectance was observed to decrease more steeply than Mo/Si for roughness values greater than approximately 0.2-0.3 nm. Little difference was observed in the EUV reflectivity of multilayer thin films deposited on different substrates as long as the substrate roughness values were similar.
Coastal sea level measurements using a single geodetic GPS receiver
NASA Astrophysics Data System (ADS)
Larson, Kristine M.; Löfgren, Johan S.; Haas, Rüdiger
2013-04-01
This paper presents a method to derive local sea level variations using data from a single geodetic-quality Global Navigation Satellite System (GNSS) receiver using GPS (Global Positioning System) signals. This method is based on multipath theory for specular reflections and the use of Signal-to-Noise Ratio (SNR) data. The technique could be valuable for altimeter calibration and validation. Data from two test sites, a dedicated GPS tide gauge at the Onsala Space Observatory (OSO) in Sweden and the Friday Harbor GPS site of the EarthScope Plate Boundary Observatory (PBO) in USA, are analyzed. The sea level results are compared to independently observed sea level data from nearby and in situ tide gauges. For OSO, the Root-Mean-Square (RMS) agreement is better than 5 cm, while it is in the order of 10 cm for Friday Harbor. The correlation coefficients are better than 0.97 for both sites. For OSO, the SNR-based results are also compared with results from a geodetic analysis of GPS data of a two receivers/antennae tide gauge installation. The SNR-based analysis results in a slightly worse RMS agreement with respect to the independent tide gauge data than the geodetic analysis (4.8 cm and 4.0 cm, respectively). However, it provides results even for rough sea surface conditions when the two receivers/antennae installation no longer records the necessary data for a geodetic analysis.
Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane
NASA Astrophysics Data System (ADS)
Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu
2018-03-01
Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.
NASA Technical Reports Server (NTRS)
Moghaddam, Mahta; Pierce, Leland; Tabatabaeenejad, Alireza; Rodriguez, Ernesto
2005-01-01
Knowledge of subsurface characteristics such as permittivity variations and layering structure could provide a breakthrough in many terrestrial and planetary science disciplines. For Earth science, knowledge of subsurface and subcanopy soil moisture layers can enable the estimation of vertical flow in the soil column linking surface hydrologic processes with that in the subsurface. For planetary science, determining the existence of subsurface water and ice is regarded as one of the most critical information needs for the study of the origins of the solar system. The subsurface in general can be described as several near-parallel layers with rough interfaces. Each homogenous rough layer can be defined by its average thickness, permittivity, and rms interface roughness assuming a known surface spectral distribution. As the number and depth of layers increase, the number of measurements needed to invert for the layer unknowns also increases, and deeper penetration capability would be required. To nondestructively calculate the characteristics of the rough layers, a multifrequency polarimetric radar backscattering approach can be used. One such system is that we have developed for data prototyping of the Microwave Observatory of Subcanopy and Subsurface (MOSS) mission concept. A tower-mounted radar makes backscattering measurements at VHF, UHF, and L-band frequencies. The radar is a pulsed CW system, which uses the same wideband antenna to transmit and receive the signals at all three frequencies. To focus the beam at various incidence angles within the beamwidth of the antenna, the tower is moved vertically and measurements made at each position. The signals are coherently summed to achieve focusing and image formation in the subsurface. This requires an estimate of wave velocity profiles. To solve the inverse scattering problem for subsurface velocity profile simultaneously with radar focusing, we use an iterative technique based on a forward numerical solution of the layered rough surface problem. The layers are each defined in terms of a small number of unknown distributions as given above. An a priori estimate of the solution is first assumed, based on which the forward problem is solved for the backscattered measurements. This is compared with the measured data and using iterative techniques an update to the solution for the unknowns is calculated. The process continues until convergence is achieved. Numerical results will be shown using actual radar data acquired with the MOSS tower radar system in Arizona in Fall 2003, and compared with in-situ measurements.
OCT 3-D surface topography of isolated human crystalline lenses
Sun, Mengchan; Birkenfeld, Judith; de Castro, Alberto; Ortiz, Sergio; Marcos, Susana
2014-01-01
Quantitative 3-D Optical Coherence Tomography was used to measure surface topography of 36 isolated human lenses, and to evaluate the relationship between anterior and posterior lens surface shape and their changes with age. All lens surfaces were fitted to 6th order Zernike polynomials. Astigmatism was the predominant surface aberration in anterior and posterior lens surfaces (accounting for ~55% and ~63% of the variance respectively), followed by spherical terms, coma, trefoil and tetrafoil. The amount of anterior and posterior surface astigmatism did not vary significantly with age. The relative angle between anterior and posterior surface astigmatism axes was on average 36.5 deg, tended to decrease with age, and was >45 deg in 36.1% lenses. The anterior surface RMS spherical term, RMS coma and 3rd order RMS decreased significantly with age. In general, there was a statistically significant correlation between the 3rd and 4th order terms of the anterior and posterior surfaces. Understanding the coordination of anterior and posterior lens surface geometries and their topographical changes with age sheds light into the role of the lens in the optical properties of the eye and the lens aging mechanism. PMID:25360371
OCT 3-D surface topography of isolated human crystalline lenses.
Sun, Mengchan; Birkenfeld, Judith; de Castro, Alberto; Ortiz, Sergio; Marcos, Susana
2014-10-01
Quantitative 3-D Optical Coherence Tomography was used to measure surface topography of 36 isolated human lenses, and to evaluate the relationship between anterior and posterior lens surface shape and their changes with age. All lens surfaces were fitted to 6th order Zernike polynomials. Astigmatism was the predominant surface aberration in anterior and posterior lens surfaces (accounting for ~55% and ~63% of the variance respectively), followed by spherical terms, coma, trefoil and tetrafoil. The amount of anterior and posterior surface astigmatism did not vary significantly with age. The relative angle between anterior and posterior surface astigmatism axes was on average 36.5 deg, tended to decrease with age, and was >45 deg in 36.1% lenses. The anterior surface RMS spherical term, RMS coma and 3rd order RMS decreased significantly with age. In general, there was a statistically significant correlation between the 3rd and 4th order terms of the anterior and posterior surfaces. Understanding the coordination of anterior and posterior lens surface geometries and their topographical changes with age sheds light into the role of the lens in the optical properties of the eye and the lens aging mechanism.
Metallic Nanohole Arrays on Fluoropolymer Substrates as Small Label-Free Real-Time Bioprobes
Yang, Jiun-Chan; Ji, Jin; Hogle, James M.; Larson, Dale N.
2009-01-01
We describe a nanoplasmonic probing platform that exploits small-dimension (≤ 20 μm2) ordered arrays of subwavelength holes for multiplexed, high spatial resolution, and real-time analysis on biorecognition events. Nanohole arrays are perforated on a super smooth gold surface (roughness RMS < 2.7 Å) attached on a fluoropolymer (FEP) substrate fabricated by a replica technique. The smooth surface of gold provides a superb environment for fabricating nanometer features and uniform immobilization of biomolecules. The refractive index matching between FEP and biological solutions contributes to ∼ 20% improvement on the sensing performance. Spectral studies on a series of small-dimension nanohole arrays from 1 μm2 to 20 μm2 indicate that the plasmonic sensing sensitivity improves as the gold-solution contact area increases. Our results also demonstrate that nanohole arrays with dimension as small as 1 μm2 can be used to effectively detect biomolecular binding events and analyze the binding kinetics. The future scientific opportunities opened by this nanohole platform include highly multiplexed analysis of ligand interactions with membrane proteins on high quality supported lipid bilayers. PMID:18710296
Design and fabrication of giant micromirrors using electroplating-based technology
NASA Astrophysics Data System (ADS)
Ilias, Samir; Topart, Patrice A.; Larouche, Carl; Leclair, Sebastien; Jerominek, Hubert
2005-01-01
Giant micromirrors with large scanning deflection and good flatness are required for many space and terrestrial applications. A novel approach to manufacturing this category of micromirrors is proposed. The approach combines selective electroplating and flip-chip based technologies. It allows for large air gaps, flat and smooth active micromirror surfaces and permits independent fabrication of the micromirrors and control electronics, avoiding temperature and sacrificial layer incompatibilities between them. In this work, electrostatically actuated piston and torsion micromirrors were designed and simulated. The simulated structures were designed to allow large deflection, i.e. piston displacement larger than 10 um and torsional deflection up to 35°. To achieve large micromirror deflections, up to seventy micron-thick resists were used as a micromold for nickel and solder electroplating. Smooth micromirror surfaces (roughness lower than 5 nm rms) and large radius of curvature (R as large as 23 cm for a typical 1000x1000 um2 micromirror fabricated without address circuits) were achieved. A detailed fabrication process is presented. First piston mirror prototypes were fabricated and a preliminary evaluation of static deflection of a piston mirror is presented.
SDSS-IV/MaNGA: SPECTROPHOTOMETRIC CALIBRATION TECHNIQUE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Renbin; Sánchez-Gallego, José R.; Tremonti, Christy
2016-01-15
Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), one of three core programs in the Sloan Digital Sky Survey-IV, is an integral-field spectroscopic survey of roughly 10,000 nearby galaxies. It employs dithered observations using 17 hexagonal bundles of 2″ fibers to obtain resolved spectroscopy over a wide wavelength range of 3600–10300 Å. To map the internal variations within each galaxy, we need to perform accurate spectral surface photometry, which is to calibrate the specific intensity at every spatial location sampled by each individual aperture element of the integral field unit. The calibration must correct only for the flux loss duemore » to atmospheric throughput and the instrument response, but not for losses due to the finite geometry of the fiber aperture. This requires the use of standard star measurements to strictly separate these two flux loss factors (throughput versus geometry), a difficult challenge with standard single-fiber spectroscopy techniques due to various practical limitations. Therefore, we developed a technique for spectral surface photometry using multiple small fiber-bundles targeting standard stars simultaneously with galaxy observations. We discuss the principles of our approach and how they compare to previous efforts, and we demonstrate the precision and accuracy achieved. MaNGA's relative calibration between the wavelengths of Hα and Hβ has an rms of 1.7%, while that between [N ii] λ6583 and [O ii] λ3727 has an rms of 4.7%. Using extinction-corrected star formation rates and gas-phase metallicities as an illustration, this level of precision guarantees that flux calibration errors will be sub-dominant when estimating these quantities. The absolute calibration is better than 5% for more than 89% of MaNGA's wavelength range.« less
SDSS-IV/MaNGA: Spectrophotometric calibration technique
Yan, Renbin; Tremonti, Christy; Bershady, Matthew A.; ...
2015-12-21
Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), one of three core programs in the Sloan Digital Sky Survey-IV, is an integral-field spectroscopic survey of roughly 10,000 nearby galaxies. It employs dithered observations using 17 hexagonal bundles of 2'' fibers to obtain resolved spectroscopy over a wide wavelength range of 3600-10300 Å. To map the internal variations within each galaxy, we need to perform accurate spectral surface photometry, which is to calibrate the specific intensity at every spatial location sampled by each individual aperture element of the integral field unit. The calibration must correct only for the flux loss duemore » to atmospheric throughput and the instrument response, but not for losses due to the finite geometry of the fiber aperture. This then requires the use of standard star measurements to strictly separate these two flux loss factors (throughput versus geometry), a difficult challenge with standard single-fiber spectroscopy techniques due to various practical limitations. Thus, we developed a technique for spectral surface photometry using multiple small fiber-bundles targeting standard stars simultaneously with galaxy observations. We discuss the principles of our approach and how they compare to previous efforts, and we demonstrate the precision and accuracy achieved. MaNGA's relative calibration between the wavelengths of Hα and Hβ has an rms of 1.7%, while that between [N ii] λ6583 and [O ii] λ3727 has an rms of 4.7%. In using extinction-corrected star formation rates and gas-phase metallicities as an illustration, this level of precision guarantees that flux calibration errors will be sub-dominant when estimating these quantities. The absolute calibration is better than 5% for more than 89% of MaNGA's wavelength range.« less
Studies of drag on the nanocomposite superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Brassard, Jean-Denis; Sarkar, D. K.; Perron, Jean
2015-01-01
The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. The X-ray diffraction (XRD) studies show the formation of zinc stearate on ZnO nanoparticles as the confirmation of SA-functionalization of ZnO nanoparticles in the thin films. Morphological analyses reveal the presence of micro-holes with the presence of irregular nanoparticles. The measured root mean square (rms) roughness of the thin film is found to be 12 ± 1 μm with the adhesion of 5B on both glass and aluminum substrates. The wetting property shows that the surface of the film is superhydrophobic with the contact angle of water of 156 ± 4° having contact angle hysteresis (CAH) of 4 ± 2°. The average terminal velocity in the water of the as-received glass spheres and superhydrophobic spheres were found to be 0.66 ± 0.01 m/s and 0.72 ± 0.01 m/s respectively. Consequently, the calculated average coefficients of the surface drag of the as-received glass sphere and superhydrophobic glass sphere were 2.30 ± 0.01 and 1.93 ± 0.03, respectively. Hence, the drag reduction on the surface of superhydrophobic glass sphere is found to be approximately 16% lower than as-received glass sphere.
Dwell time method based on Richardson-Lucy algorithm
NASA Astrophysics Data System (ADS)
Jiang, Bo; Ma, Zhen
2017-10-01
When the noise in the surface error data given by the interferometer has no effect on the iterative convergence of the RL algorithm, the RL algorithm for deconvolution in image restoration can be applied to the CCOS model to solve the dwell time. By extending the initial error function on the edge and denoising the noise in the surface error data given by the interferometer , it makes the result more available . The simulation results show the final residual error 10.7912nm nm in PV and 0.4305 nm in RMS, when the initial surface error is 107.2414 nm in PV and 15.1331 nm in RMS. The convergence rates of the PV and RMS values can reach up to 89.9% and 96.0%, respectively . The algorithms can satisfy the requirement of fabrication very well.
Photomask CD and LER characterization using Mueller matrix spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Heinrich, A.; Dirnstorfer, I.; Bischoff, J.; Meiner, K.; Ketelsen, H.; Richter, U.; Mikolajick, T.
2014-10-01
Critical dimension and line edge roughness on photomask arrays are determined with Mueller matrix spectroscopic ellipsometry. Arrays with large sinusoidal perturbations are measured for different azimuth angels and compared with simulations based on rigorous coupled wave analysis. Experiment and simulation show that line edge roughness leads to characteristic changes in the different Mueller matrix elements. The influence of line edge roughness is interpreted as an increase of isotropic character of the sample. The changes in the Mueller matrix elements are very similar when the arrays are statistically perturbed with rms roughness values in the nanometer range suggesting that the results on the sinusoidal test structures are also relevant for "real" mask errors. Critical dimension errors and line edge roughness have similar impact on the SE MM measurement. To distinguish between both deviations, a strategy based on the calculation of sensitivities and correlation coefficients for all Mueller matrix elements is shown. The Mueller matrix elements M13/M31 and M34/M43 are the most suitable elements due to their high sensitivities to critical dimension errors and line edge roughness and, at the same time, to a low correlation coefficient between both influences. From the simulated sensitivities, it is estimated that the measurement accuracy has to be in the order of 0.01 and 0.001 for the detection of 1 nm critical dimension error and 1 nm line edge roughness, respectively.
Effect of surface roughness on droplet splashing
NASA Astrophysics Data System (ADS)
Hao, Jiguang
2017-12-01
It is well known that rough surfaces trigger prompt splashing and suppress corona splashing on droplet impact. Upon water droplet impact, we experimentally found that a slightly rough substrate triggers corona splashing which is suppressed to prompt splashing by both further increase and further decrease of surface roughness. The nonmonotonic effect of surface roughness on corona splashing weakens with decreasing droplet surface tension. The threshold velocities for prompt splashing and corona splashing are quantified under different conditions including surface roughness, droplet diameter, and droplet surface tension. It is determined that slight roughness significantly enhances both prompt splashing and corona splashing of a water droplet, whereas it weakly affects low-surface-tension droplet splashing. Consistent with previous studies, high roughness triggers prompt splashing and suppresses corona splashing. Further experiments on droplet spreading propose that the mechanism of slight roughness enhancing water droplet splashing is due to the decrease of the wetted area with increasing surface roughness.
Lacunarity study of speckle patterns produced by rough surfaces
NASA Astrophysics Data System (ADS)
Dias, M. R. B.; Dornelas, D.; Balthazar, W. F.; Huguenin, J. A. O.; da Silva, L.
2017-11-01
In this work we report on the study of Lacunarity of digital speckle patterns generated by rough surfaces. The study of Lacunarity of speckle patterns was performed on both static and moving rough surfaces. The results show that the Lacunarity is sensitive to the surface roughness, which suggests that it can be used to perform indirect measurement of surface roughness as well as to monitor defects, or variations of roughness, of metallic moving surfaces. Our results show the robustness of this statistical tool applied to speckle pattern in order to study surface roughness.
Computer Simulation Of An In-Process Surface Finish Sensor.
NASA Astrophysics Data System (ADS)
Rakels, Jan H.
1987-01-01
It is generally accepted, that optical methods are the most promising for the in-process measurement of surface finish. These methods have the advantages of being non-contacting and fast data acquisition. Furthermore, these optical instruments can be easily retrofitted on existing machine-tools. In the Micro-Engineering Centre at the University of Warwick, an optical sensor has been developed which can measure the rms roughness, slope and wavelength of turned and precision ground surfaces during machining. The operation of this device is based upon the Kirchhoff-Fresnel diffraction integral. Application of this theory to ideal turned and ground surfaces is straightforward, and indeed the calculated diffraction patterns are in close agreement with patterns produced by an actual optical instrument. Since it is mathematically difficult to introduce real machine-tool behaviour into the diffraction integral, a computer program has been devised, which simulates the operation of the optical sensor. The program produces a diffraction pattern as a graphical output. Comparison between computer generated and actual diffraction patterns of the same surfaces show a high correlation. The main aim of this program is to construct an atlas, which maps known machine-tool errors versus optical diffraction patterns. This atlas can then be used for machine-tool condition diagnostics. It has been found that optical monitoring is very sensitive to minor defects. Therefore machine-tool detoriation can be detected before it is detrimental.
Development of High Resolution Mirrors and Cd-Zn-Te Detectors for Hard X-ray Astronomy
NASA Technical Reports Server (NTRS)
Ramsey, Brian D.; Speegle, Chet O.; Gaskin, Jessica; Sharma, Dharma; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)
2002-01-01
We describe the fabrication and implementation of a high-resolution conical, grazing- incidence, hard X-ray (20-70 keV) telescope. When flown aboard stratospheric balloons, these mirrors are used to image cosmic sources such as supernovae, neutron stars, and quasars. The fabrication process involves generating super-polished mandrels, mirror shell electroforming, and mirror testing. The cylindrical mandrels consist of two conical segments; each segment is approximately 305 mm long. These mandrels are first, precision ground to within approx. 1.0 micron straightness along each conical segment and then lapped and polished to less than 0.5 micron straightness. Each mandrel segment is the super-polished to an average surface roughness of approx. 3.25 angstrom rms. By mirror shell replication, this combination of good figure and low surface roughness has enabled us to achieve 15 arcsec, confirmed by X-ray measurements in the Marshall Space Flight Center 102 meter test facility. To image the focused X-rays requires a focal plane detector with appropriate spatial resolution. For 15 arcsec optics of 6 meter focal length, this resolution must be around 200 microns. In addition, the detector must have a high efficiency, relatively high energy resolution, and low background. We are currently developing Cadmium-Zinc-Telluride fine-pixel detectors for this purpose. The detectors under study consist of a 16x16 pixel array with a pixel pitch of 300 microns and are 1 mm and 2 mm thick. At 60 keV, the measured energy resolution is around 2%.
Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces
NASA Astrophysics Data System (ADS)
Thakkar, Manan; Busse, Angela; Sandham, Neil
2017-02-01
Rough surfaces are usually characterised by a single equivalent sand-grain roughness height scale that typically needs to be determined from laboratory experiments. Recently, this method has been complemented by a direct numerical simulation approach, whereby representative surfaces can be scanned and the roughness effects computed over a range of Reynolds number. This development raises the prospect over the coming years of having enough data for different types of rough surfaces to be able to relate surface characteristics to roughness effects, such as the roughness function that quantifies the downward displacement of the logarithmic law of the wall. In the present contribution, we use simulation data for 17 irregular surfaces at the same friction Reynolds number, for which they are in the transitionally rough regime. All surfaces are scaled to the same physical roughness height. Mean streamwise velocity profiles show a wide range of roughness function values, while the velocity defect profiles show a good collapse. Profile peaks of the turbulent kinetic energy also vary depending on the surface. We then consider which surface properties are important and how new properties can be incorporated into an empirical model, the accuracy of which can then be tested. Optimised models with several roughness parameters are systematically developed for the roughness function and profile peak turbulent kinetic energy. In determining the roughness function, besides the known parameters of solidity (or frontal area ratio) and skewness, it is shown that the streamwise correlation length and the root-mean-square roughness height are also significant. The peak turbulent kinetic energy is determined by the skewness and root-mean-square roughness height, along with the mean forward-facing surface angle and spanwise effective slope. The results suggest feasibility of relating rough-wall flow properties (throughout the range from hydrodynamically smooth to fully rough) to surface parameters.
Improved navigation by combining VOR/DME information with air or inertial data
NASA Technical Reports Server (NTRS)
Bobick, J. C.; Bryson, A. E., Jr.
1972-01-01
The improvement was determined in navigational accuracy obtainable by combining VOR/DME information (from one or two stations) with air data (airspeed and heading) or with data from an inertial navigation system (INS) by means of a maximum-likelihood filter. It was found that the addition of air data to the information from one VOR/DME station reduces the RMS position error by a factor of about 2, whereas the addition of inertial data from a low-quality INS reduces the RMS position error by a factor of about 3. The use of information from two VOR/DME stations with air or inertial data yields large factors of improvement in RMS position accuracy over the use of a single VOR/DME station, roughly 15 to 20 for the air-data case and 25 to 35 for the inertial-data case. As far as position accuracy is concerned, at most one VOR station need be used. When continuously updating an INS with VOR/DME information, the use of a high-quality INS (0.01 deg/hr gyro drift) instead of a low-quality INS (1.0 deg/hr gyro drift) does not substantially improve position accuracy.
Surface roughness: A review of its measurement at micro-/nano-scale
NASA Astrophysics Data System (ADS)
Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.
2018-01-01
The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.
a New Method for Calculating the Fractal Dimension of Surface Topography
NASA Astrophysics Data System (ADS)
Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Li, Yan
2015-06-01
A new method termed as three-dimensional root-mean-square (3D-RMS) method, is proposed to calculate the fractal dimension (FD) of machined surfaces. The measure of this method is the root-mean-square value of surface data, and the scale is the side length of square in the projection plane. In order to evaluate the calculation accuracy of the proposed method, the isotropic surfaces with deterministic FD are generated based on the fractional Brownian function and Weierstrass-Mandelbrot (WM) fractal function, and two kinds of anisotropic surfaces are generated by stretching or rotating a WM fractal curve. Their FDs are estimated by the proposed method, as well as differential boxing-counting (DBC) method, triangular prism surface area (TPSA) method and variation method (VM). The results show that the 3D-RMS method performs better than the other methods with a lower relative error for both isotropic and anisotropic surfaces, especially for the surfaces with dimensions higher than 2.5, since the relative error between the estimated value and its theoretical value decreases with theoretical FD. Finally, the electrodeposited surface, end-turning surface and grinding surface are chosen as examples to illustrate the application of 3D-RMS method on the real machined surfaces. This method gives a new way to accurately calculate the FD from the surface topographic data.
Measuring Geophysical Parameters of the Greenland Ice Sheet using Airborne Radar Altimetry
NASA Technical Reports Server (NTRS)
Ferraro, Ellen J.; Swift. Calvin T.
1995-01-01
This paper presents radar-altimeter scattering models for each of the diagenetic zones of the Greenland ice sheet. AAFE radar- altimeter waveforms obtained during the 1991 and 1993 NASA multi-sensor airborne altimetry experiments over Greenland reveal that the Ku-band return pulse changes significantly with the different diagenetic zones. These changes are due to varying amounts of surface and volume scattering in the return waveform. In the ablation and soaked zones, where surface scattering dominates the AAFE return, geophysical parameters such as rms surface height and rms surface slope are obtained by fitting the waveforms to a surface-scattering model. Waveforms from the percolation zone show that the sub-surface ice features have a much more significant effect on the return pulse than the surrounding snowpack. Model percolation waveforms, created using a combined surface- and volume-scattering model and an ice-feature distribution obtained during the 1993 field season, agree well with actual AAFE waveforms taken in the same time period. Using a combined surface- and volume-scattering model for the dry-snow-zone return waveforms, the rms surface height and slope and the attenuation coefficient of the snowpack are obtained. These scattering models not only allow geophysical parameters of the ice sheet to be measured but also help in the understanding of satellite radar-altimeter data.
Kregting, Louise T.; Bass, Anna L.; Guadayol, Òscar; Yund, Philip O.; Thomas, Florence I. M.
2013-01-01
Broadcast spawning invertebrates that live in shallow, high-energy coastal habitats are subjected to oscillatory water motion that creates unsteady flow fields above the surface of animals. The frequency of the oscillatory fluctuations is driven by the wave period, which will influence the stability of local flow structures and may affect fertilization processes. Using an oscillatory water tunnel, we quantified the percentage of eggs fertilized on or near spawning green sea urchins, Strongylocentrotus droebachiensis. Eggs were sampled in the water column, wake eddy, substratum and aboral surface under a range of different periods (T = 4.5 – 12.7 s) and velocities of oscillatory flow. The root-mean-square wave velocity (rms(u w)) was a good predictor of fertilization in oscillatory flow, although the root-mean-square of total velocity (rms(u)), which incorporates all the components of flow (current, wave and turbulence), also provided significant predictions. The percentage of eggs fertilized varied between 50 – 85% at low flows (rms(u w) <0.02 m s−1), depending on the location sampled, but declined to below 10% for most locations at higher rms(u w). The water column was an important location for fertilization with a relative contribution greater than that of the aboral surface, especially at medium and high rms(u w) categories. We conclude that gametes can be successfully fertilized on or near the parent under a range of oscillatory flow conditions. PMID:24098766
LDEF grappled by remote manipulator system (RMS) during STS-32 retrieval
1990-01-20
This view taken through overhead window W7 on Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck shows the Long Duration Exposure Facility (LDEF) in the grasp of the remote manipulator system (RMS) during STS-32 retrieval activities. Other cameras at eye level were documenting the bus-sized spacecraft at various angles as the RMS manipulated LDEF for a lengthy photo survey. The glaring celestial body in the upper left is the sun with the Earth's surface visible below.
NASA Technical Reports Server (NTRS)
Rauscher, Bernard; Arendt, Richard G.; Fixsen, D. J.; Lindler, Don; Loose, Markus; Moseley, S. H.; Wilson, D. V.
2012-01-01
We describe a Wiener optimal approach to using the reference output and reference pixels that are built into Teledyne's HAWAII-2RG detector arrays. In this way, we are reducing the total noise per approximately 1000 second 88 frame up-the-ramp dark integration from about 6.5 e- rms to roughly 5 e- rms. Using a principal components analysis formalism, we achieved these noise improvements without altering the hardware in any way. In addition to being lower, the noise is also cleaner with much less visible correlation. For example, the faint horizontal banding that is often seen in HAWAII-2RG images is almost completely removed. Preliminary testing suggests that the relative gains are even higher when using non flight grade components. We believe that these techniques are applicable to most HAWAII-2RG based instruments.
NASA Astrophysics Data System (ADS)
Michalicek, M. Adrian; Bright, Victor M.
2001-10-01
This paper presents the design, fabrication, modeling, and testing of various arrays of cantilever micromirror devices integrated atop CMOS control electronics. The upper layers of the arrays are prefabricated in the MUMPs process and then flip-chip transferred to CMOS receiving modules using a novel latching off-chip hinge mechanism. This mechanism allows the micromirror arrays to be released, rotated off the edge of the host module and then bonded to the receiving module using a standard probe station. The hinge mechanism supports the arrays by tethers that are severed to free the arrays once bonded. The resulting devices are inherently planarized since the bottom of the first releasable MUMPs layer becomes the surface of the integrated mirror. The working devices are formed by mirror surfaces bonded to address electrodes fabricated above static memory cells on the CMOS module. These arrays demonstrate highly desirable features such as compatible address potentials, less than 2 nm of RMS roughness, approximately 1 micrometers of lateral position accuracy and the unique ability to metallize reflective surfaces without masking. Ultimately, the off-chip hinge mechanism enables very low-cost, simple, reliable, repeatable and accurate assembly of advanced MEMS and integrated microsystems without specialized equipment or complex procedures.
Thinning of PLZT ceramic wafers for sensor integration
NASA Astrophysics Data System (ADS)
Jin, Na; Liu, Weiguo
2010-08-01
Characteristics of transparent PLZT ceramics can be tailored by controlling the component of them, and therefore showed excellent dielectric, piezoelectric, pyroelectric and ferroelectric properties. To integrate the ceramics with microelectronic circuit to realize integrated applications, the ceramic wafers have to be thinned down to micrometer scale in thickness. A7/65/35 PLZT ceramic wafer was selected in this study for the thinning process. Size of the wafer was 10×10mm with an initial thickness of 300μm. A novel membrane transfer process (MTP) was developed for the thinning and integration of the ceramic wafers. In the MTP process, the ceramic wafer was bonded to silicon wafer using a polymer bonding method. Mechanical grinding method was applied to reduce the thickness of the ceramic. To minimize the surface damage in the ceramic wafer caused by the mechanical grinding, magnetorheological finishing (MRF) method was utilized to polish the wafer. White light interference (WLI) apparatus was used to monitor the surface qualities of the grinded and ploished ceramic wafers. For the PLZT membrane obtained from the MTP process, the final thickness of the thinned and polished wafer was 10μm, the surface roughness was below 1nm in rms, and the flatness was better than λ/5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shengurov, V. G.; Chalkov, V. Yu.; Denisov, S. A.
The conditions of the epitaxial growth of high-quality relaxed Si{sub 1–x}Ge{sub x} layers by the combined method of the sublimation molecular-beam epitaxy and vapor-phase decomposition of monogermane on a hot wire are considered. The combined growth procedure proposed provides a means for growing Si{sub 1–x}Ge{sub x} layers with a thickness of up to 2 µm and larger. At reduced growth temperatures (T{sub S} = 325–350°C), the procedure allows the growth of Si{sub 1–x}Ge{sub x} layers with a small surface roughness (rms ≈ 2 nm) and a low density of threading dislocations. The photoluminescence intensity of Si{sub 1–x}Ge{sub x}:Er layers ismore » significantly (more than five times) higher than the photoluminescence intensity of layers produced under standard growth conditions (T{sub S} ≈ 500°C) and possess an external quantum efficiency estimated at a level of ~0.4%.« less
Kowalski, M P; Barbee, T W; Heidemann, K F; Gursky, H; Rife, J C; Hunter, W R; Fritz, G G; Cruddace, R G
1999-11-01
We have fabricated the four flight gratings for a sounding rocket high-resolution spectrometer using a holographic ion-etching technique. The gratings are spherical (4000-mm radius of curvature), large (160 mm x 90 mm), and have a laminar groove profile of high density (3600 grooves/mm). They have been coated with a high-reflectance multilayer of Mo/Si. Using an atomic force microscope, we examined the surface characteristics of the first grating before and after multilayer coating. The average roughness is approximately 3 A rms after coating. Using synchrotron radiation, we completed an efficiency calibration map over the wavelength range 225-245 A. At an angle of incidence of 5 degrees and a wavelength of 234 A, the average efficiency in the first inside order is 10.4 +/- 0.5%, and the derived groove efficiency is 34.8 +/- 1.6%. These values exceed all previously published results for a high-density grating.
Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass.
Emmer, Hal; Chen, Christopher T; Saive, Rebecca; Friedrich, Dennis; Horie, Yu; Arbabi, Amir; Faraon, Andrei; Atwater, Harry A
2017-07-05
Due to its high refractive index and low absorption coefficient, gallium phosphide is an ideal material for photonic structures targeted at the visible wavelengths. However, these properties are only realized with high quality epitaxial growth, which limits substrate choice and thus possible photonic applications. In this work, we report the fabrication of single crystal gallium phosphide thin films on transparent glass substrates via transfer bonding. GaP thin films on Si (001) and (112) grown by MOCVD are bonded to glass, and then the growth substrate is removed with a XeF 2 vapor etch. The resulting GaP films have surface roughnesses below 1 nm RMS and exhibit room temperature band edge photoluminescence. Magnesium doping yielded p-type films with a carrier density of 1.6 × 10 17 cm -3 that exhibited mobilities as high as 16 cm 2 V -1 s -1 . Due to their unique optical properties, these films hold much promise for use in advanced optical devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohen, David, E-mail: david.kohen@asm.com; Nguyen, Xuan Sang; Made, Riko I
We report on the growth of an In{sub 0.30}Ga{sub 0.70}As channel high-electron mobility transistor (HEMT) on a 200 mm silicon wafer by metal organic vapor phase epitaxy. By using a 3 μm thick buffer comprising a Ge layer, a GaAs layer and an InAlAs compositionally graded strain relaxing buffer, we achieve threading dislocation density of (1.0 ± 0.3) × 10{sup 7} cm{sup −2} with a surface roughness of 10 nm RMS. No phase separation was observed during the InAlAs compositionally graded buffer layer growth. 1.4 μm long channel length transistors are fabricated from the wafer with I{sub DS} of 70more » μA/μm and g{sub m} of above 60 μS/μm, demonstrating the high quality of the grown materials.« less
Sahraei, Nasim; Forberich, Karen; Venkataraj, Selvaraj; Aberle, Armin G; Peters, Marius
2014-01-13
Light scattering at randomly textured interfaces is essential to improve the absorption of thin-film silicon solar cells. Aluminium-induced texture (AIT) glass provides suitable scattering for amorphous silicon (a-Si:H) solar cells. The scattering properties of textured surfaces are usually characterised by two properties: the angularly resolved intensity distribution and the haze. However, we find that the commonly used haze equations cannot accurately describe the experimentally observed spectral dependence of the haze of AIT glass. This is particularly the case for surface morphologies with a large rms roughness and small lateral feature sizes. In this paper we present an improved method for haze calculation, based on the power spectral density (PSD) function of the randomly textured surface. To better reproduce the measured haze characteristics, we suggest two improvements: i) inclusion of the average lateral feature size of the textured surface into the haze calculation, and ii) considering the opening angle of the haze measurement. We show that with these two improvements an accurate prediction of the haze of AIT glass is possible. Furthermore, we use the new equation to define optimum morphology parameters for AIT glass to be used for a-Si:H solar cell applications. The autocorrelation length is identified as the critical parameter. For the investigated a-Si:H solar cells, the optimum autocorrelation length is shown to be 320 nm.
Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi 2Se 3 Single Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melamed, Celeste L.; Ortiz, Brenden R.; Gorai, Prashun
In this paper, we present an exfoliation method that produces cm 2-area atomically flat surfaces from bulk layered single crystals, with broad applications such as for the formation of lateral heterostructures and for use as substrates for van der Waals epitaxy. Single crystals of Bi 2Se 3 were grown using the Bridgman method and examined with X-ray reciprocal space maps, Auger spectroscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. An indium-bonding exfoliation technique was developed that produces multiple ~100 um thick atomically flat, macroscopic (>1 cm 2) slabs from each Bi 2Se 3 source crystal. Two-dimensional X-ray diffraction and reciprocalmore » space maps confirm the high crystalline quality of the exfoliated surfaces. Atomic force microscopy reveals that the exfoliated surfaces have an average root-mean-square (RMS) roughness of ~0.04 nm across 400 μm 2 scans and an average terrace width of 70 um between step edges. First-principles calculations reveal exfoliation energies of Bi 2Se 3 and a number of other layered compounds, which demonstrate relevance of our method across the field of 2D materials. While many potential applications exist, excellent lattice matching with the III-V alloy space suggests immediate potential for the use of these exfoliated layered materials as epitaxial substrates for photovoltaic development.« less
Plasma surface figuring of large optical components
NASA Astrophysics Data System (ADS)
Jourdain, R.; Castelli, M.; Morantz, P.; Shore, P.
2012-04-01
Fast figuring of large optical components is well known as a highly challenging manufacturing issue. Different manufacturing technologies including: magnetorheological finishing, loose abrasive polishing, ion beam figuring are presently employed. Yet, these technologies are slow and lead to expensive optics. This explains why plasma-based processes operating at atmospheric pressure have been researched as a cost effective means for figure correction of metre scale optical surfaces. In this paper, fast figure correction of a large optical surface is reported using the Reactive Atom Plasma (RAP) process. Achievements are shown following the scaling-up of the RAP figuring process to a 400 mm diameter area of a substrate made of Corning ULE®. The pre-processing spherical surface is characterized by a 3 metres radius of curvature, 2.3 μm PVr (373nm RMS), and 1.2 nm Sq nanometre roughness. The nanometre scale correction figuring system used for this research work is named the HELIOS 1200, and it is equipped with a unique plasma torch which is driven by a dedicated tool path algorithm. Topography map measurements were carried out using a vertical work station instrumented by a Zygo DynaFiz interferometer. Figuring results, together with the processing times, convergence levels and number of iterations, are reported. The results illustrate the significant potential and advantage of plasma processing for figuring correction of large silicon based optical components.
Large Area Atomically Flat Surfaces via Exfoliation of Bulk Bi 2Se 3 Single Crystals
Melamed, Celeste L.; Ortiz, Brenden R.; Gorai, Prashun; ...
2017-09-12
In this paper, we present an exfoliation method that produces cm 2-area atomically flat surfaces from bulk layered single crystals, with broad applications such as for the formation of lateral heterostructures and for use as substrates for van der Waals epitaxy. Single crystals of Bi 2Se 3 were grown using the Bridgman method and examined with X-ray reciprocal space maps, Auger spectroscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. An indium-bonding exfoliation technique was developed that produces multiple ~100 um thick atomically flat, macroscopic (>1 cm 2) slabs from each Bi 2Se 3 source crystal. Two-dimensional X-ray diffraction and reciprocalmore » space maps confirm the high crystalline quality of the exfoliated surfaces. Atomic force microscopy reveals that the exfoliated surfaces have an average root-mean-square (RMS) roughness of ~0.04 nm across 400 μm 2 scans and an average terrace width of 70 um between step edges. First-principles calculations reveal exfoliation energies of Bi 2Se 3 and a number of other layered compounds, which demonstrate relevance of our method across the field of 2D materials. While many potential applications exist, excellent lattice matching with the III-V alloy space suggests immediate potential for the use of these exfoliated layered materials as epitaxial substrates for photovoltaic development.« less
NASA Astrophysics Data System (ADS)
Wiktorczyk, Tadeusz; Biegański, Piotr; Serafińczuk, Jarosław
2016-09-01
Yttrium oxide thin films of a thickness 221-341 nm were formed onto quartz substrates by reactive physical vapor deposition in an oxygen atmosphere. An electron beam gun was applied as a deposition source. The effect of substrate temperature during film deposition (in the range of 323-673 K) on film structure, surface morphology and optical properties was investigated. The surface morphology studies (with atomic force microscopy and diffuse spectra reflectivity) show that the film surface was relatively smooth with RMS surface roughness in the range of 1.7-3.8 nm. XRD analysis has revealed that all diffraction lines belong to a cubic Y2O3 structure. The films consisted of small nanocrystals. Their average grain size increases from 1.6 nm to 22 nm, with substrate temperature rising from 323 K to 673 K. Optical examinations of transmittance and reflectance were performed in the spectral range of 0.2-2.5 μm. Optical constants and their dispersion curves were determined. Values of the refractive index of the films were in the range of n = 1.79-1.90 (at 0.55 μm) for substrate temperature during film deposition of 323-673 K. The changes in the refractive index upon substrate temperature correspond very well with the increase in the nanocrystals grain diameter and with film porosity.
The VHCF experimental investigation of FV520B-I with surface roughness Ry
NASA Astrophysics Data System (ADS)
Wang, J. L.; Zhang, Y. L.; Ding, M. C.; Zhao, Q. C.
2018-05-01
Different surface roughness type (Ra and Ry) has different effect on the VHCF failure and life. Ra is widely employed as the quantitative expression of the surface roughness, but there are few fatigue failure mechanism analysis and experimental study under surface roughness Ry. The VHCF experiment is conducted out using the specimen with different surface roughness values. The surface roughness Ry is employed as the major research object to investigate the relationship and distribution tendency between the Ry, fatigue life and the distance between internal inclusion and surface, and a new VHCF failure character is proposed.
Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M.
We employ a pairwise force Smoothed Particle Hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows for modeling of free surface flow without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on rough surfaces in a shape of a sinusoidal functionmore » and made of rectangular bars placed on top of a flat surface. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. Next, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the classical lotus effect. We demonstrate that linear scaling relationships between Bond and capillary number for droplet flow on flat surfaces also hold for flow on rough surfaces.« less
NASA Astrophysics Data System (ADS)
O'Shea, Thomas T.; Beale, Kristy L. C.; Brucker, Kyle A.; Wyatt, Donald C.; Drazen, David; Fullerton, Anne M.; Fu, Tom C.; Dommermuth, Douglas G.
2010-11-01
Numerical Flow Analysis (NFA) predictions of the flow around a transom-stern hull form are compared to laboratory measurements collected at NSWCCD. The simulations are two-phase, three-dimensional, and unsteady. Each required 1.15 billion grid cells and 200,000 CPU hours to accurately resolve the unsteady flow and obtain a sufficient statistical ensemble size. Two speeds, 7 and 8 knots, are compared. The 7 knots (Fr=Uo /√gLo=0.38) case is a partially wetted transom condition and the 8 knots (Fr=0.43) case is a dry transom condition. The results of a detailed comparison of the mean free surface elevation, surface roughness (RMS), and spectra of the breaking stern-waves, measured by Light Detection And Ranging (LiDAR) and Quantitative Visualization (QViz) sensors, are presented. All of the comparisons showed excellent agreement. The concept of height-function processing is introduced, and the application of this type of processing to the simulation data shows a k-5/3 power law behavior for both the 7 and 8 knot cases. The simulations also showed that a multiphase shear layer forms in the rooster-tail region and that its thickness depends on the Froude number.
Substrate temperature dependence of ZnTe epilayers grown on GaAs(0 0 1) by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Zhao, Jie; Zeng, Yiping; Liu, Chao; Li, Yanbo
2010-04-01
ZnTe thin films have been grown on GaAs(0 0 1) substrates at different temperatures with constant Zn and Te beam equivalent pressures (BEPs) by molecular beam epitaxy (MBE). In situ reflection high-energy electron diffraction (RHEED) observation indicates that two-dimensional (2D) growth mode can be established after around one-minute three-dimensional (3D) nucleation by increasing the substrate temperature to 340 °C. We found that Zn desorption from the ZnTe surface is much greater than that of Te at higher temperatures, and estimated the Zn sticking coefficient by the evolution of growth rate. The Zn sticking coefficient decreases from 0.93 to 0.58 as the temperature is elevated from 320 to 400 °C. The ZnTe epilayer grown at 360 °C displays the narrowest full-width at half-maximum (FWHM) of 660 arcsec from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) measurements. The surface morphology of ZnTe epilayers is strongly dependent on the substrate temperature, and the root-mean-square (RMS) roughness diminishes drastically with the increase in temperature.
Effect of Liquid Surface Turbulent Motion on the Vapor Condensation in a Mixing Tank
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.
1991-01-01
The effect of liquid surface motion on the vapor condensation in a tank mixed by an axial turbulent jet is numerically investigated. The average value (over the interface area) of the root-mean-squared (rms) turbulent velocity at the interface is shown to be linearly increasing with decreasing liquid height and increasing jet diameter for a given tank size. The average rms turbulent velocity is incorporated in Brown et al. (1990) condensation correlation to predict the condensation of vapor on a liquid surface. The results are in good agreement with available condensation data.
Role of rough surface topography on gas slip flow in microchannels.
Zhang, Chengbin; Chen, Yongping; Deng, Zilong; Shi, Mingheng
2012-07-01
We conduct a lattice Boltzmann simulation of gas slip flow in microchannels incorporating rough surface effects as characterized by fractal geometry with a focus on gas-solid interaction. The gas slip flow in rough microchannels, which is characterized by Poiseuille number and mass flow rate, is evaluated and compared with smooth microchannels. The effects of roughness height, surface fractal dimension, and Knudsen number on slip behavior of gas flow in microchannels are all investigated and discussed. The results indicate that the presence of surface roughness reduces boundary slip for gas flow in microchannels with respect to a smooth surface. The gas flows at the valleys of rough walls are no-slip while velocity slips are observed over the top of rough walls. We find that the gas flow behavior in rough microchannels is insensitive to the surface topography irregularity (unlike the liquid flow in rough microchannels) but is influenced by the statistical height of rough surface and rarefaction effects. In particular, decrease in roughness height or increase in Knudsen number can lead to large wall slip for gas flow in microchannels.
NASA Astrophysics Data System (ADS)
Ye, Hong; Trippel, Sebastian; Di Fraia, Michele; Fallahi, Arya; Mücke, Oliver D.; Kärtner, Franz X.; Küpper, Jochen
2018-04-01
A velocity-map-imaging spectrometer is demonstrated to characterize the normalized emittance (root-mean-square, rms) of photoemitted electron bunches. Both the two-dimensional spatial distribution and the projected velocity distribution images of photoemitted electrons are recorded by the detection system and analyzed to obtain the normalized emittance (rms). With the presented distribution function of the electron photoemission angles, a mathematical method is implemented to reconstruct the three-dimensional velocity distribution. As a first example, multiphoton emission from a planar Au surface is studied via irradiation at a glancing angle by intense 45-fs laser pulses at a central wavelength of 800 nm. The reconstructed energy distribution agrees very well with the Berglund-Spicer theory of photoemission. The normalized emittance (rms) of the intrinsic electron bunch is characterized to be 128 and 14 nm rad in the X and Y directions, respectively. The demonstrated imaging spectrometer has the ability to characterize the normalized emittance (rms) in a few minutes with a fine energy resolution of 0.2 meV in the image center and will, thereby, foster the further development of x-ray free-electron-laser injectors and ultrafast electron diffraction, and it opens up opportunities for studying correlated electron emission from surfaces and vacuum nanoelectronic devices.
Surface roughness measurement in the submicrometer range using laser scattering
NASA Astrophysics Data System (ADS)
Wang, S. H.; Quan, Chenggen; Tay, C. J.; Shang, H. M.
2000-06-01
A technique for measuring surface roughness in the submicrometer range is developed. The principle of the method is based on laser scattering from a rough surface. A telecentric optical setup that uses a laser diode as a light source is used to record the light field scattered from the surface of a rough object. The light intensity distribution of the scattered band, which is correlated to the surface roughness, is recorded by a linear photodiode array and analyzed using a single-chip microcomputer. Several sets of test surfaces prepared by different machining processes are measured and a method for the evaluation of surface roughness is proposed.
Understanding EUV mask blank surface roughness induced LWR and associated roughness requirement
NASA Astrophysics Data System (ADS)
Yan, Pei-Yang; Zhang, Guojing; Gullikson, Eric M.; Goldberg, Ken A.; Benk, Markus P.
2015-03-01
Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL mask blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.
Research of Surface Roughness Anisotropy
NASA Astrophysics Data System (ADS)
Bulaha, N.; Rudzitis, J.; Lungevics, J.; Linins, O.; Krizbergs, J.
2017-04-01
The authors of the paper have investigated surfaces with irregular roughness for the purpose of determination of roughness spacing parameters perpendicularly to machining traces - RSm1 and parallel to them - RSm2, as well as checking the relationship between the surface anisotropy coefficient c and surface aspect ratio Str from the standard LVS EN ISO 25178-2. Surface roughness measurement experiments with 11 surfaces show that measuring equipment values of mean spacing of profile irregularities in the longitudinal direction are not reliable due to the divergence of surface mean plane and roughness profile mean line. After the additional calculations it was stated that parameter Str can be used for determination of parameter RSm2 and roughness anisotropy evaluation for grinded, polished, friction surfaces and other surfaces with similar characteristics.
Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M
2017-09-01
We employ a pairwise force smoothed particle hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling of free-surface flows without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on different types of rough surfaces. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. We study the dependence of the transition between Cassie and Wenzel states on roughness and droplet size, which can be linked to the critical pressure for the given fluid-substrate combination. We observe good agreement between simulations and theoretical predictions. Finally, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the lotus effect. We demonstrate that classical linear scaling relationships between Bond and capillary numbers for droplet flow on flat surfaces also hold for flow on rough surfaces.
Near-Surface Effects of Free Atmosphere Stratification in Free Convection
NASA Astrophysics Data System (ADS)
Mellado, Juan Pedro; van Heerwaarden, Chiel C.; Garcia, Jade Rachele
2016-04-01
The effect of a linear stratification in the free atmosphere on near-surface properties in a free convective boundary layer (CBL) is investigated by means of direct numerical simulation. We consider two regimes: a neutral stratification regime, which represents a CBL that grows into a residual layer, and a strong stratification regime, which represents the equilibrium (quasi-steady) entrainment regime. We find that the mean buoyancy varies as z^{-1/3}, in agreement with classical similarity theory. However, the root-mean-square (r.m.s.) of the buoyancy fluctuation and the r.m.s. of the vertical velocity vary as z^{-0.45} and ln z, respectively, both in disagreement with theory. These scaling laws are independent of the stratification regime, but the depth over which they are valid depends on the stratification. In the strong stratification regime, this depth is about 20 to 25 % of the CBL depth instead of the commonly used 10 %, which we only observe under neutral conditions. In both regimes, the near-surface flow structure can be interpreted as a hierarchy of circulations attached to the surface. Based on this structure, we define a new near-surface layer in free convection, the plume-merging layer, that is conceptually different from the constant-flux layer. The varying depth of the plume-merging layer depending on the stratification accounts for the varying depth of validity of the scaling laws. These findings imply that the buoyancy transfer law needed in mixed-layer and single-column models is well described by the classical similarity theory, independent of the stratification in the free atmosphere, even though other near-surface properties, such as the r.m.s. of the buoyancy fluctuation and the r.m.s. of the vertical velocity, are inconsistent with that theory.
Fabrication of Transparent CNT Films for OLED Application
2010-02-04
and a HTL, respectively, and the Alq3 layer adjacent to a composite cathode of LiF/Al was a green-emitting EML . Figure 14 shows that the RMS roughness... EML . Internationale de l’Eclairage chromaticity coordinates CIEx,y of the spectra is (0.32, 0.52) that is very similar (or identical) to the color...coordinates of conventional Alq3 OLEDs. Figure 15: Photographs of the OLED with a SWCNT anode and an Alq3 EML in operation and the corresponding
Non-linear boundary-layer receptivity due to distributed surface roughness
NASA Technical Reports Server (NTRS)
Amer, Tahani Reffet
1995-01-01
The process by which a laminar boundary layer internalizes the external disturbances in the form of instability waves is known as boundary-layer receptivity. The objective of the present research was to determine the effect of acoustic excitation on boundary-layer receptivity for a flat plate with distributed variable-amplitude surface roughness through measurements with a hot-wire probe. Tollmien-Schlichting mode shapes due to surface roughness receptivity have also been determined, analyzed, and shown to be in agreement with theory and other experimental work. It has been shown that there is a linear relationship between the surface roughness and receptivity for certain roughness configurations with constant roughness wavelength. In addition, strong non-linear receptivity effects exist for certain surface roughness configurations over a band where the surface roughness and T-S wavelength are matched. The results from the present experiment follow the trends predicted by theory and other experimental work for linear receptivity. In addition, the results show the existence of non-linear receptivity effects for certain combinations of surface roughness elements.
Role of urban surface roughness in road-deposited sediment build-up and wash-off
NASA Astrophysics Data System (ADS)
Zhao, Hongtao; Jiang, Qian; Xie, Wenxia; Li, Xuyong; Yin, Chengqing
2018-05-01
Urban road surface roughness is one of the most important factors in estimation of surface runoff loads caused by road-deposited sediment (RDS) wash-off and design of its control measures. However, because of a lack of experimental data to distinguish the role of surface roughness, the effects of surface roughness on RDS accumulation and release are not clear. In this study, paired asphalt and concrete road surfaces and rainfall simulation designs were used to distinguish the role of surface roughness in RDS build-up and wash-off. Our results showed that typical asphalt surfaces often have higher depression depths than typical concrete surfaces, indicating that asphalt surfaces are relatively rougher than concrete surface. Asphalt surfaces can retain a larger RDS amount, relative higher percentage of coarser particles, larger RDS wash-off loads, and lower wash-off percentage, than concrete surfaces. Surface roughness has different effects in RDS motilities with different particle sizes during rainfall runoff, and the settleable particles (44-149 μm) were notably influenced by it. Furthermore, the first flush phenomenon tended to be greater on relatively smooth surfaces than relatively rough surfaces. Overall, surface roughness plays an important role in influencing the complete process of RDS build-up and wash-off on different road characteristics.
Surface pressure fluctuations in hypersonic turbulent boundary layers
NASA Technical Reports Server (NTRS)
Raman, K. R.
1974-01-01
The surface pressure fluctuations on a flat plate model at hypersonic Mach numbers of 5.2, 7.4 and 10.4 with an attached turbulent boundary layer were measured using flush mounted small piezoelectric sensors. A high frequency resolution of the pressure field was achieved using specially designed small piezoelectric sensors that had a good frequency response well above 300 KHz. The RMS pressures and non-dimensional energy spectra for all above Mach numbers are presented. The convective velocities, obtained from space time correlation considerations are equal to 0.7 U sub infinity. The results indicate the RMS pressures vary from 5 to 25 percent of the mean static pressures. The ratios of RMS pressure to dynamic pressure are less than the universally accepted subsonic value of 6 x 10/3. The ratio decreases in value as the Mach number or the dynamic pressure is increased. The ratio of RMS pressure to wall shear for Mach number 7.4 satisfies one smaller than or equal to p/tau sub w smaller than or equal to three.
Soft x-ray speckle from rough surfaces
NASA Astrophysics Data System (ADS)
Porter, Matthew Stanton
Dynamic light scattering has been of great use in determining diffusion times for polymer solutions. At the same time, polymer thin films are becoming of increasing importance, especially in the semiconductor industry where they are used as photoresists and interlevel dielectrics. As the dimensions of these devices decrease we will reach a point where lasers will no longer be able to probe the length scales of interest. Current laser wavelengths limit the size of observable diffusion lengths to 180-700 nm. This dissertation will discuss attempts at pushing dynamic fight scattering experiments into the soft x-ray region so that we can examine fluctuations in polymer thin films on the molecular length scale. The dissertation explores the possibility of carrying out a dynamic light scattering experiment in the soft x-ray regime. A detailed account of how to meet the basic requirements for a coherent scattering experiment in the soft x-ray regime win be given. In addition, a complete description of the chamber design will be discussed. We used our custom designed scattering chamber to collect reproducible coherent soft x-ray scattering data from etched silicon wafers and from polystyrene coated silicon wafers. The data from the silicon wafers followed the statistics for a well-developed speckle pattern while the data from the polystyrene films exhibited Poisson statistics. We used the data from both the etched wafers and the polystyrene coated wafers to place a lower limit of ~20 Å on the RMS surface roughness of samples which will produce well defined speckle patterns for the current detector setup. Future experiments which use the criteria set forth in this dissertation have the opportunity to be even more successful than this dissertation project.
Poly-Gaussian model of randomly rough surface in rarefied gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksenova, Olga A.; Khalidov, Iskander A.
2014-12-09
Surface roughness is simulated by the model of non-Gaussian random process. Our results for the scattering of rarefied gas atoms from a rough surface using modified approach to the DSMC calculation of rarefied gas flow near a rough surface are developed and generalized applying the poly-Gaussian model representing probability density as the mixture of Gaussian densities. The transformation of the scattering function due to the roughness is characterized by the roughness operator. Simulating rough surface of the walls by the poly-Gaussian random field expressed as integrated Wiener process, we derive a representation of the roughness operator that can be appliedmore » in numerical DSMC methods as well as in analytical investigations.« less
Analogies to Demonstrate the Effect of Roughness on Surface Wettability
ERIC Educational Resources Information Center
Yolcu, Hasan
2017-01-01
This article presents an analogy to illustrate the effect of surface roughness on surface wettability. I used a water-filled balloon to represent water droplet, a toothpick to represent surface roughness and Styrofoam as the surface. The analogies presented in this article will help visualize how roughness affects the wettability of the surface…
Ryu, J J; Letchuman, S; Shrotriya, P
2012-10-01
Surface damage of metallic implant surface at taper lock and clamped interfaces may take place through synergistic interactions between repeated contact loading and corrosion. In the present research, we investigated the influence of surface roughness and contact loading on the mechanical and chemical damage phenomena. Cobalt-chromium (CoCrMo) specimens with two different roughness configurations created by milling and grinding process were subjected to normal and inclined contact loading. During repeated contact loading, amplitude of surface roughness reached a steady value after decreasing during the first few cycles. During the second phase, the alternating experiment of rough surface contact and micro-etching was conducted to characterize surface evolution behavior. As a result, surface roughness amplitude continuously evolved-decreasing during contact loading due to plastic deformation of contacting asperities and increasing on exposure to corrosive environment by the preferential corrosion attack on stressed area. Two different instabilities could be identified in the surface roughness evolution during etching of contact loaded surfaces: increase in the amplitude of dominant wavenumber and increase in amplitude of a small group of roughness modes. A damage mechanism that incorporates contact-induced residual stress development and stress-assisted dissolution is proposed to elucidate the measured instabilities in surface roughness evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.
EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice
NASA Astrophysics Data System (ADS)
Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.
2016-12-01
The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.
Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data
NASA Astrophysics Data System (ADS)
Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.
2016-08-01
Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.
Numerical analysis of the bucket surface roughness effects in Pelton turbine
NASA Astrophysics Data System (ADS)
Xiao, Y. X.; Zeng, C. J.; Zhang, J.; Yan, Z. G.; Wang, Z. W.
2013-12-01
The internal flow of a Pelton turbine is quite complex. It is difficult to analyse the unsteady free water sheet flow in the rotating bucket owing to the lack of a sound theory. Affected by manufacturing technique and silt abrasion during the operation, the bucket surface roughness of Pelton turbine may be too great, and thereby influence unit performance. To investigate the effect of bucket roughness on Pelton turbine performance, this paper presents the numerical simulation of the interaction between the jet and the bucket in a Pelton turbine. The unsteady three-dimensional numerical simulations were performed with CFX code by using the SST turbulence model coupling the two-phase flow volume of fluid method. Different magnitude orders of bucket surface roughness were analysed and compared. Unsteady numerical results of the free water sheet flow patterns on bucket surface, torque and unit performance for each bucket surface roughness were generated. The total pressure distribution on bucket surface is used to show the free water sheet flow pattern on bucket surface. By comparing the variation of water sheet flow patterns on bucket surface with different roughness, this paper qualitatively analyses how the bucket surface roughness magnitude influences the impeding effect on free water sheet flow. Comparison of the torque variation of different bucket surface roughness highlighted the effect of the bucket surface roughness on the Pelton turbine output capacity. To further investigate the effect of bucket surface roughness on Pelton turbine performance, the relation between the relative efficiency loss rate and bucket surface roughness magnitude is quantitatively analysed. The result can be used to predict and evaluate the Pelton turbine performance.
Wetting properties of molecularly rough surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svoboda, Martin; Lísal, Martin, E-mail: lisal@icpf.cas.cz; Department of Physics, Institute of Science, J. E. Purkinje University, 400 96 Ústí n. Lab.
2015-09-14
We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties bymore » measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.« less
Kundu, Niloy; Roy, Arpita; Banik, Debasis; Sarkar, Nilmoni
2016-02-18
In this Article, we demonstrate a detailed characterization of binding interaction of berberine chloride (BBCl) with calf-thymus DNA (CT-DNA) in buffer solution as well as in two differently charged reverse micelles (RMs). The photophyscial properties of this alkaloid have been modulated within these microheterogeneous bioassemblies. The mode of binding of this alkaloid with DNA is of debate to date. However, fluorescence spectroscopic measurements, circular dichroism (CD) measurement, and temperature-dependent study unambiguously establish that BBCl partially intercalates into the DNA base pairs. The nonplanarity imposed by partial saturation in their structure causes the nonclassical types of intercalation into DNA. Besides the intercalation, electrostatic interactions also play a significant role in the binding between BBCl and DNA. DNA structure turns into a condensed form after encapsulation into RMs, which is followed by the CD spectra and microscopy study. The probe location and dynamics in the nanopool of the RMs depended on the electrostatic interaction between the charged surfactants and cationic berberine. The structural alteration of CT-DNA from B form to condensed form and the interplay of surface charge between RMs and DNA determine the interaction between the alkaloid and DNA in RMs. Time-resolved study and fluorescence anisotropy measurements successfully provide the binding interaction of BBCl in the nanopool of the RMs in the absence and in the presence of DNA. This study motivates us to judge further the potential applicability of this alkaloid in other biological systems or other biomimicking organized assemblies.
NASA Astrophysics Data System (ADS)
Kamali, Reza; Soloklou, Mohsen Nasiri; Hadidi, Hooman
2018-05-01
In this study, coupled Lattice Boltzmann method is applied to solve the dynamic model for an electroosmotic flow and investigate the effects of roughness in a 2-D flat microchannel. In the present model, the Poisson equation is solved for the electrical potential, the Nernst- Planck equation is solved for the ion concentration. In the analysis of electroosmotic flows, when the electric double layers fully overlap or the convective effects are not negligible, the Nernst-Planck equation must be used to find the ionic distribution throughout the microchannel. The effects of surface roughness height, roughness interval spacing and roughness surface potential on flow conditions are investigated for two different configurations of the roughness, when the EDL layers fully overlap through the microchannel. The results show that in both arrangements of roughness in homogeneously charged rough channels, the flow rate decreases by increasing the roughness height. A discrepancy in the mass flow rate is observed when the roughness height is about 0.15 of the channel width, which its average is higher for the asymmetric configuration and this difference grows by increasing the roughness height. In the symmetric roughness arrangement, the mass flow rate increases until the roughness interval space is almost 1.5 times the roughness width and it decreases for higher values of the roughness interval space. For the heterogeneously charged rough channel, when the roughness surface potential ψr is less than channel surface potential ψs , the net charge density increases by getting far from the roughness surface, while in the opposite situation, when ψs is more than ψr , the net charge density decreases from roughness surface to the microchannel middle center. Increasing the roughness surface potential induces stronger electric driving force on the fluid which results in larger velocities in the flow.
NASA Astrophysics Data System (ADS)
Basirin, Hammadi bin Mohd; Nawi, Ismail bin Haji Mohd
2017-04-01
This research is an approach to improve the surface roughness for acrylic door panel by using polishing process. The polishing process involve is sanding process by 3 types of sand paper. The sanding process used to improve the surface roughness by using the different grit sizes of sand paper. The experiment was done by using two types of material s, that is plywood and medium density board (MDF). These two materials are the main materials in producing the arcrylic door panel. The surface roughness of these two materials affects the qualities and quantities of the acrylic door panel. The surface structure was measured by using Optical Microscope and Scanning Electron Microscope (SEM) and the surface roughness was measured by using Mitutoyo surfest SJ 400 Tester. Results indicates that using the different types of grit are influence the surface roughness of the material. When the higher types of grit sizes had been used, the average roughness of the surface are decrease. In summary, a good surface roughness condition produced when using the higher types of grit sizes sand paper.
Clouds Versus Carbon: Predicting Vegetation Roughness by Maximizing Productivity
NASA Technical Reports Server (NTRS)
Olsen, Lola M.
2004-01-01
Surface roughness is one of the dominant vegetation properties that affects land surface exchange of energy, water, carbon, and momentum with the overlying atmosphere. We hypothesize that the canopy structure of terrestrial vegetation adapts optimally to climate by maximizing productivity, leading to an optimum surface roughness. An optimum should exist because increasing values of surface roughness cause increased surface exchange, leading to increased supply of carbon dioxide for photosynthesis. At the same time, increased roughness enhances evapotranspiration and cloud cover, thereby reducing the supply of photosynthetically active radiation. We demonstrate the optimum through sensitivity simulations using a coupled dynamic vegetation-climate model for present day conditions, in which we vary the value of surface roughness for vegetated surfaces. We find that the maximum in productivity occurs at a roughness length of 2 meters, a value commonly used to describe the roughness of today's forested surfaces. The sensitivity simulations also illustrate the strong climatic impacts of vegetation roughness on the energy and water balances over land: with increasing vegetation roughness, solar radiation is reduced by up to 20 W/sq m in the global land mean, causing shifts in the energy partitioning and leading to general cooling of the surface by 1.5 K. We conclude that the roughness of vegetated surfaces can be understood as a reflection of optimum adaptation, and it is associated with substantial changes in the surface energy and water balances over land. The role of the cloud feedback in shaping the optimum underlines the importance of an integrated perspective that views vegetation and its adaptive nature as an integrated component of the Earth system.
Wave-particle interaction in the Faraday waves.
Francois, N; Xia, H; Punzmann, H; Shats, M
2015-10-01
Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.
Effect of engraving speeds of CO₂ laser irradiation on In-Ceram Alumina roughness: a pilot study.
Ersu, Bahadır; Ersoy, Orkun; Yuzugullu, Bulem; Canay, Senay
2015-05-01
The aim of the study was to determine the effect of CO₂ laser on surface roughness of In-Ceram-Alumina-ceramic. Four aluminum-oxide ceramic disc specimens were prepared of In-Ceram Alumina. Discs received CO₂ laser irradiation with different engraving speeds (100, 400, 600 and 800 mm/min) as a surface treatment. The roughness of the surfaces was measured on digital elevation models reconstructed from stereoscopic images acquired by scanning-electron-microscope. Surface roughness data were analyzed with One-Way-Analysis-of-Variance at a significance level of p<0.05. There was no significant difference between the roughness values (p=0.82). Due to higher laser durations, partial melting signs were observed on the surfaces. Tearing, smearing and swelling occurred on melted surfaces. Swelling accompanying melting increased the surface roughness, while laser power was fixed and different laser engraving speeds were applied. Although different laser irradiation speeds did not affect the roughness of ceramic surfaces, swelling was observed which led to changes on surfaces.
NASA Astrophysics Data System (ADS)
Schröder, Sven; Gliech, Stefan; Duparré, Angela
2005-10-01
An instrumentation for total and angle-resolved scattering (ARS) at 193 and 157 nm has been developed at the Fraunhofer Institute in Jena to meet the severe requirements for scattering analysis of deep- and vacuum-ultraviolet optical components. Extremely low backscattering levels of 10^-6 for the total scattering measurements and more than 9 orders of magnitude dynamic range for ARS have been accomplished. Examples of application extend from the control of at-wavelength scattering losses of superpolished substrates with rms roughness as small as 0.1 nm to the detection of volume material scattering and the study into the scattering of multilayer coatings. In addition, software programs were developed to model the roughness-induced light scattering of substrates and thin-film coatings.
Rock discontinuity surface roughness variation with scale
NASA Astrophysics Data System (ADS)
Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh
2017-04-01
ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We hypothesize that roughness can increase or decrease with the joint size, depending on the large scale roughness (or waviness), which is entering the roughness calculation once the discontinuity size increases. Therefore, our objective is to characterize roughness at various spatial scales, rather than at changing surface size. Firstly, the rock surface is interpolated into a grid on which a Discrete Wavelet Transform (DWT) is applied. The resulting surface components have different frequencies, or in other words, they have a certain physical scale depending on the decomposition level and input grid resolution. Secondly, the Grasselli Parameter is computed for the original and each decomposed surface. Finally, the relative roughness change is analyzed with respect to increasing roughness wavelength for four different rock samples. The scale variation depends on the sample itself and thus indicates its potential mechanical behavior. References: - Barton, N. and V. Choubey (1977). "The shear strength of rock joints in theory and practice." Rock Mechanics and Rock Engineering 10(1): 1-54. - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Tatone, B. S. A. and G. Grasselli (2009). "A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials." Review of Scientific Instruments 80(12) - Tatone, B. and G. Grasselli (2012). "An Investigation of Discontinuity Roughness Scale Dependency Using High-Resolution Surface Measurements." Rock Mechanics and Rock Engineering: 1-25.
Determining Surface Roughness in Urban Areas Using Lidar Data
NASA Technical Reports Server (NTRS)
Holland, Donald
2009-01-01
An automated procedure has been developed to derive relevant factors, which can increase the ability to produce objective, repeatable methods for determining aerodynamic surface roughness. Aerodynamic surface roughness is used for many applications, like atmospheric dispersive models and wind-damage models. For this technique, existing lidar data was used that was originally collected for terrain analysis, and demonstrated that surface roughness values can be automatically derived, and then subsequently utilized in disaster-management and homeland security models. The developed lidar-processing algorithm effectively distinguishes buildings from trees and characterizes their size, density, orientation, and spacing (see figure); all of these variables are parameters that are required to calculate the estimated surface roughness for a specified area. By using this algorithm, aerodynamic surface roughness values in urban areas can then be extracted automatically. The user can also adjust the algorithm for local conditions and lidar characteristics, like summer/winter vegetation and dense/sparse lidar point spacing. Additionally, the user can also survey variations in surface roughness that occurs due to wind direction; for example, during a hurricane, when wind direction can change dramatically, this variable can be extremely significant. In its current state, the algorithm calculates an estimated surface roughness for a square kilometer area; techniques using the lidar data to calculate the surface roughness for a point, whereby only roughness elements that are upstream from the point of interest are used and the wind direction is a vital concern, are being investigated. This technological advancement will improve the reliability and accuracy of models that use and incorporate surface roughness.
Effect of surface roughness of trench sidewalls on electrical properties in 4H-SiC trench MOSFETs
NASA Astrophysics Data System (ADS)
Kutsuki, Katsuhiro; Murakami, Yuki; Watanabe, Yukihiko; Onishi, Toru; Yamamoto, Kensaku; Fujiwara, Hirokazu; Ito, Takahiro
2018-04-01
The effects of the surface roughness of trench sidewalls on electrical properties have been investigated in 4H-SiC trench MOSFETs. The surface roughness of trench sidewalls was well controlled and evaluated by atomic force microscopy. The effective channel mobility at each measurement temperature was analyzed on the basis of the mobility model including optical phonon scattering. The results revealed that surface roughness scattering had a small contribution to channel mobility, and at the arithmetic average roughness in the range of 0.4-1.4 nm, there was no correlation between the experimental surface roughness and the surface roughness scattering mobility. On the other hand, the characteristics of the gate leakage current and constant current stress time-dependent dielectric breakdown tests demonstrated that surface morphology had great impact on the long-term reliability of gate oxides.
A new fiber optic sensor for inner surface roughness measurement
NASA Astrophysics Data System (ADS)
Xu, Xiaomei; Liu, Shoubin; Hu, Hong
2009-11-01
In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.
Roughness Effects on Fretting Fatigue
NASA Astrophysics Data System (ADS)
Yue, Tongyan; Abdel Wahab, Magd
2017-05-01
Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.
Pain-evoked trunk muscle activity changes during fatigue and DOMS.
Larsen, L H; Hirata, R P; Graven-Nielsen, T
2017-05-01
Muscle pain may reorganize trunk muscle activity but interactions with exercise-related muscle fatigue and delayed onset muscle soreness (DOMS) is to be clarified. In 19 healthy participants, the trunk muscle activity during 20 multi-directional unpredictable surface perturbations were recorded after bilateral isotonic saline injections (control) and during unilateral and bilateral hypertonic saline-induced low back pain (LBP) in conditions of back muscle fatigue (Day-1) and DOMS (Day-2). Pain intensity and distribution were assessed by visual analogue scale (VAS) scores and pain drawings. The degree of fatigue and DOMS were assessed by Likert scale scores. Root-mean-square electromyographic (RMS-EMG) signals were recorded post-perturbation from six bilateral trunk muscles and the difference from baseline conditions (Delta-RMS-EMG) was extracted and averaged across abdominal and back muscles. In DOMS, peak VAS scores were higher during bilateral control and bilateral saline-induced pain than fatigue (p < 0.001) and during bilateral compared with unilateral pain (p < 0.001). The saline-induced pain areas were larger during DOMS than fatigue (p < 0.01). In response to surface perturbations during fatigue and DOMS, the back muscle Delta-RMS-EMG increased during bilateral compared with unilateral pain and control injections (p < 0.001) and decreased during unilateral pain compared with control injections (p < 0.04). In DOMS compared with fatigue, the post-perturbation Delta-RMS-EMG in back muscles was higher during bilateral pain and lower during unilateral pain (p < 0.001). The abdominal Delta-RMS-EMG was not significantly affected. Facilitated and attenuated back muscle responses to surface perturbations in bilateral and unilateral LBP, respectively, was more expressed during exercise-induced back muscle soreness compared with fatigue. Back muscle activity decreased during unilateral and increased during bilateral pain after unpredictable surface perturbations during muscle fatigue and DOMS. Accumulation effects of DOMS on pain intensity and spreading and trunk muscle activity after pain-induction. © 2017 European Pain Federation - EFIC®.
The Aquarius Level 2 Algorithm
NASA Astrophysics Data System (ADS)
Meissner, T.; Wentz, F. J.; Hilburn, K. A.; Lagerloef, G. S.; Le Vine, D. M.
2012-12-01
The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to an accuracy of 0.2 psu. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. This presentation discusses the current state of the Aquarius Level processing algorithm, which transforms radiometer counts ultimately into sea surface salinity (SSS). We focus on several topics that we have investigated since launch: 1. Updated Pointing A detailed check of the Aquarius pointing angles was performed, which consists in making adjustments of the two pointing angles, azimuth angle and off-nadir angle, for each horn. It has been found that the necessary adjustments for all 3 horns can be explained by a single offset for the antenna pointing if we introduce a constant offset in the roll angle by - 0.51 deg and the pitch angle by + 0.16 deg. 2. Antenna Patterns and Instrument Calibration In March 2012 JPL has produced a set of new antenna patterns using the GRASP software. Compared with the various pre-launch patterns those new patterns lead to an increase in the spillover coefficient by about 1%. We discuss its impact on several components of the Level 2 processing: the antenna pattern correction (APC), the correction for intrusion of galactic and solar radiation that is reflected from the ocean surface into the Aquarius field of view, and the correction of contamination from land surface radiation entering into the sidelobes. We show that the new antenna patterns result in a consistent calibration of all 3 Stokes parameters, which can be best demonstrated during spacecraft pitch maneuvers. 3. Cross Polarization Couplings of the 3rd Stokes Parameter Using the APC values for the cross polarization coupling of the 3rd Stokes parameter into the 1st and 2nd Stokes parameter lead to a spurious image of the 3rd Stokes parameter into the SSS and an unwanted bias of the SSS between the ascending and descending part of the swath. We show that in order to remove this effect it is necessary to fine tune the cross polarization coupling of the 3rd Stokes parameter. 4. Aquarius Wind Speed Retrievals and Impact on Surface Roughness Correction Backscatter measurements form the Aquarius scatterometer can be combined with radiometer observations to derive an Aquarius wind speed product. We show that if the weights for the various scatterometer and radiometer channels are chosen appropriately, this Aquarius wind speed matches the high performance of the WindSat and SSM/I retrieved wind speed. This results in an RMS accuracy of about 0.7 m/s when comparing with ground truth observations. This is a significant improvement over wind speeds from NCEP which are currently used in the Aquarius L2vel 2 processing and which have an RMS accuracy of about only 1.2 m/s. We discuss the impact of using this improved wind speed product on the Level 2 surface roughness correction and ultimately on the retrieved SSS.
Thermal conductivity of III-V semiconductor superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, S., E-mail: song.mei@wisc.edu; Knezevic, I., E-mail: irena.knezevic@wisc.edu
2015-11-07
This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivitiesmore » in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simple and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.« less
Towards predictive models for transitionally rough surfaces
NASA Astrophysics Data System (ADS)
Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo
2017-11-01
We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).
STS-39 SPAS-II/IBSS spacecraft is released by RMS above the Earth's surface
1991-05-06
STS039-17-017 (3 May 1990) --- This STS-39 35mm scene shows the Strategic Defense Initiative Organization (SDIO) Shuttle Pallet Satellite (SPAS-II) as it approaches the remote manipulator system (RMS) end effector following a period of free-flight and data collection. During the eight-day flight, SPAS collected data in both a free-flying mode and while attached to the RMS. A huge blanket of white clouds obscures identifiable points on Earth, nearly 300 statute miles away. The target grappling apparatus on SPAS is clearly seen near bottom center of frame.
Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.
Qiu, J; Ran, D F; Liu, Y B; Liu, L H
2016-07-10
Ellipsometry is a powerful method for measuring the optical constants of materials and is very sensitive to surface roughness. In previous ellipsometric measurement of optical constants of solid materials with rough surfaces, researchers frequently used effective medium approximation (EMA) with roughness already known to fit the complex refractive index of the material. However, the ignored correlation length, the other important parameter of rough surfaces, will definitely result in fitting errors. Hence it is necessary to consider the influence of surface roughness and correlation length on the ellipsometric parameters Δ (phase difference) and Ψ (azimuth) characterizing practical systems. In this paper, the influence of roughness of two-dimensional randomly microrough surfaces (relative roughness σ/λ ranges from 0.001 to 0.025) of silicon on ellipsometric parameters was simulated by the finite-difference time-domain method which was validated with experimental results. The effects of incident angle, relative roughness, and correlation length were numerically investigated for two-dimensional Gaussian distributed randomly microrough surfaces, respectively. The simulated results showed that compared with the smooth surface, only tiny changes of the ellipsometric parameter Δ could be observed for microrough silicon surface in the vicinity of the Brewster angle, but obviously changes of Ψ occur especially in the vicinity of the Brewster angle. More differences between the ellipsometric parameters of the rough surface and smooth surface can been seen especially in the vicinity of the Brewster angle as the relative roughness σ/λ increases or correlation length τ decreases. The results reveal that when we measure the optical constants of solid materials by ellipsometry, the smaller roughness, larger correlation length and larger incident wavelength will lead to the higher precision of measurements.
Ghaderi, Parviz; Marateb, Hamid R
2017-07-01
The aim of this study was to reconstruct low-quality High-density surface EMG (HDsEMG) signals, recorded with 2-D electrode arrays, using image inpainting and surface reconstruction methods. It is common that some fraction of the electrodes may provide low-quality signals. We used variety of image inpainting methods, based on partial differential equations (PDEs), and surface reconstruction methods to reconstruct the time-averaged or instantaneous muscle activity maps of those outlier channels. Two novel reconstruction algorithms were also proposed. HDsEMG signals were recorded from the biceps femoris and brachial biceps muscles during low-to-moderate-level isometric contractions, and some of the channels (5-25%) were randomly marked as outliers. The root-mean-square error (RMSE) between the original and reconstructed maps was then calculated. Overall, the proposed Poisson and wave PDE outperformed the other methods (average RMSE 8.7 μV rms ± 6.1 μV rms and 7.5 μV rms ± 5.9 μV rms ) for the time-averaged single-differential and monopolar map reconstruction, respectively. Biharmonic Spline, the discrete cosine transform, and the Poisson PDE outperformed the other methods for the instantaneous map reconstruction. The running time of the proposed Poisson and wave PDE methods, implemented using a Vectorization package, was 4.6 ± 5.7 ms and 0.6 ± 0.5 ms, respectively, for each signal epoch or time sample in each channel. The proposed reconstruction algorithms could be promising new tools for reconstructing muscle activity maps in real-time applications. Proper reconstruction methods could recover the information of low-quality recorded channels in HDsEMG signals.
Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces
Ahn, Hyun Hee; Lee, Il Woo; Lee, Hai Bang; Kim, Moon Suk
2014-01-01
Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs). We prepared wettable and rough gradient polyethylene (PE) surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90º to ~50º) and rough (80 to ~120 nm) surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness. PMID:24477265
Measuring Skew in Average Surface Roughness as a Function of Surface Preparation
NASA Technical Reports Server (NTRS)
Stahl, Mark
2015-01-01
Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.
2012-12-01
a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm, lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm...horizontal-horizontal (hh)-polarized images for 20 m×10 m scene: (a) Ground with flat surface; (b) Ground with randomly rough surface, hrms =1.2 cm...lc=14.93 cm; (c) Ground with randomly rough surface, hrms =1.6 cm, lc=14.93 cm. Ground electrical properties: εr=6, σd=10 mS/m. Frequency span: 0.3
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Kundu, Prasun K.; Kummerow, Christian D.; Einaudi, Franco (Technical Monitor)
2000-01-01
Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the satellite estimates. The rainfall estimate for a given map grid box is subject to both remote-sensing error and, in the case of low-orbiting satellites, sampling error due to the limited number of observations of the grid box provided by the satellite. A simple model of rain behavior predicts that Root-mean-square (RMS) random error in grid-box averages should depend in a simple way on the local average rain rate, and the predicted behavior has been seen in simulations using surface rain-gauge and radar data. This relationship was examined using satellite SSM/I data obtained over the western equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I rainfall estimates was found to be larger than predicted from surface data, and to depend less on local rain rate than was predicted. Preliminary examination of TRMM microwave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite rainfall estimates is suggested, based on quantities that can be directly computed from the satellite data.
An Assessment of How Facial Mimicry Can Change Facial Morphology: Implications for Identification.
Gibelli, Daniele; De Angelis, Danilo; Poppa, Pasquale; Sforza, Chiarella; Cattaneo, Cristina
2017-03-01
The assessment of facial mimicry is important in forensic anthropology; in addition, the application of modern 3D image acquisition systems may help for the analysis of facial surfaces. This study aimed at exposing a novel method for comparing 3D profiles in different facial expressions. Ten male adults, aged between 30 and 40 years, underwent acquisitions by stereophotogrammetry (VECTRA-3D ® ) with different expressions (neutral, happy, sad, angry, surprised). The acquisition of each individual was then superimposed on the neutral one according to nine landmarks, and the root mean square (RMS) value between the two expressions was calculated. The highest difference in comparison with the neutral standard was shown by the happy expression (RMS 4.11 mm), followed by the surprised (RMS 2.74 mm), sad (RMS 1.3 mm), and angry ones (RMS 1.21 mm). This pilot study shows that the 3D-3D superimposition may provide reliable results concerning facial alteration due to mimicry. © 2016 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Bishop, S. M.; Reynolds, C. L.; Liliental-Weber, Z.; Uprety, Y.; Zhu, J.; Wang, D.; Park, M.; Molstad, J. C.; Barnhardt, D. E.; Shrivastava, A.; Sudarshan, T. S.; Davis, R. F.
2007-04-01
The polytype and surface and defect microstructure of epitaxial layers grown on 4H( {11}overline{{2}} {0} ), 4H(0001) on-axis, 4H(0001) 8° off-axis, and 6H(0001) on-axis substrates have been investigated. High-resolution x-ray diffraction (XRD) revealed the epitaxial layers on 4H( {11}overline{{2}} {0} ) and 4H(0001) 8° off-axis to have the 4H-SiC (silicon carbide) polytype, while the 3C-SiC polytype was identified for epitaxial layers on 4H(0001) and 6H(0001) on-axis substrates. Cathodoluminescence (CL), Raman spectroscopy, and transmission electron microscopy (TEM) confirmed these results. The epitaxial surface of 4H( {11}overline{{2}} {0} ) films was specular with a roughness of 0.16-nm root-mean-square (RMS), in contrast to the surfaces of the other epitaxial layer-substrate orientations, which contained curvilinear boundaries, growth pits (˜3 × 104 cm-2), triangular defects >100 μm, and significant step bunching. Molten KOH etching revealed large defect densities within 4H( {11}overline{{2}} {0} ) films that decreased with film thickness to ˜106 cm-2 at 2.5 μm, while cross-sectional TEM studies showed areas free of defects and an indistinguishable film-substrate interface for 4H( {11}overline{{2}} {0} ) epitaxial layers.
Directly polished lightweight aluminum mirror
NASA Astrophysics Data System (ADS)
ter Horst, Rik; Tromp, Niels; de Haan, Menno; Navarro, Ramon; Venema, Lars; Pragt, Johan
2017-11-01
During the last ten years, Astron has been a major contractor for the design and manufacturing of astronomical instruments for Space- and Earth based observatories, such as VISIR, MIDI, SPIFFI, X-Shooter and MIRI. Driven by the need to reduce the weight of optically ultra-stiff structures, two promising techniques have been developed in the last years: ASTRON Extreme Lightweighting [1][2] for mechanical structures and an improved Polishing Technique for Aluminum Mirrors. Using one single material for both optical components and mechanical structure simplifies the design of a cryogenic instrument significantly, it is very beneficial during instrument test and verification, and makes the instrument insensitive to temperature changes. Aluminum has been the main material used for cryogenic optical instruments, and optical aluminum mirrors are generally diamond turned. The application of a polishable hard top coating like nickel removes excess stray light caused by the groove pattern, but limits the degree of lightweighting of the mirrors due to the bi-metal effect. By directly polishing the aluminum mirror surface, the recent developments at Astron allow for using a non-exotic material for light weighted yet accurate optical mirrors, with a lower surface roughness ( 1nm RMS), higher surface accuracy and reduced light scattering. This paper presents the techniques, obtained results and a global comparison with alternative lightweight mirror solutions. Recent discussions indicate possible extensions of the extreme light weight technology to alternative materials such as Zerodur or Silicon Carbide.
The evolution of fracture surface roughness and its dependence on slip
NASA Astrophysics Data System (ADS)
Wells, Olivia L.
Under effective compression, impingement of opposing rough surfaces of a fracture can force the walls of the fracture apart during slip. Therefore, a fracture's surface roughness exerts a primary control on the amount of dilation that can be sustained on a fracture since the opposing surfaces need to remain in contact. Previous work has attempted to characterize fracture surface roughness through topographic profiles and power spectral density analysis, but these metrics describing the geometry of a fracture's surface are often non-unique when used independently. However, when combined these metrics are affective at characterizing fracture surface roughness, as well as the mechanisms affecting changes in roughness with increasing slip, and therefore changes in dilation. These mechanisms include the influence of primary grains and pores on initial fracture roughness, the effect of linkage on locally increasing roughness, and asperity destruction that limits the heights of asperities and forms gouge. This analysis reveals four essential stages of dilation during the lifecycle of a natural fracture, whereas previous slip-dilation models do not adequately address the evolution of fracture surface roughness: (1) initial slip companied by small dilation is mediated by roughness controlled by the primary grain and pore dimensions; (2) rapid dilation during and immediately following fracture growth by linkage of formerly isolated fractures; (3) wear of the fracture surface and gouge formation that minimizes dilation; and (4) between slip events cementation that modifies the mineral constituents in the fracture. By identifying these fundamental mechanisms that influence fracture surface roughness, this new conceptual model relating dilation to slip has specific applications to Enhanced Geothermal Systems (EGS), which attempt to produce long-lived dilation in natural fractures by inducing slip.
Numerical investigation of roughness effects in aircraft icing calculations
NASA Astrophysics Data System (ADS)
Matheis, Brian Daniel
2008-10-01
Icing codes are playing a role of increasing significance in the design and certification of ice protected aircraft surfaces. However, in the interest of computational efficiency certain small scale physics of the icing problem are grossly approximated by the codes. One such small scale phenomena is the effect of ice roughness on the development of the surface water film and on the convective heat transfer. This study uses computational methods to study the potential effect of ice roughness on both of these small scale phenomena. First, a two-dimensional condensed layer code is used to examine the effect of roughness on surface water development. It is found that the Couette approximation within the film breaks down as the wall shear goes to zero, depending on the film thickness. Roughness elements with initial flow separation in the air induce flow separation in the water layer at steady state, causing a trapping of the film. The amount of trapping for different roughness configurations is examined. Second, a three-dimensional incompressible Navier-Stokes code is developed to examine large scale ice roughness on the leading edge. The effect on the convective heat transfer and potential effect on the surface water dynamics is examined for a number of distributed roughness parameters including Reynolds number, roughness height, streamwise extent, roughness spacing and roughness shape. In most cases the roughness field increases the net average convective heat transfer on the leading edge while narrowing surface shear lines, indicating a choking of the surface water flow. Both effects show significant variation on the scale of the ice roughness. Both the change in heat transfer as well as the potential change in surface water dynamics are presented in terms of the development of singularities in the surface shear pattern. Of particular interest is the effect of the smooth zone upstream of the roughness which shows both a relatively large increase in convective heat transfer as well as excessive choking of the surface shear lines at the upstream end of the roughness field. A summary of the heat transfer results is presented for both the averaged heat transfer as well as the maximum heat transfer over each roughness element, indicating that the roughness Reynolds number is the primary parameter which characterizes the behavior of the roughness for the problem of interest.
Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump
NASA Astrophysics Data System (ADS)
Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus
2017-11-01
Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.
NASA Astrophysics Data System (ADS)
Langel, Christopher Michael
A computational investigation has been performed to better understand the impact of surface roughness on the flow over a contaminated surface. This thesis highlights the implementation and development of the roughness amplification model in the flow solver OVERFLOW-2. The model, originally proposed by Dassler, Kozulovic, and Fiala, introduces an additional scalar field roughness amplification quantity. This value is explicitly set at rough wall boundaries using surface roughness parameters and local flow quantities. This additional transport equation allows non-local effects of surface roughness to be accounted for downstream of rough sections. This roughness amplification variable is coupled with the Langtry-Menter model and used to modify the criteria for transition. Results from flat plate test cases show good agreement with experimental transition behavior on the flow over varying sand grain roughness heights. Additional validation studies were performed on a NACA 0012 airfoil with leading edge roughness. The computationally predicted boundary layer development demonstrates good agreement with experimental results. New tests using varying roughness configurations are being carried out at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel to provide further calibration of the roughness amplification method. An overview and preliminary results are provided of this concurrent experimental investigation.
NASA Astrophysics Data System (ADS)
Barros, Julio; Flack, Karen; Schultz, Michael
2017-11-01
Real-world engineering systems which feature either external or internal wall-bounded turbulent flow are routinely affected by surface roughness. This gives rise to performance degradation in the form of increased drag or head loss. However, at present there is no reliable means to predict these performance losses based upon the roughness topography alone. This work takes a systematic approach by generating random surface roughness in which the surface statistics are closely controlled. Skin friction and roughness function results will be presented for two groups of these rough surfaces. The first group is Gaussian (i.e. zero skewness) in which the root-mean-square roughness height (krms) is varied. The second group has a fixed krms, and the skewness is varied from approximately -1 to +1. The effect of the roughness amplitude and skewness on the skin friction will be discussed. Particular attention will be paid to the effect of these parameters on the roughness function in the transitionally-rough flow regime. For example, the role these parameters play in the monotonic or inflectional nature of the roughness function will be addressed. Future research into the details of the turbulence structure over these rough surfaces will also be outlined. Research funded by U.S. Office of Naval Research (ONR).
Seismic Yield Estimates of UTTR Surface Explosions
NASA Astrophysics Data System (ADS)
Hayward, C.; Park, J.; Stump, B. W.
2016-12-01
Since 2007 the Utah Test and Training Range (UTTR) has used explosive demolition as a method to destroy excess solid rocket motors ranging in size from 19 tons to less than 2 tons. From 2007 to 2014, 20 high quality seismic stations within 180 km recorded most of the more than 200 demolitions. This provides an interesting dataset to examine seismic source scaling for surface explosions. Based upon observer records, shots were of 4 sizes, corresponding to the size of the rocket motors. Instrument corrections for the stations were quality controlled by examining the P-wave amplitudes of all magnitude 6.5-8 earthquakes from 30 to 90 degrees away. For each station recording, the instrument corrected RMS seismic amplitude in the first 10 seconds after the P-onset was calculated. Waveforms at any given station for all the observed explosions are nearly identical. The observed RMS amplitudes were fit to a model including a term for combined distance and station correction, a term for observed RMS amplitude, and an error term for the actual demolition size. The observed seismic yield relationship is RMS=k*Weight2/3 . Estimated yields for the largest shots vary by about 50% from the stated weights, with a nearly normal distribution.
Emg Amplitude Estimators Based on Probability Distribution for Muscle-Computer Interface
NASA Astrophysics Data System (ADS)
Phinyomark, Angkoon; Quaine, Franck; Laurillau, Yann; Thongpanja, Sirinee; Limsakul, Chusak; Phukpattaranont, Pornchai
To develop an advanced muscle-computer interface (MCI) based on surface electromyography (EMG) signal, the amplitude estimations of muscle activities, i.e., root mean square (RMS) and mean absolute value (MAV) are widely used as a convenient and accurate input for a recognition system. Their classification performance is comparable to advanced and high computational time-scale methods, i.e., the wavelet transform. However, the signal-to-noise-ratio (SNR) performance of RMS and MAV depends on a probability density function (PDF) of EMG signals, i.e., Gaussian or Laplacian. The PDF of upper-limb motions associated with EMG signals is still not clear, especially for dynamic muscle contraction. In this paper, the EMG PDF is investigated based on surface EMG recorded during finger, hand, wrist and forearm motions. The results show that on average the experimental EMG PDF is closer to a Laplacian density, particularly for male subject and flexor muscle. For the amplitude estimation, MAV has a higher SNR, defined as the mean feature divided by its fluctuation, than RMS. Due to a same discrimination of RMS and MAV in feature space, MAV is recommended to be used as a suitable EMG amplitude estimator for EMG-based MCIs.
Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaghazardi, Zahra; Faez, Rahim; Touski, Shoeib Babaee
2016-08-07
In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping ratemore » and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.« less
Estimation of the sea surface's two-scale backscatter parameters
NASA Technical Reports Server (NTRS)
Wentz, F. J.
1978-01-01
The relationship between the sea-surface normalized radar cross section and the friction velocity vector is determined using a parametric two-scale scattering model. The model parameters are found from a nonlinear maximum likelihood estimation. The estimation is based on aircraft scatterometer measurements and the sea-surface anemometer measurements collected during the JONSWAP '75 experiment. The estimates of the ten model parameters converge to realistic values that are in good agreement with the available oceanographic data. The rms discrepancy between the model and the cross section measurements is 0.7 db, which is the rms sum of a 0.3 db average measurement error and a 0.6 db modeling error.
Graphene thickness dependent adhesion force and its correlation to surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourzand, Hoorad; Tabib-Azar, Massood, E-mail: azar.m@utah.edu; Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112
2014-04-28
In this paper, adhesion force of graphene layers on 300 nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesionmore » force measurement results.« less
Optimum surface roughness prediction for titanium alloy by adopting response surface methodology
NASA Astrophysics Data System (ADS)
Yang, Aimin; Han, Yang; Pan, Yuhang; Xing, Hongwei; Li, Jinze
Titanium alloy has been widely applied in industrial engineering products due to its advantages of great corrosion resistance and high specific strength. This paper investigated the processing parameters for finish turning of titanium alloy TC11. Firstly, a three-factor central composite design of experiment, considering the cutting speed, feed rate and depth of cut, are conducted in titanium alloy TC11 and the corresponding surface roughness are obtained. Then a mathematic model is constructed by the response surface methodology to fit the relationship between the process parameters and the surface roughness. The prediction accuracy was verified by the one-way ANOVA. Finally, the contour line of the surface roughness under different combination of process parameters are obtained and used for the optimum surface roughness prediction. Verification experimental results demonstrated that material removal rate (MRR) at the obtained optimum can be significantly improved without sacrificing the surface roughness.
Time response analysis in suspension system design of a high-speed car
NASA Astrophysics Data System (ADS)
Pagwiwoko, Cosmas Pandit
2010-03-01
A land speed record vehicle is designed to run on a flat surface like salt lake where the wheels are normally made from solid metal with a special suspension system. The suspension is designed to provide a stable platform to keep the wheel treads on tract, to insulate the car and the driver from the surface irregularities and to take part of good handling properties. The surface condition of the lake beds is basically flat without undulations but with inconsistent surface textures and ridges. Spring with nonlinear rate is used with the reason that the resistance builds up roughly proportional to the aerodynamic download for keeping the height more nearly constant. The objective of the work is to produce an efficient method for assisting the design of suspension system. At the initial step, the stiffness and the damping constants are determined based on RMS optimization by following the optimization strategy i.e. to minimize the absolute acceleration respect to the relative displacement of the suspension. Power bond graph technique is then used to model the nonlinearity of the components i.e. spring and dashpot of the suspension system. This technique also enables to incorporate the interactions of dynamic response of the vehicle's body with aerodynamic flow as a result of the base excitation of the ground to the wheels. The simulation is conducted on the platform of Simulink-MATLAB and the interactions amongst the components within the system are observed in time domain to evaluate the effectiveness of the suspension.
Monitoring of Surface Roughness in Aluminium Turning Process
NASA Astrophysics Data System (ADS)
Chaijareenont, Atitaya; Tangjitsitcharoen, Somkiat
2018-01-01
As the turning process is one of the most necessary process. The surface roughness has been considered for the quality of workpiece. There are many factors which affect the surface roughness. Hence, the objective of this research is to monitor the relation between the surface roughness and the cutting forces in aluminium turning process with a wide range of cutting conditions. The coated carbide tool and aluminium alloy (Al 6063) are used for this experiment. The cutting parameters are investigated to analyze the effects of them on the surface roughness which are the cutting speed, the feed rate, the tool nose radius and the depth of cut. In the case of this research, the dynamometer is installed in the turret of CNC turning machine to generate a signal while turning. The relation between dynamic cutting forces and the surface roughness profile is examined by applying the Fast Fourier Transform (FFT). The experimentally obtained results showed that the cutting force depends on the cutting condition. The surface roughness can be improved when increasing the cutting speed and the tool nose radius in contrast to the feed rate and the depth of cut. The relation between the cutting parameters and the surface roughness can be explained by the in-process cutting forces. It is understood that the in-process cutting forces are able to predict the surface roughness in the further research.
Super Water-Repellent Fractal Surfaces of a Photochromic Diarylethene Induced by UV Light
NASA Astrophysics Data System (ADS)
Izumi, Norikazu; Minami, Takayuki; Mayama, Hiroyuki; Takata, Atsushi; Nakamura, Shinichiro; Yokojima, Satoshi; Tsujii, Kaoru; Uchida, Kingo
2008-09-01
Photochromic diarylethene forms super water-repellent surfaces upon irradiation with UV light. Microfibril-like crystals grow on the solid diarylethene surface after UV irradiation, and the contact angle of water on the surface becomes larger with increasing surface roughness with time. The fractal analysis was made by the box-counting method for the rough surfaces. There are three regions in the roughness size having the fractal dimension of ca. 2.4 (size of roughness smaller than 5 µm), of ca. 2.2 (size of roughness between 5-40 µm), and of ca. 2.0 (size of roughness larger than 40 µm). The fractal dimension of ca. 2.4 was due to the fibril-like structures generated gradually by UV irradiation on diarylethene surfaces accompanied with an increase in the contact angle. The surface structure with larger fractal dimension mainly contributes to realizing the super water-repellency of the diarylethene surfaces. This mechanism of spontaneous formation of fractal surfaces is similar to that for triglyceride and alkylketene dimer waxes.
Measuring skew in average surface roughness as a function of surface preparation
NASA Astrophysics Data System (ADS)
Stahl, Mark T.
2015-08-01
Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo® white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.
Passive microwave sensing of soil moisture content: Soil bulk density and surface roughness
NASA Technical Reports Server (NTRS)
Wang, J. R.
1982-01-01
Microwave radiometric measurements over bare fields of different surface roughnesses were made at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence as well as the possible time variation of surface roughness. The presence of surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time series observation over a given field indicated that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. This time variation of surface roughness served to enhance the uncertainty in remote soil moisture estimate by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which turned out to be an important factor in the interpretation of radiometric data.
NASA Technical Reports Server (NTRS)
Wang, J. R.
1983-01-01
Microwave radiometric measurements over bare fields of different surface roughness were made at frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence, as well as the possible time variation, of surface roughness. An increase in surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time-series observations over a given field indicate that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. The variation of surface roughness increases the uncertainty of remote soil moisture estimates by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which is an important factor in the interpretation of radiometric data.
Surface roughness retrieval by inversion of the Hapke model: A multiscale approach
NASA Astrophysics Data System (ADS)
Labarre, S.; Ferrari, C.; Jacquemoud, S.
2017-07-01
Surface roughness is a key property of soils that controls many surface processes and influences the scattering of incident electromagnetic waves at a wide range of scales. Hapke (2012b) designed a photometric model providing an approximate analytical solution of the Bidirectional Reflectance Distribution Function (BRDF) of a particulate medium: he introduced the effect of surface roughness as a correction factor of the BRDF of a smooth surface. This photometric roughness is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the grain size to the local topography. Yet its physical meaning is still a question at issue, as the scale at which it occurs is not clearly defined. This work aims at better understanding the relative influence of roughness scales on soil BRDF and to test the ability of the Hapke model to retrieve a roughness that depicts effectively the ground truth. We apply a wavelet transform on millimeter digital terrain models (DTM) acquired over volcanic terrains. This method allows splitting the frequency band of a signal in several sub-bands, each corresponding to a spatial scale. We demonstrate that sub-centimeter surface features dominate both the integrated roughness and the BRDF shape. We investigate the suitability of the Hapke model for surface roughness retrieval by inversion on optical data. A global sensitivity analysis of the model shows that soil BRDF is very sensitive to surface roughness, nearly as much as the single scattering albedo according to the phase angle, but also that these two parameters are strongly correlated. Based on these results, a simplified two-parameter model depending on surface albedo and roughness is proposed. Inversion of this model on BRDF data simulated by a ray-tracing code over natural targets shows a good estimation of surface roughness when the assumptions of the model are verified, with a priori knowledge on surface albedo.
Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.
Lu, Jia; Zhou, Huaichun
2017-07-01
The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.
NASA Astrophysics Data System (ADS)
Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges
2018-06-01
This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.
Characteristics of surface roughness associated with leading edge ice accretion
NASA Technical Reports Server (NTRS)
Shin, Jaiwon
1994-01-01
Detailed size measurements of surface roughness associated with leading edge ice accretions are presented to provide information on characteristics of roughness and trends of roughness development with various icing parameters. Data was obtained from icing tests conducted in the Icing Research Tunnel (IRT) at NASA Lewis Research Center (LeRC) using a NACA 0012 airfoil. Measurements include diameters, heights, and spacing of roughness elements along with chordwise icing limits. Results confirm the existence of smooth and rough ice zones and that the boundary between the two zones (surface roughness transition region) moves upstream towards stagnation region with time. The height of roughness grows as the air temperature and the liquid water content increase, however, the airspeed has little effect on the roughness height. Results also show that the roughness in the surface roughness transition region grows during a very early stage of accretion but reaches a critical height and then remains fairly constant. Results also indicate that a uniformly distributed roughness model is only valid at a very initial stage of the ice accretion process.
Soil roughness, slope and surface storage relationship for impervious areas
NASA Astrophysics Data System (ADS)
Borselli, Lorenzo; Torri, Dino
2010-11-01
SummaryThe study of the relationships between surface roughness, local slope gradient and maximum volume of water storage in surface depressions is a fundamental element in the development of hydrological models to be used in soil and water conservation strategies. Good estimates of the maximum volume of water storage are important for runoff assessment during rainfall events. Some attempts to link surface storage to parameters such as indices of surface roughness and, more rarely, local gradient have been proposed by several authors with empirical equations often conflicting between them and usually based on a narrow range of slope gradients. This suggests care in selecting any of the proposed equations or models and invites one to verify the existence of more realistic experimental relationships, based on physical models of the surfaces and valid for a larger range of gradients. The aim of this study is to develop such a relation for predicting/estimating the maximum volume of water that a soil surface, with given roughness characteristics and local slope gradient, can store. Experimental work has been carried out in order to reproduce reliable rough surfaces able to maintain the following properties during the experimental activity: (a) impervious surface to avoid biased storage determination; (b) stable, un-erodible surfaces to avoid changes of retention volume during tests; (c) absence of hydrophobic behaviour. To meet the conditions a-c we generate physical surfaces with various roughness magnitude using plasticine (emulsion of non-expansible clay and oil). The plasticine surface, reproducing surfaces of arable soils, was then wetted and dirtied with a very fine timber sawdust. This reduced the natural hydrophobic behaviour of the plasticine to an undetectable value. Storage experiments were conducted with plasticine rough surfaces on top of large rigid polystyrene plates inclined at different slope gradient: 2%, 5%, 10%, 20%, 30%. Roughness data collected on the generated plasticine surfaces were successfully compared with roughness data collected on real soil surfaces for similar conditions. A set of roughness indices was computed for each surface using roughness profiles measured with a laser profile meter. Roughness indices included quantiles of the Abbot-Firestone curve, which is used in surface metrology for industrial application to characterize surface roughness in a non-parametric approach ( Whitehouse, 1994). Storage data were fitted with an empirical equation (double negative exponential of roughness and slope). Several roughness indices resulted well related to storage. The better results were obtained using the Abbot-Firestone curve parameter P100. Beside this storage empirical model (SEM) a geometrical model was also developed, trying to give a more physical basis to the result obtained so far. Depression geometry was approximated with spherical cups. A general physical model was derived (storage cup model - SCM). The cup approximation identifies where roughness elevation comes in and how it relates to slope gradient in defining depression volume. Moreover, the exponential decay used for assessing slope effect on storage volume in the empirical model of Eqs. (8) and (9) emerges as consistent with distribution of cup sizes.
Walsh, W R; Svehla, M J; Russell, J; Saito, M; Nakashima, T; Gillies, R M; Bruce, W; Hori, R
2004-09-01
Implant surface roughness is an important parameter governing the overall mechanical properties at the implant-cement interface. This study investigated the influence of surface roughness using polymethylmethcrylate (PMMA) and a Bisphenol-a-glycidylmethacyrlate resin-hydroxyapatite cement (CAP). Mechanical fixation at the implant-cement interface was evaluated in vitro using static shear and fatigue loading with cobalt chrome alloy (CoCr) dowels with different surface roughness preparations. Increasing surface roughness improved the mechanical properties at the implant-cement interface for both types of cement. CAP cement fixation was superior to PMMA under static and dynamic loading.
NASA Astrophysics Data System (ADS)
Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir
2018-03-01
Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.
Investigation of the influence of a step change in surface roughness on turbulent heat transfer
NASA Technical Reports Server (NTRS)
Taylor, Robert P.; Coleman, Hugh W.; Taylor, J. Keith; Hosni, M. H.
1991-01-01
The use is studied of smooth heat flux gages on the otherwise very rough SSME fuel pump turbine blades. To gain insights into behavior of such installations, fluid mechanics and heat transfer data were collected and are reported for a turbulent boundary layer over a surface with a step change from a rough surface to a smooth surface. The first 0.9 m length of the flat plate test surface was roughened with 1.27 mm hemispheres in a staggered, uniform array spaced 2 base diameters apart. The remaining 1.5 m length was smooth. The effect of the alignment of the smooth surface with respect to the rough surface was also studied by conducting experiments with the smooth surface aligned with the bases or alternatively with the crests of the roughness elements. Stanton number distributions, skin friction distributions, and boundary layer profiles of temperature and velocity are reported and are compared to previous data for both all rough and all smooth wall cases. The experiments show that the step change from rough to smooth has a dramatic effect on the convective heat transfer. It is concluded that use of smooth heat flux gages on otherwise rough surfaces could cause large errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pei-Yang; Zhang, Guojing; Gullickson, Eric M.
Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL maskmore » blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.« less
Berni, Kelly Cristina dos Santos; Dibai-Filho, Almir Vieira; Pires, Paulo Fernandes; Rodrigues-Bigaton, Delaine
2015-08-01
Due to the multifactor etiology of temporomandibular disorder (TMD), the precise diagnosis remains a matter of debate and validated diagnostic tools are needed. The aim was to determine the accuracy of surface electromyography (sEMG) activity, assessed in the amplitude domain by the root mean square (RMS), in the diagnosis of TMD. One hundred twenty-three volunteers were evaluated using the Research Diagnostic Criteria for Temporomandibular Disorders and distributed into two groups: women with myogenous TMD (n=80) and women without TMD (n=43). The volunteers were then submitted to sEMG evaluation of the anterior temporalis, masseter and suprahyoid muscles at rest and during maximum voluntary teeth clenching (MVC) on parafilm. The accuracy, sensitivity and specificity of the muscle activity were analyzed. Differences between groups were found in all muscles analyzed at rest as well as in the masseter and suprahyoid muscles during MVC on parafilm. Moderate accuracy (AUC: 0.74-0.84) of the RMS sEMG was found in all muscles regarding the diagnosis of TMD at rest and in the suprahyoid muscles during MVC on parafilm. Moreover, sensitivity ranging from 71.3% to 80% and specificity from 60.5% to 76.6%. In contrast, RMS sEMG did not exhibit acceptable degrees of accuracy in the other masticatory muscles during MVC on parafilm. It was concluded that the RMS sEMG is a complementary tool for clinical diagnosis of the myogenous TMD. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maslenikov, I.; Useinov, A.; Birykov, A.; Reshetov, V.
2017-10-01
The instrumented indentation method requires the sample surface to be flat and smooth; thus, hardness and elastic modulus values are affected by the roughness. A model that accounts for the isotropic surface roughness and can be used to correct the data in two limiting cases is proposed. Suggested approach requires the surface roughness parameters to be known.
Olivares-Navarrete, Rene; Rodil, Sandra E.; Hyzy, Sharon L.; Dunn, Ginger R.; Almaguer-Flores, Argelia; Schwartz, Zvi; Boyan, Barbara D.
2015-01-01
Surface roughness, topography, chemistry, and energy promote osteoblast differentiation and increase osteogenic local factor production in vitro and bone-to-implant contact in vivo, but the mechanisms involved are not well understood. Knockdown of integrin heterodimer alpha2beta1 (α2β1) blocks the osteogenic effects of the surface, suggesting signaling by this integrin homodimer is required. The purpose of the present study was to separate effects of surface chemistry and surface structure on integrin expression by coating smooth or rough titanium (Ti) substrates with graphitic carbon, retaining surface morphology but altering surface chemistry. Ti surfaces (smooth [Ra<0.4μm], rough [Ra≥3.4μm]) were sputter-coated using a magnetron sputtering system with an ultrapure graphite target, producing a graphitic carbon thin film. Human mesenchymal stem cells and MG63 osteoblast-like cells had higher mRNA for integrin subunits α1, α2, αv, and β1 on rough surfaces in comparison to smooth, and integrin αv on graphitic-carbon-coated rough surfaces in comparison to Ti. Osteogenic differentiation was greater on rough surfaces in comparison to smooth, regardless of chemistry. Silencing integrins β1, α1, or α2 decreased osteoblast maturation on rough surfaces independent of surface chemistry. Silencing integrin αv decreased maturation only on graphitic carbon-coated surfaces, not on Ti. These results suggest a major role of the integrin β1 subunit in roughness recognition, and that integrin alpha subunits play a major role in surface chemistry recognition. PMID:25770999
Method to evaluate the noise of 3D intra-oral scanner.
Desoutter, Alban; Yusuf Solieman, Osama; Subsol, Gérard; Tassery, Hervé; Cuisinier, Frédéric; Fages, Michel
2017-01-01
In dentistry, 3D intra-oral scanners are gaining increasing popularity essentially for the production of dental prostheses. However, there is no normalized procedure to evaluate their basic performance and enable comparisons among intra-oral scanners. The noise value highlights the trueness of a 3D intra-oral scanner and its capacity to plan prosthesis with efficient clinical precision. The aim of the present study is to develop a reproducible methodology for determining the noise of an intra-oral scanner. To this aim, and as a reference, an ultra-flat and ultra-smooth alumina wafer is used as a blank test. The roughness is calculated using an AFM (atomic force microscope) and interferometric microscope measurements to validate this ultra-flat characteristic. Then, two intra-oral scanners (Carestream CS3500 and Trios 3Shape) are used. The wafer is imaged by the two intra-oral scanners with three different angles and two different directions, 10 times for each parameter, given a total of 50 3D-meshes per intra-oral scanner. RMS (root mean square), representing the noise, is evaluated and compared for each angle/direction and each intra-oral scanner, for the whole mesh, and then in a central ROI (region of interest). In this study, we obtained RMS values ranging between 5.29 and 12.58 micrometers. No statistically significant differences were found between the mean RMS of the two intra-oral scanners, but significant differences in angulation and orientations were found between different 3D intra-oral scanners. This study shows that the evaluation of RMS can be an indicator of the value of the noise, which can be easily assessed by applying the present methodology.
EURECA orbits above the Earth's surface prior to STS-57 OV-105 RMS capture
NASA Technical Reports Server (NTRS)
1993-01-01
Backdropped against open ocean waters, the European Retrievable Carrier (EURECA) spacecraft, with solar array (SA) panels folded flat against its sides, approaches Endeavour, Orbiter Vehicle (OV) 105, on flight day five. Later, the remote manipulator system (RMS) end effector was used to 'capture' the spacecraft. After ten days in Earth orbit, the crew returned to Earth, bringing EURECA home.
Effects of Surface Roughness on Conical Squeeze Film Bearings with Micropolar fluid
NASA Astrophysics Data System (ADS)
Rajani, C. B.; Hanumagowda, B. N.; Shigehalli, Vijayalaxmi S.
2018-04-01
In the current paper, a hypothetical analysis of the impact of surface roughness on squeeze film lubrication of rough conical bearing using Micropolar fluid is examined using Eringen’sMicropolar fluid model. The generalized averaged Reynolds type equation for roughness has been determined analytically using the Christensen’s stochastic theory of roughness effects and the closed form expressions are obtained for the fluid film pressure, load carrying capacity and squeezing time. Further, the impacts of surface roughness using micropolar fluids on the squeeze film lubrication of rough conical bearings has been discussed and according to the outcomes arrived, pressure, load carrying capacity and squeezing time increases for azimuthal roughness pattern and decreases for radial roughness patterns comparatively to the smooth case.
NASA Astrophysics Data System (ADS)
Bondarenko, N. V.; Head, J. W.
2009-03-01
In order to assess the nature of crater-associated radar-dark diffuse features (DDFs) on Venus and to understand their formation and evolution, we analyzed Magellan radar roughness, emissivity, and reflectivity data in the vicinity of craters accompanied by these features. Following others, we assumed that DDFs are deposits (mantles) of ejected material emplaced during formation of the impact crater. The majority of radar-dark parabolas (the youngest DDFs) are characterized by a smooth mantle-atmosphere interface having low root-mean-square (rms) slopes on scales of 1-100 m, as derived from Magellan altimeter data. Older DDFs also often have areas with low rms slopes, suggesting that the mantle rms slopes can be preserved for geologically long periods of time. Some parabolas and older DDFs have asymmetric small-scale (decimeter-scale) relief that is interpreted to be dunes that formed as a result of eolian processes. This implies that the mantle material is mobile and can saltate under the influence of wind action. On average, aging of these features is accompanied by a decrease of mantle material dielectric permittivity. The most efficient mechanism for parabola degradation seems to be the removal of mantle material from the site of initial deposition by subsequent winds. We found a few examples of features that could be interpreted to be the result of in situ modification of the primary mantle.
Generalizing roughness: experiments with flow-oriented roughness
NASA Astrophysics Data System (ADS)
Trevisani, Sebastiano
2015-04-01
Surface texture analysis applied to High Resolution Digital Terrain Models (HRDTMs) improves the capability to characterize fine-scale morphology and permits the derivation of useful morphometric indexes. An important indicator to be taken into account in surface texture analysis is surface roughness, which can have a discriminant role in the detection of different geomorphic processes and factors. The evaluation of surface roughness is generally performed considering it as an isotropic surface parameter (e.g., Cavalli, 2008; Grohmann, 2011). However, surface texture has often an anisotropic character, which means that surface roughness could change according to the considered direction. In some applications, for example involving surface flow processes, the anisotropy of roughness should be taken into account (e.g., Trevisani, 2012; Smith, 2014). Accordingly, we test the application of a flow-oriented directional measure of roughness, computed considering surface gravity-driven flow. For the calculation of flow-oriented roughness we use both classical variogram-based roughness (e.g., Herzfeld,1996; Atkinson, 2000) as well as an ad-hoc developed robust modification of variogram (i.e. MAD, Trevisani, 2014). The presented approach, based on a D8 algorithm, shows the potential impact of considering directionality in the calculation of roughness indexes. The use of flow-oriented roughness could improve the definition of effective proxies of impedance to flow. Preliminary results on the integration of directional roughness operators with morphometric-based models, are promising and can be extended to more complex approaches. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Cavalli, M. & Marchi, L. 2008, "Characterization of the surface morphology of an alpine alluvial fan using airborne LiDAR", Natural Hazards and Earth System Science, vol. 8, no. 2, pp. 323-333. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Smith, M.W. 2014, "Roughness in the Earth Sciences", Earth-Science Reviews, vol. 136, pp. 202-225. Trevisani, S., Cavalli, M. & Marchi, L. 2012, "Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin", Geomorphology, vol. 161-162, pp. 26-39. Trevisani S., Rocca M., 2014. Geomorphometric analysis of fine-scale morphology for extensive areas: a new surface-texture operator. Geophysical Research Abstracts, Vol. 16, EGU2014-5612, 2014. EGU General Assembly 2014.
Jumelle, Clotilde; Hamri, Alina; Egaud, Gregory; Mauclair, Cyril; Reynaud, Stephanie; Dumas, Virginie; Pereira, Sandrine; Garcin, Thibaud; Gain, Philippe; Thuret, Gilles
2017-01-01
Corneal lamellar cutting with a blade or femtosecond laser (FSL) is commonly used during refractive surgery and corneal grafts. Surface roughness of the cutting plane influences postoperative visual acuity but is difficult to assess reliably. For the first time, we compared chromatic confocal microscopy (CCM) with scanning electron microscopy, atomic force microscopy (AFM) and focus-variation microscopy (FVM) to characterize surfaces of variable roughness after FSL cutting. The small area allowed by AFM hinders conclusive roughness analysis, especially with irregular cuts. FVM does not always differentiate between smooth and rough surfaces. Finally, CCM allows analysis of large surfaces and differentiates between surface states. PMID:29188095
Analysis of multi lobe journal bearings with surface roughness using finite difference method
NASA Astrophysics Data System (ADS)
PhaniRaja Kumar, K.; Bhaskar, SUdaya; Manzoor Hussain, M.
2018-04-01
Multi lobe journal bearings are used for high operating speeds and high loads in machines. In this paper symmetrical multi lobe journal bearings are analyzed to find out the effect of surface roughnessduring non linear loading. Using the fourth order RungeKutta method, time transient analysis was performed to calculate and plot the journal centre trajectories. Flow factor method is used to evaluate the roughness and the finite difference method (FDM) is used to predict the pressure distribution over the bearing surface. The Transient analysis is done on the multi lobe journal bearings for threedifferent surface roughness orientations. Longitudinal surface roughness is more effective when compared with isotopic and traverse surface roughness.
Pressure variation of developed lapping tool on surface roughness
NASA Astrophysics Data System (ADS)
Hussain, A. K.; Lee, K. Q.; Aung, L. M.; Abu, A.; Tan, L. K.; Kang, H. S.
2018-01-01
Improving the surface roughness is always one of the major concerns in the development of lapping process as high precision machining caters a great demand in manufacturing process. This paper aims to investigate the performance of a newly designed lapping tool in term of surface roughness. Polypropylene is used as the lapping tool head. The lapping tool is tested for different pressure to identify the optimum working pressure for lapping process. The theoretical surface roughness is also calculated using Vickers Hardness. The present study shows that polypropylene is able to produce good quality and smooth surface roughness. The optimum lapping pressure in the present study is found to be 45 MPa. By comparing the theoretical and experimental values, the present study shows that the newly designed lapping tool is capable to produce finer surface roughness.
Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio
2017-01-01
Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil–water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers. PMID:28589932
NASA Astrophysics Data System (ADS)
Zanini, Michele; Marschelke, Claudia; Anachkov, Svetoslav E.; Marini, Emanuele; Synytska, Alla; Isa, Lucio
2017-06-01
Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil-water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers.
NASA Astrophysics Data System (ADS)
Zhang, Li-Zhi; Yuan, Wu-Zhi
2018-04-01
The motion of coalescence-induced condensate droplets on superhydrophobic surface (SHS) has attracted increasing attention in energy-related applications. Previous researches were focused on regularly rough surfaces. Here a new approach, a mesoscale lattice Boltzmann method (LBM), is proposed and used to model the dynamic behavior of coalescence-induced droplet jumping on SHS with randomly distributed rough structures. A Fast Fourier Transformation (FFT) method is used to generate non-Gaussian randomly distributed rough surfaces with the skewness (Sk), kurtosis (K) and root mean square (Rq) obtained from real surfaces. Three typical spreading states of coalesced droplets are observed through LBM modeling on various rough surfaces, which are found to significantly influence the jumping ability of coalesced droplet. The coalesced droplets spreading in Cassie state or in composite state will jump off the rough surfaces, while the ones spreading in Wenzel state would eventually remain on the rough surfaces. It is demonstrated that the rough surfaces with smaller Sks, larger Rqs and a K at 3.0 are beneficial to coalescence-induced droplet jumping. The new approach gives more detailed insights into the design of SHS.
Detecting the Elusive P-Wave: A New ECG Lead to Improve the Recording of Atrial Activity.
Kennedy, Alan; Finlay, Dewar D; Guldenring, Daniel; Bond, Raymond R; McLaughlin, James
2016-02-01
In this study, we report on a lead selection method that was developed to detect the optimal bipolar electrode placement for recording of the P-wave. The study population consisted of 117 lead body surface potential maps recorded from 229 healthy subjects. The optimal bipolar lead was developed using the training set (172 subjects) then extracted from the testing dataset (57 subjects) and compared to other lead systems previously reported for improved recording of atrial activity. All leads were assessed in terms of P-wave, QRS, and STT root mean square (RMS). The P/QRST RMS ratio was also investigated to determine the atrioventricular RMS ratio. Finally, the effect of minor electrode misplacements on the P-lead was investigated. The P-lead discovered in this study outperformed all other investigated leads in terms of P-wave RMS. The P-lead showed a significant improvement in median P-wave RMS (93 versus 72 μV, p < 0.001) over the next best lead, Lead II. An improvement in QRS and STT RMS was also observed from the P-lead in comparison to lead II (668 versus 573 μV, p < 0.001) and (327 versus 196 μV, p < 0.001). Although P-wave RMS was reduced by incorrect electrode placement, significant improvement over Lead II was still evident. The P-lead improves P-wave RMS signal strength over all other investigated leads. Also the P-lead does not reduce QRS and STT RMS making it an appropriate choice for atrial arrhythmia monitoring. Given the improvement in signal-to-noise ratio, an improvement in algorithms that rely on P-wave analysis may be achieved.
Dynamic evolution of interface roughness during friction and wear processes.
Kubiak, K J; Bigerelle, M; Mathia, T G; Dubois, A; Dubar, L
2014-01-01
Dynamic evolution of surface roughness and influence of initial roughness (S(a) = 0.282-6.73 µm) during friction and wear processes has been analyzed experimentally. The mirror polished and rough surfaces (28 samples in total) have been prepared by surface polishing on Ti-6Al-4V and AISI 1045 samples. Friction and wear have been tested in classical sphere/plane configuration using linear reciprocating tribometer with very small displacement from 130 to 200 µm. After an initial period of rapid degradation, dynamic evolution of surface roughness converges to certain level specific to a given tribosystem. However, roughness at such dynamic interface is still increasing and analysis of initial roughness influence revealed that to certain extent, a rheology effect of interface can be observed and dynamic evolution of roughness will depend on initial condition and history of interface roughness evolution. Multiscale analysis shows that morphology created in wear process is composed from nano, micro, and macro scale roughness. Therefore, mechanical parts working under very severe contact conditions, like rotor/blade contact, screws, clutch, etc. with poor initial surface finishing are susceptible to have much shorter lifetime than a quality finished parts. © Wiley Periodicals, Inc.
Feasibility study of solid surface subreflector production techniques
NASA Technical Reports Server (NTRS)
1982-01-01
The principal effort was to study technical feasibility and cost aspects of the production technique of spin forming a subreflector reflective surface to a desired surface of revolution, back the surface with fiberglass to stabilize it sufficiently so that it may be machined to the target surface tolerance of .008 inches Root Mean Square (RMS) with a goal of .003 inches RMS. To verify this production technique, analyses was performed to define the production procedure. A price estimate for a 150 inch diameter subreflector for a 34 meter cassegrain antenna. During this feasibility study, numerous production processes were evaluated theoretically as production approaches for single surface, non-welded subreflectors. The first successful was the principal process of spin forming the reflective surface, backing with fiberglass and machining to a final contour. The second successful process was spin forming or bump forming a thicker reflective surface, with an integral (welded in) structure as a backing and machining the mounting pads and reflector to a final configuration.
Sustaining dry surfaces under water
Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.
2015-01-01
Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732
Cai, Xiang; Shen, Liguo; Zhang, Meijia; Chen, Jianrong; Hong, Huachang; Lin, Hongjun
2017-11-01
Quantitatively evaluating interaction energy between two randomly rough surfaces is the prerequisite to quantitatively understand and control membrane fouling in membrane bioreactors (MBRs). In this study, a new unified approach to construct rough topographies and to quantify interaction energy between a randomly rough particle and a randomly rough membrane was proposed. It was found that, natural rough topographies of both foulants and membrane could be well constructed by a modified two-variable Weierstrass-Mandelbrot (WM) function included in fractal theory. Spatial differential relationships between two constructed surfaces were accordingly established. Thereafter, a new approach combining these relationships, surface element integration (SEI) approach and composite Simpson's rule was deduced to calculate the interaction energy between two randomly rough surfaces in a submerged MBR. The obtained results indicate the profound effects of surface morphology on interaction energy and membrane fouling. This study provided a basic approach to investigate membrane fouling and interface behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Araújo, Célio U; Basting, Roberta T
2018-03-01
To perform an in situ evaluation of surface roughness and micromorphology of two soft liner materials for dentures at different time intervals. The surface roughness of materials may influence the adhesion of micro-organisms and inflammation of the mucosal tissues. The in situ evaluation of surface roughness and the micromorphology of soft liner materials over the course of time may present results different from those of in vitro studies, considering the constant presence of saliva and food, the changes in temperature and the pH level in the oral cavity. Forty-eight rectangular specimens of each of the two soft liner materials were fabricated: a silicone-based material (Mucopren Soft) and an acrylic resin-based material (Trusoft). The specimens were placed in the dentures of 12 participants (n = 12), and the materials were evaluated for surface roughness and micromorphology at different time intervals: 0, 7, 30 and 60 days. Roughness (Ra) was evaluated by means of a roughness tester. Surface micromorphology was evaluated by scanning electron microscopy. Analysis of variance for randomised block design and Tukey's test showed that surface roughness values were lower in the groups using the silicone-based material at all the time intervals (P < .0001). The average surface roughness was higher at time interval 0 than at the other intervals, for both materials (P < .0001). The surface micromorphology showed that the silicone material presented a more regular and smoother surface than the acrylic resin-based material. The surface roughness of acrylic resin-based and silicone-based denture soft liner materials decreased after 7 days of evaluation, leading to a smoother surface over time. The silicone-based material showed lower roughness values and a smoother surface than the acrylic resin-based material, thereby making it preferred when selecting more appropriate material, due its tendency to promote less biofilm build-up. © 2017 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
High performance, accelerometer-based control of the Mini-MAST structure at Langley Research Center
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.
1991-01-01
Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optimal Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.
High performance, accelerometer-based control of the Mini-MAST structure
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.
1992-01-01
Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optical Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.
Retrieval of the thickness of undeformed sea ice from C-band compact polarimetric SAR images
NASA Astrophysics Data System (ADS)
Zhang, X.; Dierking, W.; Zhang, J.; Meng, J. M.; Lang, H. T.
2015-10-01
In this paper we introduce a parameter for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric SAR images. The parameter is denoted as "CP-Ratio". In model simulations we investigated the sensitivity of CP-Ratio to the dielectric constant, thickness, surface roughness, and incidence angle. From the results of the simulations we deduced optimal conditions for the thickness retrieval. On the basis of C-band CTLR SAR data, which were generated from Radarsat-2 quad-polarization images acquired jointly with helicopter-borne sea ice thickness measurements in the region of the Sea of Labrador, we tested empirical equations for thickness retrieval. An exponential fit between CP-Ratio and ice thickness provides the most reliable results. Based on a validation using other compact polarimetric SAR images from the same region we found a root mean square (rms) error of 8 cm and a maximum correlation coefficient of 0.92 for the retrieval procedure when applying it on level ice of 0.9 m mean thickness.
Optimization and application of influence function in abrasive jet polishing.
Li, Zhaoze; Li, Shengyi; Dai, Yifan; Peng, Xiaoqiang
2010-05-20
We analyze the material removal mechanism of abrasive jet polishing (AJP) technology, based on the fluid impact dynamics theory. Combined with the computational fluid dynamics simulation and process experiments, influence functions at different impingement angles are obtained, which are not of a regular Gaussian shape and are unfit for the corrective figuring of optics. The influence function is then optimized to obtain an ideal Gaussian shape by rotating the oblique nozzle, and its stability is validated through a line scanning experiment. The fluctuation of the influence function can be controlled within +/-5%. Based on this, we build a computed numerically controlled experimental system for AJP, and one flat BK7 optical glass with a diameter of 20mm is polished. After two iterations of polishing, the peak-to-valley value decreases from 1.43lambda (lambda=632.8nm in this paper) to 0.294lambda, and the rms value decreases from 0.195lambda to 0.029lambda. The roughness of this polished surface is within 2nm. The experimental result indicates that the optimized influence function is suitable for precision optics figuring and polishing.
NASA Astrophysics Data System (ADS)
Li Lam, Mui; Hafiz Abu Bakar, Muhammad; Lam, Wai Yip; Alias, Afishah; Rahman, Abu Bakar Abd; Anuar Mohamad, Khairul; Uesugi, Katsuhiro
2017-11-01
In this work, p-CuGaO2/n-ZnO heterojunction diodes were deposited by RF powered sputtering method on polyethylene terephthalate (PETP, PET) substrates. Structural, morphology, optical and electrical properties of CuGaO2/ZnO heterojunction was investigated as a function of annealing duration. The structural properties show the ZnO films (002) peak were stronger at the range of 34° while CuGaO2 (015) peak is not visible at 44°. The surface morphology revealed that RMS roughness become smoother as the annealing duration increase to 30 minutes and become rougher as the annealing duration is increased to 60 minutes. The optical properties of CuGaO2/ZnO heterojunction diode at 30 minutes exhibit approximately 75% optical transmittance in the invisible region. The diodes exhibited a rectifying characteristic and the maximum forward current was observed for the diode annealed for 30 minutes. The diodes show an ideality factor range from 43.69 to 71.29 and turn on voltage between 0.75 V and 1.05 V.
Ogawa, Tomohiro; Ezoe, Yuichiro; Moriyama, Teppei; Mitsuishi, Ikuyuki; Kakiuchi, Takuya; Ohashi, Takaya; Mitsuda, Kazuhisa; Putkonen, Matti
2013-08-20
To enhance x-ray reflectivity of silicon micropore optics using dry etching of silicon (111) wafers, iridium coating is tested by use of atomic layer deposition. An iridium layer is successfully formed on sidewalls of tiny micropores with a pore width of 20 μm and depth of 300 μm. The film thickness is ∼20 nm. An enhanced x-ray reflectivity compared to that of silicon is confirmed at Ti Kα 4.51 keV, for what we believe to be the first time, with this type of optics. Some discrepancies from a theoretical reflectivity curve of iridium-coated silicon are noticed at small incident angles <1.3°. When a geometrical shadowing effect due to occultation by a ridge existing on the sidewalls is taken into account, the observed reflectivity becomes well represented by the modified theoretical curve. An estimated surface micro roughness of ∼1 nm rms is consistent with atomic force microscope measurements of the sidewalls.
NASA Astrophysics Data System (ADS)
Manns, Fabrice; Rol, Pascal O.; Parel, Jean-Marie A.; Schmid, Armin; Shen, Jin-Hui; Matsui, Takaaki; Soederberg, Per G.
1996-05-01
The smoothness and accuracy of PMMA ablations with a prototype scanning photorefractive keratectomy (SPRK) system were evaluated by optical profilometry. A prototype frequency- quintupled Nd:YAG laser (Laser Harmonic, LaserSight, Orlando, FL) was used (wavelength: 213 nm, pulse duration: 15 ns, repetition rate: 10 Hz). The laser energy was delivered through two computer-controlled galvanometer scanners that were controlled with our own hardware and software. The system was programmed to create on a block of PMMA the ablations corresponding to the correction of 6 diopters of myopia with 60%, 70%, and 80% spot overlap. The energy was 1.25 mJ. After ablation, the topography of the samples was measured with an optical profilometer (UBM Messtechnik, Ettlingen, Germany). The ablation depth was 10 to 15 micrometer larger than expected. The surfaces created with 50% to 70% overlap exhibited large saw-tooth like variations, with a maximum peak to peak variation of approximately 20 micrometer. With 80% overlap, the rms roughness was 1.3 micrometer and the central flattening was 7 diopters. This study shows that scanning PRK can produce smooth and accurate ablations.
Surface roughness analysis of fiber post conditioning processes.
Mazzitelli, C; Ferrari, M; Toledano, M; Osorio, E; Monticelli, F; Osorio, R
2008-02-01
The chemo-mechanical surface treatment of fiber posts increases their bonding properties. The combined use of atomic force and confocal microscopy allows for the assessment and quantification of the changes on surface roughness that justify this behavior. Quartz fiber posts were conditioned with different chemicals, as well as by sandblasting, and by an industrial silicate/silane coating. We analyzed post surfaces by atomic force microscopy, recording average roughness (R(a)) measurements of fibers and resin matrix. A confocal image profiler allowed for the quantitative assessment of the average superficial roughness (R(a)). Hydrofluoric acid, potassium permanganate, sodium ethoxide, and sandblasting increased post surface roughness. Modifications of the epoxy resin matrix occurred after the surface pre-treatments. Hydrofluoric acid affected the superficial texture of quartz fibers. Surface-conditioning procedures that selectively react with the epoxy-resin matrix of the fiber post enhance roughness and improve the surface area available for adhesion by creating micro-retentive spaces without affecting the post's inner structure.
NASA Astrophysics Data System (ADS)
Menezes, Pradeep L.; Kishore; Kailas, Satish V.; Lovell, Michael R.
2015-01-01
Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.
Effect of surface topographic features on the optical properties of skin: a phantom study
NASA Astrophysics Data System (ADS)
Liu, Guangli; Chen, Jianfeng; Zhao, Zuhua; Zhao, Gang; Dong, Erbao; Chu, Jiaru; Xu, Ronald X.
2016-10-01
Tissue-simulating phantoms are used to validate and calibrate optical imaging systems and to understand light transport in biological tissue. Light propagation in a strongly turbid medium such as skin tissue experiences multiple scattering and diffuse reflection from the surface. Surface roughness introduces phase shifts and optical path length differences for light which is scattered within the skin tissue and reflected from the surface. In this paper, we study the effect of mismatched surface roughness on optical measurement and subsequent determination of optical properties of skin tissue. A series of phantoms with controlled surface features and optical properties corresponding to normal human skin are fabricated. The fabrication of polydimethylsiloxane (PDMS) phantoms with known surface roughness follows a standard soft lithography process. Surface roughness of skin-simulating phantoms are measured with Bruker stylus profiler. The diffuse reflectance of the phantom is validated by a UV/VIS spectrophotometer. The results show that surface texture and roughness have considerable influence on the optical characteristics of skin. This study suggests that surface roughness should be considered as an important contributing factor for the determination of tissue optical properties.
The effect of toothbrush bristle stiffness on nanohybrid surface roughness
NASA Astrophysics Data System (ADS)
Zairani, O.; Irawan, B.; Damiyanti, M.
2017-08-01
The surface of a restoration can be affected by toothpaste containing abrasive agents and the stiffness of toothbrush bristles. Objective: To identify the effect of toothbrush bristle stiffness on nanohybrid surface roughness. Methods: Sixteen nanohybrid specimens were separated into two groups. The first group was brushed using soft-bristle toothbrushes, and the second group was brushed using medium-bristle toothbrushes. Media such as aqua bides was used for brushing in both groups. Brushing was done 3 times for 5 minutes. Surface roughness was measured initially and at 5, 10, and 15 minutes using a surface roughness tester. Results: The results, tested with One-Way ANOVA and Independent Samples t Test, demonstrated that after brushing for 15 minutes, the soft-bristle toothbrush group showed a significantly different value (p < 0.05) of nanohybrid surface roughness. The group using medium-bristle toothbrushes showed the value of nano hybrid surface roughness significant difference after brushing for 10 minutes. Conclusion: Roughness occurs more rapidly when brushing with medium-bristle tooth brushes than when brushing with soft-bristle toothbrushes.
The Backscattering Phase Function for a Sphere with a Two-Scale Relief of Rough Surface
NASA Astrophysics Data System (ADS)
Klass, E. V.
2017-12-01
The backscattering of light from spherical surfaces characterized by one and two-scale roughness reliefs has been investigated. The analysis is performed using the three-dimensional Monte-Carlo program POKS-RG (geometrical-optics approximation), which makes it possible to take into account the roughness of objects under study by introducing local geometries of different levels. The geometric module of the program is aimed at describing objects by equations of second-order surfaces. One-scale roughness is set as an ensemble of geometric figures (convex or concave halves of ellipsoids or cones). The two-scale roughness is modeled by convex halves of ellipsoids, with surface containing ellipsoidal pores. It is shown that a spherical surface with one-scale convex inhomogeneities has a flatter backscattering phase function than a surface with concave inhomogeneities (pores). For a sphere with two-scale roughness, the dependence of the backscattering intensity is found to be determined mostly by the lower-level inhomogeneities. The influence of roughness on the dependence of the backscattering from different spatial regions of spherical surface is analyzed.
Addressing scale dependence in roughness and morphometric statistics derived from point cloud data.
NASA Astrophysics Data System (ADS)
Buscombe, D.; Wheaton, J. M.; Hensleigh, J.; Grams, P. E.; Welcker, C. W.; Anderson, K.; Kaplinski, M. A.
2015-12-01
The heights of natural surfaces can be measured with such spatial density that almost the entire spectrum of physical roughness scales can be characterized, down to the morphological form and grain scales. With an ability to measure 'microtopography' comes a demand for analytical/computational tools for spatially explicit statistical characterization of surface roughness. Detrended standard deviation of surface heights is a popular means to create continuous maps of roughness from point cloud data, using moving windows and reporting window-centered statistics of variations from a trend surface. If 'roughness' is the statistical variation in the distribution of relief of a surface, then 'texture' is the frequency of change and spatial arrangement of roughness. The variance in surface height as a function of frequency obeys a power law. In consequence, roughness is dependent on the window size through which it is examined, which has a number of potential disadvantages: 1) the choice of window size becomes crucial, and obstructs comparisons between data; 2) if windows are large relative to multiple roughness scales, it is harder to discriminate between those scales; 3) if roughness is not scaled by the texture length scale, information on the spacing and clustering of roughness `elements' can be lost; and 4) such practice is not amenable to models describing the scattering of light and sound from rough natural surfaces. We discuss the relationship between roughness and texture. Some useful parameters which scale vertical roughness to characteristic horizontal length scales are suggested, with examples of bathymetric point clouds obtained using multibeam from two contrasting riverbeds, namely those of the Colorado River in Grand Canyon, and the Snake River in Hells Canyon. Such work, aside from automated texture characterization and texture segmentation, roughness and grain size calculation, might also be useful for feature detection and classification from point clouds.
The importance of media roughness considerations for describing particle deposition in porous media
NASA Astrophysics Data System (ADS)
Jin, C.; Emelko, M.
2016-12-01
The morphology of media/collector surfaces (i.e., roughness) is one of the most important factors that has been recognized for decades; however, literature has been, for the most part, contradictory, non-mechanistic, and non-quantitative. A one-site kinetic model for attachment/detachment using a convection-diffusion model was used to evaluate particle deposition on collector surfaces in the packed beds. Rigorous controlled experiments addressing the impacts of surface roughness on particle deposition were conducted in parallel plate and packed bed systems; they demonstrated that a) surface roughness consistently influenced colloid deposition in a nonlinear, non-monotonic manner such that a critical roughness size associated with minimum particle deposition could be identified and b) collector surface roughness and background ionic strength concurrently influenced particle deposition. Excellent agreement between experimental data and numerical simulations was found when the most current knowledge representing hydrodynamic and interfacial forces associated with collector media roughness was represented. Although surface roughness also had a non-linear, non-monotonic impact on DLVO interaction energy at all separation distances, it was inadequate for describing and simulating particle deposition on surfaces with variable roughness. Notably, this work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with non-smooth collector surfaces.
CFRP composite mirrors for space telescopes and their micro-dimensional stability
NASA Astrophysics Data System (ADS)
Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo
2010-07-01
Ultra-lightweight and high-accuracy CFRP (carbon fiber reinforced plastics) mirrors for space telescopes were fabricated to demonstrate their feasibility for light wavelength applications. The CTE (coefficient of thermal expansion) of the all- CFRP sandwich panels was tailored to be smaller than 1×10-7/K. The surface accuracy of mirrors of 150 mm in diameter was 1.8 um RMS as fabricated and the surface smoothness was improved to 20 nm RMS by using a replica technique. Moisture expansion was considered the largest in un-predictable surface preciseness errors. The moisture expansion affected not only homologous shape change but also out-of-plane distortion especially in unsymmetrical compositions. Dimensional stability due to the moisture expansion was compared with a structural mathematical model.
NASA Astrophysics Data System (ADS)
Wang, S. G.; Li, X.; Han, X. J.; Jin, R.
2010-06-01
Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Furthermore, retrieval of soil moisture using AIEM-like models is a classic example of the underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to directly obtain surface roughness information along with soil moisture from multi-angular ASAR images. The method first used a semi-empirical relationship that connects the roughness slope (Zs) and the difference in backscattering coefficient (Δσ) from ASAR data in different incidence angles, in combination with an optimal calibration form consisting of two roughness parameters (the standard deviation of surface height and the correlation length), to estimate the roughness parameters. The deduced surface roughness was then used in the AIEM model for the retrieval of soil moisture. An evaluation of the proposed method was performed in a grassland site in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER) was taken place. It has demonstrated that the method is feasible to achieve reliable estimation of soil water content. The key challenge to surface soil moisture retrieval is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.
Modeling of surface roughness effects on Stokes flow in circular pipes
NASA Astrophysics Data System (ADS)
Song, Siyuan; Yang, Xiaohu; Xin, Fengxian; Lu, Tian Jian
2018-02-01
Fluid flow and pressure drop across a channel are significantly influenced by surface roughness on a channel wall. The present study investigates the effects of periodically structured surface roughness upon flow field and pressure drop in a circular pipe at low Reynolds numbers. The periodic roughness considered exhibits sinusoidal, triangular, and rectangular morphologies, with the relative roughness (i.e., ratio of the amplitude of surface roughness to hydraulic diameter of the pipe) no more than 0.2. Based upon a revised perturbation theory, a theoretical model is developed to quantify the effect of roughness on fully developed Stokes flow in the pipe. The ratio of static flow resistivity and the ratio of the Darcy friction factor between rough and smooth pipes are expressed in four-order approximate formulations, which are validated against numerical simulation results. The relative roughness and the wave number are identified as the two key parameters affecting the static flow resistivity and the Darcy friction factor.
Studies of SERS efficiency of gold coated porous silicon formed on rough silicon backside
NASA Astrophysics Data System (ADS)
Dridi, H.; Haji, L.; Moadhen, A.
2017-12-01
Starting from a rough backside of silicon wafer, we have formed a porous layer by electrochemical anodization and then coated by a thin film of gold. The morphological characteristics of the porous silicon and in turn the metal film are governed by the anodization process and also by the starting surface. So, in order to investigate the Plasmonic aspect of such rough surface which combines roughness inherent to the porous nature and that due to rough starting surface, we have used a dye target molecule to study its SERS signal using a porous silicon layer obtained on the rough backside surface. The use of unusual backside of silicon wafer could be, beside the others, an interesting way to made SERS effective substrate thanks to reproducible rough porous gold on porous layer from this starting face. The morphological results correspond to the silicon rough surface as a function of the crystallographic orientation showed the presence of two different substrate structure. The optical reflectivity results obtained of gold deposited on oxidized porous silicon showed a dependence of its Localized Surface Plasmon band frequency of the deposit time. SERS results, obtained for a dye target molecule (Rhodamine 6G), show a higher intensities in the case of the 〈110〉 orientation, which characterized by the higher roughness surface. Voici "the most relevant and important aspects of our work".
NASA Astrophysics Data System (ADS)
Bell, A.; Hioki, S.; Wang, Y.; Yang, P.; Di Girolamo, L.
2016-12-01
Previous studies found that including ice particle surface roughness in forward light scattering calculations significantly reduces the differences between observed and simulated polarimetric and radiometric observations. While it is suggested that some degree of roughness is desirable, the appropriate degree of surface roughness to be assumed in operational cloud property retrievals and the sensitivity of retrieval products to this assumption remains uncertain. In an effort to extricate this ambiguity, we will present a sensitivity analysis of space-borne multi-angle observations of reflectivity, to varying degrees of surface roughness. This process is two fold. First, sampling information and statistics of Multi-angle Imaging SpectroRadiometer (MISR) sensor data aboard the Terra platform, will be used to define the most coming viewing observation geometries. Using these defined geometries, reflectivity will be simulated for multiple degrees of roughness using results from adding-doubling radiative transfer simulations. Sensitivity of simulated reflectivity to surface roughness can then be quantified, thus yielding a more robust retrieval system. Secondly, sensitivity of the inverse problem will be analyzed. Spherical albedo values will be computed by feeding blocks of MISR data comprising cloudy pixels over ocean into the retrieval system, with assumed values of surface roughness. The sensitivity of spherical albedo to the inclusion of surface roughness can then be quantified, and the accuracy of retrieved parameters can be determined.
Optical mapping of surface roughness by implementation of a spatial light modulator
NASA Astrophysics Data System (ADS)
Aulbach, Laura; Pöller, Franziska; Lu, Min; Wang, Shengjia; Koch, Alexander W.
2017-08-01
It is well-known that the surface roughness of materials plays an important role in the operation and performance of technological systems. The roughness influences key parameters, such as friction and wear, and is directly connected to the functionality and durability of the respective system. Tactile methods are widely used for the measurement of surface roughness, but a destructive measurement procedure and the lack of feasibility of online monitoring are crucial drawbacks. In the last decades, several non-contact, usually optical systems for surface roughness measurements have been developed, e.g., white light interferometry, light scatter analysis, or speckle correlation. These techniques are in turn often unable to assign the roughness to a certain surface area or involve inappropriate adjustment procedures. One promising and straightforward optical measurement method is the surface roughness measurement by analyzing the fringe visibility of an interferometric fringe pattern. In our work, we employed a spatial light modulator in the interferometric setup to vary the fringe visibility and provide a stable and reliable measurement system. In previous research, either the averaged fringe visibility or the fringe visibility along a defined observation profile were analyzed. In this article, the analysis of the fringe visibility is extended to generate a complete roughness map of the measurement target. Thus, surface defects or areas of different roughness can be easily located.
Surface and Basal Roughness in Radar Sounding Data: Obstacle and Opportunity
NASA Astrophysics Data System (ADS)
Schroeder, D. M.; Grima, C.; Haynes, M.
2015-12-01
The surface and basal roughness of glaciers, ice sheets, and ice shelves can pose a significant obstacle to the visual interpretation and quantitative analysis of radar sounding data. Areas of high surface roughness - including grounding zones, shear margins, and crevasse fields - can produce clutter and side-lobe signals that obscure the interpretation of englacial and subglacial features. These areas can also introduce significant variation in bed echo strength profiles as a result of losses from two-way propagation through rough ice surfaces. Similarly, reflections from rough basal interfaces beneath ice sheets and ice shelves can also result in large, spatially variable losses in bed echo power. If unmitigated and uncorrected, these effects can degrade or prevent the definitive interpretation of material and geometric properties at the base of ice sheets and ice shelves using radar reflectivity and bed echo character. However, these effects also provide geophysical signatures of surface and basal interface character - including surface roughness, firn density, subglacial bedform geometry, ice shelf basal roughness, marine-ice/brine detection, and crevasse geometry - that can be observed and constrained by exploiting roughness effects in radar sounding data. We present a series of applications and approaches for characterizing and correcting surface and basal roughness effects for airborne radar sounding data collected in Antarctica. We also present challenges, insights, and opportunities for extending these techniques to the orbital radar sounding of Europa's ice shell.
Investigation of Wall Shear Stress Behavior for Rough Surfaces with Blowing
NASA Astrophysics Data System (ADS)
Helvey, Jacob; Borchetta, Colby; Miller, Mark; Martin, Alexandre; Bailey, Sean
2014-11-01
We present an experimental study conducted in a turbulent channel flow wind tunnel to determine the modifications made to the turbulent flow over rough surfaces with flow injection through the surfaces. Hot-wire profile results from a quasi-two-dimensional, sinusoidally-rough surface indicate that the effects of roughness are enhanced by momentum injection through the surface. In particular, the wall shear stress was found to show behavior consistent with increased roughness height when surface blowing was increased. This observed behavior contradicts previously reported results for regular three-dimensional roughness which show a decrease in wall shear stress with additional blowing. It is unclear whether this discrepancy is due to differences in the roughness geometry under consideration or the use of the Clauser fit to estimate wall shear stress. Additional PIV experiments are being conducted for a three-dimensional fibrous surface to obtain Reynolds shear stress profiles. These results provide an additional method for estimation of wall-shear stress and thus allow verification of the use of the Clauser chart approach for flows with momentum injection through the surface. This research is supported by NASA Kentucky EPSCoR Award NNX10AV39A, and NASA RA Award NNX13AN04A.
In vivo surface roughness evolution of a stressed metallic implant
NASA Astrophysics Data System (ADS)
Tan, Henry
2016-10-01
Implant-associated infection, a serious medical issue, is caused by the adhesion of bacteria to the surface of biomaterials; for this process the surface roughness is an important property. Surface nanotopography of medical implant devices can control the extent of bacterial attachment by modifying the surface morphology; to this end a model is introduced to facilitate the analysis of a nanoscale smooth surface subject to mechanical loading and in vivo corrosion. At nanometre scale rough surface promotes friction, hence reduces the mobility of the bacteria; this sessile environment expedites the biofilm growth. This manuscript derives the controlling equation for surface roughness evolution for metallic implant subject to in-plane stresses, and predicts the in vivo roughness changes within 6 h of continued mechanical loading at different stress level. This paper provides analytic tool and theoretical information for surface nanotopography of medical implant devices.
Molecular dynamics simulation of nanobubble nucleation on rough surfaces
NASA Astrophysics Data System (ADS)
Liu, Yawei; Zhang, Xianren
2017-04-01
Here, we study how nanobubbles nucleate on rough hydrophobic surfaces, using long-time standard simulations to directly observe the kinetic pathways and using constrained simulations combined with the thermodynamic integration approach to quantitatively evaluate the corresponding free energy changes. Both methods demonstrate that a two-step nucleation route involving the formation of an intermediate state is thermodynamically favorable: at first, the system transforms from the Wenzel state (liquid being in full contact with the solid surface) to the Cassie state (liquid being in contact with the peaks of the rough surface) after gas cavities occur in the grooves (i.e., the Wenzel-to-Cassie transition); then, the gas cavities coalesce and form a stable surface nanobubble with pinned contact lines (i.e., the Cassie-to-nanobubble transition). Additionally, the free energy barriers for the two transitions show opposing dependencies on the degree of surface roughness, indicating that the surfaces with moderate roughness are favorable for forming stable surface nanobubbles. Moreover, the simulation results also reveal the coexistence and transition between the Wenzel, Cassie, and nanobubble states on rough surfaces.
Calculations of microwave brightness temperature of rough soil surfaces: Bare field
NASA Technical Reports Server (NTRS)
Mo, T.; Schmugge, T. J.; Wang, J. R.
1985-01-01
A model for simulating the brightness temperatures of soils with rough surfaces is developed. The surface emissivity of the soil media is obtained by the integration of the bistatic scattering coefficients for rough surfaces. The roughness of a soil surface is characterized by two parameters, the surface height standard deviation sigma and its horizontal correlation length l. The model calculations are compared to the measured angular variations of the polarized brightness temperatures at both 1.4 GHz and 5 GHz frequences. A nonlinear least-squares fitting method is used to obtain the values of delta and l that best characterize the surface roughness. The effect of shadowing is incorporated by introducing a function S(theta), which represents the probability that a point on a rough surface is not shadowed by other parts of the surface. The model results for the horizontal polarization are in excellent agreement with the data. However, for the vertical polarization, some discrepancies exist between the calculations and data, particularly at the 1.4 GHz frequency. Possible causes of the discrepancy are discussed.
Physiological Strain During Load Carrying: Effects of Mass and Type of Backpack
2001-05-01
load did not significantly increase the EMG signal of the trapezius shoulder muscle (pars descenders). While walking, load carrying significantly...descending part of the right trapezius muscle was measured with two surface silver-silver chloride electrodes (PPG, Hellige), positioned on the distal...values using a previously determined RMS versus force relationship. This calibration curve between RMS of the EMG of the trapezius muscle and the force
Quantification of soil surface roughness evolution under simulated rainfall
USDA-ARS?s Scientific Manuscript database
Soil surface roughness is commonly identified as one of the dominant factors governing runoff and interrill erosion. The objective of this study was to compare several existing soil surface roughness indices and to test the Revised Triangular Prism surface area Method (RTPM) as a new approach to cal...
Deng, Yi; Liu, Xiaochen; Xu, Anxiu; Wang, Lixin; Luo, Zuyuan; Zheng, Yunfei; Deng, Feng; Wei, Jie; Tang, Zhihui; Wei, Shicheng
2015-01-01
As United States Food and Drug Administration-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses an adjustable elastic modulus similar to cortical bone and is a prime candidate to replace surgical metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. In this study, CFRPEEK–nanohydroxyapatite ternary composites (PEEK/n-HA/CF) with variable surface roughness have been successfully fabricated. The effect of surface roughness on their in vitro cellular responses of osteoblast-like MG-63 cells (attachment, proliferation, apoptosis, and differentiation) and in vivo osseointegration is evaluated. The results show that the hydrophilicity and the amount of Ca ions on the surface are significantly improved as the surface roughness of composite increases. In cell culture tests, the results reveal that the cell proliferation rate and the extent of osteogenic differentiation of cells are a function of the size of surface roughness. The composite with moderate surface roughness significantly increases cell attachment/proliferation and promotes the production of alkaline phosphatase (ALP) activity and calcium nodule formation compared with the other groups. More importantly, the PEEK/n-HA/CF implant with appropriate surface roughness exhibits remarkably enhanced bioactivity and osseointegration in vivo in the animal experiment. These findings will provide critical guidance for the design of CFRPEEK-based implants with optimal roughness to regulate cellular behaviors, and to enhance biocompability and osseointegration. Meanwhile, the PEEK/n-HA/CF ternary composite with optimal surface roughness might hold great potential as bioactive biomaterial for bone grafting and tissue engineering applications. PMID:25733834
NASA Astrophysics Data System (ADS)
Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang
2017-07-01
We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P12 for scattering angles between 20°-120°, whereas surface roughness has a much weaker effect, increasing -P12 slightly from 60°-120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered.
The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry
NASA Astrophysics Data System (ADS)
Eid, K. F.; Panth, M.; Sommers, A. D.
2018-03-01
This paper explores the fluid property commonly called surface tension, its effect on droplet shape and contact angle, and the major influences of contact angle behaviour (i.e. surface roughness and surface chemistry). Images of water droplets placed on treated copper surfaces are used to measure the contact angles between the droplets and the surface. The surface wettability is manipulated either by growing a self-assembled monolayer on the surface to make it hydrophobic or by changing the surface roughness. The main activities in this experiment, then, are (1) preparing and studying surfaces with different surface wettability and roughness; (2) determining the shape and contact angles of water droplets on these surfaces; and (3) demonstrating the spontaneous motion of water droplets using surface tension gradients.
Al-Nawas, B; Groetz, K A; Goetz, H; Duschner, H; Wagner, W
2008-01-01
Test of favourable conditions for osseointegration with respect to optimum bone-implant contact (BIC) in a loaded animal model. The varied parameters were surface roughness and surface topography of commercially available dental implants. Thirty-two implants of six types of macro and microstructure were included in the study (total 196). The different types were: minimally rough control: Branemark machined Mk III; oxidized surface: TiUnite MkIII and MkIV; ZL Ticer; blasted and etched surface: Straumann SLA; rough control: titanium plasma sprayed (TPS). Sixteen beagle dogs were implanted with the whole set of the above implants. After a healing period of 8 weeks, implants were loaded for 3 months. For the evaluation of the BIC areas, adequately sectioned biopsies were visualized by subsurface scans with confocal laser scanning microscopy (CLSM). The primary statistical analysis testing BIC of the moderately rough implants (mean 56.1+/-13.0%) vs. the minimally rough and the rough controls (mean 53.9+/-11.2%) does not reveal a significant difference (P=0.57). Mean values of 50-70% BIC were found for all implant types. Moderately rough oxidized implants show a median BIC, which is 8% higher than their minimally rough turned counterpart. The intraindividual difference between the TPS and the blasted and etched counterparts revealed no significant difference. The turned and the oxidized implants show median values of the resonance frequency [implant stability quotients (ISQ)] over 60; the nonself-tapping blasted and etched and TPS implants show median values below 60. In conclusion, the benefit of rough surfaces relative to minimally rough ones in this loaded animal model was confirmed histologically. The comparison of different surface treatment modalities revealed no significant differences between the modern moderately rough surfaces. Resonance frequency analysis seems to be influenced in a major part by the transducer used, thus prohibiting the comparison of different implant systems.
Comparative Study of Lunar Roughness from Multi - Source Data
NASA Astrophysics Data System (ADS)
Lou, Y.; Kang, Z.
2017-07-01
The lunar terrain can show its collision and volcanic history. The lunar surface roughness can give a deep indication of the effects of lunar surface magma, sedimentation and uplift. This paper aims to get different information from the roughness through different data sources. Besides introducing the classical Root-mean-square height method and Morphological Surface Roughness (MSR) algorithm, this paper takes the area of the Jurassic mountain uplift in the Sinus Iridum and the Plato Crater area as experimental areas. And then make the comparison and contrast of the lunar roughness derived from LRO's DEM and CE-2 DOM. The experimental results show that the roughness obtained by the traditional roughness calculation method reflect the ups and downs of the topography, while the results obtained by morphological surface roughness algorithm show the smoothness of the lunar surface. So, we can first use the surface fluctuation situation derived from RMSH to select the landing area range which ensures the lands are gentle. Then the morphological results determine whether the landing area is suitable for the detector walking and observing. The results obtained at two different scales provide a more complete evaluation system for selecting the landing site of the lunar probe.
NASA Astrophysics Data System (ADS)
Anisja, D. H.; Indrani, D. J.; Herda, E.
2017-08-01
Nanotechnology developments in dentistry have resulted in the development of nano-ionomer, a new restorative material. The surface roughness of restorative materials can increase bacteria adhesion and lead to poor oral hygiene. Abrasive agents in toothpaste can alter tooth and restorative material surfaces. The aim of this study is to identify the effect of brushing with nano calcium carbonate, and calcium carbonate toothpaste on surface roughness of nano-ionomer. Eighteen nano-ionomer specimens were brushed with Aquabidest (doubledistilled water), nano calcium carbonate and calcium carbonate toothpaste. Brushing lasted 30 minutes, and the roughness value (Ra) was measured after each 10 minute segment using a surface roughness tester. The data was analyzed using repeated ANOVA and one-way ANOVA test. The value of nano-ionomer surface roughness increased significantly (p<0.05) after 20 minutes of brushing with the nano calcium carbonate toothpaste. Brushing with calcium carbonate toothpaste leaves nano-ionomer surfaces more rugged than brushing with nano calcium carbonate toothpaste.
Hu, Yandong; Werner, Carsten; Li, Dongqing
2004-12-15
Surface roughness has been considered as a passive means of enhancing species mixing in electroosmotic flow through microfluidic systems. It is highly desirable to understand the synergetic effect of three-dimensional (3D) roughness and surface heterogeneity on the electrokinetic flow through microchannels. In this study, we developed a three-dimensional finite-volume-based numerical model to simulate electroosmotic transport in a slit microchannel (formed between two parallel plates) with numerous heterogeneous prismatic roughness elements arranged symmetrically and asymmetrically on the microchannel walls. We consider that all 3D prismatic rough elements have the same surface charge or zeta potential, the substrate (the microchannel wall) surface has a different zeta potential. The results showed that the rough channel's geometry and the electroosmotic mobility ratio of the roughness elements' surface to that of the substrate, epsilon(mu), have a dramatic influence on the induced-pressure field, the electroosmotic flow patterns, and the electroosmotic flow rate in the heterogeneous rough microchannels. The associated sample-species transport presents a tidal-wave-like concentration field at the intersection between four neighboring rough elements under low epsilon(mu) values and has a concentration field similar to that of the smooth channels under high epsilon(mu) values.
NASA Astrophysics Data System (ADS)
Chu, Minghan; Meng, Fanxiao; Bergstrom, Donald J.
2017-11-01
An in-house computational fluid dynamics code was used to simulate turbulent flow over a flat plate with a step change in roughness, exhibiting a smooth-rough-smooth configuration. An internal boundary layer (IBL) is formed at the transition from the smooth to rough (SR) and then the rough to smooth (RS) surfaces. For an IBL the flow far above the surface has experienced a wall shear stress that is different from the local value. Within a Reynolds-Averaged-Navier-Stokes (RANS) formulation, the two-layer k- ɛ model of Durbin et al. (2001) was implemented to analyze the response of the flow to the change in surface condition. The numerical results are compared to experimental data, including some in-house measurements and the seminal work of Antonia and Luxton (1971,72). This problem captures some aspects of roughness in industrial and environmental applications, such as corrosion and the earth's surface heterogeneity, where the roughness is often encountered as discrete distributions. It illustrates the challenge of incorporating roughness models in RANS that are capable of responding to complex surface roughness profiles.
NASA Astrophysics Data System (ADS)
Umbu Kondi Maliwemu, Erich; Malau, Viktor; Iswanto, Priyo Tri
2018-01-01
Shot peening is a mechanical surface treatment with a beneficial effect to generate compressive residual stress caused by plastic deformation on the surface of material. This plastic deformation can improve the surface characteristics of metallic materials, such as modification of surface morphology, surface roughness, and surface hardness. The objective of this study is to investigate the effect of shot peening in different shot distance and shot angle on surface morphology, surface roughness, and surface hardness of 316L biomaterial. Shot distance was varied at 6, 8, 10, and 12 cm and shot angle at 30, 60, and 90°, working pressure at 7 kg/cm2, shot duration for 20 minutes, and using steel balls S-170 with diameter of 0.6 mm. The results present that the shot distance and shot angle of shot peening give the significant effect to improve the surface morphology, surface roughness, and surface hardness of 316 L biomaterial. Shot peening can increase the surface roughness by the increasing of shot distance and by the decreasing of shot angle. The nearest shot distance (6 cm) and the largest shot angle (90°) give the best results on the grain refinement with the surface roughness of 1.04 μm and surface hardness of 534 kg/mm2.
Surface scanning inspection system particle detection dependence on aluminum film morphology
NASA Astrophysics Data System (ADS)
Prater, Walter; Tran, Natalie; McGarvey, Steve
2012-03-01
Physical vapor deposition (PVD) aluminum films present unique challenges when detecting particulate defects with a Surface Scanning Inspection System (SSIS). Aluminum (Al) films 4500Å thick were deposited on 300mm particle grade bare Si wafers at two temperatures using a Novellus Systems INOVA® NExT,.. Film surface roughness and morphology measurements were performed using a Veeco Vx310® atomic force microscope (AFM). AFM characterization found the high deposition temperature (TD) Al roughness (Root Mean Square 16.5 nm) to be five-times rougher than the low-TD Al roughness (rms 3.7 nm). High-TD Al had grooves at the grain boundaries that were measured to be 20 to 80 nm deep. Scanning electron microscopy (SEM) examination, with a Hitachi RS6000 defect review SEM, confirmed the presence of pronounced grain grooves. SEM images established that the low-TD filmed wafers have fine grains (0.1 to 0.3 um diameter) and the high-TD film wafers have fifty-times larger equiaxed plateletshape grains (5 to 15 um diameter). Calibrated Poly-Styrene Latex (PSL) spheres ranging in size from 90 nm to 1 μm were deposited in circular patterns on the wafers using an aerosol deposition chamber. PSL sphere depositions at each spot were controlled to yield 2000 to 5000 counts. A Hitachi LS9100® dark field full wafer SSIS was used to experimentally determine the relationship of the PSL sphere scattered light intensity with S-polarized light, a measure of scattering cross-section, with respect to the calibrated PSL sphere diameter. Comparison of the SSIS scattered light versus PSL spot size calibration curves shows two distinct differences. Scattering cross-section (intensity) of the PSL spheres increased on the low-TD Al film with smooth surface roughness and the low-TD Al film defect detection sensitivity was 126 nm compared to 200 nm for the rougher high- TD Al film. This can be explained by the higher signal to noise attributed to the smooth low-TD Al. Dark field defect detection on surface scanning inspection systems is used to rapidly measure defectivity data. The user generates a calibration curve on the SSIS to plot the intensity of the light scattering derived at each National Institute of Standards and Technology (NIST) certified PSL deposition spot that was deposited. It is not uncommon for the end user to embark upon the time consuming process of attempting to "push" the maximal SSIS film specific sensitivity curve beyond the optical performance capability of the SSIS. Bidirectional reflectance distribution function (BRDF) light scattering modeling was utilized as a means of determining the most appropriate polarity prior to the SSIS recipe creation process. The modeling utilized the Al refractive index (n) and extinction coefficient (k) and the SSIS detector angles and laser wavelength. The modeling results allowed predetermination of the maximal sensitivity for each different Al thickness and eliminate unnecessary recipe modification trial-and-error in search of the SSIS maximal sensitivity. The modeling accurately forecasted the optimal polarization and maximal sensitivity of the SSIS recipe, which, by avoiding a trial and error approach, can result in a substantial savings in time and resources.
Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria.
Preedy, Emily; Perni, Stefano; Nipiĉ, Damijan; Bohinc, Klemen; Prokopovich, Polina
2014-08-12
It is well-known that a number of surface characteristics affect the extent of adhesion between two adjacent materials. One of such parameters is the surface roughness as surface asperities at the nanoscale level govern the overall adhesive forces. For example, the extent of bacterial adhesion is determined by the surface topography; also, once a bacteria colonizes a surface, proliferation of that species will take place and a biofilm may form, increasing the resistance of bacterial cells to removal. In this study, borosilicate glass was employed with varying surface roughness and coated with bovine serum albumin (BSA) in order to replicate the protein layer that covers orthopedic devices on implantation. As roughness is a scale-dependent process, relevant scan areas were analyzed using atomic force microscope (AFM) to determine Ra; furthermore, appropriate bacterial species were attached to the tip to measure the adhesion forces between cells and substrates. The bacterial species chosen (Staphylococci and Streptococci) are common pathogens associated with a number of implant related infections that are detrimental to the biomedical devices and patients. Correlation between adhesion forces and surface roughness (Ra) was generally better when the surface roughness was measured through scanned areas with size (2 × 2 μm) comparable to bacteria cells. Furthermore, the BSA coating altered the surface roughness without correlation with the initial values of such parameter; therefore, better correlations were found between adhesion forces and BSA-coated surfaces when actual surface roughness was used instead of the initial (nominal) values. It was also found that BSA induced a more hydrophilic and electron donor characteristic to the surfaces; in agreement with increasing adhesion forces of hydrophilic bacteria (as determined through microbial adhesion to solvents test) on BSA-coated substrates.
NASA Astrophysics Data System (ADS)
Szwejkowski, Chester; Constantin, Costel; Duda, John; Hopkins, Patrick; Optical Studies of GaN interfaces Collaboration
2013-03-01
Gallium nitride (GaN) is considered the most important semiconductor after the discovery of silicon. Understanding the optical properties of GaN surfaces is imperative in determining the utility and applicability of this class of materials to devices. In this work, we present preliminary results of spectroscopic ellipsometry measurements as a function of surface root mean square (RMS). We used commercially available 5mm x 5mm, one side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a wurtzite crystal structure and they are slightly n-type doped. The GaN substrates were cleaned with Acetone (20 min)/Isopropanol(20 min)/DI water (20 min) before they were submerged into Buffered Oxide Etch (BOE) for 10s - 60s steps. This BOE treatment produced RMS values of 1-30 nm as measured with an atomic force microscope. Preliminary qualitative ellipsometric measurements show that the complex refractive index and the complex dielectric function decrease with an increase of RMS. More measurements need to be done in order to provide explicit quantitative results. This work was supported by the 4-VA Collaborative effort between James Madison University and University of Virginia.
Minimizing distortion and internal forces in truss structures by simulated annealing
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.
1989-01-01
Inaccuracies in the length of members and the diameters of joints of large truss reflector backup structures may produce unacceptable levels of surface distortion and member forces. However, if the member lengths and joint diameters can be measured accurately it is possible to configure the members and joints so that root-mean-square (rms) surface error and/or rms member forces is minimized. Following Greene and Haftka (1989) it is assumed that the force vector f is linearly proportional to the member length errors e(sub M) of dimension NMEMB (the number of members) and joint errors e(sub J) of dimension NJOINT (the number of joints), and that the best-fit displacement vector d is a linear function of f. Let NNODES denote the number of positions on the surface of the truss where error influences are measured. The solution of the problem is discussed. To classify, this problem was compared to a similar combinatorial optimization problem. In particular, when only the member length errors are considered, minimizing d(sup 2)(sub rms) is equivalent to the quadratic assignment problem. The quadratic assignment problem is a well known NP-complete problem in operations research literature. Hence minimizing d(sup 2)(sub rms) is is also an NP-complete problem. The focus of the research is the development of a simulated annealing algorithm to reduce d(sup 2)(sub rms). The plausibility of this technique is its recent success on a variety of NP-complete combinatorial optimization problems including the quadratic assignment problem. A physical analogy for simulated annealing is the way liquids freeze and crystallize. All computational experiments were done on a MicroVAX. The two interchange heuristic is very fast but produces widely varying results. The two and three interchange heuristic provides less variability in the final objective function values but runs much more slowly. Simulated annealing produced the best objective function values for every starting configuration and was faster than the two and three interchange heuristic.
Wetting failure of hydrophilic surfaces promoted by surface roughness
Zhao, Meng-Hua; Chen, Xiao-Peng; Wang, Qing
2014-01-01
Wetting failure is of vital importance to many physical phenomena, such as industrial coating and drop emission. Here we show when and how the surface roughness promotes the destabilization of a moving contact line on a hydrophilic surface. Beyond the balance of the driving force and viscous resistance where a stable wetting interface is sustained, wetting failure occurs and is modified by the roughness of the surface. The promoting effect arises only when the wetting velocity is high enough to create a gas-liquid-solid composite interface in the vicinity of the moving contact line, and it is a function of the intrinsic contact angle and proportion of solid tops. We propose a model to explain splashes of rough solid spheres impacting into liquids. It reveals a novel concept that dynamic wetting on hydrophilic rough surfaces can be similar to that on hydrophobic surfaces, and brings a new way to design surfaces with specific wetting properties. PMID:24948390
Comparison of Predicted and Measured Turbine Vane Rough Surface Heat Transfer
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Spuckler, C. M.; Lucci, B. L.
2000-01-01
The proposed paper compares predicted turbine vane heat transfer for a rough surface over a wide range of test conditions with experimental data. Predictions were made for the entire vane surface. However, measurements were made only over the suction surface of the vane, and the leading edge region of the pressure surface. Comparisons are shown for a wide range of test conditions. Inlet pressures varied between 3 and 15 psia, and exit Mach numbers ranged between 0.3 and 0.9. Thus, while a single roughened vane was used for the tests, the effective rougness,(k(sup +)), varied by more than a factor of ten. Results were obtained for freestream turbulence levels of 1 and 10%. Heat transfer predictions were obtained using the Navier-Stokes computer code RVCQ3D. Two turbulence models, suitable for rough surface analysis, are incorporated in this code. The Cebeci-Chang roughness model is part of the algebraic turbulence model. The k-omega turbulence model accounts for the effect of roughness in the application of the boundary condition. Roughness causes turbulent flow over the vane surface. Even after accounting for transition, surface roughness significantly increased heat transfer compared to a smooth surface. The k-omega results agreed better with the data than the Cebeci-Chang model. However, the low Reynolds number k-omega model did not accurately account for roughness when the freestream turbulence level was low. The high Reynolds number version of this model was more suitable when the freestream turbulence was low.
NASA Astrophysics Data System (ADS)
Du, Hang; Song, Ci; Li, Shengyi
2018-01-01
In order to obtain high precision and high surface quality silicon carbide mirrors, the silicon carbide mirror substrate is subjected to surface modification treatment. In this paper, the problem of Silicon Carbide (SiC) mirror surface roughness deterioration by MRF is studied. The reasons of surface flaws of “Comet tail” are analyzed. Influence principle of MRF polishing depth and the surface roughness of modified SiC mirrors is obtained by experiments. On this basis, the united process of modified SiC mirrors is proposed which is combined MRF with the small grinding head CCOS. The united process makes improvement in the surface accuracy and surface roughness of modified SiC mirrors.
Design and performance of the ALMA-J prototype antenna
NASA Astrophysics Data System (ADS)
Ukita, Nobuharu; Saito, Masao; Ezawa, Hajime; Ikenoue, Bungo; Ishizaki, Hideharu; Iwashita, Hiroyuki; Yamaguchi, Nobuyuki; Hayakawa, Takahiro
2004-10-01
The National Astronomical Observatory of Japan has constructed a prototype 12-m antenna of the Atacama Compact Array to evaluate its performance at the ALMA Test Facility in the NRAO VLA observatory in New Mexico, the United States. The antenna has a CFRP tube backup structure (BUS) with CFRP boards to support 205 machined Aluminum surface panels. Their accuracies were measured to be 5.9 m rms on average. A chemical treatment technique of the surface panels has successfully applied to scatter the solar radiation, which resulted in a subreflector temperature increase of about 25 degrees relative to ambient temperature during direct solar observations. Holography measurements and panel adjustments led to a final surface accuracy of 20 m rms, (weighted by 12dB edge taper), after three rounds of the panel adjustments. Based on a long term temperature monitoring of the BUS and thermal deformation FEM calculation, the BUS thermal deformation was estimated to be less than 3.1 m rms. We have employed gear drive mechanism both for a fast position switching capability and for smooth drive at low velocities. Servo errors measured with angle encoders were found to be less than 0.1 arcseconds rms at rotational velocities below 0.1 degrees s-1 and to increase to 0.7 arcseconds rms at the maximum speed of the 'on-the-fly' scan as a single dish, 0.5 deg s-1 induced by the irregularity of individual gear tooth profiles. Simultaneous measurements of the antenna motion with the angle encoders and seismic accelerometers mounted at the primary reflector mirror edges and at the subreflector showed the same amplitude and phase of oscillation, indicating that they are rigid, suggesting that it is possible to estimate where the antenna is actually pointing from the encoder readout. Continuous tracking measurements of Polaris during day and night have revealed a large pointing drift due to thermal distortion of the yoke structure. We have applied retrospective thermal corrections to tracking data for two hours, with a preliminary thermal deformation model of the yoke, and have found the tracking accuracy improved to be 0.1 - 0.3 arcseconds rms for a 15-munites period. The whole sky absolute pointing error under no wind and during night was measured to be 1.17 arcseconds rms. We need to make both an elaborated modeling of thermal deformation of the structure and systematic searches for significant correlation among pointing errors and metrology sensor outputs to achieve the stable tracking performance requested by ALMA.
Study on Plastic Deformation Characteristics of Shot Peening of Ni-Based Superalloy GH4079
NASA Astrophysics Data System (ADS)
Zhong, L. Q.; Liang, Y. L.; Hu, H.
2017-09-01
In this paper, the X-ray stress diffractometer, surface roughness tester, field emission scanning electron microscope(SEM), dynamic ultra-small microhardness tester were used to measure the surface residual stress and roughness, topography and surface hardness changes of GH4079 superalloy, which was processed by metallographic grinding, turning, metallographic grinding +shot peening and turning + shot peening. Analysized the effects of shot peening parameters on shot peening plastic deformation features; and the effects of the surface state before shot peening on shot peening plastic deformation characteristics. Results show that: the surface residual compressive stress, surface roughness and surface hardness of GH4079 superalloy were increased by shot peening, in addition, the increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening increased with increasing shot peening intensity, shot peening time, shot peening pressure and shot hardness, but harden layer depth was not affected considerably. The more plastic deformation degree of before shot peening surface state, the less increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening.
Characterization, modeling and simulation of fused deposition modeling fabricated part surfaces
NASA Astrophysics Data System (ADS)
Taufik, Mohammad; Jain, Prashant K.
2017-12-01
Surface roughness is generally used for characterization, modeling and simulation of fused deposition modeling (FDM) fabricated part surfaces. But the average surface roughness is not able to provide the insight of surface characteristics with sharp peaks and deep valleys. It deals in the average sense for all types of surfaces, including FDM fabricated surfaces with distinct surface profile features. The present research work shows that kurtosis and skewness can be used for characterization, modeling and simulation of FDM surfaces because these roughness parameters have the ability to characterize a surface with sharp peaks and deep valleys. It can be critical in certain application areas in tribology and biomedicine, where the surface profile plays an important role. Thus, in this study along with surface roughness, skewness and kurtosis are considered to show a novel strategy to provide new transferable knowledge about FDM fabricated part surfaces. The results suggest that the surface roughness, skewness and kurtosis are significantly different at 0° and in the range (0°, 30°], [30°, 90°] of build orientation.
NASA Astrophysics Data System (ADS)
Ramadhani, A. M.; Herda, E.; Triaminingsih, S.
2017-08-01
This study aims to determine the effect of brushing with toothpaste containing nanocalcium carbonate on the roughness of nanofill composite resin surface. Brushing was conducted with 3 types of materials for 3 consecutive brushing periods of 10 minutes each. Surface roughness was measured using a surface-roughness tester and the results were analyzed using the repeated ANOVA and the one-way ANOVA test. The surface morphology was observed using SEM after 3 months’ worth of brushing with the 3 materials. It was found that the nanofill composite resin surface-roughness value increased significantly (p<0.005) after brushing with toothpaste containing nano calcium carbonate for 3 months, but the value was not as high as that obtained when brushing with other types of toothpaste.
Development of hybrid fluid jet/float polishing process
NASA Astrophysics Data System (ADS)
Beaucamp, Anthony T. H.; Namba, Yoshiharu; Freeman, Richard R.
2013-09-01
On one hand, the "float polishing" process consists of a tin lap having many concentric grooves, cut from a flat by single point diamond turning. This lap is rotated above a hydrostatic bearing spindle of high rigidity, damping and rotational accuracy. The optical surface thus floats above a thin layer of abrasive particles. But whilst surface texture can be smoothed to ~0.1nm rms (as measured by atomic force microscopy), this process can only be used on flat surfaces. On the other hand, the CNC "fluid jet polishing" process consists of pumping a mixture of water and abrasive particles to a converging nozzle, thus generating a polishing spot that can be moved along a tool path with tight track spacing. But whilst tool path feed can be moderated to ultra-precisely correct form error on freeform optical surfaces, surface finish improvement is generally limited to ~1.5nm rms (with fine abrasives). This paper reports on the development of a novel finishing method, that combines the advantages of "fluid jet polishing" (i.e. freeform corrective capability) with "float polishing" (i.e. super-smooth surface finish of 0.1nm rms or less). To come up with this new "hybrid" method, computational fluid dynamic modeling of both processes in COMSOL is being used to characterize abrasion conditions and adapt the process parameters of experimental fluid jet polishing equipment, including: (1) geometrical shape of nozzle, (2) position relative to the surface, (3) control of inlet pressure. This new process is aimed at finishing of next generation X-Ray / Gamma Ray focusing optics.
Rough surface reconstruction for ultrasonic NDE simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Wonjae; Shi, Fan; Lowe, Michael J. S.
2014-02-18
The reflection of ultrasound from rough surfaces is an important topic for the NDE of safety-critical components, such as pressure-containing components in power stations. The specular reflection from a rough surface of a defect is normally lower than it would be from a flat surface, so it is typical to apply a safety factor in order that justification cases for inspection planning are conservative. The study of the statistics of the rough surfaces that might be expected in candidate defects according to materials and loading, and the reflections from them, can be useful to develop arguments for realistic safety factors.more » This paper presents a study of real rough crack surfaces that are representative of the potential defects in pressure-containing power plant. Two-dimensional (area) values of the height of the roughness have been measured and their statistics analysed. Then a means to reconstruct model cases with similar statistics, so as to enable the creation of multiple realistic realizations of the surfaces, has been investigated, using random field theory. Rough surfaces are reconstructed, based on a real surface, and results for these two-dimensional descriptions of the original surface have been compared with those from the conventional model based on a one-dimensional correlation coefficient function. In addition, ultrasonic reflections from them are simulated using a finite element method.« less
Relationships between aerodynamic roughness and land use and land cover in Baltimore, Maryland
Nicholas, F.W.; Lewis, J.E.
1980-01-01
Urbanization changes the radiative, thermal, hydrologic, and aerodynamic properties of the Earth's surface. Knowledge of these surface characteristics, therefore, is essential to urban climate analysis. Aerodynamic or surface roughness of urban areas is not well documented, however, because of practical constraints in measuring the wind profile in the presence of large buildings. Using an empirical method designed by Lettau, and an analysis of variance of surface roughness values calculated for 324 samples averaging 0.8 hectare (ha) of land use and land cover sample in Baltimore, Md., a strong statistical relation was found between aerodynamic roughness and urban land use and land cover types. Assessment of three land use and land cover systems indicates that some of these types have significantly different surface roughness characteristics. The tests further indicate that statistically significant differences exist in estimated surface roughness values when categories (classes) from different land use and land cover classification systems are used as surrogates. A Level III extension of the U.S. Geological Survey Level II land use and land cover classification system provided the most reliable results. An evaluation of the physical association between the aerodynamic properties of land use and land cover and the surface climate by numerical simulation of the surface energy balance indicates that changes in surface roughness within the range of values typical of the Level III categories induce important changes in the surface climate.
Shen, Jie; Wan, Mi; Shi, Jiafeng
2018-01-01
The surface roughness of roads is an essential road characteristic. Due to the employed carrying platforms (which are often cars), existing measuring methods can only be used for motorable roads. Until now, there has been no effective method for measuring the surface roughness of un-motorable roads, such as pedestrian and bicycle lanes. This hinders many applications related to pedestrians, cyclists and wheelchair users. In recognizing these research gaps, this paper proposes a method for measuring the surface roughness of pedestrian and bicycle lanes based on Global Positioning System (GPS) and accelerometer sensors on bicycle-mounted smartphones. We focus on the International Roughness Index (IRI), as it is the most widely used index for measuring road surface roughness. Specifically, we analyzed a computing model of road surface roughness, derived its parameters with GPS and accelerometers on bicycle-mounted smartphones, and proposed an algorithm to recognize potholes/humps on roads. As a proof of concept, we implemented the proposed method in a mobile application. Three experiments were designed to evaluate the proposed method. The results of the experiments show that the IRI values measured by the proposed method were strongly and positively correlated with those measured by professional instruments. Meanwhile, the proposed algorithm was able to recognize the potholes/humps that the bicycle passed. The proposed method is useful for measuring the surface roughness of roads that are not accessible for professional instruments, such as pedestrian and cycle lanes. This work enables us to further study the feasibility of crowdsourcing road surface roughness with bicycle-mounted smartphones. PMID:29562731
Estimating small-scale roughness of a rock joint using TLS data
NASA Astrophysics Data System (ADS)
Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh
2016-04-01
Roughness of a rock joint is an important parameter influencing rock mass stability. Besides the surface amplitude, also the roughness direction- and scale-dependency should be observed (i.e. 3D roughness). Up to now most of roughness measurements and parameters rely on point or profile data obtained on small samples, mostly in a laboratory. State-of-the-art remote sensing technologies supply 3D measurements of an in-situ rock surface and therefore enable a 3D roughness parameterization. Detailed morphology of a remote large-scale vertical structure can be best observed by Terrestrial Laser Scanning (TLS). In a short time and from distances of a few hundred meters, TLS provides relatively dense and precise point cloud. Sturzenegger and Stead [2009] showed that the TLS technology and careful fieldwork allow the extraction of first-order roughness profiles, i.e. the surface irregularities with a wavelength greater than about 10 cm. Our goal is to find the lower limit; this is, to define the smallest discernible detail, and appropriate measuring and processing steps to extract this detail from the TLS data. The smallest observable roughness amplitude depends on the TLS data precision, which is limited mostly by an inherent range error (noise). An influence of the TLS noise on the rock joint roughness was analyzed using highly precise reference data acquired by Advanced TOpometric Sensor (ATOS) on a 20x30 cm rock joint sample. ATOS data were interpolated into 1 mm grid, to which five levels (0.5, 1, 1.5, 2, 2.5 mm) of normally distributed noise were added. The 3D surfaces entered direction-dependent roughness parameter computation after Grasselli [2001]. Average roughness of noisy surfaces logarithmically increase with the noise level and is already doubled for 1 mm noise. Performing Monte Carlo simulation roughness parameter noise sensitivity was investigated. Distribution of roughness differences (roughness of noisy surfaces minus roughness of reference ATOS surface) is approximately normal. Standard deviation of differences on average slightly increases with the noise level, but is strongly dependent on the analysis direction. As proved by different researches within the field of signal, image and also TLS data processing, noise can be, to a certain extent, removed by a post-processing step called denoising. In this research, four denoising methods, namely discrete WT (DWT) and stationary WT (SWT), and classic NLM (NLM) and probabilistic NLM (PNLM), were used on noisy ATOS data. Results were compared based on the (i) height and (ii) roughness differences between denoised surfaces and reference ATOS surface, (iii) the peak signal-to-noise ratio (PSNR) and (iv) the visual check of denoised surface. Increased PSNRs and reduced roughness differences prove the importance of the TLS data denoising procedure. In case of SWT, NLM and PNLM the surface is mostly over smoothed, whereas in case of DWT some noise remains. References: - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Sturzenegger, M. and D. Stead (2009). "Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts." Engineering Geology 106(3-4): 163-182.
McConnell, Marla D; Liu, Yu; Nowak, Andrew P; Pilch, Shira; Masters, James G; Composto, Russell J
2010-03-15
Bacterial adhesion to oral hard materials is dependent on various factors, for example, surface roughness and surface composition. In this study, bacteria retention on three oral hard substrates, hydroxyapatite (HAP), enamel, and polished enamel (p-enamel) were investigated. The surface morphology and roughness of the three substrates were measured by scanning probe microscopy. HAP had the roughest surface, followed by enamel and polished enamel. For each individual substrate type, the roughness was shown to increase with scan size up to 50 microm x 50 microm. For HAP and enamel, roughness decreased considerably after formation of a pellicle, while addition of polymer coating to the pellicle layer reduced roughness much less in comparison. Bacterial surface coverage was measured at 30 min, 3 h, and 24 h on both native and surface-modified substrates, which were coated with two different polycarboxylate-based polymers, Gantrez S97 and Carbopol 940. As a result, the polymer coated surfaces had reduced bacteria coverage compared with the native surfaces over all time points and substrates measured. The reduction is the combined effect of electrostatic repulsion and sequestering of Ca(2+) ions at the surface, which plays a key role in the initial adhesion of bacteria to enamel surfaces in models of plaque formation. (c) 2009 Wiley Periodicals, Inc.
Sasaki, Kotaro; Rispin, Karen
2017-01-01
In under-resourced settings where motorized wheelchairs are rarely available, manual wheelchair users with limited upper-body strength and functionalities need to rely on assisting pushers for their mobility. Because traveling surfaces in under-resourced settings are often unpaved and rough, wheelchair pushers could experience high physiological loading. In order to evaluate pushers' physiological loading and to improve wheelchair designs, we built indoor modular units that simulate rough surface conditions, and tested a hypothesis that pushing different wheelchairs would result in different physiological performances and pushers' perception of difficulty on the simulated rough surface. Eighteen healthy subjects pushed two different types of pediatric wheelchairs (Moti-Go manufactured by Motivation, and KidChair by Hope Haven) fitted with a 50-kg dummy on the rough and smooth surfaces at self-selected speeds. Oxygen uptake, traveling distance for 6 minutes, and the rating of difficulty were obtained. The results supported our hypothesis, showing that pushing Moti-Go on the rough surface was physiologically less loading than KidChair, but on the smooth surface, the two wheelchairs did not differ significantly. These results indicate wheelchair designs to improve pushers' performance in under-resourced settings should be evaluated on rough surfaces.
Correlation of bond strength with surface roughness using a new roughness measurement technique.
Winkler, M M; Moore, B K
1994-07-01
The correlation between shear bond strength and surface roughness was investigated using new surface measurement methods. Bonding agents and associated resin composites were applied to set amalgam after mechanically roughening its surface. Surface treatments were noe (as set against glass), 80 grit, and 600 grit abrasive paper. Surface roughness (R(a) as measured parallel and perpendicular (+) to the direction of the polishing scratches and true profile length were measured. A knife-edge was applied (rate = 2.54 mm/min) at the bonding agent/amalgam interface of each sample until failure. Coefficients of determination for mean bond strength vs either roughness (R(a), of profile length were significantly higher for measurements in parallel directions than for those measurements in (+) directions. The shear bond strength to set amalgam for a PENTA-containing adhesives system (L.D. Caulk Division) was not significantly different from that of a PENTA-free adhesive (3M Dental Products Division), even though PENTA has been reported to increase bond strength to nonprecious metals. The shear bond strength of resin composite to amalgam is correlated to surface roughness when it is measured parallel to the polishing scratches. This correlation is significantly lower when surface roughness is measured in the typical manner, perpendicular to the polishing scratches.
NASA Astrophysics Data System (ADS)
Drobny, Jon; Curreli, Davide; Ruzic, David; Lasa, Ane; Green, David; Canik, John; Younkin, Tim; Blondel, Sophie; Wirth, Brian
2017-10-01
Surface roughness greatly impacts material erosion, and thus plays an important role in Plasma-Surface Interactions. Developing strategies for efficiently introducing rough surfaces into ion-solid interaction codes will be an important step towards whole-device modeling of plasma devices and future fusion reactors such as ITER. Fractal TRIDYN (F-TRIDYN) is an upgraded version of the Monte Carlo, BCA program TRIDYN developed for this purpose that includes an explicit fractal model of surface roughness and extended input and output options for file-based code coupling. Code coupling with both plasma and material codes has been achieved and allows for multi-scale, whole-device modeling of plasma experiments. These code coupling results will be presented. F-TRIDYN has been further upgraded with an alternative, statistical model of surface roughness. The statistical model is significantly faster than and compares favorably to the fractal model. Additionally, the statistical model compares well to alternative computational surface roughness models and experiments. Theoretical links between the fractal and statistical models are made, and further connections to experimental measurements of surface roughness are explored. This work was supported by the PSI-SciDAC Project funded by the U.S. Department of Energy through contract DOE-DE-SC0008658.
Cryogenic optical testing results of JWST aspheric test plate lens
NASA Astrophysics Data System (ADS)
Smith, Koby Z.; Towell, Timothy C.
2011-09-01
The James Webb Space Telescope (JWST) Secondary Mirror Assembly (SMA) is a circular 740mm diameter beryllium convex hyperboloid that has a 23.5nm-RMS (λ/27 RMS) on-orbit surface figure error requirement. The radius of curvature of the SMA is 1778.913mm+/-0.45mm and has a conic constant of -1.6598+/-0.0005. The on-orbit operating temperature of the JWST SMA is 22.5K. Ball Aerospace & Technologies Corp. (BATC) is under contract to Northrop Grumman Aerospace Systems (NGAS) to fabricate, assemble, and test the JWST SMA to its on-orbit requirements including the optical testing of the SMA at its cryogenic operating temperature. BATC has fabricated and tested an Aspheric Test Plate Lens (ATPL) that is an 870mm diameter fused silica lens used as the Fizeau optical reference in the ambient and cryogenic optical testing of the JWST Secondary Mirror Assembly (SMA). As the optical reference for the SMA optical test, the concave optical surface of the ATPL is required to be verified at the same 20K temperature range required for the SMA. In order to meet this objective, a state-of-the-art helium cryogenic testing facility was developed to support the optical testing requirements of a number of the JWST optical testing needs, including the ATPL and SMA. With the implementation of this cryogenic testing facility, the ATPL was successfully cryogenically tested and performed to less than 10nm-RMS (λ/63 RMS) surface figure uncertainty levels for proper reference backout during the SMA optical testing program.
Surface roughness manifestations of deep-seated landslide processes
NASA Astrophysics Data System (ADS)
Booth, A. M.; Roering, J. J.; Lamb, M. P.
2012-12-01
In many mountainous drainage basins, deep-seated landslides evacuate large volumes of sediment from small surface areas, leaving behind a strong topographic signature that sets landscape roughness over a range of spatial scales. At long spatial wavelengths of hundreds to thousands of meters, landslides tend to inhibit channel incision and limit topographic relief, effectively smoothing the topography at this length scale. However, at short spatial wavelengths on the order of meters, deformation of deep-seated landslides generates surface roughness that allows expert mappers or automated algorithms to distinguish landslides from the surrounding terrain. Here, we directly connect the characteristic spatial wavelengths and amplitudes of this fine scale surface roughness to the underlying landslide deformation processes. We utilize the two-dimensional wavelet transform with high-resolution, airborne LiDAR-derived digital elevation models to systematically document the characteristic length scales and amplitudes of different kinematic units within slow moving earthflows, a common type of deep-seated landslide. In earthflow source areas, discrete slumped blocks generate high surface roughness, reflecting an extensional deformation regime. In earthflow transport zones, where material translates with minimal surface deformation, roughness decreases as other surface processes quickly smooth short wavelength features. In earthflow depositional toes, compression folds and thrust faults again increase short wavelength surface roughness. When an earthflow becomes inactive, roughness in all of these kinematic zones systematically decreases with time, allowing relative dating of earthflow deposits. We also document how each of these roughness expressions depends on earthflow velocity, using sub-pixel change detection software (COSI-Corr) and pairs of orthorectified aerial photographs to determine spatially extensive landslide surface displacements. In source areas, the wavelength of slumped blocks tends to correlate with velocity as predicted by a simple sliding block model, but the amplitude is insensitive to velocity, suggesting that landslide depth rather than velocity sets this characteristic block amplitude. In both transport zones and depositional toes, the amplitude of the surface roughness is higher where the longitudinal gradient in velocity is higher, confirming that differential movement generates and maintains this fine scale roughness.
Analysis of Surface Roughness at Overlapping Laser Shock Peening
NASA Astrophysics Data System (ADS)
Dai, F. Z.; Zhang, Z. D.; Zhou, J. Z.; Lu, J. Z.; Zhang, Y. K.
2016-02-01
The overlapping effects on surface roughness are studied when samples are treated by laser shock peening (LSP). Surface roughness of overlapped circular laser spot is calculated by ISO 25178 height parameters. The usually used overlapping styles namely isosceles-right-triangle-style (AAP) and equilateral-triangle-style (AAA) are carefully investigated when the overlapping degree in x-axis (ηx) is below 50%. Surface roughness of isosceles-right-triangle-style attains its minimum value at ηx of 29.3%, and attains its maximum value at ηx of 43.6%. Surface roughness of equilateral-triangle-style attains its minimum value at ηx of 42.3%, and attains its maximum value at ηx of 32%. Experimental results are well consistent with theoretical analysis.
He, Min; Zhang, Zutai; Zheng, Dongxiang; Ding, Ning; Liu, Yan
2014-01-01
This study aims to investigate the effect of sandblasting on the surface roughness of zirconia and the shear bond strength of the veneering porcelain. Pre-sintered zirconia plates were prepared and divided into four groups. Group A were not treated at all; group B were first sandblasted under 0.2 MPa pressure and then densely sintered; group C and D were sintered first, and then sandblasted under 0.2 MPa and 0.4 MPa pressures respectively. Surface roughness was measured and 3D roughness was reconstructed for the specimens, which were also analyzed with X-ray diffractometry. Finally after veneering porcelain sintering, shear bond tests were conducted. Sandblasting zirconia before sintering significantly increased surface roughness and the shear bond strength between zirconia and veneering porcelain (p<0.05). Sandblasting zirconia before sintering is a useful method to increase surface roughness and could successfully improve the bonding strength of veneering porcelain.
MacKinnon, D.J.; Clow, G.D.; Tigges, R.K.; Reynolds, R.L.; Chavez, P.S.
2004-01-01
The vulnerability of dryland surfaces to wind erosion depends importantly on the absence or the presence and character of surface roughness elements, such as plants, clasts, and topographic irregularities that diminish wind speed near the surface. A model for the friction velocity ratio has been developed to account for wind sheltering by many different types of co-existing roughness elements. Such conditions typify a monitored area in the central Mojave Desert, California, that experiences frequent sand movement and dust emission. Two additional models are used to convert the friction velocity ratio to the surface roughness length (zo) for momentum. To calculate roughness lengths from these models, measurements were made at 11 sites within the monitored area to characterize the surface roughness element. Measurements included (1) the number of roughness species (e.g., plants, small-scale topography, clasts), and their associated heights and widths, (2) spacing among species, and (3) vegetation porosity (a measurement of the spatial distribution of woody elements of a plant). Documented or estimated values of drag coefficients for different species were included in the modeling. At these sites, wind-speed profiles were measured during periods of neutral atmospheric stability using three 9-m towers with three or four calibrated anemometers on each. Modeled roughness lengths show a close correspondence (correlation coefficient, 0.84-0.86) to the aerodynamically determined values at the field sites. The geometric properties of the roughness elements in the model are amenable to measurement at much higher temporal and spatial resolutions using remote-sensing techniques than can be accomplished through laborious ground-based methods. A remote-sensing approach to acquire values of the modeled roughness length is particularly important for the development of linked surface/atmosphere wind-erosion models sensitive to climate variability and land-use changes in areas such as the southwestern United States, where surface roughness has large spatial and temporal variations. ?? 2004 Elsevier B.V. All rights reserved.
How surface mounds and depressions change during rainfall events
USDA-ARS?s Scientific Manuscript database
The soil roughness, or microrelief, controls processes occurring on the surface. Although there are numerous studies on how soil roughness affects soil erosion processes, little are focused on quantifying different roughness functions on surface hydrology and erosion, i.e., water diverging and soil...
NASA Astrophysics Data System (ADS)
Rascle, Nicolas; Molemaker, Jeroen; Marié, Louis; Nouguier, Frédéric; Chapron, Bertrand; Lund, Björn; Mouche, Alexis
2017-06-01
Fine-scale current gradients at the ocean surface can be observed by sea surface roughness. More specifically, directional surface roughness anomalies are related to the different horizontal current gradient components. This paper reports results from a dedicated experiment during the Lagrangian Submesoscale Experiment (LASER) drifter deployment. A very sharp front, 50 m wide, is detected simultaneously in drifter trajectories, sea surface temperature, and sea surface roughness. A new observational method is applied, using Sun glitter reflections during multiple airplane passes to reconstruct the multiangle roughness anomaly. This multiangle anomaly is consistent with wave-current interactions over a front, including both cross-front convergence and along-front shear with cyclonic vorticity. Qualitatively, results agree with drifters and X-band radar observations. Quantitatively, the sharpness of roughness anomaly suggests intense current gradients, 0.3 m s-1 over the 50 m wide front. This work opens new perspectives for monitoring intense oceanic fronts using drones or satellite constellations.
Quantifying surface roughness effects on phonon transport in silicon nanowires.
Lim, Jongwoo; Hippalgaonkar, Kedar; Andrews, Sean C; Majumdar, Arun; Yang, Peidong
2012-05-09
Although it has been qualitatively demonstrated that surface roughness can reduce the thermal conductivity of crystalline Si nanowires (SiNWs), the underlying reasons remain unknown and warrant quantitative studies and analysis. In this work, vapor-liquid-solid (VLS) grown SiNWs were controllably roughened and then thoroughly characterized with transmission electron microscopy to obtain detailed surface profiles. Once the roughness information (root-mean-square, σ, correlation length, L, and power spectra) was extracted from the surface profile of a specific SiNW, the thermal conductivity of the same SiNW was measured. The thermal conductivity correlated well with the power spectra of surface roughness, which varies as a power law in the 1-100 nm length scale range. These results suggest a new realm of phonon scattering from rough interfaces, which restricts phonon transport below the Casimir limit. Insights gained from this study can help develop a more concrete theoretical understanding of phonon-surface roughness interactions as well as aid the design of next generation thermoelectric devices.
Influence of polishing on surface roughness following toothbrushing wear of composite resins.
Dalla-Vecchia, Karine Battestin; Taborda, Talita Damas; Stona, Deborah; Pressi, Heloísa; Burnett Júnior, Luiz Henrique; Rodrigues-Junior, Sinval Adalberto
2017-01-01
This study aimed to evaluate the influence of different polishing systems on the surface roughness of composite resins following procedures to simulate the effects of toothbrushing over time. Four currently available commercial composites were used to make 128 cylindrical specimens. The specimens were randomly allocated to polishing with a 1-step polisher or 1 of 3 multistep polishers (n = 8 per group). The baseline surface roughness was measured, and the specimens were submitted to 5000, 10,000, and 20,000 brushing cycles to represent toothbrushing throughout 6, 12, and 24 months, respectively. Results showed that surface roughness was influenced by the type of composite and polishing system and was not influenced by the simulated toothbrushing time. However, the surface roughness, as challenged by toothbrushing wear, was affected by the interaction among the composite, the polisher, and the toothbrushing time. The 1-step polisher produced the highest surface roughness and influenced toothbrushing wear resistance of some composites.
Surface roughness model based on force sensors for the prediction of the tool wear.
de Agustina, Beatriz; Rubio, Eva María; Sebastián, Miguel Ángel
2014-04-04
In this study, a methodology has been developed with the objective of evaluating the surface roughness obtained during turning processes by measuring the signals detected by a force sensor under the same cutting conditions. In this way, the surface quality achieved along the process is correlated to several parameters of the cutting forces (thrust forces, feed forces and cutting forces), so the effect that the tool wear causes on the surface roughness is evaluated. In a first step, the best cutting conditions (cutting parameters and radius of tool) for a certain quality surface requirement were found for pieces of UNS A97075. Next, with this selection a model of surface roughness based on the cutting forces was developed for different states of wear that simulate the behaviour of the tool throughout its life. The validation of this model reveals that it was effective for approximately 70% of the surface roughness values obtained.
NASA Astrophysics Data System (ADS)
Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon
2017-04-01
In relation to the shearing of rock joints, the precise and continuous evaluation of asperity interlocking, dilation, and basic friction properties has been the most important task in the modeling of shear strength. In this paper, in order to investigate these controlling factors, two types of limestone joint samples were prepared and CNL direct shear tests were performed on these joints under various shear conditions. One set of samples were travertine and another were onyx marble with slickensided surfaces, surfaces ground to #80, and rough surfaces were tested. Direct shear experiments conducted on slickensided and ground surfaces of limestone indicated that by increasing the applied normal stress, under different shearing rates, the basic friction coefficient decreased. Moreover, in the shear tests under constant normal stress and shearing rate, the basic friction coefficient remained constant for the different contact sizes. The second series of direct shear experiments in this research was conducted on tension joint samples to evaluate the effect of surface roughness on the shear behavior of the rough joints. This paper deals with the dilation and roughness interlocking using a method that characterizes the surface roughness of the joint based on a fundamental combined surface roughness concept. The application of stress-dependent basic friction and quantitative roughness parameters in the continuous modeling of the shear behavior of rock joints is an important aspect of this research.
NASA Astrophysics Data System (ADS)
Champion, J.; Ristorcelli, T.; Ferrari, C. C.; Briottet, X.; Jacquemoud, S.
2013-12-01
Surface roughness is a key physical parameter that governs various processes (incident radiation distribution, temperature, erosion,...) on Earth and other Solar System objects. Its impact on the scattering function of incident electromagnetic waves is difficult to model. In the 80's, Hapke provided an approximate analytic solution for the bidirectional reflectance distribution function (BRDF) of a particulate medium and, later on, included the effect of surface roughness as a correction factor for the BRDF of a smooth surface. This analytical radiative transfer model is widely used in solar system science whereas its ability to remotely determine surface roughness is still a question at issue. The validation of the Hapke model has been only occasionally undertaken due to the lack of radiometric data associated with field measurement of surface roughness. We propose to validate it on Earth, on several volcanic terrains for which very high resolution digital elevation models are available at small scale. We simulate the BRDF of these DEMs thanks to a ray-tracing code and fit them with the Hapke model to retrieve surface roughness. The mean slope angle of the facets, which quantifies surface roughness, can be fairly well retrieved when most conditions are met, i.e. a random-like surface and little multiple scattering between the facets. A directional sensitivity analysis of the Hapke model confirms that both surface intrinsic optical properties (facet's reflectance or single scattering albedo) and roughness are the most influential variables on ground BRDFs. Their interactions in some directions explain why their separation may be difficult, unless some constraints are introduced in the inversion process. Simulation of soil surface BRDF at different illumination and viewing angles
Specular Reflection from Rough Surfaces Revisited
NASA Astrophysics Data System (ADS)
Yasuda, Kensei; Kim, Alvin; Cho, Hayley; Timofejev, Timofej; Walecki, Wojciech J.; Klep, James; Edelson, Amy S.; Walecki, Abigail S.; Walecki, Eve S.; Walecki, Peter S.
2016-10-01
In his beautiful paper, Hasan Fakhruddin reported observations of mirror-like reflections in the rough surface of a ground glass plate. Similar effects have been recently employed for metrology of the roughness of optical diffusers used in modern light emitting device illumination systems. We report the observations of specular reflection in nontransparent rough surfaces at oblique angles, where roughness was treated as a variable. We present a simple trigonometry-based model explaining the observed phenomenon, which we experimentally validated using aluminum surfaces that have controlled roughness. The reported demonstration requires no special equipment, other than cellphone cameras, dielectric or metal plate, and sandpaper, and serves as an introduction to wave optics. This activity can be used to get further insight into everyday applications of wave optics for students already familiar with wave optics fundamentals.
Highly controllable ICP etching of GaAs based materials for grating fabrication
NASA Astrophysics Data System (ADS)
Weibin, Qiu; Jiaxian, Wang
2012-02-01
Highly controllable ICP etching of GaAs based materials with SiCl4/Ar plasma is investigated. A slow etching rate of 13 nm/min was achieved with RF1 D 10 W, RF2 D 20 W and a high ratio of Ar to SiCl4 flow. First order gratings with 25 nm depth and 140 nm period were fabricated with the optimal parameters. AFM analysis indicated that the RMS roughness over a 10 × 10 μm2 area was 0.3 nm, which is smooth enough to regrow high quality materials for devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.
2015-04-24
One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as anmore » absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.« less
Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces
NASA Astrophysics Data System (ADS)
Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.
2004-06-01
The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.
Modeling of surface roughness effects on glaze ice accretion
NASA Technical Reports Server (NTRS)
Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark
1990-01-01
A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.
Porwal, Anand; Khandelwal, Meenakshi; Punia, Vikas; Sharma, Vivek
2017-01-01
Aim: The purpose of this study was to evaluate the effect of different denture cleansers on the color stability, surface hardness, and roughness of different denture base resins. Materials and Methods: Three denture base resin materials (conventional heat cure resin, high impact resin, and polyamide denture base resin) were immersed for 180 days in commercially available two denture cleansers (sodium perborate and sodium hypochlorite). Color, surface roughness, and hardness were measured for each sample before and after immersion procedure. Statistical Analysis: One-way analysis of variance and Tukey's post hoc honestly significant difference test were used to evaluate color, surface roughness, and hardness data before and after immersion in denture cleanser (α =0.05). Results: All denture base resins tested exhibited a change in color, surface roughness, and hardness to some degree in both denture cleansers. Polyamides resin immersed in sodium perborate showed a maximum change in color after immersion for 180 days. Conventional heat cure resin immersed in sodium hypochlorite showed a maximum change in surface roughness and conventional heat cure immersed in sodium perborate showed a maximum change in hardness. Conclusion: Color changes of all denture base resins were within the clinically accepted range for color difference. Surface roughness change of conventional heat cure resin was not within the clinically accepted range of surface roughness. The choice of denture cleanser for different denture base resins should be based on the chemistry of resin and cleanser, denture cleanser concentration, and duration of immersion. PMID:28216847
NASA Technical Reports Server (NTRS)
Sun, W.; Loeb, N. G.; Videen, G.; Fu, Q.
2004-01-01
Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional micro-roughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 mum, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than similar to 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than similar to 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than similar to 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light.
Comparison of two metrological approaches for the prediction of human haptic perception
NASA Astrophysics Data System (ADS)
Neumann, Annika; Frank, Daniel; Vondenhoff, Thomas; Schmitt, Robert
2016-06-01
Haptic perception is regarded as a key component of customer appreciation and acceptance for various products. The prediction of customers’ haptic perception is of interest both during product development and production phases. This paper presents the results of a multivariate analysis between perceived roughness and texture related surface measurements, to examine whether perceived roughness can be accurately predicted using technical measurements. Studies have shown that standardized measurement parameters, such as the roughness coefficients (e.g. Rz or Ra), do not show a one-dimensional linear correlation with the human perception (of roughness). Thus, an alternative measurement method was compared to standard measurements of roughness, in regard to its capability of predicting perceived roughness through technical measurements. To estimate perceived roughness, an experimental study was conducted in which 102 subjects evaluated four sets of 12 different geometrical surface structures regarding their relative perceived roughness. The two different metrological procedures were examined in relation to their capability to predict the perceived roughness of the subjects stated within the study. The standardized measurements of the surface roughness were made using a structured light 3D-scanner. As an alternative method, surface induced vibrations were measured by a finger-like sensor during robot-controlled traverse over a surface. The presented findings provide a better understanding of the predictability of human haptic perception using technical measurements.
Shin, Young-Kyu; Han, Chong-Hyun; Heo, Seong-Joo; Kim, Sunjai; Chun, Heoung-Jae
2006-01-01
To evaluate the influence of macro- and microstructure of the implant surface at the marginal bone level after functional loading. Sixty-eight patients were randomly assigned to 1 of 3 groups. The first group received 35 implants with a machined neck (Ankylos); the second group, 34 implants with a rough-surfaced neck (Stage 1); and the third, 38 implants with a rough-surfaced neck with microthreads (Oneplant). Clinical and radiographic examinations were conducted at baseline (implant loading) and 3, 6, and 12 months postloading. Two-way repeated analysis of variance (ANOVA) was used to test the significance of marginal bone change of each tested group at baseline, 3, 6, and 12 month follow-ups and 1-way ANOVA was also used to compare the bone loss of each time interval within the same implant group (P < .05). At 12 months, significant differences were noted in the amount of alveolar bone loss recorded for the 3 groups (P < .05). The group with the rough-surfaced microthreaded neck had a mean crestal bone loss of 0.18 +/- 0.16 mm; the group with the rough-surfaced neck, 0.76 +/- 0.21 mm; and the group with the machined neck, 1.32 +/- 0.27 mm. In the rough-surfaced group and the rough-surfaced microthreaded group, no statistically significant changes were observed after 3 months, whereas the machined-surface group showed significant bone loss for every interval (P < .05). To minimize marginal bone loss, in addition to the use of a rough surface at the marginal bone level, a macroscopic modification such as the addition of microthreads could be recommended. A rough surface and microthreads at the implant neck not only reduce crestal bone loss but also help with early biomechanical adaptation against loading in comparison to the machined neck design. A rough surface with microthreads at the implant neck was the most effective design to maintain the marginal bone level against functional loading.
The machined surface of magnesium AZ31 after rotary turning at air cooling condition
NASA Astrophysics Data System (ADS)
Akhyar, G.; Purnomo, B.; Hamni, A.; Harun, S.; Burhanuddin, Y.
2018-04-01
Magnesium is a lightweight metal that is widely used as an alternative to iron and steel. Magnesium has been applied in the automotive industry to reduce the weight of a component, but the machining process has the disadvantage that magnesium is highly flammable because it has a low flash point. High temperature can cause the cutting tool wear and contributes to the quality of the surface roughness. The purpose of this study is to obtain the value of surface roughness and implement methods of rotary cutting tool and air cooling output vortex tube cooler to minimize the surface roughness values. Machining parameters that is turning using rotary cutting tool at speed the workpiece of (Vw) 50, 120, 160 m/min, cutting speed of rotary tool of (Vt) 25, 50, 75 m/min, feed rate of (f) 0.1, 0.15, 0.2 mm/rev, and depth of cut of 0.3 mm. Type of tool used is a carbide tool diameter of 16 mm and air cooling pressure of 6 bar. The results show the average value of the lowest surface roughness on the speed the workpiece of 80 m/min, cutting speed of rotary tool of 50 m/min, feed rate of 0.2 mm/rev, and depth of cut of 0.3 mm. While the average value of the highest surface roughness on the speed the workpiece of 160 m/min, cutting speed of rotary tool of 50 m/min, feed rate of 0.2 mm/rev, and depth of cut of 0.3 mm. The influence of machining parameters concluded the higher the speed of the workpiece the surface roughness value higher. Otherwise the higher cutting speed of rotary tool then the lower the surface roughness value. The observation on the surface of the rotary tool, it was found that no uniform tool wear which causes non-uniform surface roughness. The use of rotary cutting tool contributing to lower surface roughness values generated.
Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel
NASA Astrophysics Data System (ADS)
Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich
2015-06-01
In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest.
NASA Astrophysics Data System (ADS)
Simpson, R. A.; Tyler, G. L.; Paetzold, M.; Haeusler, B.; Asmar, S. W.
2009-12-01
Early spacecraft-to-Earth bistatic radar (BSR) probing of Mars' surface emphasized measurement of rms surface slopes on scales of centimeters to a few meters, information of particular interest to the design and deployment of landers and rovers. Shorter wavelengths yielded higher values, consistent with fractal models in which surface texture becomes rougher as the measuring instrument senses more detail. Although Mars Express (MEX) has found the smoothest extraterrestrial solid surface yet observed by radar (0.17 deg rms in the north polar region), its antenna pattern typically illuminates only part of the scattering surface, making rms slope determination difficult. With careful calibration, however, the ratio of echo power in its two orthogonal polarizations can be used to infer the dielectric constant of the surface material from the Fresnel reflection coefficients. Early results showed larger dielectric constant at 12.6 cm than 3.6 cm, consistent with materials which become more densely packed at depth; as the data collection continued, regional variations became apparent. More puzzling, are cases in which the derived dielectric constant is 30 percent larger at the shorter wavelength, suggesting a centimeter of crust (invisible at 12.6 cm wavelength) overlying less dense regolith below. Duricrust layers have been inferred in some of these areas from thermal measurements; and a layer of gravel, stripped of finer particles, could produce similar effects. Earth-to-spacecraft BSR could improve measurement sensitivity by factors of 100-1000; spacecraft-to-spacecraft experiments could improve surface coverage. All three configurations, including the conventional 'downlink' experiments now being conducted, can provide basic information on surface structure to depths of a few centimeters.
Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness
NASA Astrophysics Data System (ADS)
Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah
2018-01-01
In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.
Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces.
Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee; Song, Hwangjun
2010-11-01
This study investigated the surface characteristics and in vitro osteoconductivity of a titanium (Ti) surface incorporated with the magnesium ions (Mg) produced by hydrothermal treatment for future application as an endosseous implant surface. Mg-incorporated Ti oxide surfaces were produced by hydrothermal treatment using Mg-containing solution on two different microstructured surfaces--abraded minimally rough (Ma) or grit-blasted moderately rough (RBM) samples. The surface characteristics were evaluated using scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). MC3T3-E1 pre-osteoblast cell attachment, proliferation, alkaline phosphatase (ALP) activity, and quantitative analysis of osteoblastic gene expression on Ma, RBM, Mg-incorporated Ma (Mg), and Mg-incorporated grit-blasted (RBM/Mg) Ti surfaces were evaluated. Hydrothermal treatment produced an Mg-incorporated Ti oxide layer with nanoporous surface structures. Mg-incorporated surfaces showed surface morphologies and surface roughness values almost identical to those of untreated smooth or micro-rough surfaces at the micron scale. ICP-AES analysis showed Mg ions released from treated surfaces into the solution. Mg incorporation significantly increased cellular attachment (P=0 at 0.5 h, P=0.01 at 1 h) on smooth surfaces, but no differences were found on micro-rough surfaces. Mg incorporation further increased ALP activity in cells grown on both smooth and micro-rough surfaces at 7 and 14 days of culture (P=0). Real-time polymerase chain reaction analysis showed higher mRNA expressions of the osteoblast transcription factor gene (Dlx5), various integrins, and the osteoblast phenotype genes (ALP, bone sialoprotein and osteocalcin) in cells grown on micro-rough (RBM) and Mg-incorporated (Mg and RBM/Mg) surfaces than those on Ma surfaces. Mg incorporation further increased the mRNA expressions of key osteoblast genes and integrins (α1, α2, α5, and β1) in cells grown on both the smooth and the micro-rough surfaces. These results indicate that an Mg-incorporated nanoporous Ti oxide surface produced by hydrothermal treatment may improve implant bone healing by enhancing the attachment and differentiation of osteoblastic cells. © 2010 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Novareza, O.; Sulistiyarini, D. H.; Wiradmoko, R.
2018-02-01
This paper presents the result of using Taguchi method in turning process of medium carbon steel of AISI 4140. The primary concern is to find the optimal surface roughness after turning process. The taguchi method is used to get a combination of factors and factor levels in order to get the optimum surface roughness level. Four important factors with three levels were used in experiment based on Taguchi method. A number of 27 experiments were carried out during the research and analysed using analysis of variance (ANOVA) method. The result of surface finish was determined in Ra type surface roughness. The depth of cut was found to be the most important factors for reducing the surface roughness of AISI 4140 steel. On the contrary, the other important factors i.e. spindle speed and rake side angle of the tool were proven to be less factors that affecting the surface finish. It is interesting to see the effect of coolant composition that gained the second important factors to reduce the roughness. It may need further research to explain this result.
NASA Astrophysics Data System (ADS)
Li, Yonggang; Yang, Yang; Short, Michael P.; Ding, Zejun; Zeng, Zhi; Li, Ju
2017-01-01
In fusion devices, ion retention and sputtering of materials are major concerns in the selection of compatible plasma-facing materials (PFMs), especially in the context of their microstructural conditions and surface morphologies. We demonstrate how surface roughness changes ion implantation and sputtering of materials under energetic ion irradiation. Using a new, sophisticated 3D Monte Carlo (MC) code, IM3D, and a random rough surface model, ion implantation and the sputtering yields of tungsten (W) with a surface roughness varying between 0-2 µm have been studied for irradiation by 0.1-1 keV D+, He+ and Ar+ ions. It is found that both ion backscattering and sputtering yields decrease with increasing roughness; this is hereafter called the ion radiation albedo effect. This effect is mainly dominated by the direct, line-of-sight deposition of a fraction of emitted atoms onto neighboring asperities. Backscattering and sputtering increase with more oblique irradiation angles. We propose a simple analytical formula to relate rough-surface and smooth-surface results.
Simple model of surface roughness for binary collision sputtering simulations
NASA Astrophysics Data System (ADS)
Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew
2017-02-01
It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.
USDA-ARS?s Scientific Manuscript database
Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address...
Roughness based perceptual analysis towards digital skin imaging system with haptic feedback.
Kim, K
2016-08-01
To examine psoriasis or atopic eczema, analyzing skin roughness by palpation is essential to precisely diagnose skin diseases. However, optical sensor based skin imaging systems do not allow dermatologists to touch skin images. To solve the problem, a new haptic rendering technology that can accurately display skin roughness must be developed. In addition, the rendering algorithm must be able to filter spatial noises created during 2D to 3D image conversion without losing the original roughness on the skin image. In this study, a perceptual way to design a noise filter that will remove spatial noises and in the meantime recover maximized roughness is introduced by understanding human sensitivity on surface roughness. A visuohaptic rendering system that can provide a user with seeing and touching digital skin surface roughness has been developed including a geometric roughness estimation method from a meshed surface. In following, a psychophysical experiment was designed and conducted with 12 human subjects to measure human perception with the developed visual and haptic interfaces to examine surface roughness. From the psychophysical experiment, it was found that touch is more sensitive at lower surface roughness, and vice versa. Human perception with both senses, vision and touch, becomes less sensitive to surface distortions as roughness increases. When interact with both channels, visual and haptic interfaces, the performance to detect abnormalities on roughness is greatly improved by sensory integration with the developed visuohaptic rendering system. The result can be used as a guideline to design a noise filter that can perceptually remove spatial noises while recover maximized roughness values from a digital skin image obtained by optical sensors. In addition, the result also confirms that the developed visuohaptic rendering system can help dermatologists or skin care professionals examine skin conditions by using vision and touch at the same time. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effect of sealer coating and storage methods on the surface roughness of soft liners.
Usta Kutlu, Ilknur; Yanikoğlu, Nuran Dinckal; Kul, Esra; Duymuş, Zeynep Yesïl; Sağsöz, Nurdan Polat
2016-03-01
A soft lining is applied under a removable prosthesis for various reasons. The porosity of the lining material may increase colonization by microorganisms and cause tissue inflammation. The purpose of this in vitro study was to evaluate the effect of sealer coating on the surface roughness of soft lining materials under 4 different conditions. A total of 125 specimens were prepared. One high-temperature silicone-based soft lining material and 2 room-temperature-polymerized soft lining materials (1 silicone-based and 1 methacrylate-based) were used. Twenty-five specimens of each room-temperature soft lining material were coated with 2 layers of surface sealer. Additionally, 5 specimens of each material were stored in either distilled water, Coca-Cola, denture cleanser, saliva, or air. The surface roughness was measured at baseline and after 1, 7, 14, and 28 days. Surface roughness values were analyzed with repeated measures analysis of variance, and the Bonferroni multiple comparison test was performed using time-dependent groups and storage methods. In the time-dependent groups, methacrylate-based sealer-coated soft liners exhibited a significant increase in roughness (1.74-2.09 μm, P<.001), and silicone-based sealer-coated soft liners exhibited a decrease in roughness, but it was not significant (2.16-2.02 μm, P>.05). Therefore, the sealer coating was not effective in reducing surface roughness. Among the time-dependent storage methods, the denture cleanser exhibited an almost significant increase in roughness (1.83-1.99 μm, P=.054). Coca-Cola and artificial saliva did not show a significant difference (P>.05). However, a significant decrease in roughness was found with distilled water (P=.02) and air (P<.001). Statistically significant differences in surface roughness were found among the different types of soft liners. The sealer coating had no significant effect, and denture cleanser slightly increased the surface roughness. Contrary to expectations, the roughness did not increase in all groups over time. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
[Modeling and Simulation of Spectral Polarimetric BRDF].
Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu
2016-01-01
Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.
Eggshell structure in Caiman latirostris eggs improves embryo survival during nest inundation.
Cedillo-Leal, César; Simoncini, Melina S; Leiva, Pamela M L; Larriera, Alejandro; Lang, Jeffrey W; Piña, Carlos I
2017-05-17
Egg inundation often results in poor hatching success in crocodylians. However, how tolerant eggs are to submergence, and/or how eggshell ultrastructure may affect embryo survival when inundated, are not well understood. In this study, our objective was to determine if embryo survival in Caiman latirostris is affected by eggshell surface roughness, when eggs are submerged under water. Tolerance to inundation was tested early (day 30) versus late (day 60) in development, using eight clutches (four per time treatments), subdivided into four groups: ( N = 9 per clutch per treatment; 9 × 4 = 36 eggs per group). 'Rough' eggshell represented the natural, unmodified eggshell surface structure. 'Smooth' eggshell surface structure was created by mechanically sanding the natural rough surface to remove surface columnar elements and secondary layer features, e.g. irregularities that result in 'roughness'. When inundated by submerging eggs under water for 10 h at day 30, 'smooth' eggshell structure resulted in more than twice as many dead embryos (16 versus 6, smooth versus rough; N = 36), and fewer than half as many healthy embryos (6 versus 13, smooth versus rough, respectively; N = 36). By contrast, at day 60, inundation resulted in very low hatching success, regardless of eggshell surface structure. Only two hatchlings survived the inundation, notably in the untreated group with intact, rough eggshells. Inundation produced a high rate of malformations (58% at day 30), but did not affect hatchling size. Our results indicate that eggshell roughness enhances embryo survival when eggs are inundated early in development, but not late in development. Apparently, the natural surface 'roughness' entraps air bubbles at the eggshell surface during inundation, thereby facilitating gas exchange through the eggshell even when the egg is submerged under water. © 2017 The Author(s).
Development of the Navy’s Next-Generation Nonhydrostatic Modeling System
2013-09-30
e.g. surface roughness, land- sea mask, surface albedo ) are needed by physical parameterizations. The surface values will be read and interpolated...characteristics (e.g. albedo , surface roughness) is now available to the model during the initialization stage. We have added infrastructure to the...six faces (Fig 3). 4 Figure 3: Topography (top left, in meters), surface roughness (top right, in meters), albedo (bottom left, no units
Gloss measurements and rugometric inspection in dental biomaterials
NASA Astrophysics Data System (ADS)
Fernández-Oliveras, Alicia; Costa, Manuel F. M.; Yebra, Ana; Rubiño, Manuel; Pérez, María. M.
2013-11-01
In dental applications, optimizing appearance is desirable and increasingly demanded by patients. The specular gloss is among the major appearance properties of dental biomaterials, and its relationship with surface roughness has been reported. Roughness and gloss are key surface aspects that complement each other. We have experimentally analyzed the specular gloss and surface roughness of two different types of dental-resin composites and pre-sintered and sintered zirconia ceramics. We have studied two shades of both composite types and two sintered zirconia ceramics: colored and uncolored. Moreover, a surface treatment was applied to one specimen of each dental resin. Gloss measurements were performed with a standardized reflectometer and the corresponding gloss percentages were calculated. All the samples were submitted to rugometric non-invasive inspection with the MICROTOP.06.MFC laser microtopographer in order to determine meaningful statistical parameters such as the average roughness (Ra) and the root-mean-square deviation (Rq). For a comparison of the different biomaterials, the uncertainties associated to the measure of the surface gloss and roughness were also determined. The differences between the two shades of both kinds of composites proved significant in the case of the roughness parameters but not for the specular gloss. The surface treatment applied to the dental-resin composites increased the average roughness but the changes in the specular gloss were significant only for the A2 enamel nano-composite. For the zirconia ceramic the sintered process resulted in an increase in the surface roughness with a decrease of the specular gloss, corroborating that the relationship between the gloss and the roughness shows the expected behavior.
RANS Based Methodology for Predicting the Influence of Leading Edge Erosion on Airfoil Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langel, Christopher M.; Chow, Raymond C.; van Dam, C. P.
The impact of surface roughness on flows over aerodynamically designed surfaces is of interested in a number of different fields. It has long been known the surface roughness will likely accelerate the laminar- turbulent transition process by creating additional disturbances in the boundary layer. However, there are very few tools available to predict the effects surface roughness will have on boundary layer flow. There are numerous implications of the premature appearance of a turbulent boundary layer. Increases in local skin friction, boundary layer thickness, and turbulent mixing can impact global flow properties compounding the effects of surface roughness. With thismore » motivation, an investigation into the effects of surface roughness on boundary layer transition has been conducted. The effort involved both an extensive experimental campaign, and the development of a high fidelity roughness model implemented in a R ANS solver. Vast a mounts of experimental data was generated at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel for the calibration and validation of the roughness model described in this work, as well as future efforts. The present work focuses on the development of the computational model including a description of the calibration process. The primary methodology presented introduces a scalar field variable and associated transport equation that interacts with a correlation based transition model. The additional equation allows for non-local effects of surface roughness to be accounted for downstream of rough wall sections while maintaining a "local" formulation. The scalar field is determined through a boundary condition function that has been calibrated to flat plate cases with sand grain roughness. The model was initially tested on a NACA 0012 airfoil with roughness strips applied to the leading edge. Further calibration of the roughness model was performed using results from the companion experimental study on a NACA 63 3 -418 airfoil. The refined model demonstrates favorable agreement predicting changes to the transition location, as well as drag, for a number of different leading edge roughness configurations on the NACA 63 3-418 airfoil. Additional tests were conducted on a thicker S814 airfoil, with similar roughness configurations to the NACA 63 3-418. Simulations run with the roughness model compare favorably with the results obtained in the experimental study for both airfoils.« less
Surface Roughness and Gloss of Actual Composites as Polished With Different Polishing Systems.
Rodrigues-Junior, S A; Chemin, P; Piaia, P P; Ferracane, J L
2015-01-01
This in vitro study evaluated the effect of polishing with different polishing systems on the surface roughness and gloss of commercial composites. One hundred disk-shaped specimens (10 mm in diameter × 2 mm thick) were made with Filtek P-90, Filtek Z350 XT, Opallis, and Grandio. The specimens were manually finished with #400 sandpaper and polished by a single operator using three multistep systems (Superfix, Diamond Pro, and Sof-lex), one two-step system (Polidores DFL), and one one-step system (Enhance), following the manufacturer's instructions. The average surface roughness (μm) was measured with a surface profilometer (TR 200 Surface Roughness Tester), and gloss was measured using a small-area glossmeter (Novo-Curve, Rhopoint Instrumentation, East Sussex, UK). Data were analyzed by two-way analysis of variance and Tukey's test (α=0.05). Statistically significant differences in surface roughness were identified by varying the polishing systems (p<0.0001) and by the interaction between polishing system and composite (p<0.0001). Pairwise comparisons revealed higher surface roughness for Grandio when polished with Sof-Lex and Filtek Z250 and Opallis when polished with Enhance. Gloss was influenced by the composites (p<0.0001), the polishing systems (p<0.0001), and the interaction between them (p<0.0001). The one-step system, Enhance, produced the lowest gloss for all composites. Surface roughness and gloss were affected by composites and polishing systems. The interaction between both also influenced these surface characteristics, meaning that a single polishing system will not behave similarly for all composites. The multistep systems produced higher gloss, while the one-step system produced the highest surface roughness and the lowest gloss of all.
Gong, Lei; Wu, Zhensen; Gao, Ming; Qu, Tan
2018-03-20
The effective extraction of optical surface roughness and defect characteristic provide important realistic values to improve optical system efficiency. Based on finite difference time domain/multi-resolution time domain (FDTD/MRTD) mixed approach, composite scattering between a slightly rough optical surface and multi-body defect particles with different positions is investigated. The scattering contribution of defect particles or the slightly rough optical surface is presented. Our study provides a theoretical and technological basis for the nondestructive examination and optical performance design of nanometer structures.
Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation
Salazar, Félix; Barrientos, Alberto
2013-01-01
The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given. PMID:24013488