Science.gov

Sample records for rms time resolution

  1. Real-time RMS active damping augmentation: Heavy and very light payload evaluations

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Lepanto, Janet A.; Flueckiger, Karl W.; Bains, Elizabeth M.; Jensen, Mary C.

    1994-01-01

    Controls-Structures Integration Technology has been applied to the Space Shuttle Remote Manipulator System (RMS) to improve on-orbit performance. The objective was to actively damp undesired oscillatory motions of the RMS following routine payload maneuvering and Shuttle attitude control thruster firings. Simulation of active damping was conducted in the real-time, man-in-the-loop Systems Engineering Simulator at NASA's Johnson Space Center. The simulator was used to obtain qualitative and quantitative data on active damping performance from astronaut operators. Using a simulated three-axis accelerometer mounted on the RMS, 'sensed' vibration motions were used to generate joint motor commands that reduced the unwanted oscillations. Active damping of the RMS with heavy and light attached payloads was demonstrated in this study. Five astronaut operators examined the performance of active damping following operator commanded RMS maneuvers and Shuttle thruster firings. Noticeable improvements in the damping response of the RMS with the heavy, Hubble Space Telescope payload and the very light, astronaut in Manipulator Foot Restraint payload were observed. The potential of active damping to aid in precisely maneuvering payloads was deemed significant.

  2. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  3. Remote Minehunting System (RMS)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-286 Remote Minehunting System (RMS) As of FY 2017 President’s Budget Defense Acquisition...Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined TY - Then Year UCR...Analysis was completed and the Original Equipment Manufacturer (OEM) was selected based on the number of vehicles and the repair capabilities

  4. Remote Minehunting System (RMS)

    DTIC Science & Technology

    2013-12-01

    Activity BY - Base Year DAMIR - Defense Acquisition Management Information Retrieval Dev Est - Development Estimate DoD - Department of Defense DSN - Defense...Milestones SAR Baseline Dev Est Current APB Development Objective/Threshold Current Estimate Milestone II DEC 1999 DEC 1999 JUN 2000 DEC 1999 OA...updated and will be re-assessed for MS C to align RMS with the LCS MCM MP IOT &E in September 2015. Acronyms and Abbreviations DOT&E - Director

  5. Beam distributions beyond RMS

    NASA Astrophysics Data System (ADS)

    Decker, F.-J.

    1995-05-01

    The beam is often represented only by its position (mean) and the width (rms=root mean squared) of its distribution. To achieve these beam parameters in a noisy condition with high backgrounds, a Gaussian distribution with offset (4 parameters) is fitted to the measured beam distribution. This gives a very robust answer and is not very sensitive to background subtraction techniques. To get higher moments of the distribution, like skew or kurtosis, a fitting function with one or two more parameters is desired which would model the higher moments. In this paper we will concentrate on an Asymmetric Gaussian and a Super Gaussian function that will give something like the skew and the kurtosis of the distribution. This information is used to quantify special beam distribution. Some are unwanted like beam tails (skew) from transverse wakefields, higher order dispersive aberrations or potential well distortion in a damping ring. A negative kurtosis of a beam distribution describes a more rectangular, compact shape like with an over-compressed beam in z or a closed to double-horned energy distribution, while a positive kurtosis looks more like a ``Christmas tree'' and can quantify a beam mismatch after filamentation. Besides the advantages of the quantification, there are some distributions which need a further investigation like long flat tails which create background particles in a detector. In particle simulations on the other hand a simple rms number might grossly overestimate the effective size (e.g. for producing luminosity) due to a few particles which are far away from the core. This can reduce the practical gain of a big theoretical improvement in the beam size.

  6. Beam distributions beyond RMS

    NASA Astrophysics Data System (ADS)

    Decker, F. J.

    1994-09-01

    The beam is often represented only by its position (mean) and the width (rms = root mean squared) of its distribution. To achieve these beam parameters in a noisy condition with high backgrounds, a Gaussian distribution with offset (4 parameters) is fitted to the measured beam distribution. This gives a very robust answer and is not very sensitive to background subtraction techniques. To get higher moments of the distribution, like skew or kurtosis, a fitting function with one or two more parameters is desired which would model the higher moments. In this paper we will concentrate on an Asymmetric Gaussian and a Super Gaussian function that will give something like the skew and the kurtosis of the distribution. This information is used to quantify special beam distribution. Some are unwanted like beam tails (skew) from transverse wakefields, higher order dispersive aberrations or potential well distortion in a damping ring. A negative kurtosis of a beam distribution describes a more rectangular, compact shape like with an over-compressed beam in z or a closed to double-homed energy distribution, while a positive kurtosis looks more like a 'Christmas tree' and can quantify a beam mismatch after filamentation. Besides the advantages of the quantification, there are some distributions which need a further investigation like long flat tails which create background particles in a detector. In particle simulations on the other hand a simple rms number might grossly overestimate the effective size (e.g. for producing luminosity) due to a few particles which are far away from the core. This can reduce the practical gain of a big theoretical improvement in the beam size.

  7. Beam distributions beyond RMS

    SciTech Connect

    Decker, F.J.

    1994-09-01

    The beam is often represented only by its position (mean) and the width (rms = root mean squared) of its distribution. To achieve these beam parameters in a noisy condition with high backgrounds, a Gaussian distribution with offset (4 parmeters) is fitted to the measured beam distribution. This gives a very robust answer and is not very sensitive to background subtraction techniques. To get higher moments of the distribution, like skew or kurtosis, a fitting function with one or two more parameters is desired which would model the higher moments. In this paper we will concentrate on an Asymmetric Gaussian and a Super Gaussian function that will give something like the skew and the kurtosis of the distribution. This information is used to quantify special beam distribution. Some are unwanted like beam tails (skew) from transverse wakefields, higher order dispersive aberrations or potential well distortion in a damping ring. A negative kurtosis of a beam distribution describes a more rectangular, compact shape like with an over-compressed beam in z or a closed to double-homed energy distribution, while a positive kurtosis looks more like a ``Christmas tree`` and can quantify a beam mismatch after filamentation. Besides the advantages of the quantification, there are some distributions which need a further investigation like long flat tails which create background particles in a detector. In particle simulations on the other hand a simple rms number might grossly overestimate the effective size (e.g. for producing luminosity) due to a few particles which are far away from the core. This can reduce the practical gain of a big theoretical improvement in the beam size.

  8. 14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS CONTROL PANEL IS IDENTICAL TO THE SHUTTLE ORBITER AFT FLIGHT DECK WITH ALL RMS SWITCHES AND CONTROL KNOBS FOR INVOKING ANY POSSIBLE FLIGHT OPERATIONAL MODE. THIS INCLUDES ALL COMPUTER AIDED OPERATIONAL MODES, AS WELL AS FULL MANUAL MODE. THE MONITORS IN THE AFT FLIGHT DECK WINDOWS AND THE GLASSES THE OPERATOR WEARS PROVIDE A 3-D VIDEO PICTURE TO AID THE OPERATOR WITH DEPTH PERCEPTION WHILE OPERATING THE ARM. THIS IS REQUIRED BECAUSE THE RMS OPERATOR CANNOT VIEW RMS MOVEMENTS IN THE WATER WHILE AT THE CONTROL PANEL. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  9. How to squeeze high quantum efficiency and high time resolution out of a SPAD

    NASA Technical Reports Server (NTRS)

    Lacaita, A.; Zappa, F.; Cova, Sergio; Ripamonti, Giancarlo; Spinelli, A.

    1993-01-01

    We address the issue whether Single-Photon Avalanche Diodes (SPADs) can be suitably designed to achieve a trade-off between quantum efficiency and time resolution performance. We briefly recall the physical mechanisms setting the time resolution of avalanche photodiodes operated in single-photon counting, and we give some criteria for the design of SPADs with a quantum efficiency better than l0 percent at 1064 nm together with a time resolution below 50 ps rms.

  10. The discovery and modeling of energy dependent time-lags and fractional RMS of heartbeat state in GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Mir, Mubashir; Iqbal, Naseer; Pahari, Mayukh; Misra, Ranjeev

    2016-07-01

    We report the discovery and modeling of enigmatic Energy dependent time-lags and fractional RMS of the heartbeat state in GRS 1915+105. The time-lags reveal the crucial information related to geometry of accretion flow, the emission regions and the relation between various spectral parameters. The lag and frms at the fundamental frequency show non-monotonic behavior with energy. The lag increases up to typically ˜10 keV and later shows a reversal and in some observations becomes hard(negative). However, the lags at the harmonic increase with energy and don't show any turn around at least till ˜20 keV. The frms at harmonic has similar non-monotonic behavior as at fundamental, however the variability amplitude is lesser as expected. The lag seen here can have magnitude of the order of seconds, and thus can't be accounted by light travel time effects or comptonization delays. The continuum X-ray spectra can roughly be described by a disk blackbody and a hard X-ray power-law component and from phase resolved spectroscopy it has been shown that the inner disk radius varies during the oscillation We propose the model based on the delayed response of inner disc (DRIOD) radius to the outer accretion rate i;e r_{in}(t)∝ dot{m}^β (t-τ_d). The fluctuating accretion rate varies the inner disk after a certain time delay t_d which could be of the order of the viscous propagation delays. The model very well explains the observed shape and nature of lags and frms at fundamental and harmonic frequencies. We present here the series of observations that constrain the four free parameters of our model. These parameters contain the vital information related to the nature of accretion flow in a highly periodic state like a heartbeat state.

  11. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  12. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  13. High resolution time interval counter

    NASA Technical Reports Server (NTRS)

    Zhang, Victor S.; Davis, Dick D.; Lombardi, Michael A.

    1995-01-01

    In recent years, we have developed two types of high resolution, multi-channel time interval counters. In the NIST two-way time transfer MODEM application, the counter is designed for operating primarily in the interrupt-driven mode, with 3 start channels and 3 stop channels. The intended start and stop signals are 1 PPS, although other frequencies can also be applied to start and stop the count. The time interval counters used in the NIST Frequency Measurement and Analysis System are implemented with 7 start channels and 7 stop channels. Four of the 7 start channels are devoted to the frequencies of 1 MHz, 5 MHz or 10 MHz, while triggering signals to all other start and stop channels can range from 1 PPS to 100 kHz. Time interval interpolation plays a key role in achieving the high resolution time interval measurements for both counters. With a 10 MHz time base, both counters demonstrate a single-shot resolution of better than 40 ps, and a stability of better than 5 x 10(exp -12) (sigma(sub chi)(tau)) after self test of 1000 seconds). The maximum rate of time interval measurements (with no dead time) is 1.0 kHz for the counter used in the MODEM application and is 2.0 kHz for the counter used in the Frequency Measurement and Analysis System. The counters are implemented as plug-in units for an AT-compatible personal computer. This configuration provides an efficient way of using a computer not only to control and operate the counters, but also to store and process measured data.

  14. A silicon pixel readout ASIC with 100 ps time resolution for the NA62 experiment

    NASA Astrophysics Data System (ADS)

    Dellacasa, G.; Garbolino, S.; Marchetto, F.; Martoiu, S.; Mazza, G.; Rivetti, A.; Wheadon, R.

    2011-01-01

    The silicon tracker of the NA62 experiment requires the measurement of the particles arrival time with a resolution better than 200 ps rms and a spatial resolution of 300 μm. A time measurement technique based on a Time to Amplitude Converter has been implemented in an ASIC in order to prove the possibility to integrate a TDC with resolution better than 200 ps in a pixel cell. Time-walk problem has been addressed with the use of the Constant Fraction Discriminator technique. The ASIC has been designed in a CMOS 0.13 μm technology with single event upset protection of the digital logic.

  15. High time resolutions observations of Cygnus X-3 with EXOSAT

    NASA Astrophysics Data System (ADS)

    Berger, M.; van der Klis, M.

    1994-12-01

    We have studied the fast timing behavior of Cygnus X-3 using the entire EXOSAT ME dataset on this source, consisting of 22 observations that cover a total of 320 000 seconds. This large amount of data allowed us to measure the rapid (greater than 1 Hz) X-ray variability of the source to an unprecedented accuracy of 0.2% fractional rms amplitude. Above 256 Hz, the power of the X-ray count rate fluctuations is significantly below the level predicted from Poisson statistics modified by the known dead time processes in the instrument. We developed an improved empirical method for predicting the Poisson level in EXOSAT ME High Time Resolution 3 (HTR3) and HTR5 data, and use it in our present analysis. None of the four other X-ray sources studied had a weaker noise-component in the region 1-256 Hz as the power spectra of Cygnus X-3. An instrumental effect could therefore not be excluded. If the effect is instrumental, the 99% confidence upper limit on the 1-256 Hz rapid variability of Cygnus X-3 is 0.6% rms. The consequences of these results for previously reported EXOSAT HTR observations are briefly discussed. We compare our results to the predictions of the stellar wind model for Cygnus X-3. Monte Carlo simulations were carried out to investigate the signal-attenuating effect of the wind. For the most likely wind parameters, the intrinsic source variability is found to be either very strong (approximately 60% rms), unlike seen in any other X-ray source at similar luminosity, or to be less than or approximately 12%, which would be consistent with a black hole candidate in the high state, or a low magnetic field neutron star.

  16. Space-time super-resolution.

    PubMed

    Shechtman, Eli; Caspi, Yaron; Irani, Michal

    2005-04-01

    We propose a method for constructing a video sequence of high space-time resolution by combining information from multiple low-resolution video sequences of the same dynamic scene. Super-resolution is performed simultaneously in time and in space. By "temporal super-resolution," we mean recovering rapid dynamic events that occur faster than regular frame-rate. Such dynamic events are not visible (or else are observed incorrectly) in any of the input sequences, even if these are played in "slow-motion." The spatial and temporal dimensions are very different in nature, yet are interrelated. This leads to interesting visual trade-offs in time and space and to new video applications. These include: 1) treatment of spatial artifacts (e.g., motion-blur) by increasing the temporal resolution and 2) combination of input sequences of different space-time resolutions (e.g., NTSC, PAL, and even high quality still images) to generate a high quality video sequence. We further analyze and compare characteristics of temporal super-resolution to those of spatial super-resolution. These include: How many video cameras are needed to obtain increased resolution? What is the upper bound on resolution improvement via super-resolution? What is the temporal analogue to the spatial "ringing" effect?

  17. Remote metrology system (RMS) design concept

    SciTech Connect

    1995-10-19

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR`s fiber optic implementation allows a 3D scanner to operate remotely from the RMS system`s vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm{sup 2} density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner.

  18. Time Resolution of Fast Photomultipliers for Time of Flight PET

    SciTech Connect

    Szczesniak, Tomasz; Iwanowska, Joanna

    2010-01-05

    Time resolution study of 1 inch Photonis XP1020 photomultiplier is reported. The number of photoelectrons, time jitter and time resolution with 4x4x20 mm{sup 3} LSO crystal were measured. All the mentioned PMT properties were measured at five positions on the photocathode.

  19. Astronaut Terry J. Hart in training session RMS for STS-2 bldg 29

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut Terry J. Hart in training session with the Remote Manipulator System (RMS) for STS-2 bldg 29. Views show Truly working at the command console while watching out the windows. Karen Ehlers, an RMS procedures specialist, can be seen at left side of frame while Astronaut Sally Ride waits on right for her time at the RMS.

  20. Optimizing the timing resolution of SiPM sensors for use in TOF-PET detectors

    NASA Astrophysics Data System (ADS)

    Vinke, R.; Löhner, H.; Schaart, D. R.; van Dam, H. T.; Seifert, S.; Beekman, F. J.; Dendooven, P.

    2009-10-01

    We have investigated the timing performance of Hamamatsu Multi-Pixel Photon Counter (MPPC) photosensors in light of their use in time-of-flight (TOF) positron emission tomography detectors. Measurements using picosecond laser pulses show a single photo-electron root-mean-square (RMS) timing resolution down to about 100 ps. In coincidences of 511 keV photons detected with an LYSO crystal coupled to a MPPC and a BaF 2 detector, an optimum FWHM timing resolution of 600 ps was obtained with leading edge time pickoff at the 1-1.5 photo-electron level. By optimizing the LYSO/MPPC coupling, this can be improved by a factor of 2. We further conclude that the use of stored digitized pulses allows great flexibility and efficiency in developing data analysis algorithms.

  1. 10 microsecond time resolution studies of Cygnus X-1

    SciTech Connect

    Wen, H. C.

    1997-06-01

    Time variability analyses have been applied to data composed of event times of X-rays emitted from the binary system Cygnus X-1 to search for unique black hole signatures. The X-ray data analyzed was collected at ten microsecond time resolution or better from two instruments, the High Energy Astrophysical Observatory (HEAO) A-1 detector and the Rossi X-ray Timing Explorer (XTE) Proportional Counter Array (PCA). HEAO A-1 and RXTE/PCA collected data from 1977--79 and from 1996 on with energy sensitivity from 1--25 keV and 2--60 keV, respectively. Variability characteristics predicted by various models of an accretion disk around a black hole have been searched for in the data. Drop-offs or quasi-periodic oscillations (QPOs) in the Fourier power spectra are expected from some of these models. The Fourier spectral technique was applied to the HEAO A-1 and RXTE/PCA data with careful consideration given for correcting the Poisson noise floor for instrumental effects. Evidence for a drop-off may be interpreted from the faster fall off in variability at frequencies greater than the observed breaks. Both breaks occur within the range of Keplerian frequencies associated with the inner edge radii of advection-dominated accretion disks predicted for Cyg X-1. The break between 10--20 Hz is also near the sharp rollover predicted by Nowak and Wagoner`s model of accretion disk turbulence. No QPOs were observed in the data for quality factors Q > 9 with a 95% confidence level upper limit for the fractional rms amplitude at 1.2% for a 16 M⊙ black hole.

  2. High Time Resolution Studies with the GBT

    NASA Astrophysics Data System (ADS)

    Lewandowska, Natalia; Lynch, Ryan S.

    2017-01-01

    The detection of neutron stars 49 years ago has created many new and independent branches of research. In 1967, fast rotating neutron stars, or pulsars, became the first objects of this kind to be discovered at radio wavelengths -- more than 30years after their theoretical prediction.In spite of numerous studies throughout the years, the mechanism of the observed radio emission of pulsars is still not understood. Recent technological developments allow observations of pulsars with time resolutions extending into the nanoseconds range, providing a unique insight into the momentary state of a pulsar.Radio giant pulses are known to occur non-periodically in certain phase ranges, exhibit much higher peak flux densities than regular pulses, and to have pulse widths ranging from the micro- to nanoseconds. Their characteristics make them suitable for high time resolution studies. We present the first high time resolution observations of the original millisecond pulsar PSR B1937+21 carried out with the Robert C. Byrd Green Bank Radio Telescope.

  3. Branching in Pea (Action of Genes Rms3 and Rms4).

    PubMed Central

    Beveridge, C. A.; Ross, J. J.; Murfet, I. C.

    1996-01-01

    The nonallelic ramosus mutations rms3-2 and rms4 of pea (Pisum sativum L.) cause extensive release of vegetative axillary buds and lateral growth in comparison with wild-type (cv Torsdag) plants, in which axillary buds are not normally released under the conditions utilized. Grafting studies showed that the expression of the rms4 mutation in the shoot is independent of the genotype of the root-stock. In contrast, the length of the branches at certain nodes of rms3-2 plants was reduced by grafting to wild-type stocks, indicating that the wild-type Rms3 gene may control the level of a mobile substance produced in the root. This substance also appears to be produced in the shoot because Rms3 shoots did not branch when grafted to mutant rms3-2 rootstocks. However, the end product of the Rms3 gene appears to differ from that of the Rms2 gene (C.A. Beveridge, J.J. Ross, and I.C. Murfet [1994] Plant Physiol 104: 953-959) because reciprocal grafts between rms3-2 and rms2 seedlings produced mature shoots with apical dominance similar to that of rms3-2 and rms2 shoots grafted to wild-type stocks. Indole-3-acetic acid levels were not reduced in apical or nodal portions of rms4 plants and were actually elevated (up to 2-fold) in rms3-2 plants. It is suggested that further studies with these branching mutants may enable significant progress in understanding the normal control of apical dominance and the related communication between the root and shoot. PMID:12226224

  4. DSCOVR High Time Resolution Solar Wind Measurements

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2012-01-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  5. Interpolating Low Time-Resolution Forecast Data

    SciTech Connect

    Shuai Lu, PNNL

    2015-11-03

    Methodology that interpolates low time-resolution data (e.g., hourly) to high time-resolution (e.g., minutely) with variability patterns extracted from historical records. Magnitude of the variability inserted into the low timeresolution data can be adjusted according to the installed capacity represented by the low time-resolution data compared to that by historical records. This approach enables detailed analysis of the impacts from wind and solar on power system intra-hour operations and balancing reserve requirements even with only hourly data. It also allows convenient creation of high resolution wind or solar generation data with various degree of variability to investigate their operational impacts. The methodology comprises of the following steps: 1. Smooth the historical data (set A) with an appropriate window length l to get its trend (set B); l can be a fraction of an hour (e.g., 15 minutes) or longer than an hour, of which the length of the variability patterns will be; 2. Extract the variable component (set C) of historical data by subtracting the smooth trend from it, i.e. set C = set A – set B 3. For each window length l of the variable component data set, find the average value x (will call it base component) of the corresponding window of the historical data set; 4. Define a series of segments (set D) that the values of data will be grouped into, e.g. (0, 0.1), (0.1, 0.2), …, (0.9, 1.0) after normalization; Link each variability pattern to a data segment based on its corresponding base component x; after this step, each data segment should be linked to multiple variability patterns after this step; 5. Use spline function to interpolate the low time-resolution forecast data (set E) to become a high time-resolution smooth curve (set F); 6. Based on the window length l , calculate the average value y in each window length of set F; find the data segment that y belongs to; then randomly select one of the variability patterns linked to this data

  6. Astronaut Bernard Harris on RMS during EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Bernard A. Harris, Jr., payload commander, standing on a foot restraint attached to the Remote Manipulator System (RMS) arm carries astronaut C. Michael Foale, mission specialist, during their shared extravehicular activity (EVA) in the Space Shuttle Discovery's cargo bay.

  7. Advances in coincidence time resolution for PET.

    PubMed

    Cates, Joshua W; Levin, Craig S

    2016-03-21

    Coincidence time resolution (CTR), an important parameter for time-of-flight (TOF) PET performance, is determined mainly by properties of the scintillation crystal and photodetector used. Stable production techniques for LGSO:Ce (Lu1.8Gd0.2SiO5:Ce) with decay times varying from ∼ 30-40 ns have been established over the past decade, and the decay time can be accurately controlled with varying cerium concentration (0.025-0.075 mol%). This material is promising for TOF-PET, as it has similar light output and equivalent stopping power for 511 keV annihilation photons compared to industry standard LSO:Ce and LYSO:Ce, and the decay time is improved by more than 30% with proper Ce concentration. This work investigates the achievable CTR with LGSO:Ce (0.025 mol%) when coupled to new silicon photomultipliers. Crystal element dimension is another important parameter for achieving fast timing. 20 mm length crystal elements achieve higher 511 keV photon detection efficiency, but also introduce higher scintillation photon transit time variance. 3 mm length crystals are not practical for PET, but have reduced scintillation transit time spread. The CTR between pairs of 2.9 × 2.9 × 3 mm(3) and 2.9 × 2.9 × 20 mm(3) LGSO:Ce crystals was measured to be 80 ± 4 and 122 ± 4 ps FWHM, respectively. Measurements of light yield and intrinsic decay time are also presented for a thorough investigation into the timing performance with LGSO:Ce (0.025 mol%).

  8. Resources Management System (RMS): An Overview.

    DTIC Science & Technology

    1982-12-01

    Intellignece 56, Other Command Intelligence AG: SC, Procurement Operations SAG’S iS, Inspection and resting * 2S, Quality/Reliabilitv Assurance 3R, Supply System...a legal require- ment to pay for goods or services. An expense is a cost of operating an activity, or a cost of doing business . rn RMS this can lead

  9. Extratropical transitioning in the RMS Japan typhoon wind field model

    NASA Astrophysics Data System (ADS)

    Loridan, Thomas; Scherer, Emilie; Khare, Shree

    2013-04-01

    Given its meridional extent and location within the Pacific basin, Japan is regularly impacted by strong winds from cyclones at different stages of their lifecycle. To quantify the associated risk of damage to properties, catastrophe models such as the ones developed by RMS aim to simulate wind fields from thousands of stochastic storms that extrapolate historical events. In a recent study using 25 years of reanalysis data, Kitabatake (2011) estimated that 40 % of all Pacific tropical cyclones completed their transition as an extra tropical system. From a cat modelling point of view it is the increase in wind field asymmetry observed during these transitioning episodes that is critical, with examples like typhoon Tokage in 2004 showing the potential for damaging gusts on both sides of the storm track. In this context a compromise has to be found between the need for complex numerical models able to simulate wind field variability around the cyclone during its entire evolution, and obvious running time constrains. The RMS wind field model is based on an optimized version of the Willoughby parametric profile (Willoughby et al., 2006) which requires calibration against targets representative of cyclone wind fields throughout their lifecycle. We here present the different sources of data involved in the development of this model. This includes (1) satellite products to characterize wind fields from fully tropical storms, (2) high resolution simulations of key transitioning events using the WRF mesoscale model to complement the database at other stages (i.e. for transitioning and fully extra tropical wind fields), and (3) reanalysis data which can be used with Hart (2003)'s cyclone phase space methodology to provide an estimate of the mean duration of transitioning episodes in the Pacific. Kitabatake, N., 2011: Climatology of extratropical transition of tropical cyclones in the Western North Pacific defined by using cyclone phase space. J. Meteor. Soc. Japan, 89, 309

  10. The High Time Resolution Radio Sky

    NASA Astrophysics Data System (ADS)

    Thornton, D.

    2013-11-01

    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with

  11. Generation of real-time mode high-resolution water vapor fields from GPS observations

    NASA Astrophysics Data System (ADS)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  12. Quality control of the RMS US flood model

    NASA Astrophysics Data System (ADS)

    Jankowfsky, Sonja; Hilberts, Arno; Mortgat, Chris; Li, Shuangcai; Rafique, Farhat; Rajesh, Edida; Xu, Na; Mei, Yi; Tillmanns, Stephan; Yang, Yang; Tian, Ye; Mathur, Prince; Kulkarni, Anand; Kumaresh, Bharadwaj Anna; Chaudhuri, Chiranjib; Saini, Vishal

    2016-04-01

    The RMS US flood model predicts the flood risk in the US with a 30 m resolution for different return periods. The model is designed for the insurance industry to estimate the cost of flood risk for a given location. Different statistical, hydrological and hydraulic models are combined to develop the flood maps for different return periods. A rainfall-runoff and routing model, calibrated with observed discharge data, is run with 10 000 years of stochastic simulated precipitation to create time series of discharge and surface runoff. The 100, 250 and 500 year events are extracted from these time series as forcing for a two-dimensional pluvial and fluvial inundation model. The coupling of all the different models which are run on the large area of the US implies a certain amount of uncertainty. Therefore, special attention is paid to the final quality control of the flood maps. First of all, a thorough quality analysis of the Digital Terrain model and the river network was done, as the final quality of the flood maps depends heavily on the DTM quality. Secondly, the simulated 100 year discharge in the major river network (600 000 km) is compared to the 100 year discharge derived using extreme value distribution of all USGS gauges with more than 20 years of peak values (around 11 000 gauges). Thirdly, for each gauge the modelled flood depth is compared to the depth derived from the USGS rating curves. Fourthly, the modelled flood depth is compared to the base flood elevation given in the FEMA flood maps. Fifthly, the flood extent is compared to the FEMA flood extent. Then, for historic events we compare flood extents and flood depths at given locations. Finally, all the data and spatial layers are uploaded on geoserver to facilitate the manual investigation of outliers. The feedback from the quality control is used to improve the model and estimate its uncertainty.

  13. Astronaut Jeffrey Hoffman on RMS robot arm during HST repairs

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Jeffrey A. Hoffman, anchored to a foot restraint on the end of the Endeavour's Remote Manipulator System (RMS) robot arm, inserts the new Wide Field/Planetary Camera (WF/PC2) into its place on the Hubble Space Telescope (HST). Astronaut F. Story Musgrave, who shared the duties of replacing the camera, is partially visible at right edge of frame. Electronic still photography is technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  14. The resupply interface mechanism RMS compatibility test

    NASA Technical Reports Server (NTRS)

    Jackson, Stewart W.; Gallo, Frank G.

    1990-01-01

    Spacecraft on-orbit servicing consists of exchanging components such as payloads, orbital replacement units (ORUs), and consumables. To accomplish the exchange of consumables, the receiving vehicle must mate to the supplier vehicle. Mating can be accomplished by a variety of docking procedures. However, these docking schemes are mission dependent and can vary from shuttle bay berthing to autonomous rendezvous and docking. Satisfying the many docking conditions will require use of an innovative docking device. The device must provide fluid, electrical, pneumatic and data transfer between vehicles. Also, the proper stiffness must be obtained and sustained between the vehicles. A device to accomplish this, the resupply interface mechanism (RIM), was developed. The RIM is a unique device because it grasps the mating vehicle, draws the two vehicles together, simultaneously mates all connectors, and rigidizes the mating devices. The NASA-Johnson Manipulator Development Facility was used to study how compatible the RIM is to on orbit docking and berthing. The facility contains a shuttle cargo bay mockup with a remote manipulator system (RMS). This RMS is used to prepare crew members for shuttle missions involving spacecraft berthing operations. The MDF proved to be an excellant system for testing the RIM/RMS compatibility. The elements examined during the RIM JSC test were: RIM gross and fine alignment; berthing method sequence; visual cuing aids; utility connections; and RIM overall performance. The results showed that the RIM is a good device for spacecraft berthing operations. Mating was accomplished during every test run and all test operators (crew members) felt that the RIM is an effective device. The purpose of the JSC RIM test and its results are discussed.

  15. Feasibility study of an avalanche photodiode readout for a high resolution PET with nsec time resolution

    SciTech Connect

    Schmelz, C.; Ziegler, S.; Bradbury, S.M.; Holl, I.; Lorenz, E.; Renker, D.

    1995-08-01

    A feasibility study for a high resolution positron emission tomograph, based on 9.5 x 4 x 4 mm{sup 3} LSO crystals viewed by 3 mm diameter avalanche photodiodes, has been carried out. Using a Na{sup 22} source the authors determined a spatial resolution of 2.3 {+-} 0.1 mm, an energy resolution around 15 % and a time resolution of 2.6 nsec. Possible configurations for larger scale tests and a tomograph are given.

  16. High time-resolution photodetectors for PET applications

    DOE PAGES

    Ronzhin, Anatoly

    2016-02-01

    This paper describes recent developments aiming at the improvement of the time resolution of photodetectors used in positron emission tomography (PET). Promising photodetector candidates for future PET-time-of-flight (TOF) applications are also discussed.

  17. Avalanche statistics from data with low time resolution

    NASA Astrophysics Data System (ADS)

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.; Gu, Xiaojun; Uhl, J. T.; Dahmen, Karin A.

    2016-11-01

    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.

  18. Avalanche statistics from data with low time resolution.

    PubMed

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J; Gu, Xiaojun; Uhl, J T; Dahmen, Karin A

    2016-11-01

    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.

  19. The TDCpix Readout ASIC: A 75 ps Resolution Timing Front-End for the Gigatrackerof theNA62 Experiment

    NASA Astrophysics Data System (ADS)

    Rinella, G. Aglieri; Fiorini, M.; Jarron, P.; Kaplon, J.; Kluge, A.; Martin, E.; Morel, M.; Noy, M.; Perktold, L.; Poltorak, K.

    NA62 is an experiment under development at the CERN Super Proton Synchrotron, aiming at measuring ultra rare kaon decays. The Gigatracker (GTK) detector shall combine on-beam tracking of individual particles with a time resolution of 150 ps rms. The peak flow of particles crossing the detector modules reaches 1.27 MHz/mm2 fora total rateof about 0.75 GHz.Ahybrid siliconpixel detectoris beingdevelopedto meet these requirements. The pixel chip for the Gigatracker (TDCpix) is under design. The TDCpix chip will feature 1800 square pixels of 300×300 μm2 arranged in a matrix of 45 rows × 40 columns. Bump-bonded to a silicon pixel sensor it shall perform time stamping of particle hits with a timing accuracybetter than 200 ps rms and a detection efficiencyabove 99%. The chosen architecture provides full separation of the sensitive analog amplifiers of the pixel matrix from the noisy digital circuits of the TDCs and of the readout blocks. Discriminated hit signals from each pixel are transmitted to the end of column region. An array ofTime to Digital Converters (TDC) is implemented at the bottom of the pixel array. The TDCs are based on time tagging the events with the fine time codes generated by Delay Locked Loops (DLL) and have a nominal time bin of ˜100 ps. Time stamps and time-over-threshold are recorded for each discriminated hit and the correction of the discriminator's time-walk is performed off-detector. Data are continuously transmitted on four 2.4 Gb/s serial output links. Adescription of the on-going design of the final TDCpix is given in this paper. Design choices and some technical implementation details are presented. Aprototype ASIC including thekeycomponents of this architecture has been manufactured. The achievement of specification figures such as a time resolution of the processing chain of 75 ps rms as well as charged particle time stampingwitha resolutionbetterthan200psrmswere demonstratedexperimentally.Asummaryoftheseresultsisalso presented in

  20. Factors influencing timing resolution in a commercial LSO PETcamera

    SciTech Connect

    Moses, William W.; Ullisch, Marcus

    2004-10-23

    The CPS Accel is a commercial PET camera based on a block detector with 64 LSO scintillator crystals (each 6.75 x 6.75 x 25 mm)read out with 4 photomultiplier tubes. The excellent timing resolution of LSO suggests that this camera might be used for time-of-flight (TOF) PET, thereby reducing the statistical noise significantly. Although the Accel achieves 3 ns coincidence resolution (a factor of two better than BGO-based PET cameras), its timing resolution is nearly an order of magnitude worse than that demonstrated with individual LSO crystals. This paper quantifies the effect on the timing of each component in the Accel timing chain to identify which components most limit the camera's timing resolution. The components in the timing chain are: the scintillator crystal, the photomultiplier tube (PMT), the constant fraction discriminator (CFD), and the time to digital converter (TDC). To measure the contribution of each component, we construct a single crystal test system with high-performance versions of these components. This system achieves 221 ps fwhm coincidence timing resolution, which is used as a baseline measurement. One of the high-performance components is replaced by a production component, the coincidence timing resolution is re-measured, and the difference between measurements is the contribution of that (production) component. We find that the contributions of the TDC, CFD, PMT, and scintillator are 2000 ps, 1354 ps, 422 ps, and 326 psfwhm respectively, and that the overall timing resolution scales like the square root of the amount of scintillation light detected by the PMT. Based on these measurements we predict that the limit for the coincidence timing resolution in a practical, commercial, LSO-based PET camera is 528ps fwhm.

  1. A high-resolution time-to-digital converter using a three-level resolution

    NASA Astrophysics Data System (ADS)

    Dehghani, Asma; Saneei, Mohsen; Mahani, Ali

    2016-08-01

    In this article, a three-level resolution Vernier delay line time-to-digital converter (TDC) was proposed. The proposed TDC core was based on the pseudo-differential digital architecture that made it insensitive to nMOS and pMOS transistor mismatches. It also employed a Vernier delay line (VDL) in conjunction with an asynchronous read-out circuitry. The time interval resolution was equal to the difference of delay between buffers of upper and lower chains. Then, via the extra chain included in the lower delay line, resolution was controlled and power consumption was reduced. This method led to high resolution and low power consumption. The measurement results of TDC showed a resolution of 4.5 ps, 12-bit output dynamic range, and integral nonlinearity of 1.5 least significant bits. This TDC achieved the consumption of 68.43 µW from 1.1-V supply.

  2. Recipes for high resolution time-of-flight detectors

    SciTech Connect

    Anz, S.J. |; Felter, T.E.; Hess, B.V.; Daley, R.S.; Roberts, M.L.; Williams, R.S.

    1995-01-01

    The authors discuss the dynamics, construction, implementation and benefits of a time-of-flight (TOF) detector with count rates an order of magnitude higher and resolution three to four times better than that obtainable with a surface barrier detector. The propose use of design criteria for a time-of-flight detector is outlined, and the determination of a TOF detector`s total relative timing error and how this value determines the mass resolution are illustrated using a graphical analysis. They present simulation and experimental examples employing light ions and discuss advantages and pitfalls of medium-energy heavy ion TOF spectrometry.

  3. Application of RMS for damage detection by guided elastic waves

    NASA Astrophysics Data System (ADS)

    Radzieński, M.; Doliński, Ł.; Krawczuk, M.; dot Zak, A.; Ostachowicz, W.

    2011-07-01

    This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.

  4. The time resolution domain of stellar radio astronomy

    NASA Astrophysics Data System (ADS)

    Bookbinder, J.

    1985-07-01

    High time resolution (HTR) radio observations of stellar sources is a very young technique. One of the main limitations on HTR observations is the refusal of stars to cooperate with the observer - i.e. low flare rates. Instrumental problems, obtaining the necessary sensitivity (i.e. low noise) on short integration times is also a major problem. Few instruments are likely to excel Arecibo or the VLA for this mode of observing. High time resolution observations are necessary to determine the nature of both the acceleration and emission mechanisms responsible for the short-lived radio phenomena that have already been observed.

  5. Study of Saturn electrostatic discharges with high time resolution

    NASA Astrophysics Data System (ADS)

    Zakharenko, V.; Mylostna, K.; Konovalenko, A.; Kolyadin, V.; Zarka, P.; Griessmeier, J.-M.; Litvinenko, G.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.

    2013-09-01

    Ground-based observations of SED (Saturn Electrostatic Discharges) with high time resolution are the next stage of extraterrestrial atmospheric processes study. Due to extremely high intensity of Saturn's storm J (2010) [1] we have obtained the records with high signal-to-noise (S/N) ratio with the time resolution of 15 ns. It permitted us to investigate the microsecond structure of lightning and clearly distinguish SED in the presence of local interference in virtue of a dispersive delay of extraterrestrial planetary signals.

  6. High time resolution ion temperature profile measurements on PBX

    SciTech Connect

    Gammel, G.; Kaita, R.; Fonck, R.; Jaehnig, K.; Powell, E.

    1986-05-01

    Ion temperature profiles with a time resolution of 2 to 5 ms have been measured on PBX by charge-exchange-recombination spectroscopy (CXRS) and a neutral-particle charge-exchange analyzer (NPA). The sightlines of both diagnostics crossed the trajectory of a near-perpendicular heating beam, which enhanced the local neutral density (proportional to signal strength) and provided spatial resolution. The time resolution of these two independent techniques is sufficient to see sawtooth oscillations and other MHD activity. Effects of these phenomena on the toroidal rotation velocity profile, v/sub phi/(r), are clearly observed by CXRS. For example, a sharp drop in the central v/sub phi/ occurs at the sawtooth crash, followed by a linear rise during the quiescent phase. The NPA results are compared with those from CXRS.

  7. Financing development stage biotechnology companies: RMs vs. IPOs.

    PubMed

    Ahn, Mark J; Couch, Robert B; Wu, Wei

    2011-01-01

    We examine reverse mergers (RMs) in the biotechnology industry and find that, when compared to initial public offerings (IPOs), RMs are smaller, have significantly lower market valuations relative to size, and generally invest less. We also find that RMs exhibit positive abnormal returns on the announcement date and throughout the first year after the RM event. In looking at liquidity measures, we find that RMs tend to be less liquid than IPOs and that illiquidity is greater during the six-month lock-up period following the RM event. Thus, RMs may be an appropriate alternative financing vehicle in capital intensive, high-risk biotechnology companies which require accessing deeper and larger pools of investors in public capital markets across multiple milestone periods in a "pay for progress" environment.

  8. Optimizing the Timing Resolution for the NEXT Array

    NASA Astrophysics Data System (ADS)

    Engelhardt, A.; Shadrick, S.; Rajabali, M.; Schmitt, K.; Grzywacz, R.

    2016-09-01

    In nuclear physics studies there are very few detectors capable of measuring neutron energies in the 0.1-10 MeV energy range with a reasonable resolution. The VANDLE array is the premier detector array for these measurements, yet VANDLE is limited by the its thickness (2.9 cm minimum).The Neutron dEtector with Tracking (NEXT) array would be capable of surpassing the limitations caused by the large size of VANDLE bars. A proposed configuration of each neutron detector consists of ten 3-mm thick plastic scintillators with two or more silicon photomultipliers (SiPMs) attached at each end. To achieve the desired energy resolution for neutron energy measurements through time of flight, the timing resolution between these SiPMs needs to be below 200 ps. A SiPM was placed on each end of a plastic scintillator inside a light-tight electrical box along with a 137Cs source. An analog circuit was designed in order to measure the timing difference between the two SiPMs. Different configurations of SiPM sizes, scintillator sizes, and wrappings were tested in order to determine the configuration that yields the best timing resolution. Details of the testing procedures and results will be presented. Research Supported by the National Nuclear Security Administration.

  9. Digital Signal Processing for SiPM Timing Resolution

    NASA Astrophysics Data System (ADS)

    Philippov, D. E.; Popova, E. V.; Belyaev, V. N.; Buzhan, P. Z.; Stifutkin, A. A.; Vinogradov, S. L.

    2017-01-01

    Digital signal processing (DSP) is an emerging trend in experimental studies and applications of various detectors including SiPMs. In particular, the DSP is recognized as a promising approach to improve coincidence timing resolution (CTR) of fast SiPM-based scintillation detectors. Single photon timing resolution (SPTR) is one of the key parameters affecting CTR, especially important in a case when CTR is approaching to its ultimate limits as, for example, highly demanded in Time-of-Flight PET. To study SiPM timing resolution, we developed a special DSP software and applied it to both SPTR and CTR measurements. These measurements were carried out using 3x3 mm2 KETEK SiPM samples of timing optimized and standard designs with 405 nm picosecond laser for SPTR and with 3x3x5 mm3 LYSO crystals and 511 keV Na-22 source for CRT. Results of the study are useful for further improvements of DSP algorithms and SiPM designs for fast timing.

  10. STIC3 - Silicon Photomultiplier Timing Chip with picosecond resolution

    NASA Astrophysics Data System (ADS)

    Stankova, Vera; Shen, Wei; Briggl, Konrad; Chen, Huangshan; Fischer, Peter; Gil, Alejandro; Harion, Tobias; Kiworra, Volker; Munwes, Yonathan; Ritzert, Michael; Schultz-Coulon, Hans-Christian

    2015-07-01

    The diagnostic of pancreas and prostate cancer is a challenging task due to the background noise coming from the closer organs. The EndoToFPET-US project aims to combine the synergy between metabolic and anatomical (ultrasound) image in order to improve the precision in the tumor localization. The goal of the project is to develop a Positron Emission Tomography (PET) system that provides a time-of-flight resolution of 200 ps FWHM for improving the signal to noise ratio and further to improve the medical image quality. In order to achieve this purpose an ASIC has been designed for very high timing resolution in time-of-flight (ToF) applications. In this paper we present the ASIC performance and the first characterization measurements with the 64-channels prototype version (STiC3). Measurements are performed with LYSO scintillator crystal and a Multi Pixel Photon Counter (MPPC). Measurements with the chip show an analog-front-end stage jitter of 35 ps for the first photo-electron equivalent charge and reach 18 ps for the third photo-electron. Coincidence time resolution (CTR) of 240 ps FWHM is measured with 3.1×3.1×15 mm3 LYSO crystal and 50 μm pixel pitch MPPC. Further optimization including the Time-to-Digital Converter (TDC) non-linearity corrections and setup fine tuning are ongoing for achieving the desired CTR of 200 ps FWHM.

  11. High Time Resolution Photon Counting 3D Imaging Sensors

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Ertley, C.; Vallerga, J.

    2016-09-01

    Novel sealed tube microchannel plate (MCP) detectors using next generation cross strip (XS) anode readouts and high performance electronics have been developed to provide photon counting imaging sensors for Astronomy and high time resolution 3D remote sensing. 18 mm aperture sealed tubes with MCPs and high efficiency Super-GenII or GaAs photocathodes have been implemented to access the visible/NIR regimes for ground based research, astronomical and space sensing applications. The cross strip anode readouts in combination with PXS-II high speed event processing electronics can process high single photon counting event rates at >5 MHz ( 80 ns dead-time per event), and time stamp events to better than 25 ps. Furthermore, we are developing a high speed ASIC version of the electronics for low power/low mass spaceflight applications. For a GaAs tube the peak quantum efficiency has degraded from 30% (at 560 - 850 nm) to 25% over 4 years, but for Super-GenII tubes the peak quantum efficiency of 17% (peak at 550 nm) has remained unchanged for over 7 years. The Super-GenII tubes have a uniform spatial resolution of <30 μm FWHM ( 1 x106 gain) and single event timing resolution of 100 ps (FWHM). The relatively low MCP gain photon counting operation also permits longer overall sensor lifetimes and high local counting rates. Using the high timing resolution, we have demonstrated 3D object imaging with laser pulse (630 nm 45 ps jitter Pilas laser) reflections in single photon counting mode with spatial and depth sensitivity of the order of a few millimeters. A 50 mm Planacon sealed tube was also constructed, using atomic layer deposited microchannel plates which potentially offer better overall sealed tube lifetime, quantum efficiency and gain stability. This tube achieves standard bialkali quantum efficiency levels, is stable, and has been coupled to the PXS-II electronics and used to detect and image fast laser pulse signals.

  12. The time resolution domain of stellar radio astronomy

    NASA Technical Reports Server (NTRS)

    Bookbinder, J.

    1985-01-01

    The high time resolution (HTR) radio observation of late-type stars and RS CVn systems is discussed. Some examples of these sources are addressed, identifying what information HTR observations can provide. HTR can provide important information on flares in late-type stars, and can be used to study coronal structure and the particle acceleration mechanism in these stars. The possible use of HTR to establish the nature of quiescent emission form RS CVn systems is discussed.

  13. Comparison of Peak and RMS Gains for Discrete Time Systems,

    DTIC Science & Technology

    1986-01-01

    AC-29 #1, pp9-16, Jan. 1984. [DES]C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic Press, New York 1975. [DAH] M. A...LM -10 - [MULI C. T. Mullis and R. A. Roberts, Synthesis of minimum roundoff noise fixed point digital ifiters, IEEE Trans. Circuits Syst., vol. CAS...23 #9, pp55l-56l, Sept. 1976. [THIIL. Thiele, Design of sensitivity and roundoff noise optimal state space discrete systems, Int. J. of Circuit Theory and App!., vol. 12, pp39-46 , 1984. 44lr t ~- IL

  14. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  15. High Resolution, Real-Time Interferometer for Coherent Beam Combination

    NASA Astrophysics Data System (ADS)

    Simion, Sandel; Blanaru, Constantin; Ursescu, Daniel

    2010-04-01

    Piston errors introduced during the pumping of high energy amplifiers in the laser chains are estimated to produce significant distortion and dramatically reduce the intensity of the combined beam resulted from the Coherent Beam Combination (CBC) of ultra intense short pulses. For monitoring the phase and optical path shift, we developed a high resolution real time interferometer. Based on the code counting method, the device is suitable for high speed/real time measurements and is immune to vibrations which might appear in the laser system. The device consists of an analog stage which generates the counting code, later processed by the microprocessor unit (CPU). The analog stage ensures 20 nm resolution, 2 m/s optical path variation speed measurements and has low sensitivity to variations of quadrature signals amplitude. The CPU is based on a complex programmable logic device (CPLD), with 8 ns processing time of the signals. The algorithm provides simultaneously measurements with increasing speed for lower resolution (20 nm at 2 m/s, 40 nm at 4 m/s and 80 nm at 8 m/s), making the system fault tolerant at high speed fluctuations of the optical path. The device contains also a digital-to-analog converter stage, making the instrument suitable for implementation of closed loop control.

  16. RMS ENVELOPE BACK-PROPAGATION IN THE XAL ONLINE MODEL

    SciTech Connect

    Allen, Christopher K; Sako, Hiroyuki; Ikegami, Masanori

    2009-01-01

    The ability to back-propagate RMS envelopes was added to the J-PARC XAL online model. Specifically, given an arbitrary downstream location, the online model can propagate the RMS envelopes backward to an arbitrary upstream location. This feature provides support for algorithms estimating upstream conditions from downstream data. The upgrade required significant refactoring, which we outline. We also show simulations using the new feature.

  17. Sensitivity of The High-resolution Wam Model With Respect To Time Step

    NASA Astrophysics Data System (ADS)

    Kasemets, K.; Soomere, T.

    The northern part of the Baltic Proper and its subbasins (Bothnian Sea, the Gulf of Finland, Moonsund) serve as a challenge for wave modellers. In difference from the southern and the eastern parts of the Baltic Sea, their coasts are highly irregular and contain many peculiarities with the characteristic horizontal scale of the order of a few kilometres. For example, the northern coast of the Gulf of Finland is extremely ragged and contains a huge number of small islands. Its southern coast is more or less regular but has up to 50m high cliff that is frequently covered by high forests. The area also contains numerous banks that have water depth a couple of meters and that may essentially modify wave properties near the banks owing to topographical effects. This feature suggests that a high-resolution wave model should be applied for the region in question, with a horizontal resolution of an order of 1 km or even less. According to the Courant-Friedrich-Lewy criterion, the integration time step for such models must be of the order of a few tens of seconds. A high-resolution WAM model turns out to be fairly sensitive with respect to the particular choice of the time step. In our experiments, a medium-resolution model for the whole Baltic Sea was used, with the horizontal resolution 3 miles (3' along latitudes and 6' along longitudes) and the angular resolution 12 directions. The model was run with steady wind blowing 20 m/s from different directions and with two time steps (1 and 3 minutes). For most of the wind directions, the rms. difference of significant wave heights calculated with differ- ent time steps did not exceed 10 cm and typically was of the order of a few per cents. The difference arose within a few tens of minutes and generally did not increase in further computations. However, in the case of the north wind, the difference increased nearly monotonously and reached 25-35 cm (10-15%) within three hours of integra- tion whereas mean of significant wave

  18. A high resolution Timing Counter for the MEG II experiment

    NASA Astrophysics Data System (ADS)

    De Gerone, M.; Bevilacqua, A.; Biasotti, M.; Boca, G.; Cattaneo, P. W.; Gatti, F.; Nishimura, M.; Ootani, W.; Pizzigoni, G.; Rossella, M.; Shibata, N.; Siccardi, F.; Simonetta, M.; Uchiyama, Y.; Yoshida, K.

    2016-07-01

    The development of a Timing Counter detector designed for the MEGII upgrade of the MEG experiment, which strives to improve the sensitivity on the μ+ →e+ γ decay of an order of magnitude, is presented. It is based on two sets of counters (sectors) arranged on a semi-cylindrical structure; each sector consists of 256 counters. Each counter consists of tile of fast scintillator with a dual-side read-out based on SiPM arrays in series connection. The high granularity has two advantages: optimized size for achieving high resolution (75 ps) for the single counter, and a signal e+ crosses several counters, so that resolution improves by averaging multiple time measurements. A prototype has been built and tested both in BTF and PSI facilities in order to prove the multi-hit scheme in MEG-like beam conditions. A 35 ps resolution with eight hits has been obtained with a e+ beam at 100 kHz. The first sector will be tested in the MEG II pre-engineering run planned at the end of 2015.

  19. Heterodyning Time Resolution Boosting for Velocimetry and Reflectivity Measurements

    SciTech Connect

    Erskine, D J

    2004-08-02

    A theoretical technique is described for boosting the temporal resolving power by several times, of detectors such as streak cameras in experiments that measure light reflected from or transmitted through a target, including velocity interferometer (VISAR) measurements. This is a means of effectively increasing the number of resolvable time bins in a streak camera record past the limit imposed by input slit width and blur on the output phosphor screen. The illumination intensity is modulated sinusoidally at a frequency similar to the limiting time response of the detector. A heterodyning effect beats the high frequency science signal down a lower frequency beat signal, which is recorded together with the conventional science signal. Using 3 separate illuminating channels having different phases, the beat term is separated algebraically from the conventional signal. By numerically reversing the heterodyning, and combining with the ordinary signal, the science signal can be reconstructed to better effective time resolution than the detector used alone. The effective time resolution can be approximately halved for a single modulation frequency, and further decreased inversely proportional to the number of independent modulation frequencies employed.

  20. Temporal resolution limits of time-to-frequency transformations.

    PubMed

    Fernández-Pousa, Carlos R

    2006-10-15

    Time-to-frequency converters are devices that transfer the intensity of a light pulse to its spectrum. The two architectures of these converters are studied: a dispersive line followed by a phase modulator and a single time lens operating in the spectral Fraunhofer regime. These two configurations are shown not to be equivalent in general: the first one provides an incoherent time-to-frequency mapping, whereas the second depends on the degree of coherence of the pulse. In this case, the recorded spectrum is the intensity of a partially coherent residually dispersed pulse, and the spectral Fraunhofer condition is the requirement of negligible residual dispersion. Converters operated outside the spectral Fraunhofer limit can achieve a subpicosecond resolution with moderate time-lens phase factors. Their use for pulse characterization is briefly analyzed.

  1. Towards neutron scattering experiments with sub-millisecond time resolution

    DOE PAGES

    Adlmann, F. A.; Gutfreund, Phillip; Ankner, John Francis; ...

    2015-02-01

    Neutron scattering techniques offer several unique opportunities in materials research. However, most neutron scattering experiments suffer from the limited flux available at current facilities. This limitation becomes even more severe if time-resolved or kinetic experiments are performed. A new method has been developed which overcomes these limitations when a reversible process is studied, without any compromise on resolution or beam intensity. We demonstrate that, by recording in absolute time the neutron detector events linked to an excitation, information can be resolved on sub-millisecond timescales. Specifically, the concept of the method is demonstrated by neutron reflectivity measurements in time-of-flight mode atmore » the Liquids Reflectometer located at the Spallation Neutron Source, Oak Ridge National Laboratory, Tennessee, USA, combined with in situ rheometry. Finally, the opportunities and limitations of this new technique are evaluated by investigations of a micellar polymer solution offering excellent scattering contrast combined with high sensitivity to shear.« less

  2. Towards neutron scattering experiments with sub-millisecond time resolution

    SciTech Connect

    Adlmann, F. A.; Gutfreund, Phillip; Ankner, John Francis; Browning, James F.; Parizzi, Andre A.; Vacaliuc, Bogdan; Halbert, Candice E.; Rich, J. P.; Dennison, A. J. C.; Wolff, Max

    2015-02-01

    Neutron scattering techniques offer several unique opportunities in materials research. However, most neutron scattering experiments suffer from the limited flux available at current facilities. This limitation becomes even more severe if time-resolved or kinetic experiments are performed. A new method has been developed which overcomes these limitations when a reversible process is studied, without any compromise on resolution or beam intensity. We demonstrate that, by recording in absolute time the neutron detector events linked to an excitation, information can be resolved on sub-millisecond timescales. Specifically, the concept of the method is demonstrated by neutron reflectivity measurements in time-of-flight mode at the Liquids Reflectometer located at the Spallation Neutron Source, Oak Ridge National Laboratory, Tennessee, USA, combined with in situ rheometry. Finally, the opportunities and limitations of this new technique are evaluated by investigations of a micellar polymer solution offering excellent scattering contrast combined with high sensitivity to shear.

  3. 10 ps resolution, 160 ns full scale range and less than 1.5% differential non-linearity time-to-digital converter module for high performance timing measurements

    SciTech Connect

    Markovic, B.; Tamborini, D.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F.

    2012-07-15

    We present a compact high performance time-to-digital converter (TDC) module that provides 10 ps timing resolution, 160 ns dynamic range and a differential non-linearity better than 1.5% LSB{sub rms}. The TDC can be operated either as a general-purpose time-interval measurement device, when receiving external START and STOP pulses, or in photon-timing mode, when employing the on-chip SPAD (single photon avalanche diode) detector for detecting photons and time-tagging them. The instrument precision is 15 ps{sub rms} (i.e., 36 ps{sub FWHM}) and in photon timing mode it is still better than 70 ps{sub FWHM}. The USB link to the remote PC allows the easy setting of measurement parameters, the fast download of acquired data, and their visualization and storing via an user-friendly software interface. The module proves to be the best candidate for a wide variety of applications such as: fluorescence lifetime imaging, time-of-flight ranging measurements, time-resolved positron emission tomography, single-molecule spectroscopy, fluorescence correlation spectroscopy, diffuse optical tomography, optical time-domain reflectometry, quantum optics, etc.

  4. 10 ps resolution, 160 ns full scale range and less than 1.5% differential non-linearity time-to-digital converter module for high performance timing measurements.

    PubMed

    Markovic, B; Tamborini, D; Villa, F; Tisa, S; Tosi, A; Zappa, F

    2012-07-01

    We present a compact high performance time-to-digital converter (TDC) module that provides 10 ps timing resolution, 160 ns dynamic range and a differential non-linearity better than 1.5% LSB(rms). The TDC can be operated either as a general-purpose time-interval measurement device, when receiving external START and STOP pulses, or in photon-timing mode, when employing the on-chip SPAD (single photon avalanche diode) detector for detecting photons and time-tagging them. The instrument precision is 15 ps(rms) (i.e., 36 ps(FWHM)) and in photon timing mode it is still better than 70 ps(FWHM). The USB link to the remote PC allows the easy setting of measurement parameters, the fast download of acquired data, and their visualization and storing via an user-friendly software interface. The module proves to be the best candidate for a wide variety of applications such as: fluorescence lifetime imaging, time-of-flight ranging measurements, time-resolved positron emission tomography, single-molecule spectroscopy, fluorescence correlation spectroscopy, diffuse optical tomography, optical time-domain reflectometry, quantum optics, etc.

  5. ASIC-enabled High Resolution Optical Time Domain Reflectometer

    NASA Astrophysics Data System (ADS)

    Skendzic, Sandra

    Fiber optics has become the preferred technology in communication systems because of what it has to offer: high data transmission rates, immunity to electromagnetic interference, and lightweight, flexible cables. An optical time domain reflectometer (OTDR) provides a convenient method of locating and diagnosing faults (e.g. break in a fiber) along a fiber that can obstruct crucial optical pathways. Both the ability to resolve the precise location of the fault and distinguish between two discrete, closely spaced faults are figures of merit. This thesis presents an implementation of a high resolution OTDR through the use of a compact and programmable ASIC (application specific integrated circuit). The integration of many essential OTDR functions on a single chip is advantageous over existing commercial instruments because it enables small, lightweight packaging, and offers low power and cost efficiency. Furthermore, its compactness presents the option of placing multiple ASICs in parallel, which can conceivably ease the characterization of densely populated fiber optic networks. The OTDR ASIC consists of a tunable clock, pattern generator, precise timer, electrical receiver, and signal sampling circuit. During OTDR operation, the chip generates narrow electrical pulse, which can then be converted to optical format when coupled with an external laser diode driver. The ASIC also works with an external photodetector to measure the timing and amplitude of optical reflections in a fiber. It has a 1 cm sampling resolution, which allows for a 2 cm spatial resolution. While this OTDR ASIC has been previously demonstrated for multimode fiber fault diagnostics, this thesis focuses on extending its functionality to single mode fiber. To validate this novel approach to OTDR, this thesis is divided into five chapters: (1) introduction, (2) implementation, (3), performance of ASIC-based OTDR, (4) exploration in optical pre-amplification with a semiconductor optical amplifier, and

  6. Convex Optimization of Coincidence Time Resolution for a High-Resolution PET System

    PubMed Central

    Reynolds, Paul D.; Olcott, Peter D.; Pratx, Guillem; Lau, Frances W. Y.

    2013-01-01

    We are developing a dual panel breast-dedicated positron emission tomography (PET) system using LSO scintillators coupled to position sensitive avalanche photodiodes (PSAPD). The charge output is amplified and read using NOVA RENA-3 ASICs. This paper shows that the coincidence timing resolution of the RENA-3 ASIC can be improved using certain list-mode calibrations. We treat the calibration problem as a convex optimization problem and use the RENA-3’s analog-based timing system to correct the measured data for time dispersion effects from correlated noise, PSAPD signal delays and varying signal amplitudes. The direct solution to the optimization problem involves a matrix inversion that grows order (n3) with the number of parameters. An iterative method using single-coordinate descent to approximate the inversion grows order (n). The inversion does not need to run to convergence, since any gains at high iteration number will be low compared to noise amplification. The system calibration method is demonstrated with measured pulser data as well as with two LSO-PSAPD detectors in electronic coincidence. After applying the algorithm, the 511 keV photopeak paired coincidence time resolution from the LSO-PSAPD detectors under study improved by 57%, from the raw value of 16.3 ± 0.07 ns full-width at half-maximum (FWHM) to 6.92 ± 0.02 ns FWHM (11.52 ± 0.05 ns to 4.89 ± 0.02 ns for unpaired photons). PMID:20876008

  7. A 2.5 mW/ch, 50 Mcps, 10-Analog Channel, Adaptively Biased Read-Out Front-End IC With Low Intrinsic Timing Resolution for Single-Photon Time-of-Flight PET Applications With Time-Dependent Noise Analysis in 90 nm CMOS.

    PubMed

    Cruz, Hugo; Huang, Hong-Yi; Luo, Ching-Hsing; Lee, Shuenn-Yuh

    2017-04-01

    This paper presents a 10-channel time-of-flight application-specific integrated circuit (ASIC) for positron emission tomography in a 90 nm standard CMOS process. To overcome variations in channel-to-channel timing resolution caused by mismatch and process variations, adaptive biases and a digital-to-analog converter (DAC) are utilized. The main contributions of this work are as follows. First, multistage architectures reduce the total power consumption, and detection bandwidths of analog preamplifiers and comparators are increased to 1 and 1.5 GHz, respectively, relative to those in previous studies. Second, a total intrinsic electronic timing resolution of 9.71 ps root-mean-square (RMS) is achieved (13.88 ps peak and 11.8 ps average of the 10 channels in 5 ASICs). Third, the proposed architecture reduces variations in channel-to-channel timing resolution to 2.6 bits (equivalent to 4.17 ps RMS) by calibrating analog comparator threshold levels. A 181.5 ps full-width-at-half-maximum timing resolution is measured with an avalanche photo diode and a laser setup. The power consumption is 2.5 mW using 0.5 and 1.2 V power supplies. The proposed ASIC is implemented in a 90 nm TSMC CMOS process with a total area of 3.3 mm × 2.7 mm.

  8. Optimizing Spectral Resolution and Observation Time for Measurements of Habitability

    NASA Astrophysics Data System (ADS)

    Khalfa, N.; Meadows, V. S.; Domagal-Goldman, S. D.

    2009-12-01

    The Terrestrial Planet Finder (TPF) is a NASA mission concept that will attempt to characterize and search for habitability and life on extrasolar planets. While detection of a planet in the habitable zone increases the probability that the planet is habitable, planetary characterization will be required to confirm habitability and thereby test predictions of the position of the habitable zone. The TPF-I mission will accomplish this with an interferometer, allowing the detection of Earth-mass planets around stars up to 15 pc away and production of mid-infrared spectra from those planets. The focus on the mid-infrared region of the spectrum (7-20 mm) is beneficial because this is where energy from Earth-like planets is strongest relative to the flux from their parent stars. To discover if such planets are habitable we need to know not only what to look for - biosignatures and indicators of habitability - but also how to look. In other words, we must determine the trade-off in telescope properties that will provide the best science return. Extensive models have been made of Earth-like planets to describe many planetary properties, including atmospheric chemistry and surface temperature. Those properties may be derived for extrasolar planets using these models if spectra are obtained for the target planet. When modeling a planet, we can calculate a very high-resolution spectrum that can show the detailed absorption features of gases such as CO2, H2O, and O3. However, the telescope resolution will necessarily be limited by low photon fluxes from the distant targets. Alternatively, the telescope could spend more time taking in photons from each target planet. A balance may have to be struck between the numbers of targets observed and the quality of the data obtained for each target. We will present a number of simulations of TPF instrument measurements of terrestrial spectra that parametrize spectral resolution and observation time. The relative errors of these various

  9. Precision cosmology with time delay lenses: High resolution imaging requirements

    SciTech Connect

    Meng, Xiao -Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will

  10. Precision cosmology with time delay lenses: high resolution imaging requirements

    SciTech Connect

    Meng, Xiao-Lei; Liao, Kai; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Marshall, Philip J. E-mail: tt@astro.ucla.edu E-mail: mauger@ast.cam.ac.uk E-mail: dr.phil.marshall@gmail.com

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will

  11. The high-resolution time-of-flight spectrometer TOFTOF

    NASA Astrophysics Data System (ADS)

    Unruh, Tobias; Neuhaus, Jürgen; Petry, Winfried

    2007-10-01

    The TOFTOF spectrometer is a multi-disc chopper time-of-flight spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz (FRM II). After five reactor cycles of routine operation the characteristics of the instrument are reported in this article. The spectrometer features an excellent signal to background ratio due to its remote position in the neutron guide hall, an elaborated shielding concept and an s-shaped curved primary neutron guide which acts i.a. as a neutron velocity filter. The spectrometer is fed with neutrons from the undermoderated cold neutron source of the FRM II leading to a total neutron flux of ˜1010n/cm2/s in the continuous white beam at the sample position distributed over a continuous and particularly broad wavelength spectrum. A high energy resolution is achieved by the use of high speed chopper discs made of carbon-fiber-reinforced plastic. In the combination of intensity, resolution and signal to background ratio the spectrometer offers new scientific prospects in the fields of inelastic and quasielastic neutron scattering.

  12. Synthesis of rainfall time series in a high temporal resolution

    NASA Astrophysics Data System (ADS)

    Callau Poduje, Ana Claudia; Haberlandt, Uwe

    2014-05-01

    In order to optimize the design and operation of urban drainage systems, long and continuous rain series in a high temporal resolution are essential. As the length of the rainfall records is often short, particularly the data available with the temporal and regional resolutions required for urban hydrology, it is necessary to find some numerical representation of the precipitation phenomenon to generate long synthetic rainfall series. An Alternating Renewal Model (ARM) is applied for this purpose, which consists of two structures: external and internal. The former is the sequence of wet and dry spells, described by their durations which are simulated stochastically. The internal structure is characterized by the amount of rain corresponding to each wet spell and its distribution within the spell. A multivariate frequency analysis is applied to analyze the internal structure of the wet spells and to generate synthetic events. The stochastic time series must reproduce the statistical characteristics of observed high resolution precipitation measurements used to generate them. The spatio-temporal interdependencies between stations are addressed by resampling the continuous synthetic series based on the Simulated Annealing (SA) procedure. The state of Lower-Saxony and surrounding areas, located in the north-west of Germany is used to develop the ARM. A total of 26 rainfall stations with high temporal resolution records, i.e. rainfall data every 5 minutes, are used to define the events, find the most suitable probability distributions, calibrate the corresponding parameters, simulate long synthetic series and evaluate the results. The length of the available data ranges from 10 to 20 years. The rainfall series involved in the different steps of calculation are compared using a rainfall-runoff model to simulate the runoff behavior in urban areas. The EPA Storm Water Management Model (SWMM) is applied for this evaluation. The results show a good representation of the

  13. Sub-picosecond Resolution Time-to-Digital Converter

    SciTech Connect

    Ph D, Vladimir Bratov; Ph D, Vladimir Katzman; MS EE, Jeb Binkley

    2006-03-30

    Time-to-digital converters with sub-picosecond resolutions are needed to satisfy the requirements of time-on-flight measurements of the next generation of high energy and nuclear physics experiments. The converters must be highly integrated, power effective, low cost, and feature plug-and-play capabilities to handle the increasing number of channels (up to hundreds of millions) in future Department of Energy experiments. Current state-off-the-art time-to-digital converter integrated circuits do not have the sufficient degree of integration and flexibility to fulfill all the described requirements. During Phase I, the Advanced Science and Novel Technology Company in cooperation with the nuclear physics division of the Oak Ridge National Laboratory has developed the architecture of a novel time-to-digital converter with multiple channels connected to an external processor through a special interfacing block and synchronized by clock signals generated by an internal phase-locked loop. The critical blocks of the system including signal delay lines and delay-locked loops with proprietary differential delay cells, as well as the required digital code converter and the clock period counter have been designed and simulated using the advanced SiGe120 BiCMOS technological process. The results of investigations demonstrate a possibility to achieve the digitization accuracy within 1ps. ADSANTEC has demonstrated the feasibility of the proposed concept in computer simulations. The proposed system will be a critical component for the next generation of NEP experiments.

  14. Television camera on RMS surveys insulation on Airborne Support Equipment

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The television camera on the end effector of the Canadian-built Remote Manipulator System (RMS) is seen surveying some of the insulation on the Airborne Support Equipment (ASE). Flight controllers called for the survey following the departure of the Advanced Communications Technology Satellite (ACTS) and its Transfer Orbit Stage (TOS).

  15. Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution

    NASA Astrophysics Data System (ADS)

    Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.; Giridharagopal, Rajiv; Ginger, David S.

    2016-05-01

    The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is critical to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.

  16. Determining time resolution of microchannel plate detectors for electron time-of-flight spectrometers

    SciTech Connect

    Zhang Qi; Zhao Kun; Chang Zenghu

    2010-07-15

    The temporal resolution of a 40 mm diameter chevron microchannel plate (MCP) detector followed by a constant fraction discriminator and a time-to-digital converter was determined by using the third order harmonic of 25 fs Ti:sapphire laser pulses. The resolution was found to deteriorate from 200 to 300 ps as the total voltage applied on the two MCPs increased from 1600 to 2000 V. This was likely due to a partial saturation of the MCP and/or the constant fraction discriminator working with signals beyond its optimum range of pulse width and shape.

  17. X-ray position detection in the region of 6. mu. m RMS with wire proportional chambers

    SciTech Connect

    Fischer, J.; Radeka, V.; Smith, G.C.

    1986-04-01

    We have developed a MWPC system for x-ray detection with a position resolution in the region of 6 ..mu..m RMS (14 ..mu..m FWHM). The performance with argon, krypton or xenon at pressures from 1 to 10 atm is explored for the x-ray energy range 5 to 25 keV. At a resolution of 6 ..mu..m RMS the effects of photoelectron and Auger electron range, electronic noise, avalanche spread, lateral electron diffusion, as well as x-ray beam collimation, become of comparable magnitude. Their limiting effects on avalanche centroid fluctuation, and hence on position resolution, are investigated. The position resolution achieved in this work compares favorably with that of solid state devices. 7 refs., 6 figs.

  18. Digital timing: sampling frequency, anti-aliasing filter and signal interpolation filter dependence on timing resolution

    NASA Astrophysics Data System (ADS)

    Cho, Sanghee; Grazioso, Ron; Zhang, Nan; Aykac, Mehmet; Schmand, Matthias

    2011-12-01

    The main focus of our study is to investigate how the performance of digital timing methods is affected by sampling rate, anti-aliasing and signal interpolation filters. We used the Nyquist sampling theorem to address some basic questions such as what will be the minimum sampling frequencies? How accurate will the signal interpolation be? How do we validate the timing measurements? The preferred sampling rate would be as low as possible, considering the high cost and power consumption of high-speed analog-to-digital converters. However, when the sampling rate is too low, due to the aliasing effect, some artifacts are produced in the timing resolution estimations; the shape of the timing profile is distorted and the FWHM values of the profile fluctuate as the source location changes. Anti-aliasing filters are required in this case to avoid the artifacts, but the timing is degraded as a result. When the sampling rate is marginally over the Nyquist rate, a proper signal interpolation is important. A sharp roll-off (higher order) filter is required to separate the baseband signal from its replicates to avoid the aliasing, but in return the computation will be higher. We demonstrated the analysis through a digital timing study using fast LSO scintillation crystals as used in time-of-flight PET scanners. From the study, we observed that there is no significant timing resolution degradation down to 1.3 Ghz sampling frequency, and the computation requirement for the signal interpolation is reasonably low. A so-called sliding test is proposed as a validation tool checking constant timing resolution behavior of a given timing pick-off method regardless of the source location change. Lastly, the performance comparison for several digital timing methods is also shown.

  19. Multi-time resolution analysis of speech: evidence from psychophysics

    PubMed Central

    Chait, Maria; Greenberg, Steven; Arai, Takayuki; Simon, Jonathan Z.; Poeppel, David

    2015-01-01

    How speech signals are analyzed and represented remains a foundational challenge both for cognitive science and neuroscience. A growing body of research, employing various behavioral and neurobiological experimental techniques, now points to the perceptual relevance of both phoneme-sized (10–40 Hz modulation frequency) and syllable-sized (2–10 Hz modulation frequency) units in speech processing. However, it is not clear how information associated with such different time scales interacts in a manner relevant for speech perception. We report behavioral experiments on speech intelligibility employing a stimulus that allows us to investigate how distinct temporal modulations in speech are treated separately and whether they are combined. We created sentences in which the slow (~4 Hz; Slow) and rapid (~33 Hz; Shigh) modulations—corresponding to ~250 and ~30 ms, the average duration of syllables and certain phonetic properties, respectively—were selectively extracted. Although Slow and Shigh have low intelligibility when presented separately, dichotic presentation of Shigh with Slow results in supra-additive performance, suggesting a synergistic relationship between low- and high-modulation frequencies. A second experiment desynchronized presentation of the Slow and Shigh signals. Desynchronizing signals relative to one another had no impact on intelligibility when delays were less than ~45 ms. Longer delays resulted in a steep intelligibility decline, providing further evidence of integration or binding of information within restricted temporal windows. Our data suggest that human speech perception uses multi-time resolution processing. Signals are concurrently analyzed on at least two separate time scales, the intermediate representations of these analyses are integrated, and the resulting bound percept has significant consequences for speech intelligibility—a view compatible with recent insights from neuroscience implicating multi-timescale auditory

  20. NIF optical specifications - the importance of the RMS gradient specification

    SciTech Connect

    Auerbach, J M; Cotton, C T; English, R E; Henesian, M A; Hunt J T; Kelly, J H; Lawson, J K; Sacks, J B; Shoup, M J; Trenholme, W H

    1998-07-06

    The performance of the National Ignition Facility (NIF), especially in terms of laser focusability, will be determined by several key factors. One of these key factors is the optical specification for the thousands of large aperture optics that will comprise the 192 beamlines. We have previously reported on the importance of the specification of the power spectral density (PSD) on NIF performance. Recently, we have been studying the importance of long spatial wavelength (>33 mm) phase errors on focusability. We have concluded that the preferred metric for determining the impact of these long spatial wavelength phase errors is the rms phase gradient. In this paper, we outline the overall approach to NIF optical specifications, detail the impact of the rms phase gradient on NIF focusability, discuss its trade-off with the PSD in determining the spot size and review measurements of optics similar to those to be manufactured for NIF.

  1. Astronaut Susan Helms on aft flight deck with RMS controls

    NASA Technical Reports Server (NTRS)

    1994-01-01

    On the Space Shuttle Discovery's aft flight deck, astronaut Susan J. Helms handles controls for the Remote Manipulator System (RMS). The robot arm operated by Helms, who remained inside the cabin, was used to support task such as the release and retrieval of the free-flying Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) - 201, a six-hour space walk and the Shuttle Plume Impingement Flight Experiment (SPIFEX).

  2. High-resolution, real-time fringe pattern profilometry

    NASA Astrophysics Data System (ADS)

    Karpinsky, Nikolaus; Lei, Shuangyan; Zhang, Song

    2009-12-01

    This paper presents some of our recent work on high-resolution, real-time 3D profilometry using a digital fringe projection method. In particular, we utilize the unique projection mechanism of a single-chip digital-light-processing (DLP) projector: sequential channel-by-channel switching. Three phase-shifted fringe patterns are encoded into the three primary color channels and switched naturally. A high-speed charge-coupled device (CCD) camera, synchronized with the projector, is used to capture each individual color channel of the projector. Because color is not desirable, the color filters of the projector are removed, and an external trigger signal is supplied to enable its projection. Since three fringe images are sufficient to reconstruction one shape, this technique can, theoretically, reach the refresh rate of a projector (typically 120 Hz). However, due to the speed limit of the camera used, the data acquisition speed is up to 180 fps, thus the 3D shape measurement speed can be as high as 60 fps, as it requires three images to recover one 3D shape. To reach simultaneous 3D data acquisition, reconstruction, and display, we developed various efficient algorithms, and used advanced graphics hardware techniques to boost the processing. In this paper, we will summarize the technologies we developed, and will present some of the research results.

  3. High-resolution, real-time fringe pattern profilometry

    NASA Astrophysics Data System (ADS)

    Karpinsky, Nikolaus; Lei, Shuangyan; Zhang, Song

    2010-03-01

    This paper presents some of our recent work on high-resolution, real-time 3D profilometry using a digital fringe projection method. In particular, we utilize the unique projection mechanism of a single-chip digital-light-processing (DLP) projector: sequential channel-by-channel switching. Three phase-shifted fringe patterns are encoded into the three primary color channels and switched naturally. A high-speed charge-coupled device (CCD) camera, synchronized with the projector, is used to capture each individual color channel of the projector. Because color is not desirable, the color filters of the projector are removed, and an external trigger signal is supplied to enable its projection. Since three fringe images are sufficient to reconstruction one shape, this technique can, theoretically, reach the refresh rate of a projector (typically 120 Hz). However, due to the speed limit of the camera used, the data acquisition speed is up to 180 fps, thus the 3D shape measurement speed can be as high as 60 fps, as it requires three images to recover one 3D shape. To reach simultaneous 3D data acquisition, reconstruction, and display, we developed various efficient algorithms, and used advanced graphics hardware techniques to boost the processing. In this paper, we will summarize the technologies we developed, and will present some of the research results.

  4. A PC-Based Time Interval Counter With 200 PS Resolution

    DTIC Science & Technology

    2004-09-01

    35th Annual Precise Time and Time Interval (PTTI) Meeting 359 A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION Józef...CMOS FPGA technology, the 200 ps resolution (1 LSB - Least Significant Bit) was achieved in single-shot measurements of time intervals within the...time counter with 200 ps resolution in a single CMOS FPGA (Complementary-Metal-Oxide- Semiconductor Field-Programmable-Gate-Array) device [1,2], as a

  5. High-resolution real-time ultrasonic scanner.

    PubMed

    Berson, M; Vaillant, L; Patat, F; Pourcelot, L

    1992-01-01

    High spatial resolution is required for echographic exploration of the skin, microvessels or small laboratory animals. With the scanner described here, high resolution is obtained by means of a strongly focused, wide-band 17 MHz center frequency transducer (-6 dB bandwidth: 22 MHz). The movement of this transducer above the skin provides a 6 mm wide and 5 mm deep echographic cross-section with an image rate of 15 images/s. The resolution is about 0.08 mm in axial and 0.2 to 0.3 mm in lateral directions. The device was tested on phantoms in water and in vivo on normal and pathological skin in the Department of Dermatology. With the easy-to-handle probe, explorations were made on psoriasis, basocellular carcinoma, malignant melanoma and sarcoidosis.

  6. Time and position resolution of the scintillator strips for a muon system at future colliders

    NASA Astrophysics Data System (ADS)

    Denisov, Dmitri; Evdokimov, Valery; Lukić, Strahinja

    2016-07-01

    Prototype scintilator+WLS strips with SiPM readout for a muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been observed, as well as time resolution of 0.45 ns and position resolution along the strip of 7.7 cm.

  7. Time and position resolution of the scintillator strips for a muon system at future colliders

    DOE PAGES

    Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja

    2016-03-31

    In this study, prototype scintilator+WLS strips with SiPM readout for a muon system at future colliders were tested for light yield, time resolution and position resolution. Depending on the configuration, light yield of up to 36 photoelectrons per muon per SiPM has been observed, as well as time resolution of 0.45 ns and position resolution along the strip of 7.7 cm.

  8. STS-56 remote manipulator system (RMS) backdropped against Aurora Borealis

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 remote manipulator system (RMS) arm is backdropped against the 'northern lights' (Aurora Borealis) in this view exposed from the crew cabin of Discovery, Orbiter Vehicle (OV) 103. The arm was used in operations with the Shuttle Pointed Autonomous Research Tool for Astronomy 201 (SPARTAN-201). Space Shuttle astronauts have the opportunity to observe auroral activity only on 57-degree inclination missions and only in the 'night' hemisphere. Astronaut hand-held photography is the only method which is capable of documenting the detailed structure of the auroral oval.

  9. High Resolution Prototype Real-Time Radiography System.

    DTIC Science & Technology

    1986-11-01

    hi.: changed, if you wish to ho removed from our mailinq list, or if the addressee is no longer employed by your !;-> anisation , plrase notify AFWAL...Scanner 3-19 3.4.1 Funk Star Radiographs Recorded on the 2-Inch 3-22 Breadboard Scanner 3.4.2 Compounded Modulation Transfer Function of Line Scan 3-24...Funk star pattern taken at the 1024 pixel/inch resolution mode is shown in Figure 3.4.1. This figure shows the resolution along both the

  10. RMS Titanic and the emergence of new concepts on consortial nature of microbial events.

    PubMed

    Cullimore, D Roy; Pellegrino, Charles; Johnston, Lori

    2002-01-01

    The RMS Titanic sank in 1912 and created a historical event that still ripples through time. Stories were told and lessons learned but the science has only just begun. Today the fading remains of the ship resemble the hanging gardens of Babylon except that it is not plants that drape the walls but complex microbial growths called rusticles. These organisms have been found to be not a species, like plants and animals, but to be structures created by complex communities of bacterial species. Like the discovery of tube worms in the mid-oceanic vents, the nature of these rusticles presents another biological discovery of a fundamental nature. Essentially these microbial consortia on the RMS Titanic have generated structures of a mass that would rival whales and elephants while gradually extracting the iron from the steel. Rusticle-like consortia appear to play many roles within the environment, and it is perhaps the RMS Titanic that is showing that there is a new way to understand the form, function, and nature of microorganisms. This understanding would develop by considering the bacteria not as individual species functioning independently but as consortia of species functioning in community structures within a common habitat. This concept, if adopted, would change dramatically the manner in which a microbial ecologist and any scientist or engineer would view the occurrence of a slime, encrustation, biocolloid, rust flake, iron pan, salt deposit, and perhaps even some of the diseases that remain unexplained as a disease of unknown cause.

  11. Universal behavior of the interoccurrence times between losses in financial markets: Independence of the time resolution

    NASA Astrophysics Data System (ADS)

    Ludescher, Josef; Bunde, Armin

    2014-12-01

    We consider representative financial records (stocks and indices) on time scales between one minute and one day, as well as historical monthly data sets, and show that the distribution PQ(r ) of the interoccurrence times r between losses below a negative threshold -Q , for fixed mean interoccurrence times RQ in multiples of the corresponding time resolutions, can be described on all time scales by the same q exponentials, PQ(r ) ∝1 /{[1+(q -1 ) β r ] 1 /(q -1 )} . We propose that the asset- and time-scale-independent analytic form of PQ(r ) can be regarded as an additional stylized fact of the financial markets and represents a nontrivial test for market models. We analyze the distribution PQ(r ) as well as the autocorrelation CQ(s ) of the interoccurrence times for three market models: (i) multiplicative random cascades, (ii) multifractal random walks, and (iii) the generalized autoregressive conditional heteroskedasticity [GARCH(1,1)] model. We find that only one of the considered models, the multifractal random walk model, approximately reproduces the q -exponential form of PQ(r ) and the power-law decay of CQ(s ) .

  12. Universal behavior of the interoccurrence times between losses in financial markets: independence of the time resolution.

    PubMed

    Ludescher, Josef; Bunde, Armin

    2014-12-01

    We consider representative financial records (stocks and indices) on time scales between one minute and one day, as well as historical monthly data sets, and show that the distribution P(Q)(r) of the interoccurrence times r between losses below a negative threshold -Q, for fixed mean interoccurrence times R(Q) in multiples of the corresponding time resolutions, can be described on all time scales by the same q exponentials, P(Q)(r)∝1/{[1+(q-1)βr](1/(q-1))}. We propose that the asset- and time-scale-independent analytic form of P(Q)(r) can be regarded as an additional stylized fact of the financial markets and represents a nontrivial test for market models. We analyze the distribution P(Q)(r) as well as the autocorrelation C(Q)(s) of the interoccurrence times for three market models: (i) multiplicative random cascades, (ii) multifractal random walks, and (iii) the generalized autoregressive conditional heteroskedasticity [GARCH(1,1)] model. We find that only one of the considered models, the multifractal random walk model, approximately reproduces the q-exponential form of P(Q)(r) and the power-law decay of C(Q)(s).

  13. The CU ground MAX-DOAS instrument: characterization of RMS noise limitations and first measurements near Pensacola, FL of BrO, IO, and CHOCHO

    NASA Astrophysics Data System (ADS)

    Coburn, S.; Dix, B.; Sinreich, R.; Volkamer, R.

    2011-11-01

    We designed and assembled the University of Colorado Ground Multi AXis Differential Optical Absorption Spectroscopy (CU GMAX-DOAS) instrument to retrieve bromine oxide (BrO), iodine oxide (IO), formaldehyde (HCHO), glyoxal (CHOCHO), nitrogen dioxide (NO2) and the oxygen dimer (O4) in the coastal atmosphere of the Gulf of Mexico. The detection sensitivity of DOAS measurements is proportional to the root mean square (RMS) of the residual spectrum that remains after all absorbers have been subtracted. Here we describe the CU GMAX-DOAS instrument and demonstrate that the hardware is capable of attaining RMS of ∼6 × 10-6 from solar stray light noise tests using high photon count spectra (compatible within a factor of two with photon shot noise). Laboratory tests revealed two critical instrument properties that, in practice, can limit the RMS: (1) detector non-linearity noise, RMSNLin, and (2) temperature fluctuations that cause variations in optical resolution (full width at half the maximum, FWHM, of atomic emission lines) and give rise to optical resolution noise, RMSFWHM. The non-linearity of our detector is low (∼10-2) yet - unless actively controlled - is sufficiently large to create RMSNLin of up to 2 × 10-4. The optical resolution is sensitive to temperature changes (0.03 detector pixels °C-1 at 334 nm), and temperature variations of 0.1°C can cause RMSFWHM of ~1 × 10-4. Both factors were actively addressed in the design of the CU GMAX-DOAS instrument. With an integration time of 60 s the instrument can reach RMS noise of 3 × 10-5, and typical RMS in field measurements ranged from 6 × 10-5 to 1.4 × 10-4. The CU GMAX-DOAS was set up at a coastal site near Pensacola, Florida, where we detected BrO, IO and CHOCHO in the marine boundary layer (MBL), with daytime average tropospheric vertical column densities (average of data above the detection limit), VCDs, of ∼2 × 1013 molec cm-2, 8 × 1012 molec cm-2 and 4 × 1014 molec cm-2, respectively

  14. Proposal for Cherenkov Time of Flight Technique with Picosecond Resolution

    SciTech Connect

    S. Majewski; A. Margaryan; L. Tang

    2005-08-05

    A new particle identification device for Jlab 12 GeV program is proposed. It is based on the measurement of time information obtained by means of a new photon detector and time measuring concept. The expected time measurement precision for the Cherenkov time-of-flight detector is about or less than 10 picosecond for Cherenkov radiators with lengths less than 50 cm.

  15. Reliability, Maintainability, and Supportability (RMS) education in engineering schools

    NASA Astrophysics Data System (ADS)

    Hurst, Gregory T.; Kinter, Barry N.

    1992-12-01

    The purpose of this research is to show how engineering schools, as a whole, perceive the role of reliability, maintainability, and supportability in the engineering field. This includes the degree to which these concepts are included in their curricula, whether industry recruiters look for reliability, maintainability, and supportability training when they visit college campuses and to what degree college faculties are teaching reliability, maintainability, and supportability. This is done through research of existing literature and the analysis of data from a survey completed by engineering schools. General analyses are presented of the overall responses and detailed analysis of contrasts and similarities between the responses from private and public institutions are presented. Based upon the knowledge gained in conducting this research, conclusions on the state of RMS education in engineering institutions are forwarded.

  16. Fluoro Jade-B detection of dying cells in the SVZ and RMS of adult rats after bilateral olfactory bulbectomy.

    PubMed

    Mitrusková, Barbora; Orendácová, Judita; Raceková, Enikö

    2005-12-01

    A novel fluorochrome, Fluoro-Jade B, was used to detect dying precursor cells in the subventricular zone (SVZ) and rostral migratory stream (RMS) of adult rats after bilateral olfactory bulbectomy and in control intact rats. The animals in experimental group were left to survive 3 days and from 3 till 16 months after surgical procedure. 1. In the control animals, Fluoro-Jade B positive cells were visible in the SVZ and within the whole extent of the RMS. The number of Fluoro-Jade B positive cells increased in the elbow in comparison to the rest parts of the RMS. 2. In the experimental animals surviving either 3 days or from 3 till 16 months after bilateral olfactory bulbectomy, Fluoro-Jade B positive cells displayed the similar pattern of distribution as in the control animals. However, some quantitative differences in the labeled cells number along the rostral migratory pathway appeared. 3. The average number of degenerating cells within the control SVZ and RMS was 26.24+/- 0.686. In bulbectomized animals, regardless of survival time, an insignificant increase of Fluoro-Jade B positive cells number occurred. We can conclude that dying of precursor cells is a physiological process running within the SVZ/RMS in both control and experimental animals. Moreover, this physiological process is not influenced by survival period after bilateral olfactory bulbectomy. Our results demonstrate Fluoro-Jade B as a useful marker of dying cells.

  17. Highly segmented, high resolution time-of-flight system

    SciTech Connect

    Nayak, T.K.; Nagamiya, S.; Vossnack, O.; Wu, Y.D.; Zajc, W.A.; Miake, Y.; Ueno, S.; Kitayama, H.; Nagasaka, Y.; Tomizawa, K.; Arai, I.; Yagi, K

    1991-12-31

    The light attenuation and timing characteristics of time-of-flight counters constructed of 3m long scintillating fiber bundles of different shapes and sizes are presented. Fiber bundles made of 5mm diameter fibers showed good timing characteristics and less light attenuation. The results for a 1.5m long scintillator rod are also presented.

  18. Space-time super-resolution using graph-cut optimization.

    PubMed

    Mudenagudi, Uma; Banerjee, Subhashis; Kalra, Prem Kumar

    2011-05-01

    We address the problem of super-resolution—obtaining high-resolution images and videos from multiple low-resolution inputs. The increased resolution can be in spatial or temporal dimensions, or even in both. We present a unified framework which uses a generative model of the imaging process and can address spatial super-resolution, space-time super-resolution, image deconvolution, single-image expansion, removal of noise, and image restoration. We model a high-resolution image or video as a Markov random field and use maximum a posteriori estimate as the final solution using graph-cut optimization technique. We derive insights into what super-resolution magnification factors are possible and the conditions necessary for super-resolution. We demonstrate spatial super-resolution reconstruction results with magnifications higher than predicted limits of magnification. We also formulate a scheme for selective super-resolution reconstruction of videos to obtain simultaneous increase of resolutions in both spatial and temporal directions. We show that it is possible to achieve space-time magnification factors beyond what has been suggested in the literature by selectively applying super-resolution constraints. We present results on both synthetic and real input sequences.

  19. It's time for a crisper image of the Face of the Earth: Landsat and climate time series for massive land cover & climate change mapping at detailed resolution.

    NASA Astrophysics Data System (ADS)

    Pons, Xavier; Miquel, Ninyerola; Oscar, González-Guerrero; Cristina, Cea; Pere, Serra; Alaitz, Zabala; Lluís, Pesquer; Ivette, Serral; Joan, Masó; Cristina, Domingo; Maria, Serra Josep; Jordi, Cristóbal; Chris, Hain; Martha, Anderson; Juanjo, Vidal

    2014-05-01

    Combining climate dynamics and land cover at a relative coarse resolution allows a very interesting approach to global studies, because in many cases these studies are based on a quite high temporal resolution, but they may be limited in large areas like the Mediterranean. However, the current availability of long time series of Landsat imagery and spatially detailed surface climate models allow thinking on global databases improving the results of mapping in areas with a complex history of landscape dynamics, characterized by fragmentation, or areas where relief creates intricate climate patterns that can be hardly monitored or modeled at coarse spatial resolutions. DinaCliVe (supported by the Spanish Government and ERDF, and by the Catalan Government, under grants CGL2012-33927 and SGR2009-1511) is the name of the project that aims analyzing land cover and land use dynamics as well as vegetation stress, with a particular emphasis on droughts, and the role that climate variation may have had in such phenomena. To meet this objective is proposed to design a massive database from long time series of Landsat land cover products (grouped in quinquennia) and monthly climate records (in situ climate data) for the Iberian Peninsula (582,000 km2). The whole area encompasses 47 Landsat WRS2 scenes (Landsat 4 to 8 missions, from path 197 to 202 and from rows 30 to 34), and 52 Landsat WRS1 scenes (for the previous Landsat missions, 212 to 221 and 30 to 34). Therefore, a mean of 49.5 Landsat scenes, 8 quinquennia per scene and a about 6 dates per quinquennium , from 1975 to present, produces around 2376 sets resulting in 30 m x 30 m spatial resolution maps. Each set is composed by highly coherent geometric and radiometric multispectral and multitemporal (to account for phenology) imagery as well as vegetation and wetness indexes, and several derived topographic information (about 10 Tbyte of data). Furthermore, on the basis on a previous work: the Digital Climatic Atlas of

  20. A VLSI Processor Design of Real-Time Data Compression for High-Resolution Imaging Radar

    NASA Technical Reports Server (NTRS)

    Fang, W.

    1994-01-01

    For the high-resolution imaging radar systems, real-time data compression of raw imaging data is required to accomplish the science requirements and satisfy the given communication and storage constraints. The Block Adaptive Quantizer (BAQ) algorithm and its associated VLSI processor design have been developed to provide a real-time data compressor for high-resolution imaging radar systems.

  1. Astronauts Sally Ride and Terry Hart prepare for RMS training for STS-2

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronauts Sally Ride and Terry Hart prepare for remote manipulator system (RMS) training for STS-2 in bldg 9A. Views include Ride, Hart and Robert R. Kain of the Flight Activites Branch reviewing procedures for RMS training (34262); Ride and Hart stand beside the RMS control center looking down at the payload bay mock-up (34263).

  2. Efficient Solar Scene Wavefront Estimation with Reduced Systematic and RMS Errors: Summary

    NASA Astrophysics Data System (ADS)

    Anugu, N.; Garcia, P.

    2016-04-01

    computational efficiency. In the first step, the cross-correlation is implemented at the original image spatial resolution grid (1 pixel). In the second step, the cross-correlation is performed using a sub-pixel level grid by limiting the field of search to 4 × 4 pixels centered at the first step delivered initial position. The generation of these sub-pixel grid based region of interest images is achieved with the bi-cubic interpolation. The correlation matching with sub-pixel grid technique was previously reported in electronic speckle photography Sjö'dahl (1994). This technique is applied here for the solar wavefront sensing. A large dynamic range and a better accuracy in the measurements are achieved with the combination of the original pixel grid based correlation matching in a large field of view and a sub-pixel interpolated image grid based correlation matching within a small field of view. The results revealed that the proposed method outperforms all the different peak-finding algorithms studied in the first approach. It reduces both the systematic error and the RMS error by a factor of 5 (i.e., 75% systematic error reduction), when 5 times improved image sampling was used. This measurement is achieved at the expense of twice the computational cost. With the 5 times improved image sampling, the wave front accuracy is increased by a factor of 5. The proposed solution is strongly recommended for wave front sensing in the solar telescopes, particularly, for measuring large dynamic image shifts involved open loop adaptive optics. Also, by choosing an appropriate increment of image sampling in trade-off between the computational speed limitation and the aimed sub-pixel image shift accuracy, it can be employed in closed loop adaptive optics. The study is extended to three other class of sub-aperture images (a point source; a laser guide star; a Galactic Center extended scene). The results are planned to submit for the Optical Express journal.

  3. Analysis of decade-long time series of GPS-based polar motion estimates at 15-min temporal resolution

    NASA Astrophysics Data System (ADS)

    Sibois, Aurore E.; Desai, Shailen D.; Bertiger, Willy; Haines, Bruce J.

    2017-02-01

    We present results from the generation of 10-year-long continuous time series of the Earth's polar motion at 15-min temporal resolution using Global Positioning System ground data. From our results, we infer an overall noise level in our high-rate polar motion time series of 60 μas (RMS). However, a spectral decomposition of our estimates indicates a noise floor of 4 μas at periods shorter than 2 days, which enables recovery of diurnal and semidiurnal tidally induced polar motion. We deliberately place no constraints on retrograde diurnal polar motion despite its inherent ambiguity with long-period nutation. With this approach, we are able to resolve damped manifestations of the effects of the diurnal ocean tides on retrograde polar motion. As such, our approach is at least capable of discriminating between a historical background nutation model that excludes the effects of the diurnal ocean tides and modern models that include those effects. To assess the quality of our polar motion solution outside of the retrograde diurnal frequency band, we focus on its capability to recover tidally driven and non-tidal variations manifesting at the ultra-rapid (intra-daily) and rapid (characterized by periods ranging from 2 to 20 days) periods. We find that our best estimates of diurnal and semidiurnal tidally induced polar motion result from an approach that adopts, at the observation level, a reasonable background model of these effects. We also demonstrate that our high-rate polar motion estimates yield similar results to daily-resolved polar motion estimates, and therefore do not compromise the ability to resolve polar motion at periods of 2-20 days.

  4. Spectral encoding based measurement of x-ray/optical relative delay to ~10 fs rms

    NASA Astrophysics Data System (ADS)

    Bionta, Mina R.; French, Doug; Cryan, James P.; Glownia, James M.; Hartmann, Nick; Nicholson, David J.; Baker, Kevin; Bostedt, Christoph; Cammarrata, Marco; Chollet, Matthieu; Ding, Yuantao; Fritz, David M.; Durbin, Steve M.; Feng, Yiping; Harmand, Marion; Fry, Alan R.; Kane, Daniel J.; Krzywinski, Jacek; Lemke, Henrik T.; Messerschmidt, Marc; Ratner, Daniel F.; Schorb, Sebastian; Toleikis, Sven; Zhu, Diling; White, William E.; Coffee, Ryan N.

    2012-10-01

    A recently demonstrated single-shot measurement of the relative delay between x-ray FEL pulses and optical laser pulses has now been improved to ~10 fs rms error and has successfully been demonstrated for both soft and hard x-ray pulses. It is based on x-ray induced step-like reduction in optical transmissivity of a semiconductor membrane (Si3N4). The transmissivity is probed by an optical continuum spanning 450 - 650 nm where spectral chirp provides a mapping of the step in spectrum to the arrival time of the x-ray pulse relative to the optical laser system.

  5. A comprehensive characterization of the time resolution of the Philips Digital Photon Counter

    NASA Astrophysics Data System (ADS)

    Brunner, S. E.; Gruber, L.; Hirtl, A.; Suzuki, K.; Marton, J.; Schaart, D. R.

    2016-11-01

    Photodetectors with excellent time resolution are becoming increasingly important in many applications in medicine, high energy- and nuclear physics applications, biology, and material science. Silicon photomultipliers (SiPM) are a novel class of solid-state photodetectors with good timing properties. While the time resolution of analog SiPMs has been analyzed by many groups, the time resolution of the digital photon counter (DPC) developed by Philips has not yet been fully characterised. Here, the timing capabilities of the DPC are studied using a femtosecond laser. The time resolution is determined for complete dies, single pixels, and individual single photon avalanche diodes (SPADs). The measurements cover a broad dynamic range, from intense illumination down to the single-photon level, and were performed at various temperatures between 0°C and 20°C. The measured single photon time resolution (SPTR) ranges from 101 ps FWHM for the DPC3200 sensor pixel to 247 ps FWHM for the DPC6400 sensor die. An extensive study of the single-SPAD time resolution, ranging from single photon to very high laser intensities (~1000 photons per pulse), yielded a time resolution of 48 ps FWHM at the single-photon level.

  6. A picosecond resolution Time Digitizer for laser ranging

    NASA Technical Reports Server (NTRS)

    Turko, B.

    1978-01-01

    The Time Digitizer capable of covering a range of 0.34 sec in 9.76 psec increments is described. The time interval between a pair of start-stop pulses is digitized coarsely in 20 nsec periods by a very accurate 50 MHz reference clock. The residual fractions of a clock period at the start and the stop end of the measured interval are stretched in two interpolators and digitized in 9.76 psec increments. An equivalent digitizing frequency of 102.4 GHz is thus achieved. The digitizer is built in a minicrate and communicates via a standard crate controller. It is intended for use in the laser ranging between ground stations and the Laser Geodetic Satellite (LAGEOS). It is shown that the distribution in any two adjacent 9.76 psec channels of a small number of identical test time intervals is essentially binomial. The performance of the digitizer and test results are given.

  7. Real-time flutter identification with close mode resolution

    NASA Technical Reports Server (NTRS)

    Roy, R. H.; Walker, R. A.; Gilyard, G. B.

    1986-01-01

    Real-time flutter prediction including close modes can be effectively estimated from turbulence or on-board excitation with an Extended Kalman Filter (EKF) approach. A physically based model form enables prediction of the damping rate as well as damping, giving a time to instability estimate with its variance. The approach is recursive and can operate asynchronously to drop data outliers and hence is quite robust. Its speed is reasonable for on-line application but can also be used effectively as an off-line analysis tool for application to any modal testing situation.

  8. The lower timing resolution bound for scintillators with non-negligible optical photon transport time in time-of-flight PET

    PubMed Central

    Vinke, Ruud; Olcott, Peter D.; Cates, Joshua W.; Levin, Craig S.

    2014-01-01

    In this work, a method is presented that can calculate the lower bound of the timing resolution for large scintillation crystals with non-negligible photon transport. Hereby, the timing resolution bound can directly be calculated from Monte Carlo generated arrival times of the scintillation photons. This method extends timing resolution bound calculations based on analytical equations, as crystal geometries can be evaluated that do not have closed form solutions of arrival time distributions. The timing resolution bounds are calculated for an exemplary 3 × 3 × 20 mm3 LYSO crystal geometry, with scintillation centers exponentially spread along the crystal length as well as with scintillation centers at fixed distances from the photosensor. Pulse shape simulations further show that analog photosensors intrinsically operate near the timing resolution bound, which can be attributed to the finite single photoelectron pulse rise time. PMID:25255807

  9. Spectrometer employing optical fiber time delays for frequency resolution

    DOEpatents

    Schuss, Jack J.; Johnson, Larry C.

    1979-01-01

    This invention provides different length glass fibers for providing a broad range of optical time delays for short incident chromatic light pulses for the selective spatial and frequency analysis of the light with a single light detector. To this end, the frequencies of the incident light are orientated and matched with the different length fibers by dispersing the separate frequencies in space according to the respective fiber locations and lengths at the input terminal of the glass fibers. This makes the different length fibers useful in the field of plasma physics. To this end the short light pulses can be scattered by a plasma and then passed through the fibers for analyzing and diagnosing the plasma while it varies rapidly with time.

  10. Large area spark counter with fine time and position resolution

    SciTech Connect

    Ogawa, A.; Fujiwara, N.; Pestov, Yu.N.; Sugahara, R.

    1984-03-01

    The key properties of spark counters include their capability of precision timing (at the sub 100 ps level) and of measuring the position of the charged particle to high accuracy. At SLAC we have undertaken a program to develop these devices for use in high energy physics experiments involving large detectors. A spark counter of size 1.2 m x 0.1 m has been constructed and has been operating continuously in our test setup for several months. Some details of its construction and its properties as a particle detector are reported. 14 references. (WHK)

  11. Time resolution of time-of-flight detector based on multiple scintillation counters readout by SiPMs

    NASA Astrophysics Data System (ADS)

    Cattaneo, P. W.; De Gerone, M.; Gatti, F.; Nishimura, M.; Ootani, W.; Rossella, M.; Shirabe, S.; Uchiyama, Y.

    2016-08-01

    A new timing detector measuring ∼ 50 MeV / c positrons is under development for the MEG II experiment, aiming at a time resolution σt ∼ 30 ps. The resolution is expected to be achieved by measuring each positron time with multiple counters made of plastic scintillator readout by silicon photomultipliers (SiPMs). The purpose of this work is to demonstrate the time resolution for ∼ 50 MeV / c positrons using prototype counters. Counters with dimensions of 90 × 40 × 5mm3 readout by six SiPMs (three on each 40 × 5mm2 plane) were built with SiPMs from Hamamatsu Photonics and AdvanSiD and tested in a positron beam at the DAΦNE Beam Test Facility. The time resolution was found to improve nearly as the square root of the number of counter hits. A time resolution σt = 26.2 ± 1.3 ps was obtained with eight counters with Hamamatsu SiPMs. These results suggest that the design resolution is achievable in the MEG II experiment.

  12. Large area spark counters with fine time and position resolution

    SciTech Connect

    Ogawa, A.; Atwood, W.B.; Fujiwara, N.; Pestov, Yu.N.; Sugahara, R.

    1983-10-01

    Spark counters trace their history back over three decades but have been used in only a limited number of experiments. The key properties of these devices include their capability of precision timing (at the sub 100 ps level) and of measuring the position of the charged particle to high accuracy. At SLAC we have undertaken a program to develop these devices for use in high energy physics experiments involving large detectors. A spark counter of size 1.2 m x 0.1 m has been constructed and has been operating continuously in our test setup for several months. In this talk I will discuss some details of its construction and its properties as a particle detector. 14 references.

  13. Real time orthorectification of high resolution airborne pushbroom imagery

    NASA Astrophysics Data System (ADS)

    Reguera-Salgado, Javier; Martin-Herrero, Julio

    2011-11-01

    Advanced architectures have been proposed for efficient orthorectification of digital airborne camera images, including a system based on GPU processing and distributed computing able to geocorrect three digital still aerial photographs per second. Here, we address the computationally harder problem of geocorrecting image data from airborne pushbroom sensors, where each individual image line has associated its own camera attitude and position parameters. Using OpenGL and CUDA interoperability and projective texture techniques, originally developed for fast shadow rendering, image data is projected onto a Digital Terrain Model (DTM) as if by a slide projector placed and rotated in accordance with GPS position and inertial navigation (IMU) data. Each line is sequentially projected onto the DTM to generate an intermediate frame, consisting of a unique projected line shaped by the DTM relief. The frames are then merged into a geometrically corrected georeferenced orthoimage. To target hyperband systems, avoiding the high dimensional overhead, we deal with an orthoimage of pixel placeholders pointing to the raw image data, which are then combined as needed for visualization or processing tasks. We achieved faster than real-time performance in a hyperspectral pushbroom system working at a line rate of 30 Hz with 200 bands and 1280 pixel wide swath over a 1 m grid DTM, reaching a minimum processing speed of 356 lines per second (up to 511 lps), over eleven (up to seventeen) times the acquisition rate. Our method also allows the correction of systematic GPS and/or IMU biases by means of 3D user interactive navigation.

  14. A 30 ps Timing Resolution for Single Photons with Multi-pixel Burle MCP-PMT

    SciTech Connect

    Va'vra, J.; Benitez, J.; Coleman, J.; Leith, D.W.G.S.; Mazaheri, G.; Ratcliff, B.; Schwiening, J.; /SLAC

    2006-07-05

    We have achieved {approx}30 psec single-photoelectron and {approx}12ps for multi-photoelectron timing resolution with a new 64 pixel Burle MCP-PMT with 10 micron microchannel holes. We have also demonstrated that this detector works in a magnetic field of 15kG, and achieved a single-photoelectron timing resolution of better than 60 psec. The study is relevant for a new focusing DIRC RICH detector for particle identification at future Colliders such as the super B-factory or ILC, and for future TOF techniques. This study shows that a highly pixilated MCP-PMT can deliver excellent timing resolution.

  15. Coherent diffractive imaging of time-evolving samples with improved temporal resolution

    NASA Astrophysics Data System (ADS)

    Ulvestad, A.; Tripathi, A.; Hruszkewycz, S. O.; Cha, W.; Wild, S. M.; Stephenson, G. B.; Fuoss, P. H.

    2016-05-01

    Bragg coherent x-ray diffractive imaging is a powerful technique for investigating dynamic nanoscale processes in nanoparticles immersed in reactive, realistic environments. Its temporal resolution is limited, however, by the oversampling requirements of three-dimensional phase retrieval. Here, we show that incorporating the entire measurement time series, which is typically a continuous physical process, into phase retrieval allows the oversampling requirement at each time step to be reduced, leading to a subsequent improvement in the temporal resolution by a factor of 2-20 times. The increased time resolution will allow imaging of faster dynamics and of radiation-dose-sensitive samples. This approach, which we call "chrono CDI," may find use in improving the time resolution in other imaging techniques.

  16. Coherent diffractive imaging of time-evolving samples with improved temporal resolution

    SciTech Connect

    Ulvestad, A.; Tripathi, A.; Hruszkewycz, S. O.; Cha, W.; Wild, S. M.; Stephenson, G. B.; Fuoss, P. H.

    2016-05-19

    Bragg coherent x-ray diffractive imaging is a powerful technique for investigating dynamic nanoscale processes in nanoparticles immersed in reactive, realistic environments. Its temporal resolution is limited, however, by the oversampling requirements of three-dimensional phase retrieval. Here, we show that incorporating the entire measurement time series, which is typically a continuous physical process, into phase retrieval allows the oversampling requirement at each time step to be reduced, leading to a subsequent improvement in the temporal resolution by a factor of 2-20 times. The increased time resolution will allow imaging of faster dynamics and of radiation-dose-sensitive samples. This approach, which we call "chrono CDI," may find use in improving the time resolution in other imaging techniques.

  17. Reaching time resolution of less than 10 ps with plastic scintillation detectors

    NASA Astrophysics Data System (ADS)

    Zhao, J. W.; Sun, B. H.; Tanihata, I.; Terashima, S.; Zhu, L. H.; Enomoto, A.; Nagae, D.; Nishimura, T.; Omika, S.; Ozawa, A.; Takeuchi, Y.; Yamaguchi, T.

    2016-07-01

    Timing-pick up detectors with excellent timing resolutions are essential in many modern nuclear physics experiments. Aiming to develop a Time-Of-Flight system with precision down to about 10 ps, we have made a systematic study of the timing characteristic of TOF detectors, which consist of several combinations of plastic scintillators and photomultiplier tubes. With the conventional electronics, the best timing resolution of about 5.1 ps (σ) has been achieved for detectors with an area size of 3 × 1cm2 . It is found that for data digitalization a combination of TAC and ADC can achieve a better time resolution than the currently available TDC. Simultaneous measurements of both time and pulse height are very valuable for the correction of time-walk effect.

  18. A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks

    PubMed Central

    Kerkhofs, Johan; Geris, Liesbet

    2015-01-01

    Boolean models have been instrumental in predicting general features of gene networks and more recently also as explorative tools in specific biological applications. In this study we introduce a basic quantitative and a limited time resolution to a discrete (Boolean) framework. Quantitative resolution is improved through the employ of normalized variables in unison with an additive approach. Increased time resolution stems from the introduction of two distinct priority classes. Through the implementation of a previously published chondrocyte network and T helper cell network, we show that this addition of quantitative and time resolution broadens the scope of biological behaviour that can be captured by the models. Specifically, the quantitative resolution readily allows models to discern qualitative differences in dosage response to growth factors. The limited time resolution, in turn, can influence the reachability of attractors, delineating the likely long term system behaviour. Importantly, the information required for implementation of these features, such as the nature of an interaction, is typically obtainable from the literature. Nonetheless, a trade-off is always present between additional computational cost of this approach and the likelihood of extending the model’s scope. Indeed, in some cases the inclusion of these features does not yield additional insight. This framework, incorporating increased and readily available time and semi-quantitative resolution, can help in substantiating the litmus test of dynamics for gene networks, firstly by excluding unlikely dynamics and secondly by refining falsifiable predictions on qualitative behaviour. PMID:26067297

  19. Analytical model of SiPM time resolution and order statistics with crosstalk

    NASA Astrophysics Data System (ADS)

    Vinogradov, S.

    2015-07-01

    Time resolution is the most important parameter of photon detectors in a wide range of time-of-flight and time correlation applications within the areas of high energy physics, medical imaging, and others. Silicon photomultipliers (SiPM) have been initially recognized as perfect photon-number-resolving detectors; now they also provide outstanding results in the scintillator timing resolution. However, crosstalk and afterpulsing introduce false secondary non-Poissonian events, and SiPM time resolution models are experiencing significant difficulties with that. This study presents an attempt to develop an analytical model of the timing resolution of an SiPM taking into account statistics of secondary events resulting from a crosstalk. Two approaches have been utilized to derive an analytical expression for time resolution: the first one based on statistics of independent identically distributed detection event times and the second one based on order statistics of these times. The first approach is found to be more straightforward and "analytical-friendly" to model analog SiPMs. Comparisons of coincidence resolving times predicted by the model with the known experimental results from a LYSO:Ce scintillator and a Hamamatsu MPPC are presented.

  20. Test and characterisation of SiPMs for the MEGII high resolution Timing Counter

    NASA Astrophysics Data System (ADS)

    Simonetta, M.; Biasotti, M.; Boca, G.; Cattaneo, P. W.; De Gerone, M.; Gatti, F.; Nardò, R.; Nishimura, M.; Ootani, W.; Pizzigoni, G.; Prata, M. C.; Rossella, M.; Shibata, N.; Uchiyama, Y.; Yoshida, K.

    2016-07-01

    The MEGII Timing Counter will measure the positron time of arrival with a resolution of ~ 30 ps relying on two arrays of scintillator pixels read out by 6144 Silicon Photomultipliers (SiPMs) from AdvanSiD. They are characterised, measuring their breakdown voltage, to assure that the gains of the SiPMs of each pixel are as uniform as possible, to maximise the pixel resolution. Gain measurements have also been performed.

  1. The RMS survey. 13CO observations of candidate massive YSOs in the northern Galactic plane

    NASA Astrophysics Data System (ADS)

    Urquhart, J. S.; Busfield, A. L.; Hoare, M. G.; Lumsden, S. L.; Oudmaijer, R. D.; Moore, T. J. T.; Gibb, A. G.; Purcell, C. R.; Burton, M. G.; Maréchal, L. J. L.; Jiang, Z.; Wang, M.

    2008-08-01

    Context: The Red MSX Source (RMS) survey is an ongoing multi-wavelength observational programme designed to return a large, high-resolution mid-infrared colour-selected sample of massive young stellar objects (MYSOs). We have identified 2000 MYSO candidates located within our Galaxy by comparing the colours of MSX and 2MASS point sources to those of known MYSOs. The aim of our follow-up observations is to identify other objects with similar colours such as ultra compact (UC) HII regions, evolved stars and planetary nebulae (PNe) and distinguish between genuine MYSOs and nearby low-mass YSOs. Aims: A critical part of our follow-up programme is to conduct 13CO molecular line observations in order to determine kinematic distances to all of our MYSO candidates. These distances will be used in combination with far-IR and (sub)millimetre fluxes to determine bolometric luminosities which will allow us to identify and remove nearby low-mass YSOs. In addition these molecular line observations will help in identifying evolved stars which are weak CO emitters. Methods: We have used the 15 m James Clerk Maxwell Telescope (JCMT), the 13.7 m telescope of the Purple Mountain Observatory (PMO), the 20 m Onsala telescope and the 22 m Mopra telescope to conduct molecular line observations towards 508 MYSOs candidates located in the 1st and 2nd Quadrants. These observations have been made at the J=1-0 (Mopra, Onsala and PMO) and J=2-1 (JCMT) rotational transition frequency of 13CO molecules and have a spatial resolution of 20´´-55´´, a sensitivity of T{A}* ≃ 0.1 K and a velocity resolution of 0.2 km s-1. We complement these targeted observations with 13CO spectra extracted from the Galactic Ring Survey (GRS), which have a velocity resolution of 0.21 km s-1 and sensitivity T{A}* ≃ 0.13-0.2 K, towards a further 403 RMS sources. Results: In this paper we present the results and analysis of the 13CO spectra obtained towards 911 MYSO candidates. We detect 13CO emission towards 780

  2. Focal plane resolution and overlapped array time delay and integrate imaging

    NASA Astrophysics Data System (ADS)

    Grycewicz, Thomas J.; Cota, Stephen A.; Lomheim, Terrence S.; Kalman, Linda S.

    2010-06-01

    In this paper we model sub-pixel image registration for a generic earth-observing satellite system with a focal plane using two offset time delay and integrate (TDI) arrays in the focal plane to improve the achievable ground resolution over the resolution achievable with a single array. The modeling process starts with a high-resolution image as ground truth. The Parameterized Image Chain Analysis & Simulation Software (PICASSO) modeling tool is used to degrade the images to match the optical transfer function, sampling, and noise characteristics of the target system. The model outputs a pair of images with a separation close to the nominal half-pixel separation between the overlapped arrays. A registration estimation algorithm is used to measure the offset for image reconstruction. The two images are aligned and summed on a grid with twice the capture resolution. We compare the resolution in images between the inputs before overlap, the reconstructed image, and a simulation for the image which would have been captured on a focal plane with twice the resolution. We find the performance to always be better than the lower resolution baseline, and to approach the performance of the high-resolution array in the ideal case. We show that the overlapped array imager significantly outperforms both the conventional high- and low-resolution imagers in conditions with high image smear.

  3. Post-processing method to reduce noise while preserving high time resolution in aethalometer real-time black carbon data

    EPA Science Inventory

    Real-time aerosol black carbon (BC) data, presented at time resolutions on the order of seconds to minutes, is desirable in field and source characterization studies measuring rapidly varying concentrations of BC. The Optimized Noise-reduction Averaging (ONA) algorithm has been d...

  4. a Decade-Spanning High-Resolution Asynchronous Optical Sampling Based Terahertz Time-Domain Spectrometer

    NASA Astrophysics Data System (ADS)

    Good, Jacob T.; Holland, Daniel; Finneran, Ian A.; Carroll, Brandon; Allodi, Marco A.; Blake, Geoffrey

    2015-06-01

    High-resolution ASynchronous OPtical Sampling (ASOPS) is a technique that substantially improves the combined frequency resolution and bandwidth of ASOPS based TeraHertz Time-Domain Spectroscopy (THz-TDS) systems. We employ two mode-locked femtosecond Ti:Sapphire oscillators with repetition frequencies of 80 MHz operating at a fixed repetition frequency offset of 100 Hz. This offset lock is maintained by a Phase-Locked Loop (PLL) operating at the 60th harmonic of the repetition rate of the Ti:Sapphire oscillators. Their respective time delay is scanned across 12.5 ns requiring a scan time of 10 ms, supporting a time delay resolution of up to 15.6 fs. ASOPS-THz-TDS enables high-resolution spectroscopy that is impossible for a THz-TDS system employing a mechanical delay stage. We measure a timing jitter of 1.36 fs for the system using an air-gap etalon and an optical cross-correlator. We report a Root-Mean-Square deviation of 20.7 MHz and a mean deviation of 14.4 MHz for water absorption lines from 0.5 to 2.7. High-resolution ASOPS-THz-TDS enables high resolution spectroscopy of both gas-phase and condensed-phase samples across a decade of THz bandwidth.

  5. A demonstration of ultra-high time resolution with a pulse-dilation photo-multiplier

    NASA Astrophysics Data System (ADS)

    Hares, J. D.; Dymoke-Bradshaw, A. K. L.; Hilsabeck, T. J.; Kilkenny, J. D.; Morris, D.; Horsfield, C. J.; Gales, S. G.; Milnes, J.; Herrmann, H. W.; McFee, C.

    2016-05-01

    A novel microchannel plate (MCP) intensified high-speed photo-multiplier tube making use of pulse-dilation[1] has been tested. A ramped photo-cathode voltage followed by a relatively long drift region results in a transit time which is dependent on the photo-electron birth time. This leads to temporal magnification or dilation, so providing an enhancement in time resolution of the optical signal with respect to the electrical signal at the output anode. By this means a time resolution on the order of picoseconds may be realized with a substantially slower oscilloscope. The photo-electron signal is guided from a photo-cathode to an MCP by an axial magnetic field and a short input record length is stretched by a factor up to 40X to yield significantly improved time resolution at the photo-cathode. Results of the first measurements are presented.

  6. Astronaut Jeffrey Hoffman on RMS robot arm during HST repairs

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Jeffrey A. Hoffman (frame center) remains secured by his feet on the end of the Endeavour's robot arm as he prepares to participate in the replacement of Hubble Space Telescope's (HST) Wide Field/Planetary Camera (WF/PC). Astronaut F. Story Musgrave (just in frame at lower left corner) assists Hoffman in removing the new camera (WF/PC2) from the Scientific Instrument Protective Enclosure (SIPE). Electronic still photography is technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  7. A simple technique for high resolution time domain phase noise measurement

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.; Donahoe, T.

    1977-01-01

    A new time domain phase comparator is described. The device uses a novel technique to allow time domain phase measurements to be made with period and time interval counters without the use of offset reference oscillators. The device uses a single reference oscillator and allows measurements with a phase resolution greater than the noise floor of the reference. Data is presented showing a phase resolution of 0.02ps at 5 MHz with a crystal reference. The device has application in measuring the phase stability of systems where approximate phase quadrature can be maintained.

  8. Review: Rusticle Formation on the RMS Titanic and the Potential Influence of Oceanography

    NASA Astrophysics Data System (ADS)

    Salazar, Maxsimo; Little, Brenda

    2017-01-01

    Meter length iron-rich rusticles on the RMS Titanic contain bacteria that reportedly mobilize iron from the ship structure at a rate that will reduce the wreck to rust in decades. Other sunken ships, such as the World War II shipwrecks in the Gulf of Mexico (GOM) are also similarly covered. However, at the GOM sites, rusticles are only centimeters in length. Minimal differences in water temperature (a few °C) between the two sites and comparable exposure times from wreckage to discovery cannot rationalize the extreme differences in rusticle length. One possible explanation for the observed difference in rusticle size is the differing amounts of dissolved or colloidal iron at the two locations.

  9. Motor preparation is modulated by the resolution of the response timing information

    PubMed Central

    Carlsen, Anthony N.; MacKinnon, Colum D.

    2010-01-01

    In the present experiment, the temporal predictability of response time was systematically manipulated to examine its effect on the time course of motor pre-programming and release of the intended movement by an acoustic startle stimulus. Participants performed a ballistic right wrist extension task in four different temporal conditions: 1) a variable foreperiod simple RT task, 2) a fixed foreperiod simple RT task, 3) a low resolution countdown anticipation timing task, and 4) a high resolution anticipation-timing task. For each task, a startling acoustic stimulus (124 dB) was presented at several intervals prior to the “go” signal (“go” −150ms, −500 ms, and −1500 ms). Results from the startle trials showed that the time course of movement pre-programming was affected by the temporal uncertainty of the imperative “go” cue. These findings demonstrate that the resolution of the timing information regarding the response cue has a marked effect on the timing of movement preparation such that under conditions of low temporal resolution, participants plan the movement well in advance in accordance with the anticipated probability of onset of the cue, whereas movement preparation is delayed until less than 500 ms prior to response time when continuous temporal information is provided. PMID:20138165

  10. Improving Critical Thinking Skills of College Students through RMS Model for Learning Basic Concepts in Science

    ERIC Educational Resources Information Center

    Muhlisin, Ahmad; Susilo, Herawati; Amin, Mohamad; Rohman, Fatchur

    2016-01-01

    The purposes of this study were to: 1) Examine the effect of RMS learning model towards critical thinking skills. 2) Examine the effect of different academic abilities against critical thinking skills. 3) Examine the effect of the interaction between RMS learning model and different academic abilities against critical thinking skills. The research…

  11. Assessment of lifetime resolution limits in time-resolved photoacoustic calorimetry vs. transducer frequencies: setting the stage for picosecond resolution.

    PubMed

    Schaberle, Fábio A; Rego Filho, Francisco de Assis M G; Reis, Luís A; Arnaut, Luis G

    2016-02-01

    Time-resolved photoacoustic calorimetry (PAC) gives access to lifetimes and energy fractions of reaction intermediates by deconvolution of the photoacoustic wave of a sample (E-wave) with that of the instrumental response (T-wave). The ability to discriminate between short lifetimes increases with transducer frequencies employed to detect the PAC waves. We investigate the lifetime resolution limits of PAC as a function of the transducer frequencies using the instrumental response obtained with the photoacoustic reference 2-hydroxybenzophenone in toluene or acetonitrile. The instrumental response was obtained for a set of transducers with central frequencies ranging from 0.5 MHz up to 225 MHz. The simulated dependence of the lifetime resolution with the transducer frequencies was anchored on experimental data obtained for the singlet state of naphthalene with a 2.25 MHz transducer. The shortest lifetime resolved with the 2.25 MHz transducer was 19 ns and our modelling of the transducer responses indicates that sub-nanosecond lifetimes of photoacoustic transients can be resolved with transducers of central frequencies above 100 MHz.

  12. Time-resolved diffraction and interference: Young's interference with photons of different energy as revealed by time resolution.

    PubMed

    Garcia, N; Saveliev, I G; Sharonov, M

    2002-05-15

    We present time-resolved diffraction and two-slit interference experiments using a streak camera as a detector for femtosecond pulses of photons. These experiments show how the diffraction pattern is built by adding frames of a few photons to each frame. It is estimated that after 300 photons the diffraction pattern emerges. With time resolution we can check the speed of light and put an upper limit of 2 ps at our resolution to the time for wave function collapse in the quantum measurement process. We then produce interference experiments with photons of different energies impinging on the slits, i.e. we know which photon impinges on each slit. We show that for poor time resolution, no interference is observed, but for high time resolution, we have interference that is revealed as beats of 100 GHz frequency. The condition for interference is that the two pulses should overlap spatially at the detector, even if the pulses have different energies but are generated from the same pulse of the laser. The interference seems to be in agreement with classical theory at first sight. However, closer study and analysis of the data show deviations in the visibility of the interference fringes and of their phase. These experiments are discussed in connection with quantum mechanics and it may be concluded that the time resolution provides new data for understanding the longstanding and continuing arguments on wave-particle duality initiated by Newton, Young, Fresnel, Planck and others. A thought experiment is presented in the appendix to try to distinguish the photons at the detector by making it sensitive to colour.

  13. Measurements of timing resolution of ultra-fast silicon detectors with the SAMPIC waveform digitizer

    NASA Astrophysics Data System (ADS)

    Breton, D.; De Cacqueray, V.; Delagnes, E.; Grabas, H.; Maalmi, J.; Minafra, N.; Royon, C.; Saimpert, M.

    2016-11-01

    The SAMpler for PICosecond time (SAMPIC) chip has been designed by a collaboration including CEA/IRFU/SEDI, Saclay and CNRS/LAL/SERDI, Orsay. It benefits from both the quick response of a time to digital converter and the versatility of a waveform digitizer to perform accurate timing measurements. Thanks to the sampled signals, smart algorithms making best use of the pulse shape can be used to improve time resolution. A software framework has been developed to analyse the SAMPIC output data and extract timing information by using either a constant fraction discriminator or a fast cross-correlation algorithm. SAMPIC timing capabilities together with the software framework have been tested using pulses generated by a signal generator or by a silicon detector illuminated by a pulsed infrared laser. Under these ideal experimental conditions, the SAMPIC chip has proven to be capable of timing resolutions down to 4 ps with synthesized signals and 40 ps with silicon detector signals.

  14. The effect of resolution time of acute kidney injury on clinical outcomes

    PubMed Central

    Chavez-Iñiguez, J. S.; Garcia-Garcia, G.; Briseño-Ramirez, J.; Medina-Gonzalez, R.; Jimenez-Cornejo, M.

    2017-01-01

    Acute kidney injury (AKI) is a frequent and complex disease. It is not clearly defined whether its duration is related to adverse outcomes. We determined the effect of AKI resolution time on patient's clinical outcomes. A prospective cohort of hospitalized patients with AKI by AKI network (AKIN) creatinine criteria was included. Variables for prognosis and follow-up were analyzed. One hundred and thirteen patients were included in the study. Seventy-seven (68.1%) were males, mean age 55 years (range, 16–76 years), and 48 (42.5%) were diabetic. The most common cause of AKI was sepsis (31%). AKI resolution time ≤2 days and >2 days was seen in 47 (41.6%) and 66 (58.4%) of the cases, respectively. AKI resolution time >2 days was common in older patients (66.24 ± 17.6 year vs. 47.16 ± 12.32 year, P = 0.004), with the use of mechanical ventilation (27% vs. 4%, P = 0.02) and vasopressors (41% vs. 11%, P ≤ 0.01); it was associated with increased mortality (47% vs. 4%, P ≤ 0.01), and a discharge estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2 (52% vs. 2%, P = 0.01), than in patients with resolution time ≤2 days. Survival rate was significantly worse in patients with a resolution time >2 days. By multivariate logistic step-wise regression analysis, AKI >2days, vasopressor use, and AKIN stage 2–3 were independently associated with higher mortality. AKI >2 days and vasopressor utilization were independently associated to an eGFR <60 ml/min/1.73 m2 at the time of discharge. We conclude that AKI resolution time >2 days is linked to adverse clinical outcomes. PMID:28356659

  15. 30-ps time resolution with segmented scintillation counter for MEG II

    NASA Astrophysics Data System (ADS)

    Uchiyama, Y.; Boca, G.; Cattaneo, P. W.; De Gerone, M.; Gatti, F.; Nakao, M.; Nishimura, M.; Ootani, W.; Pizzigoni, G.; Rossella, M.; Simonetta, M.; Yoshida, K.

    2017-02-01

    A new timing detector has been developed to measure ∼50 MeV/c positrons with a time resolution of σt ≃ 30 ps in the MEG II experiment. The detector are segmented into 512 scintillation counters, each of which consists of 120 ×(40 or 50) × 5mm3 size BC-422 and two arrays of six AdvanSiD silicon photomultipliers. The single-counter resolutions are measured to be 70-80 ps. The counter layout is optimized to get the maximum number of hit counters (on average 9 for signal positrons). This multiple-counters measurement leads to a significant improvement in the time resolution down to 30 ps. Using the first one-fourth (128) counters, a pilot run was carried out using the MEG II beam of 7 ×107μ+ / s and the basic functionality was tested.

  16. High resolution time of arrival estimation for a cooperative sensor system

    NASA Astrophysics Data System (ADS)

    Morhart, C.; Biebl, E. M.

    2010-09-01

    Distance resolution of cooperative sensors is limited by the signal bandwidth. For the transmission mainly lower frequency bands are used which are more narrowband than classical radar frequencies. To compensate this resolution problem the combination of a pseudo-noise coded pulse compression system with superresolution time of arrival estimation is proposed. Coded pulsecompression allows secure and fast distance measurement in multi-user scenarios which can easily be adapted for data transmission purposes (Morhart and Biebl, 2009). Due to the lack of available signal bandwidth the measurement accuracy degrades especially in multipath scenarios. Superresolution time of arrival algorithms can improve this behaviour by estimating the channel impulse response out of a band-limited channel view. For the given test system the implementation of a MUSIC algorithm permitted a two times better distance resolution as the standard pulse compression.

  17. Measurement of Time Resolution of the Mu2e LYSO Calorimeter Prototype

    SciTech Connect

    Atanov, N.

    2015-09-16

    In this paper we present the time resolution measurements of the LutetiumYttrium Oxyorthosilicate (LYSO) calorimeter prototype for the Mu2e experiment. The measurements have been performed using the e- beam of the Beam Test Facility (BTF) in Frascati, Italy in the energy range from 100 to 400 MeV. The calorimeter prototype consisted of twenty five 30x30x130 mm3, LYSO crystals read out by 10x10 mm2 Hamamatsu Avalanche Photodiodes (APDs). The energy dependence of the measured time resolution can be parametrized as σt(E) = a/pE/GeV⊕b, with the stochastic and constant terms a = (51±1) ps and b = (14 ± 1) ps, respectively. This corresponds to the time resolution of (162 ± 3) ps at 100 MeV.

  18. Acoustic resolution photoacoustic Doppler velocity measurements in fluids using time-domain cross-correlation

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2013-03-01

    Blood flow measurements have been demonstrated using the acoustic resolution mode of photoacoustic sensing. This is unlike previous flowmetry methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1mm. Here we describe a pulsed time correlation photoacoustic Doppler technique that is inherently flexible, lending itself to both resolution modes. Doppler time shifts are quantified via cross-correlation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. The use of short laser pulses allows depth-resolved measurements to be obtained with high spatial resolution, offering the prospect of mapping flow within microcirculation. Whilst our previous work has been limited to a non-fluid phantom, we now demonstrate measurements in more realistic blood-mimicking phantoms incorporating fluid suspensions of microspheres flowing along an optically transparent tube. Velocities up to 110 mm/s were measured with accuracies approaching 1% of the known velocities, and resolutions of a few mm/s. The velocity range and resolution are scalable with excitation pulse separation, but the maximum measurable velocity was considerably smaller than the value expected from the detector focal beam width. Measurements were also made for blood flowing at velocities up to 13.5 mm/s. This was for a sample reduced to 5% of the normal haematocrit; increasing the red blood cell concentration limited the maximum measurable velocity so that no results were obtained for concentrations greater than 20% of a physiologically realistic haematocrit. There are several possible causes for this limitation; these include the detector bandwidth and irregularities in the flow pattern. Better

  19. A high time resolution x-ray diagnostic on the Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    DuBois, Ami M.; Lee, John David; Almagri, Abdulgadar F.

    2015-07-01

    A new high time resolution x-ray detector has been installed on the Madison Symmetric Torus (MST) to make measurements around sawtooth events. The detector system is comprised of a silicon avalanche photodiode, a 20 ns Gaussian shaping amplifier, and a 500 MHz digitizer with 14-bit sampling resolution. The fast shaping time diminishes the need to restrict the amount of x-ray flux reaching the detector, limiting the system dead-time. With a much higher time resolution than systems currently in use in high temperature plasma physics experiments, this new detector has the versatility to be used in a variety of discharges with varying flux and the ability to study dynamics on both slow and fast time scales. This paper discusses the new fast x-ray detector recently installed on MST and the improved time resolution capabilities compared to the existing soft and hard x-ray diagnostics. In addition to the detector hardware, improvements to the detector calibration and x-ray pulse identification software, such as additional fitting parameters and a more sophisticated fitting routine are discussed. Finally, initial data taken in both high confinement and standard reversed-field pinch plasma discharges are compared.

  20. All-passive pixel super-resolution of time-stretch imaging

    PubMed Central

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.

    2017-01-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2–5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing. PMID:28303936

  1. Exploring the limiting timing resolution for large volume CZT detectors with waveform analysis

    PubMed Central

    Meng, L.J.; He, Z.

    2016-01-01

    This paper presents a study for exploring the limiting timing resolution that can be achieved with a large volume 3-D position sensitive CZT detector. The interaction timing information was obtained by fitting the measured cathode waveforms to pre-defined waveform models. We compared the results from using several different waveform models. Timing resolutions, of ~9.5 ns for 511 keV full-energy events and ~11.6 ns for all detected events with energy deposition above 250 keV, were achieved with a detailed modeling of the cathode waveform as a function of interaction location and energy deposition. This detailed modeling also allowed us to derive a theoretical lower bound for the error on estimated interaction timing. Both experimental results and theoretical predications matched well, which indicated that the best timing resolution achievable in the 1 cm3 CZT detector tested is ~10 ns. It is also showed that the correlation between sampled amplitudes in cathode waveforms is an important limiting factor for the achievable timing resolution. PMID:28260808

  2. All-passive pixel super-resolution of time-stretch imaging

    NASA Astrophysics Data System (ADS)

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.

    2017-03-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2–5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing.

  3. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein

    SciTech Connect

    Tenboer, Jason; Basu, Shibom; Zatsepin, Nadia; Pande, Kanupriya; Milathianaki, Despina; Frank, Matthias; Hunter, Mark; Boutet, Sebastien; Williams, Garth J.; Koglin, Jason E.; Oberthuer, Dominik; Heymann, Michael; Kupitz, Christopher; Conrad, Chelsie; Coe, Jesse; Roy-Chowdhury, Shatabdi; Weierstall, Uwe; James, Daniel; Wang, Dingjie; Grant, Thomas; Barty, Anton; Yefanov, Oleksandr; Scales, Jennifer; Gati, Cornelius; Seuring, Carolin; Srajer, Vukica; Henning, Robert; Schwander, Peter; Fromme, Raimund; Ourmazd, Abbas; Moffat, Keith; Van Thor, Jasper J.; Spence, John C. H.; Fromme, Petra; Chapman, Henry N.; Schmidt, Marius

    2014-12-05

    We report that serial femtosecond crystallography using ultrashort pulses from X-ray Free Electron Lasers (XFELs) offers the possibility to study light-triggered dynamics of biomolecules. Using microcrystals of the blue light photoreceptor, photoactive yellow protein, as a model system, we present high resolution, time-resolved difference electron density maps of excellent quality with strong features, which allow the determination of structures of reaction intermediates to 1.6 Å resolution. These results open the way to the study of reversible and non-reversible biological reactions on time scales as short as femtoseconds under conditions which maximize the extent of reaction initiation throughout the crystal.

  4. Characteristics of electricity generation with intermittent sources depending on the time resolution of the input data

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Wertz, F.

    2016-08-01

    Data on the electricity supply with intermittent renewable sources are made public by the Transmission System Operators (TSO) and other sources. Data are typically provided in 1h increments. In this paper, we analyse wind and photo-voltaic data from the Czech Republic. The analysis concentrates on major characteristics of a supply situation where the annual demand is formally met by scaled-up wind and photovoltaic power. The original data are supplied in 1min increments and successively averaged up to 1h time resolution. This paper focuses on the dependence of the major supply characteristics on the time resolution of the available electricity data.

  5. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    NASA Astrophysics Data System (ADS)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  6. Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Prato, Lisa; Mawet, Dimitri

    2017-03-01

    Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution (R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of high spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.

  7. Estimation of time resolution for DOI-PET detector using diameter 0.2 mm WLS fibers

    SciTech Connect

    Kobayashi, A.; Ito, H.; Han, S.; Kaneko, N.; Kawai, H.; Kodama, S.; Han, S.; Kamada, K.; Shoji, Y.; Yoshikawa, A.

    2015-07-01

    We are developing the whole-body PET detector with high position resolution (1 mm) and low cost (1 M dollars). Scintillator plates, Wave Length Sifting Fibers and SiPMs are used. In this work, time resolution of our PET detector is estimated. Our detector may also have good time resolution such as a few ps. (authors)

  8. A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines

    NASA Astrophysics Data System (ADS)

    Szplet, R.; Jachna, Z.; Kwiatkowski, P.; Rozyc, K.

    2013-03-01

    We present the design, operation and test results of a time counter that has an equivalent resolution of 2.9 ps, a measurement uncertainty at the level of 6 ps, and a measurement range of 10 s. The time counter has been implemented in a general-purpose reprogrammable device Spartan-6 (Xilinx). To obtain both high precision and wide measurement range the counting of periods of a reference clock is combined with a two-stage interpolation within a single period of the clock signal. The interpolation involves a four-phase clock in the first interpolation stage (FIS) and an equivalent coding line (ECL) in the second interpolation stage (SIS). The ECL is created as a compound of independent discrete time coding lines (TCL). The number of TCLs used to create the virtual ECL has an effect on its resolution. We tested ECLs made from up to 16 TCLs, but the idea may be extended to a larger number of lines. In the presented time counter the coarse resolution of the counting method equal to 2 ns (period of the 500 MHz reference clock) is firstly improved fourfold in the FIS and next even more than 400 times in the SIS. The proposed solution allows us to overcome the technological limitation in achievable resolution and improve the precision of conversion of integrated interpolators based on tapped delay lines.

  9. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers

    NASA Astrophysics Data System (ADS)

    Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry

    2016-03-01

    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach.

  10. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers.

    PubMed

    Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry

    2016-03-17

    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach.

  11. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers

    PubMed Central

    Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry

    2016-01-01

    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach. PMID:26984634

  12. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    SciTech Connect

    TROYER, G.L.

    2000-08-25

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% {at} 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency.

  13. Improvement of time resolution in large area single gap Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Bhatt, A. D.; Majumder, G.; Mondal, N. K.; Pathaleswar; Satyanarayana, B.

    2017-02-01

    The intrinsic gain of a single gap Resistive Plate Chamber (RPC) is affected by several factors, e.g., variation in the thicknesses of glass electrode, button and side spacer, different composition of gas due to improper flow, leaks in the detector volume, etc. The position dependent gain is one of the dominant components of the time resolution of a large area single gap RPC. Besides, strip multiplicity as well as lateral position of the trajectory of the charged particle in RPC strip also result in variation of timing information. The observation of large signals produced by the charged particles passing close to the button spacers also has some repercussion on the overall timing resolution of an RPC. A new offline correction technique to achieve time resolution below 1 ns is reported in this paper. This technique is validated using an RPC cosmic ray telescope (1 × 1m2) at TIFR. We also suggest a few alternative solutions to improve the time resolution during the operational phase of the INO-ICAL experiment. The techniques presented here are useful not only for ICAL, but also for any detector deploying RPCs in large scale.

  14. Fiber-coupled high-speed asynchronous optical sampling with sub-50 fs time resolution.

    PubMed

    Krauss, N; Nast, A; Heinecke, D C; Kölbl, C; Barros, H G; Dekorsy, T

    2015-02-09

    We present a fiber-coupled pump-probe system with a sub-50 fs time resolution and a nanosecond time window, based on high-speed asynchronous optical sampling. By use of a transmission grism pulse compressor, we achieve pump pulses with a pulse duration of 42 fs, an average power of 300 mW and a peak power exceeding 5 kW at a pulse repetition rate of 1 GHz after 6 m of optical fiber. With this system we demonstrate thickness mapping of soft X-ray mirrors at a sub-nm thickness resolution on a cm(2) scan area. In addition, terahertz field generation with resolved spectral components of up to 3.5 THz at a GHz frequency resolution is demonstrated.

  15. Energy and coincidence time resolution measurements of CdTe detectors for PET.

    PubMed

    Ariño, G; Chmeissani, M; De Lorenzo, G; Puigdengoles, C; Cabruja, E; Calderón, Y; Kolstein, M; Macias-Montero, J G; Martinez, R; Mikhaylova, E; Uzun, D

    2013-02-01

    We report on the characterization of 2 mm thick CdTe diode detector with Schottky contacts to be employed in a novel conceptual design of PET scanner. Results at -8°C with an applied bias voltage of -1000 V/mm show a 1.2% FWHM energy resolution at 511 keV. Coincidence time resolution has been measured by triggering on the preamplifier output signal to improve the timing resolution of the detector. Results at the same bias and temperature conditions show a FWHM of 6 ns with a minimum acceptance energy of 500 keV. These results show that pixelated CdTe Schottky diode is an excellent candidate for the development of next generation nuclear medical imaging devices such as PET, Compton gamma cameras, and especially PET-MRI hybrid systems when used in a magnetic field immune configuration.

  16. Energy and coincidence time resolution measurements of CdTe detectors for PET

    PubMed Central

    Ariño, G.; Chmeissani, M.; De Lorenzo, G.; Puigdengoles, C.; Cabruja, E.; Calderón, Y.; Kolstein, M.; Macias-Montero, J.G.; Martinez, R.; Mikhaylova, E.; Uzun, D.

    2013-01-01

    We report on the characterization of 2 mm thick CdTe diode detector with Schottky contacts to be employed in a novel conceptual design of PET scanner. Results at −8°C with an applied bias voltage of −1000 V/mm show a 1.2% FWHM energy resolution at 511 keV. Coincidence time resolution has been measured by triggering on the preamplifier output signal to improve the timing resolution of the detector. Results at the same bias and temperature conditions show a FWHM of 6 ns with a minimum acceptance energy of 500 keV. These results show that pixelated CdTe Schottky diode is an excellent candidate for the development of next generation nuclear medical imaging devices such as PET, Compton gamma cameras, and especially PET-MRI hybrid systems when used in a magnetic field immune configuration. PMID:23750177

  17. Energy and coincidence time resolution measurements of CdTe detectors for PET

    NASA Astrophysics Data System (ADS)

    Ariño, G.; Chmeissani, M.; De Lorenzo, G.; Puigdengoles, C.; Cabruja, E.; Calderón, Y.; Kolstein, M.; Macias-Montero, J. G.; Martinez, R.; Mikhaylova, E.; Uzun, D.

    2013-02-01

    We report on the characterization of 2 mm thick CdTe diode detector with Schottky contacts to be employed in a novel conceptual design of PET scanner. Results at -8°C with an applied bias voltage of -1000 V/mm show a 1.2% FWHM energy resolution at 511 keV. Coincidence time resolution has been measured by triggering on the preamplifier output signal to improve the timing resolution of the detector. Results at the same bias and temperature conditions show a FWHM of 6 ns with a minimum acceptance energy of 500 keV. These results show that pixelated CdTe Schottky diode is an excellent candidate for the development of next generation nuclear medical imaging devices such as PET, Compton gamma cameras, and especially PET-MRI hybrid systems when used in a magnetic field immune configuration.

  18. Limitation of Time-of-Flight Resolution in the Ultra High Mass Range

    PubMed Central

    Lee, Jeonghoon

    2011-01-01

    In this work, we have examined the reason for the deterioration of resolution and mass accuracy of time-of-flight mass analyzers with increasing mass after the expansion induced kinetic energy has been eliminated by collisional cooling in an ion guide. Theoretically, removing the expansion–induced kinetic energy by collisional cooling permits the ions to travel along the ion guide axes without significant deviation so that they can be injected into the analyzer in a well-collimated ion beam with well-defined kinetic energy. If the ions can be injected into an orthogonal acceleration time-of-flight mass analyzer (oa-TOF) in this manner, high resolution mass analysis can be obtained regardless of mass or m/z. Unfortunately, high resolution did not result. It is our contention that the effusive expansion out of the first ion guide yields dispersive axial ejection that reduces TOF resolving power with increasing mass not m/z. PMID:21728303

  19. Super-resolution endoscopy for real-time wide-field imaging.

    PubMed

    Wang, Feifei; Lai, Hok Sum Sam; Liu, Lianqing; Li, Pan; Yu, Haibo; Liu, Zhu; Wang, Yuechao; Li, Wen Jung

    2015-06-29

    Resolving subcellular structures in vitro beyond optical diffraction barrier by a light microscope has achieved significant development since the advancement of super-resolution fluorescence microscopes, such as stimulated emission depletion (STED) microscopy, stochastic optical reconstruction microscopy (STORM) and photoactivated localization microscopy (PALM). However, the resolution of observation in deep and dense in vivo tissues is still confined to cellular level presently, and hence, exploring image details at subcellular level or even beyond organelle level in vivo has continued to attract much research attention. Currently, endoscopy provides an effective way to achieve in vivo observations and is compatible with mature optical microscopy technologies, but its resolution is usually confined to ~1 µm. Here we report a new endoscopy method by functionalizing graded-index (GRIN) lens with microspheres for real-time white-light or fluorescent super-resolution imaging. The capability of resolving objects with feature size of ~λ/5, which breaks the diffraction barrier of traditional GRIN lens based endoscopes by a factor of two, has been demonstrated by using this super-resolution endoscopy method. Further development of such a super-resolution endoscopy technique may provide new opportunities for in vivo life sciences studies.

  20. Annexin A1 promotes timely resolution of inflammation in murine gout.

    PubMed

    Galvão, Izabela; Vago, Juliana P; Barroso, Livia C; Tavares, Luciana P; Queiroz-Junior, Celso M; Costa, Vivian V; Carneiro, Fernanda S; Ferreira, Tatiana P; Silva, Patricia M R; Amaral, Flávio A; Sousa, Lirlândia P; Teixeira, Mauro M

    2017-03-01

    Gout is a self-limited inflammatory disease caused by deposition of monosodium urate (MSU) crystals in the joints. Resolution of inflammation is an active process leading to restoration of tissue homeostasis. Here, we studied the role of Annexin A1 (AnxA1), a glucocorticoid-regulated protein that has anti-inflammatory and proresolving actions, in resolution of acute gouty inflammation. Injection of MSU crystals in the knee joint of mice induced inflammation that was associated with expression of AnxA1 during the resolving phase of inflammation. Neutralization of AnxA1 with antiserum or blockade of its receptor with BOC-1 (nonselective) or WRW4 (selective) prevented the spontaneous resolution of gout. There was greater neutrophil infiltration after challenge with MSU crystals in AnxA1 knockout mice (AnxA1(-/-) ) and delayed resolution associated to decreased neutrophil apoptosis and efferocytosis. Pretreatment of mice with AnxA1-active N-terminal peptide (Ac2-26 ) decreased neutrophil influx, IL-1β, and CXCL1 production in periarticular joint. Posttreatment with Ac2-26 decreased neutrophil accumulation, IL-1β, and hypernociception, and improved the articular histopathological score. Importantly, the therapeutic effects of Ac2-26 were associated with increased neutrophils apoptosis and shortened resolution intervals. In conclusion, AnxA1 plays a crucial role in the context of acute gouty inflammation by promoting timely resolution of inflammation.

  1. Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution.

    PubMed

    Manz, Stephanie; Casandruc, Albert; Zhang, Dongfang; Zhong, Yinpeng; Loch, Rolf A; Marx, Alexander; Hasegawa, Taisuke; Liu, Lai Chung; Bayesteh, Shima; Delsim-Hashemi, Hossein; Hoffmann, Matthias; Felber, Matthias; Hachmann, Max; Mayet, Frank; Hirscht, Julian; Keskin, Sercan; Hada, Masaki; Epp, Sascha W; Flöttmann, Klaus; Miller, R J Dwayne

    2015-01-01

    The long held objective of directly observing atomic motions during the defining moments of chemistry has been achieved based on ultrabright electron sources that have given rise to a new field of atomically resolved structural dynamics. This class of experiments requires not only simultaneous sub-atomic spatial resolution with temporal resolution on the 100 femtosecond time scale but also has brightness requirements approaching single shot atomic resolution conditions. The brightness condition is in recognition that chemistry leads generally to irreversible changes in structure during the experimental conditions and that the nanoscale thin samples needed for electron structural probes pose upper limits to the available sample or "film" for atomic movies. Even in the case of reversible systems, the degree of excitation and thermal effects require the brightest sources possible for a given space-time resolution to observe the structural changes above background. Further progress in the field, particularly to the study of biological systems and solution reaction chemistry, requires increased brightness and spatial coherence, as well as an ability to tune the electron scattering cross-section to meet sample constraints. The electron bunch density or intensity depends directly on the magnitude of the extraction field for photoemitted electron sources and electron energy distribution in the transverse and longitudinal planes of electron propagation. This work examines the fundamental limits to optimizing these parameters based on relativistic electron sources using re-bunching cavity concepts that are now capable of achieving 10 femtosecond time scale resolution to capture the fastest nuclear motions. This analysis is given for both diffraction and real space imaging of structural dynamics in which there are several orders of magnitude higher space-time resolution with diffraction methods. The first experimental results from the Relativistic Electron Gun for Atomic

  2. Dose, exposure time, and resolution in Serial X-ray Crystallography

    SciTech Connect

    Starodub, D; Rez, P; Hembree, G; Howells, M; Shapiro, D; Chapman, H N; Fromme, P; Schmidt, K; Weierstall, U; Doak, R B; Spence, J C

    2007-03-22

    Using detailed simulation and analytical models, the exposure time is estimated for serial crystallography, where hydrated laser-aligned proteins are sprayed across a continuous synchrotron beam. The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed Serial Crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available fluxes of molecules and X-rays. Orientation of the diffracting molecules is achieved by laser alignment. We evaluate the incident X-ray fluence (energy/area) required to obtain a given resolution from (1) an analytical model, giving the count rate at the maximum scattering angle for a model protein, (2) explicit simulation of diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency cut off of the transfer function following iterative solution of the phase problem, and reconstruction of a density map in the projection approximation. These calculations include counting shot noise and multiple starts of the phasing algorithm. The results indicate the number of proteins needed within the beam at any instant for a given resolution and X-ray flux. We confirm an inverse fourth power dependence of exposure time on resolution, with important implications for all coherent X-ray imaging. We find that multiple single-file protein beams will be needed for sub-nanometer resolution on current third generation synchrotrons, but not on fourth generation designs, where reconstruction of secondary protein structure at a resolution of 7 {angstrom} should be possible with short (below 100 s) exposures.

  3. Energy and time resolution of a LYSO matrix prototype for the Mu2e experiment

    DOE PAGES

    Atanov, N.; Baranov, V.; Colao, F.; ...

    2015-09-28

    We have measured the performances of a LYSO crystal matrix prototype tested with electron and photon beams in the energy range 60–450 MeV. Furthermore, this study has been carried out to determine the achievable energy and time resolutions for the calorimeter of the Mu2e experiment.

  4. Picosecond resolution on relativistic heavy ions' time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Ebran, A.; Taieb, J.; Belier, G.; Chatillon, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.

    2013-11-01

    We developed a time-of-flight measurement system for relativistic heavy ions with a requested resolution of 40 ps Full Width Half Maximum. Such a resolution is mandatory to assign the correct mass number to every fission fragment, identified using the Bρ-ToF-ΔE method with the recoil spectrometer designed for the SOFIA experiment-which hold very recently at GSI. To achieve such a performance, fast plastic scintillators read-out by dedicated photomultiplier tubes were chosen among other possible options. We have led several test-measurements from 2009 to 2011, in order to investigate: the effect of the addition of a quenching molecule in the scintillator's matrix, the influence of the detector's size and the impact of the photomultiplier tube. The contribution of the dedicated electronics is also characterized. Time-of-flight measurements were performed realized with electron pulses and relativistic heavy ions, respectively provided by the LASER driven electron-accelerator (ELSA) at CEA-DAM Ile-de-France and by the SIS18/FRS facility at GSI. The reported results exhibit a time resolution better than 20 ps Full Width Half Maximum reached with the last prototype at GSI with an Uranium beam. These results confirm that the SOFIA experiment should enable the measurement of the relativistic fission fragments' time-of-flight with the requested resolution.

  5. Remote Manipulator System (RMS)-based Controls-Structures Interaction (CSI) flight experiment feasibility study

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.

    1990-01-01

    The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).

  6. A high-resolution, four-band SAR testbed with real-time image formation

    SciTech Connect

    Walker, B.; Sander, G.; Thompson, M.; Burns, B.; Fellerhoff, R.; Dubbert, D.

    1996-03-01

    This paper describes the Twin-Otter SAR Testbed developed at Sandia National Laboratories. This SAR is a flexible, adaptable testbed capable of operation on four frequency bands: Ka, Ku, X, and VHF/UHF bands. The SAR features real-time image formation at fine resolution in spotlight and stripmap modes. High-quality images are formed in real time using the overlapped subaperture (OSA) image-formation and phase gradient autofocus (PGA) algorithms.

  7. Methods of real time high resolution phase detection for use in laser rangefinders

    NASA Astrophysics Data System (ADS)

    Budzyn, Grzegorz; Tkaczyk, Jakub; Podzorny, Tomasz; Rzepka, Janusz

    2014-05-01

    The purpose of this paper is the comparison of two phase measurement methods commonly used in precision rangefinder systems and their suitability to work with high frequency signals. Basic detection circuits for an FFT and an IQ-based methods were proposed and hardware limitations were considered. A set of simulations to assess the behavior of the algorithms in the presence of the noise was performed. An influence of the ADC resolution on the measurement accuracy was also assessed. It is proved that the IQ-based method shows better resilience to signal distortions and puts lower requirements on the ADC circuit thus is better suited for real time high resolution laser rangefinders.

  8. Attosecond-resolution timing jitter characterization of free-running mode-locked lasers.

    PubMed

    Kim, Jungwon; Chen, Jeff; Cox, Jonathan; Kärtner, Franz X

    2007-12-15

    Timing jitter characterization of optical pulse trains from free-running mode-locked lasers with attosecond resolution is demonstrated using balanced optical cross correlation in the timing detector and the timing delay configurations. In the timing detector configuration, the balanced cross correlation between two mode-locked lasers synchronized by a low-bandwidth phase-locked loop is used to measure the timing jitter spectral density outside the locking bandwidth. In addition, the timing delay configuration using a 325 m long timing-stabilized fiber link enables the characterization of timing jitter faster than the delay time. The limitation set by shot noise in this configuration is 2.2 x 10(-8) fs(2)/Hz corresponding to 470 as in 10 MHz bandwidth.

  9. Super-resolution infrared time measurement method based on target dynamic characteristics

    NASA Astrophysics Data System (ADS)

    Li, Bin; Hu, Qiuping; Tang, Zili; Zhang, Sanxi; Zhang, Hua; Yue, Peng; Liu, Biao

    2016-10-01

    High precision time control in the use of weapons and equipment is an important part of product design and development. In order to satisfy the data acquisition requirement of high accuracy and reliability in the rapid flight process, the super-resolution time measurement method based on target dynamic characteristics was put forward and proved by the cabin opening time measurement experiment. First, the changes of explosion pressure wave and image in the cabin opening process were analyzed in detail. The change regulation of explosion flame shape was analyzed by the characteristics of typical pressure wave, and then the high frequency images of the explosion process were shot by high speed camera. The change regulation of the infrared image was obtained through the comparison of visible and infrared image mechanism. Then, combined with the target motion features, and the observed station parameters, the observation model of movement process was built. On the basis of the above research, the infrared characteristic and the movement characteristic were transformed, and the super resolution model was established. For test method, combined with the actual class time measuring process in experimental design, to obtain the special radar for measuring high precision open class time as the true value of the precision appraisal. Experimental results show that the infrared feature and motion feature can realize open class time super resolution measurement, can effectively improve the accuracy and reliability of the data, to achieve specific action of high accuracy measurement that plays an important role by making use of the target dynamic characteristics.

  10. Using high time resolution aerosol and number size distribution measurements to estimate atmospheric extinction.

    PubMed

    Malm, William C; McMeeking, Gavin R; Kreidenweis, Sonia M; Levin, Ezra; Carrico, Christian M; Day, Derek E; Collett, Jeffrey L; Lee, Taehyoung; Sullivan, Amy P; Raja, Suresh

    2009-09-01

    Rocky Mountain National Park is experiencing reduced visibility and changes in ecosystem function due to increasing levels of oxidized and reduced nitrogen. The Rocky Mountain Atmospheric Nitrogen and Sulfur (RoMANS) study was initiated to better understand the origins of sulfur and nitrogen species as well as the complex chemistry occurring during transport from source to receptor. As part of the study, a monitoring program was initiated for two 1-month time periods--one during the spring and the other during late summer/fall. The monitoring program included intensive high time resolution concentration measurements of aerosol number size distribution, inorganic anions, and cations, and 24-hr time resolution of PM2.5 and PM10 mass, sulfate, nitrate, carbon, and soil-related elements concentrations. These data are combined to estimate high time resolution concentrations of PM2.5 and PM10 aerosol mass and fine mass species estimates of ammoniated sulfate, nitrate, and organic and elemental carbon. Hour-by-hour extinction budgets are calculated by using these species concentration estimates and measurements of size distribution and assuming internal and external particle mixtures. Summer extinction was on average about 3 times higher than spring extinction. During spring months, sulfates, nitrates, carbon mass, and PM10 - PM2.5 mass contributed approximately equal amounts of extinction, whereas during the summer months, carbonaceous material extinction was 2-3 times higher than other species.

  11. Minisuperspace model of Machian resolution of Problem of Time. I. Isotropic case

    NASA Astrophysics Data System (ADS)

    Anderson, Edward

    2014-05-01

    A local resolution to the Problem of Time that is Machian and was previously demonstrated for relational mechanics models is here shown to work for a more widely studied quantum cosmological model. I.e., closed isotropic minisuperspace GR with minimally coupled scalar field matter. This resolution uses work firstly along the lines of Barbour's at the classical level. Secondly, it uses a Machianized version of the semiclassical approach to quantum cosmology (the resolution given is not more than semiclassical). Finally, it uses a Machianized version of a combined semiclassical histories timeless records scheme along the lines of Halliwell's work. This program's goal is the treatment of inhomogeneous perturbations about the present paper's model. This draws both from this paper's minisuperspace work and from qualitative parallels with relational particle mechanics, since both have nontrivial notions of inhomogeneity/structure (clumping) as well as nontrivial linear constraints.

  12. Spatial resolution analysis for time-domain diffuse optical tomography based on a perturbation model

    NASA Astrophysics Data System (ADS)

    Konovalov, Alexander B.; Vlasov, Vitaly V.

    2014-01-01

    We estimate a limit to spatial resolution in time-domain diffuse optical tomography (DOT) based on a perturbation model by Lyubimov. In the context of structure reconstruction accuracy we consider and compare three approaches to the inverse DOT problem. The first reconstructs diffuse tomograms from straight lines; the second does it from curvilinear average trajectories of photons; and the third uses the total banana-like distributions of photon trajectories. For getting estimates to resolution, we derive analytical expressions for the point spread function and the modulation transfer function, and perform a numerical experiment to reconstruct rectangular scattering objects with circular absorbing inhomogeneities. It is shown that reconstruction with photon trajectory distributions instead of straight lines gives a gain of about order of magnitude in resolution and attains the accuracy of multistep nonlinear DOT algorithms.

  13. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph.

    PubMed

    Moskal, P; Rundel, O; Alfs, D; Bednarski, T; Białas, P; Czerwiński, E; Gajos, A; Giergiel, K; Gorgol, M; Jasińska, B; Kamińska, D; Kapłon, Ł; Korcyl, G; Kowalski, P; Kozik, T; Krzemień, W; Kubicz, E; Niedźwiecki, Sz; Pałka, M; Raczyński, L; Rudy, Z; Sharma, N G; Słomski, A; Silarski, M; Strzelecki, A; Wieczorek, A; Wiślicki, W; Witkowski, P; Zieliński, M; Zoń, N

    2016-03-07

    Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the [Formula: see text] configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the [Formula: see text] matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of [Formula: see text]0.170 ns for 15 cm axial field-of-view (AFOV) and [Formula: see text]0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.

  14. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph

    NASA Astrophysics Data System (ADS)

    Moskal, P.; Rundel, O.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Giergiel, K.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kapłon, Ł.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Słomski, A.; Silarski, M.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Witkowski, P.; Zieliński, M.; Zoń, N.

    2016-03-01

    Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the 2× 5 configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the 2× 5 matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of ≈ 0.170 ns for 15 cm axial field-of-view (AFOV) and ≈ 0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.

  15. Detection efficiency, spatial and timing resolution of thermal and cold neutron counting MCP detectors

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; McPhate, J. B.; Vallerga, J. V.; Siegmund, O. H. W.; Hull, J. S.; Feller, W. B.; Lehmann, E.

    2009-06-01

    Neutron counting detectors with boron or gadolinium doped microchannel plates (MCPs) have very high detection efficiency, spatial and temporal resolution, and have a very low readout noise. In this paper we present the results of both theoretical predictions and experimental evaluations of detection efficiency and spatial resolution measured at cold and thermal neutron beamlines. The quantum detection efficiency of a detector (not fully optimized) was measured to be 43% and 16% for the cold and thermal beamlines, respectively. The experiments also demonstrate that the spatial resolution can be better than 15 μm—highest achievable with the particular MCP pore dimension used in the experiment, although more electronics development is required in order to increase the counting rate capabilities of those <15 μm resolution devices. The timing accuracy of neutron detection is on the scale of few μs and is limited by the neutron absorption depth in the detector. The good agreement between the predicted and measured performance allows the optimization of the detector parameters in order to achieve the highest spatial resolution and detection efficiency in future devices.

  16. STS 41-D mission specialist Judith Resnik trains on the RMS

    NASA Technical Reports Server (NTRS)

    1983-01-01

    STS 41-D mission specialist Judith Resnik prepares for training on the remote manipulator system (RSM) on board the shuttle mission simulator (SMS). She is on the SMS aft deck facing the RMS translation hand control and overhead starboard window.

  17. Rms characterization of Bessel Gauss beams: Correspondence between polar and Cartesian representations

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Gay, David; Piché, Michel

    2006-09-01

    A recent analysis [G. Rousseau, D. Gay and M. Piché, One-dimensional description of cylindrically symmetric laser beams: application to Bessel-type nondiffracting beams, J. Opt. Soc. Am. A, 22 (2005) 1274] has shown that any cylindrically symmetric laser beam can be synthesized from a single wave called a constituent wave. This representation allows the introduction of one-dimensional Cartesian root-mean-square (rms) parameters to describe the conical structure of cylindrically symmetric laser beams. In this paper, we compare the rms characterization of Bessel-Gauss beams in polar coordinates with that of their respective constituent waves in Cartesian coordinates. Numerical results reveal an asymptotic correspondence between polar and Cartesian rms parameters of Bessel-Gauss beams propagating in a nondiffracting regime. Such a correspondence eliminates misleading interpretations about the propagation factor and the Rayleigh range of nondiffracting Bessel-type beams characterized in terms of polar rms parameters.

  18. Astronaut Anna Fisher practices control of the RMS in a trainer

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Anna Lee Fisher, mission specialist for 51-A, practices control of the remote manipulator system (RMS) at a special trainer at JSC. Dr. Fisher is pictured in the manipulator development facility (MDF) of JSC's Shuttle mockup and integration laboratory.

  19. Enhanced focal-resolution of dipole sources using aeroacoustic time-reversal in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Mimani, A.; Moreau, D. J.; Prime, Z.; Doolan, C. J.

    2016-05-01

    This paper presents the first application of the Point-Time-Reversal-Sponge-Layer (PTRSL) damping technique to enhance the focal-resolution of experimental flow-induced dipole sources obtained using the Time-Reversal (TR) source localization method. Experiments were conducted in an Anechoic Wind Tunnel for the case of a full-span cylinder located in a low Mach number cross-flow. The far-field acoustic pressure sampled using two line arrays of microphones located above and below the cylinder exhibited a dominant Aeolian tone. The aeroacoustic TR simulations were implemented using the time-reversed signals whereby the source map revealed the lift-dipole nature at the Aeolian tone frequency. A PTRSL (centred at the predicted dipole location) was shown to reduce the size of dipole focal spots to 7/20th of a wavelength as compared to one wavelength without its use, thereby dramatically enhancing the focal-resolution of the TR technique.

  20. High-resolution time-resolved extreme ultraviolet spectroscopy on NSTX.

    PubMed

    Lepson, J K; Beiersdorfer, P; Clementson, J; Bitter, M; Hill, K W; Kaita, R; Skinner, C H; Roquemore, A L; Zimmer, G

    2012-10-01

    We report on upgrades to the flat-field grazing-incidence grating spectrometers X-ray and Extreme Ultraviolet Spectrometer (XEUS) and Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), at the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. XEUS employs a variable space grating with an average spacing of 2400 lines/mm and covers the 9-64 Å wavelength band, while LoWEUS has an average spacing of 1200 lines/mm and is positioned to monitor the 90-270 Å wavelength band. Both spectrometers have been upgraded with new cameras that achieve 12.5 ms time resolution. We demonstrate the new time resolution capability by showing the time evolution of iron in the NSTX plasma.

  1. An Accurate Timing Alignment Method with Time-to-Digital Converter Linearity Calibration for High-Resolution TOF PET.

    PubMed

    Li, Hongdi; Wang, Chao; An, Shaohui; Lu, Xingyu; Dong, Yun; Liu, Shitao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Wong, Wai-Hoi

    2015-06-01

    Accurate PET system timing alignment minimizes the coincidence time window and therefore reduces random events and improves image quality. It is also critical for time-of-flight (TOF) image reconstruction. Here, we use a thin annular cylinder (shell) phantom filled with a radioactive source and located axially and centrally in a PET camera for the timing alignment of a TOF PET system. This timing alignment method involves measuring the time differences between the selected coincidence detector pairs, calibrating the differential and integral nonlinearity of the time-to-digital converter (TDC) with the same raw data and deriving the intrinsic time biases for each detector using an iterative algorithm. The raw time bias for each detector is downloaded to the front-end electronics and the residual fine time bias can be applied during the TOF list-mode reconstruction. Our results showed that a timing alignment accuracy of better than ±25 ps can be achieved, and a preliminary timing resolution of 473 ps (full width at half maximum) was measured in our prototype TOF PET/CT system.

  2. An Accurate Timing Alignment Method with Time-to-Digital Converter Linearity Calibration for High-Resolution TOF PET

    PubMed Central

    Li, Hongdi; Wang, Chao; An, Shaohui; Lu, Xingyu; Dong, Yun; Liu, Shitao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Wong, Wai-Hoi

    2015-01-01

    Accurate PET system timing alignment minimizes the coincidence time window and therefore reduces random events and improves image quality. It is also critical for time-of-flight (TOF) image reconstruction. Here, we use a thin annular cylinder (shell) phantom filled with a radioactive source and located axially and centrally in a PET camera for the timing alignment of a TOF PET system. This timing alignment method involves measuring the time differences between the selected coincidence detector pairs, calibrating the differential and integral nonlinearity of the time-to-digital converter (TDC) with the same raw data and deriving the intrinsic time biases for each detector using an iterative algorithm. The raw time bias for each detector is downloaded to the front-end electronics and the residual fine time bias can be applied during the TOF list-mode reconstruction. Our results showed that a timing alignment accuracy of better than ±25 ps can be achieved, and a preliminary timing resolution of 473 ps (full width at half maximum) was measured in our prototype TOF PET/CT system. PMID:26543243

  3. Rapid Diagnosis of Tuberculosis by Real-Time High-Resolution Imaging of Mycobacterium tuberculosis Colonies.

    PubMed

    Ghodbane, Ramzi; Asmar, Shady; Betzner, Marlena; Linet, Marie; Pierquin, Joseph; Raoult, Didier; Drancourt, Michel

    2015-08-01

    Culture remains the cornerstone of diagnosis for pulmonary tuberculosis, but the fastidiousness of Mycobacterium tuberculosis may delay culture-based diagnosis for weeks. We evaluated the performance of real-time high-resolution imaging for the rapid detection of M. tuberculosis colonies growing on a solid medium. A total of 50 clinical specimens, including 42 sputum specimens, 4 stool specimens, 2 bronchoalveolar lavage fluid specimens, and 2 bronchial aspirate fluid specimens were prospectively inoculated into (i) a commercially available Middlebrook broth and evaluated for mycobacterial growth indirectly detected by measuring oxygen consumption (standard protocol) and (ii) a home-made solid medium incubated in an incubator featuring real-time high-resolution imaging of colonies (real-time protocol). Isolates were identified by Ziehl-Neelsen staining and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Use of the standard protocol yielded 14/50 (28%) M. tuberculosis isolates, which is not significantly different from the 13/50 (26%) M. tuberculosis isolates found using the real-time protocol (P = 1.00 by Fisher's exact test), and the contamination rate of 1/50 (2%) was not significantly different from the contamination rate of 2/50 (4%) using the real-time protocol (P = 1.00). The real-time imaging protocol showed a 4.4-fold reduction in time to detection, 82 ± 54 h versus 360 ± 142 h (P < 0.05). These preliminary data give the proof of concept that real-time high-resolution imaging of M. tuberculosis colonies is a new technology that shortens the time to growth detection and the laboratory diagnosis of pulmonary tuberculosis.

  4. Integration of the CAT Crewstation with the Ride Motion Simulator (RMS)

    DTIC Science & Technology

    2006-04-03

    future mounting solutions will involve aluminum mounting brackets instead of steel to reduce the weight burden on the motion simulator . In...and Embedded Simulation System (ESS), mounted and integrated with the RMS, Vehicle Dynamics Mobility Server (VDMS), Combat Hybrid Power System...2006-01-1171 Integration of the CAT Crewstation with the Ride Motion Simulator (RMS) Nancy Truong and Victor Paul U.S. Army RDECOM-TARDEC Andrey

  5. An efficient method for calculating RMS von Mises stress in a random vibration environment

    SciTech Connect

    Segalman, D.J.; Fulcher, C.W.G.; Reese, G.M.; Field, R.V. Jr.

    1998-02-01

    An efficient method is presented for calculation of RMS von Mises stresses from stress component transfer functions and the Fourier representation of random input forces. An efficient implementation of the method calculates the RMS stresses directly from the linear stress and displacement modes. The key relation presented is one suggested in past literature, but does not appear to have been previously exploited in this manner.

  6. Near-real-time mosaics from high-resolution side-scan sonar

    USGS Publications Warehouse

    Danforth, William W.; O'Brien, Thomas F.; Schwab, W.C.

    1991-01-01

    High-resolution side-scan sonar has proven to be a very effective tool for stuyding and understanding the surficial geology of the seafloor. Since the mid-1970s, the US Geological Survey has used high-resolution side-scan sonar systems for mapping various areas of the continental shelf. However, two problems typically encountered included the short range and the high sampling rate of high-resolution side-scan sonar systems and the acquisition and real-time processing of the enormous volume of sonar data generated by high-resolution suystems. These problems were addressed and overcome in August 1989 when the USGS conducted a side-scan sonar and bottom sampling survey of a 1000-sq-km section of the continental shelf in the Gulf of Farallones located offshore of San Francisco. The primary goal of this survey was to map an area of critical interest for studying continental shelf sediment dynamics. This survey provided an opportunity to test an image processing scheme that enabled production of a side-scan sonar hard-copy mosaic during the cruise in near real-time.

  7. The RMS survey. 13CO observations of candidate massive YSOs in the southern Galactic plane

    NASA Astrophysics Data System (ADS)

    Urquhart, J. S.; Busfield, A. L.; Hoare, M. G.; Lumsden, S. L.; Oudmaijer, R. D.; Moore, T. J. T.; Gibb, A. G.; Purcell, C. R.; Burton, M. G.; Marechal, L. J. L.

    2007-11-01

    Context: The Red MSX Source (RMS) survey is an ongoing multi-wavelength observational programme designed to return a large, well-selected sample of massive young stellar objects (MYSOs). We have identified 2000 MYSOs candidates located within our Galaxy by comparing the colours of MSX and 2MASS point sources to those of known MYSOs. The aim of our follow-up observations is to identify other contaminating objects such as ultra compact (UC) HII regions, evolved stars and planetary nebulae (PNe) and distinguish between genuine MYSOs and nearby low-mass YSOs. Aims: A critical part of our follow-up programme is to conduct 13CO molecular line observations in order to determine kinematic distances to all of our MYSO candidates. These distances will be used in combination with far-IR and (sub)millimetre fluxes to determine bolometric luminosities which will allow us to identify and remove nearby low-mass YSOs. In addition these molecular line observations will help in identifying evolved stars which are weak CO emitters. Methods: We have used the 22 m Mopra telescope, the 15 m JCMT and the 20 m Onsala telescope to conduct molecular line observations towards 854 MYSOs candidates located in the 3rd and 4th quadrants. These observations have been made at the J = 1-0 (Mopra and Onsala) and J = 2-1 (JCMT) rotational transition frequency of 13CO molecules and have a spatial resolution of 20´´-40´´, a sensitivity of T{A}* ≃ 0.1 K and a velocity resolution of 0.2 km s-1. Results: We detect 13CO emission towards a total of 752 of the 854 RMS sources observed ( 88%). In total 2132 emission components are detected above 3σ level (typically T^*{A} ≥ 0.3 K). Multiple emission profiles are observed towards the majority of these sources - 461 sources ( 60%) - with an average of 4 molecular clouds detected along the line of sight. These multiple emission features make it difficult to assign a kinematic velocity to many of our sample. We have used archival CS (J = 2-1) and maser

  8. A near-infrared SETI experiment: A multi-time resolution data analysis

    NASA Astrophysics Data System (ADS)

    Tallis, Melisa; Maire, Jerome; Wright, Shelley; Drake, Frank D.; Duenas, Andres; Marcy, Geoffrey W.; Stone, Remington P. S.; Treffers, Richard R.; Werthimer, Dan; NIROSETI

    2016-06-01

    We present new post-processing routines which are used to detect very fast optical and near-infrared pulsed signals using the latest NIROSETI (Near-Infrared Optical Search for Extraterrestrial Intelligence) instrument. NIROSETI was commissioned in 2015 at Lick Observatory and searches for near-infrared (0.95 to 1.65μ) nanosecond pulsed laser signals transmitted by distant civilizations. Traditional optical SETI searches rely on analysis of coincidences that occur between multiple detectors at a fixed time resolution. We present a multi-time resolution data analysis that extends our search from the 1ns to 1ms range. This new feature greatly improves the versatility of the instrument and its search parameters for near-infrared SETI. We aim to use these algorithms to assist us in our search for signals that have varying duty cycles and pulse widths. We tested the fidelity and robustness of our algorithms using both synthetic embedded pulsed signals, as well as data from a near-infrared pulsed laser installed on the instrument. Applications of NIROSETI are widespread in time domain astrophysics, especially for high time resolution transients, and astronomical objects that emit short-duration high-energy pulses such as pulsars.

  9. Time resolution dependence of information measures for spiking neurons: scaling and universality.

    PubMed

    Marzen, Sarah E; DeWeese, Michael R; Crutchfield, James P

    2015-01-01

    The mutual information between stimulus and spike-train response is commonly used to monitor neural coding efficiency, but neuronal computation broadly conceived requires more refined and targeted information measures of input-output joint processes. A first step toward that larger goal is to develop information measures for individual output processes, including information generation (entropy rate), stored information (statistical complexity), predictable information (excess entropy), and active information accumulation (bound information rate). We calculate these for spike trains generated by a variety of noise-driven integrate-and-fire neurons as a function of time resolution and for alternating renewal processes. We show that their time-resolution dependence reveals coarse-grained structural properties of interspike interval statistics; e.g., τ-entropy rates that diverge less quickly than the firing rate indicated by interspike interval correlations. We also find evidence that the excess entropy and regularized statistical complexity of different types of integrate-and-fire neurons are universal in the continuous-time limit in the sense that they do not depend on mechanism details. This suggests a surprising simplicity in the spike trains generated by these model neurons. Interestingly, neurons with gamma-distributed ISIs and neurons whose spike trains are alternating renewal processes do not fall into the same universality class. These results lead to two conclusions. First, the dependence of information measures on time resolution reveals mechanistic details about spike train generation. Second, information measures can be used as model selection tools for analyzing spike train processes.

  10. Particle acceleration due to shocks in the interplanetary field: High time resolution data and simulation results

    NASA Technical Reports Server (NTRS)

    Kessel, R. L.; Armstrong, T. P.; Nuber, R.; Bandle, J.

    1985-01-01

    Data were examined from two experiments aboard the Explorer 50 (IMP 8) spacecraft. The Johns Hopkins University/Applied Lab Charged Particle Measurement Experiment (CPME) provides 10.12 second resolution ion and electron count rates as well as 5.5 minute or longer averages of the same, with data sampled in the ecliptic plane. The high time resolution of the data allows for an explicit, point by point, merging of the magnetic field and particle data and thus a close examination of the pre- and post-shock conditions and particle fluxes associated with large angle oblique shocks in the interplanetary field. A computer simulation has been developed wherein sample particle trajectories, taken from observed fluxes, are allowed to interact with a planar shock either forward or backward in time. One event, the 1974 Day 312 shock, is examined in detail.

  11. A novel time-multiplexed autostereoscopic multiview full resolution 3D display

    NASA Astrophysics Data System (ADS)

    Liou, Jian-Chiun; Chen, Fu-Hao

    2012-03-01

    Many people believe that in the future, autostereoscopic 3D displays will become a mainstream display type. Achievement of higher quality 3D images requires both higher panel resolution and more viewing zones. Consequently, the transmission bandwidth of the 3D display systems involves enormous amounts of data transfer. We propose and experimentally demonstrate a novel time-multiplexed autostereoscopic multi-view full resolution 3D display based on the lenticular lens array in association with the control of the active dynamic LED backlight. The lenticular lenses of the lens array optical system receive the light and deflect the light into each viewing zone in a time sequence. The crosstalk under different observation scanning angles is showed, including the cases of 4-views field scanning. The crosstalk of any view zones is about 5% respectively; the results are better than other 3D type.

  12. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    PubMed Central

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10−9 fs2/Hz (equivalent to −174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources. PMID:28102352

  13. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    NASA Astrophysics Data System (ADS)

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10‑9 fs2/Hz (equivalent to ‑174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources.

  14. Divergence identities in curved space-time a resolution of the stress-energy problem

    NASA Astrophysics Data System (ADS)

    Yilmaz, Hüseyin

    1989-03-01

    It is noted that the joint use of two basic differential identities in curved space-time, namely, 1) the Einstein-Hilbert identity (1915), and 2) the identity of P. Freud (1939), permits a viable alternative to general relativity and a resolution of the "field stress-energy" problem of the gravitational theory. (A tribute to Eugene P. Wigner's 1957 presidential address to the APS)

  15. Building Change Detection in Very High Resolution Satellite Stereo Image Time Series

    NASA Astrophysics Data System (ADS)

    Tian, J.; Qin, R.; Cerra, D.; Reinartz, P.

    2016-06-01

    There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.

  16. High-resolution real-time 3D shape measurement on a portable device

    NASA Astrophysics Data System (ADS)

    Karpinsky, Nikolaus; Hoke, Morgan; Chen, Vincent; Zhang, Song

    2013-09-01

    Recent advances in technology have enabled the acquisition of high-resolution 3D models in real-time though the use of structured light scanning techniques. While these advances are impressive, they require large amounts of computing power, thus being limited to using large desktop computers with high end CPUs and sometimes GPUs. This is undesirable in making high-resolution real-time 3D scanners ubiquitous in our mobile lives. To address this issue, this work describes and demonstrates a real-time 3D scanning system that is realized on a mobile device, namely a laptop computer, which can achieve speeds of 20fps 3D at a resolution of 640x480 per frame. By utilizing a graphics processing unit (GPU) as a multipurpose parallel processor, along with a parallel phase shifting technique, we are able to realize the entire 3D processing pipeline in parallel. To mitigate high speed camera transfer problems, which typically require a dedicated frame grabber, we make use of USB 3.0 along with direct memory access (DMA) to transfer camera images to the GPU. To demonstrate the effectiveness of the technique, we experiment with the scanner on both static geometry of a statue and dynamic geometry of a deforming material sample in front of the system.

  17. Digitial readout for microwave kinetic inductance detectors and applications in high time resolution astronomy

    NASA Astrophysics Data System (ADS)

    Strader, Matthew James

    This dissertation spans two topics relating to optical to near-infrared astronomical cameras built around Microwave Kinetic Inductance Detectors (MKIDs). The first topic is the development of a digital readout system for 10- to 30-kilopixel arrays of MKIDs. MKIDs are superconducting detectors that can detect individual photons with a wide range of wavelengths with high time resolution (SI{2}{micro s}) and low energy resolution. The advantage of MKIDs over other low temperature detectors with similar capabilities is that it is relatively straightforward to multiplex MKIDs into large arrays. All the complexity of readout is in room temperature electronics. This work discusses the implementation and programming of these electronics. The second part of this work demonstrates the capabilities of the prototype optical and near-infrared MKID instrument with observations of pulsars. Detecting optical pulsations in these objects require high time resolution and low noise. The discovery of a correlation between the brightness of optical pulses from the Crab pulsar and the time of arrival of coincident giant radio pulses is presented. The search for optical pulses from a millisecond pulsar J0337+1715 is discussed along with a new upper limit on the brightness of its optical pulses.

  18. Efficiency and timing resolution of scintillator tiles read out with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Pooth, O.; Weingarten, S.; Weinstock, L.

    2016-01-01

    Silicon photomultipliers (SiPM) are semiconductor photo sensors that have the potential to replace photomultiplier tubes (PMT) in various fields of application. We present detectors consisting of 30 × 30 × 0.5 cm3 fast plastic scintillator tiles read out with SiPMs. The detectors offer great electronic and mechanical advantages over the classical PMT-scintillator combination. SiPMs are very compact devices that run independent of magnetic fields at low voltages and no light guides between the scintillator and the SiPM are necessary in the presented layouts. Three prototypes, two of which with integrated wavelength shifting fibres, have been tested in a proton beam at the COSY accelerator at Forschungszentrum Jülich. The different layouts are compared in terms of most probable pulse height, detection efficiency and noise behaviour as well as timing resolution. The spatial distributions of these properties across the scintillator surface are presented. The best layout can be operated at a mean efficiency of bar epsilon=99.9 % while sustaining low noise rates in the order of 10 Hz with a timing resolution of less than 3 ns. Both efficiency and timing resolution show good spatial homogeneity.

  19. In-depth study of single photon time resolution for the Philips digital silicon photomultiplier

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Gundacker, S.; Pizzichemi, M.; Ghezzi, A.; Auffray, E.; Lecoq, P.; Paganoni, M.

    2016-06-01

    The digital silicon photomultiplier (SiPM) has been commercialised by Philips as an innovative technology compared to analog silicon photomultiplier devices. The Philips digital SiPM, has a pair of time to digital converters (TDCs) connected to 12800 single photon avalanche diodes (SPADs). Detailed measurements were performed to understand the low photon time response of the Philips digital SiPM. The single photon time resolution (SPTR) of every single SPAD in a pixel consisting of 3200 SPADs was measured and an average value of 85 ps full width at half maximum (FWHM) was observed. Each SPAD sends the signal to the TDC with different signal propagation time, resulting in a so called trigger network skew. This distribution of the trigger network skew for a pixel (3200 SPADs) has been measured and a variation of 50 ps FWHM was extracted. The SPTR of the whole pixel is the combination of SPAD jitter, trigger network skew, and the SPAD non-uniformity. The SPTR of a complete pixel was 103 ps FWHM at 3.3 V above breakdown voltage. Further, the effect of the crosstalk at a low photon level has been studied, with the two photon time resolution degrading if the events are a combination of detected (true) photons and crosstalk events. Finally, the time response to multiple photons was investigated.

  20. Temporal Resolution in Time Series and Probabilistic Models of Renewable Power Systems

    NASA Astrophysics Data System (ADS)

    Hoevenaars, Eric

    There are two main types of logistical models used for long-term performance prediction of autonomous power systems: time series and probabilistic. Time series models are more common and are more accurate for sizing storage systems because they are able to track the state of charge. However, the computational time is usually greater than for probabilistic models. It is common for time series models to perform 1-year simulations with a 1-hour time step. This is likely because of the limited availability of high resolution data and the increase in computation time with a shorter time step. Computation time is particularly important because these types of models are often used for component size optimization which requires many model runs. This thesis includes a sensitivity analysis examining the effect of the time step on these simulations. The results show that it can be significant, though it depends on the system configuration and site characteristics. Two probabilistic models are developed to estimate the temporal resolution error of a 1-hour simulation: a time series/probabilistic model and a fully probabilistic model. To demonstrate the application of and evaluate the performance of these models, two case studies are analyzed. One is for a typical residential system and one is for a system designed to provide on-site power at an aquaculture site. The results show that the time series/probabilistic model would be a useful tool if accurate distributions of the sub-hour data can be determined. Additionally, the method of cumulant arithmetic is demonstrated to be a useful technique for incorporating multiple non-Gaussian random variables into a probabilistic model, a feature other models such as Hybrid2 currently do not have. The results from the fully probabilistic model showed that some form of autocorrelation is required to account for seasonal and diurnal trends.

  1. A high-resolution, multi-stop, time-to-digital converter for nuclear time-of-flight measurements

    NASA Astrophysics Data System (ADS)

    Spencer, D. F.; Cole, J.; Drigert, M.; Aryaeinejad, R.

    2006-01-01

    A high-resolution, multi-stop, time-to-digital converter (TDC) was designed and developed to precisely measure the times-of-flight (TOF) of incident neutrons responsible for induced fission and capture reactions on actinide targets. The minimum time resolution is ±1 ns. The TDC design was implemented into a single, dual-wide CAMAC module. The CAMAC bus is used for command and control as well as an alternative data output. A high-speed ECL interface, compatible with LeCroy FERA modules, was also provided for the principle data output path. An Actel high-speed field programmable gate array (FPGA) chip was incorporated with an external oscillator and an internal multiple clock phasing system. This device implemented the majority of the high-speed register functions, the state machine for the FERA interface, and the high-speed counting circuit used for the TDC conversion. An external microcontroller was used to monitor and control system-level changes. In this work we discuss the performance of this TDC module as well as its application.

  2. Improved-resolution real-time skin-dose mapping for interventional fluoroscopic procedures

    NASA Astrophysics Data System (ADS)

    Rana, Vijay K.; Rudin, Stephen; Bednarek, Daniel R.

    2014-03-01

    We have developed a dose-tracking system (DTS) that provides a real-time display of the skin-dose distribution on a 3D patient graphic during fluoroscopic procedures. Radiation dose to individual points on the skin is calculated using exposure and geometry parameters from the digital bus on a Toshiba C-arm unit. To accurately define the distribution of dose, it is necessary to use a high-resolution patient graphic consisting of a large number of elements. In the original DTS version, the patient graphics were obtained from a library of population body scans which consisted of larger-sized triangular elements resulting in poor congruence between the graphic points and the x-ray beam boundary. To improve the resolution without impacting real-time performance, the number of calculations must be reduced and so we created software-designed human models and modified the DTS to read the graphic as a list of vertices of the triangular elements such that common vertices of adjacent triangles are listed once. Dose is calculated for each vertex point once instead of the number of times that a given vertex appears in multiple triangles. By reformatting the graphic file, we were able to subdivide the triangular elements by a factor of 64 times with an increase in the file size of only 1.3 times. This allows a much greater number of smaller triangular elements and improves resolution of the patient graphic without compromising the real-time performance of the DTS and also gives a smoother graphic display for better visualization of the dose distribution.

  3. Improved-Resolution, Real-Time Skin-Dose Mapping for Interventional Fluoroscopic Procedures

    PubMed Central

    Rana, Vijay K.; Rudin, Stephen; Bednarek, Daniel R.

    2014-01-01

    We have developed a dose-tracking system (DTS) that provides a real-time display of the skin-dose distribution on a 3D patient graphic during fluoroscopic procedures. Radiation dose to individual points on the skin is calculated using exposure and geometry parameters from the digital bus on a Toshiba C-arm unit. To accurately define the distribution of dose, it is necessary to use a high-resolution patient graphic consisting of a large number of elements. In the original DTS version, the patient graphics were obtained from a library of population body scans which consisted of larger-sized triangular elements resulting in poor congruence between the graphic points and the x-ray beam boundary. To improve the resolution without impacting real-time performance, the number of calculations must be reduced and so we created software-designed human models and modified the DTS to read the graphic as a list of vertices of the triangular elements such that common vertices of adjacent triangles are listed once. Dose is calculated for each vertex point once instead of the number of times that a given vertex appears in multiple triangles. By reformatting the graphic file, we were able to subdivide the triangular elements by a factor of 64 times with an increase in the file size of only 1.3 times. This allows a much greater number of smaller triangular elements and improves resolution of the patient graphic without compromising the real-time performance of the DTS and also gives a smoother graphic display for better visualization of the dose distribution. PMID:25177446

  4. Exploring the Resolution of Time-Lapse Microgravity at an Aquifer Storage and Recovery Site

    NASA Astrophysics Data System (ADS)

    Bradley, C. C.; Ali, M.; Levannier, A.

    2008-12-01

    Time-Lapse Microgravity can reveal relatively small underground fluid displacements via the redistribution of density-contrast at fluid boundaries. The method has, for example, been successfully demonstrated in underground natural gas storage and carbon sequestration studies, and has clear potential for hydrological research and applications such as mining and hydrocarbon reservoir management. For surveys based on modern spring-type gravimeters, the technique's basic measurement resolution is limited by instrument drift, offset errors, and viscoelastic strain hysteresis of the sensor. Despite the sophistication of modern instruments, actual field performance of gravimeters still depends on operator technique and survey conditions. To explore the ultimate resolution of field microgravity (and time-lapse measurements, in particular), we have made repeated gravity surveys of a shallow aquifer storage and recovery test site in the UAE, where injection produces a 'water mound' - localized vertical water-level shifts - monitored by a set of instrumented wells. Based on field measurements and additional laboratory testing of our Scintrex CG-5 gravimeter, we find that the main limit on measurement resolution is from orientation strain hysteresis - a variable amplitude error that decays in approximately 30 minutes, typically in response to orientation during transport between measurement stations. Still, carefully conducted surveys (during the summer, in the desert conditions of the UAE) demonstrate time-lapse microgravity resolution of about 3 microGals, corresponding to a water-level shift of about 0.3 m for this aquifer. In this paper, we will discuss what a 'careful survey' requires and present our detailed testing and survey results.

  5. Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2010-01-01

    This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.

  6. High spatial resolution shortwave infrared imaging technology based on time delay and digital accumulation method

    NASA Astrophysics Data System (ADS)

    Jia, Jianxin; Wang, Yueming; Zhuang, Xiaoqiong; Yao, Yi; Wang, Shengwei; Zhao, Ding; Shu, Rong; Wang, Jianyu

    2017-03-01

    Shortwave infrared (SWIR) imaging technology attracts more and more attention by its fascinating ability of penetrating haze and smoke. For application of spaceborne remote sensing, spatial resolution of SWIR is lower compared with that of visible light (VIS) wavelength. It is difficult to balance between the spatial resolution and signal to noise ratio (SNR). Some conventional methods, such as enlarging aperture of telescope, image motion compensation, and analog time delay and integration (TDI) technology are used to gain SNR. These techniques bring in higher cost of satellite, complexity of system or other negative factors. In this paper, time delay and digital accumulation (TDDA) method is proposed to achieve higher spatial resolution. The method can enhance the SNR and non-uniformity of system theoretically. A prototype of SWIR imager consists of opto-mechanical, 1024 × 128 InGaAs detector, and electronics is designed and integrated to prove TDDA method. Both of measurements and experimental results indicate TDDA method can promote SNR of system approximated of the square root of accumulative stage. The results exhibit that non-uniformity of system is also improved by this approach to some extent. The experiment results are corresponded with the theoretical analysis. Based on the experiments results, it is proved firstly that the goal of 1 m ground sample distance (GSD) in orbit of 500 km is feasible with the TDDA stage of 30 for SWIR waveband (0.9-1.7 μm).

  7. High-resolution, time-lapse imaging for ecosystem-scale phenotyping in the field.

    PubMed

    Brown, Tim; Zimmermann, Christopher; Panneton, Whitney; Noah, Nina; Borevitz, Justin

    2012-01-01

    The high spatial and temporal resolution of data required for high-throughput phenotyping has typically been all but impossible to obtain in field populations of plants. When studies of individual and population genetic variation and microclimate sensor data are combined with phenology data, a landscape-level view of how populations respond to changing environments can be obtained. This chapter will discuss the development of a multi-billion pixel ("gigapixel") camera system that enables the collection of phenology data at up to hourly intervals from in situ plant populations. Such gigapixel time-lapse imaging systems represent a key technological advancement for enabling high-throughput phenotyping in field settings. Gigapixel resolution image datasets allow researchers to record life-history (phenology) data across an entire landscape over multiple seasons. Image data can be wirelessly transmitted to a remote server where it can be accessed online within hours of capture. The time-lapse panoramic images are browsable through an interactive web tool that can be used to compare plant phenology with environmental sensor data collected simultaneously from the field. The high spatial and temporal resolution data can be used to identify individual plant phenology, which can in turn be used to generate complete population level phenotype data. The Gigavision platform is especially powerful when coupled with next-generation population genomic analysis. The Gigavision system permits the rapid identification of the phenotypes and genotypes responding to natural selection in wild populations.

  8. Expected resolution and detectability of adenocarcinoma tumors within human breast in time-resolved images

    NASA Astrophysics Data System (ADS)

    Gandjbakhche, Amir H.; Nossal, Ralph J.; Dadmarz, Roya; Schwartzentruber, Douglas; Bonner, Robert F.

    1995-04-01

    The prospects for time-resolved optical mammography rests on the ability to detect adenocarcinoma within the breast with sufficient resolution and specificity to compete with X-ray mammography. We characterized the optical properties of an unusually large (6 cm diameter) fresh adenocarcinoma and normal breast tissue (determined by histology to be predominantly adipose tissue) obtained from a patient undergoing mastectomy. Large specimens (5 mm thick and 3 cm wide) allowed the determination of absorption and scattering coefficients and their spatial heterogeneity as probed with a 1 mm diameter laser beam at 633 nm and 800 nm utilizing total reflectance and transmittance measure with integrating spheres. The difference between scattering coefficients of the malignant tumor and those of normal (principally adipose) breast tissue at 633 nm was much greater than the heterogeneity within each sample. This scattering difference is the principal source of contrast, particularly in time-resolved images. However, the high scattering coefficient of normal breast tissue at 633 nm limits the practicality of time-resolved mammography of a human breast compressed to 5 cm. Although the scattering coefficient of the normal breast tissue decreases at 800 nm, the differences between the optical properties of normal and abnormal breast tissue also are reduced. We used these empirical results in theoretical expressions obtained from random walk theory to quantify the expected resolution, contrast, and the detected intensity of 3, 6, and 9 mm tumors within otherwise homogeneous human breasts as a function of the gating-time of time-resolved optical mammography.

  9. Automated time-lapse microscopy and high-resolution tracking of cell migration

    SciTech Connect

    Fotos, Joseph S.; Vivek, Patel P.; Karin, Norm J.; Temburni, Murali; Koh, John T.; Galileo, Deni S.

    2006-08-09

    The study of cell motility is greatly enhanced by using a fully-automated high-throughput time-lapse microscopy system that is capable of collecting and analyzing data (1) from closely-spaced time points (seconds to minutes), (2) over long periods (hours to days), (3) from multiple areas of interest, (4) under several different experimental conditions simultaneously. Time-lapse video images collected under phase contrast and fluorescent illumination were analyzed using parameters of migration velocity, total accumulated distance (path length), and directionality for individual cells or for averaged cell populations. Quantitation of ''scratch'' or ''wound healing'' assays revealed unique motility dynamics of drug-treated and adhesion molecule-transfected cells with high resolution and, thus, is a vast distinct improvement of current methods. Several fluorescent vital labeling methods commonly used for end-point analyses, including GFP expression, were evaluated and most were useful for time-lapse studies under specific conditions. For example, fluorescently-labeled tumor cells were seeded onto cell monolayers expressing ectopic adhesion molecules displayed altered migration velocities compared to tumor cells plated directly onto culture dishes. The techniques described here revealed cell motility behavior not discernable by previously-used methods. We propose that quantitative time-lapse video analysis will foster the creation new cell motility assays, and increase the resolution and accuracy of existing assays.

  10. Detecting shifts in gene regulatory networks during time-course experiments at single-time-point temporal resolution.

    PubMed

    Takenaka, Yoichi; Seno, Shigeto; Matsuda, Hideo

    2015-10-01

    Comprehensively understanding the dynamics of biological systems is one of the greatest challenges in biology. Vastly improved biological technologies have provided vast amounts of information that must be understood by bioinformatics and systems biology researchers. Gene regulations have been frequently modeled by ordinary differential equations or graphical models based on time-course gene expression profiles. The state-of-the-art computational approaches for analyzing gene regulations assume that their models are same throughout time-course experiments. However, these approaches cannot easily analyze transient changes at a time point, such as diauxic shift. We propose a score that analyzes the gene regulations at each time point. The score is based on the information gains of information criterion values. The method detects the shifts in gene regulatory networks (GRNs) during time-course experiments with single-time-point resolution. The effectiveness of the method is evaluated on the diauxic shift from glucose to lactose in Escherichia coli. Gene regulation shifts were detected at two time points: the first corresponding to the time at which the growth of E. coli ceased and the second corresponding to the end of the experiment, when the nutrient sources (glucose and lactose) had become exhausted. According to these results, the proposed score and method can appropriately detect the time of gene regulation shifts. The method based on the proposed score provides a new tool for analyzing dynamic biological systems. Because the score value indicates the strength of gene regulation at each time point in a gene expression profile, it can potentially infer hidden GRNs from time-course experiments.

  11. Accurate estimation of the RMS emittance from single current amplifier data

    SciTech Connect

    Stockli, Martin P.; Welton, R.F.; Keller, R.; Letchford, A.P.; Thomae, R.W.; Thomason, J.W.G.

    2002-05-31

    This paper presents the SCUBEEx rms emittance analysis, a self-consistent, unbiased elliptical exclusion method, which combines traditional data-reduction methods with statistical methods to obtain accurate estimates for the rms emittance. Rather than considering individual data, the method tracks the average current density outside a well-selected, variable boundary to separate the measured beam halo from the background. The average outside current density is assumed to be part of a uniform background and not part of the particle beam. Therefore the average outside current is subtracted from the data before evaluating the rms emittance within the boundary. As the boundary area is increased, the average outside current and the inside rms emittance form plateaus when all data containing part of the particle beam are inside the boundary. These plateaus mark the smallest acceptable exclusion boundary and provide unbiased estimates for the average background and the rms emittance. Small, trendless variations within the plateaus allow for determining the uncertainties of the estimates caused by variations of the measured background outside the smallest acceptable exclusion boundary. The robustness of the method is established with complementary variations of the exclusion boundary. This paper presents a detailed comparison between traditional data reduction methods and SCUBEEx by analyzing two complementary sets of emittance data obtained with a Lawrence Berkeley National Laboratory and an ISIS H{sup -} ion source.

  12. Reference materials (RMs) for analysis of the human factor II (prothrombin) gene G20210A mutation.

    PubMed

    Klein, Christoph L; Márki-Zay, János; Corbisier, Philippe; Gancberg, David; Cooper, Susan; Gemmati, Donato; Halbmayer, Walter-Michael; Kitchen, Steve; Melegh, Béla; Neumaier, Michael; Oldenburg, Johannes; Leibundgut, Elisabeth Oppliger; Reitsma, Pieter H; Rieger, Sandra; Schimmel, Heinz G; Spannagl, Michael; Tordai, Attilia; Tosetto, Alberto; Visvikis, Sophie; Zadro, Renata; Mannhalter, Christine

    2005-01-01

    The Scientific Committee of Molecular Biology Techniques (C-MBT) in Clinical Chemistry of the IFCC has initiated a joint project in co-operation with the European Commission, Joint Research Centre, Institute of Reference Materials and Measurements to develop and produce plasmid-type reference materials (RMs) for the analysis of the human prothrombin gene G20210A mutation. Although DNA tests have a high impact on clinical decision-making and the number of tests performed in diagnostic laboratories is high, issues of quality and quality assurance exist, and currently only a few RMs for clinical genetic testing are available. A gene fragment chosen was produced that spans all primer annealing sites published to date. Both the wild-type and mutant alleles of this gene fragment were cloned into a pUC18 plasmid and two plasmid RMs were produced. In addition, a mixture of both plasmids was produced to mimic the heterozygous genotype. The present study describes the performance of these reference materials in a commutability study, in which they were tested by nine different methods in 13 expert laboratories. This series of plasmid RMs are, to the best of our knowledge, the first plasmid-type clinical genetic RMs introduced worldwide.

  13. Enabling high grayscale resolution displays and accurate response time measurements on conventional computers.

    PubMed

    Li, Xiangrui; Lu, Zhong-Lin

    2012-02-29

    Display systems based on conventional computer graphics cards are capable of generating images with 8-bit gray level resolution. However, most experiments in vision research require displays with more than 12 bits of luminance resolution. Several solutions are available. Bit++ (1) and DataPixx (2) use the Digital Visual Interface (DVI) output from graphics cards and high resolution (14 or 16-bit) digital-to-analog converters to drive analog display devices. The VideoSwitcher (3) described here combines analog video signals from the red and blue channels of graphics cards with different weights using a passive resister network (4) and an active circuit to deliver identical video signals to the three channels of color monitors. The method provides an inexpensive way to enable high-resolution monochromatic displays using conventional graphics cards and analog monitors. It can also provide trigger signals that can be used to mark stimulus onsets, making it easy to synchronize visual displays with physiological recordings or response time measurements. Although computer keyboards and mice are frequently used in measuring response times (RT), the accuracy of these measurements is quite low. The RTbox is a specialized hardware and software solution for accurate RT measurements. Connected to the host computer through a USB connection, the driver of the RTbox is compatible with all conventional operating systems. It uses a microprocessor and high-resolution clock to record the identities and timing of button events, which are buffered until the host computer retrieves them. The recorded button events are not affected by potential timing uncertainties or biases associated with data transmission and processing in the host computer. The asynchronous storage greatly simplifies the design of user programs. Several methods are available to synchronize the clocks of the RTbox and the host computer. The RTbox can also receive external triggers and be used to measure RT with respect

  14. High-resolution reflecting time-of-flight momentum and energy mapping system

    SciTech Connect

    Wang Chao; Kang Yifan; Weaver, Larry; Chang Zenghu

    2009-07-15

    A new system to map electron momentum and energy is proposed. A reflecting electrode is introduced into a time-of-flight (TOF) system whose decelerating electric field sends all the electrons back to a position-sensitive detector close to but behind the source of the electrons. The longer flying distance that results makes it possible to significantly improve the energy-resolved performance, especially in the higher energy region. The dependence of the new TOF system on its characteristic parameters is analyzed, along with its application to attosecond streak cameras. Experimental results verified a relative energy resolution better than 0.2 eV for 22 eV electrons and also revealed the availability of the improved relative energy resolution smaller than 1.0% for electron energy ranging from 30 to 40 eV.

  15. New high-resolution electrostatic ion mass analyzer using time of flight

    NASA Technical Reports Server (NTRS)

    Hamilton, D. C.; Gloeckler, G.; Ipavich, F. M.; Lundgren, R. A.; Sheldon, R. B.

    1990-01-01

    The design of a high-resolution ion-mass analyzer is described, which is based on an accurate measurement of the time of flight (TOF) of ions within a region configured to produce a harmonic potential. In this device, the TOF, which is independent of ion energy, is determined from a start pulse from secondary electrons produced when the ion passes through a thin carbon foil at the entrance of the TOF region and at a stop pulse from the ion striking a microchannel plate upon exciting the region. A laboratory prototype instrument called 'VMASS' was built and was tested at the Goddard Space Flight Center electrostatic accelerator, showing a good mass resolution of the instrument. Sensors of the VMASS type will form part of the WIND Solar Wind and Suprathermal Ion experiment, the Soho mission, and the Advanced Composition Explorer.

  16. TIME-VARYING POTASSIUM IN HIGH-RESOLUTION SPECTRA OF THE TYPE IA SUPERNOVA 2014J

    SciTech Connect

    Graham, M. L.; Weiss, L. M.; Shen, K. J.; Kelly, P. L.; Zheng, W.; Filippenko, A. V.; Marcy, G. W.; Valenti, S.; Howell, D. A.; Fulton, B. J.; Burt, J.; Rivera, E. J.

    2015-03-10

    We present a time series of the highest resolution spectra yet published for the nearby Type Ia supernova (SN Ia) 2014J in M82. They were obtained at 11 epochs over 33 days around peak brightness with the Levy Spectrograph (resolution R ≈ 110,000) on the 2.4 m Automated Planet Finder telescope at Lick Observatory. We identify multiple Na i D and K i absorption features as well as absorption by Ca ii H and K and several of the more common diffuse interstellar bands (DIBs). We see no evolution in any component of Na i D, Ca ii, or in the DIBs, but do establish the dissipation/weakening of the two most blueshifted components of K i. We present several potential physical explanations, finding the most plausible to be photoionization of circumstellar material, and discuss the implications of our results with respect to the progenitor scenario of SN 2014J.

  17. Time resolution dependence of information measures for spiking neurons: scaling and universality

    PubMed Central

    Marzen, Sarah E.; DeWeese, Michael R.; Crutchfield, James P.

    2015-01-01

    The mutual information between stimulus and spike-train response is commonly used to monitor neural coding efficiency, but neuronal computation broadly conceived requires more refined and targeted information measures of input-output joint processes. A first step toward that larger goal is to develop information measures for individual output processes, including information generation (entropy rate), stored information (statistical complexity), predictable information (excess entropy), and active information accumulation (bound information rate). We calculate these for spike trains generated by a variety of noise-driven integrate-and-fire neurons as a function of time resolution and for alternating renewal processes. We show that their time-resolution dependence reveals coarse-grained structural properties of interspike interval statistics; e.g., τ-entropy rates that diverge less quickly than the firing rate indicated by interspike interval correlations. We also find evidence that the excess entropy and regularized statistical complexity of different types of integrate-and-fire neurons are universal in the continuous-time limit in the sense that they do not depend on mechanism details. This suggests a surprising simplicity in the spike trains generated by these model neurons. Interestingly, neurons with gamma-distributed ISIs and neurons whose spike trains are alternating renewal processes do not fall into the same universality class. These results lead to two conclusions. First, the dependence of information measures on time resolution reveals mechanistic details about spike train generation. Second, information measures can be used as model selection tools for analyzing spike train processes. PMID:26379538

  18. High time resolution measurements of the thermosphere from Fabry-Perot Interferometer measurements of atomic oxygen

    NASA Astrophysics Data System (ADS)

    Ford, E. A. K.; Aruliah, A. L.; Griffin, E. M.; McWhirter, I.

    2007-06-01

    Recent advances in the performance of CCD detectors have enabled a high time resolution study of the high latitude upper thermosphere with Fabry-Perot Interferometers (FPIs) to be performed. 10-s integration times were used during a campaign in April 2004 on an FPI located in northern Sweden in the auroral oval. The FPI is used to study the thermosphere by measuring the oxygen red line emission at 630.0 nm, which emits at an altitude of approximately 240 km. Previous time resolutions have been 4 min at best, due to the cycle of look directions normally observed. By using 10 s rather than 40 s integration times, and by limiting the number of full cycles in a night, high resolution measurements down to 15 s were achievable. This has allowed the maximum variability of the thermospheric winds and temperatures, and 630.0 nm emission intensities, at approximately 240 km, to be determined as a few minutes. This is a significantly greater variability than the often assumed value of 1 h or more. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with waves with short periods. Gravity waves are an important feature of mesosphere-lower thermosphere (MLT) dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. At high latitudes gravity waves may be generated in-situ by localised auroral activity. Short period waves were detected in all four clear nights when this experiment was performed, in 630.0 nm intensities and thermospheric winds and temperatures. Waves with many periodicities were observed, from periods of several hours, down to 14 min. These waves were seen in all parameters over several nights, implying that this variability is a typical property of the thermosphere.

  19. Angular versus spatial resolution trade-offs for diffusion imaging under time constraints.

    PubMed

    Zhan, Liang; Jahanshad, Neda; Ennis, Daniel B; Jin, Yan; Bernstein, Matthew A; Borowski, Bret J; Jack, Clifford R; Toga, Arthur W; Leow, Alex D; Thompson, Paul M

    2013-10-01

    Diffusion weighted magnetic resonance imaging (DW-MRI) are now widely used to assess brain integrity in clinical populations. The growing interest in mapping brain connectivity has made it vital to consider what scanning parameters affect the accuracy, stability, and signal-to-noise of diffusion measures. Trade-offs between scan parameters can only be optimized if their effects on various commonly-derived measures are better understood. To explore angular versus spatial resolution trade-offs in standard tensor-derived measures, and in measures that use the full angular information in diffusion signal, we scanned eight subjects twice, 2 weeks apart, using three protocols that took the same amount of time (7 min). Scans with 3.0, 2.7, 2.5 mm isotropic voxels were collected using 48, 41, and 37 diffusion-sensitized gradients to equalize scan times. A specially designed DTI phantom was also scanned with the same protocols, and different b-values. We assessed how several diffusion measures including fractional anisotropy (FA), mean diffusivity (MD), and the full 3D orientation distribution function (ODF) depended on the spatial/angular resolution and the SNR. We also created maps of stability over time in the FA, MD, ODF, skeleton FA of 14 TBSS-derived ROIs, and an information uncertainty index derived from the tensor distribution function, which models the signal using a continuous mixture of tensors. In scans of the same duration, higher angular resolution and larger voxels boosted SNR and improved stability over time. The increased partial voluming in large voxels also led to bias in estimating FA, but this was partially addressed by using "beyond-tensor" models of diffusion.

  20. Flood and Landslide Applications of High Time Resolution Satellite Rain Products

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Hong, Yang; Huffman, George J.

    2006-01-01

    Experimental, potentially real-time systems to detect floods and landslides related to heavy rain events are described. A key basis for these applications is high time resolution satellite rainfall analyses. Rainfall is the primary cause for devastating floods across the world. However, in many countries, satellite-based precipitation estimation may be the best source of rainfall data due to insufficient ground networks and absence of data sharing along many trans-boundary river basins. Remotely sensed precipitation from the NASA's TRMM Multi-satellite Precipitation Analysis (TMPA) operational system (near real-time precipitation at a spatial-temporal resolution of 3 hours and 0.25deg x 0.25deg) is used to monitor extreme precipitation events. Then these data are ingested into a macro-scale hydrological model which is parameterized using spatially distributed elevation, soil and land cover datasets available globally from satellite remote sensing. Preliminary flood results appear reasonable in terms of location and frequency of events, with implementation on a quasi-global basis underway. With the availability of satellite rainfall analyses at fine time resolution, it has also become possible to assess landslide risk on a near-global basis. Early results show that landslide occurrence is closely associated with the spatial patterns and temporal distribution of TRMM rainfall characteristics. Particularly, the number of landslides triggered by rainfall is related to rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms. For the purpose of prediction, an empirical TMPA-based rainfall intensity-duration threshold is developed and shown to have skill in determining potential areas of landslides. These experimental findings, in combination with landslide surface susceptibility information based on satellite-based land surface information, form a starting point towards a potential operational landslide monitoring/warning system

  1. The Crab pulsar in the visible and ultraviolet with 20 microsecond effective time resolution

    NASA Technical Reports Server (NTRS)

    Percival, J. W.; Biggs, J. D.; Dolan, J. F.; Robinson, E. L.; Taylor, M. J.; Bless, R. C.; Elliot, J. L.; Nelson, M. J.; Ramseyer, T. F.; Van Citters, G. W.

    1993-01-01

    Observations of PSR 0531+21 with the High Speed Photometer on the HST in the visible in October 1991 and in the UV in January 1992 are presented. The time resolution of the instrument was 10.74 microsec; the effective time resolution of the light curves folded modulo the pulsar period was 21.5 microsec. The main pulse arrival time is the same in the UV as in the visible and radio to within the accuracy of the establishment of the spacecraft clock, +/- 1.05 ms. The peak of the main pulse is resolved in time. Corrected for reddening, the intensity spectral index of the Crab pulsar from 1680 to 7400 A is 0.11 +/- 0.13. The pulsed flux has an intensity less than 0.9 percent of the peak flux just before the onset of the main pulse. The variations in intensity of individual main and secondary pulses are uncorrelated, even within the same rotational period.

  2. Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution.

    PubMed

    Yang, Qiang; Xu, Xiao; Lai, Puxiang; Xu, Daxiong; Wang, Lihong V

    2013-11-01

    Focusing light inside highly scattering media is a challenging task in biomedical optical imaging, manipulation, and therapy. A recent invention has overcome this challenge by time reversing ultrasonically encoded diffuse light to an ultrasound-modulated volume inside a turbid medium. In this technique, a photorefractive (PR) crystal or polymer can be used as the phase conjugate mirror for optical time reversal. Accordingly, a relatively long ultrasound burst, whose duration matches the PR response time of the PR material, is usually used to encode the diffuse light. This long burst results in poor focusing resolution along the acoustic axis. In this work, we propose to use two intersecting ultrasound beams, emitted from two ultrasonic transducers at different frequencies, to modulate the diffuse light at the beat frequency within the intersection volume. We show that the time reversal of the light encoded at the beat frequency can converge back to the intersection volume. Experimentally, an acoustic axial resolution of ~1.1 mm was demonstrated inside turbid media, agreeing with theoretical estimation.

  3. End-to-end RMS error testing on a constant bandwidth FM/FM system

    NASA Technical Reports Server (NTRS)

    Wallace, G. R.; Salter, W. E.

    1972-01-01

    End-to-end root-mean-square (rms) tests performed on a constant bandwidth FM/FM system with various settings of system parameters are reported. The testing technique employed is that of sampling, digitizing, delaying, and comparing the analog input against the sampled and digitized corresponding output. Total system error is determined by fully loading all channels with band-limited noise and conducting end-to-end rms error tests on one channel. Tests are also conducted with and without a transmission link and plots of rms errors versus receiver signal-to-noise (S/N) values are obtained. The combined effects of intermodulation, adjacent channel crosstalk, and residual system noise are determined as well as the single channel distortion of the system.

  4. Relation between field energy and RMS emittance in intense particle beams

    SciTech Connect

    Wangler, T.P.; Crandall, K.R.; Mills, R.S.; Reiser, M.

    1985-01-01

    An equation is presented for continuous beams with azimuthal symmetry and continuous linear focusing, which expresses a relationship between the rate of change for squared rms emittance and the rate of change for a quantity we call the nonlinear field energy. The nonlinear field energy depends on the shape of the charge distribution and corresponds to the residual field energy possessed by beams with nonuniform charge distributions. The equation can be integrated for the case of an rms matched beam to yield a formula for space-charge-induced emittance growth that we have tested numerically for a variety of initial distributions. The results provide a framework for discussing the scaling of rms emittance growth and an explanation for the well-established lower limit on output emittance. 15 refs., 4 figs.

  5. STS-57 MS2 Sherlock operates RMS THC on OV-105's aft flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Mission Specialist 2 (MS2) Nancy J. Sherlock operates the remote manipulator system (RMS) translation hand control (THC) while observing extravehicular activity (EVA) outside viewing window W10 on the aft flight deck of Endeavour, Orbiter Vehicle (OV) 105. Positioned at the onorbit station, Sherlock moved EVA astronauts in the payload bay (PLB). Payload Commander (PLC) G. David Low with his feet anchored to a special restraint device on the end of the RMS arm held MS3 Peter J.K. Wisoff during the RMS maneuvers. The activity represented an evaluation of techniques which might be used on planned future missions -- a 1993 servicing visit to the Hubble Space Telescope (HST) and later space station work -- which will require astronauts to frequently lift objects of similar sized bulk. Note: Just below Sherlock's left hand a 'GUMBY' toy watches the actvity.

  6. An advection-based model to increase the temporal resolution of PIV time series.

    PubMed

    Scarano, Fulvio; Moore, Peter

    A numerical implementation of the advection equation is proposed to increase the temporal resolution of PIV time series. The method is based on the principle that velocity fluctuations are transported passively, similar to Taylor's hypothesis of frozen turbulence. In the present work, the advection model is extended to unsteady three-dimensional flows. The main objective of the method is that of lowering the requirement on the PIV repetition rate from the Eulerian frequency toward the Lagrangian one. The local trajectory of the fluid parcel is obtained by forward projection of the instantaneous velocity at the preceding time instant and backward projection from the subsequent time step. The trajectories are approximated by the instantaneous streamlines, which yields accurate results when the amplitude of velocity fluctuations is small with respect to the convective motion. The verification is performed with two experiments conducted at temporal resolutions significantly higher than that dictated by Nyquist criterion. The flow past the trailing edge of a NACA0012 airfoil closely approximates frozen turbulence, where the largest ratio between the Lagrangian and Eulerian temporal scales is expected. An order of magnitude reduction of the needed acquisition frequency is demonstrated by the velocity spectra of super-sampled series. The application to three-dimensional data is made with time-resolved tomographic PIV measurements of a transitional jet. Here, the 3D advection equation is implemented to estimate the fluid trajectories. The reduction in the minimum sampling rate by the use of super-sampling in this case is less, due to the fact that vortices occurring in the jet shear layer are not well approximated by sole advection at large time separation. Both cases reveal that the current requirements for time-resolved PIV experiments can be revised when information is poured from space to time. An additional favorable effect is observed by the analysis in the frequency

  7. Compact hybrid real-time hyperspectral imaging system with high effective spatial, spectral, and temporal resolution

    NASA Astrophysics Data System (ADS)

    Roth, Filip; Abbadi, Ahmad; Herman, Ondrej; Pavelek, Martin; Prenosil, Vaclav

    2016-10-01

    Medical endoscopes for image-guided surgery commonly use standard color image sensors, discarding any more detailed spectral information. Medical spectroscopy devices with various spectral working ranges are specialized to specific medical procedures and in general are not usable for image-guided surgery due to limitations in spatial or temporal resolution. In this paper, we present an initial demonstrator of hyperspectral endoscope, composed of two image sensors with complementing parameters. Using this hybrid approach, combining sensors with different spatial and spectral resolutions and spectral ranges, we obtain improved coverage of all the respective parameters. After digitally processing and merging the video streams, while maintaining the better features of both, we obtain an imaging system providing high effective spatial, spectral, and temporal resolution. The system is based on field programmable gate arrays. It provides real-time video output (60 Hz), which is usable for navigation during image-guided surgery. The flexible system architecture allows for an easy extension of the processing algorithms and enables minimal video signal latency. Physical dimensions and portability of the system are comparable to standard off-the-shelf medical endoscope cameras. The device can output both processed video and standard visible light video signals on one or more video outputs of the system. The resulting processed video signal obtained from the combined image sensor data greatly increases the amount of useful information available to the end user.

  8. High Resolution Deformation Time Series Estimation for Distributed Scatterers Using Terrasar-X Data

    NASA Astrophysics Data System (ADS)

    Goel, K.; Adam, N.

    2012-07-01

    In recent years, several SAR satellites such as TerraSAR-X, COSMO-SkyMed and Radarsat-2 have been launched. These satellites provide high resolution data suitable for sophisticated interferometric applications. With shorter repeat cycles, smaller orbital tubes and higher bandwidth of the satellites; deformation time series analysis of distributed scatterers (DSs) is now supported by a practical data basis. Techniques for exploiting DSs in non-urban (rural) areas include the Small Baseline Subset Algorithm (SBAS). However, it involves spatial phase unwrapping, and phase unwrapping errors are typically encountered in rural areas and are difficult to detect. In addition, the SBAS technique involves a rectangular multilooking of the differential interferograms to reduce phase noise, resulting in a loss of resolution and superposition of different objects on ground. In this paper, we introduce a new approach for deformation monitoring with a focus on DSs, wherein, there is no need to unwrap the differential interferograms and the deformation is mapped at object resolution. It is based on a robust object adaptive parameter estimation using single look differential interferograms, where, the local tilts of deformation velocity and local slopes of residual DEM in range and azimuth directions are estimated. We present here the technical details and a processing example of this newly developed algorithm.

  9. Constant RMS versus constant peak modulation for the perceptual equivalence of sinusoidal amplitude modulated signals.

    PubMed

    Regele, Oliver B; Koivuniemi, Andrew S; Otto, Kevin J

    2013-01-01

    Neuroprosthetics using intracortical microstimulation can potentially alleviate sensory deprivation due to injury or disease. However the information bandwidth of a single microstimulation channel remains largely unanswered. This paper presents three experiments that examine the importance of Peak Power/Charge and RMS Power/Charge for detection of acoustic and electrical Sinusoidal Amplitude Modulated stimuli by the auditory system. While the peripheral auditory system is sensitive to RMS power cues for the detection of acoustic stimuli, here we provide results that suggest that the auditory cortex is sensitive to peak charge cues for electrical stimuli. Varying the modulation frequency and depth do not change this effect for detection of modulated electrical stimuli.

  10. High-Resolution Time-Lapse Monitoring of Unsaturated Flow using Automated GPR Data Collection

    NASA Astrophysics Data System (ADS)

    Mangel, A. R.; Moysey, S. M.; Lytle, B. A.; Bradford, J. H.

    2015-12-01

    High-resolution ground-penetrating radar (GPR) data provide the detailed information required to image subsurface structures. Recent advances in GPR monitoring now also make it possible to study transient hydrologic processes, but high-speed data acquisition is critical for this application. We therefore highlight the capabilities of our automated system to acquire time-lapse, high-resolution multifold GPR data during infiltration of water into soils. The system design allows for fast acquisition of constant-offset (COP) and common-midpoint profiles (CMP) to monitor unsaturated flow at multiple locations. Qualitative interpretation of the unprocessed COPs can provide substantial information regarding the hydrologic response of the system, such as the complexities of patterns associated with the wetting of the soil and geophysical evidence of non-uniform propagation of a wetting front. While we find that unprocessed images are informative, we show that the spatial variability of velocity introduced by infiltration events can complicate the images and that migration of the data is an effective tool to improve interpretability of the time-lapse images. The ability of the system to collect high density CMP data also introduces the potential for improving the velocity model along with the image via reflection tomography in the post-migrated domain. We show that for both simulated and empirical time-lapse GPR profiles we can resolve a propagating wetting front in the soil that is in good agreement with the response of in-situ soil moisture measurements. The data from these experiments illustrate the importance of high-speed, high-resolution GPR data acquisition for obtaining insight about the dynamics of hydrologic events. Continuing research is aimed at improving the quantitative analysis of surface-based GPR monitoring data for identifying preferential flow in soils.

  11. Super continuum generation for real time ultrahigh resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nishizawa, Norihiko; Aguirre, Aaron D.; Fujimoto, James G.

    2006-02-01

    Optical coherence tomography (OCT) is an emerging technology for micrometer-scale, cross-sectional imaging of biological tissue and materials. One of the key limitations to achieving ultrahigh-resolution OCT imaging outside the laboratory setting has been the lack of compact, high-performance broadband light sources with sufficient power and stability to allow practical real-time imaging. The broad-bandwidth supercontinuum (SC) sources were recently demonstrated with femtosecond lasers in combination with nonlinear fibers. Using SC, we can demonstrate ultrahigh resolution OCT. However, wideband SC generally has large excess noise and significant fine structure. Low noise and smooth spectral shape are desired in the ideal supercontinnum source. In this paper, we describe recent studies on practical SC generation for ultrahigh-resolution OCT. SC generation is first analyzed both numerically and experimentally in terms of OCT imaging requirements and optimized conditions for generation are discussed. Supercontinua generated by use of highly nonlinear fiber which have a zero-dispersion wavelength near the pump wavelength, generally result in severe spectral modulation and fluctuating fine structure in the spectra. This spectral modulation produces sidelobes and reduced contrast in the interferometric point-spread function. In contrast, normally dispersive, highly nonlinear fibers (ND-HNFs) can generate smooth and Gaussian shaped supercontinua by the combination of self-phase modulation and normal dispersion. Low noise and wideband SC generation is demonstrated using ND-HNFs. Two colored SC generation is also demonstrated using a photonic crystal fiber which has two close zero dispersion wavelengths. The numerical results are almost in agreement with the experimental ones. Finally, low noise SC generation is demonstrated in an all fiber system based on an ultrashort pulse fiber laser. Wideband, low noise, near Gaussian shaped, high power SC is generated in the 1.55

  12. High mass resolution isochronous time-of-flight spectrograph for three-dimensional space plasma measurements

    NASA Technical Reports Server (NTRS)

    Moebius, E.; Bochsler, P.; Ghielmetti, A. G.; Hamilton, D. C.

    1990-01-01

    By combining a toroidal electrostatic analyzer with a novel cylindrically symmetric isochronous time-of-flight mass spectrometer, an instrument was developed that simultaneously determines the three-dimensional distribution function of ions and differentiates species. The ion mass is determined to high resolution (M/Delta-M greater than 50) from the time of flight within a harmonic field configuration defined by hyperboloid equipotential surfaces. A second conventional time-of-flight channel makes use of particles leaving the thin entrance foil as neutrals. An additional solid state detector in which the neutrals are stopped allows the total energy and thereby the ionic charge of the incident ions to be determined as well. Information from the neutral and the ion channels can be combined to determine the total mass of an incident molecular ion and the mass of one atomic fragment.

  13. ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS

    NASA Astrophysics Data System (ADS)

    Koenig, Marcelle; Reisch, Paja; Dowler, Rhys; Kraemer, Benedikt; Tannert, Sebastian; Patting, Matthias; Clausen, Mathias P.; Galiani, Silvia; Eggeling, Christian; Koberling, Felix; Erdmann, Rainer

    2016-03-01

    Stimulated Emission Depletion (STED) Microscopy has evolved into a well established method offering optical superresolution below 50 nm. Running both excitation and depletion lasers in picosecond pulsed modes allows for highest optical resolution as well as fully exploiting the photon arrival time information using time-resolved single photon counting (TCSPC). Non-superresolved contributions can be easily dismissed through time-gated detection (gated STED) or a more detailed fluorescence decay analysis (FLIM-STED), both leading to an even further improved imaging resolution. Furthermore, these methods allow for accurate separation of different fluorescent species, especially if subtle differences in the excitation and emission spectra as well as the fluorescence decay are taken into account in parallel. STED can also be used to shrink the observation volume while studying the dynamics of diffusing species in Fluorescence Correlation Spectroscopy (FCS) to overcome averaging issues along long transit paths. A further unique advantage of STED-FCS is that the observation spot diameter can be tuned in a gradual manner enabling, for example, determining the type of hindered diffusion in lipid membrane studies. Our completely pulsed illumination scheme allows realizing an improved STED-FCS data acquisition using pulsed interleaved excitation (PIE). PIE-STED-FCS allows for a straightforward online check whether the STED laser has an influence on the investigated diffusion dynamics.

  14. New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution

    NASA Astrophysics Data System (ADS)

    Süss, B.; Ringleb, F.; Heberle, J.

    2016-06-01

    A novel Fourier-transform infrared (FT-IR) rapid-scan spectrometer has been developed (patent pending EP14194520.4) which yields 1000 times higher time resolution as compared to conventional rapid-scanning spectrometers. The central element to achieve faster scanning rates is based on a sonotrode whose front face represents the movable mirror of the interferometer. A prototype spectrometer with a time resolution of 13 μs was realized, capable of fully automated long-term measurements with a flow cell for liquid samples, here a photosynthetic membrane protein in solution. The performance of this novel spectrometer is demonstrated by recording the photoreaction of bacteriorhodopsin initiated by a short laser pulse that is synchronized to the data recording. The resulting data are critically compared to those obtained by step-scan spectroscopy and demonstrate the relevance of performing experiments on proteins in solution. The spectrometer allows for future investigations of fast, non-repetitive processes, whose investigation is challenging to step-scan FT-IR spectroscopy.

  15. A Bichromator for High Time Resolution Measurements of Stark Broadened Pellet Ablation Light

    NASA Astrophysics Data System (ADS)

    Schmidt, G. L.; Baylor, L. R.; Fehling, D. T.; Jernigan, T. C.; Brooks, N. H.; Parks, P. B.

    2004-11-01

    Details of the pellet/plasma interaction are important for modeling of local pellet source rates and cross field transport of pellet mass. Understanding these processes is critical for projection of current fueling experiments to future devices such as ITER. Measurement of the Stark broadened deuterium emission lines provides the electron density and temperature of the pellet cloud for comparison with modeling details. Stark broadening measurements on JET for low field launch pellets at moderate time resolution indicate a slow variation in the cloud parameters. Observations of ablation light suggest changes in cloud parameters may occur on faster time scales. We report on the possible application of a multiple interference filter technique[1]to allow monitoring of cloud parameters at time resolution sufficient to study both the slow and rapid variations in cloud parameters. Application of the bichromator to line widths and temporal evolution typical of DIII-D pellet injection cases will be discussed.[1]McNeill,D.H.,RSI 73 (2002) 3193.

  16. Steps Toward Real-Time Atmospheric Phase Fluctuation Correction for a High Resolution Radar System

    NASA Astrophysics Data System (ADS)

    Denn, Grant R.; Geldzahler, Barry; Birr, Rick; Brown, Robert; Hoblitzell, Richard; Grant, Kevin; Miller, Michael; Woods, Gary; Archuleta, Arby; Ciminera, Michael; Cornish, Timothy; davarian, faramaz; kocz, jonathan; lee, dennis; Morabito, David Dominic; Soriano, Melissa; Tsao, Philip; Vilnrotter, Victor; Jakeman-Flores, Hali; Ott, melanie; Thomes, W. Joe; Soloff, Jason; NASA Kennedy Space Center, Jet Propulsion Laboratory, NASA Goddard Space Flight Center, NASA Johnson Space Flight Center, Metropolitan State University of Denver

    2016-01-01

    NASA is pursuing a demonstration of coherent uplink arraying at 7.145-7.190 GHz (X-band) and 30-31 GHz (Ka-band) using three 12m diameter COTS antennas separated by 60m at the Kennedy Space Center in Florida, with the goal of a high-power, high-resolution radar array that employs real-time correction for tropospheric phase fluctuation. The major uses for this array will be (a) observations of Near Earth Objects, (b) detection and tracking of orbital debris, (c) high power emergency uplink capability for spacecraft, and (d) radio science experiments.

  17. Real-time expert system diagnostics and monitoring for the High Resolution Microwave Survey Targeted Search

    NASA Technical Reports Server (NTRS)

    Macalou, A.; Glass, B. J.

    1993-01-01

    An automated monitoring and diagnostics system (MDS) using virtual real-time software was developed for NASA's High Resolution Microwave Survey (HRMS) Targeted Search System (TSS). The four main tasks required of the MDS were monitoring and recording system health, alerting operators of problems, diagnosing poor system performance, and performing an emergency system shutdown. The MDS was implemented using commercial expert system software tools in addition to interface hardware and software developed on site. The expert system used objects, rules, and schematics in its TSS knowledge representation. The MDS was successfully integrated into the HRMS computer environment, and its performance met or exceeded its requirements.

  18. A real-time smart sensor for high-resolution frequency estimation in power systems.

    PubMed

    Granados-Lieberman, David; Romero-Troncoso, Rene J; Cabal-Yepez, Eduardo; Osornio-Rios, Roque A; Franco-Gasca, Luis A

    2009-01-01

    Power quality monitoring is a theme in vogue and accurate frequency measurement of the power line is a major issue. This problem is particularly relevant for power generating systems since the generated signal must comply with restrictive standards. The novelty of this work is the development of a smart sensor for real-time high-resolution frequency measurement in accordance with international standards for power quality monitoring. The proposed smart sensor utilizes commercially available current clamp, hall-effect sensor or resistor as primary sensor. The signal processing is carried out through the chirp z-transform. Simulations and experimental results show the efficiency of the proposed smart sensor.

  19. Thyroid imaging: comparison of high-resolution real-time ultrasound and computed tomography

    SciTech Connect

    Radecki, P.D.; Arger, P.H.; Arenson, R.L.; Jennings, A.S.; Coleman, B.G.; Mintz, M.C.; Kressel, H.Y.

    1984-10-01

    High-resolution real-time ultrasound (US) and computed tomography (CT) were compared in 48 patients with a clinical diagnosis of thyroid abnormality and also correlated with biopsy or surgery. The modalities were considered comparable in 38 cases (79%), while CT was superior in 5 and US in 5. Both techniques lacked histopathological specificity. CT appears to be advantageous in detecting substernal thyroid extension and confirming thyroiditis, while the ability of US to detect small nodules makes it the procedure of choice in evaluating suspected intrinsic thyroid abnormalities.

  20. A general resolution of intractable problems in polynomial time through DNA Computing.

    PubMed

    Sanches, C A A; Soma, N Y

    2016-12-01

    Based on a set of known biological operations, a general resolution of intractable problems in polynomial time through DNA Computing is presented. This scheme has been applied to solve two NP-Hard problems (Minimization of Open Stacks Problem and Matrix Bandwidth Minimization Problem) and three co-NP-Complete problems (associated with Hamiltonian Path, Traveling Salesman and Hamiltonian Circuit), which have not been solved with this model. Conclusions and open questions concerning the computational capacity of this model are presented, and research topics are suggested.

  1. Study of time resolution by digital methods with a DRS4 module

    NASA Astrophysics Data System (ADS)

    Du, Cheng-Ming, Du; Jin-Da, Chen; Xiu-Ling, Zhang; Yang, Hai-Bo; Cheng, Ke; Kong, Jie; Hu, Zheng-Guo; Sun, Zhi-Yu; Su, Hong; Xu, Hu-Shan

    2016-04-01

    A new Digital Pulse Processing (DPP) module has been developed, based on a domino ring sampler version 4 chip (DRS4), with good time resolution for LaBr3 detectors, and different digital timing analysis methods for processing the raw detector signals are reported. The module, composed of an eight channel DRS4 chip, was used as the readout electronics and acquisition system to process the output signals from XP20D0 photomultiplier tubes (PMTs). Two PMTs were coupled with LaBr3 scintillators and placed on opposite sides of a radioactive positron 22Na source for 511 keV γ-ray tests. By analyzing the raw data acquired by the module, the best coincidence timing resolution is about 194.7 ps (FWHM), obtained by the digital constant fraction discrimination (dCFD) method, which is better than other digital methods and analysis methods based on conventional analog systems which have been tested. The results indicate that it is a promising approach to better localize the positron annihilation in positron emission tomography (PET) with time of flight (TOF), as well as for scintillation timing measurement, such as in TOF-ΔE and TOF-E systems for particle identification, with picosecond accuracy timing measurement. Furthermore, this module is more simple and convenient than other systems. Supported by the Science Foundation of the Chinese Academy of Sciences (210340XBO), National Natural Science Foundation of China (11305233,11205222), General Program of National Natural Science Foundation of China (11475234), Specific Fund of National Key Scientific Instrument and Equipment Development Project (2011YQ12009604) and Joint Fund for Research Based on Large-Scale Scientific Facilities (U1532131).

  2. ERP time series with daily and sub-daily resolution determined from CONT05

    NASA Astrophysics Data System (ADS)

    Artz, T.; Böckmann, S.; Nothnagel, A.; Tesmer, V.

    2007-07-01

    From time to time, continuous VLBI campaigns take place under the direction of the IVS. Even though these observations are continuous over two weeks, the standard VLBI analysis procedure leads to independent daily datasets. In this paper, an alternative approach is presented to estimate earth rotation parameters with different temporal resolutions. By stacking the single sessions to a two-weekly solution on the normal equation level, a consistent time series is produced over the whole CONT05 period. Stacked parameters are station positions which are estimated in a 'global' approach and borders of time dependent parameters e.g. zenith wet delay. Analysis of the correlation matrix of estimated parameters gives an impression of the dependencies between them. Furthermore, it is demonstrated how these dependencies depend on the type of datum used. E.g. correlations between earth rotation parameters (ERP) and tropospheric zenith delay of certain VLBI sites have been detected. The ERP time series resulting from the stacking approach turned out to be more consistent over the fortnightly time span. In particular, time series of hourly ERP exhibit a better behaviour at the session boundaries, since the discrepancies at session borders due to poorly determined intervals is minimized.

  3. CAD-II: the second version current-mode readout ASIC for high-resolution timing measurements

    NASA Astrophysics Data System (ADS)

    Yuan, Z. X.; Deng, Z.; Wang, Y.; Liu, Y. N.

    2016-07-01

    This paper presents the second version of a fully current-mode front-end ASIC, CAD (Current Amplifier and Discriminator), for MRPC detectors for TOF applications. Several upgrades have been made in this new version, including: 1). Using differential input stages with input impedance down to 30 Ω and LVDS compatible outputs; 2). Much higher current gain and bandwidth of 4.5 A/A and 380 MHz 3). Fabricated in 0.18 μ m CMOS process instead of 0.35 μ m CMOS technology used in CAD-I. The detailed design of the ASIC will be described as well as the measurement results. The single-ended input impedance could be as low as 32 Ω and the power consumption was measured to be 15 mW per channel. Input referred RMS noise current was about 0.56 μ A. The threshold could be set as low as 4.5 μ A referred to input, corresponding to 9 fC for the typical MRPC detector signal with 2 ns width. Sub-10 ps resolution has been measured for input signal above 200 μ A.

  4. Quantitative FRET Analysis by Fast Acquisition Time Domain FLIM at High Spatial Resolution in Living Cells

    PubMed Central

    Padilla-Parra, Sergi; Audugé, Nicolas; Coppey-Moisan, Maïté; Tramier, Marc

    2008-01-01

    Quantitative analysis in Förster resonance energy transfer (FRET) experiments in live cells for protein interaction studies is still a challenging issue. In a two-component system (FRET and no FRET donor species), fitting of fluorescence lifetime imaging microscopy (FLIM) data gives the fraction of donor molecules involved in FRET (fD) and the intrinsic transfer efficiency. But when fast FLIM acquisitions are used to monitor dynamic changes in protein-protein interactions at high spatial and temporal resolutions in living cells, photon statistics and time resolution are limited. In this case, fitting procedures are not reliable, even for single lifetime donors. We introduce the new concept of a minimal fraction of donor molecules involved in FRET (mfD), coming from the mathematical minimization of fD. We find particular advantage in the use of mfD because it can be obtained without fitting procedures and it is derived directly from FLIM data. mfD constitutes an interesting quantitative parameter for live cell studies because it is related to the minimal relative concentration of interacting proteins. For multi-lifetime donors, the process of fitting complex fluorescence decays to find at least four reliable lifetimes is a near impossible task. Here, mfD extension for multi-lifetime donors is the only quantitative determinant. We applied this methodology for imaging the interaction between the bromodomains of TAFII250 and acetylated histones H4 in living cells at high resolution. We show the existence of discrete acetylated chromatin domains where the minimal fraction of bromodomain interacting with acetylated H4 oscillates from 0.26 to 0.36 and whose size is smaller than half of one micron cube. We demonstrate that mfD by itself is a useful tool to investigate quantitatively protein interactions in live cells, especially when using fast FRET-FLIM acquisition times. PMID:18539634

  5. Time-Optimized High-Resolution Readout-Segmented Diffusion Tensor Imaging

    PubMed Central

    Reishofer, Gernot; Koschutnig, Karl; Langkammer, Christian; Porter, David; Jehna, Margit; Enzinger, Christian; Keeling, Stephen; Ebner, Franz

    2013-01-01

    Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min) generates results comparable to the un-regularized data with three averages (48 min). This significant reduction in scan time renders high resolution (1×1×2.5 mm3) diffusion tensor imaging of the entire brain applicable in a clinical context. PMID:24019951

  6. Light transmission spectroscopy in real time: a high-resolution nanoparticle analysis instrument.

    PubMed

    Tanner, Carol E; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven T

    2017-03-01

    This paper describes light transmission spectroscopy (LTS), a technique for eliminating spectral noise and systematic effects in real-time spectroscopic measurements. In our work, we combine LTS with spectral inversion for the purpose of nanoparticle analysis. This work employs a wideband multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, the wavelength-dependent light detection system ranges from 200 to 1100 nm with ≤1  nm resolution, and the nanoparticle diameters range from 1 to 3000 nm. The nanoparticles are suspended in pure water or water-based buffer solutions. For testing and calibration purposes, results are presented for nanoparticles composed of polystyrene and gold. Mie theory is used to model the total extinction cross section, and spectral inversion is employed to obtain quantitative particle size distributions, from which information on the size, shape, and number of nanoparticles can be derived. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The LTS technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired.

  7. High Time Resolution Measurements of Gaseous Oxidized Mercury from Ground and Aircraft Platforms

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; Jaffe, D. A.

    2009-12-01

    Atmospheric mercury fractions (gaseous elemental, gaseous oxidized, and fine particulate-bound mercury) have been measured in many different environmental conditions, primarily with the Tekran 2537/1130/1135 speciation system, and these measurements have greatly enhanced scientific understanding of atmospheric mercury dynamics. However, measurements of gaseous oxidized mercury, the most reactive, soluble, and bioavailable mercury fraction, have low time resolution with the Tekran system and have been mostly unchecked by calibration standards. We have developed an alternative technique for measuring gaseous oxidized mercury that provides higher resolution (2.5 minute) measurements, and have built a permeation tube-based oxidized mercury (HgCl2, HgBr2, and HgO) calibrator. The system measures oxidized mercury based on the difference between elemental mercury and total mercury measured with two Tekran 2537 analyzers, and has a 2.5 minute detection limit sufficient to quantify high oxidized mercury events (~80 pg m-3). Additionally, in laboratory tests it outperforms measurements made with KCl-coated denuders in terms of percent recovery and time-averaged detection limit. We have used this system in aircraft and at Mount Bachelor Observatory to observe the origins and dynamics of high oxidized mercury air in the Pacific Northwest, and are preparing it for deployment in the NCAR C-130 for detailed assessment of atmospheric mercury fractions in North America.

  8. The High Time Resolution Universe Pulsar Survey - I. System configuration and initial discoveries

    NASA Astrophysics Data System (ADS)

    Keith, M. J.; Jameson, A.; van Straten, W.; Bailes, M.; Johnston, S.; Kramer, M.; Possenti, A.; Bates, S. D.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; D'Amico, N.; Levin, L.; McMahon, Peter L.; Milia, S.; Stappers, B. W.

    2010-12-01

    We have embarked on a survey for pulsars and fast transients using the 13-beam multibeam receiver on the Parkes Radio Telescope. Installation of a digital backend allows us to record 400 MHz of bandwidth for each beam, split into 1024 channels and sampled every 64 μs. Limits of the receiver package restrict us to a 340 MHz observing band centred at 1352 MHz. The factor of 8 improvement in frequency resolution over previous multibeam surveys allows us to probe deeper into the Galactic plane for short-duration signals such as the pulses from millisecond pulsars. We plan to survey the entire southern sky in 42641 pointings, split into low, mid and high Galactic latitude regions, with integration times of 4200, 540 and 270 s, respectively. Simulations suggest that we will discover 400 pulsars, of which 75 will be millisecond pulsars. With ~30 per cent of the mid-latitude survey complete, we have redetected 223 previously known pulsars and discovered 27 pulsars, five of which are millisecond pulsars. The newly discovered millisecond pulsars tend to have larger dispersion measures than those discovered in previous surveys, as expected from the improved time and frequency resolution of our instrument.

  9. High time resolution electron measurement by Fast Electron energy Spectrum Analyzer (FESA)

    SciTech Connect

    Saito, Yoshifumi; Fujimoto, Masaki; Maezawa, Kiyoshi; Shinohara, Iku; Tsuda, Yuichi; Sasaki, Shintaro; Kojima, Hirotsugu

    2009-06-16

    We have newly developed an electron energy analyzer FESA (Fast Electron energy Spectrum Analyzer) for a future magnetospheric satellite mission SCOPE. The SCOPE mission is designed in order that observational studies from the cross-scale coupling viewpoint are enabled. One of the key observations necessary for the SCOPE mission is high-time resolution electron measurement. Eight FESAs on a spinning spacecraft are capable of measuring three dimensional electron distribution function with time resolution of 8 msec. FESA consists of two electrostatic analyzers that are composed of three nested hemispherical deflectors. Single FESA functions as four top-hat type electrostatic analyzers that can measure electrons with four different energies simultaneously. By measuring the characteristics of the test model FESA, we proved the validity of the design concept of FESA. Based on the measured characteristics, we designed FESA optimized for the SCOPE mission. This optimized analyzer has good enough performance to measure three dimensional electron distribution functions around the magnetic reconnection region in the Earth's magnetotail.

  10. APES: Acute Precipitating Electron Spectrometer -- A high time resolution monodirectional magnetic deflection electron spectrometer

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Samara, M.; Grubbs, G.; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.

    2016-06-01

    We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm × 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm × 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.

  11. Chapter 8: Spatiotemporal dynamics in bacterial cells: real-time studies with single-event resolution.

    PubMed

    Golding, Ido; Cox, Edward C

    2008-01-01

    To produce a quantitative picture of cellular life, one has to study the processes comprising it in individual living cells, quantifying intracellular dynamics with sufficient resolution to describe individual events in space and time. To perform such studies, we have recently developed a novel measurement approach, based on quantitative fluorescence microscopy, and applied it to the study of transcription in Escherichia coli and of the spatiotemporal dynamics of individual mRNA molecules in the cell (Golding and Cox, 2004, 2006a; Golding et al., 2005). The ability to detect individual events in real time depends on the engineering of an endogenous cellular process for amplifying the biological signal, in a way which allows signal detection to be independent of slow and highly stochastic cellular processes (Golding and Cox, 2006a). In this chapter, we describe the ingredients of our system and the way data is acquired and analyzed. We attempt to give general lessons for researchers who wish to implement a similar approach for the study of transcription in other organisms and, more generally, for the study of cellular processes with single-event resolution.

  12. Effect of deformation and the neutron skin on RMS charge radii

    SciTech Connect

    Myers, W.D.; Schmidt, K.H.

    1981-05-01

    Droplet Model predictions for nuclear RMS charge radii are compared with measured values in order to determine whether or not there is any evidence for volume shell effects. After corrections for deformation, diffuseness, and the central depression have been applied, some evidence for such effects remains, but it is at about the same level as the experimental uncertainty.

  13. STS-31 Hubble Space Telescope (HST) (SAs and HGAs deployed) is grappled by RMS

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During STS-31, the Hubble Space Telescope (HST), still in the grasp of Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is backdropped over the Earth some 332 nautical miles below. In this scene, HST's starboard solar array (SA) wing and two high gain antennae (HGA) are fully extended. An aft flight deck window frames the scene.

  14. Rule-based approach to operating system selection: RMS vs. UNIX

    SciTech Connect

    Phifer, M.S.; Sadlowe, A.R.; Emrich, M.L.; Gadagkar, H.P.

    1988-10-01

    A rule-based system is under development for choosing computer operating systems. Following a brief historical account, this paper compares and contrasts the essential features of two operating systems highlighting particular applications. ATandT's UNIX System and Datapoint Corporations's Resource Management System (RMS) are used as illustrative examples. 11 refs., 3 figs.

  15. Astronauts Gardner and Allen on the RMS after recapture of Westar VI

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, left, holds a 'For Sale' sign, making light reference to the status of the recaptured communications satellite. Astronaut Joseph P. ALlen IV stands on the mobile foot restraint (MFR), which in tandem with the remote manipulator system (RMS) arm served as a cherry-picker for capture efforts.

  16. RMS Spectral Modelling - a powerful tool to probe the origin of variability in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev

    2016-07-01

    The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.

  17. EURECA orbits above the Earth's surface prior to STS-57 OV-105 RMS capture

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Backdropped against open ocean waters, the European Retrievable Carrier (EURECA) spacecraft, with solar array (SA) panels folded flat against its sides, approaches Endeavour, Orbiter Vehicle (OV) 105, on flight day five. Later, the remote manipulator system (RMS) end effector was used to 'capture' the spacecraft. After ten days in Earth orbit, the crew returned to Earth, bringing EURECA home.

  18. Astronaut Jeffrey Hoffman on RMS during third of five HST EVAs

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Jeffrey A. Hoffman signals directions to Swiss Astronaut Claude Nicollier, as the latter controls the Remote Manipulator System (RMS) arm during the third of five space walks on the Hubble Space Telescope (HST) servicing mission. A portion of the Earth's surface can be seen directly behind him.

  19. A Historical Study to Understand Students' Current Difficulties about RMS Values

    ERIC Educational Resources Information Center

    Khantine-Langlois, Françoise; Munier, Valérie

    2016-01-01

    Several studies show that students experience more and more difficulties managing the measurements of electrical values in alternating current and that they have trouble making links between theory and practice. They find it difficult to give meaning to root mean square (RMS; or effective) values, which are not understood as average values and are…

  20. Astronauts Griggs and Hoffman try to fasten devices on end of RMS

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronauts S. David Griggs, left, and Jeffrey A. Hoffman join efforts to fasten one of two snag type devices on the end of the Canadian-built remote manipulator system (RMS) arm of the Shuttle Discovery. A partial view of the Earth's horizon can be seen behind the shuttle.

  1. A high-resolution time-depth view of dimethylsulphide cycling in the surface sea

    NASA Astrophysics Data System (ADS)

    Royer, S.-J.; Galí, M.; Mahajan, A. S.; Ross, O. N.; Pérez, G. L.; Saltzman, E. S.; Simó, R.

    2016-08-01

    Emission of the trace gas dimethylsulphide (DMS) from the ocean influences the chemical and optical properties of the atmosphere, and the olfactory landscape for foraging marine birds, turtles and mammals. DMS concentration has been seen to vary across seasons and latitudes with plankton taxonomy and activity, and following the seascape of ocean’s physics. However, whether and how does it vary at the time scales of meteorology and day-night cycles is largely unknown. Here we used high-resolution measurements over time and depth within coherent water patches in the open sea to show that DMS concentration responded rapidly but resiliently to mesoscale meteorological perturbation. Further, it varied over diel cycles in conjunction with rhythmic photobiological indicators in phytoplankton. Combining data and modelling, we show that sunlight switches and tunes the balance between net biological production and abiotic losses. This is an outstanding example of how biological diel rhythms affect biogeochemical processes.

  2. KM3NeT Neutrino Telescope 1-ns Resolution Time To Digital Converters

    NASA Astrophysics Data System (ADS)

    Calvo, David; Real, Diego

    2016-04-01

    The KM3NeT collaboration aims the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean sea consisting of thousands of glass spheres, each of them containing 31 photomultiplier of small photocathode area. The main digitization system is composed by 31 Time to Digital Converter channels with 1-ns resolution embedded in a Field Programmable Gate Array. An architecture with low resource occupancy has been chosen allowing the implementation of other instrumentation, communication and synchronization systems on the same device. The 4-oversampling technique with two high frequency clocks working in opposed phases has been used together with an asymmetric FIFO memory. In the present article the architecture and the first results obtained with the Time to Digital Converters are presented.

  3. High-resolution imaging with a real-time synthetic aperture ultrasound system: a phantom study

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Labyed, Yassin; Simonetti, Francesco; Williamson, Michael; Rosenberg, Robert; Heintz, Philip; Sandoval, Daniel

    2011-03-01

    It is difficult for ultrasound to image small targets such as breast microcalcifications. Synthetic aperture ultrasound imaging has recently developed as a promising tool to improve the capabilities of medical ultrasound. We use two different tissueequivalent phantoms to study the imaging capabilities of a real-time synthetic aperture ultrasound system for imaging small targets. The InnerVision ultrasound system DAS009 is an investigational system for real-time synthetic aperture ultrasound imaging. We use the system to image the two phantoms, and compare the images with those obtained from clinical scanners Acuson Sequoia 512 and Siemens S2000. Our results show that synthetic aperture ultrasound imaging produces images with higher resolution and less image artifacts than Acuson Sequoia 512 and Siemens S2000. In addition, we study the effects of sound speed on synthetic aperture ultrasound imaging and demonstrate that an accurate sound speed is very important for imaging small targets.

  4. A high-resolution time-depth view of dimethylsulphide cycling in the surface sea

    PubMed Central

    Royer, S.-J.; Galí, M.; Mahajan, A. S.; Ross, O. N.; Pérez, G. L.; Saltzman, E. S.; Simó, R.

    2016-01-01

    Emission of the trace gas dimethylsulphide (DMS) from the ocean influences the chemical and optical properties of the atmosphere, and the olfactory landscape for foraging marine birds, turtles and mammals. DMS concentration has been seen to vary across seasons and latitudes with plankton taxonomy and activity, and following the seascape of ocean’s physics. However, whether and how does it vary at the time scales of meteorology and day-night cycles is largely unknown. Here we used high-resolution measurements over time and depth within coherent water patches in the open sea to show that DMS concentration responded rapidly but resiliently to mesoscale meteorological perturbation. Further, it varied over diel cycles in conjunction with rhythmic photobiological indicators in phytoplankton. Combining data and modelling, we show that sunlight switches and tunes the balance between net biological production and abiotic losses. This is an outstanding example of how biological diel rhythms affect biogeochemical processes. PMID:27578300

  5. Coherence Conversion for Optimized Resolution in Optical Measurements - Example of Femtosecond Time Resolution Using the Transverse Coherence of 100-Picosecond X-Rays

    SciTech Connect

    Adams, Bernhard W.

    2015-01-01

    A way is proposed to obtain a femtosecond time resolution over a picosecond range in x-ray spectroscopic measurements where the light source and the detector are much slower than that. It is based on the invariance of the modulus of the Fourier transform to object translations. The method geometrically correlates time in the sample with x-ray amplitudes over a spatial coordinate, and then takes the optical Fourier transform through far-field diffraction. Thus, explicitly time-invariant intensities that encode the time evolution of the sample can be measured with a slow detector. This corresponds to a phase-space transformation that converts the transverse coherence to become effective in the longitudinal direction. Because synchrotron-radiation sources have highly anisotropic coherence properties with about $10^5$ longitudinal electromagnetic-field modes at 1 eV bandwidth, but only tens to hundreds transverse modes, coherence conversion can drastically improve the time resolution. Reconstruction of the femtosecond time evolution in the sample from the Fourier intensities is subject to a phase ambiguity that is well-known in crystallography. However, a way is presented to resolve it that is not available in that discipline. Finally, data from a demonstration experiment are presented. The same concept can be used to obtain attosecond time resolution with an x-ray free-electron laser.

  6. Real-time Precise Point Positioning with Ambiguity Resolution for Geosciences

    NASA Astrophysics Data System (ADS)

    Geng, J.; Meng, X.; Teferle, F. N.; Dodson, A. H.; Ge, M.; Shi, C.; Liu, J.

    2009-04-01

    Real-time provision of information on large scale crustal deformation during an earthquake can be crucial in assessing property damage and managing relief operations. Moreover, such a real-time monitoring system may even lead to the accurate prediction of earthquakes in future and help the subsequent studies on the mechanism involved. During the past two decades, Global Positioning System (GPS) measurements have been extensively applied to investigate such processes in the geosciences. Precise point positioning (PPP) using GPS based on single stations can achieve comparable accuracies to conventional relative positioning, when precise satellite orbits and clocks, and Earth rotation products are used. Thus, PPP does not need any reference stations to achieve high positioning accuracy, e.g. at the millimetre level in static and centimetre level in kinematic applications. This has both technical and economic advantages and may be the only feasible option in some specific applications such as Tsunami early warning systems. However, unlike relative positioning, PPP suffers from unresolved integer ambiguities, which prevented further accuracy improvements within short observation periods or in real-time. On account of the great potential of PPP, we developed a prototype real-time PPP system which also employs ambiguity resolution at a single station. This development is based on the PANDA (Positioning And Navigation Data Analyst) software, which was originally developed at Wuhan University in China, and has been significantly refined by the authors. To assess this system, about 30 stations from the EUREF Permanent Network Internet Protocol (EUREF-IP) pilot project are used to produce the real-time satellite clocks, with satellite orbits and Earth rotation parameters (ERP) fixed to the predicted part of the IGS (International GNSS Service) ultra-rapid products. This is followed by the estimation of the uncalibrated hardware delays (UHD), which are crucial in resolving the

  7. Single-pixel three-dimensional imaging with time-based depth resolution

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Jie; Edgar, Matthew P.; Gibson, Graham M.; Sun, Baoqing; Radwell, Neal; Lamb, Robert; Padgett, Miles J.

    2016-07-01

    Time-of-flight three-dimensional imaging is an important tool for applications such as object recognition and remote sensing. Conventional time-of-flight three-dimensional imaging systems frequently use a raster scanned laser to measure the range of each pixel in the scene sequentially. Here we show a modified time-of-flight three-dimensional imaging system, which can use compressed sensing techniques to reduce acquisition times, whilst distributing the optical illumination over the full field of view. Our system is based on a single-pixel camera using short-pulsed structured illumination and a high-speed photodiode, and is capable of reconstructing 128 × 128-pixel resolution three-dimensional scenes to an accuracy of ~3 mm at a range of ~5 m. Furthermore, by using a compressive sampling strategy, we demonstrate continuous real-time three-dimensional video with a frame-rate up to 12 Hz. The simplicity of the system hardware could enable low-cost three-dimensional imaging devices for precision ranging at wavelengths beyond the visible spectrum.

  8. Optical and UV Sensing Sealed Tube Microchannel Plate Imaging Detectors with High Time Resolution

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Tremsin, A.; Hull, J.; Elam, J.; Mane, A.

    2014-09-01

    Microchannel plate (MCP) based imaging, photon time tagging detector sealed tube schemes have a unique set of operational features that enable high time resolution astronomical and remote sensing applications to be addressed. New detectors using the cross strip (XS), cross delay line (XDL), or stripline anode readouts, a wide range of photocathode types, and advanced MCP technologies have been implemented to improve many performance characteristics. A variety of sealed tubes have been developed including 18mm XS readout devices with GaAs and SuperGenII photocathodes, 25mm XDL readout devices with SuperGenII and GaN photocathodes, and 20 x 20 cm sealed tubes with bialkali photocathodes and strip line readout. One key technology that has just become viable is the ability to make MCPs using atomic layer deposition (ALD) techniques. This employs nanofabrication of the active layers of an MCP on a microcapillary array. This technique opens new performance opportunities, including, very large MCP areas (>20cm), very low intrinsic background, lower radiation induced background, much longer overall lifetime and gain stability, and markedly lower outgassing which can improve the sealed tube lifetime and ease of fabrication. The XS readout has been implemented in formats of 22mm, 50mm and 100mm, and uses MCP charge signals detected on two orthogonal layers of conductive fingers to encode event X-Y positions. We have achieved spatial resolution XS detectors better than 25 microns FWHM, with good image linearity while at low gain (<10^6), substantially increasing local counting rate capabilities and the overall tube lifetime. XS tubes with updated electronics can encode event rates of >5 MHz with ~12% dead time and event timing accuracy of ~100ps. XDL sealed tubes in 25mm format demonstrate ~40 micron spatial resolution at up to ~2 MHz event rates, and have been developed with SupergenII visible regime photocathodes. The XDL tubes also achieve ~100 ps time resolution. Most

  9. Cross strip microchannel plate imaging photon counters with high time resolution

    SciTech Connect

    Stonehill, Laura C; Shirey, Robert; Rabin, Michael W; Thompson, David C; Siegmund, Oswald H W; Vallerga, John V; Tremsin, Anton S

    2010-01-01

    We have implemented cross strip readout microchannel plate detectors in 18 mm active area format including open face (UV/particle) and sealed tube (optical) configurations. These have been tested with a field programmable gate array based parallel channel electronics for event encoding which can process high input event rates (> 5 MHz) with high spatial resolution. Using small pore MCPs (6 {micro}m) operated in a pair, we achieve gains of >5 x 10{sup 5} which is sufficient to provide spatial resolution of <35 {micro}m FHWM, with self triggered event timing accuracy of {approx}2 ns for sealed tube optical sensors. A peak quantum efficiency of {approx}19% at 500 nm has been achieved with SuperGenII photocathodes that have response over the 400 nm to 900 nm range. Local area counting rates of up to >200 events/mcp pore sec{sup -1} have been attained, along with image linearity and stability to better than 50 {micro}m.

  10. Time resolution of a 1-inch cylindrical CeBr{sub 3} crystal at {sup 60}Co energies

    SciTech Connect

    Vedia, V.; Fraile, L. M.; Olaizola, B.; Paziy, V.; Picado, E.; Udias, J. M.; Mach, H.

    2013-06-10

    We have measured time resolutions of a cylindrical CeBr{sub 3} scintillator of 1-inch in height and 1-inch in diameter coupled to two different fast photomultiplier tubes, Hamamatsu R9779 and Photonis XP20D0, as a function of applied high voltages and different settings of a Constant Fraction Discriminator ORTEC 935. The time resolution was measured using a time-delayed coincidence set-up involving a fast reference detector. The best result of 119(2) ps at {sup 60}Co energies was obtained for the CeBr{sub 3} crystal coupled to the Hamamatsu PMT. This result is comparable to the resolution of 107 ps reported for a LaBr{sub 3}(Ce) crystal of the same size. For the coupling of the CeBr{sub 3} scintillator to the Photonis PMT we got the time resolution of 146(2) ps.

  11. Processing Time Reduction: an Application in Living Human High-Resolution Diffusion Magnetic Resonance Imaging Data.

    PubMed

    Lori, Nicolás F; Ibañez, Augustin; Lavrador, Rui; Fonseca, Lucia; Santos, Carlos; Travasso, Rui; Pereira, Artur; Rossetti, Rosaldo; Sousa, Nuno; Alves, Victor

    2016-11-01

    High Angular Resolution Diffusion Imaging (HARDI) is a type of brain imaging that collects a very large amount of data, and if many subjects are considered then it amounts to a big data framework (e.g., the human connectome project has 20 Terabytes of data). HARDI is also becoming increasingly relevant for clinical settings (e.g., detecting early cerebral ischemic changes in acute stroke, and in pre-clinical assessment of white matter-WM anatomy using tractography). Thus, this method is becoming a routine assessment in clinical settings. In such settings, the computation time is critical, and finding forms of reducing the processing time in high computation processes such as Diffusion Spectrum Imaging (DSI), a form of HARDI data, is very relevant to increase data-processing speed. Here we analyze a method for reducing the computation time of the dMRI-based axonal orientation distribution function h by using Monte Carlo sampling-based methods for voxel selection. Results evidenced a robust reduction in required data sampling of about 50 % without losing signal's quality. Moreover, we show that the convergence to the correct value in this type of Monte Carlo HARDI/DSI data-processing has a linear improvement in data-processing speed of the ODF determination. Although further improvements are needed, our results represent a promissory step for future processing time reduction in big data.

  12. Detection of the Anomalous Velocity with Subpicosecond Time Resolution in Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Priyadarshi, Shekhar; Pierz, Klaus; Bieler, Mark

    2015-12-01

    We report on the time-resolved detection of the anomalous velocity, constituting charge carriers moving perpendicular to an electric driving field, in undoped GaAs quantum wells. For this we optically excite the quantum wells with circularly polarized femtosecond laser pulses, thereby creating a state which breaks time-inversion symmetry. We then employ a quasi-single-cycle terahertz pulse as an electric driving field to induce the anomalous velocity. The electromagnetic radiation emitted from the anomalous velocity is studied with a subpicosecond time resolution and reveals intriguing results. We are able to distinguish between intrinsic (linked to the Berry curvature) and extrinsic (linked to scattering) contributions to the anomalous velocity both originating from the valence band and observe local energy space dependence of the anomalous velocity. Our results thus constitute a significant step towards noninvasive probing of the anomalous velocity locally in the full energy-momentum space and enable the investigation of many popular physical effects such as the anomalous Hall effect and spin Hall effect on ultrafast time scales.

  13. Controlling the freezing process: a robotic device for rapidly freezing biological tissues with millisecond time resolution.

    PubMed

    Tikunov, Boris A; Rome, Lawrence C

    2007-10-01

    A robotic cryogenic device was developed which allows freezing of thick biological tissues with millisecond time resolution. The device consists of two horizontally oriented hammers (pre-cooled with liquid N(2)) driven by two linear servo-motors. The tissue sample is bathed in Ringers contained in a chamber which drops rapidly out of the way just as the hammers approach. A third linear motor is vertically oriented, and permits the rapidly dropping chamber to smoothly decelerate. All movements were performed by the three motors and four solenoids controlled by a PC. Mechanical adjustments, that change the size of the gap between the hammers at the end position, permit the final thickness of the frozen tissue to be varied. Here we show that the freezing time increased with the square of the final thickness of the frozen bundle. However, when bundles of different original thicknesses (up to at least 1mm) were compressed to the same final thickness (e.g., 0.2mm), they exhibited nearly equal freezing times. Hence, by being able to adjust the final thickness of the frozen bundles, the device not only speeds the rate of freezing, but standardizes the freezing time for different diameter samples. This permits the use of freezing for accurate determination of the kinetics of cellular processes in biological tissue.

  14. A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2014-05-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest

  15. Coherence conversion for optimized resolution in optical measurements - example of femtosecond time resolution using the transverse coherence of 100-picosecond X-rays

    NASA Astrophysics Data System (ADS)

    Adams, Bernhard W.

    2015-07-01

    A way is proposed to obtain a femtosecond time resolution over a picosecond range in laser-pump, X-ray probe spectroscopic measurements where the light source and the detector are much slower than that. It is based on a phase-space transformation from the time/bandwidth to the spatial/wavenumber domain to match the coherence properties of synchrotron radiation to the requirements of femtosecond experiments. In a first step, the geometry of the laser incidence maps time, t, of laser-induced femtosecond dynamics to a spatial coordinate, x. Then, a far-field X-ray diffraction pattern, i.e. the optical Fourier transform, is obtained from the laser-induced modifications of the sample properties, including shifts of X-ray absorption edges and changes in crystallographic unit-cell form factors. Whereas the first step is similar to previously used schemes for femtosecond time resolution, the second one is substantially different with specific advantages discussed in the text. Key to this technique is that the modulus of the Fourier transform is invariant with respect to translations ? along x, which are due to the ? correlation. It can, therefore, be acquired in a simple intensity measurement with a slow detector. The phase, which does vary strongly with ?, is missing in the intensity data, but can be recovered through a heterodyning technique. Data from a demonstration experiment are presented. The same concept can be used to obtain attosecond time resolution with an X-ray free-electron laser.

  16. Near-infrared high-resolution real-time omnidirectional imaging platform for drone detection

    NASA Astrophysics Data System (ADS)

    Popovic, Vladan; Ott, Beat; Wellig, Peter; Leblebici, Yusuf

    2016-10-01

    Recent technological advancements in hardware systems have made higher quality cameras. State of the art panoramic systems use them to produce videos with a resolution of 9000 x 2400 pixels at a rate of 30 frames per second (fps).1 Many modern applications use object tracking to determine the speed and the path taken by each object moving through a scene. The detection requires detailed pixel analysis between two frames. In fields like surveillance systems or crowd analysis, this must be achieved in real time.2 In this paper, we focus on the system-level design of multi-camera sensor acquiring near-infrared (NIR) spectrum and its ability to detect mini-UAVs in a representative rural Swiss environment. The presented results show the UAV detection from the trial that we conducted during a field trial in August 2015.

  17. A design for a high resolution very-low-Q time-of flight diffractometer.

    SciTech Connect

    Hjelm, R. P.

    1998-09-29

    The design of a high resolution view low-Q time of flight diffractometer was motivated by the anticipated need to perform small-angle neutron scattering measurements at far lower momentum transfer and higher precision than currently available at either pulsed or steady state sources. In addition, it was recognized that flexibility in the configuration of the instrument and ease in which data is acquired are important. The design offers two configurations, a high intensity/very low Q geometry employing a focusing mirror and a medium to high Q-precision/low Q configuration using standard pinhole collimation geometry. The quality of the mirror optics is very important to the performance of the high intensity/very low Q configuration. We believe that the necessary technology exists to fabricate the high quality mirror optics required for the instrument.

  18. Analysis of High Time Resolution Optical Spectra of RX J0558.0+5353

    NASA Astrophysics Data System (ADS)

    Walker, K. A.; Garnavich, P. M.; Noriega-Crespo, A.

    1996-12-01

    We analyze high time resolution optical spectra of the DQ Her type intermediate polar RX J0558.0+5353 obtained at the MMT in December 1995. The spectra cover nearly a complete orbit and reveal a pulse in the mean flux of the continua and in the fluxes of the Hβ , Hγ and He II 4686 lines. This pulse, with a fundamental frequency of approximately 165c/d and a first harmonic at 316c/d confirms the spin period reported by Skillman (1995). Measurements of radial velocities in the line wings suggest that the HeII emission arises from an inner region of the accretion disk, closer to the white dwarf than the region where the Balmer lines are emitted. Doppler tomography of Hβ and HeII lines yields visual confirmation of this picture of accretion and emissions in this intermediate polar system.

  19. Super-resolution spectral estimation in short-time non-contact vital sign measurement

    NASA Astrophysics Data System (ADS)

    Sun, Li; Li, Yusheng; Hong, Hong; Xi, Feng; Cai, Weidong; Zhu, Xiaohua

    2015-04-01

    Non-contact techniques for measuring vital signs attract great interest due to the benefits shown in medical monitoring, military application, etc. However, the presence of respiration harmonics caused by nonlinear phase modulation will result in performance degradation. Suffering from smearing and leakage problems, conventional discrete Fourier transform (DFT) based methods cannot distinguish the heartbeat component from closely located respiration harmonics in frequency domain, especially in short-time processing. In this paper, the theory of sparse reconstruction is merged with an extended harmonic model of vital signals, aiming at achieving a super-resolution spectral estimation of vital signals by additionally exploiting the inherent sparse prior information. Both simulated and experimental results show that the proposed algorithm has superior performance to DFT-based methods and the recently applied multiple signal classification algorithm, and the required processing window length has been shortened to 5.12 s.

  20. Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km.

    PubMed

    Angulo-Vinuesa, X; Martin-Lopez, S; Corredera, P; Gonzalez-Herraez, M

    2012-05-21

    Sub-meter resolution in long-distance Brillouin Optical Time Domain Analysis (BOTDA) cannot be trivially achieved due to several issues including: resolution-uncertainty trade-offs, self-phase modulation, fiber attenuation, depletion, etc. In this paper we show that combining Raman assistance, differential pulse-width pair (DPP) measurements and a novel numerical de-noising procedure, we could obtain sub-meter resolution Brillouin optical time-domain analysis over a range of 100 km. We successfully demonstrate the detection of a 0.5 meter hot-spot in the position of worst contrast along the fiber.

  1. High-Resolution Gravity and Time-Varying Gravity Field Recovery using GRACE and CHAMP

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    2002-01-01

    This progress report summarizes the research work conducted under NASA's Solid Earth and Natural Hazards Program 1998 (SENH98) entitled High Resolution Gravity and Time Varying Gravity Field Recovery Using GRACE (Gravity Recovery and Climate Experiment) and CHAMP (Challenging Mini-satellite Package for Geophysical Research and Applications), which included a no-cost extension time period. The investigation has conducted pilot studies to use the simulated GRACE and CHAMP data and other in situ and space geodetic observable, satellite altimeter data, and ocean mass variation data to study the dynamic processes of the Earth which affect climate change. Results from this investigation include: (1) a new method to use the energy approach for expressing gravity mission data as in situ measurements with the possibility to enhance the spatial resolution of the gravity signal; (2) the method was tested using CHAMP and validated with the development of a mean gravity field model using CHAMP data, (3) elaborate simulation to quantify errors of tides and atmosphere and to recover hydrological and oceanic signals using GRACE, results show that there are significant aliasing effect and errors being amplified in the GRACE resonant geopotential and it is not trivial to remove these errors, and (4) quantification of oceanic and ice sheet mass changes in a geophysical constraint study to assess their contributions to global sea level change, while the results improved significant over the use of previous studies using only the SLR (Satellite Laser Ranging)-determined zonal gravity change data, the constraint could be further improved with additional information on mantle rheology, PGR (Post-Glacial Rebound) and ice loading history. A list of relevant presentations and publications is attached, along with a summary of the SENH investigation generated in 2000.

  2. Realizing PET systems with 100 ps FWHM coincidence timing resolution (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cates, Joshua; Levin, Craig

    2016-10-01

    The past two decades have seen much progress in coincidence timing resolution (CTR) for time-of-flight (TOF) capable positron emission tomography (PET) systems. With these advancements, clinical TOF-PET systems have achieved sub-400 ps FWHM (full-width-at-half-maximum) CTR, providing decreased patient radiation dose, shorter scan time, improved lesion detectability, increased accuracy and precision of lesion uptake measurements, and less sensitivity to errors in data correction techniques (normalization, scatter, and attenuation corrections). An important and long-standing milestone for the TOF-PET community is 100 ps FWHM CTR. At that level of timing performance, more than a factor of five improvement in image signal-to-noise ratio is possible compared to non-TOF-PET, with the potential for a transformational impact on quantitative PET imaging. With advancements in silicon photomultiplier technologies, novel scintillation materials and signal processing techniques, sub-100 ps CTR has been reported for relatively short scintillation crystal elements (3 mm length). However, clinical PET requires scintillation crystal elements that are 20 mm length or greater to provide adequate stopping power for 511 keV photons. This increased crystal length reduces the light collection efficiency and increases the scintillation photon transit time variance, resulting in degraded CTR. Significant strides have been made in achieving sub-150 ps FWHM CTR with 20 mm length crystals in single pixel, bench top experiments. We will present perspectives on the entire detection chain, from luminescence to signal processing and time-pickoff to enable 100 ps CTR at the level of full clinically-relevant detector modules.

  3. Analytical calculation of the lower bound on timing resolution for PET scintillation detectors comprising high-aspect-ratio crystal elements

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.

    2015-07-01

    Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3× 3× 20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162+/- 1 ps FWHM, approaching the analytically calculated lower bound within 6.5%.

  4. Analytical Calculation of the Lower Bound on Timing Resolution for PET Scintillation Detectors Comprising High-Aspect-Ratio Crystal Elements

    PubMed Central

    Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.

    2015-01-01

    Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3×3×20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162±1 ps FWHM, approaching the analytically calculated lower bound within 6.5%. PMID:26083559

  5. High-Resolution Time Profiles of Fiber Bursts at 1420 and 2695 MHz

    NASA Astrophysics Data System (ADS)

    Zlobec, P.; Karlický, M.

    2014-05-01

    To obtain constraints for models of fiber bursts, high-resolution time (0.01 s) profiles of the fiber bursts recorded at 1420 and 2695 MHz by the Trieste radiometers are studied in detail. The fiber bursts were identified using Ondřejov radio spectra. During the years 2000 - 2005, 18 intervals with fiber bursts were selected; 26 groups were defined and about 700 fibers were analyzed in detail. More than 300 pulsations, present almost simultaneously with the fibers, were also selected and studied in order to find similarities or differences between these two types of fine structures. It was found that the polarization of the associated continuum, both for fiber bursts and pulsations, is practically the same. Evaluating the ratio between absorption over emission of many single fibers we found that this parameter is very different even for nearby bursts; however, we realized that this ratio shows a tendency to decrease with time. Finally, the time profile of one selected fiber burst was fitted using a recent model based on the modulation of the broadband radio emission by fast magnetoacoustic waves. The results are discussed.

  6. Ultrasensitive Scanning Transmission X-ray Microscopy: Pushing the Limits of Time Resolution and Magnetic Sensitivity

    NASA Astrophysics Data System (ADS)

    Ohldag, Hendrik

    Understanding magnetic properties at ultrafast timescales is crucial for the development of new magnetic devices. Samples of interest are often thin film magnetic multilayers with thicknesses in the range of a few atomic layers. This fact alone presents a sensitivity challenge in STXM microscopy, which is more suited toward studying thicker samples. In addition the relevant time scale is of the order of 10 ps, which is well below the typical x-ray pulse length of 50 - 100 ps. The SSRL STXM is equipped with a single photon counting electronics that effectively allows using a double lock-in detection at 476MHz (the x-ray pulse frequency) and 1.28MHz (the synchrotron revelation frequency) to provide the required sensitivity. In the first year of operation the excellent spatial resolution, temporal stability and sensitivity of the detection electronics of this microscope has enabled researchers to acquire time resolved images of standing as well as traveling spin waves in a spin torque oscillator in real space as well as detect the real time spin accumulation in non magnetic Copper once a spin polarized current is injected into this material. The total magnetic moment is comparable to that of a single nanocube of magnetic Fe buried under a micron of non-magnetic material.

  7. Very-high-resolution time-lapse photography for plant and ecosystems research1

    PubMed Central

    Nichols, Mary H.; Steven, Janet C.; Sargent, Randy; Dille, Paul; Schapiro, Joshua

    2013-01-01

    • Premise of the study: Traditional photography is a compromise between image detail and area covered. We report a new method for creating time-lapse sequences of very-high-resolution photographs to produce zoomable images that facilitate observation across a range of spatial and temporal scales. • Methods and Results: A robotic camera mount and software were used to capture images of the growth and movement in Brassica rapa every 15 s in the laboratory. The resultant time-lapse sequence (http://timemachine.gigapan.org/wiki/Plant_Growth) captures growth detail such as circumnutation. A modified, solar-powered system was deployed at a remote field site in southern Arizona. Images were collected every 2 h over a 3-mo period to capture the response of vegetation to monsoon season rainfall (http://timemachine.gigapan.org/wiki/Arizona_Grasslands). • Conclusions: A technique for observing time sequences of both individual plant and ecosystem response at a range of spatial scales is available for use in the laboratory and in the field. PMID:25202588

  8. Improving the time resolution of surfzone bathymetry using in situ altimeters

    NASA Astrophysics Data System (ADS)

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt

    2014-05-01

    Surfzone bathymetry often is resolved poorly in time because watercraft surveys cannot be performed when waves are large, and remote sensing techniques have limited vertical accuracy. However, accurate high-frequency bathymetric information at fixed locations can be obtained from altimeters that sample nearly continuously, even during storms. A method is developed to generate temporally and spatially dense maps of evolving surfzone bathymetry by updating infrequent spatially dense watercraft surveys with the bathymetric change measured by a spatially sparse array of nearly continuously sampling altimeters. The update method is applied to observations of the evolution of shore-perpendicular rip current channels (dredged in Duck, NC, 2012) and shore-parallel sandbars (observed in Duck, NC, 1994). The updated maps are compared with maps made by temporally interpolating the watercraft surveys, and with maps made by spatially interpolating the altimeter measurements at any given time. Updated maps of the surfzone rip channels and sandbars are more accurate than maps obtained by using either only watercraft surveys or only the altimeter measurements. Hourly altimeter-updated bathymetric estimates of five rip channels show rapid migration and infill events not resolved by watercraft surveys alone. For a 2-month observational record of sandbars, altimeter-updated maps every 6 h between nearly daily surveys improve the time resolution of rapid bar-migration events.

  9. High-Time Resolution Measurements of Heavy Ions with SOHO/CELIAS/CTOF

    NASA Astrophysics Data System (ADS)

    Janitzek, N. P.; Berger, L.; Drews, C.; Bochsler, P. A.; Klecker, B.; Wimmer-Schweingruber, R. F.

    2014-12-01

    The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) is designed to measure the kinetic properties and elemental/ionic composition of solar wind ions heavier than H+, which we refer to as heavy ions. This is achieved by the combined measurement of the energy-per-charge, the time-of-flight and the energy of the incident ions. The CTOF instrument combines a remarkable time-of-flight resolution with a large effective area which allows to determine the velocity distributions of a wide range of heavy ions with 5 minute cadence. Based on a sophisticated in-flight calibration and count rate analysis we derived 5-minute velocity distributions for typical charge states of solar wind carbon, oxygen, silicon and iron for the CTOF measurement period between day of year 150 and 220 in 1996. In contrast to previous studies we used pure Pulse Height Analysis (PHA) data, which yields the full mass and mass-per-charge and velocity information. We analyzed the velocity spectra for differential streaming relative to the solar wind bulk proton speed, measured simultaneously with the CELIAS Proton Monitor (PM). Here we present our results which should provide experimental constraints for theories of resonant wave-particle interaction and preferential acceleration of heavy ions in the solar wind.

  10. Resolution of ray-finned fish phylogeny and timing of diversification.

    PubMed

    Near, Thomas J; Eytan, Ron I; Dornburg, Alex; Kuhn, Kristen L; Moore, Jon A; Davis, Matthew P; Wainwright, Peter C; Friedman, Matt; Smith, W Leo

    2012-08-21

    Ray-finned fishes make up half of all living vertebrate species. Nearly all ray-finned fishes are teleosts, which include most commercially important fish species, several model organisms for genomics and developmental biology, and the dominant component of marine and freshwater vertebrate faunas. Despite the economic and scientific importance of ray-finned fishes, the lack of a single comprehensive phylogeny with corresponding divergence-time estimates has limited our understanding of the evolution and diversification of this radiation. Our analyses, which use multiple nuclear gene sequences in conjunction with 36 fossil age constraints, result in a well-supported phylogeny of all major ray-finned fish lineages and molecular age estimates that are generally consistent with the fossil record. This phylogeny informs three long-standing problems: specifically identifying elopomorphs (eels and tarpons) as the sister lineage of all other teleosts, providing a unique hypothesis on the radiation of early euteleosts, and offering a promising strategy for resolution of the "bush at the top of the tree" that includes percomorphs and other spiny-finned teleosts. Contrasting our divergence time estimates with studies using a single nuclear gene or whole mitochondrial genomes, we find that the former underestimates ages of the oldest ray-finned fish divergences, but the latter dramatically overestimates ages for derived teleost lineages. Our time-calibrated phylogeny reveals that much of the diversification leading to extant groups of teleosts occurred between the late Mesozoic and early Cenozoic, identifying this period as the "Second Age of Fishes."

  11. Effects of satellite data resolution on measuring the space/time variations of surfaces and clouds

    NASA Technical Reports Server (NTRS)

    Seze, Genevieve; Rossow, William B.

    1991-01-01

    The correlated distributions of satellite-measured visible and infrared radiances, caused by spatial and temporal variations in clouds and surfaces, have been found to be characteristic of the major climate regimes and can be described by the attributes of bidimensional and monodimensional histograms and time-composite images. Most of the variability of both the surfaces and clouds is found to occur at scales larger than the minimum resolved by satellite imagery. Since satellite imaging data sets are difficult to analyze because of their large volumes, many studies reduce the volume by various sampling or averaging schemes. The effects of data resolution and sampling on the radiance histogram statistics and on the time-composite image characteristics are examined. In particular, the sampling strategy used by the International Satellite Cloud Climatology Project is tested. This sampling strategy is found to preserve the statistics of smaller cloud variations for most regions, with the exception of very rare events, if they are accumulated over large enough areas (at least 500 km in dimension) and long enough time periods (at least one month).

  12. Development of high-rate MRPCs for high resolution time-of-flight systems

    NASA Astrophysics Data System (ADS)

    Wang, Jingbo; Wang, Yi; Gonzalez-Diaz, D.; Chen, Huangshan; Fan, Xingming; Li, Yuanjing; Cheng, Jianping; Kaspar, Marcus; Kotte, Roland; Laso Garcia, Alejandro; Naumann, Lothar; Stach, Daniel; Wendisch, Christian; Wüstenfeld, Jörn

    2013-06-01

    We show how the high charged-particle flux (1-20 kHz/cm2) expected over the 150 m2 large time-of-flight wall of the future Compressed Baryonic Matter experiment (CBM) at FAIR can be realistically handled with Multi-gap Resistive Plate Chambers (MRPCs). This crucial 100-fold increase of the chamber rate capability, as compared to that of standard MRPCs presently employed in experiments resorting to sub-100 ps timing, has been achieved thanks to the development of a new type of low-resistive doped glass. Following the encouraging results previously obtained with small counters, two types of modules (active area: ˜150 cm2) have been built at Tsinghua University with the new material. The measurements conveyed in this work, obtained with a quasi- minimum ionizing electron beam (γβ≥3), prove their suitability as the building blocks of the present hadron-identification concept of the CBM experiment. Namely, they provide a time resolution better than 80 ps and an efficiency above 90% at a particle flux well in excess of 20 kHz/cm2 (up to 35-60 kHz/cm2), being at the core of a modular concept that is easily scalable. Recent measurements of the electrical and mechanical properties of this new material, together with its long-term behavior, are shortly summarized.

  13. High Resolution Spectroscopy And Timing Of The Isolated Neutron Star RBS 1774

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Drake, Jeremy

    2005-01-01

    The 2004 May 31 XMM-Newton observation was reprocessed using SASv6.0.0 and times of high background were filtered out. The net exposure time remaining was 23 ks. The source was clearly detected in MOS1, MOS2 and PN chips. We performed both timing and spectroscopic analysis on the data. We performed a spectral analysis by fitting data from the three EPIC detectors simultaneously, finding that the broadband spectrum can be represented by a single absorbed blackbody, with kT = 0.10 keV. The fitting revealed the presence of an absorption feature at 0:7 keV, but the data did have enough resolution to allow us to discriminate between an absorption line and an edge. We also tested magnetized models of Pavlov et a1 and Zavlin et al, but found that fits with these models were considerably worse than with a blackbody. For the timing analysis, we extracted the counts within a 3000 radius aperture in both PN and MOS 1 and MOS2 but with the aperture truncated by a chord where it approached the edge of the CCD window in each case: this maximized the counts while avoiding any edge effects. We analyzed PN, MOSl and MOS2 data both individually and combined using the Maximum Likelihood Periodogram technique of Zane et al. (2002) and Cropper et al. (2004). Periods from 10000 s to 30 ms were searched, ensuring that in each case the period grid was 2.5 times better sampled than the Nyquist frequency. The search revealed a significant period at 9.437s. Taken overall, we found the characteristics of RBS 1774 to be remarkably similar to those of another X-ray faint isolated neutron stars. These results were written up for the Astrophysical Journal, and the paper has recently been accepted for publication.

  14. The pseudonoise test set: Communication system's performance evaluation based upon RMS error testing

    NASA Technical Reports Server (NTRS)

    Wallace, G. R.; Gussow, S. S.; Salter, W. E.; Weathers, G. D.

    1972-01-01

    A pseudonoise (PN) test set was built to provide a relatively easy means of accurately determining the end-to-end rms error introduced by a communication system when subjected to wideband data. It utilizes a filtered pseudorandom sequence generator as a wideband data source, providing a convenient means for digitally delaying the input reference signal for comparison with the distorted test communication system output. In addition to providing a means to measure the end-to-end rms error and the average delay of a communication system, the PN test set also provides a means to determine the tested system's impulse response and correlation function. The theory of PN testing is discussed in detail along with the most difficult aspects of implementation, the building of matched filter pairs. Both analytical and empirical results are reported which support the contentions that this is an accurate and practical way to acquire figures of merit for complete communication systems.

  15. Fine resolution of early hominin time, Beds I and II, Olduvai Gorge, Tanzania.

    PubMed

    Stanistreet, Ian G

    2012-08-01

    Reconstructing paleoenvironments and landscapes within lake-centered, hominin-yielding basinal sequences requires a resolution of time-rock units finer than but complementary to that provided by the present tephrostratigraphy. Although indispensable in providing an absolute time frame at Olduvai, the average 15,000-20,000 year intervals between successive tuff units lack the time resolution to construct a sufficiently contemporary paleolandscape within sedimentary intervals away from the interleaved tuffs. Such control is essential to construct valid paleogeographies in which to contextualize contemporaneous paleoanthropological sites and the traces of hominin land use they contain. Within Beds I and II of the Olduvai Basin a Sequence Stratigraphic analysis has achieved a relative time framework in which time-rock units, "lake-parasequences," each generated by a major advance and withdrawal of the lake system, are recognizable for average periods of about 4000 years duration. Within each of these time slices at least two paleogeographic landscapes are identifiable, reducing the time constraints of an individual landscape reconstruction to a few thousand years. Within the sedimentary succession both highly incised and less incised unconformities are identifiable to provide sequence boundaries. Within each sequence the higher frequency lake-parasequences can be identified by (1) a disconformable base, (2) accretion of sediment during lake transgression and at maximum, (3) a disconformable top caused by lake withdrawal, and (4) a soil profile generated beneath that disconformable land surface. Individual lake-parasequences can be recognized in lake marginal and fan settings, and their imprint can also be seen in the lake setting where, for example, maximum flooding might be marked by a layer of dolomite. Lower Bed II parasequences represent time intervals of <5000 years, while parasequential periods between Tuffs IB and IC in Bed I are <4300 years. Analogous Holocene

  16. View of the Columbia's open payload bay and the Canadian RMS

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Photograph of the Space Shuttle Columbia during STS-2 flight. Clouds over the earth and a black sky form a backdrop for this photograph taken through the aft flight deck windows viewing the payload bay. Part of the Office of Space and Terrestrial Applications (OSTA-1) pallet is visible in the open cargo bay. Above it can be seen the arm of the Canadian built remote manipulator system (RMS).

  17. Reexamination of proton rms radii from low-q power expansions

    NASA Astrophysics Data System (ADS)

    Sick, Ingo; Trautmann, Dirk

    2017-01-01

    Several recent publications claim that the proton charge rms radius resulting from the analysis of electron-scattering data restricted to low-momentum transfer agrees with the radius determined from muonic hydrogen, in contrast to the radius resulting from analyses of the full (e ,e ) data set which is 0.04 fm larger. Here we show why these publications erroneously arrive at the low radii.

  18. Two members of the STS-7 crew go over procedures in operating the RMS

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Two members of the STS-7 crew go over procedures in operating the remote manipulator system (RMS) in the JSC manipulator development facility (MDF). Dr. Sally K. Ride is one of the flight's mission specialists. Frederick H. Hauck is pilot for the crew. The station pictured is located on the aft flight deck of the actual spacecraft and the windows allow direct view of the long cargo bay. The MDF is locate in the Shuttle mockup and integration laboratory.

  19. Absolute Calibration of Si iRMs used for Si Paleo-nutrient proxies

    NASA Astrophysics Data System (ADS)

    Vocke, Robert; Rabb, Savelas

    2016-04-01

    The Avogadro Project is an ongoing international effort, coordinated by the International Bureau of Weights and Measures (BIPM) and the International Avogadro Coordination (IAC) to redefine the SI unit mole in terms of the Avogadro constant and the SI unit kg in terms of the Planck constant. One of the outgrowths of this effort has been the development of a novel, precise and highly accurate method to measure calibrated (absolute) isotopic ratios that are traceable to the SI (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach has also been able to produce absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement. Silicon isotope variations (reported as delta(Si30)and delta(Si29)) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The utility and comparability of such measurements however depends on calibration with artifact isotopic Reference Materials (iRMs). We will be reporting new measurements on the iRMs NBS-28 (RM 8546 - Silica Sand), Diatomite, Big Batch and SRM 990 using the Avogadro measurement approach, comparing them with prior assessments of these iRMs.

  20. A historical study to understand students’ current difficulties about RMS values

    NASA Astrophysics Data System (ADS)

    Khantine-Langlois, Françoise; Munier, Valérie

    2016-07-01

    Several studies show that students experience more and more difficulties managing the measurements of electrical values in alternating current and that they have trouble making links between theory and practice. They find it difficult to give meaning to root mean square (RMS; or effective) values, which are not understood as average values and are confused with instantaneous values. This shows that students do not clearly differentiate variable and direct currents. In this paper we try, with a historical study and a study of teaching the concept of RMS values, to understand students’ difficulties with this concept. In the first part we present an epistemological analysis of the concept of RMS values, showing that it is multifaceted and can be approached from different points of view. In the second part we analyse the evolution of French secondary school curricula and textbooks from the explicit introduction of variable currents to today, questioning the links between the evolution of the curricula and the evolution of the place of science and technology in our societies. We point out that the evolution of the curricula is linked to the social context and to the connections between science, technology and society, and also to the relationship with mathematics curricula. We show that alternating current is introduced earlier in the curriculum but has gradually lost all phenomenological description. This study allows us to better understand students’ difficulties and to discuss some implications for teaching.

  1. Time series of high-resolution spectra of SN 2014J observed with the TIGRE telescope

    NASA Astrophysics Data System (ADS)

    Jack, D.; Mittag, M.; Schröder, K.-P.; Schmitt, J. H. M. M.; Hempelmann, A.; González-Pérez, J. N.; Trinidad, M. A.; Rauw, G.; Cabrera Sixto, J. M.

    2015-08-01

    We present a time series of high-resolution spectra of the Type Ia supernova 2014J, which exploded in the nearby galaxy M82. The spectra were obtained with the HEROS échelle spectrograph installed at the 1.2-m TIGRE telescope. We present a series of 33 spectra with a resolution of R ≈ 20 000, which covers the important bright phases in the evolution of SN 2014J during the period from 2014 January 24 to April 1. The spectral evolution of SN 2014J is derived empirically. The expansion velocities of the Si II P-Cygni features were measured and show the expected decreasing behaviour, beginning with a high velocity of 14 000 km s-1 on January 24. The Ca II infrared triplet feature shows a high-velocity component with expansion velocities of >20 000 km s-1 during the early evolution apart from the normal component showing similar velocities as Si II. Further broad P-Cygni profiles are exhibited by the principal lines of Ca II, Mg II and Fe II. The TIGRE SN 2014J spectra also resolve several very sharp Na I D doublet absorption components. Our analysis suggests interesting substructures in the interstellar medium of the host galaxy M82, as well as in our Milky Way, confirming other work on this SN. We were able to identify the interstellar absorption of M82 in the lines of Ca II H & K at 3933 and 3968 Å as well as K I at 7664 and 7698 Å. Furthermore, we confirm several diffuse interstellar bands, at wavelengths of 6196, 6283, 6376, 6379and 6613 Å and give their measured equivalent widths.

  2. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations

    USGS Publications Warehouse

    Day-Lewis, F. D.; Singha, K.; Binley, A.M.

    2005-01-01

    Geophysical imaging has traditionally provided qualitative information about geologic structure; however, there is increasing interest in using petrophysical models to convert tomograms to quantitative estimates of hydrogeologic, mechanical, or geochemical parameters of interest (e.g., permeability, porosity, water content, and salinity). Unfortunately, petrophysical estimation based on tomograms is complicated by limited and variable image resolution, which depends on (1) measurement physics (e.g., electrical conduction or electromagnetic wave propagation), (2) parameterization and regularization, (3) measurement error, and (4) spatial variability. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters are altered by the inversion, which produces smoothly varying pixel-scale estimates. We refer to this loss of information as "correlation loss." Our approach upscales the core-scale relation to the pixel scale using the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. Synthetic examples evaluate the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating water content. This work provides (1) a framework to assess tomograms for geologic parameter estimation and (2) insights into the different patterns of correlation loss for ERT and RTT. Whereas ERT generally performs better near boreholes, RTT performs better in the interwell region. Application of petrophysical models to the tomograms in our examples would yield misleading estimates of water content. Although the examples presented illustrate the problem of correlation loss in the context of near-surface geophysical imaging, our results have clear implications for quantitative analysis of tomograms for diverse geoscience applications. Copyright 2005 by the American Geophysical Union.

  3. Test-beam results of a silicon pixel detector with Time-over-Threshold read-out having ultra-precise time resolution

    NASA Astrophysics Data System (ADS)

    Aglieri Rinella, G.; Cortina Gil, E.; Fiorini, M.; Kaplon, J.; Kluge, A.; Marchetto, F.; Albarran, M. E. Martin; Morel, M.; Noy, M.; Perktold, L.; Tiuraniem, S.; Velghe, B.

    2015-12-01

    A time-tagging hybrid silicon pixel detector developed for beam tracking in the NA62 experiment has been tested in a dedicated test-beam at CERN with 10 GeV/c hadrons. Measurements include time resolution, detection efficiency and charge sharing between pixels, as well as effects due to bias voltage variations. A time resolution of less than 150 ps has been measured with a 200 μm thick silicon sensor, using an on-pixel amplifier-discriminator and an end-of-column DLL-based time-to-digital converter.

  4. A modified infrared spectrometer with high time resolution and its application for investigating fast conformational changes of the GTPase Ras.

    PubMed

    Lin, Jie; Gerwert, Klaus; Kötting, Carsten

    2014-01-01

    Time-resolved infrared spectroscopy is a valuable tool for the investigation of proteins and protein interactions. The investigation of many biological processes is possible by means of caged compounds, which set free biologically active substances upon light activation. Some caged compounds could provide sub-nanosecond time resolution, e.g., para-hydroxyphenacyl-guanosine 5'-triphosphate (GTP) forms GTP in picoseconds. However, the time resolution in single shot experiments with rapid-scan Fourier transform infrared (FT-IR) spectrometers is limited to about 10 ms. Here we use an infrared diode laser instead of the conventional globar and achieve a time resolution of 100 ns. This allows for the time-resolved measurement of the fast Ras(off) to Ras(on) conformational change at room temperature. We quantified the activation parameters for this reaction and found that the free energy of activation for this reaction is mainly enthalpic. Investigation of the same reaction in the presence of the Ras binding domain of the effector Raf (RafRBD) reveals a four orders of magnitude faster reaction, indicating that Ras·RafRBD complex formation directly induces the conformational change. Recent developments of broadly tunable quantum cascade lasers will further improve time resolution and usability of the setup. The reported 100 ns time resolution is the best achieved for a non-repetitive experiment so far.

  5. Exploiting crowdsourced observations: High-resolution mapping of real-time urban air quality throughout Europe

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Castell, Nuria; Vallejo, Islen; van den Bossche, Joris; Lahoz, William; Bartonova, Alena

    2016-04-01

    With the technology of air quality sensors improving rapidly in recent years and with an increasing number of initiatives for collecting air quality information being established worldwide, there is a rapidly increasing amount of information on air quality. Such datasets can provide unprecedented spatial detail and thus exhibit a significant potential for allowing to create observation-based high-resolution maps of air quality in the urban environment. However, most datasets of observations made within a citizen science or crowdsourcing framework tend to have highly variable characteristics in terms of quantity, accuracy, measured parameters, and representativeness, and many more. It is therefore currently unknown how to best exploit this information for mapping purposes. In order to address this challenge we present a novel approach for combining crowdsourced observations of urban air quality with model information, allowing us to produce near-real-time, high-resolution maps of air quality in the urban environment. The approach is based on data fusion techniques, which allow for combining observations with model data in a mathematically objective way and therefore provide a means of adding value to both the observations and the model. The observations are improved by filling spatio-temporal gaps in the data and the model is improved by constraining it with observations. The model further provides detailed spatial patterns in areas where no observations are available. As such, data fusion of observations from high-density low-cost sensor networks together with air quality models can contribute to significantly improving urban-scale air quality mapping. The system has been implemented to run in an automated fashion in near real-time (once every hour) for several cities in Europe. Evaluation of the methodology is being carried out using the leave-one-out cross validation technique and simulated datasets. We present case studies demonstrating the methodology for

  6. Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range

    NASA Astrophysics Data System (ADS)

    Toussaint, Julia; Grüner, Roman; Schubert, Marco; May, Torsten; Meyer, Hans-Georg; Dietzek, Benjamin; Popp, Jürgen; Hofherr, Matthias; Arndt, Matthias; Henrich, Dagmar; Il'in, Konstantin; Siegel, Michael

    2012-12-01

    We have developed a cryogenic measurement system for single-photon counting, which can be used in optical experiments requiring high time resolution in the picosecond range. The system utilizes niobium nitride superconducting nanowire single-photon detectors which are integrated in a time-correlated single-photon counting (TCSPC) setup. In this work, we describe details of the mechanical design, the electrical setup, and the cryogenic optical components. The performance of the complete system in TCSPC mode is tentatively benchmarked using 140 fs long laser pulses at a repetition frequency of 75 MHz. Due to the high temporal stability of these pulses, the measured time resolution of 35 ps (FWHM) is limited by the timing jitter of the measurement system. The result was cross-checked in a Coherent Anti-stokes Raman Scattering (CARS) setup, where scattered pulses from a β-barium borate crystal have been detected with the same time resolution.

  7. Ultrasound array transmitter architecture with high timing resolution using embedded phase-locked loops.

    PubMed

    Smith, Peter R; Cowell, David M J; Raiton, Benjamin; Ky, Chau Vo; Freear, Steven

    2012-01-01

    Coarse time quantization of delay profiles within ultrasound array systems can produce undesirable side lobes in the radiated beam profile. The severity of these side lobes is dependent upon the magnitude of phase quantization error--the deviation from ideal delay profiles to the achievable quantized case. This paper describes a method to improve interchannel delay accuracy without increasing system clock frequency by utilizing embedded phase-locked loop (PLL) components within commercial field-programmable gate arrays (FPGAs). Precise delays are achieved by shifting the relative phases of embedded PLL output clocks in 208-ps steps. The described architecture can achieve the necessary interelement timing resolution required for driving ultrasound arrays up to 50 MHz. The applicability of the proposed method at higher frequencies is demonstrated by extrapolating experimental results obtained using a 5-MHz array transducer. Results indicate an increase in transmit dynamic range (TDR) when using accurate delay profiles generated by the embedded-PLL method described, as opposed to using delay profiles quantized to the system clock.

  8. Following Molecular Transitions with Single Residue Spatial and Millisecond Time Resolution

    SciTech Connect

    Shcherbakova,I.; Mitra, S.; Beer, R.; Brenowitz, M.

    2008-01-01

    'Footprinting' describes assays in which ligand binding or structure formation protects polymers such as nucleic acids and proteins from either cleavage or modification; footprinting allows the accessibility of individual residues to be mapped in solution. Equilibrium and time-dependent footprinting links site-specific structural information with thermodynamic and kinetic transitions, respectively. The hydroxyl radical ({center_dot}OH) is a uniquely insightful footprinting probe by virtue of it being among the most reactive chemical oxidants; it reports the solvent accessibility of reactive sites on macromolecules with as fine as a single residue resolution. A novel method of millisecond time-resolved {center_dot}OH footprinting is presented based on the Fenton reaction, Fe(II) + H2O2 {yields} Fe(III) + {center_dot}OH + OH-. It is implemented using a standard three-syringe quench-flow mixer. The utility of this method is demonstrated by its application to the studies on RNA folding. Its applicability to a broad range of biological questions involving the function of DNA, RNA, and proteins is discussed.

  9. Wideband fluorescence-based thermometry by neural network recognition: Photothermal application with 10 ns time resolution

    NASA Astrophysics Data System (ADS)

    Liu, Liwang; Zhong, Kuo; Munro, Troy; Alvarado, Salvador; Côte, Renaud; Creten, Sebastiaan; Fron, Eduard; Ban, Heng; Van der Auweraer, Mark; Roozen, N. B.; Matsuda, Osamu; Glorieux, Christ

    2015-11-01

    Neural network recognition of features of the fluorescence spectrum of a thermosensitive probe is exploited in order to achieve fluorescence-based thermometry with an accuracy of 200 mK with 100 MHz bandwidth, and with high robustness against fluctuations of the probe laser intensity used. The concept is implemented on a rhodamine B dyed mixture of copper chloride and glycerol, and the temperature dependent fluorescence is investigated in the temperature range between 234 K and 311 K. The spatial dependence of the calibrated amplitude and phase of photothermally induced temperature oscillations along the axis of the excitation laser are determined at different modulation frequencies. The spatial and frequency dependence of the extracted temperature signals is well fitted by a 1D multi-layer thermal diffusion model. In a time domain implementation of the approach, the gradual temperature rise due to the accumulation of the DC component of the heat flux supplied by repetitive laser pulses as well the immediate transient temperature evolution after each single pulse is extracted from acquired temporal sequences of fluorescence spectra induced by a CW green laser. A stroboscopic implementation of fluorescence thermometry, using a pulsed fluorescence evoking probe laser, is shown to achieve remote detection of temperature changes with a time resolution of 10 ns.

  10. Directional view method for a time-sequential autostereoscopic display with full resolution.

    PubMed

    Zhuang, Zhenfeng; Zhang, Lei; Surman, Phil; Guo, Song; Cao, Bin; Zheng, Yuanjin; Sun, Xiao Wei

    2016-10-01

    A time-sequential autostereoscopic three-dimensional (3D) display using a set of cylindrical optical elements (COEs) as the backlight steering is proposed. The operation principle of the system and its detailed design are described. In our system, the COEs control the direction of the backlight for the proposed system of the user's right and left views. Additionally, the displayed images can be observed under ambient lighting by implementing the high density light-emitting diode (LED) arrays. Compared to the first-generation array display, the image resolution is greatly improved by the addition of the time multiplexing technique. A prototype system using a set of COEs, LED arrays, two linear Fresnel lenses, and an elliptical diffuser is constructed. Here, the directional backlight beams are synchronized with the right and left images alternately displayed on the liquid crystal display (LCD) screen, and two convergent viewing zones are formed alternately in front of the user's eyes; then 3D images are perceived because of persistence of the vision of human eye. The experimental results show that the proposed method is a potential technology for 3D applications such as 3D television.

  11. A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Hsu, Andrew T.

    1989-01-01

    A time accurate, three-dimensional, finite volume, high resolution scheme for solving the compressible full Navier-Stokes equations is presented. The present derivation is based on the upwind split formulas, specifically with the application of Roe's (1981) flux difference splitting. A high-order accurate (up to the third order) upwind interpolation formula for the inviscid terms is derived to account for nonuniform meshes. For the viscous terms, discretizations consistent with the finite volume concept are described. A variant of second-order time accurate method is proposed that utilizes identical procedures in both the predictor and corrector steps. Avoiding the definition of midpoint gives a consistent and easy procedure, in the framework of finite volume discretization, for treating viscous transport terms in the curvilinear coordinates. For the boundary cells, a new treatment is introduced that not only avoids the use of 'ghost cells' and the associated problems, but also satisfies the tangency conditions exactly and allows easy definition of viscous transport terms at the first interface next to the boundary cells. Numerical tests of steady and unsteady high speed flows show that the present scheme gives accurate solutions.

  12. Real-Time Motion Correction for High-Resolution Larynx Imaging

    PubMed Central

    Barral, Joëlle K.; Santos, Juan M.; Damrose, Edward J.; Fischbein, Nancy J.; Nishimura, Dwight G.

    2012-01-01

    Motion—both rigid-body and non-rigid—is the main limitation to in vivo, high-resolution larynx imaging. In this work, a new real-time motion compensation algorithm is introduced. Navigator data are processed in real-time to compute the displacement information, and projections are corrected using phase-modulation in k-space. Upon automatic feedback, the system immediately reacquires the data most heavily corrupted by non-rigid motion, i.e., the data whose corresponding projections could not be properly corrected. This algorithm overcomes the shortcomings of the so-called Diminishing Variance Algorithm (DVA) by combining it with navigator-based rigid-body motion correction. Because rigid-body motion correction is performed first, continual bulk motion no longer impedes nor prevents the convergence of the algorithm. Phantom experiments show that the algorithm properly corrects for translations and reacquires data corrupted by non-rigid motion. Larynx imaging was performed on healthy volunteers, and substantial reduction of motion artifacts caused by bulk shift, swallowing, and coughing was achieved. PMID:21695722

  13. Microsecond Time Resolution Optical Photometry using a H.E.S.S. Cherenkov Telescope

    SciTech Connect

    Deil, Christoph; Domainko, Wilfried; Hermann, German

    2008-02-22

    We have constructed an optical photometer with microsecond time resolution, which is currently being operated on one of the H.E.S.S. telescopes. H.E.S.S. is an array of four Cherenkov telescopes, each with a 107 m{sup 2} mirror, located in the Khomas highland in Namibia. In its normal mode of operation H.E.S.S. observes Cherenkov light from air showers generated by very high energy gamma-rays in the upper atmosphere. Our detector consists of seven photomultipliers, one in the center to record the lightcurve from the target and six concentric photomultipliers as a veto system to reject disturbing signals e.g. from meteorites or lightning at the horizon. The data acquisition system has been designed to continuously record the signals with zero deadtime. The Crab pulsar has been observed to verify the performance of the instrument and the GPS timing system. Compact galactic targets were observed to search for flares on timescales of a few microseconds to {approx}100 ms. The design and sensitivity of the instrument as well as the data analysis method are presented.

  14. A photoelectron-photoion coincidence imaging apparatus for femtosecond time-resolved molecular dynamics with electron time-of-flight resolution of {sigma}=18 ps and energy resolution {delta}E/E=3.5%

    SciTech Connect

    Vredenborg, Arno; Roeterdink, Wim G.; Janssen, Maurice H. M.

    2008-06-15

    We report on the construction and performance of a novel photoelectron-photoion coincidence machine in our laboratory in Amsterdam to measure the full three-dimensional momentum distribution of correlated electrons and ions in femtosecond time-resolved molecular beam experiments. We implemented sets of open electron and ion lenses to time stretch and velocity map the charged particles. Time switched voltages are operated on the particle lenses to enable optimal electric field strengths for velocity map focusing conditions of electrons and ions separately. The position and time sensitive detectors employ microchannel plates (MCPs) in front of delay line detectors. A special effort was made to obtain the time-of-flight (TOF) of the electrons at high temporal resolution using small pore (5 {mu}m) MCPs and implementing fast timing electronics. We measured the TOF distribution of the electrons under our typical coincidence field strengths with a temporal resolution down to {sigma}=18 ps. We observed that our electron coincidence detector has a timing resolution better than {sigma}=16 ps, which is mainly determined by the residual transit time spread of the MCPs. The typical electron energy resolution appears to be nearly laser bandwidth limited with a relative resolution of {delta}E{sub FWHM}/E=3.5% for electrons with kinetic energy near 2 eV. The mass resolution of the ion detector for ions measured in coincidence with electrons is about {delta}m{sub FWHM}/m=1/4150. The velocity map focusing of our extended source volume of particles, due to the overlap of the molecular beam with the laser beams, results in a parent ion spot on our detector focused down to {sigma}=115 {mu}m.

  15. Fast-time Simulation of an Automated Conflict Detection and Resolution Concept

    NASA Technical Reports Server (NTRS)

    Windhorst, Robert; Erzberger, Heinz

    2006-01-01

    This paper investigates the effect on the National Airspace System of reducing air traffc controller workload by automating conflict detection and resolution. The Airspace Concept Evaluation System is used to perform simulations of the Cleveland Center with conventional and with automated conflict detection and resolution concepts. Results show that the automated conflict detection and resolution concept significantly decreases growth of delay as traffic demand is increased in en-route airspace.

  16. SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy

    PubMed Central

    Tang, Yunqing; Dai, Luru; Zhang, Xiaoming; Li, Junbai; Hendriks, Johnny; Fan, Xiaoming; Gruteser, Nadine; Meisenberg, Annika; Baumann, Arnd; Katranidis, Alexandros; Gensch, Thomas

    2015-01-01

    Single molecule localization based super-resolution fluorescence microscopy offers significantly higher spatial resolution than predicted by Abbe’s resolution limit for far field optical microscopy. Such super-resolution images are reconstructed from wide-field or total internal reflection single molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules and background noise fluctuations remains a great challenge in current data analysis. Here we present a real-time, and robust single molecule identification and localization algorithm, SNSMIL (Shot Noise based Single Molecule Identification and Localization). This algorithm is based on the intrinsic nature of noise, i.e., its Poisson or shot noise characteristics and a new identification criterion, QSNSMIL, is defined. SNSMIL improves the identification accuracy of single fluorescent molecules in experimental or simulated datasets with high and inhomogeneous background. The implementation of SNSMIL relies on a graphics processing unit (GPU), making real-time analysis feasible as shown for real experimental and simulated datasets. PMID:26098742

  17. Fast history matching of time-lapse seismic and production data for high resolution models

    NASA Astrophysics Data System (ADS)

    Jimenez Arismendi, Eduardo Antonio

    Integrated reservoir modeling has become an important part of day-to-day decision analysis in oil and gas management practices. A very attractive and promising technology is the use of time-lapse or 4D seismic as an essential component in subsurface modeling. Today, 4D seismic is enabling oil companies to optimize production and increase recovery through monitoring fluid movements throughout the reservoir. 4D seismic advances are also being driven by an increased need by the petroleum engineering community to become more quantitative and accurate in our ability to monitor reservoir processes. Qualitative interpretations of time-lapse anomalies are being replaced by quantitative inversions of 4D seismic data to produce accurate maps of fluid saturations, pore pressure, temperature, among others. Within all steps involved in this subsurface modeling process, the most demanding one is integrating the geologic model with dynamic field data, including 4Dseismic when available. The validation of the geologic model with observed dynamic data is accomplished through a "history matching" (HM) process typically carried out with well-based measurements. Due to low resolution of production data, the validation process is severely limited in its reservoir areal coverage, compromising the quality of the model and any subsequent predictive exercise. This research will aim to provide a novel history matching approach that can use information from high-resolution seismic data to supplement the areally sparse production data. The proposed approach will utilize streamline-derived sensitivities as means of relating the forward model performance with the prior geologic model. The essential ideas underlying this approach are similar to those used for high-frequency approximations in seismic wave propagation. In both cases, this leads to solutions that are defined along "streamlines" (fluid flow), or "rays" (seismic wave propagation). Synthetic and field data examples will be used

  18. Real-time person detection in low-resolution thermal infrared imagery with MSER and CNNs

    NASA Astrophysics Data System (ADS)

    Herrmann, Christian; Müller, Thomas; Willersinn, Dieter; Beyerer, Jürgen

    2016-10-01

    In many camera-based systems, person detection and localization is an important step for safety and security applications such as search and rescue, reconnaissance, surveillance, or driver assistance. Long-wave infrared (LWIR) imagery promises to simplify this task because it is less affected by background clutter or illumination changes. In contrast to a lot of related work, we make no assumptions about any movement of persons or the camera, i.e. persons may stand still and the camera may move or any combination thereof. Furthermore, persons may appear arbitrarily in near or far distances to the camera leading to low-resolution persons in far distances. To address this task, we propose a two-stage system, including a proposal generation method and a classifier to verify, if the detected proposals really are persons. In contradiction to use all possible proposals as with sliding window approaches, we apply Maximally Stable Extremal Regions (MSER) and classify the detected proposals afterwards with a Convolutional Neural Network (CNN). The MSER algorithm acts as a hot spot detector when applied to LWIR imagery. Because the body temperature of persons is usually higher than the background, they appear as hot spots in the image. However, the MSER algorithm is unable to distinguish between different kinds of hot spots. Thus, all further LWIR sources such as windows, animals or vehicles will be detected, too. Still by applying MSER, the number of proposals is reduced significantly in comparison to a sliding window approach which allows employing the high discriminative capabilities of deep neural networks classifiers that were recently shown in several applications such as face recognition or image content classification. We suggest using a CNN as classifier for the detected hot spots and train it to discriminate between person hot spots and all further hot spots. We specifically design a CNN that is suitable for the low-resolution person hot spots that are common with

  19. On the rms anisotropy at 7 deg and 10 deg observed in the COBE-DMR two year sky maps

    NASA Technical Reports Server (NTRS)

    Banday, A. J.; Gorski, K. M.; Tenorio, L.; Wright, E. L.; Smoot, G. F.; Lineweaver, C. H.; Kogut, A.; Hinshaw, G.; Bennett, C. L.

    1994-01-01

    The frequency-independent rms temperature fluctuations determined from the Cosmic Background Explorer-Differential Microwave Radiometer (COBE-DMR) two-year sky maps are used to infer the parameter Q(sub rms-PS), which characterizes the normalization of power-law models of primordial cosmological temperature anisotropy, for a forced fit to a scale-invariant Harrison-Zel'dovich (n = 1) spectral model. Using a joint analysis of the 7 deg and 10 deg 'cross'-rms derived from both the 53 and 90 GHz sky maps, we find Q(sub rms-PS) = 17.0(sub -2.1 sup +2.5) micro Kelvin when the low quadrupole is included, and Q(sub rms-PS) = 19.4(sub -2.1 sup +2.3) micro Kelvin excluding the quadrupole. These results are consistent with the n = 1 fits from more sensitive methods. The effect of the low quadrupole derived from the COBE-DMR data on the inferred Q(sub rms-PS) normalization is investigated. A bias to lower Q(sub rms-PS) is found when the quadrupole is included. The higher normalization for a forced n = 1 fit is then favored by the cross-rms technique.

  20. On the RMS anisotropy at 7° and 10° observed in the COBE-DMR two year sky maps

    NASA Astrophysics Data System (ADS)

    Banday, A. J.; Górski, K. M.; Kogut, A.; Hinshaw, G.; Bennett, C. L.; Lineweaver, C. H.; Smoot, G. F.; Tenorio, L.

    1995-07-01

    We summarize the recent results on the observed COBE-DMR two year sky rms temperature fluctuations. A ``cross-RMS'' statistic is used to infer the Qrms-PS normalization for a scale-invariant (n=1) spectral model. The method is extended to the normalization of other cosmological power spectra.

  1. Resolution of ray-finned fish phylogeny and timing of diversification

    PubMed Central

    Near, Thomas J.; Eytan, Ron I.; Dornburg, Alex; Kuhn, Kristen L.; Moore, Jon A.; Davis, Matthew P.; Wainwright, Peter C.; Friedman, Matt; Smith, W. Leo

    2012-01-01

    Ray-finned fishes make up half of all living vertebrate species. Nearly all ray-finned fishes are teleosts, which include most commercially important fish species, several model organisms for genomics and developmental biology, and the dominant component of marine and freshwater vertebrate faunas. Despite the economic and scientific importance of ray-finned fishes, the lack of a single comprehensive phylogeny with corresponding divergence-time estimates has limited our understanding of the evolution and diversification of this radiation. Our analyses, which use multiple nuclear gene sequences in conjunction with 36 fossil age constraints, result in a well-supported phylogeny of all major ray-finned fish lineages and molecular age estimates that are generally consistent with the fossil record. This phylogeny informs three long-standing problems: specifically identifying elopomorphs (eels and tarpons) as the sister lineage of all other teleosts, providing a unique hypothesis on the radiation of early euteleosts, and offering a promising strategy for resolution of the “bush at the top of the tree” that includes percomorphs and other spiny-finned teleosts. Contrasting our divergence time estimates with studies using a single nuclear gene or whole mitochondrial genomes, we find that the former underestimates ages of the oldest ray-finned fish divergences, but the latter dramatically overestimates ages for derived teleost lineages. Our time-calibrated phylogeny reveals that much of the diversification leading to extant groups of teleosts occurred between the late Mesozoic and early Cenozoic, identifying this period as the “Second Age of Fishes.” PMID:22869754

  2. Single photon time resolution of state of the art SiPMs

    NASA Astrophysics Data System (ADS)

    Nemallapudi, M. V.; Gundacker, S.; Lecoq, P.; Auffray, E.

    2016-10-01

    Comparison of the timing performance of different silicon photomultipliers (SiPMs) can be useful for applications that employ these devices. In our study, we characterize some of the currently available SiPMs to compare the single photon time resolution (SPTR) values measured using a 420 nm laser with a pulse width of 42 ps FWHM. SPTR values in the range of 175-330 ps FWHM were measured for most 3 × 3 mm2 and 4 × 4 mm2 devices and varied with the producer and the type of the SiPM. Factors influencing the SPTR including the area, cell to cell non-uniformity and the SPAD (single photon avalanche diode) jitter were investigated by the use of laser light focused at the level of a SPAD within a SiPM. The standard deviation of the SPTR values measured among different cells within a Hamamatsu Through Silicon Via SiPM was found to be less than 5 ps. When measured with focused laser the values of SPTR, the signal delay and the relative PDE were found to vary among different points within a SPAD of a SiPM. We found that such variation causes the values of SPTR measured with focused illumination to be better than when measured with diffuse illumination which probes the entire SiPM active surface. SPTR values close to 20 ps FWHM have been measured for standalone single SPADs produced by FBK after correcting for the laser jitter and the acquisition jitter. The performed tests helped us to understand the limits of the SPAD jitter. We infer that the dominant factor contributing to the degradation of the SPTR from the level of a SPAD to a SiPM is mostly driven by detector noise, if the influence of the signal delay time spread is reduced to a minimum.

  3. The impact of space-time speckle to the resolution in range and azimuth direction on synthetic aperture imaging ladar

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Zhou, Yu; Sun, Jianfeng; Zhi, Ya'nan; Ma, Xiaoping; Sun, Zhiwei; Lu, Dong; Liu, Liren

    2013-09-01

    As synthetic aperture imaging ladar employs the linear chirp laser signal, it is inevitably impacted by the space-time varying speckle effect. In many SAIL two-dimensional reconstructed images, the laser speckle effect severely reduces the image quality. In this paper, we analyze and simulate the influence of space-time speckle effect to the resolution element imaging both in range direction and in azimuth direction. Expressions for two-dimensional data collection contained space-time speckle effect are obtained, and computer simulation results of resolution degradation both in range direction and in cross-range direction are presented.

  4. Particle Identification Using Cost Effective mRPC Technology for Time-of-Flight Measurements with Less than 10 ps Time Resolution

    NASA Astrophysics Data System (ADS)

    Shimek, Taylor

    2015-10-01

    This presentation will introduce the use of multi-gap Resistive Plate Chambers (mRPCs) for time of flight (TOF) based particle identification (PID) in nuclear and high-energy physics. The mRPC technology is developed for use in future experiments at the planned Electron Ion Collider, EIC. TOF PID using mRPCs with 10 ps timing resolution will make it possible to precisely determine the flavor content of valence- and sea-quarks in the proton through semi-inclusive deep inelastic scattering with identified pions and kaons. A first mRPC prototype using float glass resistive plates at UIUC has reached a timing resolution of 21 ps. In this presentation I discuss an effort to replace the float glass with cheaper Mylar-based resistive plates. I will also discuss the design and construction of a first prototype and present initial results on signal development, efficiencies and timing resolution of the mRPC prototype.

  5. Real-time 3D stabilization of a super-resolution microscope using an electrically tunable lens.

    PubMed

    Tafteh, Reza; Abraham, Libin; Seo, Denny; Lu, Henry Y; Gold, Michael R; Chou, Keng C

    2016-10-03

    Single-molecule localization microscopy (SMLM) has become an essential tool for examining a wide variety of biological structures and processes. However, the relatively long acquisition time makes SMLM prone to drift-induced artifacts. Here we report an optical design with an electrically tunable lens (ETL) that actively stabilizes a SMLM in three dimensions and nearly eliminates the mechanical drift (RMS ~0.7 nm lateral and ~2.7 nm axial). The bifocal design that employed fiducial markers on the coverslip was able to stabilize the sample regardless of the imaging depth. The effectiveness of the ETL was demonstrated by imaging endosomal transferrin receptors near the apical surface of B-lymphocytes at a depth of 8 µm. The drift-free images obtained with the stabilization system showed that the transferrin receptors were present in distinct but heterogeneous clusters with a bimodal size distribution. In contrast, the images obtained without the stabilization system showed a broader unimodal size distribution. Thus, this stabilization system enables a more accurate analysis of cluster topology. Additionally, this ETL-based stabilization system is cost-effective and can be integrated into existing microscopy systems.

  6. Development and characterization of the CU ground MAX-DOAS instrument: lowering RMS noise and first measurements of BrO, IO, and CHOCHO near Pensacola, FL

    NASA Astrophysics Data System (ADS)

    Coburn, S.; Dix, B.; Sinreich, R.; Volkamer, R.

    2011-01-01

    We designed and assembled the University of Colorado Ground Multi AXis Differential Optical Absorption Spectroscopy (CU GMAX-DOAS) instrument to retrieve bromine oxide (BrO), iodine oxide (IO), formaldehyde (HCHO), glyoxal (CHOCHO), nitrogen dioxide (NO2) and the oxygen dimer O4 in the coastal atmosphere of the Gulf of Mexico. The detection sensitivity of DOAS measurements is directly proportional to the root mean square (RMS) of the residual spectrum that remains after all absorbers have been subtracted. Here we describe the CU GMAX-DOAS instrument and demonstrate that the hardware is capable of attaining RMS values of ~6 × 10-6 without apparent limitations other than photon shot noise. Laboratory tests revealed two factors that, in practice, limit the RMS: (1) detector non-linearity noise, RMSNLin, and (2) temperature fluctuations that cause variations in optical resolution (full width at half the maximum, FWHM, of atomic emission lines) and give rise to optical resolution noise, RMSFWHM. The non-linearity of our detector is low (~10-3) yet - unless actively controlled - is sufficiently large to create a RMSNLin limit of up to 1.4 × 10-4. The optical resolution is sensitive to temperature changes (0.03 detector pixels/°C at 334 nm), and temperature variations of 0.1 °C can cause residual RMSFWHM of ~1 × 10-4. Both factors were actively addressed in the design of the CU GMAX-DOAS instrument. The CU GMAX-DOAS was set up at a coastal site near Pensacola, FL, where we detected BrO, IO and CHOCHO in the marine boundary layer (MBL), with daytime average tropospheric vertical column densities, VCDs, of ~2 × 1013 molec cm-2, 8 × 1012 molec cm-2 and 4 × 1014 molec cm-2, respectively. HCHO and NO2 were also detected with typical MBL VCDs of 1 × 1016 and 3 × 1015. These are the first measurements of BrO, IO and CHOCHO over the Gulf of Mexico. The atmospheric implications of these observations for elevated mercury wet deposition rates in this area are briefly

  7. High time resolution observations of HF cross-modulation within the D region ionosphere

    NASA Astrophysics Data System (ADS)

    Langston, J.; Moore, R. C.

    2013-05-01

    High-frequency cross-modulation is employed to probe the D region ionosphere during HF heating experiments at the High-frequency Active Auroral Research Program (HAARP) observatory. We have adapted Fejer's well-known cross-modulation probing method to determine the extent of ionospheric conductivity modification in the D region ionosphere with high (5 μsec) time resolution. We demonstrate that the method can be used to analyze D region conductivity changes produced by HF heating both during the initial stages of heating and under steady state conditions. The sequence of CW probe pulses used allow the separation of cross-modulation effects that occur as the probe pulse propagates upward and downward through the heated region. We discuss how this probing technique can be applied to benefit ELF/VLF wave generation experiments and ionospheric irregularities experiments at higher altitudes. We demonstrate that large phase changes equivalent to Doppler shift velocities >60 km/s can be imposed on HF waves propagating through the heated D region ionosphere.

  8. Three Compact, Robust Chemical Characterization Systems Suited To Sensitive, High Time Resolution Measurements Of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Barrie, L. A.; Cowin, J. P.; Worsnop, D. R.

    2001-12-01

    In the past decade, the advancement of compact, robust and sensitive instrumentation to measure the chemical characteristics of atmospheric aerosols has lagged behind their physical characterization. There is a need for chemical instrumentation with these three qualities for use on airborne platforms and at infrequently attended ground level surveillance sites. Now chemical techniques are appearing that promise to fill this need. We discuss three chemical characterization systems that are emerging in atmospheric chemistry and climate research applications. These are: (i) the Aerodyne mass spectrometer for real time measurement of particle composition and two post-collection analysis techniques (ii) non-destructive, multi-elemental chemical analysis of size-resolved samples by high spatial resolution synchrotron x-ray and proton beams (S-XRF/PIXE/PESA/STIM) (iii) single particle characterization by automated scanning electron microscopy with energy-dispersed detection of X-rays (SEM/EDX). The key to post-collection analysis is automated aerosol sizing and collection systems and automated chemical analysis systems. Together these techniques provide unique, comprehensive information on the organic and inorganic composition and morphology of particles and yet are easy to deploy in the field. The sensitivity of each technique is high enough to permit the rapid sampling needed to resolve spatial gradients in composition from a moving platform like the Battelle Gulfstream-159 aircraft, traveling at 100m/s.

  9. Reconstruction of air shower muon densities using segmented counters with time resolution

    NASA Astrophysics Data System (ADS)

    Ravignani, D.; Supanitsky, A. D.; Melo, D.

    2016-09-01

    Despite the significant experimental effort made in the last decades, the origin of the ultra-high energy cosmic rays is still largely unknown. Key astrophysical information to identify where these energetic particles come from is provided by their chemical composition. It is well known that a very sensitive tracer of the primary particle type is the muon content of the showers generated by the interaction of the cosmic rays with air molecules. We introduce a likelihood function to reconstruct particle densities using segmented detectors with time resolution. As an example of this general method, we fit the muon distribution at ground level using an array of counters like AMIGA, one of the Pierre Auger Observatory detectors. For this particular case we compare the reconstruction performance against a previous method. With the new technique, more events can be reconstructed than before. In addition the statistical uncertainty of the measured number of muons is reduced, allowing for a better discrimination of the cosmic ray primary mass.

  10. Mapping Forest Fuels through Vegetation Phenology: The Role of Coarse-Resolution Satellite Time-Series

    PubMed Central

    Bajocco, Sofia; Dragoz, Eleni; Gitas, Ioannis; Smiraglia, Daniela; Salvati, Luca; Ricotta, Carlo

    2015-01-01

    Traditionally fuel maps are built in terms of ‘fuel types’, thus considering the structural characteristics of vegetation only. The aim of this work is to derive a phenological fuel map based on the functional attributes of coarse-scale vegetation phenology, such as seasonality and productivity. MODIS NDVI 250m images of Sardinia (Italy), a large Mediterranean island with high frequency of fire incidence, were acquired for the period 2000–2012 to construct a mean annual NDVI profile of the vegetation at the pixel-level. Next, the following procedure was used to develop the phenological fuel map: (i) image segmentation on the Fourier components of the NDVI profiles to identify phenologically homogeneous landscape units, (ii) cluster analysis of the phenological units and post-hoc analysis of the fire-proneness of the phenological fuel classes (PFCs) obtained, (iii) environmental characterization (in terms of land cover and climate) of the PFCs. Our results showed the ability of coarse-resolution satellite time-series to characterize the fire-proneness of Sardinia with an adequate level of accuracy. The remotely sensed phenological framework presented may represent a suitable basis for the development of fire distribution prediction models, coarse-scale fuel maps and for various biogeographic studies. PMID:25822505

  11. Mapping the Dissociative Ionization Dynamics of Molecular Nitrogen with Attosecond Time Resolution

    NASA Astrophysics Data System (ADS)

    Trabattoni, A.; Klinker, M.; González-Vázquez, J.; Liu, C.; Sansone, G.; Linguerri, R.; Hochlaf, M.; Klei, J.; Vrakking, M. J. J.; Martín, F.; Nisoli, M.; Calegari, F.

    2015-10-01

    Studying the interaction of molecular nitrogen with extreme ultraviolet (XUV) radiation is of prime importance to understand radiation-induced processes occurring in Earth's upper atmosphere. In particular, photoinduced dissociation dynamics involving excited states of N2 + leads to N and N+ atomic species that are relevant in atmospheric photochemical processes. However, tracking the relaxation dynamics of highly excited states of N2 + is difficult to achieve, and its theoretical modeling is notoriously complex. Here, we report on an experimental and theoretical investigation of the dissociation dynamics of N2+ induced by isolated attosecond XUV pulses in combination with few-optical-cycle near-infrared/visible (NIR/VIS) pulses. The momentum distribution of the produced N+ fragments is measured as a function of pump-probe delay with subfemtosecond resolution using a velocity map imaging spectrometer. The time-dependent measurements reveal the presence of NIR/VIS-induced transitions between N2 + states together with an interference pattern that carries the signature of the potential energy curves activated by the XUV pulse. We show that the subfemtosecond characterization of the interference pattern is essential for a semiquantitative determination of the repulsive part of these curves.

  12. Time-resolved photoemission apparatus achieving sub-20-meV energy resolution and high stability

    SciTech Connect

    Ishida, Y.; Togashi, T.; Yamamoto, K.; Tanaka, M.; Kiss, T.; Otsu, T.; Kobayashi, Y.; Shin, S.

    2014-12-15

    The paper describes a time- and angle-resolved photoemission apparatus consisting of a hemispherical analyzer and a pulsed laser source. We demonstrate 1.48-eV pump and 5.92-eV probe measurements at the ⩾10.5-meV and ⩾240-fs resolutions by use of fairly monochromatic 170-fs pulses delivered from a regeneratively amplified Ti:sapphire laser system operating typically at 250 kHz. The apparatus is capable to resolve the optically filled superconducting peak in the unoccupied states of a cuprate superconductor, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. A dataset recorded on Bi(111) surface is also presented. Technical descriptions include the followings: A simple procedure to fine-tune the spatio-temporal overlap of the pump-and-probe beams and their diameters; achieving a long-term stability of the system that enables a normalization-free dataset acquisition; changing the repetition rate by utilizing acoustic optical modulator and frequency-division circuit.

  13. Real-Time Visualization of High-Resolution Lunar Altimetry Data

    NASA Astrophysics Data System (ADS)

    Montgomery, J.; McDonald, J.

    2012-12-01

    NASA's recent Lunar Reconnaissance Orbiter (LRO) space mission has collected an unprecedented quantity of remote sensed data. One LRO data set in particular, the lunar orbiter laser altimeter (LOLA) gridded data records (GDR), is a raster digital elevation model of the lunar surface and represents the highest density altimetric data collected to date. The high-resolution GRD data set is comprised of over 165 data files that are 1 GB or 2GB in size with pixel densities ranging from 128, 256, 512 or 1024 pixel per degree. The shear volume and size of the GDR data set presents researcher with unique challenges, especially in selenographic studies where cartographical projections are used to analyze surface features. We present mVTK a real-time cartographical projection software tool that supports dynamic map projections, surface feature measurements and interactive cartographic projection manipulation. mVTK is written in C++ and uses OpenGL and OpenGL Shading Language (GLSL) to exploit the parallel architecture of modern graphic processing units (GPU). Typical rendering rates for cartographic projections using 1024 pixels/degree GRD date files is approximately 30 frames/second, which is an order of magnitude faster then other visualization tools.; Example cartographical projection using LOLA grd 512x512 ppd data. (Top) full lunar map. (Bottom) zoomed view. (Left) hight measurement

  14. BALLOON-BASED HIGH-TIME RESOLUTION MEASUREMENTS OF X-RAY EMISSIONS FROM LIGHTNING

    SciTech Connect

    K. EACK; D. SUSZCYNSKY; ET AL

    2000-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project consisted of a series of balloon flights to collect high-time-resolution x-ray and electric-field-change measurements in thunderstorms in order to validate the existence of the runaway air-breakdown mechanism during lightning and/or sprite production. The runaway air-breakdown mechanism is currently the leading theory to account for unexplained balloon and aircraft-based measurements of x-ray enhancements associated with sprites. Balloon-borne gamma-ray and electric-field-change instruments were launched into a daytime summer thunderstorm. A greater than three-fold increase in the gamma-ray flux was observed as the balloon descended through a thunderstorm anvil where a strong electric field was present. These observations suggest that gamma-ray production in thunderstorms may not be as uncommon as previously believed.

  15. Change detection from very high resolution satellite time series with variable off-nadir angle

    NASA Astrophysics Data System (ADS)

    Barazzetti, Luigi; Brumana, Raffaella; Cuca, Branka; Previtali, Mattia

    2015-06-01

    Very high resolution (VHR) satellite images have the potential for revealing changes occurred overtime with a superior level of detail. However, their use for metric purposes requires accurate geo-localization with ancillary DEMs and GCPs to achieve sub-pixel terrain correction, in order to obtain images useful for mapping applications. Change detection with a time series of VHS images is not a simple task because images acquired with different off-nadir angles have a lack of pixel-to-pixel image correspondence, even after accurate geo-correction. This paper presents a procedure for automatic change detection able to deal with variable off-nadir angles. The case study concerns the identification of damaged buildings from pre- and post-event images acquired on the historic center of L'Aquila (Italy), which was struck by an earthquake in April 2009. The developed procedure is a multi-step approach where (i) classes are assigned to both images via object-based classification, (ii) an initial alignment is provided with an automated tile-based rubber sheeting interpolation on the extracted layers, and (iii) change detection is carried out removing residual mis-registration issues resulting in elongated features close to building edges. The method is fully automated except for some thresholds that can be interactively set to improve the visualization of the damaged buildings. The experimental results proved that damages can be automatically found without additional information, such as digital surface models, SAR data, or thematic vector layers.

  16. High Time-resolution Studies of RF Interaction Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Wood, M. R.; Adham, N.; Roe, R. G.; Gerres, J. M.; Watkins, B. J.; Bristow, W. A.; Spaleta, J.; Bernhardt, P. A.; Selcher, C. A.

    2010-12-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. Plasma line spectra exhibit a marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  17. High-time resolution and size-segregated elemental composition in high-intensity pyrotechnic exposures.

    PubMed

    Crespo, Javier; Yubero, Eduardo; Nicolás, Jose F; Lucarelli, Franco; Nava, Silvia; Chiari, Massimo; Calzolai, Giulia

    2012-11-30

    Typical of festivals in Eastern Spain, mascletàs are high-intensity pyrotechnic events where thousands of firecrackers are burnt in an intense, rapid episode that generates short-lived heavy aerosol clouds. High temporal resolution and size distribution characterisation of aerosol components were performed to evaluate the effects of the brief (<30 min) and acute exposure on the spectators present. Very high concentrations of firework specific elements, especially in the fine fraction, were reached during mascletàs, with values of about 500 μg/m(3) for K and 300 μg/m(3) for Cl. Sr, Al, Mg, Ba, Cu, Co, Zn, and Pb concentration increase factors of more than 100 (1000 for Sr and Ba) were observed in the fine fraction with respect to background levels. Crustal origin elements, like Ca, Fe, Si, Ti, also showed an important concentration rise (~10 times above background levels) but this is due to dust resuspension by pyrotechnic explosions. The crustal components are mainly in the coarse mode (>90% elemental mass), between 2 and 3 μm. Most firework related metals are concentrated in the submicrometric region (>80%) with a trimodal size distribution. This may be interesting to epidemiologists given the toxic effects that such fine, metal-rich particles can have on human health.

  18. High-Resolution Time-Frequency Spectrum-Based Lung Function Test from a Smartphone Microphone.

    PubMed

    Thap, Tharoeun; Chung, Heewon; Jeong, Changwon; Hwang, Ki-Eun; Kim, Hak-Ryul; Yoon, Kwon-Ha; Lee, Jinseok

    2016-08-17

    In this paper, a smartphone-based lung function test, developed to estimate lung function parameters using a high-resolution time-frequency spectrum from a smartphone built-in microphone is presented. A method of estimation of the forced expiratory volume in 1 s divided by forced vital capacity (FEV₁/FVC) based on the variable frequency complex demodulation method (VFCDM) is first proposed. We evaluated our proposed method on 26 subjects, including 13 healthy subjects and 13 chronic obstructive pulmonary disease (COPD) patients, by comparing with the parameters clinically obtained from pulmonary function tests (PFTs). For the healthy subjects, we found that an absolute error (AE) and a root mean squared error (RMSE) of the FEV₁/FVC ratio were 4.49% ± 3.38% and 5.54%, respectively. For the COPD patients, we found that AE and RMSE from COPD patients were 10.30% ± 10.59% and 14.48%, respectively. For both groups, we compared the results using the continuous wavelet transform (CWT) and short-time Fourier transform (STFT), and found that VFCDM was superior to CWT and STFT. Further, to estimate other parameters, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV₁), and peak expiratory flow (PEF), regression analysis was conducted to establish a linear transformation. However, the parameters FVC, FEV1, and PEF had correlation factor r values of 0.323, 0.275, and -0.257, respectively, while FEV₁/FVC had an r value of 0.814. The results obtained suggest that only the FEV1/FVC ratio can be accurately estimated from a smartphone built-in microphone. The other parameters, including FVC, FEV1, and PEF, were subjective and dependent on the subject's familiarization with the test and performance of forced exhalation toward the microphone.

  19. High-Resolution Time-Frequency Spectrum-Based Lung Function Test from a Smartphone Microphone

    PubMed Central

    Thap, Tharoeun; Chung, Heewon; Jeong, Changwon; Hwang, Ki-Eun; Kim, Hak-Ryul; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    In this paper, a smartphone-based lung function test, developed to estimate lung function parameters using a high-resolution time-frequency spectrum from a smartphone built-in microphone is presented. A method of estimation of the forced expiratory volume in 1 s divided by forced vital capacity (FEV1/FVC) based on the variable frequency complex demodulation method (VFCDM) is first proposed. We evaluated our proposed method on 26 subjects, including 13 healthy subjects and 13 chronic obstructive pulmonary disease (COPD) patients, by comparing with the parameters clinically obtained from pulmonary function tests (PFTs). For the healthy subjects, we found that an absolute error (AE) and a root mean squared error (RMSE) of the FEV1/FVC ratio were 4.49% ± 3.38% and 5.54%, respectively. For the COPD patients, we found that AE and RMSE from COPD patients were 10.30% ± 10.59% and 14.48%, respectively. For both groups, we compared the results using the continuous wavelet transform (CWT) and short-time Fourier transform (STFT), and found that VFCDM was superior to CWT and STFT. Further, to estimate other parameters, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and peak expiratory flow (PEF), regression analysis was conducted to establish a linear transformation. However, the parameters FVC, FEV1, and PEF had correlation factor r values of 0.323, 0.275, and −0.257, respectively, while FEV1/FVC had an r value of 0.814. The results obtained suggest that only the FEV1/FVC ratio can be accurately estimated from a smartphone built-in microphone. The other parameters, including FVC, FEV1, and PEF, were subjective and dependent on the subject’s familiarization with the test and performance of forced exhalation toward the microphone. PMID:27548164

  20. Monte Carlo Simulation Study on the Time Resolution of a PMT-Quadrant-Sharing LSO Detector Block for Time-of-Flight PET.

    PubMed

    Liu, Shitao; Li, Hongdi; Zhang, Yuxuan; Ramirez, Rocio A; Baghaei, Hossain; An, Shaohui; Wang, Chao; Liu, Jiguo; Wong, Wai-Hoi

    2009-01-01

    We developed a detailed Monte Carlo simulation method to study the time resolution of detectors for time-of-flight positron emission tomography (TOF PET). The process of gamma ray interaction in detectors, scintillation light emission and transport inside the detectors, the photoelectron generation and anode signal generation in the photomultiplier tube (PMT), and the electronics process of discriminator are simulated. We tested this simulation method using published experimental data, and found that it can generate reliable results. Using this method, we simulated the time resolution for a 13 × 13 detector block of 4 × 4 × 20 mm(3) lutetium orthosilicate (LSO) crystals coupled to four 2-inch PMTs using PMT-quadrant-sharing (PQS) technology. We analyzed the effects of several factors, including the number of photoelectrons, light transport, transit time spread (TTS), and the depth of interaction (DOI). The simulation results indicated that system time resolution of 360 ps should be possible with currently available fast PMTs. This simulation method can also be used to simulate the time resolution of other detector design method.

  1. High-resolution summer rainfall prediction in the JHWC real-time WRF system

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Kyou; Eom, Dae-Yong; Kim, Joo-Wan; Lee, Jae-Bok

    2010-08-01

    The WRF-based real-time forecast system (http://jhwc.snu.ac.kr/weather) of the Joint Center for High-impact Weather and Climate Research (JHWC) has been in operation since November 2006; this system has three nested model domains using GFS (Global Forecast System) data for its initial and boundary conditions. In this study, we evaluate the improvement in daily and hourly weather prediction, particularly the prediction of summer rainfall over the Korean Peninsula, in the JHWC WRF (Weather Research and Forecasting) model system by 3DVAR (three-Dimensional Variational) data assimilation using the data obtained from KEOP (Korea Enhanced Observation Program). KEOP was conducted during the period June 15 to July 15, 2007, and the data obtained included GTS (Global Telecommunication System) upper-air sounding, AWS (Automatic Weather System), wind profiler, and radar observation data. Rainfall prediction and its characteristics should be verified by using the precipitation observation and the difference field of each experiment. High-resolution (3 km in domain 3) summer rainfall prediction over the Korean peninsula is substantially influenced by improved synoptic-scale prediction in domains 1 (27 km) and 2 (9 km), in particular by data assimilation using the sounding and wind profiler data. The rainfall prediction in domain 3 was further improved by radar and AWS data assimilation in domain 3. The equitable threat score and bias score of the rainfall predicted in domain 3 indicated improvement for the threshold values of 0.1, 1, and 2.5 mm with data assimilation. For cases of occurrence of heavy rainfall (7 days), the equitable threat score and bias score improved considerably at all threshold values as compared to the entire period of KEOP. Radar and AWS data assimilation improved the temporal and spatial distributions of diurnal rainfall over southern Korea, and AWS data assimilation increased the predicted rainfall amount by approximately 0.3 mm 3hr-1.

  2. Time-Resolved High-Resolution Transmission Electron Microscopy Using a Piezo-Driving Specimen Holder for Atomic-Scale Mechanical Interaction.

    PubMed

    Kizuka; Tanaka; Deguchi; Naruse

    1998-05-01

    : Time-resolved high-resolution transmission electron microscopy at a spatial resolution of 0.2 nm and a time resolution of 1/60 sec using a piezo-driving specimen holder is reported here. Various types of atomic processes in mechanical interaction, such as contact, bonding, deformation, and fracture, in nanometer-sized gold crystallites and carbon nanotubes are demonstrated.

  3. Coastal CO2 climatology of Oahu, Hawaii: Six years of high resolution time-series data

    NASA Astrophysics Data System (ADS)

    Terlouw, G. J.; Drupp, P. S.; De Carlo, E. H.; Tomlinson, M.

    2014-12-01

    Six years of high resolution pCO2, water quality, and meteorological data were used to calculate air-sea CO2 fluxes on yearly, seasonal and monthly timescales, and relate the temporal and spatial variation in CO2 fluxes to meteorological events and land derived inputs. Three MAPCO2 buoys are deployed in coastal waters of Oahu as part of the NOAA/PMEL Carbon Program, that autonomously collects CO2 and water quality data at 3-hour intervals. The buoys are located on a backreef in Kaneohe Bay and two fringing reef sites on Oahu's south shore, the latter two in open ocean like conditions but with one also influenced by fluvial inputs. Data for this study were collected from June 2008 to July 2014. Mean pCO2 values at the Ala Wai, Kilo Nalu and CRIMP2 buoys were 396, 381 and 447μatm, respectively, with mean daily ranges of 51, 32 and 190 μatm, respectively. The daily range in pCO2 is largest at CRIMP2, reflecting a combination of higher primary production and respiration, vigorous calcification and longer water residence time within the barrier reef environment. Net annualized air-sea CO2 fluxes of the entire study period were 0.083, -0.014 and 1.167 mol C m-2 year-1 for Ala Wai, Kilo Nalu and CRIMP2, respectively. Positive values indicate a CO2 flux from the water to the atmosphere (source behavior), and negative values from the atmosphere to the water (sink behavior). This presentation will also discuss the effects physical and biogeochemical processes on the magnitude and variability of air-sea CO2 fluxes. We observe a negative correlation between CO2 flux and rainfall over monthly, seasonal, and annual timescales. This correlation however, can partly be explained by temperature, because increased rainfall is more common during the colder winter months. Nevertheless, rainfall affects CO2 fluxes, both by rain-induced nutrient and organic matter runoff, as well as the physical effect of raindrops on air-sea gas exchange and the dilution of the air-sea boundary layer

  4. The limit of time resolution in frequency modulation atomic force microscopy by a pump-probe approach

    NASA Astrophysics Data System (ADS)

    Schumacher, Zeno; Spielhofer, Andreas; Miyahara, Yoichi; Grutter, Peter

    2017-01-01

    Atomic force microscopy (AFM) routinely achieves structural information in the sub-nm length scale. Measuring time resolved properties on this length scale to understand kinetics at the nm scale remains an elusive goal. We present a general analysis of the lower limit for time resolution in AFM. Our finding suggests that the time resolution in AFM is ultimately limited by the well-known thermal limit of AFM and not as often proposed by the mechanical response time of the force sensing cantilever. We demonstrate a general pump-probe approach using the cantilever as a detector responding to the averaged signal. This method can be applied to any excitation signal such as electrical, thermal, magnetic or optical. Experimental implementation of this method allows us to measure a photocarrier decay time of ˜1 ps in low temperature grown GaAs using a cantilever with a resonant frequency of 280 kHz.

  5. The relationship between RMS electromyography and thickness change in the skeletal muscles.

    PubMed

    Kian-Bostanabad, Sharareh; Azghani, Mahmood-Reza

    2017-02-27

    The knowledge of muscle function may affect prescribing medications and physical treatments. Recently, ultrasound and electromyography (EMG) have been used to assess the skeletal muscles activity. The relationship between these methods has been reported in numerous articles qualitatively. In this paper, the relationship between EMG root-mean-square (RMS) and ultrasound data of muscle thickness has been investigated using Response Surface Methodology in the muscles separately and together and predictive models reported. Results show that to assess the relationship between the changes of thickness and activity (EMG) in muscles, we can use quadratic model for the rectus femoris, tibialis anterior, transverse abdominal, biceps brachii and brachialis muscles (R(2)=0.624-0.891) and linear model for the internal and external oblique abdominal, lumbar multifidus and deep cervical flexor muscles (R(2)=0.348-0.767). Due to the high correlation coefficient for the equations in the bulky muscles, it seems that the correlation between EMG RMS and ultrasound data of muscle thickness on the bulky muscles is higher than the flat muscles. This relationship may depend more on the type of activity than the type of muscle.

  6. Integration of the Shuttle RMS/CBM Positioning Virtual Environment Simulation

    NASA Technical Reports Server (NTRS)

    Dumas, Joseph D.

    1996-01-01

    Constructing the International Space Station, or other structures, in space presents a number of problems. In particular, payload restrictions for the Space Shuttle and other launch mechanisms prohibit assembly of large space-based structures on Earth. Instead, a number of smaller modules must be boosted into orbit separately and then assembled to form the final structure. The assembly process is difficult, as docking interfaces such as Common Berthing Mechanisms (CBMS) must be precisely positioned relative to each other to be within the "capture envelope" (approximately +/- 1 inch and +/- 0.3 degrees from the nominal position) and attach properly. In the case of the Space Station, the docking mechanisms are to be positioned robotically by an astronaut using the 55-foot-long Remote Manipulator System (RMS) robot arm. Unfortunately, direct visual or video observation of the placement process is difficult or impossible in many scenarios. One method that has been tested for aligning the CBMs uses a boresighted camera mounted on one CBM to view a standard target on the opposing CBM. While this method might be sufficient to achieve proper positioning with considerable effort, it does not provide a high level of confidence that the mechanisms have been placed within capture range of each other. It also does nothing to address the risk of inadvertent contact between the CBMS, which could result in RMS control software errors. In general, constraining the operator to a single viewpoint with few, if any, depth cues makes the task much more difficult than it would be if the target could be viewed in three-dimensional space from various viewpoints. The actual work area could be viewed by an astronaut during EVA; however, it would be extremely impractical to have an astronaut control the RMS while spacewalking. On the other hand, a view of the RMS and CBMs to be positioned in a virtual environment aboard the Space Shuttle orbiter or Space Station could provide similar benefits

  7. Global system for hydrological monitoring and forecasting in real time at high resolution

    NASA Astrophysics Data System (ADS)

    Ortiz, Enrique; De Michele, Carlo; Todini, Ezio; Cifres, Enrique

    2016-04-01

    This project presented at the EGU 2016 born of solidarity and the need to dignify the most disadvantaged people living in the poorest countries (Africa, South America and Asia, which are continually exposed to changes in the hydrologic cycle suffering events of large floods and/or long periods of droughts. It is also a special year this 2016, Year of Mercy, in which we must engage with the most disadvantaged of our Planet (Gaia) making available to them what we do professionally and scientifically. The project called "Global system for hydrological monitoring and forecasting in real time at high resolution" is Non-Profit and aims to provide at global high resolution (1km2) hydrological monitoring and forecasting in real time and continuously coupling Weather Forecast of Global Circulation Models, such us GFS-0.25° (Deterministic and Ensembles Run) forcing a physically based distributed hydrological model computationally efficient, such as the latest version extended of TOPKAPI model, named TOPKAPI-eXtended. Finally using the MCP approach for the proper use of ensembles for Predictive Uncertainty assessment essentially based on a multiple regression in the Normal space, can be easily extended to use ensembles to represent the local (in time) smaller or larger conditional predictive uncertainty, as a function of the ensemble spread. In this way, each prediction in time accounts for both the predictive uncertainty of the ensemble mean and that of the ensemble spread. To perform a continuous hydrological modeling with TOPKAPI-X model and have hot start of hydrological status of watersheds, the system assimilated products of rainfall and temperature derived from remote sensing, such as product 3B42RT of TRMM NASA and others.The system will be integrated into a Decision Support System (DSS) platform, based on geographical data. The DSS is a web application (For Pc, Tablet/Mobile phone): It does not need installation (all you need is a web browser and an internet

  8. Effect of labeling density and time post labeling on quality of antibody-based super resolution microscopy images

    NASA Astrophysics Data System (ADS)

    Bittel, Amy M.; Saldivar, Isaac; Dolman, Nicholas; Nickerson, Andrew K.; Lin, Li-Jung; Nan, Xiaolin; Gibbs, Summer L.

    2015-03-01

    Super resolution microscopy (SRM) has overcome the historic spatial resolution limit of light microscopy, enabling fluorescence visualization of intracellular structures and multi-protein complexes at the nanometer scale. Using single-molecule localization microscopy, the precise location of a stochastically activated population of photoswitchable fluorophores is determined during the collection of many images to form a single image with resolution of ~10-20 nm, an order of magnitude improvement over conventional microscopy. One of the key factors in achieving such resolution with single-molecule SRM is the ability to accurately locate each fluorophore while it emits photons. Image quality is also related to appropriate labeling density of the entity of interest within the sample. While ease of detection improves as entities are labeled with more fluorophores and have increased fluorescence signal, there is potential to reduce localization precision, and hence resolution, with an increased number of fluorophores that are on at the same time in the same relative vicinity. In the current work, fixed microtubules were antibody labeled using secondary antibodies prepared with a range of Alexa Fluor 647 conjugation ratios to compare image quality of microtubules to the fluorophore labeling density. It was found that image quality changed with both the fluorophore labeling density and time between completion of labeling and performance of imaging study, with certain fluorophore to protein ratios giving optimal imaging results.

  9. : Signal Decomposition of High Resolution Time Series River data to Separate Local and Regional Components of Conductivity

    EPA Science Inventory

    Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of a wastewater treatment facility along a river. Data was collected over 14-60 days, and several seasons. The power spectral densit...

  10. Signal Decomposition of High Resolution Time Series River Data to Separate Local and Regional Components of Conductivity

    EPA Science Inventory

    Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of an oil and gas wastewater treatment facility along a river. Data was collected over 14-60 days. The power spectral density was us...

  11. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    SciTech Connect

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  12. InSAR time series analysis for monitoring of natural and anthropogenic hazards with high temporal resolution (Invited)

    NASA Astrophysics Data System (ADS)

    Samsonov, S. V.; d'Oreye, N.; Gonzalez, P. J.; Tiampo, K. F.

    2013-12-01

    Modern Synthetic Aperture Radar (SAR) satellites and satellite constellations are capable of acquiring data at high spatial resolution and increasing temporal resolution allowing detection of ground deformation signals with a minimal delay. Advanced interferometric SAR (InSAR) processing techniques, such as Small Baseline Subset (SBAS) and Multidimensional Small Baseline Subset (MSBAS) are capable of producing time series of ground deformation with a very high sub-centimeter precision. Additionally MSBAS allows combination of various InSAR data into a single set of vertical and horizontal deformation time series further improving their temporal resolution and precision. Developed methodologies are ready for operational monitoring of natural and anthropogenic hazards, including landslides, volcanoes, earthquakes and tectonic motion and ground subsidence caused by mining and groundwater extraction. Here we present various case studies where an InSAR time series analysis was able to map ground deformation with superior resolution and precision, including mining subsidence in the Greater Luxembourg region and southern Saskatchewan, groundwater extraction related subsidence in the Greater Vancouver Region, volcanic deformation in the Virunga Volcanic Province, and tectonic deformation and landslide in northern California. Often, InSAR is the best cost-efficient solution with no restrictions on spatial coverage, weather or lighting condition and timing. It is anticipated that the use of SAR data for mapping hazards will increase in the future as data access improves.

  13. A long-time, high spatiotemporal resolution optical recording system for membrane potential activity via real-time writing to the hard disk.

    PubMed

    Hirota, Akihiko; Ito, Shin-ichi

    2006-06-01

    Using real-time hard disk recording, we have developed an optical system for the long-duration detection of changes in membrane potential from 1,020 sites with a high temporal resolution. The signal-to-noise ratio was sufficient for analyzing the spreading pattern of excitatory waves in frog atria in a single sweep.

  14. A versatile fluorescence lifetime imaging system for scanning large areas with high time and spatial resolution

    NASA Astrophysics Data System (ADS)

    Bernardo, César; Belsley, Michael; de Matos Gomes, Etelvina; Gonçalves, Hugo; Isakov, Dmitry; Liebold, Falk; Pereira, Eduardo; Pires, Vladimiro; Samantilleke, Anura; Vasilevskiy, Mikhail; Schellenberg, Peter

    2014-08-01

    We present a flexible fluorescence lifetime imaging device which can be employed to scan large sample areas with a spatial resolution adjustable from many micrometers down to sub-micrometers and a temporal resolution of 20 picoseconds. Several different applications of the system will be presented including protein microarrays analysis, the scanning of historical samples, evaluation of solar cell surfaces and nanocrystalline organic crystals embedded in electrospun polymeric nanofibers. Energy transfer processes within semiconductor quantum dot superstructures as well as between dye probes and graphene layers were also investigated.

  15. Design and performance evaluation of a high resolution IRI-microPET preclinical scanner

    NASA Astrophysics Data System (ADS)

    Islami rad, S. Z.; Peyvandi, R. Gholipour; lehdarboni, M. Askari; Ghafari, A. A.

    2015-05-01

    PET for small animal, IRI-microPET, was designed and built at the NSTRI. The scanner is made of four detectors positioned on a rotating gantry at a distance 50 mm from the center. Each detector consists of a 10×10 crystal matrix of 2×2×10 mm3 directly coupled to a PS-PMT. A position encoding circuit for specific PS-PMT has been designed, built and tested with a PD-MFS-2MS/s-8/14 data acquisition board. After implementing reconstruction algorithms (FBP, MLEM and SART) on sinograms, images quality and system performance were evaluated by energy resolution, timing resolution, spatial resolution, scatter fraction, sensitivity, RMS contrast and SNR parameters. The energy spectra were obtained for the crystals with an energy window of 300-700 keV. The energy resolution in 511 keV averaged over all modules, detectors, and crystals, was 23.5%. A timing resolution of 2.4 ns FWHM obtained by coincidence timing spectrum was measured with crystal LYSO. The radial and tangential resolutions for 18F (1.15-mm inner diameter) at the center of the field of view were 1.81 mm and 1.90 mm, respectively. At a radial offset of 5 mm, the FWHM values were 1.96 and 2.06 mm. The system scatter fraction was 7.1% for the mouse phantom. The sensitivity was measured for different energy windows, leading to a sensitivity of 1.74% at the center of FOV. Also, images quality was evaluated by RMS contrast and SNR factors, and the results show that the reconstructed images by MLEM algorithm have the best RMS contrast, and SNR. The IRI-microPET presents high image resolution, low scatter fraction values and improved SNR for animal studies.

  16. Cyberinfrastructure to support Real-time, End-to-End, High Resolution, Localized Forecasting

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.; Lindholm, D.; Baltzer, T.; Domenico, B.

    2004-12-01

    From natural disasters such as flooding and forest fires to man-made disasters such as toxic gas releases, the impact of weather-influenced severe events on society can be profound. Understanding, predicting, and mitigating such local, mesoscale events calls for a cyberinfrastructure to integrate multidisciplinary data, tools, and services as well as the capability to generate and use high resolution data (such as wind and precipitation) from localized models. The need for such end to end systems -- including data collection, distribution, integration, assimilation, regionalized mesoscale modeling, analysis, and visualization -- has been realized to some extent in many academic and quasi-operational environments, especially for atmospheric sciences data. However, many challenges still remain in the integration and synthesis of data from multiple sources and the development of interoperable data systems and services across those disciplines. Over the years, the Unidata Program Center has developed several tools that have either directly or indirectly facilitated these local modeling activities. For example, the community is using Unidata technologies such as the Internet Data Distribution (IDD) system, Local Data Manger (LDM), decoders, netCDF libraries, Thematic Realtime Environmental Distributed Data Services (THREDDS), and the Integrated Data Viewer (IDV) in their real-time prediction efforts. In essence, these technologies for data reception and processing, local and remote access, cataloging, and analysis and visualization coupled with technologies from others in the community are becoming the foundation of a cyberinfrastructure to support an end-to-end regional forecasting system. To build on these capabilities, the Unidata Program Center is pleased to be a significant contributor to the Linked Environments for Atmospheric Discovery (LEAD) project, a NSF-funded multi-institutional large Information Technology Research effort. The goal of LEAD is to create an

  17. Very high resolution time-lapse photography for plant and ecosystems research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Very high resolution gigapixel photography increasingly is being used to support a broad range of ecosystem and physical process research because it offers an inexpensive means of simultaneously collecting information at a range of spatial scales. Recently, methods have been developed to incorporate...

  18. High resolution frequency to time domain transformations applied to the stepped carrier MRIS measurements

    NASA Technical Reports Server (NTRS)

    Ardalan, Sasan H.

    1992-01-01

    Two narrow-band radar systems are developed for high resolution target range estimation in inhomogeneous media. They are reformulations of two presently existing systems such that high resolution target range estimates may be achieved despite the use of narrow bandwidth radar pulses. A double sideband suppressed carrier radar technique originally derived in 1962, and later abandoned due to its inability to accurately measure target range in the presence of an interfering reflection, is rederived to incorporate the presence of an interfering reflection. The new derivation shows that the interfering reflection causes a period perturbation in the measured phase response. A high resolution spectral estimation technique is used to extract the period of this perturbation leading to accurate target range estimates independent of the signal-to-interference ratio. A non-linear optimal signal processing algorithm is derived for a frequency-stepped continuous wave radar system. The resolution enhancement offered by optimal signal processing of the data over the conventional Fourier Transform technique is clearly demonstrated using measured radar data. A method for modeling plane wave propagation in inhomogeneous media based on transmission line theory is derived and studied. Several simulation results including measurement of non-uniform electron plasma densities that develop near the heat tiles of a space re-entry vehicle are presented which verify the validity of the model.

  19. Robust temporal resolution of MSCT cardiac scan by rotation-time update scheme based on analysis of patient ECG database

    NASA Astrophysics Data System (ADS)

    Glasberg, S.; Farjon, D.; Ankry, M.; Eisenbach, S.; Shnapp, M.; Altman, A.

    2007-03-01

    We have analyzed 144 ECG wave-forms that were taken during cardiac CT exams to determine in retrospect the optimized timing for updating the gantry rotation-time. A score was defined, according to the number of heart beats during X-ray on, which fulfill the temporal resolution (tR)condition, tR<100mSec. The temporal resolution calculation was based on dual-cycle π/2 sector segmentation, where the data required for any image is collected during two heart cycle. The results yield a significant improvement of the tR score with the rotation-time update method relative to using a fixed minimal rotation-time of the gantry. The analysis suggest that full heart scan with better than 100mSec temporal resolution per slice can routinely be achieved in 128 slices MSCT scanner by performing gantry rotation-time -update after patient starts its breath hold. At these conditions the required breath-hold time is expected to be less than 15 seconds.

  20. Effects of measurement resolution on the analysis of temperature time series for stream-aquifer flux estimation

    NASA Astrophysics Data System (ADS)

    Soto-López, Carlos D.; Meixner, Thomas; Ferré, Ty P. A.

    2011-12-01

    From its inception in the mid-1960s, the use of temperature time series (thermographs) to estimate vertical fluxes has found increasing use in the hydrologic community. Beginning in 2000, researchers have examined the impacts of measurement and parameter uncertainty on the estimates of vertical fluxes. To date, the effects of temperature measurement discretization (resolution), a characteristic of all digital temperature loggers, on the determination of vertical fluxes has not been considered. In this technical note we expand the analysis of recently published work to include the effects of temperature measurement resolution on estimates of vertical fluxes using temperature amplitude and phase shift information. We show that errors in thermal front velocity estimation introduced by discretizing thermographs differ when amplitude or phase shift data are used to estimate vertical fluxes. We also show that under similar circumstances sensor resolution limits the range over which vertical velocities are accurately reproduced more than uncertainty in temperature measurements, uncertainty in sensor separation distance, and uncertainty in the thermal diffusivity combined. These effects represent the baseline error present and thus the best-case scenario when discrete temperature measurements are used to infer vertical fluxes. The errors associated with measurement resolution can be minimized by using the highest-resolution sensors available. But thoughtful experimental design could allow users to select the most cost-effective temperature sensors to fit their measurement needs.

  1. Proteus mirabilis RMS 203 as a new representative of the O13 Proteus serogroup.

    PubMed

    Palusiak, Agata; Siwińska, Małgorzata; Zabłotni, Agnieszka

    2015-01-01

    The unique feature of some Proteus O-polysaccharides is occurrence of an amide of galacturonic acid with N(ε)-[(S/R)-1-Carboxyethyl]-L-lysine, GalA6(2S,8S/R-AlaLys). The results of the serological studies presented here, with reference to known O-antigens structures suggest that GalA6(2S,8S/R-AlaLys) or 2S,8R-AlaLys contribute to cross-reactions of O13 Proteus antisera, and Proteeae LPSs. It was also revealed that the Proteus mirabilis RMS 203 strain can be classified into the O13 serogroup, represented so far by two strains: Proteus mirabilis 26/57 and Proteus vulgaris 8344. The O13 LPS is a serologically important antigen with a fragment common to LPSs of different species in the Proteeae tribe.

  2. Time-Evolution and Thermal Mapping of Io's Loki Patera at High Resolution

    NASA Astrophysics Data System (ADS)

    de Kleer, Katherine R.; Skrutskie, Michael F.; Leisenring, Jarron; de Pater, Imke; Davies, Ashley; Conrad, Al; Caleb Resnick, Aaron; Hinz, Philip; Defrère, Denis; Veillet, Christian

    2016-10-01

    Observations of Loki Patera with Keck, Gemini N, and the Large Binocular Telescope have yielded a wealth of information in the past several years. Observations with adaptive optics at the Keck and Gemini N telescopes have captured multiple brightening events since 2009. High-cadence observations of the three most recent events place constraints on the thermal properties of the magma and indicate a dependency of the observed intensity on either viewing geometry or mean anomaly. Large Binocular Telescope Interferometer (LBTI) observations during a Europa mutual event have yielded the first-ever temperature map of the entire patera floor at high spatial resolution. M-band (4.7-micron) images were recorded during the event at a cadence of 123 milliseconds, corresponding to a spatial resolution of 10 km across the entire ~200-km patera. This represents a factor of 40 improvement over the spatial resolution achieved by standard adaptive optics imaging with a 10-m telescope at this wavelength. A map of the lava age distribution within the patera is derived from the temperature map using models for cooling basaltic lavas, and the resurfacing rate is calculated. This age distribution, as well as the locations of emission derived from the Keck and Gemini N observations, suggests that resurfacing proceeds in a clockwise direction, contrary to previous findings. All data are consistent with resurfacing by an overturn front on a magma sea, but other resurfacing mechanisms are not ruled out.

  3. Time-resolved PIV technique for high temporal resolution measurement of mechanical prosthetic aortic valve fluid dynamics.

    PubMed

    Kaminsky, R; Morbiducci, U; Rossi, M; Scalise, L; Verdonck, P; Grigioni, M

    2007-02-01

    Prosthetic heart valves (PHVs) have been used to replace diseased native valves for more than five decades. Among these, mechanical PHVs are the most frequently implanted. Unfortunately, these devices still do not achieve ideal behavior and lead to many complications, many of which are related to fluid mechanics. The fluid dynamics of mechanical PHVs are particularly complex and the fine-scale characteristics of such flows call for very accurate experimental techniques. Adequate temporal resolution can be reached by applying time-resolved PIV, a high-resolution dynamic technique which is able to capture detailed chronological changes in the velocity field. The aim of this experimental study is to investigate the evolution of the flow field in a detailed time domain of a commercial bileaflet PHV in a mock-loop mimicking unsteady conditions, by means of time-resolved 2D Particle Image Velocimetry (PIV). The investigated flow field corresponded to the region immediately downstream of the valve plane. Spatial resolution as in "standard" PIV analysis of prosthetic valve fluid dynamics was used. The combination of a Nd:YLF high-repetition-rate double-cavity laser with a high frame rate CMOS camera allowed a detailed, highly temporally resolved acquisition (up to 10000 fps depending on the resolution) of the flow downstream of the PHV. Features that were observed include the non-homogeneity and unsteadiness of the phenomenon and the presence of large-scale vortices within the field, especially in the wake of the valve leaflets. Furthermore, we observed that highly temporally cycle-resolved analysis allowed the different behaviors exhibited by the bileaflet valve at closure to be captured in different acquired cardiac cycles. By accurately capturing hemodynamically relevant time scales of motion, time-resolved PIV characterization can realistically be expected to help designers in improving PHV performance and in furnishing comprehensive validation with experimental data

  4. Rapid High-throughput Species Identification of Botanical Material Using Direct Analysis in Real Time High Resolution Mass Spectrometry

    PubMed Central

    Lesiak, Ashton D.; Musah, Rabi A.

    2016-01-01

    We demonstrate that direct analysis in real time-high resolution mass spectrometry can be used to produce mass spectral profiles of botanical material, and that these chemical fingerprints can be used for plant species identification. The mass spectral data can be acquired rapidly and in a high throughput manner without the need for sample extraction, derivatization or pH adjustment steps. The use of this technique bypasses challenges presented by more conventional techniques including lengthy chromatography analysis times and resource intensive methods. The high throughput capabilities of the direct analysis in real time-high resolution mass spectrometry protocol, coupled with multivariate statistical analysis processing of the data, provide not only class characterization of plants, but also yield species and varietal information. Here, the technique is demonstrated with two psychoactive plant products, Mitragyna speciosa (Kratom) and Datura (Jimsonweed), which were subjected to direct analysis in real time-high resolution mass spectrometry followed by statistical analysis processing of the mass spectral data. The application of these tools in tandem enabled the plant materials to be rapidly identified at the level of variety and species. PMID:27768072

  5. Rapid High-throughput Species Identification of Botanical Material Using Direct Analysis in Real Time High Resolution Mass Spectrometry.

    PubMed

    Lesiak, Ashton D; Musah, Rabi A

    2016-10-02

    We demonstrate that direct analysis in real time-high resolution mass spectrometry can be used to produce mass spectral profiles of botanical material, and that these chemical fingerprints can be used for plant species identification. The mass spectral data can be acquired rapidly and in a high throughput manner without the need for sample extraction, derivatization or pH adjustment steps. The use of this technique bypasses challenges presented by more conventional techniques including lengthy chromatography analysis times and resource intensive methods. The high throughput capabilities of the direct analysis in real time-high resolution mass spectrometry protocol, coupled with multivariate statistical analysis processing of the data, provide not only class characterization of plants, but also yield species and varietal information. Here, the technique is demonstrated with two psychoactive plant products, Mitragyna speciosa (Kratom) and Datura (Jimsonweed), which were subjected to direct analysis in real time-high resolution mass spectrometry followed by statistical analysis processing of the mass spectral data. The application of these tools in tandem enabled the plant materials to be rapidly identified at the level of variety and species.

  6. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    SciTech Connect

    Andersen, T.; Jensen, R.; Christensen, M. K.; Chorkendorff, I.; Pedersen, T.; Hansen, O.

    2012-07-15

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/{Delta}m > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH{sub 3}.

  7. High Resolution Global Climate Modeling with GEOS-5: Intense Precipitation, Convection and Tropical Cyclones on Seasonal Time-Scales.

    NASA Technical Reports Server (NTRS)

    Putnam, WilliamM.

    2011-01-01

    In 2008 the World Modeling Summit for Climate Prediction concluded that "climate modeling will need-and is ready-to move to fundamentally new high-resolution approaches to capitalize on the seamlessness of the weather-climate continuum." Following from this, experimentation with very high-resolution global climate modeling has gained enhanced priority within many modeling groups and agencies. The NASA Goddard Earth Observing System model (GEOS-5) has been enhanced to provide a capability for the execution at the finest horizontal resolutions POS,SIOle with a global climate model today. Using this high-resolution, non-hydrostatic version of GEOS-5, we have developed a unique capability to explore the intersection of weather and climate within a seamless prediction system. Week-long weather experiments, to mUltiyear climate simulations at global resolutions ranging from 3.5- to 14-km have demonstrated the predictability of extreme events including severe storms along frontal systems, extra-tropical storms, and tropical cyclones. The primary benefits of high resolution global models will likely be in the tropics, with better predictions of the genesis stages of tropical cyclones and of the internal structure of their mature stages. Using satellite data we assess the accuracy of GEOS-5 in representing extreme weather phenomena, and their interaction within the global climate on seasonal time-scales. The impacts of convective parameterization and the frequency of coupling between the moist physics and dynamics are explored in terms of precipitation intensity and the representation of deep convection. We will also describe the seasonal variability of global tropical cyclone activity within a global climate model capable of representing the most intense category 5 hurricanes.

  8. Modulation structures in the dynamic spectra of Jovian radio emission obtained with high time-frequency resolution

    NASA Astrophysics Data System (ADS)

    Litvinenko, G. V.; Lecacheux, A.; Rucker, H. O.; Konovalenko, A. A.; Ryabov, B. P.; Taubenschuss, U.; Vinogradov, V. V.; Shaposhnikov, V. E.

    2009-01-01

    Aims: The wide-band dynamic spectra of Jovian decameter emission obtained over the last decade with high-frequency and high time resolution equipment on the largest decameter band antenna array, the Ukrainian T-shape Radio telescope (UTR-2), are presented. Methods: We analyzed the data obtained with the Digital SpectroPolarimiter (DSP) and WaveForm Reciever (WFR) installed at UTR-2. The combination of the large antenna and high performance equipment gives the best sensitivity and widest band of analysis, dynamic range, time and frequency resolutions. The wavelet transform method and the Fourier technique was used for further data processing. Results: The main characteristics of already known and newly detected modulation events were investigated and specified. The new receiving-recording facilities, methodology and program of observations are described in detail.

  9. First MMS Observations of High Time Resolution 3D Electric and Magnetic fields at the Dayside Magnetopause.

    NASA Astrophysics Data System (ADS)

    Torbert, R. B.; Burch, J. L.; Russell, C. T.; Magnes, W.; Ergun, R. E.; Lindqvist, P. A.; Le Contel, O.; Vaith, H.; Macri, J.; Myers, S.; Rau, D.; Needell, J.; King, B.; Granoff, M.; Chutter, M.; Dors, I.; Argall, M. R.; Shuster, J. R.; Olsson, G.; Marklund, G. T.; Khotyaintsev, Y. V.; Eriksson, A. I.; Kletzing, C.; Bounds, S. R.; Anderson, B. J.; Baumjohann, W.; Steller, M.; Bromund, K. R.; Le, G.; Nakamura, R.; Strangeway, R. J.; Leinweber, H. K.; Tucker, S.; Westfall, J.; Fischer, D.; Plaschke, F.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Mauk, B.; Fuselier, S. A.

    2015-12-01

    The electrodynamics at the magnetopause is key to our understanding of ion and electron acceleration within reconnection regions. The Magnetospheric Multiscale (MMS) fleet of four spacecraft was launched into its Phase-1 equatorial orbit of 12 Re apogee specifically to investigate these regions at the Earth's magnetopause. In addition to a comprehensive suite of particle measurements, MMS makes very high time resolution 3D electric and magnetic field measurements of high accuracy using flux-gate, search coil, 3-axis double probe, and electron drift sensors. In September 2015, the MMS fleet will begin to encounter the dusk-side magnetopause in its initial configuration of approximately 160 km separation, allowing investigation of the spatial and temporal characteristics of important electrodynamics during reconnection. Using these field and particle measurements, we present first observations of 3D magnetic and electric fields (including their parallel component), and inferred current sheets, during active magnetopause crossings using the highest time resolution data available on MMS.

  10. SPECT imaging with the long bore collimator: Loss in sensitivity vs improved contrast resolution

    SciTech Connect

    Muller, S.; Polak, J.F.; Holman, B.L.; Eisner, R.L.

    1984-01-01

    A long bore (LB) collimator (16 cm thick) was compared with the standard low energy all purpose (LEAP) collimator for SPECT imaging. Line spread functions at various depths were measured in scatter material (planar imaging). Both collimators have similar full-width-at-half-maximum (FWHM) values yet the LB has less resolution loss with distance and consistently lower full-width-at-tenth-maximum (FWTM) values. An assessment of overall performance was made by planar imaging of the Rollo phantom with both collectors. Performance was judged by calculating the chi-square for the observed and expected contrasts of spherical cold targets (2.54, 1.91, 1.27 and 0.95 cm diameter). In all cases, LB scored consistently better than the LEAP. SPECT imaging of a bar phantom (spacing 2.25 cm) filled with I-123 (p,2n) confirmed the superior contrast resolution of the LB. Using SPECT data from 5 clinical I-123 IMP brain studies and from measurements of % rms noise as a function of total slice counts in a cylindrical phantom, the authors calculate that LB images would have a % rms noise of 8.7% compared to 5.7% for LEAP images acquired over the same time interval. The authors conclude that SPECT of the brain with the LB would lead to improved contrast resolution and a minimal increase in % rms noise despite a significant loss in sensitivity.

  11. Sampling strategies and post-processing methods for increasing the time resolution of organic aerosol measurements requiring long sample-collection times

    NASA Astrophysics Data System (ADS)

    Modini, Rob L.; Takahama, Satoshi

    2016-07-01

    The composition and properties of atmospheric organic aerosols (OAs) change on timescales of minutes to hours. However, some important OA characterization techniques typically require greater than a few hours of sample-collection time (e.g., Fourier transform infrared (FTIR) spectroscopy). In this study we have performed numerical modeling to investigate and compare sample-collection strategies and post-processing methods for increasing the time resolution of OA measurements requiring long sample-collection times. Specifically, we modeled the measurement of hydrocarbon-like OA (HOA) and oxygenated OA (OOA) concentrations at a polluted urban site in Mexico City, and investigated how to construct hourly resolved time series from samples collected for 4, 6, and 8 h. We modeled two sampling strategies - sequential and staggered sampling - and a range of post-processing methods including interpolation and deconvolution. The results indicated that relative to the more sophisticated and costly staggered sampling methods, linear interpolation between sequential measurements is a surprisingly effective method for increasing time resolution. Additional error can be added to a time series constructed in this manner if a suboptimal sequential sampling schedule is chosen. Staggering measurements is one way to avoid this effect. There is little to be gained from deconvolving staggered measurements, except at very low values of random measurement error (< 5 %). Assuming 20 % random measurement error, one can expect average recovery errors of 1.33-2.81 µg m-3 when using 4-8 h-long sequential and staggered samples to measure time series of concentration values ranging from 0.13-29.16 µg m-3. For 4 h samples, 19-47 % of this total error can be attributed to the process of increasing time resolution alone, depending on the method used, meaning that measurement precision would only be improved by 0.30-0.75 µg m-3 if samples could be collected over 1 h instead of 4 h. Devising a

  12. Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent?

    PubMed

    Calabrese, Evan; Badea, Alexandra; Coe, Christopher L; Lubach, Gabriele R; Styner, Martin A; Johnson, G Allan

    2014-11-01

    Interest in mapping white matter pathways in the brain has peaked with the recognition that altered brain connectivity may contribute to a variety of neurologic and psychiatric diseases. Diffusion tractography has emerged as a popular method for postmortem brain mapping initiatives, including the ex-vivo component of the human connectome project, yet it remains unclear to what extent computer-generated tracks fully reflect the actual underlying anatomy. Of particular concern is the fact that diffusion tractography results vary widely depending on the choice of acquisition protocol. The two major acquisition variables that consume scan time, spatial resolution, and diffusion sampling, can each have profound effects on the resulting tractography. In this analysis, we determined the effects of the temporal tradeoff between spatial resolution and diffusion sampling on tractography in the ex-vivo rhesus macaque brain, a close primate model for the human brain. We used the wealth of autoradiography-based connectivity data available for the rhesus macaque brain to assess the anatomic accuracy of six time-matched diffusion acquisition protocols with varying balance between spatial and diffusion sampling. We show that tractography results vary greatly, even when the subject and the total acquisition time are held constant. Further, we found that focusing on either spatial resolution or diffusion sampling at the expense of the other is counterproductive. A balanced consideration of both sampling domains produces the most anatomically accurate and consistent results.

  13. The influence of rainfall time resolution for urban water quality modelling.

    PubMed

    Freni, Gabriele; Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    The objective of this paper is the definition of a methodology to evaluate the impact of the temporal resolution of rainfall measurements in urban drainage modelling applications. More specifically the effect of the temporal resolution on urban water quality modelling is detected analysing the uncertainty of the response of rainfall-runoff modelling. Analyses have been carried out using historical rainfall-discharge data collected for the Fossolo catchment (Bologna, Italy). According to the methodology, the historical rainfall data are taken as a reference, and resampled data have been obtained through a rescaling procedure with variable temporal windows. The shape comparison between 'true' and rescaled rainfall data has been carried out using a non-dimensional accuracy index. Monte Carlo simulations have been carried out applying a parsimonious urban water quality model, using the recorded data and the resampled events. The results of the simulations were used to derive the cumulative probabilities of quantity and quality model outputs (peak discharges, flow volume, peak concentrations and pollutant mass) conditioned on the observation according to the GLUE (Generalized Likelihood Uncertainty Estimation) methodology. The results showed that when coarser rainfall information is available, the model calibration process is still efficient even if modelling uncertainty progressively increases especially with regards to water quality aspects.

  14. The BATSE Gamma-Ray Burst Spectral Catalog. I. High Time Resolution Spectroscopy of Bright Bursts Using High Energy Resolution Data

    NASA Astrophysics Data System (ADS)

    Preece, R. D.; Briggs, M. S.; Mallozzi, R. S.; Pendleton, G. N.; Paciesas, W. S.; Band, D. L.

    2000-01-01

    This is the first in a series of gamma-ray burst spectroscopy catalogs from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory, each covering a different aspect of burst phenomenology. In this paper, we present time sequences of spectral fit parameters for 156 bursts selected for either their high peak flux or fluence. All bursts have at least eight spectra in excess of 45 σ above background and span burst durations from 1.66 to 278 s. Individual spectral accumulations are typically 128 ms long at the peak of the brightest events but can be as short as 16 ms, depending on the type of data selected. We have used mostly high energy resolution data from the Large Area Detectors, covering an energy range of typically 28-1800 keV. The spectral model chosen is from a small empirically determined set of functions, such as the well-known ``GRB'' function, that best fits the time-averaged burst spectra. Thus, there are generally three spectral shape parameters available for each of the 5500 total spectra: a low-energy power-law index, a characteristic break energy, and possibly a high-energy power-law index. We present the distributions of the observed sets of these parameters and comment on their implications. The complete set of data that accompanies this paper is necessarily large and thus is archived in the electronic edition of the Astrophysical Journal.

  15. Cost-effective approaches for high-resolution bioimaging by time-stretched confocal microscopy at 1μm

    NASA Astrophysics Data System (ADS)

    Wong, Terence T. W.; Qiu, Yi; Lau, Andy K. S.; Xu, JingJiang; Chan, Antony C. S.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2012-12-01

    Optical imaging based on time-stretch process has recently been proven as a powerful tool for delivering ultra-high frame rate (< 1MHz) which is not achievable by the conventional image sensors. Together with the capability of optical image amplification for overcoming the trade-off between detection sensitivity and speed, this new imaging modality is particularly valuable in high-throughput biomedical diagnostic practice, e.g. imaging flow cytometry. The ultra-high frame rate in time-stretch imaging is attained by two key enabling elements: dispersive fiber providing the time-stretch process via group-velocity-dispersion (GVD), and electronic digitizer. It is well-known that many biophotonic applications favor the spectral window of ~1μm. However, reasonably high GVD (< 0.1 ns/nm) in this range can only be achieved by using specialty single-mode fiber (SMF) at 1μm. Moreover, the ultrafast detection has to rely on the state-of- the-art digitizer with significantly wide-bandwidth and high sampling rate (e.g. <10 GHz, <40 GS/s). These stringent requirements imply the prohibitively high-cost of the system and hinder its practical use in biomedical diagnostics. We here demonstrate two cost-effective approaches for realizing time-stretch confocal microscopy at 1μm: (i) using the standard telecommunication SMF (e.g. SMF28) to act as a few-mode fiber (FMF) at 1μm for the time-stretch process, and (ii) implementing the pixel super-resolution (SR) algorithm to restore the high-resolution (HR) image when using a lower-bandwidth digitizer. By using a FMF (with a GVD of ~ 0.15ns/nm) and a modified pixel-SR algorithm, we can achieve time-stretch confocal microscopy at 1μm with cellular resolution (~ 3μm) at a frame rate 1 MHz.

  16. Note: Design of a full photon-timing recorder down to 1-ns resolution for fluorescence fluctuation measurements

    SciTech Connect

    Nishimura, Goro

    2015-10-15

    A photon timing recorder was realized in a field programmable gate array to capture all timing data of photons on multiple channels with down to a 1-ns resolution and to transfer all data to a host computer in real-time through universal serial bus with more than 10 M events/s transfer rate. The main concept is that photon time series can be regarded as a serial communication data stream. This recorder was successfully applied for simultaneous measurements of fluorescence fluctuation and lifetime of near-infrared dyes in solution. This design is not only limited to the fluorescence fluctuation measurement but also applicable to any kind of photon counting experiments in a nanosecond time range because of the simple and easily modifiable design.

  17. X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection

    SciTech Connect

    Vernon, S. P.; Lowry, M. E.; Baker, K. L.; Bennett, C. V.; Celeste, J. R.; Cerjan, C.; Haynes, S.; Hernandez, V. J.; Hsing, W. W.; LaCaille, G. A.; London, R. A.; Moran, B.; Schach von Wittenau, A.; Steele, P. T.; Stewart, R. E.

    2012-10-15

    We report recent progress in the development of RadOptic detectors, radiation to optical converters, that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductor sensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility (JLF). This technology will enable x-ray bang-time and fusion burn-history measurements with {approx} ps resolution.

  18. X-ray bang-time and fusion reaction history at ~ps resolution using RadOptic detection

    SciTech Connect

    Vernon, S P; Lowry, M E; Baker, K L; Bennett, C V; Celeste, J R; Cerjan, C; Haynes, S; Hernandez, V J; Hsing, W W; London, R A; Moran, B; von Wittenau, A S; Steele, P T; Stewart, R E

    2012-05-01

    We report recent progress in the development of RadOptic detectors, radiation to optical converters, that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductor sensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility. This technology will enable x-ray bang-time and fusion burn-history measurements with {approx} ps resolution.

  19. Rapid and inexpensive species differentiation using a multiplex real-time polymerase chain reaction high-resolution melt assay.

    PubMed

    Elkins, Kelly M; Perez, Anjelica C U; Sweetin, Katherine C

    2016-05-01

    We demonstrate a method for developing real-time polymerase chain reaction (PCR) high-resolution melt (HRM) assays to identify multiple species present in a mixture simultaneously using LCGreen Plus and melt temperatures. Highly specific PCR primers are designed to yield amplicons with different melt temperatures for simple routine species identification compared with differentiating melt curve kinetics traces or difference plots. This method is robust and automatable, and it leads to savings in time and reagent costs, is easily modified to probe any species of interest, eliminates the need for post-PCR gel or capillary electrophoresis in routine assays, and requires no expensive dye-labeled primers.

  20. Transmissive x-ray beam position monitors with submicron position- and submillisecond time resolution.

    PubMed

    Fuchs, Martin R; Holldack, Karsten; Bullough, Mark; Walsh, Susanne; Wilburn, Colin; Erko, Alexei; Schäfers, Franz; Mueller, Uwe

    2008-06-01

    We present the development of fast transmissive center-of-mass x-ray beam position monitors with a large active area, based on a thinned position sensitive detector in both a duo- and a tetra-lateral variant. The detectors were tested at BESSY beamlines BL14.1, KMC-1, and KMC-2 and yielded signal currents of up to 3 microA/100 mA ring current at 10 keV photon energy using the monochromatic focused beam of BL14.1. The active area sizes were 1 x 1 and 3 x 3 mm(2) for the duo-lateral and 5 x 5 mm(2) for the tetra-lateral devices, with the duo-lateral detectors currently being available in sizes from 1 x 1 to 10 x 10 mm(2) and thicknesses between 5 and 10 microm. The presented detectors' thicknesses were measured to be 5 and 8 microm with a corresponding transmission of up to 93% at 10 keV and 15% at 2.5 keV. Up to a detection bandwidth of 10 kHz, the monitors provide submicron position resolution. For lower detection bandwidths, the signal-to-noise reaches values of up to 6 x 10(4) at 10 Hz, corresponding to a position resolution of better than 50 nm for both detector sizes. As it stands, this monitor design approach promises to be a generic solution for automation of state-of-the-art crystal monochromator beamlines.

  1. Towards a microchannel-based X-ray detector with two-dimensional spatial and time resolution and high dynamic range.

    PubMed

    Adams, Bernhard W; Mane, Anil U; Elam, Jeffrey W; Obaid, Razib; Wetstein, Matthew; Chollet, Matthieu

    2015-09-01

    X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greater than 10(7) events per cm(2). Time-gating can be used for improved dynamic range.

  2. Towards a microchannel-based X-ray detector with two-dimensional spatial and time resolution and high dynamic range

    SciTech Connect

    Adams, Bernhard W.; Mane, Anil; Elam, Jeffrey; Obaid, Razib; Wetstein, Matthew J.

    2015-09-01

    X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greater than 10(7) events per cm(2). Time-gating can be used for improved dynamic range.

  3. First characterization of a digital SiPM based time-of-flight PET detector with 1 mm spatial resolution.

    PubMed

    Seifert, Stefan; van der Lei, Gerben; van Dam, Herman T; Schaart, Dennis R

    2013-05-07

    Monolithic scintillator detectors can offer a combination of spatial resolution, energy resolution, timing performance, depth-of-interaction information, and detection efficiency that make this type of detector a promising candidate for application in clinical, time-of-flight (TOF) positron emission tomography (PET). In such detectors the scintillation light is distributed over a relatively large number of photosensor pixels and the light intensity per pixel can be relatively low. Therefore, monolithic scintillator detectors are expected to benefit from the low readout noise offered by a novel photosensor called the digital silicon photomultiplier (dSiPM). Here, we present a first experimental characterization of a TOF PET detector comprising a 24 × 24 × 10 mm(3) LSO:Ce,0.2%Ca scintillator read out by a dSiPM array (DPC-6400-44-22) developed by Philips Digital Photon Counting. A spatial resolution of ~1 mm full-width-at-half-maximum (FWHM) averaged over the entire crystal was obtained (varying from just below 1 mm FWHM in the detector center to ~1.2 mm FWHM close to the edges). Furthermore, the bias in the position estimation at the crystal edges that is typically found in monolithic scintillators is well below 1 mm even in the corners of the crystal.

  4. High-Resolution Over-the-Horizon Radar Using Time Reversal

    DTIC Science & Technology

    2009-12-07

    successfully demonstrated in acoustics [3-7]. However, the implementation of time reversal in the microwave domain has been impeded by the lack of...of imaging method has been known using time reversal. Most of the time reversal methods proposed to date are mainly intended for retro-directive...beam focusing on a target for tracking. Although several decomposition methods have been developed for some imaging applications, they normally require

  5. Dynamic analysis of Space Shuttle/RMS configuration using continuum approach

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Jayant; Taylor, Lawrence W., Jr.

    1994-01-01

    The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented.

  6. Results from the NA62 Gigatracker Prototype: A Low-Mass and sub-ns Time Resolution Silicon Pixel Detector

    NASA Astrophysics Data System (ADS)

    Fiorini, M.; Rinella, G. Aglieri; Carassiti, V.; Ceccucci, A.; Gil, E. Cortina; Ramusino, A. Cotta; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petagna, P.; Petrucci, F.; Perktold, L.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    The Gigatracker (GTK) is a hybrid silicon pixel detector developed for NA62, the experiment aimed at studying ultra-rare kaon decays at the CERN SPS. Three GTK stations will provide precise momentum and angular measurements on every track of the high intensity NA62 hadron beam with a time-tagging resolution of 150 ps. Multiple scattering and hadronic interactions of beam particles in the GTK have to be minimized to keep background events at acceptable levels, hence the total material budget is fixed to 0.5% X0 per station. In addition the calculated fluence for 100 days of running is 2×1014 1 MeV neq/cm2, comparable to the one expected for the inner trackers of LHC detectors in 10 years of operation. These requirements pose challenges for the development of an efficient and low-mass cooling system, to be operated in vacuum, and on the thinning of read-out chips to 100 μm or less. The most challenging requirement is represented by the time resolution, which can be achieved by carefully compensating for the discriminator time-walk. For this purpose, two complementary read-out architectures have been designed and produced as small-scale prototypes: the first is based on the use of a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other uses a constant-fraction discriminator followed by an on-pixel TDC. The readout pixel ASICs are produced in 130 nm IBM CMOS technology and bump-bonded to 200 μm thick silicon sensors. The Gigatracker detector system is described with particular emphasis on recent experimental results obtained from laboratory and beam tests of prototype bump-bonded assemblies, which show a time resolution of less than 200 ps for single hits.

  7. Tuning the instrument resolution using chopper and time of flight at the small-angle neutron scattering diffractometer KWS-2

    PubMed Central

    Radulescu, Aurel; Székely, Noémi Kinga; Polachowski, Stephan; Leyendecker, Marko; Amann, Matthias; Buitenhuis, Johan; Drochner, Matthias; Engels, Ralf; Hanslik, Romuald; Kemmerling, Günter; Lindner, Peter; Papagiannopoulos, Aristeidis; Pipich, Vitaliy; Willner, Lutz; Frielinghaus, Henrich; Richter, Dieter

    2015-01-01

    Following demand from the user community regarding the possibility of improving the experimental resolution, the dedicated high-intensity/extended Q-range SANS diffractometer KWS-2 of the Jülich Centre for Neutron Science at the Heinz Maier-Leibnitz Center in Garching was equipped with a double-disc chopper with a variable opening slit window and time-of-flight (TOF) data acquisition option. The chopper used in concert with a dedicated high-intensity velocity selector enables the tuning at will of the wavelength resolution Δλ/λ within a broad range, from 20% (standard) down to 2%, in a convenient and safe manner following pre-planned or spontaneous decisions during the experiment. The new working mode is described in detail, and its efficiency is demonstrated on several standard samples with known properties and on a completely new crystallizable copolymer system, which were investigated using both the conventional (static) and TOF modes. PMID:26664343

  8. Nanoalloying in real time. A high resolution STEM and computer simulation study

    NASA Astrophysics Data System (ADS)

    Mariscal, M. M.; Mayoral, A.; Olmos-Asar, J. A.; Magen, C.; Mejía-Rosales, S.; Pérez-Tijerina, E.; José-Yacamán, M.

    2011-12-01

    Bimetallic nanoparticles constitute a promising type of catalysts, mainly because their physical and chemical properties may be tuned by varying their chemical composition, atomic ordering, and size. Today, the design of novel nanocatalysts is possible through a combination of virtual lab simulations on massive parallel computing and modern electron microscopy with picometre resolution on one hand, and the capability of chemical analysis at the atomic scale on the other. In this work we show how the combination of theoretical calculations and characterization can solve some of the paradoxes reported about nanocatalysts: Au-Pd bimetallic nanoparticles. In particular, we demonstrate the key role played by adsorbates, such as carbon monoxide (CO), on the structure of nanoalloys. Our results imply that surface condition of nanoparticles during synthesis is a parameter of paramount importance.Bimetallic nanoparticles constitute a promising type of catalysts, mainly because their physical and chemical properties may be tuned by varying their chemical composition, atomic ordering, and size. Today, the design of novel nanocatalysts is possible through a combination of virtual lab simulations on massive parallel computing and modern electron microscopy with picometre resolution on one hand, and the capability of chemical analysis at the atomic scale on the other. In this work we show how the combination of theoretical calculations and characterization can solve some of the paradoxes reported about nanocatalysts: Au-Pd bimetallic nanoparticles. In particular, we demonstrate the key role played by adsorbates, such as carbon monoxide (CO), on the structure of nanoalloys. Our results imply that surface condition of nanoparticles during synthesis is a parameter of paramount importance. Electronic supplementary information (ESI) available: (S1) (a) Aberration corrected STEM-HAADF image taken after beam irradiation, where the intensity profile, marked by a red rectangle, was taken

  9. Toward observationally constrained high space and time resolution CO2 urban emission inventories

    NASA Astrophysics Data System (ADS)

    Maness, H.; Teige, V. E.; Wooldridge, P. J.; Weichsel, K.; Holstius, D.; Hooker, A.; Fung, I. Y.; Cohen, R. C.

    2013-12-01

    The spatial patterns of greenhouse gas (GHG) emission and sequestration are currently studied primarily by sensor networks and modeling tools that were designed for global and continental scale investigations of sources and sinks. In urban contexts, by design, there has been very limited investment in observing infrastructure, making it difficult to demonstrate that we have an accurate understanding of the mechanism of emissions or the ability to track processes causing changes in those emissions. Over the last few years, our team has built a new high-resolution observing instrument to address urban CO2 emissions, the BErkeley Atmospheric CO2 Observing Network (BEACON). The 20-node network is constructed on a roughly 2 km grid, permitting direct characterization of the internal structure of emissions within the San Francisco East Bay. Here we present a first assessment of BEACON's promise for evaluating the effectiveness of current and upcoming local emissions policy. Within the next several years, a variety of locally important changes are anticipated--including widespread electrification of the motor vehicle fleet and implementation of a new power standard for ships at the port of Oakland. We describe BEACON's expected performance for detecting these changes, based on results from regional forward modeling driven by a suite of projected inventories. We will further describe the network's current change detection capabilities by focusing on known high temporal frequency changes that have already occurred; examples include a week of significant freeway traffic congestion following the temporary shutdown of the local commuter rail (the Bay Area Rapid Transit system).

  10. Physics Impact of Improvements to the Beam Timing Resolution at MicroBooNE

    NASA Astrophysics Data System (ADS)

    Miceli, Tia; MicroBooNE Collaboration

    2017-01-01

    The MicroBooNE detector is a liquid argon time-projection chamber (89 tons active mass) at Fermilab designed to measure interactions of neutrinos from the Booster Neutrino Beamline (BNB) and the Neutrinos at the Main Injector (NuMI) beamline. During the first year of data-taking, the arrival time of the neutrinos was only understood with an accuracy of 100 ns for the BNB, and was unverified for NuMI. A set of upgrades has been implemented that will reduce the uncertainty in beam delivery time by two orders of magnitude, significantly improving our ability to observe neutral-current elastic interactions in the BNB, and kaon decays at rest using NuMI. This talk explains the improvements in neutrino arrival timing, their impact on these two analyses, and the overall benefit to all other MicroBooNE measurements. DOE Office of Science.

  11. Spatially distributed smart skin seat sensor for high-resolution real-time occupant position tracking

    NASA Astrophysics Data System (ADS)

    Hubbard, James E., Jr.; Burke, Shawn E.

    1999-07-01

    A 2D spatially distributed smart skin sensor for real-time seat occupant position sensing is presented. The sensor exploits principles of spatial aperture shading of distributed transducers such as piezo-electric polymers and resistors, which are used as the active sensing medium. An example application is presented in which the sensor is used to report passenger position to an automobile air bag control system. The real-time data is used to modulate airbag deployment energies, mitigating passenger injury.

  12. High-Speed, High-Resolution Time-to-Digital Conversion

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor; Garcia, Rafael

    2013-01-01

    This innovation is a series of time-tag pulses from a photomultiplier tube, featuring short time interval between pulses (e.g., 2.5 ns). Using the previous art, dead time between pulses is too long, or too much hardware is required, including a very-high-speed demultiplexer. A faster method is needed. The goal of this work is to provide circuits to time-tag pulses that arrive at a high rate using the hardwired logic in an FPGA - specifically the carry chain - to create what is (in effect) an analog delay line. High-speed pulses travel down the chain in a "wave." For instance, a pulse train has been demonstrated from a 1- GHz source reliably traveling down the carry chain. The size of the carry chain is over 10 ns in the time domain. Thus, multiple pulses will travel down the carry chain in a wave simultaneously. A register clocked by a low-skew clock takes a "snapshot" of the wave. Relatively simple logic can extract the pulses from the snapshot picture by detecting the transitions between logic states. The propagation delay of CMOS (complementary metal oxide semiconductor) logic circuits will differ and/or change as a result of temperature, voltage, age, radiation, and manufacturing variances. The time-to-digital conversion circuits can be calibrated with test signals, or the changes can be nulled by a separate on-die calibration channel, in a closed loop circuit.

  13. Time-reversal symmetric resolution of unity without background integrals in open quantum systems

    SciTech Connect

    Hatano, Naomichi; Ordonez, Gonzalo

    2014-12-15

    We present a new complete set of states for a class of open quantum systems, to be used in expansion of the Green’s function and the time-evolution operator. A remarkable feature of the complete set is that it observes time-reversal symmetry in the sense that it contains decaying states (resonant states) and growing states (anti-resonant states) parallelly. We can thereby pinpoint the occurrence of the breaking of time-reversal symmetry at the choice of whether we solve Schrödinger equation as an initial-condition problem or a terminal-condition problem. Another feature of the complete set is that in the subspace of the central scattering area of the system, it consists of contributions of all states with point spectra but does not contain any background integrals. In computing the time evolution, we can clearly see contribution of which point spectrum produces which time dependence. In the whole infinite state space, the complete set does contain an integral but it is over unperturbed eigenstates of the environmental area of the system and hence can be calculated analytically. We demonstrate the usefulness of the complete set by computing explicitly the survival probability and the escaping probability as well as the dynamics of wave packets. The origin of each term of matrix elements is clear in our formulation, particularly, the exponential decays due to the resonance poles.

  14. Is a 4-Bit Synaptic Weight Resolution Enough? – Constraints on Enabling Spike-Timing Dependent Plasticity in Neuromorphic Hardware

    PubMed Central

    Pfeil, Thomas; Potjans, Tobias C.; Schrader, Sven; Potjans, Wiebke; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz

    2012-01-01

    Large-scale neuromorphic hardware systems typically bear the trade-off between detail level and required chip resources. Especially when implementing spike-timing dependent plasticity, reduction in resources leads to limitations as compared to floating point precision. By design, a natural modification that saves resources would be reducing synaptic weight resolution. In this study, we give an estimate for the impact of synaptic weight discretization on different levels, ranging from random walks of individual weights to computer simulations of spiking neural networks. The FACETS wafer-scale hardware system offers a 4-bit resolution of synaptic weights, which is shown to be sufficient within the scope of our network benchmark. Our findings indicate that increasing the resolution may not even be useful in light of further restrictions of customized mixed-signal synapses. In addition, variations due to production imperfections are investigated and shown to be uncritical in the context of the presented study. Our results represent a general framework for setting up and configuring hardware-constrained synapses. We suggest how weight discretization could be considered for other backends dedicated to large-scale simulations. Thus, our proposition of a good hardware verification practice may rise synergy effects between hardware developers and neuroscientists. PMID:22822388

  15. Deployment of High Resolution Real-Time Distribution Level Metering on Maui: Preprint

    SciTech Connect

    Bank, J.

    2013-01-01

    In order to support the ongoing Maui Smart Grid demonstration project advanced metering has been deployed at the distribution transformer level in Maui Electric Company's Kihei Circuit on the Island of Maui. This equipment has been custom designed to provide accurately time-stamped Phasor and Power Quality data in real time. Additionally, irradiance sensors have been deployed at a few selected locations in proximity to photovoltaic (PV) installations. The received data is being used for validation of existing system models and for impact studies of future system hardware. Descriptions of the hardware and its installation, and some preliminary metering results are presented. Real-time circuit visualization applications for the data are also under development.

  16. A single-sweep, nanosecond time resolution laser temperature-jump apparatus

    NASA Astrophysics Data System (ADS)

    Ballew, R. M.; Sabelko, J.; Reiner, C.; Gruebele, M.

    1996-10-01

    We describe a fast temperature-jump (T-jump) apparatus capable of acquiring kinetic relaxation transients via real-time fluorescence detection over a time interval from nanoseconds to milliseconds in a single sweep. The method is suitable for aqueous solutions, relying upon the direct absorption of laser light by the bulk water. This obviates the need for additives (serving as optical or conductive heaters) that may interact with the sample under investigation. The longitudinal temperature profile is made uniform by counterpropagating heating pulses. Dead time is limited to one period of the probe laser (16 ns). The apparatus response is tested with aqueous tryptophan and the diffusion-controlled dimerization of proflavine.

  17. High-time-resolution Measurements of the Polarization of the Crab Pulsar at 1.38 GHz

    NASA Astrophysics Data System (ADS)

    Słowikowska, Agnieszka; Stappers, Benjamin W.; Harding, Alice K.; O'Dell, Stephen L.; Elsner, Ronald F.; van der Horst, Alexander J.; Weisskopf, Martin C.

    2015-01-01

    Using the Westerbork Synthesis Radio Telescope, we obtained high-time-resolution measurements of the full polarization of the Crab pulsar. At a resolution of 1/8192 of the 34 ms pulse period (i.e., 4.1 μs), the 1.38 GHz linear-polarization measurements are in general agreement with previous lower-time-resolution 1.4 GHz measurements of linear polarization in the main pulse (MP), in the interpulse (IP), and in the low-frequency component (LFC). We find the MP and IP to be linearly polarized at about 24% and 21% with no discernible difference in polarization position angle. However, contrary to theoretical expectations and measurements in the visible, we find no evidence for significant variation (sweep) in the polarization position angle over the MP, the IP, or the LFC. We discuss the implications, which appear to be in contradiction to theoretical expectations. We also detect weak circular polarization in the MP and IP, and strong (≈20%) circular polarization in the LFC, which also exhibits very strong (≈98%) linear polarization at a position angle of 40° from that of the MP or IP. The properties are consistent with the LFC, which is a low-altitude component, and the MP and IP, which are high-altitude caustic components. Current models for the MP and IP emission do not readily account for the absence of pronounced polarization changes across the pulse. We measure IP and LFC pulse phases relative to the MP consistent with recent measurements, which have shown that the phases of these pulse components are evolving with time.

  18. HIGH-TIME-RESOLUTION MEASUREMENTS OF THE POLARIZATION OF THE CRAB PULSAR AT 1.38 GHz

    SciTech Connect

    Słowikowska, Agnieszka; Stappers, Benjamin W.; Harding, Alice K.; O'Dell, Stephen L.; Elsner, Ronald F.; Weisskopf, Martin C.; Van der Horst, Alexander J.

    2015-01-20

    Using the Westerbork Synthesis Radio Telescope, we obtained high-time-resolution measurements of the full polarization of the Crab pulsar. At a resolution of 1/8192 of the 34 ms pulse period (i.e., 4.1 μs), the 1.38 GHz linear-polarization measurements are in general agreement with previous lower-time-resolution 1.4 GHz measurements of linear polarization in the main pulse (MP), in the interpulse (IP), and in the low-frequency component (LFC). We find the MP and IP to be linearly polarized at about 24% and 21% with no discernible difference in polarization position angle. However, contrary to theoretical expectations and measurements in the visible, we find no evidence for significant variation (sweep) in the polarization position angle over the MP, the IP, or the LFC. We discuss the implications, which appear to be in contradiction to theoretical expectations. We also detect weak circular polarization in the MP and IP, and strong (≈20%) circular polarization in the LFC, which also exhibits very strong (≈98%) linear polarization at a position angle of 40° from that of the MP or IP. The properties are consistent with the LFC, which is a low-altitude component, and the MP and IP, which are high-altitude caustic components. Current models for the MP and IP emission do not readily account for the absence of pronounced polarization changes across the pulse. We measure IP and LFC pulse phases relative to the MP consistent with recent measurements, which have shown that the phases of these pulse components are evolving with time.

  19. High-resolution timing of cell cycle-regulated gene expression

    PubMed Central

    Rowicka, Maga; Kudlicki, Andrzej; Tu, Benjamin P.; Otwinowski, Zbyszek

    2007-01-01

    The eukaryotic cell division cycle depends on an intricate sequence of transcriptional events. Using an algorithm based on maximum-entropy deconvolution, and expression data from a highly synchronized yeast culture, we have timed the peaks of expression of transcriptionally regulated cell cycle genes to an accuracy of 2 min (≈1% of the cell cycle time). The set of 1,129 cell cycle-regulated genes was identified by a comprehensive analysis encompassing all available cell cycle yeast data sets. Our results reveal distinct subphases of the cell cycle undetectable by morphological observation, as well as the precise timeline of macromolecular complex assembly during key cell cycle events. PMID:17827275

  20. Image resolution enhancement using edge extraction and sparse representation in wavelet domain for real-time application

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr I.; Chavez-Roman, Herminio; Gonzalez-Huitron, Victor

    2014-05-01

    The paper presents the design and hardware implementation of novel framework for image resolution enhancement employing the wavelet domain. The principal idea of resolution enhancement consists of using edge preservation procedure and mutual interpolation between the input low-resolution (LR) image and the HF sub-band images performed via the Discrete Wavelet Transform (DWT). The LR image is used in the sparse representation for the resolutionenhancement process, employing a 1-D interpolation in set of angle directions; following, the computations of the new samples are found, estimating the missing samples. Finally, pixels are performed via the Lanczos interpolation. To preserve more edge information additional edge extraction in HF sub-bands is performed in the DWT decomposition of input image. The differences between the LL sub-band image and LR input image is used to correct the HF component, generating a significantly sharper reconstructed image. All sub-band images are used to generate the new HR image applying the inverse DWT (IDWT). Additionally, the novel framework employs a denoising procedure by using the Non-Local Means for the input LR image. An efficiency analysis of the designed and other state-of-the-art filters have been performed on the DSP TMS320DM648 by Texas Instruments through MATLAB's Simulink module and on the video card (NVIDIA®Quadro® K2000), showing that novel SR procedure can be used in real-time processing applications. Experimental results have confirmed that implemented framework outperforms existing SR algorithms in terms of objective criteria (PSNR, MAE and SSIM) as well as in subjective perception, justifying better image resolution.

  1. Nonlinear spectroscopy in the near-field: time resolved spectroscopy and subwavelength resolution non-invasive imaging

    NASA Astrophysics Data System (ADS)

    Namboodiri, Mahesh; Khan, Tahirzeb; Karki, Khadga; Kazemi, Mehdi Mohammad; Bom, Sidhant; Flachenecker, Günter; Namboodiri, Vinu; Materny, Arnulf

    2014-04-01

    The combination of near-field microscopy along with nonlinear optical spectroscopic techniques is presented here. The scanning near-field imaging technique can be integrated with nonlinear spectroscopic techniques to improve spatial and axial resolution of the images. Additionally, ultrafast dynamics can be probed down to nano-scale dimension. The review shows some examples for this combination, which resulted in an exciton map and vibrational contrast images with sub-wavelength resolution. Results of two-color femtosecond time-resolved pump-probe experiments using scanning near-field optical microscopy (SNOM) on thin films of the organic semiconductor 3,4,9,10 Perylenetetracarboxylic dianhydride (PTCDA) are presented. While nonlinear Raman techniques have been used to obtain highly resolved images in combination with near-field microscopy, the use of femtosecond laser pulses in electronic resonance still constitutes a big challenge. Here, we present our first results on coherent anti-Stokes Raman scattering (fs-CARS) with femtosecond laser pulses detected in the near-field using SNOM. We demonstrate that highly spatially resolved images can be obtained from poly(3-hexylthiophene) (P3HT) nano-structures where the fs-CARS process was in resonance with the P3HT absorption and with characteristic P3HT vibrational modes without destruction of the samples. Sub-diffraction limited lateral resolution is achieved. Especially the height resolution clearly surpasses that obtained with standard microCARS. These results will be the basis for future investigations of mode-selective dynamics in the near-field.

  2. Development of a pixel sensor with fine space-time resolution based on SOI technology for the ILC vertex detector

    NASA Astrophysics Data System (ADS)

    Ono, Shun; Togawa, Manabu; Tsuji, Ryoji; Mori, Teppei; Yamada, Miho; Arai, Yasuo; Tsuboyama, Toru; Hanagaki, Kazunori

    2017-02-01

    We have been developing a new monolithic pixel sensor with silicon-on-insulator (SOI) technology for the International Linear Collider (ILC) vertex detector system. The SOI monolithic pixel detector is realized using standard CMOS circuits fabricated on a fully depleted sensor layer. The new SOI sensor SOFIST can store both the position and timing information of charged particles in each 20×20 μm2 pixel. The position resolution is further improved by the position weighted with the charges spread to multiple pixels. The pixel also records the hit timing with an embedded time-stamp circuit. The sensor chip has column-parallel analog-to-digital conversion (ADC) circuits and zero-suppression logic for high-speed data readout. We are designing and evaluating some prototype sensor chips for optimizing and minimizing the pixel circuit.

  3. New strategy to identify radicals in a time evolving EPR data set by multivariate curve resolution-alternating least squares.

    PubMed

    Fadel, Maya Abou; de Juan, Anna; Vezin, Hervé; Duponchel, Ludovic

    2016-12-01

    Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique that is able to characterize radicals formed in kinetic reactions. However, spectral characterization of individual chemical species is often limited or even unmanageable due to the severe kinetic and spectral overlap among species in kinetic processes. Therefore, we applied, for the first time, multivariate curve resolution-alternating least squares (MCR-ALS) method to EPR time evolving data sets to model and characterize the different constituents in a kinetic reaction. Here we demonstrate the advantage of multivariate analysis in the investigation of radicals formed along the kinetic process of hydroxycoumarin in alkaline medium. Multiset analysis of several EPR-monitored kinetic experiments performed in different conditions revealed the individual paramagnetic centres as well as their kinetic profiles. The results obtained by MCR-ALS method demonstrate its prominent potential in analysis of EPR time evolved spectra.

  4. Monitoring irrigation volumes using high-resolution NDVI image time series: calibration and validation in the Kairouan plain (Tunisia)

    NASA Astrophysics Data System (ADS)

    Saadi, S.; Simonneaux, V.; Boulet, G.; Mougenot, B.; Lili Chabaane, Z.

    2015-10-01

    The increasing availability of high resolution high repetitively VIS-NIR remote sensing, like the forthcoming Sentinel-2 mission to be launched in 2015, offers unprecedented opportunity to improve agricultural monitoring. In this study, regional evapotranspiration and crop water consumption were estimated over an irrigated area located in the Kairouan plain (central Tunisia) using the FAO-56 dual crop coefficient water balance model combined with NDVI image time series providing estimates of the actual basal crop coefficient (Kcb) and vegetation fraction cover. Three time series of high-resolution SPOT5 images have been acquired for the 2008-2009, 2011-2012 and 2012-2013 hydrological years. We also benefited from a SPOT4 time series acquired in the frame of the SPOT4-Take5 experiment. The SPOT5 images were radiometrically corrected, first, using the SMAC6s Algorithm, and then improved using invariant objects located on the scene. The method was first calibrated using ground measurements of evapotranspiration achieved using eddy-correlation devices installed on irrigated wheat and barley plots. For other crops for which no calibration data was available, parameters were taken from bibliography. Then, the model was run to spatialize irrigation over the whole area and a validation was done using cumulated seasonal water volumes obtained from ground survey for three irrigated perimeters. In a subsequent step, evapotranspiration estimates were obtained using a large aperture scintillometer and were used for an additional validation of the model outputs.

  5. High-Resolution Genuinely Multidimensional Solution of Conservation Laws by the Space-Time Conservation Element and Solution Element Method

    NASA Technical Reports Server (NTRS)

    Himansu, Ananda; Chang, Sin-Chung; Yu, Sheng-Tao; Wang, Xiao-Yen; Loh, Ching-Yuen; Jorgenson, Philip C. E.

    1999-01-01

    In this overview paper, we review the basic principles of the method of space-time conservation element and solution element for solving the conservation laws in one and two spatial dimensions. The present method is developed on the basis of local and global flux conservation in a space-time domain, in which space and time are treated in a unified manner. In contrast to the modern upwind schemes, the approach here does not use the Riemann solver and the reconstruction procedure as the building blocks. The drawbacks of the upwind approach, such as the difficulty of rationally extending the 1D scalar approach to systems of equations and particularly to multiple dimensions is here contrasted with the uniformity and ease of generalization of the Conservation Element and Solution Element (CE/SE) 1D scalar schemes to systems of equations and to multiple spatial dimensions. The assured compatibility with the simplest type of unstructured meshes, and the uniquely simple nonreflecting boundary conditions of the present method are also discussed. The present approach has yielded high-resolution shocks, rarefaction waves, acoustic waves, vortices, ZND detonation waves, and shock/acoustic waves/vortices interactions. Moreover, since no directional splitting is employed, numerical resolution of two-dimensional calculations is comparable to that of the one-dimensional calculations. Some sample applications displaying the strengths and broad applicability of the CE/SE method are reviewed.

  6. Microwave and hard X-ray observations of a solar flare with a time resolution better than 100 ms

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Costa, J. E. R.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Kiplinger, A.; Strauss, F. M.

    1983-01-01

    Simultaneous microwave and X-ray observations are presented for a solar flare detected on 1980 May 8 starting at 1937 UT. The X-ray observations were made with the Hard X-ray Burst Spectrometer on the Solar Maximum Mission and covered the energy range from 28-490 keV with a time resolution of 10 ms. The microwave observations were made with the 5 and 45 foot antennas at the Itapetinga Radio Obervatory at frequencies of 7 and 22 GHz, with time resolutions of 100 ms and 1 ms respectively. Detailed correlation analysis of the different time profiles of the event show that the major impulsive in the X-ray flux preceded the corresponding microwave peaks at 22 GHz by about 240 ms. For this particular burst the 22 GHz peaks preceded the 7 GHz by about 1.5s. Observed delays of the microwave peaks are too large for a simple electron beam model but they can be reconciled with the speeds of shock waves in a thermal model. Previously announced in STAR as N82-30215

  7. Full-circular surface acoustic wave excitation for high resolution acoustic microscopy using spherical lens and time gate technology.

    PubMed

    Ishikawa, I; Katakura, K; Ogura, Y

    1999-01-01

    With a fixed gate width under the condition where the focus of an acoustic lens was set inside the sample, we varied signal taking-in time. Discrimination was made between differences in time required for an ultrasonic signal reflected from the sample to reach the acoustic lens. This process also enabled three types of images to be obtained separately: the surface reflection wave image, a combination of images based on the interference of the surface reflection wave with surface acoustic waves, and the surface acoustic wave image. Thus it was presumed that this process also would reveal the causes of image contrast and allow an easy interpretation of images. Furthermore, the image resolution was improved, because the surface acoustic wave image was drawn by an ultrasonic beam produced by full-circular surface acoustic wave excitation propagating toward the center converging concentrically; the theoretical resolution was 0.4 times the value of the surface acoustic wave wavelength lambda(R) and independent of the defocus value of the acoustic lens. Several kinds of samples were observed with this method. The results showed that the new method permitted observation of the internal structures of samples while offering new knowledge through the data reflecting the ultrasonic wave damping and scatter drawn on the display.

  8. Widefield Two-Photon Excitation without Scanning: Live Cell Microscopy with High Time Resolution and Low Photo-Bleaching.

    PubMed

    Amor, Rumelo; McDonald, Alison; Trägårdh, Johanna; Robb, Gillian; Wilson, Louise; Abdul Rahman, Nor Zaihana; Dempster, John; Amos, William Bradshaw; Bushell, Trevor J; McConnell, Gail

    2016-01-01

    We demonstrate fluorescence imaging by two-photon excitation without scanning in biological specimens as previously described by Hwang and co-workers, but with an increased field size and with framing rates of up to 100 Hz. During recordings of synaptically-driven Ca(2+) events in primary rat hippocampal neurone cultures loaded with the fluorescent Ca(2+) indicator Fluo-4 AM, we have observed greatly reduced photo-bleaching in comparison with single-photon excitation. This method, which requires no costly additions to the microscope, promises to be useful for work where high time-resolution is required.

  9. Widefield Two-Photon Excitation without Scanning: Live Cell Microscopy with High Time Resolution and Low Photo-Bleaching

    PubMed Central

    Amor, Rumelo; McDonald, Alison; Trägårdh, Johanna; Robb, Gillian; Wilson, Louise; Abdul Rahman, Nor Zaihana; Dempster, John; Amos, William Bradshaw; Bushell, Trevor J.; McConnell, Gail

    2016-01-01

    We demonstrate fluorescence imaging by two-photon excitation without scanning in biological specimens as previously described by Hwang and co-workers, but with an increased field size and with framing rates of up to 100 Hz. During recordings of synaptically-driven Ca2+ events in primary rat hippocampal neurone cultures loaded with the fluorescent Ca2+ indicator Fluo-4 AM, we have observed greatly reduced photo-bleaching in comparison with single-photon excitation. This method, which requires no costly additions to the microscope, promises to be useful for work where high time-resolution is required. PMID:26824845

  10. Real-time digital heterodyne interferometer for high resolution plasma density measurements at ISTTOK

    SciTech Connect

    Marques, T. G.; Gouveia, A.; Pereira, T.; Fortunato, J.; Carvalho, B. B.; Sousa, J.; Silva, C.; Fernandes, H.

    2008-10-15

    With the implementation of alternating discharges (ac) at the ISTTOK tokamak, the typical duration of the discharges increased from 35 to 250 ms. This time increase created the need for a real-time electron density measurement in order to control the plasma fueling. The diagnostic chosen for the real-time calculation was the microwave interferometer. The ISTTOK microwave interferometer is a heterodyne system with quadrature detection and a probing frequency of 100 GHz ({lambda}{sub 0}=3 mm). In this paper, a low-cost approach for real-time diagnostic using a digital signal programable intelligent computer embedded system is presented, which allows the measurement of the phase with a 1% fringe accuracy in less than 6 {mu}s. The system increases its accuracy by digitally correcting the offsets of the input signals and making use of a judicious lookup table optimized to improve the nonlinear behavior of the transfer curve. The electron density is determined at a rate of 82 kHz (limited by the analog to digital converter), and the data are transmitted for each millisecond although this last parameter could be much lower (around 12 {mu}s--each value calculated is transmitted). In the future, this same system is expected to control plasma actuators, such as the piezoelectric valve of the hydrogen injection system responsible for the plasma fueling.

  11. Real-time digital heterodyne interferometer for high resolution plasma density measurements at ISTTOK.

    PubMed

    Marques, T G; Gouveia, A; Pereira, T; Fortunato, J; Carvalho, B B; Sousa, J; Silva, C; Fernandes, H

    2008-10-01

    With the implementation of alternating discharges (ac) at the ISTTOK tokamak, the typical duration of the discharges increased from 35 to 250 ms. This time increase created the need for a real-time electron density measurement in order to control the plasma fueling. The diagnostic chosen for the real-time calculation was the microwave interferometer. The ISTTOK microwave interferometer is a heterodyne system with quadrature detection and a probing frequency of 100 GHz (lambda(0)=3 mm). In this paper, a low-cost approach for real-time diagnostic using a digital signal programmable intelligent computer embedded system is presented, which allows the measurement of the phase with a 1% fringe accuracy in less than 6 micros. The system increases its accuracy by digitally correcting the offsets of the input signals and making use of a judicious lookup table optimized to improve the nonlinear behavior of the transfer curve. The electron density is determined at a rate of 82 kHz (limited by the analog to digital converter), and the data are transmitted for each millisecond although this last parameter could be much lower (around 12 micros--each value calculated is transmitted). In the future, this same system is expected to control plasma actuators, such as the piezoelectric valve of the hydrogen injection system responsible for the plasma fueling.

  12. Magnetic dynamics studied by high-resolution electron spectroscopy and time-resolved electron microscopy

    NASA Astrophysics Data System (ADS)

    Jayaraman, Rajeswari

    Future information technology requires an increased magnetically encoded data density and novel electromagnetic modes of data transfer. While to date magnetic properties are observed and characterized mostly statically, the need emerges to monitor and capture their fast dynamics. In this talk, I will focus on the spin dynamics i.e. spin wave excitations and the dynamics of a new topological distribution of spins termed ``skyrmions''. Wave packets of spin waves offer the unique capability to transport a quantum bit, the spin, without the transport of charge or mass. Here, large wave-vector spin waves are of particular interest as they admit spin localization within a few nanometers. By using our recently developed electron energy loss spectrometer, we could study such spin waves in ultrathin films with an unprecedented energy resolution of 4 meV. By virtue of the finite penetration depth of low energy electrons, spin waves localized at interfaces between a substrate and a thin capping layer can be been studied yielding information about the exchange coupling between atoms at the interface. The quantization of spin waves with wave vectors perpendicular to the film gives rise to standing modes to which EELS has likewise access. Such studies when carried out as function of the film thickness again yield information on the layer dependence of the exchange coupling. Magnetic skyrmions are promising candidates as information carriers in logic or storage devices. Currently, little is known about the influence of disorder, defects, or external stimuli on the spatial distribution and temporal evolution of the skyrmion lattice. In this talk, I will describe the dynamical role of disorder in a large and flat thin film of Cu2OSeO3, exhibiting a skyrmion phase in an insulating material. We image up to 70,000 skyrmions by means of cryo-Lorentz Transmission Electron Microscopy as a function of the applied magnetic field. In the skyrmion phase, dislocations are shown to cause the

  13. Coal-seismic, desktop computer programs in BASIC; Part 6, Develop rms velocity functions and apply mute and normal movement

    USGS Publications Warehouse

    Hasbrouck, W.P.

    1983-01-01

    Processing of data taken with the U.S. Geological Survey's coal-seismic system is done with a desktop, stand-alone computer. Programs for this computer are written in the extended BASIC language utilized by the Tektronix 4051 Graphic System. This report presents computer programs used to develop rms velocity functions and apply mute and normal moveout to a 12-trace seismogram.

  14. Compact terahertz time domain spectroscopy system with diffraction-limited spatial resolution

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinichi; Shimano, Ryo

    2007-10-01

    A compact and rigid terahertz time domain spectroscopy system is presented. The size of the device is 20mm diameter times 61mm length with four parabolic-shaped concave mirrors dug in it to effectively focus a terahertz beam on a sample. The device has no chromatic aberration over the whole bandwidth of the beam (0.3-2THz), and an effective numerical aperture of about 0.45 is achieved, which has a capability to image the structure whose size is almost the same as the wavelength. Frequency resolved images clearly show this performance. We also show that quantitative retrieval of the complex refractive index of the structure as small as twice of the wavelength is possible.

  15. Detection system for high-resolution gamma radiation spectroscopy with neutron time-of-flight filtering

    DOEpatents

    Dioszegi, Istvan; Salwen, Cynthia; Vanier, Peter

    2014-12-30

    A .gamma.-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive .alpha.-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a .gamma.-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the .gamma.-radiation. Subsequently, it is determined whether a coincidence exists between the .alpha.-particles and .gamma.-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the .alpha.-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.

  16. Extending F10.7’s Time Resolution to Capture Solar Flare Phenomena

    DTIC Science & Technology

    2008-07-01

    the neutral components in the atmo- sphere, which is partly responsible for the formation of the ionosphere , and con- tributes to heating of the...used as a proxy for the solar UV radiation. These measurements, known as the F10.7 index , are a snapshot of the solar activity at the time they are...Sagamore Hill Observatory on January 15, 2005 on 15,400 MHz ....................... 44 3.17 A noise storm is observed by the Sagamore Hill Observatory

  17. Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas.

    PubMed

    Llamas, Bastien; Fehren-Schmitz, Lars; Valverde, Guido; Soubrier, Julien; Mallick, Swapan; Rohland, Nadin; Nordenfelt, Susanne; Valdiosera, Cristina; Richards, Stephen M; Rohrlach, Adam; Romero, Maria Inés Barreto; Espinoza, Isabel Flores; Cagigao, Elsa Tomasto; Jiménez, Lucía Watson; Makowski, Krzysztof; Reyna, Ilán Santiago Leboreiro; Lory, Josefina Mansilla; Torrez, Julio Alejandro Ballivián; Rivera, Mario A; Burger, Richard L; Ceruti, Maria Constanza; Reinhard, Johan; Wells, R Spencer; Politis, Gustavo; Santoro, Calogero M; Standen, Vivien G; Smith, Colin; Reich, David; Ho, Simon Y W; Cooper, Alan; Haak, Wolfgang

    2016-04-01

    The exact timing, route, and process of the initial peopling of the Americas remains uncertain despite much research. Archaeological evidence indicates the presence of humans as far as southern Chile by 14.6 thousand years ago (ka), shortly after the Pleistocene ice sheets blocking access from eastern Beringia began to retreat. Genetic estimates of the timing and route of entry have been constrained by the lack of suitable calibration points and low genetic diversity of Native Americans. We sequenced 92 whole mitochondrial genomes from pre-Columbian South American skeletons dating from 8.6 to 0.5 ka, allowing a detailed, temporally calibrated reconstruction of the peopling of the Americas in a Bayesian coalescent analysis. The data suggest that a small population entered the Americas via a coastal route around 16.0 ka, following previous isolation in eastern Beringia for ~2.4 to 9 thousand years after separation from eastern Siberian populations. Following a rapid movement throughout the Americas, limited gene flow in South America resulted in a marked phylogeographic structure of populations, which persisted through time. All of the ancient mitochondrial lineages detected in this study were absent from modern data sets, suggesting a high extinction rate. To investigate this further, we applied a novel principal components multiple logistic regression test to Bayesian serial coalescent simulations. The analysis supported a scenario in which European colonization caused a substantial loss of pre-Columbian lineages.

  18. Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas

    PubMed Central

    Llamas, Bastien; Fehren-Schmitz, Lars; Valverde, Guido; Soubrier, Julien; Mallick, Swapan; Rohland, Nadin; Nordenfelt, Susanne; Valdiosera, Cristina; Richards, Stephen M.; Rohrlach, Adam; Romero, Maria Inés Barreto; Espinoza, Isabel Flores; Cagigao, Elsa Tomasto; Jiménez, Lucía Watson; Makowski, Krzysztof; Reyna, Ilán Santiago Leboreiro; Lory, Josefina Mansilla; Torrez, Julio Alejandro Ballivián; Rivera, Mario A.; Burger, Richard L.; Ceruti, Maria Constanza; Reinhard, Johan; Wells, R. Spencer; Politis, Gustavo; Santoro, Calogero M.; Standen, Vivien G.; Smith, Colin; Reich, David; Ho, Simon Y. W.; Cooper, Alan; Haak, Wolfgang

    2016-01-01

    The exact timing, route, and process of the initial peopling of the Americas remains uncertain despite much research. Archaeological evidence indicates the presence of humans as far as southern Chile by 14.6 thousand years ago (ka), shortly after the Pleistocene ice sheets blocking access from eastern Beringia began to retreat. Genetic estimates of the timing and route of entry have been constrained by the lack of suitable calibration points and low genetic diversity of Native Americans. We sequenced 92 whole mitochondrial genomes from pre-Columbian South American skeletons dating from 8.6 to 0.5 ka, allowing a detailed, temporally calibrated reconstruction of the peopling of the Americas in a Bayesian coalescent analysis. The data suggest that a small population entered the Americas via a coastal route around 16.0 ka, following previous isolation in eastern Beringia for ~2.4 to 9 thousand years after separation from eastern Siberian populations. Following a rapid movement throughout the Americas, limited gene flow in South America resulted in a marked phylogeographic structure of populations, which persisted through time. All of the ancient mitochondrial lineages detected in this study were absent from modern data sets, suggesting a high extinction rate. To investigate this further, we applied a novel principal components multiple logistic regression test to Bayesian serial coalescent simulations. The analysis supported a scenario in which European colonization caused a substantial loss of pre-Columbian lineages. PMID:27051878

  19. Global Coordination and Standardisation in Marine Biodiversity through the World Register of Marine Species (WoRMS) and Related Databases

    PubMed Central

    Bouchet, Philippe; Boxshall, Geoff; Fauchald, Kristian; Gordon, Dennis; Hoeksema, Bert W.; Poore, Gary C. B.; van Soest, Rob W. M.; Stöhr, Sabine; Walter, T. Chad; Vanhoorne, Bart; Decock, Wim

    2013-01-01

    The World Register of Marine Species is an over 90% complete open-access inventory of all marine species names. Here we illustrate the scale of the problems with species names, synonyms, and their classification, and describe how WoRMS publishes online quality assured information on marine species. Within WoRMS, over 100 global, 12 regional and 4 thematic species databases are integrated with a common taxonomy. Over 240 editors from 133 institutions and 31 countries manage the content. To avoid duplication of effort, content is exchanged with 10 external databases. At present WoRMS contains 460,000 taxonomic names (from Kingdom to subspecies), 368,000 species level combinations of which 215,000 are currently accepted marine species names, and 26,000 related but non-marine species. Associated information includes 150,000 literature sources, 20,000 images, and locations of 44,000 specimens. Usage has grown linearly since its launch in 2007, with about 600,000 unique visitors to the website in 2011, and at least 90 organisations from 12 countries using WoRMS for their data management. By providing easy access to expert-validated content, WoRMS improves quality control in the use of species names, with consequent benefits to taxonomy, ecology, conservation and marine biodiversity research and management. The service manages information on species names that would otherwise be overly costly for individuals, and thus minimises errors in the application of nomenclature standards. WoRMS' content is expanding to include host-parasite relationships, additional literature sources, locations of specimens, images, distribution range, ecological, and biological data. Species are being categorised as introduced (alien, invasive), of conservation importance, and on other attributes. These developments have a multiplier effect on its potential as a resource for biodiversity research and management. As a consequence of WoRMS, we are witnessing improved communication within the

  20. Impact of Atmospheric Attenuations Time Resolutions in Solar Radiation Derived from Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Cony, Marco; Liria, Juan; Weisenberg, Ralf; Serrano, Enrique

    2014-05-01

    Accurate knowledge of solar irradiance components at the earth surface is of highly interest in many scientific and technology branches concerning meteorology, climate, agriculture and solar energy applications. In the specific case of solar energy systems the solar resource analysis with accuracy is a first step in every project since it is a required data for design, power output estimations, systems simulations and risk assessments. Solar radiation measurement availability is increasing both in spatial density and in historical archiving. However, it is still quite limited and most of the situations cannot make use of a long term ground database of high quality since solar irradiance is not generally measured where users need data. Satellite-derived solar radiation estimations are a powerful and valuable tool for solar resource assessment studies that have achieved a relatively high maturity due to years of developments and improvements. However, several sources of uncertainty are still present in satellite-derived methods. In particular, the strong influence of atmospheric attenuation information as input to the method is one of the main topics of improvement. Since solar radiation attenuation by atmospheric aerosols, and water vapor in a second place, is, after clouds, the second most important factor determining solar radiation, and particularly direct normal irradiance, the accurate knowledge of aerosol optical depth and water vapor content is relevant in the final output of satellite-derived methods. This present work, two different datasets we are used for extract atmospheric attenuation information. On the one hand the monthly mean values of the Linke turbidity factor from Meteotest database, which are twelve unique values of the Linke turbidity worldwide with a spatial resolution of 1/12º. On the other hand, daily values of AOD (Aerosol Optical Depth) at 550 nm, Angstrom alpha exponent and water vapor column were taken from a gridded database that

  1. Real-time Data Processing and Visualization for the Airborne Scanning High-resolution Interferometer Sounder (S-HIS)

    NASA Astrophysics Data System (ADS)

    Taylor, J. K.; Revercomb, H. E.; Hoese, D.; Garcia, R. K.; Smith, W. L.; Weisz, E.; Tobin, D. C.; Best, F. A.; Knuteson, R. O.; Sullivan, D. V.; Barnes, C. M.; Van Gilst, D. P.

    2015-12-01

    The Hurricane and Severe Storm Sentinel (HS3) is a five-year NASA mission targeted to enhance the understanding of the formation and evolution of hurricanes in the Atlantic basin. Measurements were made from two NASA Global Hawk Unmanned Aircraft Systems (UAS) during the 2012 through 2014 hurricane seasons, with flights conducted from the NASA Wallops Flight Facility. The Global Hawk aircraft are capable of high altitude flights with durations of up to 30 hours, which allow extensive observations over distant storms, not typically possible with manned aircraft. The two NASA Global Hawks were equipped with instrument suites to study the storm environment, and inner core structure and processes, respectively. The Scanning High-resolution Interferometer Sounder (S-HIS), designed and built by the University of Wisconsin (UW) Space Science and Engineering Center (SSEC), measures emitted thermal radiation at high spectral resolution between 3.3 and 18 microns. The radiance measurements are used to obtain temperature and water vapor profiles of the Earth's atmosphere. The S-HIS spatial resolution is 2 km at nadir, across a 40 km ground swath from a nominal altitude of 20 kilometers. Since 1998, the S-HIS has participated in 33 field campaigns and has proven to be extremely dependable, effective, and highly accurate. It has flown on the NASA ER-2, DC-8, Proteus, WB-57, and Global Hawk airborne platforms. The UW S-HIS infrared sounder instrument is equipped with a real-time ground data processing system capable of delivering atmospheric profiles, radiance data, and engineering status to mission support scientists - all within less than one minute from the time of observation. This ground data processing system was assembled by a small team using existing software and proven practical techniques similar to a satellite ground system architecture. This summary outlines the design overview for the system and illustrates the data path, content, and outcomes.

  2. Systematic recover of long high-resolution rainfall time series recorded by pluviographs during the 20th century.

    NASA Astrophysics Data System (ADS)

    Delitala, Alessandro M. S.; Deidda, Roberto; Mascaro, Giuseppe; Piga, Enrico; Querzoli, Giorgio

    2010-05-01

    During most of the 20th century, precipitation has been continuously measured by means of the so-called "pluviographs", i.e. rain gauges including a mechanical apparatus for continuously recording the depth of water from precipitation on specific strip charts, usually on a weekly basis. The signal recorded on such strips was visually examined by trained personnel on a regular basis, in order to extract the daily precipitation totals and the maximum precipitation intensities over short periods (from a few minutes to hours). The rest of the high-resolution information contained in the signal was usually not extracted, except for specific cases. A systematic recovering of the entire information at high temporal resolution contained in these precipitation signals would provide a fundamental database to improve the characterization of historical rainfall climatology during the previous century. The Department of Land Engineering of the University of Cagliari has recently developed and tested an automatic software, based on image analysis techniques, which is able to acquire the scanned images of the pluviograph strip charts, to automatically digitise the signal and to produce a digital database of continuous precipitation records at the highest possible temporal resolution, i.e. 5 to 10 minutes. Along with that, a significant amount of daily precipitation totals from the late 19th and the 20th century, either elaborated from pluviograph strip charts or simply derived from bucket rain gauges, still exists in paper form, but it has never been digitalized. Within a project partly-funded by the Operational Programme of the European Union "Italia-Francia Marittimo", the Regional Environmental Protection Agency of Sardinia and the University of Cagliari will recover both the high-resolution rainfall signals and the older time series of daily totals recorded by a large number of pluviographs belonging to the historical monitoring networks of the island of Sardinia. Such data

  3. A real-time inverse quantised transform for multi-standard with dynamic resolution support

    NASA Astrophysics Data System (ADS)

    Sun, Chi-Chia; Lin, Chun-Ying; Zhang, Ce

    2016-06-01

    In this paper, a real-time configurable intelligent property (IP) core is presented for image/video decoding process in compatibility with the standard MPEG-4 Visual and the standard H.264/AVC. The inverse quantised discrete cosine and integer transform can be used to perform inverse quantised discrete cosine transform and inverse quantised inverse integer transforms which only required shift and add operations. Meanwhile, COordinate Rotation DIgital Computer iterations and compensation steps are adjustable in order to compensate for the video compression quality regarding various data throughput. The implementations are embedded in publicly available software XVID Codes 1.2.2 for the standard MPEG-4 Visual and the H.264/AVC reference software JM 16.1, where the experimental results show that the balance between the computational complexity and video compression quality is retained. At the end, FPGA synthesised results show that the proposed IP core can bring advantages to low hardware costs and also provide real-time performance for Full HD and 4K-2K video decoding.

  4. Multicast contention resolution based on time-frequency joint scheduling in elastic optical switching networks

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Li, Yuan; Peng, Han; Huang, Jun; Kong, Deqian

    2017-01-01

    Resolving the optical multicast contention in optical switch node is an effective approach to improve the performance of elastic optical multicast switch. An optical node architecture integrating with output shared all-optical Orthogonal Frequency Division Multiplexing (OFDM) network coding technology and shared feedback fiber delay lines (FDLs) buffer is designed. And a time-frequency joint scheduling strategy (TFJSS) is proposed. In TFJSS, the maximal weighted independent set algorithm is used to select the output packets with no overlapping spectrum among the contending multicast packets. The remaining contention packets are compressed by OFDM network coding with all-optical XOR operation. Hence, the contention is avoided in spectrum domain by encoding the contending unicast/multicast packets and changing the carrier frequency of encoded packets. If the network coding cannot successfully resolve the contending packets, the shared feedback FDLs are called to address the contention in time domain. Compared with the existing node architecture and scheduling algorithm, the simulation results show that the proposed architecture and the TFJSS can reduce the packet loss probability with low delay largely.

  5. High-Resolution Morphologic and Ultrashort Time-to-Echo Quantitative Magnetic Resonance Imaging of the Temporomandibular Joint

    PubMed Central

    Bae, Won C; Tafur, Monica; Chang, Eric Y.; Du, Jiang; Biswas, Reni; Kwack, Kyu-Sung; Healey, Robert; Statum, Sheronda; Chung, Christine B.

    2015-01-01

    Objective To implement high-resolution morphologic and quantitative magnetic resonance imaging (MRI) of the temporomandibular joint (TMJ) using ultrashort time-to-echo (UTE) techniques in cadavers and volunteers. Methods This study was approved by the institutional review board. TMJs of cadavers and volunteers were imaged on a 3T-MR system. High-resolution morphologic and quantitative sequences using conventional and UTE techniques were performed in cadaveric TMJs. Morphologic and UTE quantitative sequences were performed in asymptomatic and symptomatic volunteers. Results Morphologic evaluation demonstrated the TMJ structures in open and closed-mouth position. UTE techniques facilitated the visualization of the disc and fibrocartilage. Quantitative UTE MRI was successfully performed ex-vivo and in-vivo reflecting the degree of degeneration. There was a difference in the mean UTE T2* values between asymptomatic and symptomatic volunteers. Conclusions MRI evaluation of the TMJ using UTE techniques allows characterization of the internal structure and quantification of the MR properties of the disc. Quantitative UTE MRI can be performed in-vivo with short scan times. PMID:26685898

  6. Flight assessment of a real time multi-resolution image fusion system for use in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Smith, M. I.; Sadler, J. R. E.

    2007-04-01

    Military helicopter operations are often constrained by environmental conditions, including low light levels and poor weather. Recent experience has also shown the difficulty presented by certain terrain when operating at low altitude by day and night. For example, poor pilot cues over featureless terrain with low scene contrast, together with obscuration of vision due to wind-blown and re-circulated dust at low level (brown out). These sorts of conditions can result in loss of spatial awareness and precise control of the aircraft. Atmospheric obscurants such as fog, cloud, rain and snow can similarly lead to hazardous situations and reduced situational awareness. Day Night All Weather (DNAW) systems applied research sponsored by UK Ministry of Defence (MoD) has developed a multi-resolution real time Image Fusion system that has been flown as part of a wider flight trials programme investigating increased situational awareness. Dual-band multi-resolution adaptive image fusion was performed in real-time using imagery from a Thermal Imager and a Low Light TV, both co-bore sighted on a rotary wing trials aircraft. A number of sorties were flown in a range of climatic and environmental conditions during both day and night. (Neutral density filters were used on the Low Light TV during daytime sorties.) This paper reports on the results of the flight trial evaluation and discusses the benefits offered by the use of Image Fusion in degraded visual environments.

  7. A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer.

    PubMed

    Good, Jacob T; Holland, Daniel B; Finneran, Ian A; Carroll, P Brandon; Kelley, Matthew J; Blake, Geoffrey A

    2015-10-01

    We present the design and capabilities of a high-resolution, decade-spanning ASynchronous OPtical Sampling (ASOPS)-based TeraHertz Time-Domain Spectroscopy (THz-TDS) instrument. Our system employs dual mode-locked femtosecond Ti:Sapphire oscillators with repetition rates offset locked at 100 Hz via a Phase-Locked Loop (PLL) operating at the 60th harmonic of the ∼80 MHz oscillator repetition rates. The respective time delays of the individual laser pulses are scanned across a 12.5 ns window in a laboratory scan time of 10 ms, supporting a time delay resolution as fine as 15.6 fs. The repetition rate of the pump oscillator is synchronized to a Rb frequency standard via a PLL operating at the 12th harmonic of the oscillator repetition rate, achieving milliHertz (mHz) stability. We characterize the timing jitter of the system using an air-spaced etalon, an optical cross correlator, and the phase noise spectrum of the PLL. Spectroscopic applications of ASOPS-THz-TDS are demonstrated by measuring water vapor absorption lines from 0.55 to 3.35 THz and acetonitrile absorption lines from 0.13 to 1.39 THz in a short pathlength gas cell. With 70 min of data acquisition, a 50 dB signal-to-noise ratio is achieved. The achieved root-mean-square deviation is 14.6 MHz, with a mean deviation of 11.6 MHz, for the measured water line center frequencies as compared to the JPL molecular spectroscopy database. Further, with the same instrument and data acquisition hardware, we use the ability to control the repetition rate of the pump oscillator to enable THz frequency comb spectroscopy (THz-FCS). Here, a frequency comb with a tooth width of 5 MHz is generated and used to fully resolve the pure rotational spectrum of acetonitrile with Doppler-limited precision. The oscillator repetition rate stability achieved by our PLL lock circuits enables sub-MHz tooth width generation, if desired. This instrument provides unprecedented decade-spanning, tunable resolution, from 80 MHz down to sub

  8. A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer

    NASA Astrophysics Data System (ADS)

    Good, Jacob T.; Holland, Daniel B.; Finneran, Ian A.; Carroll, P. Brandon; Kelley, Matthew J.; Blake, Geoffrey A.

    2015-10-01

    We present the design and capabilities of a high-resolution, decade-spanning ASynchronous OPtical Sampling (ASOPS)-based TeraHertz Time-Domain Spectroscopy (THz-TDS) instrument. Our system employs dual mode-locked femtosecond Ti:Sapphire oscillators with repetition rates offset locked at 100 Hz via a Phase-Locked Loop (PLL) operating at the 60th harmonic of the ˜80 MHz oscillator repetition rates. The respective time delays of the individual laser pulses are scanned across a 12.5 ns window in a laboratory scan time of 10 ms, supporting a time delay resolution as fine as 15.6 fs. The repetition rate of the pump oscillator is synchronized to a Rb frequency standard via a PLL operating at the 12th harmonic of the oscillator repetition rate, achieving milliHertz (mHz) stability. We characterize the timing jitter of the system using an air-spaced etalon, an optical cross correlator, and the phase noise spectrum of the PLL. Spectroscopic applications of ASOPS-THz-TDS are demonstrated by measuring water vapor absorption lines from 0.55 to 3.35 THz and acetonitrile absorption lines from 0.13 to 1.39 THz in a short pathlength gas cell. With 70 min of data acquisition, a 50 dB signal-to-noise ratio is achieved. The achieved root-mean-square deviation is 14.6 MHz, with a mean deviation of 11.6 MHz, for the measured water line center frequencies as compared to the JPL molecular spectroscopy database. Further, with the same instrument and data acquisition hardware, we use the ability to control the repetition rate of the pump oscillator to enable THz frequency comb spectroscopy (THz-FCS). Here, a frequency comb with a tooth width of 5 MHz is generated and used to fully resolve the pure rotational spectrum of acetonitrile with Doppler-limited precision. The oscillator repetition rate stability achieved by our PLL lock circuits enables sub-MHz tooth width generation, if desired. This instrument provides unprecedented decade-spanning, tunable resolution, from 80 MHz down to sub

  9. Front-end chip for Silicon Photomultiplier detectors with pico-second Time-of-Flight resolution

    NASA Astrophysics Data System (ADS)

    Stankova, V.; Briggl, K.; Chen, H.; Gil, A.; Harion, T.; Munwes, Y.; Shen, W.; Schultz-Coulon, H.-C.

    2016-07-01

    A mixed-mode readout Application Specific Integrated Circuit (STIC3) has been developed for high precision timing measurements with Silicon Photomultipliers (SiPM) for medical imaging and particle physics applications. The STiC3 is a 64-channel chip, with fully differential analog front-end for cross-talk and electronic noise immunity. The time and charge information from the SiPM signals are encrypted into two time stamps generated by integrated Time to Digital Converter (TDC) modules with 50 ps time binning. The TDC data is stored in an internal memory and transferred to a PC via a 160 MBit/s serial link using an 8/10 bit encoding. The chip provides an input bias tuning in a range of 0-900 mV to compensate the breakdown voltage variation of individual SiPMs. The TDC jitter together with the digital part is around 37 ps. A Coincidence Time Resolution (CTR) of 213.6 ps FWHM has been obtained with 3.1 × 3.1 × 15m2 LYSO:Ce scintillator crystals and Hamamatsu SiPM matrices (S12643-050CN(X)). Characterization measurements with the chip and its integration into the external plate of the EndoTOFPET-US prototype are presented.

  10. Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanic.

    PubMed

    Sánchez-Porro, Cristina; Kaur, Bhavleen; Mann, Henrietta; Ventosa, Antonio

    2010-12-01

    A Gram-negative, heterotrophic, aerobic, non-endospore-forming, peritrichously flagellated and motile bacterial strain, designated BH1(T), was isolated from samples of rusticles, which are formed in part by a consortium of micro-organisms, collected from the RMS Titanic wreck site. The strain grew optimally at 30-37°C, pH 7.0-7.5 and in the presence of 2-8 % (w/v) NaCl. We carried out a polyphasic taxonomic study in order to characterize the strain in detail. Phylogenetic analyses based on 16S rRNA gene sequence comparison indicated that strain BH1(T) clustered within the branch consisting of species of Halomonas. The most closely related type strains were Halomonas neptunia (98.6 % 16S rRNA sequence similarity), Halomonas variabilis (98.4 %), Halomonas boliviensis (98.3 %) and Halomonas sulfidaeris (97.5 %). Other closely related species were Halomonas alkaliphila (96.5 % sequence similarity), Halomonas hydrothermalis (96.3 %), Halomonas gomseomensis (96.3 %), Halomonas venusta (96.3 %) and Halomonas meridiana (96.2 %). The major fatty acids of strain BH1(T) were C(18 : 1)ω7c (36.3 %), C(16 : 0) (18.4 %) and C(19 : 0) cyclo ω8c (17.9 %). The DNA G+C content was 60.0 mol% (T(m)). Ubiquinone 9 (Q-9) was the major lipoquinone. The phenotypic features, fatty acid profile and DNA G+C content further supported the placement of strain BH1(T) in the genus Halomonas. DNA-DNA hybridization values between strain BH1(T) and H. neptunia CECT 5815(T), H. variabilis DSM 3051(T), H. boliviensis DSM 15516(T) and H. sulfidaeris CECT 5817(T) were 19, 17, 30 and 29 %, respectively, supporting the differential taxonomic status of BH1(T). On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain BH1(T) is considered to represent a novel species, for which the name Halomonas titanicae sp. nov. is proposed. The type strain is BH1(T) (=ATCC BAA-1257(T) =CECT 7585(T) =JCM 16411(T) =LMG 25388(T)).

  11. Resolution of the Gross-Pitaevskii equation with the imaginary-time method on a Lagrange mesh

    SciTech Connect

    Baye, D.; Sparenberg, J.-M.

    2010-11-15

    The Lagrange-mesh method is an approximate variational calculation which has the simplicity of a mesh calculation. Combined with the imaginary-time method, it is applied to the iterative resolution of the Gross-Pitaevskii equation. Two variants of a fourth-order factorization of the exponential of the Hamiltonian and two types of mesh (Lagrange-Hermite and Lagrange-sinc) are employed and compared. The accuracy is checked with the help of these comparisons and of the virial theorem. The Lagrange-Hermite mesh provides very accurate results with short computing times for values of the dimensionless parameter of the nonlinear term up to 10{sup 4}. For higher values up to 10{sup 7}, the Lagrange-sinc mesh is more efficient. Examples are given for anisotropic and nonseparable trapping potentials.

  12. Time-Resolved Molecular Characterization of Limonene/Ozone Aerosol using High-Resolution Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2009-09-09

    Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/Δm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.

  13. Molecular Differentiation of Schistosoma japonicum and Schistosoma mekongi by Real-Time PCR with High Resolution Melting Analysis

    PubMed Central

    Kongklieng, Amornmas; Kaewkong, Worasak; Intapan, Pewpan M.; Sanpool, Oranuch; Janwan, Penchom; Thanchomnang, Tongjit; Lulitanond, Viraphong; Sri-Aroon, Pusadee; Limpanont, Yanin

    2013-01-01

    Human schistosomiasis caused by Schistosoma japonicum and Schistosoma mekongi is a chronic and debilitating helminthic disease still prevalent in several countries of Asia. Due to morphological similarities of cercariae and eggs of these 2 species, microscopic differentiation is difficult. High resolution melting (HRM) real-time PCR is developed as an alternative tool for the detection and differentiation of these 2 species. A primer pair was designed for targeting the 18S ribosomal RNA gene to generate PCR products of 156 base pairs for both species. The melting points of S. japonicum and S. mekongi PCR products were 84.5±0.07℃ and 85.7±0.07℃, respectively. The method permits amplification from a single cercaria or an egg. The HRM real-time PCR is a rapid and simple tool for differentiation of S. japonicum and S. mekongi in the intermediate and final hosts. PMID:24516269

  14. Image reconstruction using wavelet multi-resolution technique for time-domain diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Gao, Feng; Jiao, Yuting; Zhao, Huijuan

    2010-02-01

    It is generally believed that the inverse problem in diffuse optical tomography (DOT) is highly ill-posed and its solution is always under-determined and sensitive to noise, which is the main problem in the application of DOT. In this paper, we propose a method on image reconstruction for time-domain diffuse optical tomography based on panel detection and Finite-Difference Method, and introduce an approach to reduce the number of unknown parameters in the reconstruction process. We propose a multi-level scheme to reduce the number of unknowns by parameterizing the spatial distribution of optical properties via wavelet transform and then reconstruct the coefficients of this transform. Compared with previous traditional uni-level full spatial domain algorithm, this method can efficiently improve the reconstruction quality. Numerical simulations show that wavelet-based multi-level inversion is superior to the uni-level algebraic reconstruction technique.

  15. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times

    PubMed Central

    Zeng, Liping; Zhang, Qiang; Sun, Renran; Kong, Hongzhi; Zhang, Ning; Ma, Hong

    2014-01-01

    Angiosperms are the most successful plants and support human livelihood and ecosystems. Angiosperm phylogeny is the foundation of studies of gene function and phenotypic evolution, divergence time estimation and biogeography. The relationship of the five divergent groups of the Mesangiospermae (~99.95% of extant angiosperms) remains uncertain, with multiple hypotheses reported in the literature. Here transcriptome data sets are obtained from 26 species lacking sequenced genomes, representing each of the five groups: eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae. Phylogenetic analyses using 59 carefully selected low-copy nuclear genes resulted in highly supported relationships: sisterhood of eudicots and a clade containing Chloranthaceae and Ceratophyllaceae, with magnoliids being the next sister group, followed by monocots. Our topology allows a re-examination of the evolutionary patterns of 110 morphological characters. The molecular clock estimates of Mesangiospermae diversification during the late to middle Jurassic correspond well to the origins of some insects, which may have been a factor facilitating early angiosperm radiation. PMID:25249442

  16. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times.

    PubMed

    Zeng, Liping; Zhang, Qiang; Sun, Renran; Kong, Hongzhi; Zhang, Ning; Ma, Hong

    2014-09-24

    Angiosperms are the most successful plants and support human livelihood and ecosystems. Angiosperm phylogeny is the foundation of studies of gene function and phenotypic evolution, divergence time estimation and biogeography. The relationship of the five divergent groups of the Mesangiospermae (~99.95% of extant angiosperms) remains uncertain, with multiple hypotheses reported in the literature. Here transcriptome data sets are obtained from 26 species lacking sequenced genomes, representing each of the five groups: eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae. Phylogenetic analyses using 59 carefully selected low-copy nuclear genes resulted in highly supported relationships: sisterhood of eudicots and a clade containing Chloranthaceae and Ceratophyllaceae, with magnoliids being the next sister group, followed by monocots. Our topology allows a re-examination of the evolutionary patterns of 110 morphological characters. The molecular clock estimates of Mesangiospermae diversification during the late to middle Jurassic correspond well to the origins of some insects, which may have been a factor facilitating early angiosperm radiation.

  17. A poly(dimethylsiloxane)-based device enabling time-lapse imaging with high spatial resolution

    SciTech Connect

    Hirano, Masahiko; Hoshida, Tetsushi; Sakaue-Sawano, Asako; Miyawaki, Atsushi

    2010-02-12

    We have developed a regulator-free device that enables long-term incubation of mammalian cells for epi-fluorescence imaging, based on a concept that the size of sample to be gassed and heated is reduced to observation scale. A poly(dimethylsiloxane) block stamped on a coverslip works as a long-lasting supplier of CO{sub 2}-rich gas to adjust bicarbonate-containing medium in a tiny chamber at physiological pH, and an oil-immersion objective warms cells across the coverslip. A time-lapse imaging experiment using HeLa cells stably expressing fluorescent cell-cycle indicators showed that the cells in the chamber proliferated with normal cell-cycle period over 2 days.

  18. Test beam studies of the light yield, time and coordinate resolutions of scintillator strips with WLS fibers and SiPM readout

    NASA Astrophysics Data System (ADS)

    Denisov, Dmitri; Evdokimov, Valery; Lukić, Strahinja; Ujić, Predrag

    2017-03-01

    Prototype scintilator+WLS strips with SiPM readout for large muon detection systems were tested in the muon beam of the Fermilab Test Beam Facility. Light yield of up to 137 photoelectrons per muon per strip has been observed , as well as time resolution of 330 ps and position resolution along the strip of 5.4 cm.

  19. DETECTORS AND EXPERIMENTAL METHODS: Effect of the integrated time of the induced current signal on the position resolution of the RPC detector

    NASA Astrophysics Data System (ADS)

    Ye, Jin; Yue, Qian; Li, Yuan-Jing; Cheng, Jian-Ping; Li, Jin; Wang, Yi

    2009-08-01

    A prototype RPC with position resolution less than 1 mm has been produced and studied. Based on this RPC detector, the effect of the width of the integrated FADC time window on the position resolution of a RPC has been studied experimentally and theoretically. The results of theoretical calculation and experimental measurement have shown good agreement.

  20. Long-term, high-resolution confocal time lapse imaging of Arabidopsis cotyledon epidermis during germination.

    PubMed

    Peterson, Kylee M; Torii, Keiko U

    2012-12-31

    Imaging in vivo dynamics of cellular behavior throughout a developmental sequence can be a powerful technique for understanding the mechanics of tissue patterning. During animal development, key cell proliferation and patterning events occur very quickly. For instance, in Caenorhabditis elegans all cell divisions required for the larval body plan are completed within six hours after fertilization, with seven mitotic cycles(1); the sixteen or more mitoses of Drosophila embryogenesis occur in less than 24 hr(2). In contrast, cell divisions during plant development are slow, typically on the order of a day (3,4,5) . This imposes a unique challenge and a need for long-term live imaging for documenting dynamic behaviors of cell division and differentiation events during plant organogenesis. Arabidopsis epidermis is an excellent model system for investigating signaling, cell fate, and development in plants. In the cotyledon, this tissue consists of air- and water-resistant pavement cells interspersed with evenly distributed stomata, valves that open and close to control gas exchange and water loss. Proper spacing of these stomata is critical to their function, and their development follows a sequence of asymmetric division and cell differentiation steps to produce the organized epidermis (Fig. 1). This protocol allows observation of cells and proteins in the epidermis over several days of development. This time frame enables precise documentation of stem-cell divisions and differentiation of epidermal cells, including stomata and epidermal pavement cells. Fluorescent proteins can be fused to proteins of interest to assess their dynamics during cell division and differentiation processes. This technique allows us to understand the localization of a novel protein, POLAR(6), during the proliferation stage of stomatal-lineage cells in the Arabidopsis cotyledon epidermis, where it is expressed in cells preceding asymmetric division events and moves to a characteristic area of

  1. Automatic Detection of Clouds and Shadows Using High Resolution Satellite Image Time Series

    NASA Astrophysics Data System (ADS)

    Champion, Nicolas

    2016-06-01

    Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel) with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel) with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8 and Pl

  2. High Time Resolution Measurements of Methane Fluxes From Enteric Fermentation in Cattle Rumen

    NASA Astrophysics Data System (ADS)

    Floerchinger, C. R.; Herndon, S.; Fortner, E.; Roscioli, J. R.; Kolb, C. E.; Knighton, W. B.; Molina, L. T.; Zavala, M.; Castelán, O.; Ku Vera, J.; Castillo, E.

    2013-12-01

    Methane accounts for roughly 20% of the global radiative climate forcing in the last two and a half centuries. Methane emissions arise from a number of anthropogenic and biogenic sources. In some areas enteric fermentation in livestock produces over 90% of agricultural methane. In the spring of 2013, as a part of the Short Lived Climate Forcer-Mexico field campaign, the Aerodyne Mobile Laboratory in partnership with the Molina Center for the Environment studied methane production associated with enteric fermentation in the rumen of cattle. A variety of different breeds and stocks being raised in two agricultural and veterinary research facilities located in different areas of Mexico were examined. Methane fluxes were quantified using two methods: 1) an atmospherically stable gaseous tracer release was collocated with small herds in a pasture, allowing tracer ratio flux measurements; 2) respiratory CO2 was measured in tandem with methane in the breath of individual animals allowing methane production to be related to metabolism. The use of an extensive suite of very high time response instruments allows for differentiation of individual methane producing rumination events and respiratory CO2 from possible background interferences. The results of these studies will be presented and compared to data from traditional chamber experiments.

  3. Modern U-Pb chronometry of meteorites: advancing to higher time resolution reveals new problems

    USGS Publications Warehouse

    Amelin, Y.; Connelly, J.; Zartman, R.E.; Chen, J.-H.; Gopel, C.; Neymark, L.A.

    2009-01-01

    In this paper, we evaluate the factors that influence the accuracy of lead (Pb)-isotopic ages of meteorites, and may possibly be responsible for inconsistencies between Pb-isotopic and extinct nuclide timescales of the early Solar System: instrumental mass fractionation and other possible analytical sources of error, presence of more than one component of non-radiogenic Pb, migration of ancient radiogenic Pb by diffusion and other mechanisms, possible heterogeneity of the isotopic composition of uranium (U), uncertainties in the decay constants of uranium isotopes, possible presence of "freshly synthesized" actinides with short half-life (e.g. 234U) in the early Solar System, possible initial disequilibrium in the uranium decay chains, and potential fractionation of radiogenic Pb isotopes and U isotopes caused by alpha-recoil and subsequent laboratory treatment. We review the use of 232Th/238U values to assist in making accurate interpretations of the U-Pb ages of meteorite components. We discuss recently published U-Pb dates of calcium-aluminum-rich inclusions (CAIs), and their apparent disagreement with the extinct nuclide dates, in the context of capability and common pitfalls in modern meteorite chronology. Finally, we discuss the requirements of meteorites that are intended to be used as the reference points in building a consistent time scale of the early Solar System, based on the combined use of the U-Pb system and extinct nuclide chronometers.

  4. Space-time conditional disaggregation of precipitation at high resolution via simulation

    NASA Astrophysics Data System (ADS)

    Bárdossy, András.; Pegram, Geoffrey G. S.

    2016-02-01

    Daily rainfall data are more plentiful and reliable than pluviometer data and are the best data set to start data-repair from, worldwide. Clusters of pluviometers (a term used herein for instruments recording at subdaily intervals) record wet and dry periods in close synchrony and larger and smaller catches tend to be recorded in similar groups, but they have many gaps that require infilling. We present a method of disaggregating daily rainfall to subdaily intervals, contemporaneously infilling gaps in the pluviometers. Then the observed data, together with the infilled and disaggregated values, are interpolated over the intervening space. To achieve this disaggregation, we used a Gaussian copula-based model with time-dependent marginal distributions and censored values representing the dry periods. In addition, we generated stochastically meaningful ensembles of missing or disaggregated values, while constraining each realization to the observed daily total where relevant. This applies to the gaps filled in the pluviometers as well as the disaggregation of the daily totals. Using the disaggregated and infilled subdaily ensembles, we then conditionally spatially simulated historical rainfall in the space between the gauges and pluviometers. The mean of these stochastic realizations was compared to interpolated fields using two other procedures: Rescaled Ordinary Kriging and Rescaled Nearest Neighbors, and found our method to be superior. Where there are daily data, the daily sum constrains the simulation. In the intervening space, in a chosen daily subinterval, there will be an ensemble of values simulated from the observations. We present the results of measurements and validation of the applications to an unusually large amount of data (not just a few convenient samples), and are confident that the methodology is sound and applicable in a variety of geographies.

  5. A Search for Fast Radio Bursts at Low Frequencies with Murchison Widefield Array High Time Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Tingay, S. J.; Trott, C. M.; Wayth, R. B.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Feng, L.; Gaensler, B. M.; Greenhill, L. J.; Hancock, P. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Murphy, T.; Oberoi, D.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Webster, R. L.; Williams, A.; Williams, C. L.

    2015-12-01

    We present the results of a pilot study search for fast radio bursts (FRBs) using the Murchison Widefield Array (MWA) at low frequencies (139-170 MHz). We utilized MWA data obtained in a routine imaging mode from observations where the primary target was a field being studied for Epoch of Reionization detection. We formed images with 2 s time resolution and 1.28 MHz frequency resolution for 10.5 hr of observations, over 400 square degrees of the sky. We de-dispersed the dynamic spectrum in each of 372,100 resolution elements of 2 × 2 arcmin2, between dispersion measures of 170 and 675 pc cm-3. Based on the event rate calculations in Trott et al., which assume a standard candle luminosity of 8 × 1037 Js-1, we predict that with this choice of observational parameters, the MWA should detect (˜10, ˜2, ˜0) FRBs with spectral indices corresponding to (-2, -1, 0), based on a 7σ detection threshold. We find no FRB candidates above this threshold from our search, placing an event rate limit of \\lt 700 above 700 Jy ms per day per sky and providing evidence against spectral indices α \\lt -1.2 (S\\propto {ν }α ). We compare our event rate and spectral index limits with others from the literature. We briefly discuss these limits in light of recent suggestions that supergiant pulses from young neutron stars could explain FRBs. We find that such supergiant pulses would have to have much flatter spectra between 150 and 1400 MHz than have been observed from Crab giant pulses to be consistent with the FRB spectral index limit we derive.

  6. Optical tomography of human skin with subcellular spatial and picosecond time resolution using intense near infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wollina, Uwe; Riemann, Iris; Peukert, Christiane; Halbhuber, Karl-Juergen; Konrad, Helga; Fischer, Peter; Fuenfstueck, Veronika; Fischer, Tobias W.; Elsner, Peter

    2002-06-01

    We describe the novel high resolution imaging tool DermaInspect 100 for non-invasive diagnosis of dermatological disorders based on multiphoton autofluorescence imaging (MAI)and second harmonic generation. Femtosecond laser pulses in the spectral range of 750 nm to 850 nm have been used to image in vitro and in vivo human skin with subcellular spatial and picosecond temporal resolution. The non-linear induced autofluorescence originates mainly from naturally endogenous fluorophores/protein structures like NAD(P)H, flavins, keratin, collagen, elastin, porphyrins and melanin. Second harmonic generation was observed in the stratum corneum and in the dermis. The system with a wavelength-tunable compact 80 MHz Ti:sapphire laser, a scan module with galvo scan mirrors, piezoelectric objective positioner, fast photon detector and time-resolved single photon counting unit was used to perform optical sectioning and 3D autofluorescence lifetime imaging (t-mapping). In addition, a modified femtosecond laser scanning microscope was involved in autofluorescence measurements. Tissues of patients with psoriasis, nevi, dermatitis, basalioma and melanoma have been investigated. Individual cells and skin structures could be clearly visualized. Intracellular components and connective tissue structures could be further characterized by tuning the excitation wavelength in the range of 750 nm to 850 nm and by calculation of mean fluorescence lifetimes per pixel and of particular regions of interest. The novel non-invasive imaging system provides 4D (x,y,z,t) optical biopsies with subcellular resolution and offers the possibility to introduce a further optical diagnostic method in dermatology.

  7. Incremental Folding Rates Determined With 104-5 Year Time Resolutions Along The Pyrenean Thrust Front, Spain

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Kodama, K. P.; Hinnov, L.; Pares, J. M.

    2015-12-01

    High-resolution rock magnetic cyclostratigraphy in growth strata are used to reconstruct unsteady fault-related folding rates at the regional Pico del Aguila anticline. Published and new magnetobiostratigraphy was used to determine absolute time and to calibrate a cyclostratigraphy based on anhysteretic remanent magnetization (ARM) intensity variations. The ARM data series was tuned to the orbital eccentricity model to remove the effects of sedimentary rate changes between late Lutetian-middle Priabonian chron boundaries (C19-C15) during syntectonic deposition. Sediment accumulation rates increased up section to 1.15 m/kyr during delta progradation with large oscillations in sedimentation rate in phase with eccentricity cyclicity. The ARM data was a proxy for climate change by recording Milankovitch cyclicity in the detrital magnetite concentration of deposits resulting from runoff variability in the wedge-top basin. Incremental tilting rates were calculated between selected growth horizons over 5 myrs of fold growth. The Eocene age limb tilt began rapidly then decreased more slowly at variable rates that were punctuated by periods of tectonic quiescence. Calculated folding rates varied between 0˚ and 100 ˚/myrs and averaged 14 ˚/myr over 100 kyr time increments. Accuracy and precision in the rate calculations include spatial errors associated with outcrop reconstruction and down plunge projection (<10 m and 104 yrs), bedding attitude (few ˚), absolute chron ages (105 yrs), sample spacing (103 yrs), sample size (102 yrs), and orbital tuning (104 yrs). The absolute age resolution on deformation is a few 100 kyrs while the uncertainties in the relative time between growth horizons is less and estimated at ~20 kyrs. Variation in folding rates of the Pico del Aguila anticline is attributed to unsteady thrusting in the fold's core.

  8. Real-Time Very High-Resolution Regional 4D Assimilation in Supporting CRYSTAL-FACE Experiment

    NASA Technical Reports Server (NTRS)

    Wang, Donghai; Minnis, Patrick

    2004-01-01

    To better understand tropical cirrus cloud physical properties and formation processes with a view toward the successful modeling of the Earth's climate, the CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment) field experiment took place over southern Florida from 1 July to 29 July 2002. During the entire field campaign, a very high-resolution numerical weather prediction (NWP) and assimilation system was performed in support of the mission with supercomputing resources provided by NASA Center for Computational Sciences (NCCS). By using NOAA NCEP Eta forecast for boundary conditions and as a first guess for initial conditions assimilated with all available observations, two nested 15/3 km grids are employed over the CRYSTAL-FACE experiment area. The 15-km grid covers the southeast US domain, and is run two times daily for a 36-hour forecast starting at 0000 UTC and 1200 UTC. The nested 3-km grid covering only southern Florida is used for 9-hour and 18-hour forecasts starting at 1500 and 0600 UTC, respectively. The forecasting system provided more accurate and higher spatial and temporal resolution forecasts of 4-D atmospheric fields over the experiment area than available from standard weather forecast models. These forecasts were essential for flight planning during both the afternoon prior to a flight day and the morning of a flight day. The forecasts were used to help decide takeoff times and the most optimal flight areas for accomplishing the mission objectives. See more detailed products on the web site http://asd-www.larc.nasa.gov/mode/crystal. The model/assimilation output gridded data are archived on the NASA Center for Computational Sciences (NCCS) UniTree system in the HDF format at 30-min intervals for real-time forecasts or 5-min intervals for the post-mission case studies. Particularly, the data set includes the 3-D cloud fields (cloud liquid water, rain water, cloud ice, snow and graupe/hail).

  9. High harmonic generation based time resolved ARPES at 30 eV with 50 meV energy resolution

    NASA Astrophysics Data System (ADS)

    Rohwer, Timm; Sie, Edbert J.; Mahmood, Fahad; Gedik, Nuh

    Angle-resolved photoelectron spectroscopy (ARPES) has emerged as a leading technique in identifying equilibrium properties of complex electronic systems as well as their correlated dynamics. By using femtosecond high harmonic generation (HHG) pulses, this technique can be extended to monitor ultrafast changes in the electronic structure in response to an optical excitation. However, the broad bandwidth of the HHG pulses has been a major experimental limitation. In this contribution, we combine the HHG source with an off-axis Czerny-Turner XUV monochromator and a three-dimensional ``ARTOF'' photoelectron detector to achieve an unrivaled overall energy resolution of 50 meV in multiple harmonic energies. Moreover, the use of a stack of different gratings enables us to fine control both the photon energy and time vs. energy resolution to its particular needs. The performance of our setup is demonstrated by studies on the transition metal dichalcogenide IrTe2 which undergoes a first-order structural transition and accompanied reconstruction of the band structure upon cooling without the characteristic opening of an energy gap.

  10. Global characterisation of the GELINA facility for high-resolution neutron time-of-flight measurements by Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Ene, D.; Borcea, C.; Kopecky, S.; Mondelaers, W.; Negret, A.; Plompen, A. J. M.

    2010-06-01

    A comprehensive set of Monte Carlo simulations was performed with the MCNP5 code to provide a generic characterisation of the neutron and photon fluxes for time-of-flight measurements at all flight paths of the GELINA facility. Simulations were performed for the direct flux configuration (DFC, 10 keV-20 MeV) and the moderated flux configuration (MFC, 10 meV-1 MeV). Fluxes and flux energy spectra were obtained for both neutrons and photons. For neutrons, additionally, detailed resolution functions and figures of merit were obtained. The validity of the approach for the photon spectra is shown by comparison with a dedicated measurement. Also, a verification is presented of the validity of the neutron resolution function by comparison with measured capture and transmission data for 103Rh and 56Fe in the incident neutron energy range from 70 eV to 50 keV. This comprehensive overview will facilitate the planning and analysis of measurements at the GELINA facility with an improved knowledge of its physical characteristics.

  11. Magnetic marker monitoring: high resolution real-time tracking of oral solid dosage forms in the gastrointestinal tract.

    PubMed

    Weitschies, Werner; Blume, Henning; Mönnikes, Hubert

    2010-01-01

    Knowledge about the performance of dosage forms in the gastrointestinal tract is essential for the development of new oral delivery systems, as well as for the choice of the optimal formulation technology. Magnetic Marker Monitoring (MMM) is an imaging technology for the investigation of the behaviour of solid oral dosage forms within the gastrointestinal tract, which is based on the labelling of solid dosage forms as a magnetic dipole and determination of the location, orientation and strength of the dipole after oral administration using measurement equipment and localization methods that are established in biomagnetism. MMM enables the investigation of the performance of solid dosage forms in the gastrointestinal tract with a temporal resolution in the range of a few milliseconds and a spatial resolution in 3D in the range of some millimetres. Thereby, MMM provides real-time tracking of dosage forms in the gastrointestinal tract. MMM is also suitable for the determination of dosage form disintegration and for quantitative measurement of in vivo drug release in case of appropriate extended release dosage forms like hydrogel-forming matrix tablets. The combination of MMM with pharmacokinetic measurements (pharmacomagnetography) enables the determination of in vitro-in vivo correlations (IVIC) and the delineation of absorption sites in the gastrointestinal tract.

  12. Real-time cannula navigation in biological tissue with high temporal and spatial resolution based on impedance spectroscopy.

    PubMed

    Trebbels, Dennis; Jugl, Michael; Zengerle, Roland

    2010-01-01

    In many medical applications a well-directed positioning of a cannula in body tissue is mandatory. Especially the accurate placing of the cannula tip in the tissue is important for efficient drug delivery or for accessing blood vessels and nerves. This paper presents a new approach for a universal cannula navigation system based on tissue classification on the cannula tip by impedance spectroscopy. The cannula serves as coaxial, open ended waveguide which is connected to remote measurement equipment. Objective of the new system is to reach a high spatial and temporal resolution for dynamic cannula guidance. Therefore the proposed coaxial cannula design has been analyzed by Finite Element Simulation to investigate the sensitivity of the cannula tip. For fast tissue impedance spectrum measurement the Time-Domain-Reflectometry method is used in order to achieve a high temporal resolution. Measurement data derived in the laboratory is analyzed and interpreted using the general Cole-Cole model for tissue. Based on the results we propose to use a chirp signal for impedance measurement in order to improve the sensitivity of the system towards specific tissue properties.

  13. Timing Characteristics of Large Area Picosecond Photodetectors

    SciTech Connect

    Adams, Bernhard W.; Elagin, Andrey L.; Frisch, H.; Obaid, Razib; Oberla, E; Vostrikov, Alexander; Wagner, Robert G.; Wang, Jingbo; Wetstein, Matthew J.; Northrop, R

    2015-09-21

    The LAPPD Collaboration was formed to develop ultralast large-area imaging photodetectors based on new methods for fabricating microchannel plates (MCPs). In this paper we characterize the time response using a pulsed, sub picosecond laser. We observe single photoelectron time resolutions of a 20 cm x 20 cm MCP consistently below 70 ps, spatial resolutions of roughly 500 pm, and median gains higher than 10(7). The RMS measured at one particular point on an LAPPD detector is 58 ps, with in of 47 ps. The differential time resolution between the signal reaching the two ends of the delay line anode is measured to be 5.1 ps for large signals, with an asymptotic limit falling below 2 ps as noise-over-signal approaches zero.

  14. Improving γ-ray energy resolution, non-proportionality, and decay time of NaI:Tl+ with Sr2+ and Ca2+ co-doping

    NASA Astrophysics Data System (ADS)

    Yang, K.; Menge, P. R.

    2015-12-01

    Commercially available thallium activated sodium iodide scintillators are typically characterized by a γ-ray energy resolution of 6.5% at 662 keV and a scintillation decay time constant of 230 ns. Energy resolution, non-proportionality, and scintillation decay time are improved when the crystal is co-doped with alkaline earth metals (Sr2+ and Ca2+). The energy resolution of NaI:Tl+ is improved to 5.3%, and the decay time is simultaneously reduced to 170 ns with Sr2+ and Ca2+ co-doping. The improvement in energy resolution, non-proportionality, and decay time are likely due to the suppression of the slow scintillation processes in NaI:Tl+.

  15. [High resolution real time sonography in sports specific muscle injuries. Sonomorphologic-anatomic correlation and diagnostic criteria].

    PubMed

    Hannesschläger, G; Reschauer, R; Riedelberger, W; Stadler, R

    1988-06-01

    In 250 examinations of 86 patients, high resolution real time sonography with a 7.5 MHz linear transducer proved to be a readily available, low-cost and significantly relevant imaging method in diagnosis and follow-up of muscular lesions in sportsmen. The method offers a high measure of safety in excluding rupture or in enabling differential diagnosis between partial muscular rupture and muscular spasm, so that the choice of treatment can be decisively influenced by sonography. Hence, rapid rehabilitation, which is so essential in competitive sport, is speeded up even further. In extensive ruptures or rupture haematoma, therapeutic ultrasound-guided puncture can be performed or indication for surgery can be facilitated in subtotal or complete tears of a muscle that is important for high-level performance.

  16. Observations of plasma waves in the solar wind interaction region of Comet Giacobini-Zinner at high time resolution

    NASA Technical Reports Server (NTRS)

    Moses, S. L.; Coroniti, F. V.; Greenstadt, E. W.; Tsurutani, B. T.

    1992-01-01

    High-time-resolution spectra of plasma wave emissions detected in the interaction region of Comet Giacobini-Zinner with the solar wind reveal a wave phenomenology much more complicated than first reported. Spectra often exhibit three or more independent peaks, which become more prominent the deeper into the interaction region the spacecraft traversed. The main peaks correspond to whistler emissions below the electron cyclotron frequency, a midfrequency peak near the maximum Doppler shift frequency for waves with k lambda(D) = 1, a high-frequency peak above the Doppler shift maximum frequency, and electron plasma oscillations at the plasma frequency. Similar multipeaked spectra are also observed downstream from weak shocks at Earth, which suggests that the plasma wave generation mechanisms responsible need not require particle populations created by photoionization.

  17. Rapid real-time PCR and high resolution melt analysis in a self-filling thermoplastic chip.

    PubMed

    Sposito, A; Hoang, V; DeVoe, D L

    2016-09-21

    A microfluidic platform designed for point-of-care PCR-based nucleic acid diagnostics is described. Compared to established microfluidic PCR technologies, the system is unique in its ability to achieve exceptionally rapid PCR amplification in a low cost thermoplastic format, together with high temperature accuracy enabling effective validation of reaction product by high resolution melt analysis performed in the same chamber as PCR. In addition, the system employs capillary pumping for automated loading of sample into the reaction chamber, combined with an integrated hydrophilic valve for precise self-metering of sample volumes into the device. Using the microfluidic system to target a mutation in the G6PC gene, efficient PCR from human genomic DNA template is achieved with cycle times as low as 14 s, full amplification in 8.5 min, and final melt analysis accurately identifying the desired amplicon.

  18. Tracking the Time Course of Competition During Word Production: Evidence for a Post-Retrieval Mechanism of Conflict Resolution.

    PubMed

    Janssen, Niels; Hernández-Cabrera, Juan A; van der Meij, Maartje; Barber, Horacio A

    2015-09-01

    Producing a word is often complicated by the fact that there are other words that share meaning with the intended word. The competition between words that arises in such a situation is a well-known phenomenon in the word production literature. An ongoing debate in a number of research domains has concerned the question of how competition between words is resolved. Here, we contributed to the debate by presenting evidence that indicates that resolving competition during word production involves a postretrieval mechanism of conflict resolution. Specifically, we tracked the time course of competition during word production using electroencephalography. In the experiment, participants named pictures in contexts that varied in the strength of competition. The electrophysiological data show that competition is associated with a late, frontally distributed component that arises between 500 and 750 ms after picture presentation. These data are interpreted in terms of a model of word production that relies on a mechanism of cognitive control.

  19. It gets better: resolution of internalized homophobia over time and associations with positive health outcomes among MSM.

    PubMed

    Herrick, Amy L; Stall, Ron; Chmiel, Joan S; Guadamuz, Thomas E; Penniman, Typhanye; Shoptaw, Steven; Ostrow, David; Plankey, Michael W

    2013-05-01

    Health disparities research among gay and bisexual men has focused primarily on risk and deficits. However, a focus on resiliencies within this population may greatly benefit health promotion. We describe a pattern of resilience (internalized homophobia (IHP) resolution) over the life-course and its associations with current health outcomes. 1,541 gay and bisexual men from the Multi-Center AIDS Cohort study, an ongoing prospective study of the natural and treated histories of HIV, completed a survey about life-course events thought to be related to health. The majority of men resolved IHP over time independent of demographics. Men who resolved IHP had significantly higher odds of positive health outcomes compared to those who did not. These results provide evidence of resilience among participants that is associated with positive health outcomes. Understanding resiliencies and incorporating them into interventions may help to promote health and well-being among gay and bisexual men.

  20. Real-time frequency dynamics and high-resolution spectra of a semiconductor laser with delayed feedback

    PubMed Central

    Brunner, Daniel; Porte, Xavier; Soriano, Miguel C.; Fischer, Ingo

    2012-01-01

    The unstable emission of semiconductor lasers due to delayed optical feedback is characterized by combined intensity and frequency dynamics. Nevertheless, real-time experimental investigations have so far been restricted to measurements of intensity dynamics only. Detailed analysis and comparison with numerical models, therefore, have suffered from limited experimental information. Here, we report the simultaneous determination of the lasers optical emission intensity and emission frequency with high temporal resolution. The frequency dynamics is made accessible using a heterodyne detection scheme, in which a beat signal between the delayed feedback laser and a reference laser is generated. Our experiment provides insight into the overall spectral drift on nanosecond timescales, the spectral distribution of the unstable pulsations and the role of the individual external cavity modes. This opens new perspectives for the analysis, understanding and functional utilization of delayed feedback semiconductor lasers. PMID:23066501

  1. Application of a passivity based control methodology for flexible joint robots to a simplified Space Shuttle RMS

    NASA Technical Reports Server (NTRS)

    Sicard, Pierre; Wen, John T.

    1992-01-01

    A passivity approach for the control design of flexible joint robots is applied to the rate control of a three-link arm modeled after the shoulder yaw joint of the Space Shuttle Remote Manipulator System (RMS). The system model includes friction and elastic joint couplings modeled as nonlinear springs. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. A regulator approach with link state feedback is employed to define the desired motor state. Passivity theory is used to design a motor state-based controller to stabilize the error system formed by the feedforward. Simulation results show that greatly improved performance was obtained by using the proposed controller over the existing RMS controller.

  2. A passivity based control methodology for flexible joint robots with application to a simplified shuttle RMS arm

    NASA Technical Reports Server (NTRS)

    Sicard, Pierre; Wen, John T.

    1991-01-01

    The main goal is to develop a general theory for the control of flexible robots, including flexible joint robots, flexible link robots, rigid bodies with flexible appendages, etc. As part of the validation, the theory is applied to the control law development for a test example which consists of a three-link arm modeled after the shoulder yaw joint of the space shuttle remote manipulator system (RMS). The performance of the closed loop control system is then compared with the performance of the existing RMS controller to demonstrate the effectiveness of the proposed approach. The theoretical foundation of this new approach to the control of flexible robots is presented and its efficacy is demonstrated through simulation results on the three-link test arm.

  3. STS-57 MS and PLC Low, in EMU and atop the RMS, is maneuvered in OV-105's PLB

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This extravehicular activity (EVA) scene captured by one of the STS-57 crewmembers in Endeavour's, Orbiter Vehicle (OV) 105's, crew cabin shows Mission Specialist (MS) and Payload Commander (PLC) G. David Low conducting Detailed Test Objective 1210 procedures. Pictured near the recently 'captured' European Retrievable Carrier (EURECA) at frame center, Low, suited in an extravehicular mobility unit (EMU), is anchored to the remote manipulator system (RMS) via a portable foot restraint (PFR) (manipulator foot restraint (MFR)). The PFR is attached to the RMS end effector via a PFR attachment device (PAD). DTO 1210 results will assist in refining several procedures being developed to service the Hubble Space Telescope (HST) on mission STS-61 in December 1993. Partially visible in the foreground is the Superfluid Helium Onorbit Transfer (SHOOT) payload.

  4. STS-57 MS and PLC Low, in EMU and atop the RMS, is maneuvered in OV-105's PLB

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The darkness of space forms the backdrop for this extravehicular activity (EVA) scene captured by one of the STS-57 crewmembers in Endeavour's, Orbiter Vehicle (OV) 105's, crew cabin. Pictured near the recently 'captured' European Retrievable Carrier (EURECA) at frame center is Mission Specialist (MS) and Payload Commander (PLC) G. David Low. Suited in an extravehicular mobility unit (EMU), Low, anchored to the remote manipulator system (RMS) via a portable foot restraint (PFR) (manipulator foot restraint (MFR)), is conducting Detailed Test Objective (DTO) 1210 procedures. Specifically, this activity will assist in refining several procedures being developed to service the Hubble Space Telescope (HST) on mission STS-61 in December 1993. The PFR is attached to the RMS end effector via a PFR attachment device (PAD). Partially visible in the foreground is the Superfluid Helium Onorbit Transfer (SHOOT) payload.

  5. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility.

    PubMed

    Gupta, Y M; Turneaure, Stefan J; Perkins, K; Zimmerman, K; Arganbright, N; Shen, G; Chow, P

    2012-12-01

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization∕x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  6. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility

    NASA Astrophysics Data System (ADS)

    Gupta, Y. M.; Turneaure, Stefan J.; Perkins, K.; Zimmerman, K.; Arganbright, N.; Shen, G.; Chow, P.

    2012-12-01

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization/x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  7. A novel Fast Gas Chromatography based technique for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2013-12-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the

  8. Post-seismic Deformation of Mojave Earthquakes using Full-Resolution InSAR Time-Series Analysis

    NASA Astrophysics Data System (ADS)

    Barba, M.; Peltzer, G.

    2015-12-01

    Surface deformation in the Mojave Desert in the last two decades has been dominated by the effects of the 1992 Landers and 1999 Hector Mine earthquakes. In the post-seismic periods following these events, broad scale patterns were interpreted as afterslip on deep parts of the faults or viscoelastic relaxation in the lower crust and upper mantle. In the near-field of the faults, smaller size features of the displacement field were interpreted as poro-elastic relaxation of crustal fluid pressure gradients produced by the co-seismic stress change. We reanalyze the entire archive of the European Space Agency ERS-1/2 and ENVISAT radar data to define the spatial and temporal characteristics of the near-field deformation following the two events, achieving coverage during the 1992-2010 time period. The raw data are processed into interferograms using the JPL ISCE software. The interferograms are corrected for the tropospheric phase delay using the ECMWF GCM and orbit errors are estimated in the data network over entire scenes. Time-series of surface displacement maps of sub-regions near the faults are then constructed using the full resolution of the radar images (~20 m). Deformation features within and near the earthquake faults are characterized by a fast LOS velocity exponentially decaying with time over 1-2 years, followed by a steady deformation corresponding to the long-term strain in the Mojave. Shorter relaxation times are generally observed in regions where the crust sustained extension during the preceding earthquakes suggesting that crustal tension increases the diffusivity of fluids in the shallow crust. In the Johnson Valley-Homestead Valley pull-apart we estimate a relaxation time of ~400 days. Along the northern section of the HME fault rupture, the narrow zone of subsidence has a relaxation time of ~240 days, which can be explained by intensely damaged rocks within the fault zone.

  9. STS-39 SPAS-II IBSS is grappled by RMS over OV-103's payload bay (PLB)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-39 Shuttle Pallet Satellite II (SPAS-II) / Infrared Background Signature Survey (IBSS) spacecraft is grappled by remote manipulator system (RMS) end effector and is positioned over Discovery's, Orbiter Vehicle (OV) 103's, payload bay (PLB). In the background are the Air Force Program 675 (AFP-675) experiment support system (ESS), the aft PLB bulkhead, the vertical tail, and the orbital maneuvering system (OMS) pods. SPAS-II is a Strategic Defense Initiative Organization (SDIO) payload.

  10. High mass resolution isochronous time-of-flight spectrograph for three-dimensional space plasma measurements (abstract)

    SciTech Connect

    Moebius, E. ); Bochsler, P. ); Ghielmetti, A.G. ); Hamilton, D.C. )

    1990-10-01

    By combining a toroidal electrostatic analyzer with a novel cylindrically symmetric isochronous time-of-flight mass spectrometer, we have developed an instrument that simultaneously determines the three-dimensional distribution function of ions and differentiates species. The ion mass is determined to high resolution ({ital M}/{Delta}{ital M}{gt}50) from the time of flight within a harmonic field configuration defined by hyperboloid equipotential surfaces. A second conventional time-of-flight channel makes use of particles leaving the thin entrance foil as neutrals. An additional solid state detector in which the neutrals are stopped allows the total energy and thereby the ionic charge of the incident ions to be determined as well. Information from the neutral and the ion channels can be combined to determine the total mass of an incident molecular ion and the mass of one atomic fragment. This also removes the ambiguity between molecular ions and isotopic species of the same mass. A laboratory prototype has been used to demonstrate the feasibility of the principle of operation.

  11. Spectroscopy by Integration of Frequency and Time Domain Information (SIFT) for Fast Acquisition of High Resolution Dark Spectra

    PubMed Central

    Matsuki, Yoh; Eddy, Matthew T.; Herzfeld, Judith

    2009-01-01

    A simple and effective method, SIFT (Spectroscopy by Integrating Frequency and Time domain information) is introduced for processing non-uniformly sampled multidimensional NMR data. Applying the computationally efficient Gerchberg-Papoulis (G-P) algorithm, used previously in picture processing and medical imaging, SIFT supplements data at non-uniform points in the time domain with the information carried by known “dark” points (i.e. empty regions) in the frequency domain. We demonstrate that this rapid integration not only removes the severe pseudo-noise characteristic of the Fourier transforms of non-uniformly sampled data, but also provides a robust procedure for using frequency information to replace time measurements. The latter can be used to avoid unnecessary sampling in sampling-limited experiments and the former can be used to take advantage of the ability of non-uniformly sampled data to minimize trade-offs between the signal-to-noise ratio and the resolution in sensitivity-limited experiments. Processing 2D and 3D datasets takes about 0.1 and 2 min, respectively, on a personal computer. With these several attractive features, SIFT offers a novel, model-independent, flexible, and user-friendly tool for efficient and accurate processing of multidimensional NMR data. PMID:19284727

  12. Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra.

    PubMed

    Matsuki, Yoh; Eddy, Matthew T; Herzfeld, Judith

    2009-04-08

    A simple and effective method, SIFT (spectroscopy by integration of frequency and time domain information), is introduced for processing nonuniformly sampled multidimensional NMR data. Applying the computationally efficient Gerchberg-Papoulis (G-P) algorithm, used previously in picture processing and medical imaging, SIFT supplements data at nonuniform points in the time domain with the information carried by known "dark" points (i.e., empty regions) in the frequency domain. We demonstrate that this rapid integration not only removes the severe pseudonoise characteristic of the Fourier transforms of nonuniformly sampled data, but also provides a robust procedure for using frequency information to replace time measurements. The latter can be used to avoid unnecessary sampling in sampling-limited experiments, and the former can be used to take advantage of the ability of nonuniformly sampled data to minimize trade-offs between the signal-to-noise ratio and the resolution in sensitivity-limited experiments. Processing 2D and 3D data sets takes about 0.1 and 2 min, respectively, on a personal computer. With these several attractive features, SIFT offers a novel, model-independent, flexible, and user-friendly tool for efficient and accurate processing of multidimensional NMR data.

  13. Differentiation of infectious bursal disease virus strains using real-time RT-PCR and high resolution melt curve analysis.

    PubMed

    Ghorashi, Seyed A; O'Rourke, Denise; Ignjatovic, Jagoda; Noormohammadi, Amir H

    2011-01-01

    Differentiation of infectious bursal disease virus (IBDV) strains is crucial for effective vaccination programs and epidemiological investigations. In this study, a combination of real-time RT-PCR and high resolution melt (HRM) curve analysis was developed for simultaneous detection and differentiation of IBDV strains/isolates. The hypervariable region of VP2 gene was amplified from several IBDV strains and subjected to HRM curve analysis. The method could readily differentiate between classical vaccines/isolates and variants. Analysis of the nucleotide sequence of the amplicons from each strain revealed that each melt curve profile was related to a unique DNA sequence. The real-time RT-PCR HRM curve analysis was also able to differentiate IBDV strains/isolates directly in bursal tissues from field submissions and from vaccinated commercial flocks. The differences between melting peaks generated from IBDV strains were significantly different (P<0.0001) demonstrating the high discriminatory power of this technique. The results presented in this study indicated that real-time RT-PCR followed by HRM curve analysis provides a rapid and robust technique for genotyping IBDV isolates/strains and can contribute to effective control of IBDV outbreaks.

  14. Qualitative and quantitative analysis of Andrographis paniculata by rapid resolution liquid chromatography/time-of-flight mass spectrometry.

    PubMed

    Song, Yong-Xi; Liu, Shi-Ping; Jin, Zhao; Qin, Jian-Fei; Jiang, Zhi-Yuan

    2013-09-30

    A rapid resolution liquid chromatography/time-of-flight tandem mass spectrometry (RRLC-TOF/MS) method was developed for qualitative and quantitative analysis of the major chemical constituents in Andrographis paniculata. Fifteen compounds, including flavonoids and diterpenoid lactones, were unambiguously or tentatively identified in 10 min by comparing their retention times and accurate masses with standards or literature data. The characteristic fragmentation patterns of flavonoids and diterpenoid lactones were summarized, and the structures of the unknown compounds were predicted. Andrographolide, dehydroandrographolide and neoandrographolide were further quantified as marker substances. It was found that the calibration curves for all analytes showed good linearity (R² > 0.9995) within the test ranges. The overall limits of detection (LODs) and limits of quantification (LOQs) were 0.02 μg/mL to 0.06 μg/mL and 0.06 μg/mL to 0.2 μg/mL, respectively. The relative standard deviations (RSDs) for intra- and inter-day precisions were below 3.3% and 4.2%, respectively. The mean recovery rates ranged from 96.7% to 104.5% with the relative standard deviations (RSDs) less than 2.72%. It is concluded that RRLC-TOF/MS is powerful and practical in qualitative and quantitative analysis of complex plant samples due to time savings, sensitivity, precision, accuracy and lowering solvent consumption.

  15. An effective assay for high cellular resolution time-lapse imaging of sensory placode formation and morphogenesis

    PubMed Central

    2011-01-01

    Background The vertebrate peripheral nervous system contains sensory neurons that arise from ectodermal placodes. Placodal cells ingress to move inside the head to form sensory neurons of the cranial ganglia. To date, however, the process of placodal cell ingression and underlying cellular behavior are poorly understood as studies have relied upon static analyses on fixed tissues. Visualizing placodal cell behavior requires an ability to distinguish the surface ectoderm from the underlying mesenchyme. This necessitates high resolution imaging along the z-plane which is difficult to accomplish in whole embryos. To address this issue, we have developed an imaging system using cranial slices that allows direct visualization of placode formation. Results We demonstrate an effective imaging assay for capturing placode development at single cell resolution using chick embryonic tissue ex vivo. This provides the first time-lapse imaging of mitoses in the trigeminal placodal ectoderm, ingression, and intercellular contacts of placodal cells. Cell divisions with varied orientations were found in the placodal ectoderm all along the apical-basal axis. Placodal cells initially have short cytoplasmic processes during ingression as young neurons and mature over time to elaborate long axonal processes in the mesenchyme. Interestingly, the time-lapse imaging data reveal that these delaminating placodal neurons begin ingression early on from within the ectoderm, where they start to move and continue on to exit as individual or strings of neurons through common openings on the basal side of the epithelium. Furthermore, dynamic intercellular contacts are abundant among the delaminating placodal neurons, between these and the already delaminated cells, as well as among cells in the forming ganglion. Conclusions This new imaging assay provides a powerful method to analyze directly development of placode-derived sensory neurons and subsequent ganglia formation for the first time in

  16. Time-resolved pump-probe experiments beyond the jitter limitations at FLASH

    SciTech Connect

    Azima, A.; Duesterer, S.; Radcliffe, P.; Redlin, H.; Stojanovic, N.; Li, W.; Schlarb, H.; Feldhaus, J.; Cubaynes, D.; Meyer, M.

    2009-04-06

    Using a noninvasive, electro-optically based electron bunch arrival time measurement at FLASH (free electron laser in Hamburg) the temporal resolution of two-color pump-probe experiments has been significantly improved. The system determines the relative arrival time of the extended ultraviolet pulse of FLASH and an amplified Ti:sapphire femtosecond-laser pulse at the interaction region better than 90 fs rms. In a benchmarking pump-probe experiment using two-color above threshold ionization of noble gases, an enhancement in the timing resolution by a factor of 4 compared to the uncorrected data is obtained.

  17. Using 3D Glyph Visualization to Explore Real-time Seismic Data on Immersive and High-resolution Display Systems

    NASA Astrophysics Data System (ADS)

    Nayak, A. M.; Lindquist, K.; Kilb, D.; Newman, R.; Vernon, F.; Leigh, J.; Johnson, A.; Renambot, L.

    2003-12-01

    The study of time-dependent, three-dimensional natural phenomena like earthquakes can be enhanced with innovative and pertinent 3D computer graphics. Here we display seismic data as 3D glyphs (graphics primitives or symbols with various geometric and color attributes), allowing us to visualize the measured, time-dependent, 3D wave field from an earthquake recorded by a certain seismic network. In addition to providing a powerful state-of-health diagnostic of the seismic network, the graphical result presents an intuitive understanding of the real-time wave field that is hard to achieve with traditional 2D visualization methods. We have named these 3D icons `seismoglyphs' to suggest visual objects built from three components of ground motion data (north-south, east-west, vertical) recorded by a seismic sensor. A seismoglyph changes color with time, spanning the spectrum, to indicate when the seismic amplitude is largest. The spatial extent of the glyph indicates the polarization of the wave field as it arrives at the recording station. We compose seismoglyphs using the real time ANZA broadband data (http://www.eqinfo.ucsd.edu) to understand the 3D behavior of a seismic wave field in Southern California. Fifteen seismoglyphs are drawn simultaneously with a 3D topography map of Southern California, as real time data is piped into the graphics software using the Antelope system. At each station location, the seismoglyph evolves with time and this graphical display allows a scientist to observe patterns and anomalies in the data. The display also provides visual clues to indicate wave arrivals and ~real-time earthquake detection. Future work will involve adding phase detections, network triggers and near real-time 2D surface shaking estimates. The visuals can be displayed in an immersive environment using the passive stereoscopic Geowall (http://www.geowall.org). The stereographic projection allows for a better understanding of attenuation due to distance and earth

  18. Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass.

    PubMed

    Wang, Cheng-Cai; Mao, Yun-Wei; Shan, Zhi-Wei; Dao, Ming; Li, Ju; Sun, Jun; Ma, Evan; Suresh, Subra

    2013-12-03

    Metallic glasses (MGs) exhibit greater elastic limit and stronger resistance to plastic deformation than their crystalline metal counterparts. Their capacity to withstand plastic straining is further enhanced at submicrometer length scales. For a range of microelectromechanical applications, the resistance of MGs to damage and cracking from thermal and mechanical stress or strain cycling under partial or complete constraint is of considerable scientific and technological interest. However, to our knowledge, no real-time, high-resolution transmission electron microscopy observations are available of crystallization, damage, and failure from the controlled imposition of cyclic strains or displacements in any metallic glass. Here we present the results of a unique in situ study, inside a high-resolution transmission electron microscope, of glass-to-crystal formation and fatigue of an Al-based MG. We demonstrate that cyclic straining progressively leads to nanoscale surface roughening in the highly deformed region of the starter notch, causing crack nucleation and formation of nanocrystals. The growth of these nanograins during cyclic straining impedes subsequent crack growth by bridging the crack. In distinct contrast to this fatigue behavior, only distributed nucleation of smaller nanocrystals is observed with no surface roughening under monotonic deformation. We further show through molecular dynamics simulation that these findings can be rationalized by the accumulation of strain-induced nonaffine atomic rearrangements that effectively enhances diffusion through random walk during repeated strain cycling. The present results thus provide unique insights into fundamental mechanisms of fatigue of MGs that would help shape strategies for material design and engineering applications.

  19. Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass

    PubMed Central

    Wang, Cheng-Cai; Mao, Yun-Wei; Shan, Zhi-Wei; Dao, Ming; Li, Ju; Sun, Jun; Ma, Evan; Suresh, Subra

    2013-01-01

    Metallic glasses (MGs) exhibit greater elastic limit and stronger resistance to plastic deformation than their crystalline metal counterparts. Their capacity to withstand plastic straining is further enhanced at submicrometer length scales. For a range of microelectromechanical applications, the resistance of MGs to damage and cracking from thermal and mechanical stress or strain cycling under partial or complete constraint is of considerable scientific and technological interest. However, to our knowledge, no real-time, high-resolution transmission electron microscopy observations are available of crystallization, damage, and failure from the controlled imposition of cyclic strains or displacements in any metallic glass. Here we present the results of a unique in situ study, inside a high-resolution transmission electron microscope, of glass-to-crystal formation and fatigue of an Al-based MG. We demonstrate that cyclic straining progressively leads to nanoscale surface roughening in the highly deformed region of the starter notch, causing crack nucleation and formation of nanocrystals. The growth of these nanograins during cyclic straining impedes subsequent crack growth by bridging the crack. In distinct contrast to this fatigue behavior, only distributed nucleation of smaller nanocrystals is observed with no surface roughening under monotonic deformation. We further show through molecular dynamics simulation that these findings can be rationalized by the accumulation of strain-induced nonaffine atomic rearrangements that effectively enhances diffusion through random walk during repeated strain cycling. The present results thus provide unique insights into fundamental mechanisms of fatigue of MGs that would help shape strategies for material design and engineering applications. PMID:24255113

  20. DISCOVERY AND MONITORING OF A NEW BLACK HOLE CANDIDATE XTE J1752-223 WITH RXTE: RMS SPECTRUM EVOLUTION, BLACK HOLE MASS, AND THE SOURCE DISTANCE

    SciTech Connect

    Shaposhnikov, Nikolai

    2010-11-10

    We report on the discovery and monitoring observations of a new galactic black hole (BH) candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on 2009 October 21 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/high-soft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass BH binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a blackbody spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (rms) variability in the RXTE/PCA energy band with the source spectral state and conclude that broadband variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition, and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hard-to-soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source of about 3.5 kpc.

  1. Discovery and Monitoring of a New Black Hole Candidate XTE J1752-223 with RXTE: RMS Spectrum Evolution, BH Mass and the Source Distance

    NASA Technical Reports Server (NTRS)

    Shaposhinikov, Nikolai; Markwardt, Craig; Swank, Jean; Krimm, Hans

    2010-01-01

    We report on the discovery and monitoring observations of a new galactic black hole candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on October 21 2009 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/highsoft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass black hole binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a black body spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (RMS) variability in the RXTE/PCA energy band with the source spectral state and conclude that broad band variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hardto- soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source about 3.5 kiloparsec.

  2. Effects of Spatial Resolution on the Simulated Dust Aerosol Lifecycle: Implications for Dust Event Magnitude and Timing in the NASA GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.; Colarco, Peter R.; daSilva, A.

    2011-01-01

    The NASA GEOS-5 atmospheric transport model simulates global aerosol distributions with an online aerosol module. GEOS-5 may be run at various horizontal spatial resolutions depending on the research application. For example, long integration climate simulations are typically run at 2 deg or 1 deg grid spacing, whereas aerosol reanalysis and forecasting applications may be performed at O.5 deg or 0.25 deg resolutions. In this study, we assess the implications of varying spatial resolution on the simulated aerosol fields, with a particular focus on dust. Dust emissions in GEOS-5 are calculated with one of two parameterizations, one based on the Goddard Chemistry, Aerosol, Radiation, and Transport (GO CART) model and another based on the Dust Entrainment and Deposition (DEAD) model. Emission fluxes are parameterized in terms of the surface wind speed, either the 10-m (GO CART) or friction (DEAD) wind speed. We consider how surface wind speeds and thus the dust emission rates are a function of the model spatial resolution. We find that spatial resolution has a significant effect on the magnitude of dust emissions, as higher resolution versions of the model have typically higher surface wind speeds. Utilizing space-borne observations from MISR, MODIS, and CALIOP, we find that simulated Aerosol Optical Thickness (AOT) distributions respond differently to spatial resolution over the African and Asian source regions, highlighting the need to regional dust emission tuning. When compared to ground-based observations from AERONET, we found improved timing of dust events with as spatial resolution was increased. In an attempt to improve the representation of the dust aerosol lifecycle at coarse resolutions, we found that incorporating the effects of sub-grid wind variability in a course resolution simulation led to improved agreement with observed AOT magnitudes, but did not impact the timing of simulated dust events.

  3. Time-Resolved O3 Chemical Chain Reaction Kinetics Via High-Resolution IR Laser Absorption Methods

    NASA Technical Reports Server (NTRS)

    Kulcke, Axel; Blackmon, Brad; Chapman, William B.; Kim, In Koo; Nesbitt, David J.

    1998-01-01

    Excimer laser photolysis in combination with time-resolved IR laser absorption detection of OH radicals has been used to study O3/OH(v = 0)/HO2 chain reaction kinetics at 298 K, (i.e.,(k(sub 1) is OH + 03 yields H02 + 02 and (k(sub 2) is H02 + 03 yields OH + 202). From time-resolved detection of OH radicals with high-resolution near IR laser absorption methods, the chain induction kinetics have been measured at up to an order of magnitude higher ozone concentrations ([03] less than or equal to 10(exp 17) molecules/cu cm) than accessible in previous studies. This greater dynamic range permits the full evolution of the chain induction, propagation, and termination process to be temporally isolated and measured in real time. An exact solution for time-dependent OH evolution under pseudo- first-order chain reaction conditions is presented, which correctly predicts new kinetic signatures not included in previous OH + 03 kinetic analyses. Specifically, the solutions predict an initial exponential loss (chain "induction") of the OH radical to a steady-state level ([OH](sub ss)), with this fast initial decay determined by the sum of both chain rate constants, k(sub ind) = k(sub 1) + k(sub 2). By monitoring the chain induction feature, this sum of the rate constants is determined to be k(sub ind) = 8.4(8) x 10(exp -14) cu cm/molecule/s for room temperature reagents. This is significantly higher than the values currently recommended for use in atmospheric models, but in excellent agreement with previous results from Ravishankara et al.

  4. High resolution, week-long, locomotion time series from Japanese quail in a home-box environment.

    PubMed

    Guzmán, Diego A; Pellegrini, Stefania; Flesia, Ana G; Aon, Miguel A; Marin, Raúl H; Kembro, Jackelyn M

    2016-06-07

    Temporal and spatial patterns of locomotion reflect both resting periods and the movement from one place to another to satisfy physiological and behavioural needs. Locomotion is studied in diverse areas of biology such as chronobiology and physiology, as well as in biomathematics. Herein, the locomotion of 24 visually-isolated Japanese quails in their home-box environment was recorded continuously over a 6.5 days at a 0.5 s sampling rate. Three time series are presented for each bird: (1) locomotor activity, (2) distance ambulated, and (3) zone of the box where the bird is located. These high resolution, week-long, time series consisting of 1.07×10(6) data points represent, to our knowledge, a unique data set in animal behavior, and are publically available on FigShare. The data obtained can be used for analyzing dynamic changes of daily or several day locomotion patterns, or for comparison with existing or future data sets or mathematical models across different taxa.

  5. Clustering, methodology, and mechanistic insights into acetate chemical ionization using high-resolution time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Brophy, Patrick; Farmer, Delphine K.

    2016-08-01

    We present a comprehensive characterization of cluster control and transmission through the Tofwerk atmospheric pressure interface installed on various chemical ionization time-of-flight mass spectrometers using authentic standards. This characterization of the atmospheric pressure interface allows for a detailed investigation of the acetate chemical ionization mechanisms and the impact of controlling these mechanisms on sensitivity, selectivity, and mass spectral ambiguity with the aim of non-targeted analysis. Chemical ionization with acetate reagent ions is controlled by a distribution of reagent ion-neutral clusters that vary with relative humidity and the concentration of the acetic anhydride precursor. Deprotonated carboxylic acids are primarily detected only if sufficient declustering is employed inside the atmospheric pressure interface. The configuration of a high-resolution time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) using an acetate chemical ionization source for non-targeted analysis is discussed. Recent approaches and studies characterizing acetate chemical ionization as it applies to the HR-TOF-CIMS are evaluated in light of the work presented herein.

  6. High resolution, week-long, locomotion time series from Japanese quail in a home-box environment

    PubMed Central

    Guzmán, Diego A.; Pellegrini, Stefania; Flesia, Ana G.; Aon, Miguel A.; Marin, Raúl H.; Kembro, Jackelyn M.

    2016-01-01

    Temporal and spatial patterns of locomotion reflect both resting periods and the movement from one place to another to satisfy physiological and behavioural needs. Locomotion is studied in diverse areas of biology such as chronobiology and physiology, as well as in biomathematics. Herein, the locomotion of 24 visually-isolated Japanese quails in their home-box environment was recorded continuously over a 6.5 days at a 0.5 s sampling rate. Three time series are presented for each bird: (1) locomotor activity, (2) distance ambulated, and (3) zone of the box where the bird is located. These high resolution, week-long, time series consisting of 1.07×106 data points represent, to our knowledge, a unique data set in animal behavior, and are publically available on FigShare. The data obtained can be used for analyzing dynamic changes of daily or several day locomotion patterns, or for comparison with existing or future data sets or mathematical models across different taxa. PMID:27271772

  7. High-resolution Time-lapse Imaging and Automated Analysis of Microtubule Dynamics in Living Human Umbilical Vein Endothelial Cells

    PubMed Central

    Braun, Alexander; Caesar, Nicole M.; Dang, Kyvan; Myers, Kenneth A.

    2016-01-01

    The physiological process by which new vasculature forms from existing vasculature requires specific signaling events that trigger morphological changes within individual endothelial cells (ECs). These processes are critical for homeostatic maintenance such as wound healing, and are also crucial in promoting tumor growth and metastasis. EC morphology is defined by the organization of the cytoskeleton, a tightly regulated system of actin and microtubule (MT) dynamics that is known to control EC branching, polarity and directional migration, essential components of angiogenesis. To study MT dynamics, we used high-resolution fluorescence microscopy coupled with computational image analysis of fluorescently-labeled MT plus-ends to investigate MT growth dynamics and the regulation of EC branching morphology and directional migration. Time-lapse imaging of living Human Umbilical Vein Endothelial Cells (HUVECs) was performed following transfection with fluorescently-labeled MT End Binding protein 3 (EB3) and Mitotic Centromere Associated Kinesin (MCAK)-specific cDNA constructs to evaluate effects on MT dynamics. PlusTipTracker software was used to track EB3-labeled MT plus ends in order to measure MT growth speeds and MT growth lifetimes in time-lapse images. This methodology allows for the study of MT dynamics and the identification of how localized regulation of MT dynamics within sub-cellular regions contributes to the angiogenic processes of EC branching and migration. PMID:27584860

  8. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    PubMed

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  9. Detection of Schistosoma mansoni and Schistosoma haematobium by Real-Time PCR with High Resolution Melting Analysis.

    PubMed

    Sady, Hany; Al-Mekhlafi, Hesham M; Ngui, Romano; Atroosh, Wahib M; Al-Delaimy, Ahmed K; Nasr, Nabil A; Dawaki, Salwa; Abdulsalam, Awatif M; Ithoi, Init; Lim, Yvonne A L; Chua, Kek Heng; Surin, Johari

    2015-07-16

    The present study describes a real-time PCR approach with high resolution melting-curve (HRM) assay developed for the detection and differentiation of Schistosoma mansoni and S. haematobium in fecal and urine samples collected from rural Yemen. The samples were screened by microscopy and PCR for the Schistosoma species infection. A pair of degenerate primers were designed targeting partial regions in the cytochrome oxidase subunit I (cox1) gene of S. mansoni and S. haematobium using real-time PCR-HRM assay. The overall prevalence of schistosomiasis was 31.8%; 23.8% of the participants were infected with S. haematobium and 9.3% were infected with S. mansoni. With regards to the intensity of infections, 22.1% and 77.9% of S. haematobium infections were of heavy and light intensities, respectively. Likewise, 8.1%, 40.5% and 51.4% of S. mansoni infections were of heavy, moderate and light intensities, respectively. The mel