A low-complexity region in the YTH domain protein Mmi1 enhances RNA binding.
Stowell, James A W; Wagstaff, Jane L; Hill, Chris H; Yu, Minmin; McLaughlin, Stephen H; Freund, Stefan M V; Passmore, Lori A
2018-06-15
Mmi1 is an essential RNA-binding protein in the fission yeast Schizosaccharomyces pombe that eliminates meiotic transcripts during normal vegetative growth. Mmi1 contains a YTH domain that binds specific RNA sequences, targeting mRNAs for degradation. The YTH domain of Mmi1 uses a noncanonical RNA-binding surface that includes contacts outside the conserved fold. Here, we report that an N-terminal extension that is proximal to the YTH domain enhances RNA binding. Using X-ray crystallography, NMR, and biophysical methods, we show that this low-complexity region becomes more ordered upon RNA binding. This enhances the affinity of the interaction of the Mmi1 YTH domain with specific RNAs by reducing the dissociation rate of the Mmi1-RNA complex. We propose that the low-complexity region influences RNA binding indirectly by reducing dynamic motions of the RNA-binding groove and stabilizing a conformation of the YTH domain that binds to RNA with high affinity. Taken together, our work reveals how a low-complexity region proximal to a conserved folded domain can adopt an ordered structure to aid nucleic acid binding. © 2018 Stowell et al.
Sequence-Based Prediction of RNA-Binding Residues in Proteins.
Walia, Rasna R; El-Manzalawy, Yasser; Honavar, Vasant G; Dobbs, Drena
2017-01-01
Identifying individual residues in the interfaces of protein-RNA complexes is important for understanding the molecular determinants of protein-RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein-RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein-RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner.
Sequence-Based Prediction of RNA-Binding Residues in Proteins
Walia, Rasna R.; EL-Manzalawy, Yasser; Honavar, Vasant G.; Dobbs, Drena
2017-01-01
Identifying individual residues in the interfaces of protein–RNA complexes is important for understanding the molecular determinants of protein–RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein–RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein–RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner. PMID:27787829
Emerman, Amy B; Blower, Michael
2018-06-14
RNA-binding proteins (RBPs) are critical regulators of gene expression. Recent studies have uncovered hundreds of mRNA-binding proteins that do not contain annotated RNA-binding domains and have well-established roles in other cellular processes. Investigation of these nonconventional RBPs is critical for revealing novel RNA-binding domains and may disclose connections between RNA regulation and other aspects of cell biology. Endosomal sorting complex required for transport II (ESCRT-II) is a nonconventional RNA-binding complex that has a canonical role in multivesicular body formation. ESCRT-II previously has been identified as an RNA-binding complex in Drosophila oocytes, but whether its RNA-binding properties extend beyond Drosophila is unknown. In this study, we found that the RNA-binding properties of ESCRT-II are conserved in Xenopus eggs, where ESCRT-II interacted with hundreds of mRNAs. Using a UV-crosslinking approach, we demonstrated that ESCRT-II binds directly to RNA through its subunit Vps25. UV-crosslinking and immunoprecipitation (CLIP)-Seq revealed that Vps25 specifically recognizes a polypurine (i.e. GA-rich) motif in RNA. Using purified components, we could reconstitute the selective Vps25-mediated binding of the polypurine motif in vitro. Our results provide insight into the mechanism by which ESCRT-II selectively binds to mRNAs and also suggest an unexpected link between endosome biology and RNA regulation. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Chang, Shan; Zhang, Da-Wei; Xu, Lei; Wan, Hua; Hou, Ting-Jun; Kong, Ren
2016-11-01
RNA-binding protein with multiple splicing (RBPMS) is critical for axon guidance, smooth muscle plasticity, and regulation of cancer cell proliferation and migration. Recently, different states of the RNA-recognition motif (RRM) of RBPMS, one in its free form and another in complex with CAC-containing RNA, were determined by X-ray crystallography. In this article, the free RRM domain, its wild type complex and 2 mutant complex systems are studied by molecular dynamics (MD) simulations. Through comparison of free RRM domain and complex systems, it's found that the RNA binding facilitates stabilizing the RNA-binding interface of RRM domain, especially the C-terminal loop. Although both R38Q and T103A/K104A mutations reduce the binding affinity of RRM domain and RNA, the underlining mechanisms are different. Principal component analysis (PCA) and Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) methods were used to explore the dynamical and recognition mechanisms of RRM domain and RNA. R38Q mutation is positioned on the homodimerization interface and mainly induces the large fluctuations of RRM domains. This mutation does not directly act on the RNA-binding interface, but some interfacial hydrogen bonds are weakened. In contrast, T103A/K104A mutations are located on the RNA-binding interface of RRM domain. These mutations obviously break most of high occupancy hydrogen bonds in the RNA-binding interface. Meanwhile, the key interfacial residues lose their favorable energy contributions upon RNA binding. The ranking of calculated binding energies in 3 complex systems is well consistent with that of experimental binding affinities. These results will be helpful in understanding the RNA recognition mechanisms of RRM domain.
Chang, Shan; Zhang, Da-Wei; Xu, Lei; Wan, Hua; Hou, Ting-Jun; Kong, Ren
2016-01-01
ABSTRACT RNA-binding protein with multiple splicing (RBPMS) is critical for axon guidance, smooth muscle plasticity, and regulation of cancer cell proliferation and migration. Recently, different states of the RNA-recognition motif (RRM) of RBPMS, one in its free form and another in complex with CAC-containing RNA, were determined by X-ray crystallography. In this article, the free RRM domain, its wild type complex and 2 mutant complex systems are studied by molecular dynamics (MD) simulations. Through comparison of free RRM domain and complex systems, it's found that the RNA binding facilitates stabilizing the RNA-binding interface of RRM domain, especially the C-terminal loop. Although both R38Q and T103A/K104A mutations reduce the binding affinity of RRM domain and RNA, the underlining mechanisms are different. Principal component analysis (PCA) and Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) methods were used to explore the dynamical and recognition mechanisms of RRM domain and RNA. R38Q mutation is positioned on the homodimerization interface and mainly induces the large fluctuations of RRM domains. This mutation does not directly act on the RNA-binding interface, but some interfacial hydrogen bonds are weakened. In contrast, T103A/K104A mutations are located on the RNA-binding interface of RRM domain. These mutations obviously break most of high occupancy hydrogen bonds in the RNA-binding interface. Meanwhile, the key interfacial residues lose their favorable energy contributions upon RNA binding. The ranking of calculated binding energies in 3 complex systems is well consistent with that of experimental binding affinities. These results will be helpful in understanding the RNA recognition mechanisms of RRM domain. PMID:27592836
Structure, recognition and adaptive binding in RNA aptamer complexes.
Patel, D J; Suri, A K; Jiang, F; Jiang, L; Fan, P; Kumar, R A; Nonin, S
1997-10-10
Novel features of RNA structure, recognition and discrimination have been recently elucidated through the solution structural characterization of RNA aptamers that bind cofactors, aminoglycoside antibiotics, amino acids and peptides with high affinity and specificity. This review presents the solution structures of RNA aptamer complexes with adenosine monophosphate, flavin mononucleotide, arginine/citrulline and tobramycin together with an example of hydrogen exchange measurements of the base-pair kinetics for the AMP-RNA aptamer complex. A comparative analysis of the structures of these RNA aptamer complexes yields the principles, patterns and diversity associated with RNA architecture, molecular recognition and adaptive binding associated with complex formation.
Benoit, Matthieu P. M. H.; Imbert, Lionel; Palencia, Andrés; Pérard, Julien; Ebel, Christine; Boisbouvier, Jérôme; Plevin, Michael J.
2013-01-01
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through RNA interference. Human miRNAs are generated through a series of enzymatic processing steps. The precursor miRNA (pre-miRNA) is recognized and cleaved by a complex containing Dicer and several non-catalytic accessory proteins. HIV TAR element binding protein (TRBP) is a constituent of the Dicer complex, which augments complex stability and potentially functions in substrate recognition and product transfer to the RNA-induced silencing complex. Here we have analysed the interaction between the RNA-binding region of TRBP and an oncogenic human miRNA, miR-155, at different stages in the biogenesis pathway. We show that the region of TRBP that binds immature miRNAs comprises two independent double-stranded RNA-binding domains connected by a 60-residue flexible linker. No evidence of contact between the two double-stranded RNA-binding domains was observed either in the apo- or RNA-bound state. We establish that the RNA-binding region of TRBP interacts with both pre-miR-155 and the miR-155/miR-155* duplex through the same binding surfaces and with similar affinities, and that two protein molecules can simultaneously interact with each immature miRNA. These data suggest that TRBP could play a role before and after processing of pre-miRNAs by Dicer. PMID:23435228
Inhibition by Siomycin and Thiostrepton of Both Aminoacyl-tRNA and Factor G Binding to Ribosomes
Ll, Juan Modole; Cabrer, Bartolomé; Parmeggiani, Andrea; Azquez, David V
1971-01-01
Siomycin, a peptide antibiotic that interacts with the 50S ribosomal subunit and inhibits binding of factor G, is shown also to inhibit binding of aminoacyl-tRNA; however, it does not impair binding of fMet-tRNA and completion of the initiation complex. Moreover, unlike other inhibitors of aminoacyl-tRNA binding (tetracycline, sparsomycin, and streptogramin A), siomycin completely abolishes the GTPase activity associated with the binding of aminoacyl-tRNA catalyzed by factor Tu. A single-site interaction of siomycin appears to be responsible for its effect on both the binding of the aminoacyl-tRNA-Tu-GTP complex and that of factor G. PMID:4331558
A Graph Approach to Mining Biological Patterns in the Binding Interfaces.
Cheng, Wen; Yan, Changhui
2017-01-01
Protein-RNA interactions play important roles in the biological systems. Searching for regular patterns in the Protein-RNA binding interfaces is important for understanding how protein and RNA recognize each other and bind to form a complex. Herein, we present a graph-mining method for discovering biological patterns in the protein-RNA interfaces. We represented known protein-RNA interfaces using graphs and then discovered graph patterns enriched in the interfaces. Comparison of the discovered graph patterns with UniProt annotations showed that the graph patterns had a significant overlap with residue sites that had been proven crucial for the RNA binding by experimental methods. Using 200 patterns as input features, a support vector machine method was able to classify protein surface patches into RNA-binding sites and non-RNA-binding sites with 84.0% accuracy and 88.9% precision. We built a simple scoring function that calculated the total number of the graph patterns that occurred in a protein-RNA interface. That scoring function was able to discriminate near-native protein-RNA complexes from docking decoys with a performance comparable with that of a state-of-the-art complex scoring function. Our work also revealed possible patterns that might be important for binding affinity.
Khan, Mateen A; Ma, Jia; Walden, William E; Merrick, William C; Theil, Elizabeth C; Goss, Dixie J
2014-06-01
Metal ion binding was previously shown to destabilize IRE-RNA/IRP1 equilibria and enhanced IRE-RNA/eIF4F equilibria. In order to understand the relative importance of kinetics and stability, we now report rapid rates of protein/RNA complex assembly and dissociation for two IRE-RNAs with IRP1, and quantitatively different metal ion response kinetics that coincide with the different iron responses in vivo. kon, for FRT IRE-RNA binding to IRP1 was eight times faster than ACO2 IRE-RNA. Mn(2+) decreased kon and increased koff for IRP1 binding to both FRT and ACO2 IRE-RNA, with a larger effect for FRT IRE-RNA. In order to further understand IRE-mRNA regulation in terms of kinetics and stability, eIF4F kinetics with FRT IRE-RNA were determined. kon for eIF4F binding to FRT IRE-RNA in the absence of metal ions was 5-times slower than the IRP1 binding to FRT IRE-RNA. Mn(2+) increased the association rate for eIF4F binding to FRT IRE-RNA, so that at 50 µM Mn(2+) eIF4F bound more than 3-times faster than IRP1. IRP1/IRE-RNA complex has a much shorter life-time than the eIF4F/IRE-RNA complex, which suggests that both rate of assembly and stability of the complexes are important, and that allows this regulatory system to respond rapidly to change in cellular iron. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Defining the RNA-Protein Interactions in the Trypanosome Preribosomal Complex
Wang, Lei; Ciganda, Martin
2013-01-01
In eukaryotes, 5S rRNA is transcribed in the nucleoplasm and requires the ribosomal protein L5 to deliver it to the nucleolus for ribosomal assembly. The trypanosome-specific proteins P34 and P37 form a novel preribosomal complex with the eukaryotic conserved L5-5S rRNA complex in the nucleoplasm. Previous results suggested that P34 acts together with L5 to bridge the interaction with 5S rRNA and thus to stabilize 5S rRNA, an important role in the early steps of ribosomal biogenesis. Here, we have delineated the domains of the two protein components, L5 and P34, and regions of the RNA partner, 5S rRNA, that are critical for protein-RNA interactions within the complex. We found that the L18 domain of L5 and the N terminus and RNA recognition motif of P34 bind 5S rRNA. We showed that Trypanosoma brucei L5 binds the β arm of 5S rRNA, while P34 binds loop A/stem V of 5S rRNA. We demonstrated that 5S rRNA is able to enhance the association between the protein components of the complex, L5 and P34. Both loop A/stem V and the β arm of 5S rRNA can separately enhance the protein-protein association, but their effects are neither additive nor synergistic. Domains in the two proteins for protein-protein and protein-RNA interactions overlap or are close to each other. This suggests that 5S rRNA binding might cause conformational changes in L5 and P34 and might also bridge the interactions, thus enhancing binding between the protein partners of this novel complex. PMID:23397568
Template-Based Modeling of Protein-RNA Interactions.
Zheng, Jinfang; Kundrotas, Petras J; Vakser, Ilya A; Liu, Shiyong
2016-09-01
Protein-RNA complexes formed by specific recognition between RNA and RNA-binding proteins play an important role in biological processes. More than a thousand of such proteins in human are curated and many novel RNA-binding proteins are to be discovered. Due to limitations of experimental approaches, computational techniques are needed for characterization of protein-RNA interactions. Although much progress has been made, adequate methodologies reliably providing atomic resolution structural details are still lacking. Although protein-RNA free docking approaches proved to be useful, in general, the template-based approaches provide higher quality of predictions. Templates are key to building a high quality model. Sequence/structure relationships were studied based on a representative set of binary protein-RNA complexes from PDB. Several approaches were tested for pairwise target/template alignment. The analysis revealed a transition point between random and correct binding modes. The results showed that structural alignment is better than sequence alignment in identifying good templates, suitable for generating protein-RNA complexes close to the native structure, and outperforms free docking, successfully predicting complexes where the free docking fails, including cases of significant conformational change upon binding. A template-based protein-RNA interaction modeling protocol PRIME was developed and benchmarked on a representative set of complexes.
Cléry, Antoine; Allain, Frédéric H-T
2017-01-01
Abstract RNA recognition motifs (RRMs) are structurally versatile domains important in regulation of alternative splicing. Structural mechanisms of sequence-specific recognition of single-stranded RNAs (ssRNAs) by RRMs are well understood. The thermodynamic strategies are however unclear. Therefore, we utilized microcalorimetry and semi-empirical analyses to comparatively analyze the cognate ssRNA binding thermodynamics of four different RRM domains, each with a different RNA binding mode. The different binding modes are: canonical binding to the β-sheet surface; canonical binding with involvement of N- and C-termini; binding to conserved loops; and binding to an α-helix. Our results identify enthalpy as the sole and general force driving association at physiological temperatures. Also, networks of weak interactions are a general feature regulating stability of the different RRM–ssRNA complexes. In agreement, non-polyelectrolyte effects contributed between ∼75 and 90% of the overall free energy of binding in the considered complexes. The various RNA binding modes also displayed enormous heat capacity differences, that upon dissection revealed large differential changes in hydration, conformations and dynamics upon binding RNA. Altogether, different modes employed by RRMs to bind cognate ssRNAs utilize various thermodynamics strategies during the association process. PMID:28334819
Identification of Nucleic Acid Binding Sites on Translin-Associated Factor X (TRAX) Protein
Gupta, Gagan Deep; Kumar, Vinay
2012-01-01
Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity. PMID:22427937
Korde, Asawari; Rosselot, Jessica M.; Donze, David
2014-01-01
The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such “extratranscriptional” activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467–ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins. PMID:24336746
Madina, Bhaskara R.; Kumar, Vikas; Metz, Richard; Mooers, Blaine H.M.; Bundschuh, Ralf; Cruz-Reyes, Jorge
2014-01-01
Mitochondrial mRNAs in kinetoplastids require extensive U-insertion/deletion editing that progresses 3′-to-5′ in small blocks, each directed by a guide RNA (gRNA), and exhibits substrate and developmental stage-specificity by unsolved mechanisms. Here, we address compositionally related factors, collectively known as the mitochondrial RNA-binding complex 1 (MRB1) or gRNA-binding complex (GRBC), that contain gRNA, have a dynamic protein composition, and transiently associate with several mitochondrial factors including RNA editing core complexes (RECC) and ribosomes. MRB1 controls editing by still unknown mechanisms. We performed the first next-generation sequencing study of native subcomplexes of MRB1, immunoselected via either RNA helicase 2 (REH2), that binds RNA and associates with unwinding activity, or MRB3010, that affects an early editing step. The particles contain either REH2 or MRB3010 but share the core GAP1 and other proteins detected by RNA photo-crosslinking. Analyses of the first editing blocks indicate an enrichment of several initiating gRNAs in the MRB3010-purified complex. Our data also indicate fast evolution of mRNA 3′ ends and strain-specific alternative 3′ editing within 3′ UTR or C-terminal protein-coding sequence that could impact mitochondrial physiology. Moreover, we found robust specific copurification of edited and pre-edited mRNAs, suggesting that these particles may bind both mRNA and gRNA editing substrates. We propose that multiple subcomplexes of MRB1 with different RNA/protein composition serve as a scaffold for specific assembly of editing substrates and RECC, thereby forming the editing holoenzyme. The MRB3010-subcomplex may promote early editing through its preferential recruitment of initiating gRNAs. PMID:24865612
Arakawa, H; Neault, J F; Tajmir-Riahi, H A
2001-01-01
Ag(I) is a strong nucleic acids binder and forms several complexes with DNA such as types I, II, and III. However, the details of the binding mode of silver(I) in the Ag-polynucleotides remains unknown. Therefore, it was of interest to examine the binding of Ag(I) with calf-thymus DNA and bakers yeast RNA in aqueous solutions at pH 7.1-6.6 with constant concentration of DNA or RNA and various concentrations of Ag(I). Fourier transform infrared spectroscopy and capillary electrophoresis were used to analyze the Ag(I) binding mode, the binding constant, and the polynucleotides' structural changes in the Ag-DNA and Ag-RNA complexes. The spectroscopic results showed that in the type I complex formed with DNA, Ag(I) binds to guanine N7 at low cation concentration (r = 1/80) and adenine N7 site at higher concentrations (r = 1/20 to 1/10), but not to the backbone phosphate group. At r = 1/2, type II complexes formed with DNA in which Ag(I) binds to the G-C and A-T base pairs. On the other hand, Ag(I) binds to the guanine N7 atom but not to the adenine and the backbone phosphate group in the Ag-RNA complexes. Although a minor alteration of the sugar-phosphate geometry was observed, DNA remained in the B-family structure, whereas RNA retained its A conformation. Scatchard analysis following capillary electrophoresis showed two binding sites for the Ag-DNA complexes with K(1) = 8.3 x 10(4) M(-1) for the guanine and K(2) = 1.5 x 10(4) M(-1) for the adenine bases. On the other hand, Ag-RNA adducts showed one binding site with K = 1.5 x 10(5) M(-1) for the guanine bases. PMID:11509371
Delmas, Olivier; Assenberg, Rene; Grimes, Jonathan M; Bourhy, Hervé
2010-01-01
The phosphoprotein P of non-segmented negative-sense RNA viruses is an essential component of the replication and transcription complex and acts as a co-factor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. We have obtained the structure of the C-terminal domain of P of Mokola virus (MOKV), a lyssavirus that belongs to the Rhabdoviridae family and mapped at the amino acid level the crucial positions involved in interaction with N and in the formation of the viral replication complex. Comparison of the N-RNA binding domains of P solved to date suggests that the N-RNA binding domains are structurally conserved among paramyxoviruses and rhabdoviruses in spite of low sequence conservation. We also review the numerous other functions of this domain and more generally of the phosphoprotein.
Template-Based Modeling of Protein-RNA Interactions
Zheng, Jinfang; Kundrotas, Petras J.; Vakser, Ilya A.
2016-01-01
Protein-RNA complexes formed by specific recognition between RNA and RNA-binding proteins play an important role in biological processes. More than a thousand of such proteins in human are curated and many novel RNA-binding proteins are to be discovered. Due to limitations of experimental approaches, computational techniques are needed for characterization of protein-RNA interactions. Although much progress has been made, adequate methodologies reliably providing atomic resolution structural details are still lacking. Although protein-RNA free docking approaches proved to be useful, in general, the template-based approaches provide higher quality of predictions. Templates are key to building a high quality model. Sequence/structure relationships were studied based on a representative set of binary protein-RNA complexes from PDB. Several approaches were tested for pairwise target/template alignment. The analysis revealed a transition point between random and correct binding modes. The results showed that structural alignment is better than sequence alignment in identifying good templates, suitable for generating protein-RNA complexes close to the native structure, and outperforms free docking, successfully predicting complexes where the free docking fails, including cases of significant conformational change upon binding. A template-based protein-RNA interaction modeling protocol PRIME was developed and benchmarked on a representative set of complexes. PMID:27662342
Herbert, Kristina M; Sarkar, Susanta K; Mills, Maria; Delgado De la Herran, Hilda C; Neuman, Keir C; Steitz, Joan A
2016-02-01
During microRNA (miRNA) biogenesis, the Microprocessor complex (MC), composed minimally of Drosha, an RNaseIII enzyme, and DGCR8, a double-stranded RNA-binding protein, cleaves the primary-miRNA (pri-miRNA) to release the pre-miRNA stem-loop structure. Size-exclusion chromatography of the MC, isolated from mammalian cells, suggested multiple copies of one or both proteins in the complex. However, the exact stoichiometry was unknown. Initial experiments suggested that DGCR8 bound pri-miRNA substrates specifically, and given that Drosha could not be bound or cross-linked to RNA, a sequential model for binding was established in which DGCR8 bound first and recruited Drosha. Therefore, many laboratories have studied DGCR8 binding to RNA in the absence of Drosha and have shown that deletion constructs of DGCR8 can multimerize in the presence of RNA. More recently, it was demonstrated that Drosha can bind pri-miRNA substrates in the absence of DGCR8, casting doubt on the sequential model of binding. In the same study, using a single-molecule photobleaching assay, fluorescent protein-tagged deletion constructs of DGCR8 and Drosha assembled into a heterotrimeric complex on RNA, comprising two DGCR8 molecules and one Drosha molecule. To determine the stoichiometry of Drosha and DGCR8 within the MC in the absence of added RNA, we also used a single-molecule photobleaching assay and confirmed the heterotrimeric model of the human MC. We demonstrate that a heterotrimeric complex is likely preformed in the absence of RNA and exists even when full-length proteins are expressed and purified from human cells, and when hAGT-derived tags are used rather than fluorescent proteins. © 2016 Herbert et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
bicoid RNA localization requires specific binding of an endosomal sorting complex
Irion, Uwe; St Johnston, Daniel
2007-01-01
Summary paragraph: bicoid mRNA localises to the anterior of the Drosophila egg, where it is translated to form a morphogen gradient of Bicoid protein that patterns the head and thorax of the embryo. Although bicoid was the first identified localised cytoplasmic determinant1-4, little is known about how the mRNA is coupled to the microtubule-dependent transport pathway that targets it to the anterior, and it has been proposed that it is recognised by a complex of many redundant proteins, each of which binds to the localisation element in its 3'UTR with little or no specificity5. Indeed, the only known RNA-binding protein that co-localises with bicoid mRNA is Staufen, which binds non-specifically to dsRNA in vitro6, 7. Here we show that mutants in all subunits of the ESCRT-II complex (Vps22, Vps25 and Vps36) abolish the final Staufen-dependent step in bcd RNA localisation. ESCRT-II is a highly conserved component of the pathway that sorts ubiquitinated endosomal proteins into internal vesicles8, 9, and functions as a tumour-suppressor by removing activated receptors from the cytoplasm10, 11. However, the role of ESCRT-II in bicoid localisation appears to be independent of endosomal sorting, because mutations in ESCRT-I and III components have no effect of the targeting of bicoid mRNA. Instead, Vps36 functions by binding directly and specifically to stem-loop V of the bicoid 3'UTR through its N-terminal GLUE domain12, making it the first example of a sequence specific RNA-binding protein that recognises the bicoid localisation signal. Furthermore, Vps36 localises to the anterior of the oocyte in a bicoid mRNA-dependent manner, and is required for the subsequent recruitment of Staufen to the bicoid complex. This novel function of ESCRT-II as an RNA-binding complex is conserved in vertebrates, and may explain some of its roles that are independent of endosomal sorting. PMID:17268469
Structure of Arabidopsis HYPONASTIC LEAVES1 and Its Molecular Implications for miRNA Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, S.; Chen, H; Yang, J
2010-01-01
The Arabidopsis HYPONASTIC LEAVES1 (HYL1) is a double-stranded RNA-binding protein that forms a complex with DICER-LIKE1 (DCL1) and SERRATE to facilitate processing of primary miRNAs into microRNAs (miRNAs). However, the structural mechanisms of miRNA maturation by this complex are poorly understood. Here, we present the crystal structures of double-stranded RNA binding domains (dsRBD1 and dsRBD2) of HYL1 and HYL1 dsRBD1 (HR1)/dsRNA complex as well as human TRBP2 dsRBD2 (TR2)/dsRNA complex for comparison analysis. Structural and functional study demonstrates that both HR1 and TR2 are canonical dsRBDs for dsRNA binding, whereas HR2 of HYL1 is a non-canonical dsRBD harboring a putativemore » dimerization interface. Domain swapping within the context of HYL1 demonstrates that TR2 can supplant the function of HR1 in vitro and in vivo. Further biochemical analyses suggest that HYL1 probably binds to the miRNA/miRNA* region of precursors as a dimer mediated by HR2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hara-Yokoyama, M.; Yokoyama, S.; Miyazawa, T.
1986-11-04
The binding of Thermus thermophilus glutamyl-tRNA synthetase (GluRS) with T. thermophilus tRNA/sup Glu/, Escherichia coli tRNA/sup Glu/, and amino acids was studied by fluorescence measurements. In the absence of tRNA/sup Glu/, GluRS binds with D-glutamate as well as L-glutamate. However, in the presence of E.coli tRNA/sup Glu/, GluRS binds specifically with L-glutamate. The KCl effects on the Michaelis constants (K/sub m/) for tRNA/sup Glu/, L-glutamate, and ATP were studied for the aminoacylation of the homologous tRNA/sup Glu/ and heterologous tRNA/sup Glu/ species. As the KCl concentration is raised from 0 to 100 mM, the K/sub m/ value for L-glutamate inmore » the heterologous system is remarkably increased whereas the K/sub m/ value for L-glutamate in the homologous system is only slightly increased. The circular dichroism analyses were made mainly of the bands due to the 2-thiouridine derivatives of tRNA/sup Glu/ in the complex. The conformation change of T. thermophilus tRNA/sup Glu/ upon complex formation with GluRS is not affected by addition of KCl. In contrast, the heterologous tRNA/sup Glu/GluRS complex is in equilibrium of two forms that depends on KCl concentration. The predominant form at low KCl concentration is closely related to the small K/sub m/ value for L-glutamate. In this form of the complex, the conformation of tRNA/sup Glu/ is appreciably different from that of free molecule. Accordingly, such a conformation change of tRNA/sup Glu/ in the complex with GluRS is required for the specific binding of L-glutamate as the substrate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teplova, Marianna; Farazi, Thalia A.; Tuschl, Thomas
Abstract RNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. Thesemore » studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutationsin vivo.« less
Human importin alpha and RNA do not compete for binding to influenza A virus nucleoprotein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boulo, Sebastien; UJF-EMBL-CNRS UMI 3265, Unit of Virus Host-Cell Interactions, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9; Akarsu, Hatice
2011-01-05
Influenza virus has a segmented genome composed of eight negative stranded RNA segments. Each segment is covered with NP forming ribonucleoproteins (vRNPs) and carries a copy of the heterotrimeric polymerase complex. As a rare phenomenon among the RNA viruses, the viral replication occurs in the nucleus and therefore implies interactions between host and viral factors, such as between importin alpha and nucleoprotein. In the present study we report that through binding with the human nuclear receptor importin {alpha}5 (Imp{alpha}5), the viral NP is no longer oligomeric but maintained as a monomer inside the complex. In this regard, Imp{alpha}5 acts asmore » a chaperone until NP is delivered in the nucleus for viral RNA encapsidation. Moreover, we show that the association of NP with the host transporter does not impair the binding of NP to RNA. The complex human Imp{alpha}5-NP binds RNA with the same affinity as wt NP alone, whereas engineered monomeric NP through point mutations binds RNA with a strongly reduced affinity.« less
The HILDA Complex Coordinates a Conditional Switch in the 3′-Untranslated Region of the VEGFA mRNA
Yao, Peng; Potdar, Alka A.; Ray, Partho Sarothi; Eswarappa, Sandeepa M.; Flagg, Andrew C.; Willard, Belinda; Fox, Paul L.
2013-01-01
Cell regulatory circuits integrate diverse, and sometimes conflicting, environmental cues to generate appropriate, condition-dependent responses. Here, we elucidate the components and mechanisms driving a protein-directed RNA switch in the 3′UTR of vascular endothelial growth factor (VEGF)-A. We describe a novel HILDA (hypoxia-inducible hnRNP L–DRBP76–hnRNP A2/B1) complex that coordinates a three-element RNA switch, enabling VEGFA mRNA translation during combined hypoxia and inflammation. In addition to binding the CA-rich element (CARE), heterogeneous nuclear ribonucleoprotein (hnRNP) L regulates switch assembly and function. hnRNP L undergoes two previously unrecognized, condition-dependent posttranslational modifications: IFN-γ induces prolyl hydroxylation and von Hippel-Lindau (VHL)-mediated proteasomal degradation, whereas hypoxia stimulates hnRNP L phosphorylation at Tyr359, inducing binding to hnRNP A2/B1, which stabilizes the protein. Also, phospho-hnRNP L recruits DRBP76 (double-stranded RNA binding protein 76) to the 3′UTR, where it binds an adjacent AU-rich stem-loop (AUSL) element, “flipping” the RNA switch by disrupting the GAIT (interferon-gamma-activated inhibitor of translation) element, preventing GAIT complex binding, and driving robust VEGFA mRNA translation. The signal-dependent, HILDA complex coordinates the function of a trio of neighboring RNA elements, thereby regulating translation of VEGFA and potentially other mRNA targets. The VEGFA RNA switch might function to ensure appropriate angiogenesis and tissue oxygenation during conflicting signals from combined inflammation and hypoxia. We propose the VEGFA RNA switch as an archetype for signal-activated, protein-directed, multi-element RNA switches that regulate posttranscriptional gene expression in complex environments. PMID:23976881
Nuclear factor 90 uses an ADAR2-like binding mode to recognize specific bases in dsRNA.
Jayachandran, Uma; Grey, Heather; Cook, Atlanta G
2016-02-29
Nuclear factors 90 and 45 (NF90 and NF45) form a protein complex involved in the post-transcriptional control of many genes in vertebrates. NF90 is a member of the dsRNA binding domain (dsRBD) family of proteins. RNA binding partners identified so far include elements in 3' untranslated regions of specific mRNAs and several non-coding RNAs. In NF90, a tandem pair of dsRBDs separated by a natively unstructured segment confers dsRNA binding activity. We determined a crystal structure of the tandem dsRBDs of NF90 in complex with a synthetic dsRNA. This complex shows surprising similarity to the tandem dsRBDs from an adenosine-to-inosine editing enzyme, ADAR2 in complex with a substrate RNA. Residues involved in unusual base-specific recognition in the minor groove of dsRNA are conserved between NF90 and ADAR2. These data suggest that, like ADAR2, underlying sequences in dsRNA may influence how NF90 recognizes its target RNAs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
dsRNA binding properties of RDE-4 and TRBP reflect their distinct roles in RNAi.
Parker, Greg S; Maity, Tuhin Subhra; Bass, Brenda L
2008-12-26
Double-stranded RNA (dsRNA)-binding proteins facilitate Dicer functions in RNA interference. Caenorhabditis elegans RDE-4 facilitates cleavage of long dsRNA to small interfering RNA (siRNA), while human trans-activation response RNA-binding protein (TRBP) functions downstream to pass siRNA to the RNA-induced silencing complex. We show that these distinct in vivo roles are reflected in in vitro binding properties. RDE-4 preferentially binds long dsRNA, while TRBP binds siRNA with an affinity that is independent of dsRNA length. These properties are mechanistically based on the fact that RDE-4 binds cooperatively, via contributions from multiple domains, while TRBP binds noncooperatively. Our studies offer a paradigm for how dsRNA-binding proteins, which are not sequence specific, discern dsRNA length. Additionally, analyses of the ability of RDE-4 deletion constructs and RDE-4/TRBP chimeras to reconstitute Dicer activity suggest RDE-4 promotes activity using its dsRNA-binding motif 2 to bind dsRNA, its linker region to interact with Dicer, and its C-terminus for Dicer activation.
TIA-1 RRM23 binding and recognition of target oligonucleotides
Waris, Saboora; García-Mauriño, Sofía M.; Sivakumaran, Andrew; Beckham, Simone A.; Loughlin, Fionna E.; Gorospe, Myriam; Díaz-Moreno, Irene; Wilce, Matthew C.J.
2017-01-01
Abstract TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Å resolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression. PMID:28184449
TIA-1 RRM23 binding and recognition of target oligonucleotides.
Waris, Saboora; García-Mauriño, Sofía M; Sivakumaran, Andrew; Beckham, Simone A; Loughlin, Fionna E; Gorospe, Myriam; Díaz-Moreno, Irene; Wilce, Matthew C J; Wilce, Jacqueline A
2017-05-05
TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Å resolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
The role of PACT in the RNA silencing pathway
Lee, Yoontae; Hur, Inha; Park, Seong-Yeon; Kim, Young-Kook; Suh, Mi Ra; Kim, V Narry
2006-01-01
Small RNA-mediated gene silencing (RNA silencing) has emerged as a major regulatory pathway in eukaryotes. Identification of the key factors involved in this pathway has been a subject of rigorous investigation in recent years. In humans, small RNAs are generated by Dicer and assembled into the effector complex known as RNA-induced silencing complex (RISC) by multiple factors including hAgo2, the mRNA-targeting endonuclease, and TRBP (HIV-1 TAR RNA-binding protein), a dsRNA-binding protein that interacts with both Dicer and hAgo2. Here we describe an additional dsRNA-binding protein known as PACT, which is significant in RNA silencing. PACT is associated with an ∼500 kDa complex that contains Dicer, hAgo2, and TRBP. The interaction with Dicer involves the third dsRNA-binding domain (dsRBD) of PACT and the N-terminal region of Dicer containing the helicase motif. Like TRBP, PACT is not required for the pre-microRNA (miRNA) cleavage reaction step. However, the depletion of PACT strongly affects the accumulation of mature miRNA in vivo and moderately reduces the efficiency of small interfering RNA-induced RNA interference. Our study indicates that, unlike other RNase III type proteins, human Dicer may employ two different dsRBD-containing proteins that facilitate RISC assembly. PMID:16424907
Iakhiaeva, Elena; Iakhiaev, Alexei; Zwieb, Christian
2010-11-13
Human cells depend critically on the signal recognition particle (SRP) for the sorting and delivery of their proteins. The SRP is a ribonucleoprotein complex which binds to signal sequences of secretory polypeptides as they emerge from the ribosome. Among the six proteins of the eukaryotic SRP, the largest protein, SRP72, is essential for protein targeting and possesses a poorly characterized RNA binding domain. We delineated the minimal region of SRP72 capable of forming a stable complex with an SRP RNA fragment. The region encompassed residues 545 to 585 of the full-length human SRP72 and contained a lysine-rich cluster (KKKKKKKKGK) at postions 552 to 561 as well as a conserved Pfam motif with the sequence PDPXRWLPXXER at positions 572 to 583. We demonstrated by site-directed mutagenesis that both regions participated in the formation of a complex with the RNA. In agreement with biochemical data and results from chymotryptic digestion experiments, molecular modeling of SRP72 implied that the invariant W577 was located inside the predicted structure of an RNA binding domain. The 11-nucleotide 5e motif contained within the SRP RNA fragment was shown by comparative electrophoresis on native polyacrylamide gels to conform to an RNA kink-turn. The model of the complex suggested that the conserved A240 of the K-turn, previously identified as being essential for the binding to SRP72, could protrude into a groove of the SRP72 RNA binding domain, similar but not identical to how other K-turn recognizing proteins interact with RNA. The results from the presented experiments provided insights into the molecular details of a functionally important and structurally interesting RNA-protein interaction. A model for how a ligand binding pocket of SRP72 can accommodate a new RNA K-turn in the 5e region of the eukaryotic SRP RNA is proposed.
2010-01-01
Background Human cells depend critically on the signal recognition particle (SRP) for the sorting and delivery of their proteins. The SRP is a ribonucleoprotein complex which binds to signal sequences of secretory polypeptides as they emerge from the ribosome. Among the six proteins of the eukaryotic SRP, the largest protein, SRP72, is essential for protein targeting and possesses a poorly characterized RNA binding domain. Results We delineated the minimal region of SRP72 capable of forming a stable complex with an SRP RNA fragment. The region encompassed residues 545 to 585 of the full-length human SRP72 and contained a lysine-rich cluster (KKKKKKKKGK) at postions 552 to 561 as well as a conserved Pfam motif with the sequence PDPXRWLPXXER at positions 572 to 583. We demonstrated by site-directed mutagenesis that both regions participated in the formation of a complex with the RNA. In agreement with biochemical data and results from chymotryptic digestion experiments, molecular modeling of SRP72 implied that the invariant W577 was located inside the predicted structure of an RNA binding domain. The 11-nucleotide 5e motif contained within the SRP RNA fragment was shown by comparative electrophoresis on native polyacrylamide gels to conform to an RNA kink-turn. The model of the complex suggested that the conserved A240 of the K-turn, previously identified as being essential for the binding to SRP72, could protrude into a groove of the SRP72 RNA binding domain, similar but not identical to how other K-turn recognizing proteins interact with RNA. Conclusions The results from the presented experiments provided insights into the molecular details of a functionally important and structurally interesting RNA-protein interaction. A model for how a ligand binding pocket of SRP72 can accommodate a new RNA K-turn in the 5e region of the eukaryotic SRP RNA is proposed. PMID:21073748
The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins.
Norman, Michael; Rivers, Caroline; Lee, Youn-Bok; Idris, Jalilah; Uney, James
2016-12-01
RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein-protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins. © 2016 The Author(s).
Lin, C H; Patel, D J
1997-11-01
Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.
Specific binding of a Pop6/Pop7 heterodimer to the P3 stem of the yeast RNase MRP and RNase P RNAs.
Perederina, Anna; Esakova, Olga; Koc, Hasan; Schmitt, Mark E; Krasilnikov, Andrey S
2007-10-01
Pop6 and Pop7 are protein subunits of Saccharomyces cerevisiae RNase MRP and RNase P. Here we show that bacterially expressed Pop6 and Pop7 form a soluble heterodimer that binds the RNA components of both RNase MRP and RNase P. Footprint analysis of the interaction between the Pop6/7 heterodimer and the RNase MRP RNA, combined with gel mobility assays, demonstrates that the Pop6/7 complex binds to a conserved region of the P3 domain. Binding of these proteins to the MRP RNA leads to local rearrangement in the structure of the P3 loop and suggests that direct interaction of the Pop6/7 complex with the P3 domain of the RNA components of RNases MRP and P may mediate binding of other protein components. These results suggest a role for a key element in the RNase MRP and RNase P RNAs in protein binding, and demonstrate the feasibility of directly studying RNA-protein interactions in the eukaryotic RNases MRP and P complexes.
Multiple binding modes of substrate to the catalytic RNA subunit of RNase P from Escherichia coli.
Pomeranz Krummel, D A; Altman, S
1999-01-01
M1 RNA that contained 4'-thiouridine was photochemically cross-linked to different substrates and to a product of the reaction it governs. The locations of the cross-links in these photochemically induced complexes were identified. The cross-links indicated that different substrates share some contacts but have distinct binding modes to M1 RNA. The binding of some substrates also results in a substrate-dependent conformational change in the enzymatic RNA, as evidenced by the appearance of an M1 RNA intramolecular cross-link. The identification of the cross-links between M1 RNA and product indicate that they are shared with only one of the three cross-linked E-S complexes that were identified, an indication of noncompetitive inhibition by the product. We also examined whether the cross-linked complexes between M1 RNA and substrate(s) or product are altered in the presence of the enzyme's protein cofactor (C5 protein) and in the presence of different concentrations of divalent metal ions. C5 protein enhanced the yield of certain M1 RNA-substrate cross-linked complexes for both wild-type M1 RNA and a deletion mutant of M1 RNA (delta[273-281]), but not for the M1 RNA-product complex. High concentrations of Mg2+ increased the yield of all M1 RNA-substrate complexes but not the M1 RNA-product complex. PMID:10445877
Moore, Michael; Zhang, Chaolin; Gantman, Emily Conn; Mele, Aldo; Darnell, Jennifer C.; Darnell, Robert B.
2014-01-01
Summary Identifying sites where RNA binding proteins (RNABPs) interact with target RNAs opens the door to understanding the vast complexity of RNA regulation. UV-crosslinking and immunoprecipitation (CLIP) is a transformative technology in which RNAs purified from in vivo cross-linked RNA-protein complexes are sequenced to reveal footprints of RNABP:RNA contacts. CLIP combined with high throughput sequencing (HITS-CLIP) is a generalizable strategy to produce transcriptome-wide RNA binding maps with higher accuracy and resolution than standard RNA immunoprecipitation (RIP) profiling or purely computational approaches. Applying CLIP to Argonaute proteins has expanded the utility of this approach to mapping binding sites for microRNAs and other small regulatory RNAs. Finally, recent advances in data analysis take advantage of crosslinked-induced mutation sites (CIMS) to refine RNA-binding maps to single-nucleotide resolution. Once IP conditions are established, HITS-CLIP takes approximately eight days to prepare RNA for sequencing. Established pipelines for data analysis, including for CIMS, take 3-4 days. PMID:24407355
Fragment-based modelling of single stranded RNA bound to RNA recognition motif containing proteins
de Beauchene, Isaure Chauvot; de Vries, Sjoerd J.; Zacharias, Martin
2016-01-01
Abstract Protein-RNA complexes are important for many biological processes. However, structural modeling of such complexes is hampered by the high flexibility of RNA. Particularly challenging is the docking of single-stranded RNA (ssRNA). We have developed a fragment-based approach to model the structure of ssRNA bound to a protein, based on only the protein structure, the RNA sequence and conserved contacts. The conformational diversity of each RNA fragment is sampled by an exhaustive library of trinucleotides extracted from all known experimental protein–RNA complexes. The method was applied to ssRNA with up to 12 nucleotides which bind to dimers of the RNA recognition motifs (RRMs), a highly abundant eukaryotic RNA-binding domain. The fragment based docking allows a precise de novo atomic modeling of protein-bound ssRNA chains. On a benchmark of seven experimental ssRNA–RRM complexes, near-native models (with a mean heavy-atom deviation of <3 Å from experiment) were generated for six out of seven bound RNA chains, and even more precise models (deviation < 2 Å) were obtained for five out of seven cases, a significant improvement compared to the state of the art. The method is not restricted to RRMs but was also successfully applied to Pumilio RNA binding proteins. PMID:27131381
Weidmann, Chase A; Qiu, Chen; Arvola, René M; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T; Tanaka Hall, Traci M; Goldstrohm, Aaron C
2016-08-02
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidmann, Chase A.; Qiu, Chen; Arvola, René M.
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation byDrosophilaPumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that aremore » not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulatedin vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.« less
Redfern, Andrew D.; Colley, Shane M.; Beveridge, Dianne J.; Ikeda, Naoya; Epis, Michael R.; Li, Xia; Foulds, Charles E.; Stuart, Lisa M.; Barker, Andrew; Russell, Victoria J.; Ramsay, Kerry; Kobelke, Simon J.; Li, Xiaotao; Hatchell, Esme C.; Payne, Christine; Giles, Keith M.; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B.; O’Malley, Bert W.; Leedman, Peter J.
2013-01-01
The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing. PMID:23550157
Redfern, Andrew D; Colley, Shane M; Beveridge, Dianne J; Ikeda, Naoya; Epis, Michael R; Li, Xia; Foulds, Charles E; Stuart, Lisa M; Barker, Andrew; Russell, Victoria J; Ramsay, Kerry; Kobelke, Simon J; Li, Xiaotao; Hatchell, Esme C; Payne, Christine; Giles, Keith M; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B; O'Malley, Bert W; Leedman, Peter J
2013-04-16
The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing.
Zhang, Ying; Chen, Hang; Han, Ju-Guang
2015-01-01
Lassa virus (LASV), an arenavirus known to be responsible for a severe hemorrhagic fever, causes thousands of deaths annually and there is no effective vaccine for it so far. The nucleoprotein (NP) of LASV plays an essential role in the replication and transcription of the viral genome. Recent research shows that viral RNA binds in a deep crevice located within the N-terminal domain of NP and suggests a gating mechanism in which NP transforms from a "closed" position to an "open" position to bind RNA. To characterize the molecular mechanisms of how RNA binds to N-terminal domain of NP, two molecular dynamic (MD) simulations of RNA-binding structure and RNA-free structure have been performed. The simulation results show that an important helix α6 interacts with RNA in the "open" conformation, while helix α6 rotates toward the binding crevice and reduces the space of RNA-binding pocket in the "closed" conformation; it appears that helix α6 would clash with RNA while NP is in a "closed" state. In addition, to characterize the role of residues involved in the binding of RNA, the MD simulations of the double-mutant (W164A/F176A) and the single-mutant (G243P) RNA-binding NP complexes have been performed. Our MD simulations and molecular mechanics-generalized born surface area (MM-GBSA) energy calculations exhibit that the three mutant residues increase the binding affinity. Furthermore, we infer that the defect of the replication and transcription of viral genome is possibly due to the change of structural integrity rather than the reduction of RNA-binding affinity.
Jo, Myung Hyun; Song, Ji-Joon; Hohng, Sungchul
2015-12-01
In eukaryotes, small RNAs play important roles in both gene regulation and resistance to viral infection. Argonaute proteins have been identified as a key component of the effector complexes of various RNA-silencing pathways, but the mechanistic roles of Argonaute proteins in these pathways are not clearly understood. To address this question, we performed single-molecule fluorescence experiments using an RNA-induced silencing complex (core-RISC) composed of a small RNA and human Argonaute 2. We found that target binding of core-RISC starts at the seed region of the guide RNA. After target binding, four distinct reactions followed: target cleavage, transient binding, stable binding, and Argonaute unloading. Target cleavage required extensive sequence complementarity and accelerated core-RISC dissociation for recycling. In contrast, the stable binding of core-RISC to target RNAs required seed-match only, suggesting a potential explanation for the seed-match rule of microRNA (miRNA) target selection.
Mudedla, Sathish Kumar; Azhagiya Singam, Ettayapuram Ramaprasad; Balamurugan, Kanagasabai; Subramanian, Venkatesan
2015-11-11
The complexation of small interfering RNA (siRNA) with positively charged gold nanoclusters has been studied in the present investigation with the help of classical molecular dynamics and steered molecular dynamics simulations accompanied by free energy calculations. The results show that gold nanoclusters form a stable complex with siRNA. The wrapping of siRNA around the gold nanocluster depends on the size and charge on the surface of the gold cluster. The binding pattern of the gold nanocluster with siRNA is also influenced by the presence of another cluster. The interaction between the positively charged amines in the gold nanocluster and the negatively charged phosphate group in the siRNA is responsible for the formation of complexes. The binding free energy value increases with the size of the gold cluster and the number of positive charges present on the surface of the gold nanocluster. The results reveal that the binding energy of small gold nanoclusters increases in the presence of another gold nanocluster while the binding of large gold nanoclusters decreases due to the introduction of another gold nanocluster. Overall, the findings have clearly demonstrated the effect of size and charge of gold nanoclusters on their interaction pattern with siRNA.
Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors
Lakatos, Lóránt; Csorba, Tibor; Pantaleo, Vitantonio; Chapman, Elisabeth J; Carrington, James C; Liu, Yu-Ping; Dolja, Valerian V; Calvino, Lourdes Fernández; López-Moya, Juan José; Burgyán, József
2006-01-01
RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in higher plants and insects. To counteract RNA silencing, viruses express silencing suppressors that interfere with both siRNA- and microRNA-guided silencing pathways. We used comparative in vitro and in vivo approaches to analyse the molecular mechanism of suppression by three well-studied silencing suppressors. We found that silencing suppressors p19, p21 and HC-Pro each inhibit the intermediate step of RNA silencing via binding to siRNAs, although the molecular features required for duplex siRNA binding differ among the three proteins. None of the suppressors affected the activity of preassembled RISC complexes. In contrast, each suppressor uniformly inhibited the siRNA-initiated RISC assembly pathway by preventing RNA silencing initiator complex formation. PMID:16724105
Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.
Rawlings, Renata A; Krishnan, Vishalakshi; Walter, Nils G
2011-04-29
RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.
The structural basis for RNA specificity and Ca2+ inhibition of an RNA-dependent RNA polymerase.
Salgado, Paula S; Makeyev, Eugene V; Butcher, Sarah J; Bamford, Dennis H; Stuart, David I; Grimes, Jonathan M
2004-02-01
The RNA-dependent RNA polymerase of bacteriophage phi6 transcribes mRNA from the three segments of the dsRNA viral genome. We have cocrystallized RNA oligonucleotides with the polymerase, revealing the mode of binding of RNA templates. This binding is somewhat different from that previously seen for DNA oligomers, leading to additional RNA-protein hydrogen bonds, consistent with a preference for RNA. Activation of the RNA/polymerase complex by the addition of substrate and Mg2+ initiates a single round of reaction within the crystal to form a dead-end complex that partially collapses within the enzyme active site. By replacing Mg2+ with Ca2+, we have been able to capture the inhibited complex which shows distortion that explains the structural basis for the inhibition of such polymerases by Ca2+.
The solution structure of the pentatricopeptide repeat protein PPR10 upon binding atpH RNA
Gully, Benjamin S.; Cowieson, Nathan; Stanley, Will A.; Shearston, Kate; Small, Ian D.; Barkan, Alice; Bond, Charles S.
2015-01-01
The pentatricopeptide repeat (PPR) protein family is a large family of RNA-binding proteins that is characterized by tandem arrays of a degenerate 35-amino-acid motif which form an α-solenoid structure. PPR proteins influence the editing, splicing, translation and stability of specific RNAs in mitochondria and chloroplasts. Zea mays PPR10 is amongst the best studied PPR proteins, where sequence-specific binding to two RNA transcripts, atpH and psaJ, has been demonstrated to follow a recognition code where the identity of two amino acids per repeat determines the base-specificity. A recently solved ZmPPR10:psaJ complex crystal structure suggested a homodimeric complex with considerably fewer sequence-specific protein–RNA contacts than inferred previously. Here we describe the solution structure of the ZmPPR10:atpH complex using size-exclusion chromatography-coupled synchrotron small-angle X-ray scattering (SEC-SY-SAXS). Our results support prior evidence that PPR10 binds RNA as a monomer, and that it does so in a manner that is commensurate with a canonical and predictable RNA-binding mode across much of the RNA–protein interface. PMID:25609698
DNA/RNA binding and anticancer/antimicrobial activities of polymer-copper(II) complexes
NASA Astrophysics Data System (ADS)
Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Riyasdeen, Anvarbatcha; Dhivya, Rajakumar; Vignesh, Sivanandham; Akbarsha, Mohammad Abdulkader; James, Rathinam Arthur
2013-05-01
Water soluble polymer-copper(II) complexes with various degrees of coordination in the polymer chain were synthesized and characterized by elemental analysis, IR, UV-visible and EPR spectra. The DNA/RNA binding behavior of these polymer-copper(II) complexes was examined by UV-visible absorption, emission and circular dichroism spectroscopic methods, and cyclic voltammetry techniques. The binding of the polymer-copper(II) complexes with DNA/RNA was mainly through intercalation but some amount of electrostatic interaction was also observed. This binding capacity increased with the degree of coordination of the complexes. The polymer-copper(II) complex having the highest degree of coordination was subjected to analysis of cytotoxic and antimicrobial properties. The cytotoxicity study indicated that the polymer-copper(II) complexes affected the viability of MCF-7 mammary carcinoma cells, and the cells responded to the treatment with mostly through apoptosis although a few cells succumbed to necrosis. The antimicrobial screening showed activity against some human pathogens.
Herranz, M Carmen; Pallás, Vicente
2004-03-01
The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is involved in intercellular virus transport. In this study, putative RNA-binding properties of the PNRSV MP were studied. The PNRSV MP was produced in Escherichia coli using an expression vector. Electrophoretic mobility shift assays (EMSAs) using DIG-labelled riboprobes demonstrated that PNRSV MP bound ssRNA cooperatively without sequence specificity. Two different ribonucleoprotein complexes were found to be formed depending on the molar MP : PNRSV RNA ratio. The different responses of the complexes to urea treatment strongly suggested that they have different structural properties. Deletion mutagenesis followed by Northwestern analysis allowed location of a nucleic acid binding domain to aa 56-88. This 33 aa RNA-binding motif is the smallest region delineated among members of the family Bromoviridae for which RNA-binding properties have been demonstrated. This domain is highly conserved within all phylogenetic subgroups previously described for PNRSV isolates. Interestingly, the RNA-binding domain described here and the one described for Alfamovirus are located at the N terminus of their corresponding MPs, whereas similar domains previously characterized in members of the genera Bromovirus and Cucumovirus are present at the C terminus, strongly reflecting their corresponding phylogenetic relationships. The evolutionary implications of this observation are discussed.
Griffin, Brittany L.; Chasovskikh, Sergey; Dritschilo, Anatoly
2014-01-01
ABSTRACT The circular genome and antigenome RNAs of hepatitis delta virus (HDV) form characteristic unbranched, quasi-double-stranded RNA secondary structures in which short double-stranded helical segments are interspersed with internal loops and bulges. The ribonucleoprotein complexes (RNPs) formed by these RNAs with the virus-encoded protein hepatitis delta antigen (HDAg) perform essential roles in the viral life cycle, including viral replication and virion formation. Little is understood about the formation and structure of these complexes and how they function in these key processes. Here, the specific RNA features required for HDAg binding and the topology of the complexes formed were investigated. Selective 2′OH acylation analyzed by primer extension (SHAPE) applied to free and HDAg-bound HDV RNAs indicated that the characteristic secondary structure of the RNA is preserved when bound to HDAg. Notably, the analysis indicated that predicted unpaired positions in the RNA remained dynamic in the RNP. Analysis of the in vitro binding activity of RNAs in which internal loops and bulges were mutated and of synthetically designed RNAs demonstrated that the distinctive secondary structure, not the primary RNA sequence, is the major determinant of HDAg RNA binding specificity. Atomic force microscopy analysis of RNPs formed in vitro revealed complexes in which the HDV RNA is substantially condensed by bending or wrapping. Our results support a model in which the internal loops and bulges in HDV RNA contribute flexibility to the quasi-double-stranded structure that allows RNA bending and condensing by HDAg. IMPORTANCE RNA-protein complexes (RNPs) formed by the hepatitis delta virus RNAs and protein, HDAg, perform critical roles in virus replication. Neither the structures of these RNPs nor the RNA features required to form them have been characterized. HDV RNA is unusual in that it forms an unbranched quasi-double-stranded structure in which short base-paired segments are interspersed with internal loops and bulges. We analyzed the role of the HDV RNA sequence and secondary structure in the formation of a minimal RNP and visualized the structure of this RNP using atomic force microscopy. Our results indicate that HDAg does not recognize the primary sequence of the RNA; rather, the principle contribution of unpaired bases in HDV RNA to HDAg binding is to allow flexibility in the unbranched quasi-double-stranded RNA structure. Visualization of RNPs by atomic force microscopy indicated that the RNA is significantly bent or condensed in the complex. PMID:24741096
Agarwal, Shweta; Tyagi, Gunjan; Chadha, Deepti; Mehrotra, Ranjana
2017-01-01
Chloroethyl nitrosourea derivatives (CENUs) represent an important family of anticancer chemotherapeutic agents, which are used in the treatment of different types of cancer such as brain tumors, resistant or relapsed Hodgkin's disease, small cell lung cancer and malignant melanoma. This work focuses towards understanding the interaction of chloroethyl nitrosourea derivatives; lomustine, nimustine and semustine with tRNA using spectroscopic approach in order to elucidate their auxiliary anticancer action mechanism inside the cell. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), Fourier transform infrared difference spectroscopy, circular dichroism spectroscopy and UV-visible spectroscopy were employed to investigate the binding parameters of tRNA-CENUs complexation. Results of present study demonstrate that all CENUs, studied here, interact with tRNA through guanine nitrogenous base residues and possibly further crosslink cytosine residues in paired region of tRNA. Moreover, spectral data collected for nimustine-tRNA and semustine-tRNA complex formation indicates towards the groove-directed-alkylation as their anti-malignant action, which involves the participation of uracil moiety located in major groove of tRNA. Besides this, tRNA-CENUs adduct formation did not alter the native conformation of biopolymer and tRNA remains in A-form after its interaction with all three nitrosourea derivatives studied. The binding constants (K a ) estimated for tRNA complexation with lomustine, nimustine and semustine are 2.55×10 2 M -1 , 4.923×10 2 M -1 and 4.223×10 2 M -1 respectively, which specify weak type of CENU's binding with tRNA. Moreover, molecular modeling simulations were also performed to predict preferential binding orientation of CENUs with tRNA that corroborates well with spectral outcomes. The findings, presented here, recognize tRNA binding properties of CENUs that can further help in rational designing of more specific and efficient RNA targeted chemotherapeutic agents. Copyright © 2016 Elsevier B.V. All rights reserved.
RIPiT-Seq: A high-throughput approach for footprinting RNA:protein complexes
Singh, Guramrit; Ricci, Emiliano P.; Moore, Melissa J.
2013-01-01
Development of high-throughput approaches to map the RNA interaction sites of individual RNA binding proteins (RBPs) transcriptome-wide is rapidly transforming our understanding of post-transcriptional gene regulatory mechanisms. Here we describe a ribonucleoprotein (RNP) footprinting approach we recently developed for identifying occupancy sites of both individual RBPs and multi-subunit RNP complexes. RNA:protein immunoprecipitation in tandem (RIPiT) yields highly specific RNA footprints of cellular RNPs isolated via two sequential purifications; the resulting RNA footprints can then be identified by high-throughput sequencing (Seq). RIPiT-Seq is broadly applicable to all RBPs regardless of their RNA binding mode and thus provides a means to map the RNA binding sites of RBPs with poor inherent ultraviolet (UV) crosslinkability. Further, among current high-throughput approaches, RIPiT has the unique capacity to differentiate binding sites of RNPs with overlapping protein composition. It is therefore particularly suited for studying dynamic RNP assemblages whose composition evolves as gene expression proceeds. PMID:24096052
Ham, Byung-Kook; Brandom, Jeri L.; Xoconostle-Cázares, Beatriz; Ringgold, Vanessa; Lough, Tony J.; Lucas, William J.
2009-01-01
RNA binding proteins (RBPs) are integral components of ribonucleoprotein (RNP) complexes and play a central role in RNA processing. In plants, some RBPs function in a non-cell-autonomous manner. The angiosperm phloem translocation stream contains a unique population of RBPs, but little is known regarding the nature of the proteins and mRNA species that constitute phloem-mobile RNP complexes. Here, we identified and characterized a 50-kD pumpkin (Cucurbita maxima cv Big Max) phloem RNA binding protein (RBP50) that is evolutionarily related to animal polypyrimidine tract binding proteins. In situ hybridization studies indicated a high level of RBP50 transcripts in companion cells, while immunolocalization experiments detected RBP50 in both companion cells and sieve elements. A comparison of the levels of RBP50 present in vascular bundles and phloem sap indicated that this protein is highly enriched in the phloem sap. Heterografting experiments confirmed that RBP50 is translocated from source to sink tissues. Collectively, these findings established that RBP50 functions as a non-cell-autonomous RBP. Protein overlay, coimmunoprecipitation, and cross-linking experiments identified the phloem proteins and mRNA species that constitute RBP50-based RNP complexes. Gel mobility-shift assays demonstrated that specificity, with respect to the bound mRNA, is established by the polypyrimidine tract binding motifs within such transcripts. We present a model for RBP50-based RNP complexes within the pumpkin phloem translocation stream. PMID:19122103
Weidmann, Chase A; Qiu, Chen; Arvola, René M; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T; Tanaka Hall, Traci M; Goldstrohm, Aaron C
2016-01-01
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics. DOI: http://dx.doi.org/10.7554/eLife.17096.001 PMID:27482653
Weidmann, Chase A.; Qiu, Chen; Arvola, René M.; ...
2016-08-02
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAsmore » that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidmann, Chase A.; Qiu, Chen; Arvola, René M.
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAsmore » that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.« less
Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple-turnover
Rawlings, Renata A.; Krishnan, Vishalakshi; Walter, Nils G.
2011-01-01
RNA interference (RNAi) is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response against viruses and retrotransposons. During viral infection, the RNase III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs), 21–24 nucleotides in length, and helps load them into the RNA-induced silencing complex (RISC) to guide cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressor (RSS) proteins that tightly, and presumably quantitatively, bind siRNAs to thwart RNAi-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus (CIRV), as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding ((1.69 ± 0.07)×108 M−1s−1) and marked dissociation (koff = 0.062 ± 0.002 s−1). We also observe that p19 efficiently competes with recombinant Dicer and inhibits formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple-turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. PMID:21354178
Baba, Seiki; Someya, Tatsuhiko; Kawai, Gota; Nakamura, Kouji; Kumasaka, Takashi
2010-05-01
The Hfq protein is a hexameric RNA-binding protein which regulates gene expression by binding to RNA under the influence of diverse environmental stresses. Its ring structure binds various types of RNA, including mRNA and sRNA. RNA-bound structures of Hfq from Escherichia coli and Staphylococcus aureus have been revealed to have poly(A) RNA at the distal site and U-rich RNA at the proximal site, respectively. Here, crystals of a complex of the Bacillus subtilis Hfq protein with an A/G-repeat 7-mer RNA (Hfq-RNA) that were prepared using the hanging-drop vapour-diffusion technique are reported. The type 1 Hfq-RNA crystals belonged to space group I422, with unit-cell parameters a = b = 123.70, c = 119.13 A, while the type 2 Hfq-RNA crystals belonged to space group F222, with unit-cell parameters a = 91.92, b = 92.50, c = 114.92 A. Diffraction data were collected to a resolution of 2.20 A from both crystal forms. The hexameric structure of the Hfq protein was clearly shown by self-rotation analysis.
Expanded RNA-binding activities of mammalian Argonaute 2
Tan, Grace S.; Garchow, Barry G.; Liu, Xuhang; Yeung, Jennifer; Morris, John P.; Cuellar, Trinna L.; McManus, Michael T.; Kiriakidou, Marianthi
2009-01-01
Mammalian Argonaute 2 (Ago2) protein associates with microRNAs (miRNAs) or small interfering RNAs (siRNAs) forming RNA-induced silencing complexes (RISCs/miRNPs). In the present work, we characterize the RNA-binding and nucleolytic activity of recombinant mouse Ago2. Our studies show that recombinant mouse Ago2 binds efficiently to miRNAs forming active RISC. Surprisingly, we find that recombinant mouse Ago2 forms active RISC using pre-miRNAs or long unstructured single stranded RNAs as guides. Furthermore, we demonstrate that, in vivo, endogenous human Ago2 binds directly to pre-miRNAs independently of Dicer, and that Ago2:pre-miRNA complexes are found both in the cytoplasm and in the nucleus of human cells. PMID:19808937
Structure-Function Based Molecular Relationships in Ewing's Sarcoma
2015-01-01
Ewing's Sarcoma Oncogene (ews) on chromosome 22q12 is encoding a ubiquitously expressed RNA-binding protein (EWS) with unknown function that is target of tumor-specific chromosomal translocations in Ewing's sarcoma family of tumors. A model of transcription complex was proposed in which the heterodimer Rpb4/7 binds to EAD, connecting it to Core RNA Pol II. The DNA-binding domain, provided by EFP, is bound to the promoter. Rpb4/7 binds RNA, stabilizing the transcription complex. The complex Rpb4/7 can stabilize the preinitiation complexes by converting the conformation of RNA Pol II. EWS may change its conformation, so that NTD becomes accessible. Two different mechanisms of interaction between EWS and RNA Pol II are proposed: (I) an intermolecular EWS-EWS interaction between two molecules, pushing conformation from “closed” to “open” state, or (II) an intramolecular interaction inside the molecule of EWS, pushing conformation of the molecule from “closed” to “open” state. The modified forms of EWS may interact with Pol II subunits hsRpb5 and hsRpb7. The EWS and EFPs binding partners are described schematically in a model, an attempt to link the transcription with the splicing. The proposed model helps to understand the functional molecular interactions in cancer, to find new partners and ways to treat cancer. PMID:25688366
Swale, Christopher; Monod, Alexandre; Tengo, Laura; Labaronne, Alice; Garzoni, Frédéric; Bourhis, Jean-Marie; Cusack, Stephen; Schoehn, Guy; Berger, Imre; Ruigrok, Rob W H; Crépin, Thibaut
2016-04-20
The genome of influenza A virus (IAV) comprises eight RNA segments (vRNA) which are transcribed and replicated by the heterotrimeric IAV RNA-dependent RNA-polymerase (RdRp). RdRp consists of three subunits (PA, PB1 and PB2) and binds both the highly conserved 3'- and 5'-ends of the vRNA segment. The IAV RdRp is an important antiviral target, but its structural mechanism has remained largely elusive to date. By applying a polyprotein strategy, we produced RdRp complexes and define a minimal human IAV RdRp core complex. We show that PA-PB1 forms a stable heterodimeric submodule that can strongly interact with 5'-vRNA. In contrast, 3'-vRNA recognition critically depends on the PB2 N-terminal domain. Moreover, we demonstrate that PA-PB1 forms a stable and stoichiometric complex with host nuclear import factor RanBP5 that can be modelled using SAXS and we show that the PA-PB1-RanPB5 complex is no longer capable of 5'-vRNA binding. Our results provide further evidence for a step-wise assembly of IAV structural components, regulated by nuclear transport mechanisms and host factor binding.
Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1
Hung, Ming-Lung; Hautbergue, Guillaume M.; Snijders, Ambrosius P. L.; Dickman, Mark J.; Wilson, Stuart A.
2010-01-01
The REF/ALY mRNA export adaptor binds TAP/NXF1 via an arginine-rich region, which overlaps with its RNA-binding domain. When TAP binds a REF:RNA complex, it triggers transfer of the RNA from REF to TAP. Here, we have examined the effects of arginine methylation on the activities of the REF protein in mRNA export. We have mapped the arginine methylation sites of REF using mass spectrometry and find that several arginines within the TAP and RNA binding domains are methylated in vivo. However, arginine methylation has no effect on the REF:TAP interaction. Instead, arginine methylation reduces the RNA-binding activity of REF in vitro and in vivo. The reduced RNA-binding activity of REF in its methylated state is essential for efficient displacement of RNA from REF by TAP in vivo. Therefore, arginine methylation fine-tunes the RNA-binding activity of REF such that the RNA–protein interaction can be readily disrupted by export factors further down the pathway. PMID:20129943
G-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzyme.
Hirschi, Alexander; Martin, William J; Luka, Zigmund; Loukachevitch, Lioudmila V; Reiter, Nicholas J
2016-08-01
Lysine-specific histone demethylase 1 (LSD1) is an essential epigenetic regulator in metazoans and requires the co-repressor element-1 silencing transcription factor (CoREST) to efficiently catalyze the removal of mono- and dimethyl functional groups from histone 3 at lysine positions 4 and 9 (H3K4/9). LSD1 interacts with over 60 regulatory proteins and also associates with lncRNAs (TERRA, HOTAIR), suggesting a regulatory role for RNA in LSD1 function. We report that a stacked, intramolecular G-quadruplex (GQ) forming TERRA RNA (GG[UUAGGG]8UUA) binds tightly to the functional LSD1-CoREST complex (Kd ≈ 96 nM), in contrast to a single GQ RNA unit ([UUAGGG]4U), a GQ DNA ([TTAGGG]4T), or an unstructured single-stranded RNA. Stabilization of a parallel-stranded GQ RNA structure by monovalent potassium ions (K(+)) is required for high affinity binding to the LSD1-CoREST complex. These data indicate that LSD1 can distinguish between RNA and DNA as well as structured versus unstructured nucleotide motifs. Further, cross-linking mass spectrometry identified the primary location of GQ RNA binding within the SWIRM/amine oxidase domain (AOD) of LSD1. An ssRNA binding region adjacent to this GQ binding site was also identified via X-ray crystallography. This RNA binding interface is consistent with kinetic assays, demonstrating that a GQ-forming RNA can serve as a noncompetitive inhibitor of LSD1-catalyzed demethylation. The identification of a GQ RNA binding site coupled with kinetic data suggests that structured RNAs can function as regulatory molecules in LSD1-mediated mechanisms. © 2016 Hirschi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Annexin II is associated with mRNAs which may constitute a distinct subpopulation.
Vedeler, A; Hollås, H
2000-01-01
Protein-mRNA interactions affect mRNA transport, anchorage, stability and translatability in the cytoplasm. During the purification of three subpopulations of polysomes, it was observed that a 36-kDa protein, identified as annexin II, is associated with only one specific population of polysomes, namely cytoskeleton-associated polysomes. This association appears to be calcium-dependent since it was sensitive to EGTA and could be reconstituted in vitro. UV irradiation resulted in partial, EGTA-resistant cross-linking of annexin II to the polysomes. Binding of (32)P-labelled total RNA to proteins isolated from the cytoskeleton-bound polysomes on a NorthWestern blot resulted in a radioactive band having the same mobility as annexin II and, most importantly, purified native annexin II immobilized on nitrocellulose specifically binds mRNA. The mRNA population isolated from cytoskeleton-bound polysomes binds to annexin II with the highest affinity as compared with those isolated from free or membrane-bound polysomes. Interestingly, the annexin II complex, isolated from porcine small intestinal microvilli was a far better substrate for mRNA binding than the complex derived from transformed Krebs II ascites cells. When cytoskeleton-associated polysomes were split into 60 S and 40 S ribosomal subunits, and a peak containing mRNA complexes, annexin II fractionated with the mRNAs. Finally, using affinity purification of mRNA on poly(A)(+)-coupled magnetic beads, annexin II was only detected in association with messenger ribonucleoproteins (mRNPs) present in the cytoskeletal fraction (non-polysomal mRNPs). These results, derived from both in vitro experiments and cell fractionation, suggest that annexin II binds directly to the RNA moiety of mRNP complexes containing a specific population of mRNAs. PMID:10839987
Gans, Jonathan; Osborne, Jonathan; Cheng, Juliet; Djapgne, Louise; Oglesby-Sherrouse, Amanda G
2018-01-01
Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.
Probing binding hot spots at protein-RNA recognition sites.
Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad
2016-01-29
We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
High-resolution NMR structures of the domains of Saccharomyces cerevisiae Tho1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, Julian O. B.; Allen, Mark D.; Freund, Stefan M. V.
2016-05-23
In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and the C-terminal RNA-binding domain of S. cerevisiae Tho1 have been determined. THO is a multi-protein complex involved in the formation of messenger ribonuclear particles (mRNPs) by coupling transcription with mRNA processing and export. THO is thought to be formed from five subunits, Tho2p, Hpr1p, Tex1p, Mft1p and Thp2p, and recent work has determined a low-resolution structure of the complex [Poulsen et al. (2014 ▸), PLoS One, 9, e103470]. A number of additional proteins are thought to be involved in the formation of mRNP in yeast, including Tho1,more » which has been shown to bind RNA in vitro and is recruited to actively transcribed chromatin in vivo in a THO-complex and RNA-dependent manner. Tho1 is known to contain a SAP domain at the N-terminus, but the ability to suppress the expression defects of the hpr1Δ mutant of THO was shown to reside in the RNA-binding C-terminal region. In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and C-terminal RNA-binding domain have been determined.« less
RNA Seeds Higher Order Assembly of FUS Protein
Schwartz, Jacob C.; Wang, Xueyin; Podell, Elaine R.; Cech, Thomas R.
2014-01-01
SUMMARY The abundant nuclear RNA-binding protein FUS binds the CTD of RNA polymerase II in an RNA-dependent manner, affecting Ser2 phosphorylation and transcription. Here we examine the mechanism of this process and find that RNA binding nucleates the formation of higher order FUS RNP assemblies that bind the CTD. Both the low-complexity domain and the RGG domain of FUS contribute to assembly. The assemblies appear fibrous by electron microscopy and have characteristics of beta-zipper structures. These results support the emerging view that the pathologic protein aggregation seen in neurodegenerative diseases such as ALS may occur by exaggeration of functionally important assemblies of RNA-binding proteins. PMID:24268778
G-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzyme
Hirschi, Alexander; Martin, William J.; Luka, Zigmund; Loukachevitch, Lioudmila V.; Reiter, Nicholas J.
2016-01-01
Lysine-specific histone demethylase 1 (LSD1) is an essential epigenetic regulator in metazoans and requires the co-repressor element-1 silencing transcription factor (CoREST) to efficiently catalyze the removal of mono- and dimethyl functional groups from histone 3 at lysine positions 4 and 9 (H3K4/9). LSD1 interacts with over 60 regulatory proteins and also associates with lncRNAs (TERRA, HOTAIR), suggesting a regulatory role for RNA in LSD1 function. We report that a stacked, intramolecular G-quadruplex (GQ) forming TERRA RNA (GG[UUAGGG]8UUA) binds tightly to the functional LSD1–CoREST complex (Kd ≈ 96 nM), in contrast to a single GQ RNA unit ([UUAGGG]4U), a GQ DNA ([TTAGGG]4T), or an unstructured single-stranded RNA. Stabilization of a parallel-stranded GQ RNA structure by monovalent potassium ions (K+) is required for high affinity binding to the LSD1–CoREST complex. These data indicate that LSD1 can distinguish between RNA and DNA as well as structured versus unstructured nucleotide motifs. Further, cross-linking mass spectrometry identified the primary location of GQ RNA binding within the SWIRM/amine oxidase domain (AOD) of LSD1. An ssRNA binding region adjacent to this GQ binding site was also identified via X-ray crystallography. This RNA binding interface is consistent with kinetic assays, demonstrating that a GQ-forming RNA can serve as a noncompetitive inhibitor of LSD1-catalyzed demethylation. The identification of a GQ RNA binding site coupled with kinetic data suggests that structured RNAs can function as regulatory molecules in LSD1-mediated mechanisms. PMID:27277658
Kim, Inae; Kwak, Hoyun; Lee, Hee Kyu; Hyun, Soonsil; Jeong, Sunjoo
2012-01-01
RNA-binding proteins regulate multiple steps of RNA metabolism through both dynamic and combined binding. In addition to its crucial roles in cell adhesion and Wnt-activated transcription in cancer cells, β-catenin regulates RNA alternative splicing and stability possibly by binding to target RNA in cells. An RNA aptamer was selected for specific binding to β-catenin to address RNA recognition by β-catenin more specifically. Here, we characterized the structural properties of the RNA aptamer as a model and identified a β-catenin RNA motif. Similar RNA motif was found in cellular RNA, Cyclooxygenase-2 (COX-2) mRNA 3′-untranslated region (3′-UTR). More significantly, the C-terminal domain of β-catenin interacted with HuR and the Armadillo repeat domain associated with RNA to form the RNA–β-catenin–HuR complex in vitro and in cells. Furthermore, the tertiary RNA–protein complex was predominantly found in the cytoplasm of colon cancer cells; thus, it might be related to COX-2 protein level and cancer progression. Taken together, the β-catenin RNA aptamer was valuable for deducing the cellular RNA aptamer and identifying novel and oncogenic RNA–protein networks in colon cancer cells. PMID:22544606
Allen, Thomas E.; Heidmann, Stefan; Reed, RoseMary; Myler, Peter J.; Göringer, H. Ulrich; Stuart, Kenneth D.
1998-01-01
RNA editing in Trypanosoma brucei mitochondria produces mature mRNAs by a series of enzyme-catalyzed reactions that specifically insert or delete uridylates in association with a macromolecular complex. Using a mitochondrial fraction enriched for in vitro RNA editing activity, we produced several monoclonal antibodies that are specific for a 21-kDa guide RNA (gRNA) binding protein initially identified by UV cross-linking. Immunofluorescence studies localize the protein to the mitochondrion, with a preference for the kinetoplast. The antibodies cause a supershift of previously identified gRNA-specific ribonucleoprotein complexes and immunoprecipitate in vitro RNA editing activities that insert and delete uridylates. The immunoprecipitated material also contains gRNA-specific endoribonuclease, terminal uridylyltransferase, and RNA ligase activities as well as gRNA and both edited and unedited mRNA. The immunoprecipitate contains numerous proteins, of which the 21-kDa protein, a 90-kDa protein, and novel 55- and 16-kDa proteins can be UV cross-linked to gRNA. These studies indicate that the 21-kDa protein associates with the ribonucleoprotein complex (or complexes) that catalyze RNA editing. PMID:9742118
Imino proton exchange and base-pair kinetics in the AMP-RNA aptamer complex.
Nonin, S; Jiang, F; Patel, D J
1997-05-02
We report on the dynamics of base-pair opening in the ATP-binding asymmetric internal loop and flanking base-pairs of the AMP-RNA aptamer complex by monitoring the exchange characteristics of the extremely well resolved imino protons in the NMR spectrum of the complex. The kinetics of imino proton exchange as a function of basic pH or added ammonia catalyst are used to measure the apparent base-pair dissociation constants and lifetimes of Watson-Crick and mismatched base-pairs, as well as the solvent accessibility of the unpaired imino protons in the complex. The exchange characteristics of the imino protons identify the existence of four additional hydrogen bonds stabilizing the conformation of the asymmetric ATP-binding internal loop that were not detected by NOEs and coupling constants alone, but are readily accommodated in the previously reported solution structure of the AMP-RNA aptamer complex published from our laboratory. The hydrogen exchange kinetics of the non-Watson-Crick pairs in the asymmetric internal loop of the AMP-RNA aptamer complex have been characterized and yield apparent dissociation constants (alphaKd) that range from 10(-2) to 10(-7). Surprisingly, three of these alphaKd values are amongst the lowest measured for all base-pairs in the AMP-RNA aptamer complex. Comparative studies of hydrogen exchange of the imino protons in the free RNA aptamer and the AMP-RNA aptamer complex establish that complexation stabilizes not only the bases within the ATP-binding asymmetric internal loop, but also the flanking stem base-pairs (two pairs on either side) of the binding site. We also outline some preliminary results related to the exchange properties of a sugar 2'-hydroxyl proton of a guanosine residue involved in a novel hydrogen bond that has been shown to contribute to the immobilization of the bound AMP by the RNA aptamer, and whose resonance is narrow and downfield shifted in the spectrum.
Drusin, Salvador I; Suarez, Irina P; Gauto, Diego F; Rasia, Rodolfo M; Moreno, Diego M
2016-04-15
Double stranded RNA (dsRNA) participates in several biological processes, where RNA molecules acquire secondary structure inside the cell through base complementarity. The double stranded RNA binding domain (dsRBD) is one of the main protein folds that is able to recognize and bind to dsRNA regions. The N-terminal dsRBD of DCL1 in Arabidopsis thaliana (DCL1-1), in contrast to other studied dsRBDs, lacks a stable structure, behaving as an intrinsically disordered protein. DCL1-1 does however recognize dsRNA by acquiring a canonical fold in the presence of its substrate. Here we present a detailed modeling and molecular dynamics study of dsRNA recognition by DCL1-1. We found that DCL1-1 forms stable complexes with different RNAs and we characterized the residues involved in binding. Although the domain shows a binding loop substantially shorter than other homologs, it can still interact with the dsRNA and results in bending of the dsRNA A-type helix. Furthermore, we found that R8, a non-conserved residue located in the first dsRNA binding region, recognizes preferentially mismatched base pairs. We discuss our findings in the context of the function of DCL1-1 within the microRNA processing complex. Copyright © 2016 Elsevier Inc. All rights reserved.
Yao, Hongjie; Brick, Kevin; Evrard, Yvonne; Xiao, Tiaojiang; Camerini-Otero, R. Daniel; Felsenfeld, Gary
2010-01-01
CCCTC-binding factor (CTCF) is a DNA-binding protein that plays important roles in chromatin organization, although the mechanism by which CTCF carries out these functions is not fully understood. Recent studies show that CTCF recruits the cohesin complex to insulator sites and that cohesin is required for insulator activity. Here we showed that the DEAD-box RNA helicase p68 (DDX5) and its associated noncoding RNA, steroid receptor RNA activator (SRA), form a complex with CTCF that is essential for insulator function. p68 was detected at CTCF sites in the IGF2/H19 imprinted control region (ICR) as well as other genomic CTCF sites. In vivo depletion of SRA or p68 reduced CTCF-mediated insulator activity at the IGF2/H19 ICR, increased levels of IGF2 expression, and increased interactions between the endodermal enhancer and IGF2 promoter. p68/SRA also interacts with members of the cohesin complex. Depletion of either p68 or SRA does not affect CTCF binding to its genomic sites, but does reduce cohesin binding. The results suggest that p68/SRA stabilizes the interaction of cohesin with CTCF by binding to both, and is required for proper insulator function. PMID:20966046
Characterization of MRP RNA-protein interactions within the perinucleolar compartment.
Pollock, Callie; Daily, Kelly; Nguyen, Van Trung; Wang, Chen; Lewandowska, Marzena Anna; Bensaude, Olivier; Huang, Sui
2011-03-15
The perinucleolar compartment (PNC) forms in cancer cells and is highly enriched with a subset of polymerase III RNAs and RNA-binding proteins. Here we report that PNC components mitochondrial RNA-processing (MRP) RNA, pyrimidine tract-binding protein (PTB), and CUG-binding protein (CUGBP) interact in vivo, as demonstrated by coimmunoprecipitation and RNA pull-down experiments. Glycerol gradient analyses show that this complex is large and sediments at a different fraction from known MRP RNA-containing complexes, the MRP ribonucleoprotein ribozyme and human telomerase reverse transcriptase. Tethering PNC components to a LacO locus recruits other PNC components, further confirming the in vivo interactions. These interactions are present both in PNC-containing and -lacking cells. High-resolution localization analyses demonstrate that MRP RNA, CUGBP, and PTB colocalize at the PNC as a reticulated network, intertwining with newly synthesized RNA. Furthermore, green fluorescent protein (GFP)-PTB and GFP-CUGBP show a slower rate of fluorescence recovery after photobleaching at the PNC than in the nucleoplasm, illustrating the different molecular interaction of the complexes associated with the PNC. These findings support a working model in which the MRP RNA-protein complex becomes nucleated at the PNC in cancer cells and may play a role in gene expression regulation at the DNA locus that associates with the PNC.
Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Gandi, Devadas A; Thirunalasundari, Thyagarajan; Vignesh, Sivanandham; James, Rathinam A
2017-05-01
Ultraviolet-visible, emission and circular dichroism spectroscopic methods were used in transfer RNA (tRNA) interaction studies performed for polyethyleneimine-copper(II) complexes [Cu(phen)(l-Tyr)BPEI]ClO 4 (where phen =1,10-phenanthroline, l-Tyr = l-tyrosine and BPEI = branched polyethyleneimine) with various degrees of coordination (x = 0.059, 0.149, 0.182) in the polymer chain. The results indicated that polyethyleneimine-copper(II) complexes bind with tRNA mostly through surface binding, although other binding modes, such as hydrogen bonding and van der Waals interactions, might also be present. Dye-exclusion, sulforhodamine B and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays of a polyethyleneimine-copper(II) complex with a higher degree of coordination against different cancer cell lines proved that the complex exhibited cytotoxic specificity and a significant cancer cell inhibition rate. Antimicrobial screening showed activity against some human pathogens. Copyright © 2016 John Wiley & Sons, Ltd.
Pan, Yuliang; Wang, Zixiang; Zhan, Weihua; Deng, Lei
2018-05-01
Identifying RNA-binding residues, especially energetically favored hot spots, can provide valuable clues for understanding the mechanisms and functional importance of protein-RNA interactions. Yet, limited availability of experimentally recognized energy hot spots in protein-RNA crystal structures leads to the difficulties in developing empirical identification approaches. Computational prediction of RNA-binding hot spot residues is still in its infant stage. Here, we describe a computational method, PrabHot (Prediction of protein-RNA binding hot spots), that can effectively detect hot spot residues on protein-RNA binding interfaces using an ensemble of conceptually different machine learning classifiers. Residue interaction network features and new solvent exposure characteristics are combined together and selected for classification with the Boruta algorithm. In particular, two new reference datasets (benchmark and independent) have been generated containing 107 hot spots from 47 known protein-RNA complex structures. In 10-fold cross-validation on the training dataset, PrabHot achieves promising performances with an AUC score of 0.86 and a sensitivity of 0.78, which are significantly better than that of the pioneer RNA-binding hot spot prediction method HotSPRing. We also demonstrate the capability of our proposed method on the independent test dataset and gain a competitive advantage as a result. The PrabHot webserver is freely available at http://denglab.org/PrabHot/. leideng@csu.edu.cn. Supplementary data are available at Bioinformatics online.
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
Hafner, Markus; Landthaler, Markus; Burger, Lukas; Khorshid, Mohsen; Hausser, Jean; Berninger, Philipp; Rothballer, Andrea; Ascano, Manuel; Jungkamp, Anna-Carina; Munschauer, Mathias; Ulrich, Alexander; Wardle, Greg S.; Dewell, Scott; Zavolan, Mihaela; Tuschl, Thomas
2010-01-01
Summary RNA transcripts are subject to post-transcriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases. PMID:20371350
Baba, Seiki; Someya, Tatsuhiko; Kawai, Gota; Nakamura, Kouji; Kumasaka, Takashi
2010-01-01
The Hfq protein is a hexameric RNA-binding protein which regulates gene expression by binding to RNA under the influence of diverse environmental stresses. Its ring structure binds various types of RNA, including mRNA and sRNA. RNA-bound structures of Hfq from Escherichia coli and Staphylococcus aureus have been revealed to have poly(A) RNA at the distal site and U-rich RNA at the proximal site, respectively. Here, crystals of a complex of the Bacillus subtilis Hfq protein with an A/G-repeat 7-mer RNA (Hfq–RNA) that were prepared using the hanging-drop vapour-diffusion technique are reported. The type 1 Hfq–RNA crystals belonged to space group I422, with unit-cell parameters a = b = 123.70, c = 119.13 Å, while the type 2 Hfq–RNA crystals belonged to space group F222, with unit-cell parameters a = 91.92, b = 92.50, c = 114.92 Å. Diffraction data were collected to a resolution of 2.20 Å from both crystal forms. The hexameric structure of the Hfq protein was clearly shown by self-rotation analysis. PMID:20445260
TGF-β Suppression of HBV RNA through AID-Dependent Recruitment of an RNA Exosome Complex
Kitamura, Kouichi; Wang, Zhe; Chowdhury, Sajeda; Monjurul, Ahasan Md; Wakae, Kousho; Koura, Miki; Shimadu, Miyuki; Kinoshita, Kazuo; Muramatsu, Masamichi
2015-01-01
Transforming growth factor (TGF)-β inhibits hepatitis B virus (HBV) replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-β is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-β was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-β mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-β causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner. PMID:25836330
Sato, Hanae; Maquat, Lynne E.
2009-01-01
Mammalian mRNAs lose and acquire proteins throughout their life span while undergoing processing, transport, translation, and decay. How translation affects messenger RNA (mRNA)–protein interactions is largely unknown. The pioneer round of translation uses newly synthesized mRNA that is bound by cap-binding protein 80 (CBP80)–CBP20 (also known as the cap-binding complex [CBC]) at the cap, poly(A)-binding protein N1 (PABPN1) and PABPC1 at the poly(A) tail, and, provided biogenesis involves pre-mRNA splicing, exon junction complexes (EJCs) at exon–exon junctions. Subsequent rounds of translation engage mRNA that is bound by eukaryotic translation initiation factor 4E (eIF4E) at the cap and PABPC1 at the poly(A) tail, but that lacks detectable EJCs and PABPN1. Using the level of intracellular iron to regulate the translation of specific mRNAs, we show that translation promotes not only removal of EJC constituents, including the eIF4AIII anchor, but also replacement of PABPN1 by PABPC1. Remarkably, translation does not affect replacement of CBC by eIF4E. Instead, replacement of CBC by eIF4E is promoted by importin β (IMPβ): Inhibiting the binding of IMPβ to the complex of CBC–IMPα at an mRNA cap using the IMPα IBB (IMPβ-binding) domain or a RAN variant increases the amount of CBC-bound mRNA and decreases the amount of eIF4E-bound mRNA. Our studies uncover a previously unappreciated role for IMPβ and a novel paradigm for how newly synthesized messenger ribonucleoproteins (mRNPs) are matured. PMID:19884259
Friedrich, Susann; Golbik, Ralph Peter
2017-01-01
Abstract The heterodimer NF90–NF45 is an RNA-binding protein complex that modulates the expression of various cellular mRNAs on the post-transcriptional level. Furthermore, it acts as a host factor that supports the replication of several RNA viruses. The molecular mechanisms underlying these activities have yet to be elucidated. Recently, we showed that the RNA-binding capabilities and binding specificity of NF90 considerably improves when it forms a complex with NF45. Here, we demonstrate that NF90 has a substrate-selective RNA chaperone activity (RCA) involving RNA annealing and strand displacement activities. The mechanism of the NF90-catalyzed RNA annealing was elucidated to comprise a combination of ‘matchmaking’ and compensation of repulsive charges, which finally results in the population of dsRNA products. Heterodimer formation with NF45 enhances ‘matchmaking’ of complementary ssRNAs and substantially increases the efficiency of NF90’s RCA. During investigations of the relevance of the NF90–NF45 RCA, the complex was shown to stimulate the first step in the RNA replication process of hepatitis C virus (HCV) in vitro and to stabilize a regulatory element within the mRNA of vascular endothelial growth factor (VEGF) by protein-guided changes of the RNAs’ structures. Thus, our study reveals how the intrinsic properties of an RNA-binding protein determine its biological activities. PMID:29040738
Yang, Yul W; Flynn, Ryan A; Chen, Yong; Qu, Kun; Wan, Bingbing; Wang, Kevin C; Lei, Ming; Chang, Howard Y
2014-01-01
The WDR5 subunit of the MLL complex enforces active chromatin and can bind RNA; the relationship between these two activities is unclear. Here we identify a RNA binding pocket on WDR5, and discover a WDR5 mutant (F266A) that selectively abrogates RNA binding without affecting MLL complex assembly or catalytic activity. Complementation in ESCs shows that WDR5 F266A mutant is unable to accumulate on chromatin, and is defective in gene activation, maintenance of histone H3 lysine 4 trimethylation, and ESC self renewal. We identify a family of ESC messenger and lncRNAs that interact with wild type WDR5 but not F266A mutant, including several lncRNAs known to be important for ESC gene expression. These results suggest that specific RNAs are integral inputs into the WDR5-MLL complex for maintenance of the active chromatin state and embryonic stem cell fates. DOI: http://dx.doi.org/10.7554/eLife.02046.001 PMID:24521543
NMR Chemical Exchange as a Probe for Ligand-Binding Kinetics in a Theophylline-Binding RNA Aptamer
Latham, Michael P.; Zimmermann, Grant R.; Pardi, Arthur
2009-01-01
The apparent on- and off-rate constants for theophylline binding to its RNA aptamer in the absence of Mg2+ were determined here by 2D 1H-1H NMR ZZ-exchange spectroscopy. Analysis of the build-up rate of the exchange cross peaks for several base-paired imino protons in the RNA yielded an apparent kon of 600 M-1 s-1. This small apparent kon results from the free RNA existing as a dynamic equilibrium of inactive states rapidly interconverting with a low population of active species. The data here indicate that the RNA aptamer employs a conformational selection mechanism for binding theophylline in the absence of Mg2+. The kinetic data here also explain a very unusual property of this RNA-theophylline system, slow exchange on the NMR chemical shift timescale for a weak-binding complex. To our knowledge, it is unprecedented to have such a weak binding complex (Kd ≈ 3.0 mM at 15 °C) show slow exchange on the NMR chemical shift timescale, but the results clearly demonstrate that slow exchange and weak binding are readily rationalized by a small kon. Comparisons with other ligand-receptor interactions are presented. PMID:19317486
A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain.
Haroon, Mohamed Mohamed; Dar, Ghulam Hassan; Jeyalakshmi, Durga; Venkatraman, Uthra; Saba, Kamal; Rangaraj, Nandini; Patel, Anant Bahadur; Gopal, Vijaya
2016-04-28
RNA interference represents a novel therapeutic approach to modulate several neurodegenerative disease-related genes. However, exogenous delivery of siRNA restricts their transport into different tissues and specifically into the brain mainly due to its large size and the presence of the blood-brain barrier (BBB). To overcome these challenges, we developed here a strategy wherein a peptide known to target specific gangliosides was fused to a double-stranded RNA binding protein to deliver siRNA to the brain parenchyma. The designed fusion protein designated as TARBP-BTP consists of a double-stranded RNA-binding domain (dsRBD) of human Trans Activation response element (TAR) RNA Binding Protein (TARBP2) fused to a brain targeting peptide that binds to monosialoganglioside GM1. Conformation-specific binding of TARBP2 domain to siRNA led to the formation of homogenous serum-stable complex with targeting potential. Further, uptake of the complex in Neuro-2a, IMR32 and HepG2 cells analyzed by confocal microscopy and fluorescence activated cell sorting, revealed selective requirement of GM1 for entry. Remarkably, systemic delivery of the fluorescently labeled complex (TARBP-BTP:siRNA) in ΑβPP-PS1 mouse model of Alzheimer's disease (AD) led to distinctive localization in the cerebral hemisphere. Further, the delivery of siRNA mediated by TARBP-BTP led to significant knockdown of BACE1 in the brain, in both ΑβPP-PS1 mice and wild type C57BL/6. The study establishes the growing importance of fusion proteins in delivering therapeutic siRNA to brain tissues. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Qin; Gilmartin, Gregory M.; Doublié, Sylvie
2010-01-01
Human Cleavage Factor Im (CFIm) is an essential component of the pre-mRNA 3′ processing complex that functions in the regulation of poly(A) site selection through the recognition of UGUA sequences upstream of the poly(A) site. Although the highly conserved 25 kDa subunit (CFIm25) of the CFIm complex possesses a characteristic α/β/α Nudix fold, CFIm25 has no detectable hydrolase activity. Here we report the crystal structures of the human CFIm25 homodimer in complex with UGUAAA and UUGUAU RNA sequences. CFIm25 is the first Nudix protein to be reported to bind RNA in a sequence-specific manner. The UGUA sequence contributes to binding specificity through an intramolecular G:A Watson–Crick/sugar-edge base interaction, an unusual pairing previously found to be involved in the binding specificity of the SAM-III riboswitch. The structures, together with mutational data, suggest a novel mechanism for the simultaneous sequence-specific recognition of two UGUA elements within the pre-mRNA. Furthermore, the mutually exclusive binding of RNA and the signaling molecule Ap4A (diadenosine tetraphosphate) by CFIm25 suggests a potential role for small molecules in the regulation of mRNA 3′ processing. PMID:20479262
Yang, Qin; Gilmartin, Gregory M; Doublié, Sylvie
2010-06-01
Human Cleavage Factor Im (CFI(m)) is an essential component of the pre-mRNA 3' processing complex that functions in the regulation of poly(A) site selection through the recognition of UGUA sequences upstream of the poly(A) site. Although the highly conserved 25 kDa subunit (CFI(m)25) of the CFI(m) complex possesses a characteristic alpha/beta/alpha Nudix fold, CFI(m)25 has no detectable hydrolase activity. Here we report the crystal structures of the human CFI(m)25 homodimer in complex with UGUAAA and UUGUAU RNA sequences. CFI(m)25 is the first Nudix protein to be reported to bind RNA in a sequence-specific manner. The UGUA sequence contributes to binding specificity through an intramolecular G:A Watson-Crick/sugar-edge base interaction, an unusual pairing previously found to be involved in the binding specificity of the SAM-III riboswitch. The structures, together with mutational data, suggest a novel mechanism for the simultaneous sequence-specific recognition of two UGUA elements within the pre-mRNA. Furthermore, the mutually exclusive binding of RNA and the signaling molecule Ap(4)A (diadenosine tetraphosphate) by CFI(m)25 suggests a potential role for small molecules in the regulation of mRNA 3' processing.
Anikaev, A Y; Korepanov, A P; Korobeinikova, A V; Kljashtorny, V G; Piendl, W; Nikonov, S V; Garber, M B; Gongadze, G M
2014-08-01
5S rRNA-binding ribosomal proteins of the L25 family are an evolutional acquisition of bacteria. Earlier we showed that (i) single replacements in the RNA-binding module of the protein of this family result in destabilization or complete impossibility to form a complex with 5S rRNA in vitro; (ii) ΔL25 ribosomes of Escherichia coli are less efficient in protein synthesis in vivo than the control ribosomes. In the present work, the efficiency of incorporation of the E. coli protein L25 with mutations in the 5S rRNA-binding region into the ribosome in vivo was studied. It was found that the mutations in L25 that abolish its ability to form the complex with free 5S rRNA do not prevent its correct and efficient incorporation into the ribosome. This is supported by the fact that even the presence of a very weakly retained mutant form of the protein in the ribosome has a positive effect on the activity of the translational machinery in vivo. All this suggests the existence of an alternative incorporation pathway for this protein into the ribosome, excluding the preliminary formation of the complex with 5S rRNA. At the same time, the stable L25-5S rRNA contact is important for the retention of the protein within the ribosome, and the conservative amino acid residues of the RNA-binding module play a key role in this.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Matthew T.; Higgin, Joshua J.; Hall, Traci M.Tanaka
2008-06-06
Pumilio/FBF (PUF) family proteins are found in eukaryotic organisms and regulate gene expression post-transcriptionally by binding to sequences in the 3' untranslated region of target transcripts. PUF proteins contain an RNA binding domain that typically comprises eight {alpha}-helical repeats, each of which recognizes one RNA base. Some PUF proteins, including yeast Puf4p, have altered RNA binding specificity and use their eight repeats to bind to RNA sequences with nine or ten bases. Here we report the crystal structures of Puf4p alone and in complex with a 9-nucleotide (nt) target RNA sequence, revealing that Puf4p accommodates an 'extra' nucleotide by modestmore » adaptations allowing one base to be turned away from the RNA binding surface. Using structural information and sequence comparisons, we created a mutant Puf4p protein that preferentially binds to an 8-nt target RNA sequence over a 9-nt sequence and restores binding of each protein repeat to one RNA base.« less
Cusick, M E
1992-12-29
A novel approach is described to purify potential ribonucleoproteins (RNP) of yeast. The method assays a yeast RNP complex, assembled in vitro on actin pre-mRNA, by low-ionic strength acrylamide gel electrophoresis. The minimal protein components of this RNP complex were three proteins, one of 30 kDa and two at 42-44 kDa, defined by formation of the complex on biotinylated-RNA, binding of this complex to avidin-agarose, and salt elution of the protein in the biotinylated-RNP complex. Using the assay for RNP complex formation, an RNP protein was purified to homogeneity on the basis of its affinity towards single-stranded DNA and RNA. This RNP protein turned out to be identical to a known RNP protein, the single-stranded binding protein 1 (ssb1) of yeast, on the basis of identical gel electrophoretic migration, antibody cross-reactivity, and identical properties on the gel complex formation assay. In vitro mRNA splicing was normal in extracts made from a yeast strain missing ssb1 (ssb1- strain). Addition of anti-ssb1 antibody to splicing extracts made from a wild type strain did not inhibit or diminish splicing. Instead, mRNA splicing was reproducibly stimulated several fold, indicating competition between ssb1 and splicing factors for binding to single-stranded RNA in the extracts. RNP complexes still formed in the ssb1- strain, demonstrating that it would be possible to purify other RNP proteins from this strain using the gel complex formation assay.
Zhang, Heyang; De Smedt, Stefaan C; Remaut, Katrien
2018-05-10
Fluorescence Correlation Spectroscopy (FCS) is a promising tool to study interactions on a single molecule level. The diffusion of fluorescent molecules in and out of the excitation volume of a confocal microscope leads to the fluorescence fluctuations that give information on the average number of fluorescent molecules present in the excitation volume and their diffusion coefficients. In this context, we complexed mRNA into lipoplexes and polyplexes and explored the association/dissociation degree of complexes by using gel electrophoresis and FCS. FCS enabled us to measure the association and dissociation degree of mRNA-based complexes both in buffer and protein-rich biological fluids such as human serum and ascitic fluid, which is a clear advantage over gel electrophoresis that was only applicable in protein-free buffer solutions. Furthermore, following the complex stability in buffer and biological fluids by FCS assisted to understand how complex characteristics, such as charge ratio and strength of mRNA binding, correlated to the transfection efficiency. We found that linear polyethyleneimine prevented efficient translation of mRNA, most likely due to a too strong mRNA binding, whereas the lipid based carrier Lipofectamine ® messengerMAX did succeed in efficient release and subsequent translation of mRNA in the cytoplasm of the cells. Overall, FCS is a reliable tool for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production. The delivery of messenger RNA (mRNA) to cells is promising to treat a variety of diseases. Therefore, the mRNA is typically packed in small lipid particles or polymer particles that help the mRNA to reach the cytoplasm of the cells. These particles should bind and carry the mRNA in the extracellular environment (e.g. blood, peritoneal fluid, ...), but should release the mRNA again in the intracellular environment. In this paper, we evaluated a method (Fluorescence Correlation Spectroscopy) that allows for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production. Copyright © 2018. Published by Elsevier Ltd.
Harris, Kimberly A; Zhou, Zhiyuan; Peters, Michelle L; Wilkins, Sarah G; Breaker, Ronald R
2018-06-18
OLE (ornate, large, extremophilic) RNAs comprise a class of structured noncoding RNAs (ncRNAs) found in many extremophilic bacteria species. OLE RNAs constitute one of the longest and most widespread bacterial ncRNA classes whose major biochemical function remains unknown. In the Gram-positive alkaliphile Bacillus halodurans , OLE RNA is abundant, and localizes to the cell membrane by association with the transmembrane OLE-associated protein called OapA (formerly OAP). These characteristics, along with the well-conserved sequence and structural features of OLE RNAs, suggest that the OLE ribonucleoprotein (RNP) complex performs important biological functions. B. halodurans strains lacking OLE RNA ( ∆ole ) or OapA ( ∆oapA ) are less tolerant of cold (20 °C) and short-chain alcohols (e.g., ethanol). Here, we describe the effects of a mutant OapA (called PM1) that more strongly inhibits growth under cold or ethanol stress compared with strains lacking the oapA gene, even when wild-type OapA is present. This dominant-negative effect of PM1 is reversed by mutations that render OLE RNA nonfunctional. This finding demonstrates that the deleterious PM1 phenotype requires an intact RNP complex, and suggests that the complex has one or more additional undiscovered components. A genetic screen uncovered PM1 phenotype suppressor mutations in the ybzG gene, which codes for a putative RNA-binding protein of unknown biological function. We observe that YbzG protein (also called OapB) selectively binds OLE RNA in vitro, whereas a mutant version of the protein is not observed to bind OLE RNA. Thus, YbzG/OapB is an important component of the functional OLE RNP complex in B. halodurans .
Roussis, Ioannis M; Guille, Matthew; Myers, Fiona A; Scarlett, Garry P
2016-01-01
Techniques for studying RNA-protein interactions have lagged behind those for DNA-protein complexes as a consequence of the complexities associated with working with RNA. Here we present a method for the modification of the existing In Situ Hybridisation-Proximity Ligation Assay (ISH-PLA) protocol to adapt it to the study of RNA regulation (rISH-PLA). As proof of principle we used the well-characterised interaction of the Xenopus laevis Staufen RNA binding protein with Vg1 mRNA, the complex of which co-localises to the vegetal pole of Xenopus oocytes. The applicability of both the Stau1 antibody and the Locked Nucleic Acid probe (LNA) recognising Vg1 mRNA were independently validated by whole-mount Immunohistochemistry and whole-mount in situ hybridisation assays respectively prior to combining them in the rISH-PLA assay. The rISH-PLA assay allows the identification of a given RNA-protein complex at subcellular and single cell resolution, thus avoiding the lack of spatial resolution and sensitivity associated with assaying heterogenous cell populations from which conventional RNA-protein interaction detection techniques suffer. This technique will be particularly usefully for studying the activity of RNA binding proteins (RBPs) in complex mixtures of cells, for example tissue sections or whole embryos.
Jiang, Hanlun; Sheong, Fu Kit; Zhu, Lizhe; Gao, Xin; Bernauer, Julie; Huang, Xuhui
2015-07-01
Argonaute (Ago) proteins and microRNAs (miRNAs) are central components in RNA interference, which is a key cellular mechanism for sequence-specific gene silencing. Despite intensive studies, molecular mechanisms of how Ago recognizes miRNA remain largely elusive. In this study, we propose a two-step mechanism for this molecular recognition: selective binding followed by structural re-arrangement. Our model is based on the results of a combination of Markov State Models (MSMs), large-scale protein-RNA docking, and molecular dynamics (MD) simulations. Using MSMs, we identify an open state of apo human Ago-2 in fast equilibrium with partially open and closed states. Conformations in this open state are distinguished by their largely exposed binding grooves that can geometrically accommodate miRNA as indicated in our protein-RNA docking studies. miRNA may then selectively bind to these open conformations. Upon the initial binding, the complex may perform further structural re-arrangement as shown in our MD simulations and eventually reach the stable binary complex structure. Our results provide novel insights in Ago-miRNA recognition mechanisms and our methodology holds great potential to be widely applied in the studies of other important molecular recognition systems.
Statello, Luisa; Maugeri, Marco; Garre, Elena; Nawaz, Muhammad; Wahlgren, Jessica; Papadimitriou, Alexandros; Lundqvist, Christina; Lindfors, Lennart; Collén, Anna; Sunnerhagen, Per; Ragusa, Marco; Purrello, Michele; Di Pietro, Cinzia; Tigue, Natalie; Valadi, Hadi
2018-01-01
The RNA that is packaged into exosomes is termed as exosomal-shuttle RNA (esRNA); however, the players, which take this subset of RNA (esRNA) into exosomes, remain largely unknown. We hypothesized that RNA binding proteins (RBPs) could serve as key players in this mechanism, by making complexes with RNAs and transporting them into exosomes during the biosynthesis of exosomes. Here, we demonstrate the presence of 30 RBPs in exosomes that were shown to form RNA-RBP complexes with both cellular RNA and exosomal-RNA species. To assess the involvement of these RBPs in RNA-transfer into exosomes, the gene transcripts encoding six of the proteins identified in exosomes (HSP90AB1, XPO5, hnRNPH1, hnRNPM, hnRNPA2B1, and MVP) were silenced by siRNA and subsequent effect on esRNA was assessed. A significant reduction of total esRNA was observed by post-transcriptional silencing of MVP, compared to other RBPs. Furthermore, to confirm the binding of MVP with esRNA, a biotinylated-MVP was transiently expressed in HEK293F cells. Higher levels of esRNA were recovered from MVP that was eluted from exosomes of transfected cells, as compared to those of non-transfected cells. Our data indicate that these RBPs could end up in exosomes together with RNA molecules in the form of RNA-ribonucleoprotein complexes, which could be important for the transport of RNAs into exosomes and the maintenance of RNAs inside exosomes. This type of maintenance may favor the shuttling of RNAs from exosomes to recipient cells in the form of stable complexes.
Wang, Lingyun; Yan, Feng
2017-12-09
Heterogeneous nuclear ribonucleoprotein F (hnRNP F) controls the expression of various genes through regulating the alternative splicing of pre-mRNAs in the nucleus. It uses three quasi-RNA recognition motifs (qRRMs) to recognize G-tract RNA which contains at least three consecutive guanines. The structures containing qRRMs of hnRNP F in complex with G-tract RNA have been determined by nuclear magnetic resonance (NMR) spectroscopy, shedding light on the recognition mechanism of qRRMs with G-tract RNA. However, knowledge of the recognition details is still lacking. To investigate how qRRMs specifically bind with G-tract RNA and how the mutations of any guanine to an adenine in the G-tract affect the binding, molecular dynamics simulations with binding free energy analysis were performed based on the NMR structure of qRRM2 in complex with G-tract RNA. Simulation results demonstrate that qRRM2 binds strongly with G-tract RNA, but any mutation of the G-tract leads to a drastic reduction of the binding free energy. Further comparisons of the energetic components reveal that van der Waals and non-polar interactions play essential roles in the binding between qRRM2 and G-tract RNA, but the interactions are weakened by the effect of RNA mutations. Structural and dynamical analyses indicate that when qRRM2 binds with G-tract RNA, both qRRM2 and G-tract maintain stabilized structures and dynamics; however, the stability is disrupted by the mutations of the G-tract. These results provide novel insights into the recognition mechanism of qRRM2 with G-tract RNA that are not elucidated by the NMR technique. Copyright © 2017 Elsevier Inc. All rights reserved.
Plantinga, Matthew J; Korennykh, Alexei V; Piccirilli, Joseph A; Correll, Carl C
2008-08-26
Restrictocin, a member of the alpha-sarcin family of site-specific endoribonucleases, uses electrostatic interactions to bind to the ribosome and to RNA oligonucleotides, including the minimal specific substrate, the sarcin/ricin loop (SRL) of 23S-28S rRNA. Restrictocin binds to the SRL by forming a ground-state E:S complex that is stabilized predominantly by Coulomb interactions and depends on neither the sequence nor structure of the RNA, suggesting a nonspecific complex. The 22 cationic residues of restrictocin are dispersed throughout this protein surface, complicating a priori identification of a Coulomb interacting surface. Structural studies have identified an enzyme-substrate interface, which is expected to overlap with the electrostatic E:S interface. Here, we identified restrictocin residues that contribute to binding in the E:S complex by determining the salt dependence [partial differential log(k 2/ K 1/2)/ partial differential log[KCl
Polevoda, Bogdan; McDougall, William M.; Tun, Bradley N.; Cheung, Michael; Salter, Jason D.; Friedman, Alan E.; Smith, Harold C.
2015-01-01
APOBEC3G (A3G) DNA deaminase activity requires a holoenzyme complex whose assembly on nascent viral reverse transcripts initiates with A3G dimers binding to ssDNA followed by formation of higher-order A3G homo oligomers. Catalytic activity is inhibited when A3G binds to RNA. Our prior studies suggested that RNA inhibited A3G binding to ssDNA. In this report, near equilibrium binding and gel shift analyses showed that A3G assembly and disassembly on ssDNA was an ordered process involving A3G dimers and multimers thereof. Although, fluorescence anisotropy showed that A3G had similar nanomolar affinity for RNA and ssDNA, RNA stochastically dissociated A3G dimers and higher-order oligomers from ssDNA, suggesting a different modality for RNA binding. Mass spectrometry mapping of A3G peptides cross-linked to nucleic acid suggested ssDNA only bound to three peptides, amino acids (aa) 181–194 in the N-terminus and aa 314–320 and 345–374 in the C-terminus that were part of a continuous exposed surface. RNA bound to these peptides and uniquely associated with three additional peptides in the N- terminus, aa 15–29, 41–52 and 83–99, that formed a continuous surface area adjacent to the ssDNA binding surface. The data predict a mechanistic model of RNA inhibition of ssDNA binding to A3G in which competitive and allosteric interactions determine RNA-bound versus ssDNA-bound conformational states. PMID:26424853
Characterization of a Novel Association between Two Trypanosome-Specific Proteins and 5S rRNA
Ciganda, Martin; Williams, Noreen
2012-01-01
P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are essential and are involved in ribosome biogenesis. Here, we show that these proteins interact in vitro with the 5S rRNA with nearly identical binding characteristics in the absence of other cellular factors. The T. brucei 5S rRNA has a complex secondary structure and presents four accessible loops (A to D) for interactions with RNA-binding proteins. In other eukaryotes, loop C is bound by the L5 ribosomal protein and loop A mainly by TFIIIA. The binding of P34 and P37 to T. brucei 5S rRNA involves the LoopA region of the RNA, but these proteins also protect the L5 binding site located on LoopC. PMID:22253864
A mutagenic analysis of the RNase mechanism of the bacterial Kid toxin by mass spectrometry.
Diago-Navarro, Elizabeth; Kamphuis, Monique B; Boelens, Rolf; Barendregt, Arjan; Heck, Albert J; van den Heuvel, Robert H; Díaz-Orejas, Ramón
2009-09-01
Kid, the toxin of the parD (kis, kid) maintenance system of plasmid R1, is an endoribonuclease that preferentially cleaves RNA at the 5' of A in the core sequence 5'-UA(A/C)-3'. A model of the Kid toxin interacting with the uncleavable mimetic 5'-AdUACA-3' is available. To evaluate this model, a significant collection of mutants in some of the key residues proposed to be involved in RNA binding (T46, A55, T69 and R85) or RNA cleavage (R73, D75 and H17) were analysed by mass spectrometry in RNA binding and cleavage assays. A pair of substrates, 5'-AUACA-3', and its uncleavable mimetic 5'-AdUACA-3', used to establish the model and structure of the Kid-RNA complex, were used in both the RNA cleavage and binding assays. A second RNA substrate, 5'-UUACU-3' efficiently cleaved by Kid both in vivo and in vitro, was also used in the cleavage assays. Compared with the wild-type protein, mutations in the residues of the catalytic site abolished RNA cleavage without substantially altering RNA binding. Mutations in residues proposed to be involved in RNA binding show reduced binding efficiency and a corresponding decrease in RNA cleavage efficiency. The cleavage profiles of the different mutants were similar with the two substrates used, but RNA cleavage required much lower protein concentrations when the 5'-UUACU-3' substrate was used. Protein synthesis and growth assays are consistent with there being a correlation between the RNase activity of Kid and its inhibitory potential. These results give important support to the available models of Kid RNase and the Kid-RNA complex.
Translational autocontrol of the Escherichia coli hfq RNA chaperone gene.
Vecerek, Branislav; Moll, Isabella; Bläsi, Udo
2005-06-01
The conserved bacterial RNA chaperone Hfq has been shown to play an important role in post-transcriptional regulation. Here, we demonstrate that Hfq synthesis is autoregulated at the translational level. We have mapped two Hfq binding sites in the 5'-untranslated region of hfq mRNA and show that Hfq binding inhibits formation of the translation initiation complex. In vitro translation and in vivo studies further revealed that Hfq binding to both sites is required for efficient translational repression of hfq mRNA.
Hämmerle, Hermann; Beich-Frandsen, Mads; Večerek, Branislav; Rajkowitsch, Lukas; Carugo, Oliviero; Djinović-Carugo, Kristina; Bläsi, Udo
2012-01-01
In Escherichia coli the RNA chaperone Hfq is involved in riboregulation by assisting base-pairing between small regulatory RNAs (sRNAs) and mRNA targets. Several structural and biochemical studies revealed RNA binding sites on either surface of the donut shaped Hfq-hexamer. Whereas sRNAs are believed to contact preferentially the YKH motifs present on the proximal site, poly(A)(15) and ADP were shown to bind to tripartite binding motifs (ARE) circularly positioned on the distal site. Hfq has been reported to bind and to hydrolyze ATP. Here, we present the crystal structure of a C-terminally truncated variant of E. coli Hfq (Hfq(65)) in complex with ATP, showing that it binds to the distal R-sites. In addition, we revisited the reported ATPase activity of full length Hfq purified to homogeneity. At variance with previous reports, no ATPase activity was observed for Hfq. In addition, FRET assays neither indicated an impact of ATP on annealing of two model oligoribonucleotides nor did the presence of ATP induce strand displacement. Moreover, ATP did not lead to destabilization of binary and ternary Hfq-RNA complexes, unless a vast stoichiometric excess of ATP was used. Taken together, these studies strongly suggest that ATP is dispensable for and does not interfere with Hfq-mediated RNA transactions.
The structure of transcription termination factor Nrd1 reveals an original mode for GUAA recognition
Franco-Echevarría, Elsa; González-Polo, Noelia; Zorrilla, Silvia; Martínez-Lumbreras, Santiago; Santiveri, Clara M.; Campos-Olivas, Ramón; Sánchez, Mar; Calvo, Olga
2017-01-01
Abstract Transcription termination of non-coding RNAs is regulated in yeast by a complex of three RNA binding proteins: Nrd1, Nab3 and Sen1. Nrd1 is central in this process by interacting with Rbp1 of RNA polymerase II, Trf4 of TRAMP and GUAA/G terminator sequences. We lack structural data for the last of these binding events. We determined the structures of Nrd1 RNA binding domain and its complexes with three GUAA-containing RNAs, characterized RNA binding energetics and tested rationally designed mutants in vivo. The Nrd1 structure shows an RRM domain fused with a second α/β domain that we name split domain (SD), because it is formed by two non-consecutive segments at each side of the RRM. The GUAA interacts with both domains and with a pocket of water molecules, trapped between the two stacking adenines and the SD. Comprehensive binding studies demonstrate for the first time that Nrd1 has a slight preference for GUAA over GUAG and genetic and functional studies suggest that Nrd1 RNA binding domain might play further roles in non-coding RNAs transcription termination. PMID:28973465
Precursor-product discrimination by La protein during tRNA metabolism
Bayfield, Mark A.; Maraia, Richard J.
2009-01-01
SUMMARY La proteins bind pre-tRNAs at their UUU-3'OH ends, facilitating their maturation. While the mechanism by which La binds pre-tRNA 3' trailers is known, the function of the RNA-binding β-sheet surface of RRM1 is unknown. How La dissociates from UUU-3'OH-containing trailers after 3' processing is also unknown. La preferentially binds pre-tRNAs over processed tRNAs or 3' trailer products through coupled use of two sites: one on the La motif and another on the RRM1 β surface that binds elsewhere on tRNA. Two sites provide stable pre-tRNA binding while processed tRNA and 3' trailer are released from their single sites relatively fast. RRM1 loop-3 mutations decrease affinity for pre-tRNA and tRNA but not UUU-3'OH trailer, and impair tRNA maturation in vivo. We propose that RRM1 functions in activities that are more complex than UUU-3'OH binding. Accordingly, the RRM1 mutations also impair a RNA chaperone activity of La. The results suggest how La distinguishes precursor from product RNAs, allowing it to recycle onto a new pre-tRNA. PMID:19287396
RNA protects a nucleoprotein complex against radiation damage.
Bury, Charles S; McGeehan, John E; Antson, Alfred A; Carmichael, Ian; Gerstel, Markus; Shevtsov, Mikhail B; Garman, Elspeth F
2016-05-01
Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. Here, a methodology has been developed whereby per-atom density changes could be quantified with increasing dose over a wide (1.3-25.0 MGy) range and at higher resolution (1.98 Å) than the previous systematic specific damage study on a protein-DNA complex. Specific damage manifestations were determined within the large trp RNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. Additionally, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density.
RNA protects a nucleoprotein complex against radiation damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bury, Charles S.; McGeehan, John E.; Antson, Alfred A.
Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. We developed a methodology whereby per-atom density changes could be quantified with increasing dose over a wide (1.3–25.0 MGy) range and at higher resolution (1.98more » Å) than the previous systematic specific damage study on a protein–DNA complex. Specific damage manifestations were determined within the largetrpRNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. In addition, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density.« less
RNA protects a nucleoprotein complex against radiation damage
Bury, Charles S.; McGeehan, John E.; Antson, Alfred A.; ...
2016-04-26
Radiation damage during macromolecular X-ray crystallographic data collection is still the main impediment for many macromolecular structure determinations. Even when an eventual model results from the crystallographic pipeline, the manifestations of radiation-induced structural and conformation changes, the so-called specific damage, within crystalline macromolecules can lead to false interpretations of biological mechanisms. Although this has been well characterized within protein crystals, far less is known about specific damage effects within the larger class of nucleoprotein complexes. We developed a methodology whereby per-atom density changes could be quantified with increasing dose over a wide (1.3–25.0 MGy) range and at higher resolution (1.98more » Å) than the previous systematic specific damage study on a protein–DNA complex. Specific damage manifestations were determined within the largetrpRNA-binding attenuation protein (TRAP) bound to a single-stranded RNA that forms a belt around the protein. Over a large dose range, the RNA was found to be far less susceptible to radiation-induced chemical changes than the protein. The availability of two TRAP molecules in the asymmetric unit, of which only one contained bound RNA, allowed a controlled investigation into the exact role of RNA binding in protein specific damage susceptibility. The 11-fold symmetry within each TRAP ring permitted statistically significant analysis of the Glu and Asp damage patterns, with RNA binding unexpectedly being observed to protect these otherwise highly sensitive residues within the 11 RNA-binding pockets distributed around the outside of the protein molecule. In addition, the method enabled a quantification of the reduction in radiation-induced Lys and Phe disordering upon RNA binding directly from the electron density.« less
Interaction of Sulforaphane with DNA and RNA
Abassi Joozdani, Farzaneh; Yari, Faramarz; Abassi Joozdani, Parvaneh; Nafisi, Shohreh
2015-01-01
Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables with anti-inflammatory, anti-oxidant and anti-cancer activities. However, the antioxidant and anticancer mechanism of sulforaphane is not well understood. In the present research, we reported binding modes, binding constants and stability of SFN–DNA and -RNA complexes by Fourier transform infrared (FTIR) and UV–Visible spectroscopic methods. Spectroscopic evidence showed DNA intercalation with some degree of groove binding. SFN binds minor and major grooves of DNA and backbone phosphate (PO2), while RNA binding is through G, U, A bases with some degree of SFN–phosphate (PO2) interaction. Overall binding constants were estimated to be K(SFN–DNA)=3.01 (± 0.035)×104 M-1 and K(SFN–RNA)= 6.63 (±0.042)×103 M-1. At high SFN concentration (SFN/RNA = 1/1), DNA conformation changed from B to A occurred, while RNA remained in A-family structure. PMID:26030290
Roth, Braden M; Ishimaru, Daniella; Hennig, Mirko
2013-09-13
MicroRNA (miRNA) biogenesis follows a conserved succession of processing steps, beginning with the recognition and liberation of an miRNA-containing precursor miRNA hairpin from a large primary miRNA transcript (pri-miRNA) by the Microprocessor, which consists of the nuclear RNase III Drosha and the double-stranded RNA-binding domain protein DGCR8 (DiGeorge syndrome critical region protein 8). Current models suggest that specific recognition is driven by DGCR8 detection of single-stranded elements of the pri-miRNA stem-loop followed by Drosha recruitment and pri-miRNA cleavage. Because countless RNA transcripts feature single-stranded-dsRNA junctions and DGCR8 can bind hundreds of mRNAs, we explored correlations between RNA binding properties of DGCR8 and specific pri-miRNA substrate processing. We found that DGCR8 bound single-stranded, double-stranded, and random hairpin transcripts with similar affinity. Further investigation of DGCR8/pri-mir-16 interactions by NMR detected intermediate exchange regimes over a wide range of stoichiometric ratios. Diffusion analysis of DGCR8/pri-mir-16 interactions by pulsed field gradient NMR lent further support to dynamic complex formation involving free components in exchange with complexes of varying stoichiometry, although in vitro processing assays showed exclusive cleavage of pri-mir-16 variants bearing single-stranded flanking regions. Our results indicate that DGCR8 binds RNA nonspecifically. Therefore, a sequential model of DGCR8 recognition followed by Drosha recruitment is unlikely. Known RNA substrate requirements are broad and include 70-nucleotide hairpins with unpaired flanking regions. Thus, specific RNA processing is likely facilitated by preformed DGCR8-Drosha heterodimers that can discriminate between authentic substrates and other hairpins.
Roth, Braden M.; Ishimaru, Daniella; Hennig, Mirko
2013-01-01
MicroRNA (miRNA) biogenesis follows a conserved succession of processing steps, beginning with the recognition and liberation of an miRNA-containing precursor miRNA hairpin from a large primary miRNA transcript (pri-miRNA) by the Microprocessor, which consists of the nuclear RNase III Drosha and the double-stranded RNA-binding domain protein DGCR8 (DiGeorge syndrome critical region protein 8). Current models suggest that specific recognition is driven by DGCR8 detection of single-stranded elements of the pri-miRNA stem-loop followed by Drosha recruitment and pri-miRNA cleavage. Because countless RNA transcripts feature single-stranded-dsRNA junctions and DGCR8 can bind hundreds of mRNAs, we explored correlations between RNA binding properties of DGCR8 and specific pri-miRNA substrate processing. We found that DGCR8 bound single-stranded, double-stranded, and random hairpin transcripts with similar affinity. Further investigation of DGCR8/pri-mir-16 interactions by NMR detected intermediate exchange regimes over a wide range of stoichiometric ratios. Diffusion analysis of DGCR8/pri-mir-16 interactions by pulsed field gradient NMR lent further support to dynamic complex formation involving free components in exchange with complexes of varying stoichiometry, although in vitro processing assays showed exclusive cleavage of pri-mir-16 variants bearing single-stranded flanking regions. Our results indicate that DGCR8 binds RNA nonspecifically. Therefore, a sequential model of DGCR8 recognition followed by Drosha recruitment is unlikely. Known RNA substrate requirements are broad and include 70-nucleotide hairpins with unpaired flanking regions. Thus, specific RNA processing is likely facilitated by preformed DGCR8-Drosha heterodimers that can discriminate between authentic substrates and other hairpins. PMID:23893406
Blatter, Markus; Cléry, Antoine; Damberger, Fred F.
2017-01-01
Abstract The Fox-1 RNA recognition motif (RRM) domain is an important member of the RRM protein family. We report a 1.8 Å X-ray structure of the free Fox-1 containing six distinct monomers. We use this and the nuclear magnetic resonance (NMR) structure of the Fox-1 protein/RNA complex for molecular dynamics (MD) analyses of the structured hydration. The individual monomers of the X-ray structure show diverse hydration patterns, however, MD excellently reproduces the most occupied hydration sites. Simulations of the protein/RNA complex show hydration consistent with the isolated protein complemented by hydration sites specific to the protein/RNA interface. MD predicts intricate hydration sites with water-binding times extending up to hundreds of nanoseconds. We characterize two of them using NMR spectroscopy, RNA binding with switchSENSE and free-energy calculations of mutant proteins. Both hydration sites are experimentally confirmed and their abolishment reduces the binding free-energy. A quantitative agreement between theory and experiment is achieved for the S155A substitution but not for the S122A mutant. The S155 hydration site is evolutionarily conserved within the RRM domains. In conclusion, MD is an effective tool for predicting and interpreting the hydration patterns of protein/RNA complexes. Hydration is not easily detectable in NMR experiments but can affect stability of protein/RNA complexes. PMID:28505313
Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh
2016-01-01
Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. PMID:26887951
Ribonucleoprotein complexes in neurologic diseases.
Ule, Jernej
2008-10-01
Ribonucleoprotein (RNP) complexes regulate the tissue-specific RNA processing and transport that increases the coding capacity of our genome and the ability to respond quickly and precisely to the diverse set of signals. This review focuses on three proteins that are part of RNP complexes in most cells of our body: TAR DNA-binding protein (TDP-43), the survival motor neuron protein (SMN), and fragile-X mental retardation protein (FMRP). In particular, the review asks the question why these ubiquitous proteins are primarily associated with defects in specific regions of the central nervous system? To understand this question, it is important to understand the role of genetic and cellular environment in causing the defect in the protein, as well as how the defective protein leads to misregulation of specific target RNAs. Two approaches for comprehensive analysis of defective RNA-protein interactions are presented. The first approach defines the RNA code or the collection of proteins that bind to a certain cis-acting RNA site in order to lead to a predictable outcome. The second approach defines the RNA map or the summary of positions on target RNAs where binding of a particular RNA-binding protein leads to a predictable outcome. As we learn more about the RNA codes and maps that guide the action of the dynamic RNP world in our brain, possibilities for new treatments of neurologic diseases are bound to emerge.
In vivo tmRNA protection by SmpB and pre-ribosome binding conformation in solution.
Ranaei-Siadat, Ehsan; Mérigoux, Cécile; Seijo, Bili; Ponchon, Luc; Saliou, Jean-Michel; Bernauer, Julie; Sanglier-Cianférani, Sarah; Dardel, Fréderic; Vachette, Patrice; Nonin-Lecomte, Sylvie
2014-10-01
TmRNA is an abundant RNA in bacteria with tRNA and mRNA features. It is specialized in trans-translation, a translation rescuing system. We demonstrate that its partner protein SmpB binds the tRNA-like region (TLD) in vivo and chaperones the fold of the TLD-H2 region. We use an original approach combining the observation of tmRNA degradation pathways in a heterologous system, the analysis of the tmRNA digests by MS and NMR, and co-overproduction assays of tmRNA and SmpB. We study the conformation in solution of tmRNA alone or in complex with one SmpB before ribosome binding using SAXS. Our data show that Mg(2+) drives compaction of the RNA structure and that, in the absence of Mg(2+), SmpB has a similar effect albeit to a lesser extent. Our results show that tmRNA is intrinsically structured in solution with identical topology to that observed on complexes on ribosomes which should facilitate its subsequent recruitment by the 70S ribosome, free or preloaded with one SmpB molecule. © 2014 Ranaei-Siadat et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila
Stoiber, Marcus H.; Olson, Sara; May, Gemma E.; ...
2015-08-20
In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteinsmore » and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. Lastly, from the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.« less
Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoiber, Marcus H.; Olson, Sara; May, Gemma E.
In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteinsmore » and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. Lastly, from the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.« less
On the Selective Packaging of Genomic RNA by HIV-1.
Comas-Garcia, Mauricio; Davis, Sean R; Rein, Alan
2016-09-12
Like other retroviruses, human immunodeficiency virus type 1 (HIV-1) selectively packages genomic RNA (gRNA) during virus assembly. However, in the absence of the gRNA, cellular messenger RNAs (mRNAs) are packaged. While the gRNA is selected because of its cis-acting packaging signal, the mechanism of this selection is not understood. The affinity of Gag (the viral structural protein) for cellular RNAs at physiological ionic strength is not much higher than that for the gRNA. However, binding to the gRNA is more salt-resistant, implying that it has a higher non-electrostatic component. We have previously studied the spacer 1 (SP1) region of Gag and showed that it can undergo a concentration-dependent conformational transition. We proposed that this transition represents the first step in assembly, i.e., the conversion of Gag to an assembly-ready state. To explain selective packaging of gRNA, we suggest here that binding of Gag to gRNA, with its high non-electrostatic component, triggers this conversion more readily than binding to other RNAs; thus we predict that a Gag-gRNA complex will nucleate particle assembly more efficiently than other Gag-RNA complexes. New data shows that among cellular mRNAs, those with long 3'-untranslated regions (UTR) are selectively packaged. It seems plausible that the 3'-UTR, a stretch of RNA not occupied by ribosomes, offers a favorable binding site for Gag.
RNA-Binding Proteins Revisited - The Emerging Arabidopsis mRNA Interactome.
Köster, Tino; Marondedze, Claudius; Meyer, Katja; Staiger, Dorothee
2017-06-01
RNA-protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture - where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Idiosyncrasies of hnRNP A1-RNA recognition: Can binding mode influence function.
Levengood, Jeffrey D; Tolbert, Blanton S
2018-04-09
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that function in most stages of RNA metabolism. The prototypical member, hnRNP A1, is composed of three major domains; tandem N-terminal RNA Recognition Motifs (RRMs) and a C-terminal mostly intrinsically disordered region. HnRNP A1 is broadly implicated in basic cellular RNA processing events such as splicing, stability, nuclear export and translation. Due to its ubiquity and abundance, hnRNP A1 is also frequently usurped to control viral gene expression. Deregulation of the RNA metabolism functions of hnRNP A1 in neuronal cells contributes to several neurodegenerative disorders. Because of these roles in human pathologies, the study of hnRNP A1 provides opportunities for the development of novel therapeutics, with disruption of its RNA binding capabilities being the most promising target. The functional diversity of hnRNP A1 is reflected in the complex nature by which it interacts with various RNA targets. Indeed, hnRNP A1 binds both structured and unstructured RNAs with binding affinities that span several magnitudes. Available structures of hnRNP A1-RNA complexes also suggest a degree of plasticity in molecular recognition. Given the reinvigoration in hnRNP A1, the goal of this review is to use the available structural biochemical developments as a framework to interpret its wide-range of RNA functions. Copyright © 2018. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niyogi, S.K.; Ratrie, H. III; Datta, A.K.
E. coli DNA binding protein strongly inhibits the transcription of single-stranded rather than double-stranded phage M13 DNA by E. coli RNA polymerase. This inhibition cannot be significantly overcome by increasing the concentration of RNA polymerase. Nor does the order of addition of binding protein affect its inhibitory property: inhibition is evident whether binding protein is added before or after the formation of the RNA polymerase--DNA complex. Inhibition is also observed if binding protein is added at various times after initiation of RNA synthesis. Maximal inhibition occurs at a binding protein-to-DNA ratio (w/w) of about 8:1. This corresponds to one bindingmore » protein molecule covering about 30 nucleotides, in good agreement with values obtained by physical measurements.« less
Effect of PEG and mPEG-anthracene on tRNA aggregation and particle formation.
Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A
2012-01-09
Poly(ethylene glycol) (PEG) and its derivatives are synthetic polymers with major applications in gene and drug delivery systems. Synthetic polymers are also used to transport miRNA and siRNA in vitro. We studied the interaction of tRNA with several PEGs of different compositions, such as PEG 3350, PEG 6000, and mPEG-anthracene under physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods as well as atomic force microscopy (AFM) were used to analyze the PEG binding mode, the binding constant, and the effects of polymer complexation on tRNA stability, aggregation, and particle formation. Structural analysis showed that PEG-tRNA interaction occurs via RNA bases and the backbone phosphate group with both hydrophilic and hydrophobic contacts. The overall binding constants of K(PEG 3350-tRNA)= 1.9 (±0.5) × 10(4) M(-1), K(PEG 6000-tRNA) = 8.9 (±1) × 10(4) M(-1), and K(mPEG-anthracene)= 1.2 (±0.40) × 10(3) M(-1) show stronger polymer-RNA complexation by PEG 6000 and by PEG 3350 than the mPEG-anthracene. AFM imaging showed that PEG complexes contain on average one tRNA with PEG 3350, five tRNA with PEG 6000, and ten tRNA molecules with mPEG-anthracene. tRNA aggregation and particle formation occurred at high polymer concentrations, whereas it remains in A-family structure.
The Crystal Structure and RNA-Binding of an Orthomyxovirus Nucleoprotein
Zheng, Wenjie; Olson, John; Vakharia, Vikram; Tao, Yizhi Jane
2013-01-01
Genome packaging for viruses with segmented genomes is often a complex problem. This is particularly true for influenza viruses and other orthomyxoviruses, whose genome consists of multiple negative-sense RNAs encapsidated as ribonucleoprotein (RNP) complexes. To better understand the structural features of orthomyxovirus RNPs that allow them to be packaged, we determined the crystal structure of the nucleoprotein (NP) of a fish orthomyxovirus, the infectious salmon anemia virus (ISAV) (genus Isavirus). As the major protein component of the RNPs, ISAV-NP possesses a bi-lobular structure similar to the influenza virus NP. Because both RNA-free and RNA-bound ISAV NP forms stable dimers in solution, we were able to measure the NP RNA binding affinity as well as the stoichiometry using recombinant proteins and synthetic oligos. Our RNA binding analysis revealed that each ISAV-NP binds ∼12 nts of RNA, shorter than the 24–28 nts originally estimated for the influenza A virus NP based on population average. The 12-nt stoichiometry was further confirmed by results from electron microscopy and dynamic light scattering. Considering that RNPs of ISAV and the influenza viruses have similar morphologies and dimensions, our findings suggest that NP-free RNA may exist on orthomyxovirus RNPs, and selective RNP packaging may be accomplished through direct RNA-RNA interactions. PMID:24068932
In vivo tmRNA protection by SmpB and pre-ribosome binding conformation in solution
Ranaei-Siadat, Ehsan; Mérigoux, Cécile; Seijo, Bili; Ponchon, Luc; Saliou, Jean-Michel; Bernauer, Julie; Sanglier-Cianférani, Sarah; Dardel, Fréderic
2014-01-01
TmRNA is an abundant RNA in bacteria with tRNA and mRNA features. It is specialized in trans-translation, a translation rescuing system. We demonstrate that its partner protein SmpB binds the tRNA-like region (TLD) in vivo and chaperones the fold of the TLD-H2 region. We use an original approach combining the observation of tmRNA degradation pathways in a heterologous system, the analysis of the tmRNA digests by MS and NMR, and co-overproduction assays of tmRNA and SmpB. We study the conformation in solution of tmRNA alone or in complex with one SmpB before ribosome binding using SAXS. Our data show that Mg2+ drives compaction of the RNA structure and that, in the absence of Mg2+, SmpB has a similar effect albeit to a lesser extent. Our results show that tmRNA is intrinsically structured in solution with identical topology to that observed on complexes on ribosomes which should facilitate its subsequent recruitment by the 70S ribosome, free or preloaded with one SmpB molecule. PMID:25135523
Trans-acting translational regulatory RNA binding proteins.
Harvey, Robert F; Smith, Tom S; Mulroney, Thomas; Queiroz, Rayner M L; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa; Lilley, Kathryn S; Willis, Anne E
2018-05-01
The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms. © 2018 Medical Research Council and University of Cambridge. WIREs RNA published by Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Ren; H Seo; G Blobel
The export of mRNAs is a multistep process, involving the packaging of mRNAs into messenger ribonucleoprotein particles (mRNPs), their transport through nuclear pore complexes, and mRNP remodeling events prior to translation. Ribonucleic acid export 1 (Rae1) and Nup98 are evolutionarily conserved mRNA export factors that are targeted by the vesicular stomatitis virus matrix protein to inhibit host cell nuclear export. Here, we present the crystal structure of human Rae1 in complex with the Gle2-binding sequence (GLEBS) of Nup98 at 1.65 {angstrom} resolution. Rae1 forms a seven-bladed {beta}-propeller with several extensive surface loops. The Nup98 GLEBS motif forms an {approx}50-{angstrom}-long hairpinmore » that binds with its C-terminal arm to an essentially invariant hydrophobic surface that extends over the entire top face of the Rae1 {beta}-propeller. The C-terminal arm of the GLEBS hairpin is necessary and sufficient for Rae1 binding, and we identify a tandem glutamate element in this arm as critical for complex formation. The Rae1 {center_dot} Nup98{sup GLEBS} surface features an additional conserved patch with a positive electrostatic potential, and we demonstrate that the complex possesses single-stranded RNA-binding capability. Together, these data suggest that the Rae1 {center_dot} Nup98 complex directly binds to the mRNP at several stages of the mRNA export pathway.« less
Binding and Translocation of Termination Factor Rho Studied at the Single-Molecule Level
Koslover, Daniel J.; Fazal, Furqan M.; Mooney, Rachel A.; Landick, Robert; Block, Steven M.
2012-01-01
Rho termination factor is an essential hexameric helicase responsible for terminating 20–50% of all mRNA synthesis in E. coli. We used single- molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho- utilization (rut) site of the ? tR1 terminator. Our results are consistent with Rho complexes adopting two states, one that binds 57 ±2 nucleotides of RNA across all six of the Rho primary binding sites, and another that binds 85 ±2 nucleotides at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′-to-3′ towards RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the rut site and RNAP. These findings lead to a general model for Rho binding and translocation, and establish a novel experimental approach that should facilitate additional single- molecule studies of RNA-binding proteins. PMID:22885804
Precursor-product discrimination by La protein during tRNA metabolism.
Bayfield, Mark A; Maraia, Richard J
2009-04-01
La proteins bind pre-tRNAs at their UUU-3'OH ends, facilitating their maturation. Although the mechanism by which La binds pre-tRNA 3' trailers is known, the function of the RNA binding beta-sheet surface of the RNA-recognition motif (RRM1) is unknown. How La dissociates from UUU-3'OH-containing trailers after 3' processing is also unknown. Here we show that La preferentially binds pre-tRNAs over processed tRNAs or 3' trailer products through coupled use of two sites: one on the La motif and another on the RRM1 beta-surface that binds elsewhere on tRNA. Two sites provide stable pre-tRNA binding, whereas the processed tRNA and 3' trailer are released from their single sites relatively fast. RRM1 loop-3 mutations decrease affinity for pre-tRNA and tRNA, but not for the UUU-3'OH trailer, and impair tRNA maturation in vivo. We propose that RRM1 functions in activities that are more complex than UUU-3'OH binding. Accordingly, the RRM1 mutations also impair an RNA chaperone activity of La. The results suggest how La distinguishes precursor from product RNAs, allowing it to recycle onto a new pre-tRNA.
Al-Khouri, Anna Maria; Paule, Marvin R.
2002-01-01
In the small, free-living amoeba Acanthamoeba castellanii, rRNA transcription requires, in addition to RNA polymerase I, a single DNA-binding factor, transcription initiation factor IB (TIF-IB). TIF-IB is a multimeric protein that contains TATA-binding protein (TBP) and four TBP-associated factors that are specific for polymerase I transcription. TIF-IB is required for accurate and promoter-specific initiation of rRNA transcription, recruiting and positioning the polymerase on the start site by protein-protein interaction. In A. castellanii, partially purified TIF-IB can form a persistent complex with the ribosomal DNA (rDNA) promoter while homogeneous TIF-IB cannot. An additional factor, TIF-IE, is required along with homogeneous TIF-IB for the formation of a stable complex on the rDNA core promoter. We show that TIF-IE by itself, however, does not bind to the rDNA promoter and thus differs in its mechanism from the upstream binding factor and upstream activating factor, which carry out similar complex-stabilizing functions in vertebrates and yeast, respectively. In addition to its presence in impure TIF-IB, TIF-IE is found in highly purified fractions of polymerase I, with which it associates. Renaturation of polypeptides excised from sodium dodecyl sulfate-polyacrylamide gels showed that a 141-kDa polypeptide possesses all the known activities of TIF-IE. PMID:11784852
Al-Khouri, Anna Maria; Paule, Marvin R
2002-02-01
In the small, free-living amoeba Acanthamoeba castellanii, rRNA transcription requires, in addition to RNA polymerase I, a single DNA-binding factor, transcription initiation factor IB (TIF-IB). TIF-IB is a multimeric protein that contains TATA-binding protein (TBP) and four TBP-associated factors that are specific for polymerase I transcription. TIF-IB is required for accurate and promoter-specific initiation of rRNA transcription, recruiting and positioning the polymerase on the start site by protein-protein interaction. In A. castellanii, partially purified TIF-IB can form a persistent complex with the ribosomal DNA (rDNA) promoter while homogeneous TIF-IB cannot. An additional factor, TIF-IE, is required along with homogeneous TIF-IB for the formation of a stable complex on the rDNA core promoter. We show that TIF-IE by itself, however, does not bind to the rDNA promoter and thus differs in its mechanism from the upstream binding factor and upstream activating factor, which carry out similar complex-stabilizing functions in vertebrates and yeast, respectively. In addition to its presence in impure TIF-IB, TIF-IE is found in highly purified fractions of polymerase I, with which it associates. Renaturation of polypeptides excised from sodium dodecyl sulfate-polyacrylamide gels showed that a 141-kDa polypeptide possesses all the known activities of TIF-IE.
Facile conversion of ATP-binding RNA aptamer to quencher-free molecular aptamer beacon.
Park, Yoojin; Nim-Anussornkul, Duangrat; Vilaivan, Tirayut; Morii, Takashi; Kim, Byeang Hyean
2018-01-15
We have developed RNA-based quencher-free molecular aptamer beacons (RNA-based QF-MABs) for the detection of ATP, taking advantage of the conformational changes associated with ATP binding to the ATP-binding RNA aptamer. The RNA aptamer, with its well-defined structure, was readily converted to the fluorescence sensors by incorporating a fluorophore into the loop region of the hairpin structure. These RNA-based QF-MABs exhibited fluorescence signals in the presence of ATP relative to their low background signals in the absence of ATP. The fluorescence emission intensity increased upon formation of a RNA-based QF-MAB·ATP complex. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liang, Chunyang; Xiong, Ke; Szulwach, Keith E.; Zhang, Yi; Wang, Zhaohui; Peng, Junmin; Fu, Mingui; Jin, Peng; Suzuki, Hiroshi I.; Liu, Qinghua
2013-01-01
MicroRNAs (miRNA) control numerous physiological and pathological processes. Typically, the primary miRNA (pri-miRNA) transcripts are processed by nuclear Drosha complex into ∼70-nucleotide stem-loop precursor miRNAs (pre-miRNA), which are further cleaved by cytoplasmic Dicer complex into ∼21-nucleotide mature miRNAs. However, it is unclear how nascent pre-miRNAs are protected from ribonucleases, such as MCPIP1, that degrade pre-miRNAs to abort miRNA production. Here, we identify Sjögren syndrome antigen B (SSB)/La as a pre-miRNA-binding protein that regulates miRNA processing in vitro. All three RNA-binding motifs (LAM, RRM1, and RRM2) of La/SSB are required for efficient pre-miRNA binding. Intriguingly, La/SSB recognizes the characteristic stem-loop structure of pre-miRNAs, of which the majority lack a 3′ UUU terminus. Moreover, La/SSB associates with endogenous pri-/pre-miRNAs and promotes miRNA biogenesis by stabilizing pre-miRNAs from nuclease (e.g. MCPIP1)-mediated decay in mammalian cells. Accordingly, we observed positive correlations between the expression status of La/SSB and Dicer in human cancer transcriptome and prognosis. These studies identify an important function of La/SSB as a global regulator of miRNA expression, and implicate stem-loop recognition as a major mechanism that mediates association between La/SSB and diverse RNA molecules. PMID:23129761
Liang, Chunyang; Xiong, Ke; Szulwach, Keith E; Zhang, Yi; Wang, Zhaohui; Peng, Junmin; Fu, Mingui; Jin, Peng; Suzuki, Hiroshi I; Liu, Qinghua
2013-01-04
MicroRNAs (miRNA) control numerous physiological and pathological processes. Typically, the primary miRNA (pri-miRNA) transcripts are processed by nuclear Drosha complex into ~70-nucleotide stem-loop precursor miRNAs (pre-miRNA), which are further cleaved by cytoplasmic Dicer complex into ~21-nucleotide mature miRNAs. However, it is unclear how nascent pre-miRNAs are protected from ribonucleases, such as MCPIP1, that degrade pre-miRNAs to abort miRNA production. Here, we identify Sjögren syndrome antigen B (SSB)/La as a pre-miRNA-binding protein that regulates miRNA processing in vitro. All three RNA-binding motifs (LAM, RRM1, and RRM2) of La/SSB are required for efficient pre-miRNA binding. Intriguingly, La/SSB recognizes the characteristic stem-loop structure of pre-miRNAs, of which the majority lack a 3' UUU terminus. Moreover, La/SSB associates with endogenous pri-/pre-miRNAs and promotes miRNA biogenesis by stabilizing pre-miRNAs from nuclease (e.g. MCPIP1)-mediated decay in mammalian cells. Accordingly, we observed positive correlations between the expression status of La/SSB and Dicer in human cancer transcriptome and prognosis. These studies identify an important function of La/SSB as a global regulator of miRNA expression, and implicate stem-loop recognition as a major mechanism that mediates association between La/SSB and diverse RNA molecules.
Geiss, G K; Radebaugh, C A; Paule, M R
1997-11-14
Acanthamoeba castellanii transcription initiation factor-IB (TIF-IB) is the TATA-binding protein-containing transcription factor that binds the rRNA promoter to form the committed complex. Minor groove-specific drugs inhibit TIF-IB binding, with higher concentrations needed to disrupt preformed complexes because of drug exclusion by bound TIF-IB. TIF-IB/DNA interactions were mapped by hydroxyl radical and uranyl nitrate footprinting. TIF-IB contacts four minor grooves in its binding site. TIF-IB and DNA wrap around each other in a right-handed superhelix of high pitch, so the upstream and downstream contacts are on opposite faces of the helix. Dimethyl sulfate protection assays revealed limited contact with a few guanines in the major groove. This detailed analysis suggests significant DNA conformation dependence of the interaction.
Mekler, Vladimir; Minakhin, Leonid; Semenova, Ekaterina; Kuznedelov, Konstantin; Severinov, Konstantin
2016-01-01
CRISPR-Cas9 is widely applied for genome engineering in various organisms. The assembly of single guide RNA (sgRNA) with the Cas9 protein may limit the Cas9/sgRNA effector complex function. We developed a FRET-based assay for detection of CRISPR–Cas9 complex binding to its targets and used this assay to investigate the kinetics of Cas9 assembly with a set of structurally distinct sgRNAs. We find that Cas9 and isolated sgRNAs form the effector complex efficiently and rapidly. Yet, the assembly process is sensitive to the presence of moderate concentrations of non-specific RNA competitors, which considerably delay the Cas9/sgRNA complex formation, while not significantly affecting already formed complexes. This observation suggests that the rate of sgRNA loading into Cas9 in cells can be determined by competition between sgRNA and intracellular RNA molecules for the binding to Cas9. Non-specific RNAs exerted particularly large inhibitory effects on formation of Cas9 complexes with sgRNAs bearing shortened 3′-terminal segments. This result implies that the 3′-terminal segment confers sgRNA the ability to withstand competition from non-specific RNA and at least in part may explain the fact that use of sgRNAs truncated for the 3′-terminal stem loops leads to reduced activity during genomic editing. PMID:26945042
Guo, Tai Wei; Bartesaghi, Alberto; Yang, Hui; Falconieri, Veronica; Rao, Prashant; Merk, Alan; Eng, Edward T; Raczkowski, Ashleigh M; Fox, Tara; Earl, Lesley A; Patel, Dinshaw J; Subramaniam, Sriram
2017-10-05
Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition. Published by Elsevier Inc.
Translational autocontrol of the Escherichia coli hfq RNA chaperone gene
VEČEREK, BRANISLAV; MOLL, ISABELLA; BLÄSI, UDO
2005-01-01
The conserved bacterial RNA chaperone Hfq has been shown to play an important role in post-transcriptional regulation. Here, we demonstrate that Hfq synthesis is autoregulated at the translational level. We have mapped two Hfq binding sites in the 5′-untranslated region of hfq mRNA and show that Hfq binding inhibits formation of the translation initiation complex. In vitro translation and in vivo studies further revealed that Hfq binding to both sites is required for efficient translational repression of hfq mRNA. PMID:15872186
Wang, Yanli; Ludwig, Janos; Schuberth, Christine; Goldeck, Marion; Schlee, Martin; Li, Haitao; Juranek, Stefan; Sheng, Gang; Micura, Ronald; Tuschl, Thomas; Hartmann, Gunther; Patel, Dinshaw J
2010-07-01
RIG-I is a cytosolic helicase that senses 5'-ppp RNA contained in negative-strand RNA viruses and triggers innate antiviral immune responses. Calorimetric binding studies established that the RIG-I C-terminal regulatory domain (CTD) binds to blunt-end double-stranded 5'-ppp RNA a factor of 17 more tightly than to its single-stranded counterpart. Here we report on the crystal structure of RIG-I CTD bound to both blunt ends of a self-complementary 5'-ppp dsRNA 12-mer, with interactions involving 5'-pp clearly visible in the complex. The structure, supported by mutation studies, defines how a lysine-rich basic cleft within the RIG-I CTD sequesters the observable 5'-pp of the bound RNA, with a stacked phenylalanine capping the terminal base pair. Key intermolecular interactions observed in the crystalline state are retained in the complex of 5'-ppp dsRNA 24-mer and full-length RIG-I under in vivo conditions, as evaluated from the impact of binding pocket RIG-I mutations and 2'-OCH(3) RNA modifications on the interferon response.
Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex.
Jiang, F; Kumar, R A; Jones, R A; Patel, D J
1996-07-11
The catalytic properties of RNA and its well known role in gene expression and regulation are the consequence of its unique solution structures. Identification of the structural determinants of ligand recognition by RNA molecules is of fundamental importance for understanding the biological functions of RNA, as well as for the rational design of RNA Sequences with specific catalytic activities. Towards this latter end, Szostak et al. used in vitro selection techniques to isolate RNA sequences ('aptamers') containing a high-affinity binding site for ATP, the universal currency of cellular energy, and then used this motif to engineer ribozymes with polynucleotide kinase activity. Here we present the solution structure, as determined by multidimensional NMR spectroscopy and molecular dynamics calculations, of both uniformly and specifically 13C-, 15N-labelled 40-mer RNA containing the ATP-binding motif complexed with AMP. The aptamer adopts an L-shaped structure with two nearly orthogonal stems, each capped proximally by a G x G mismatch pair, binding the AMP ligand at their junction in a GNRA-like motif.
Večerek, Branislav; Rajkowitsch, Lukas; Carugo, Oliviero; Djinović-Carugo, Kristina; Bläsi, Udo
2012-01-01
In Escherichia coli the RNA chaperone Hfq is involved in riboregulation by assisting base-pairing between small regulatory RNAs (sRNAs) and mRNA targets. Several structural and biochemical studies revealed RNA binding sites on either surface of the donut shaped Hfq-hexamer. Whereas sRNAs are believed to contact preferentially the YKH motifs present on the proximal site, poly(A)15 and ADP were shown to bind to tripartite binding motifs (ARE) circularly positioned on the distal site. Hfq has been reported to bind and to hydrolyze ATP. Here, we present the crystal structure of a C-terminally truncated variant of E. coli Hfq (Hfq65) in complex with ATP, showing that it binds to the distal R-sites. In addition, we revisited the reported ATPase activity of full length Hfq purified to homogeneity. At variance with previous reports, no ATPase activity was observed for Hfq. In addition, FRET assays neither indicated an impact of ATP on annealing of two model oligoribonucleotides nor did the presence of ATP induce strand displacement. Moreover, ATP did not lead to destabilization of binary and ternary Hfq-RNA complexes, unless a vast stoichiometric excess of ATP was used. Taken together, these studies strongly suggest that ATP is dispensable for and does not interfere with Hfq-mediated RNA transactions. PMID:23226421
Different modes of interaction by TIAR and HuR with target RNA and DNA
Kim, Henry S.; Wilce, Matthew C. J.; Yoga, Yano M. K.; Pendini, Nicole R.; Gunzburg, Menachem J.; Cowieson, Nathan P.; Wilson, Gerald M.; Williams, Bryan R. G.; Gorospe, Myriam; Wilce, Jacqueline A.
2011-01-01
TIAR and HuR are mRNA-binding proteins that play important roles in the regulation of translation. They both possess three RNA recognition motifs (RRMs) and bind to AU-rich elements (AREs), with seemingly overlapping specificity. Here we show using SPR that TIAR and HuR bind to both U-rich and AU-rich RNA in the nanomolar range, with higher overall affinity for U-rich RNA. However, the higher affinity for U–rich sequences is mainly due to faster association with U-rich RNA, which we propose is a reflection of the higher probability of association. Differences between TIAR and HuR are observed in their modes of binding to RNA. TIAR is able to bind deoxy-oligonucleotides with nanomolar affinity, whereas HuR affinity is reduced to a micromolar level. Studies with U-rich DNA reveal that TIAR binding depends less on the 2′-hydroxyl group of RNA than HuR binding. Finally we show that SAXS data, recorded for the first two domains of TIAR in complex with RNA, are more consistent with a flexible, elongated shape and not the compact shape that the first two domains of Hu proteins adopt upon binding to RNA. We thus propose that these triple-RRM proteins, which compete for the same binding sites in cells, interact with their targets in fundamentally different ways. PMID:21233170
Different modes of interaction by TIAR and HuR with target RNA and DNA.
Kim, Henry S; Wilce, Matthew C J; Yoga, Yano M K; Pendini, Nicole R; Gunzburg, Menachem J; Cowieson, Nathan P; Wilson, Gerald M; Williams, Bryan R G; Gorospe, Myriam; Wilce, Jacqueline A
2011-02-01
TIAR and HuR are mRNA-binding proteins that play important roles in the regulation of translation. They both possess three RNA recognition motifs (RRMs) and bind to AU-rich elements (AREs), with seemingly overlapping specificity. Here we show using SPR that TIAR and HuR bind to both U-rich and AU-rich RNA in the nanomolar range, with higher overall affinity for U-rich RNA. However, the higher affinity for U-rich sequences is mainly due to faster association with U-rich RNA, which we propose is a reflection of the higher probability of association. Differences between TIAR and HuR are observed in their modes of binding to RNA. TIAR is able to bind deoxy-oligonucleotides with nanomolar affinity, whereas HuR affinity is reduced to a micromolar level. Studies with U-rich DNA reveal that TIAR binding depends less on the 2'-hydroxyl group of RNA than HuR binding. Finally we show that SAXS data, recorded for the first two domains of TIAR in complex with RNA, are more consistent with a flexible, elongated shape and not the compact shape that the first two domains of Hu proteins adopt upon binding to RNA. We thus propose that these triple-RRM proteins, which compete for the same binding sites in cells, interact with their targets in fundamentally different ways.
“Ping-Pong” Interactions between Mitochondrial tRNA Import Receptors within a Multiprotein Complex
Bhattacharyya, Subhendra Nath; Chatterjee, Saibal; Goswami, Srikanta; Tripathi, Gayatri; Dey, Sailendra Nath; Adhya, Samit
2003-01-01
The mitochondrial genomes of a wide variety of species contain an insufficient number of functional tRNA genes, and translation of mitochondrial mRNAs is sustained by import of nucleus-encoded tRNAs. In Leishmania, transfer of tRNAs across the inner membrane can be regulated by positive and negative interactions between them. To define the factors involved in such interactions, a large multisubunit complex (molecular mass, ∼640 kDa) from the inner mitochondrial membrane of the kinetoplastid protozoon Leishmania, consisting of ∼130-Å particles, was isolated. The complex, when incorporated into phospholipid vesicles, induced specific, ATP- and proton motive force-dependent transfer of Leishmania tRNATyr as well as of oligoribonucleotides containing the import signal YGGYAGAGC. Moreover, allosteric interactions between tRNATyr and tRNAIle were observed in the RNA import complex-reconstituted system, indicating the presence of primary and secondary tRNA binding sites within the complex. By a combination of antibody inhibition, photochemical cross-linking, and immunoprecipitation, it was shown that binding of tRNAIle to a 21-kDa component of the complex is dependent upon tRNATyr, while binding of tRNATyr to a 45-kDa component is inhibited by tRNAIle. This “ping-pong” mechanism may be an effective means to maintain a balanced tRNA pool for mitochondrial translation. PMID:12861008
Development of Design Rules for Reliable Antisense RNA Behavior in E. coli.
Hoynes-O'Connor, Allison; Moon, Tae Seok
2016-12-16
A key driver of synthetic biology is the development of designable genetic parts with predictable behaviors that can be quickly implemented in complex genetic systems. However, the intrinsic complexity of gene regulation can make the rational design of genetic parts challenging. This challenge is apparent in the design of antisense RNA (asRNA) regulators. Though asRNAs are well-known regulators, the literature governing their design is conflicting and leaves the synthetic biology community without clear asRNA design rules. The goal of this study is to perform a comprehensive experimental characterization and statistical analysis of 121 unique asRNA regulators in order to resolve the conflicts that currently exist in the literature. asRNAs usually consist of two regions, the Hfq binding site and the target binding region (TBR). First, the behaviors of several high-performing Hfq binding sites were compared, in terms of their ability to improve repression efficiencies and their orthogonality. Next, a large-scale analysis of TBR design parameters identified asRNA length, the thermodynamics of asRNA-mRNA complex formation, and the percent of target mismatch as key parameters for TBR design. These parameters were used to develop simple asRNA design rules. Finally, these design rules were applied to construct both a simple and a complex genetic circuit containing different asRNAs, and predictable behavior was observed in both circuits. The results presented in this study will drive synthetic biology forward by providing useful design guidelines for the construction of asRNA regulators with predictable behaviors.
High-throughput Screening Identification of Poliovirus RNA-dependent RNA Polymerase Inhibitors
Campagnola, Grace; Gong, Peng; Peersen, Olve B.
2011-01-01
Viral RNA-dependent RNA polymerase (RdRP) enzymes are essential for the replication of positive-strand RNA viruses and established targets for the development of selective antiviral therapeutics. In this work we have carried out a high-throughput screen of 154,267 compounds to identify poliovirus polymerase inhibitors using a fluorescence based RNA elongation assay. Screening and subsequent validation experiments using kinetic methods and RNA product analysis resulted in the identification of seven inhibitors that affect the RNA binding, initiation, or elongation activity of the polymerase. X-ray crystallography data show clear density for five of the compounds in the active site of the poliovirus polymerase elongation complex. The inhibitors occupy the NTP binding site by stacking on the priming nucleotide and interacting with the templating base, yet competition studies show fairly weak IC50 values in the low μM range. A comparison with nucleotide bound structures suggests that weak binding is likely due to the lack of a triphosphate group on the inhibitors. Consequently, the inhibitors are primarily effective at blocking polymerase initiation and do not effectively compete with NTP binding during processive elongation. These findings are discussed in the context of the polymerase elongation complex structure and allosteric control of the viral RdRP catalytic cycle. PMID:21722674
Deciphering RNA-Recognition Patterns of Intrinsically Disordered Proteins.
Srivastava, Ambuj; Ahmad, Shandar; Gromiha, M Michael
2018-05-29
Intrinsically disordered regions (IDRs) and protein (IDPs) are highly flexible owing to their lack of well-defined structures. A subset of such proteins interacts with various substrates; including RNA; frequently adopting regular structures in the final complex. In this work; we have analysed a dataset of protein⁻RNA complexes undergoing disorder-to-order transition (DOT) upon binding. We found that DOT regions are generally small in size (less than 3 residues) for RNA binding proteins. Like structured proteins; positively charged residues are found to interact with RNA molecules; indicating the dominance of electrostatic and cation-π interactions. However, a comparison of binding frequency shows that interface hydrophobic and aromatic residues have more interactions in only DOT regions than in a protein. Further; DOT regions have significantly higher exposure to water than their structured counterparts. Interactions of DOT regions with RNA increase the sheet formation with minor changes in helix forming residues. We have computed the interaction energy for amino acids⁻nucleotide pairs; which showed the preference of His⁻G; Asn⁻U and Ser⁻U at for the interface of DOT regions. This study provides insights to understand protein⁻RNA interactions and the results could also be used for developing a tool for identifying DOT regions in RNA binding proteins.
Electrostatic Interactions in Aminoglycoside-RNA Complexes
Kulik, Marta; Goral, Anna M.; Jasiński, Maciej; Dominiak, Paulina M.; Trylska, Joanna
2015-01-01
Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity. PMID:25650932
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mahavir; Wang, Zhonghua; Koo, Bon-Kyung
2012-07-01
Telomerase is a ribonucleoprotein complex essential for maintenance of telomere DNA at linear chromosome ends. The catalytic core of Tetrahymena telomerase comprises a ternary complex of telomerase RNA (TER), telomerase reverse transcriptase (TERT), and the essential La family protein p65. NMR and crystal structures of p65 C-terminal domain and its complex with stem IV of TER reveal that RNA recognition is achieved by a combination of single- and double-stranded RNA binding, which induces a 105{sup o} bend in TER. The domain is a cryptic, atypical RNA recognition motif with a disordered C-terminal extension that forms an {alpha} helix in themore » complex necessary for hierarchical assembly of TERT with p65-TER. This work provides the first structural insight into biogenesis and assembly of TER with a telomerase-specific protein. Additionally, our studies define a structurally homologous domain (xRRM) in genuine La and LARP7 proteins and suggest a general mode of RNA binding for biogenesis of their diverse RNA targets.« less
Calviño, Fabiola R.; Kharde, Satyavati; Ori, Alessandro; Hendricks, Astrid; Wild, Klemens; Kressler, Dieter; Bange, Gert; Hurt, Ed; Beck, Martin; Sinning, Irmgard
2015-01-01
During 60S biogenesis, mature 5S RNP consisting of 5S RNA, RpL5 and RpL11, assembles into a pre-60S particle, where docking relies on RpL11 interacting with helix 84 (H84) of the 25S RNA. How 5S RNP is assembled for recruitment into the pre-60S is not known. Here we report the crystal structure of a ternary symportin Syo1–RpL5-N–RpL11 complex and provide biochemical and structural insights into 5S RNP assembly. Syo1 guards the 25S RNA-binding surface on RpL11 and competes with H84 for binding. Pull-down experiments show that H84 releases RpL11 from the ternary complex, but not in the presence of 5S RNA. Crosslinking mass spectrometry visualizes structural rearrangements on incorporation of 5S RNA into the Syo1–RpL5–RpL11 complex supporting the formation of a pre-5S RNP. Our data underline the dual role of Syo1 in ribosomal protein transport and as an assembly platform for 5S RNP. PMID:25849277
Calviño, Fabiola R; Kharde, Satyavati; Ori, Alessandro; Hendricks, Astrid; Wild, Klemens; Kressler, Dieter; Bange, Gert; Hurt, Ed; Beck, Martin; Sinning, Irmgard
2015-04-07
During 60S biogenesis, mature 5S RNP consisting of 5S RNA, RpL5 and RpL11, assembles into a pre-60S particle, where docking relies on RpL11 interacting with helix 84 (H84) of the 25S RNA. How 5S RNP is assembled for recruitment into the pre-60S is not known. Here we report the crystal structure of a ternary symportin Syo1-RpL5-N-RpL11 complex and provide biochemical and structural insights into 5S RNP assembly. Syo1 guards the 25S RNA-binding surface on RpL11 and competes with H84 for binding. Pull-down experiments show that H84 releases RpL11 from the ternary complex, but not in the presence of 5S RNA. Crosslinking mass spectrometry visualizes structural rearrangements on incorporation of 5S RNA into the Syo1-RpL5-RpL11 complex supporting the formation of a pre-5S RNP. Our data underline the dual role of Syo1 in ribosomal protein transport and as an assembly platform for 5S RNP.
Vindu, Arya; Dandewad, Vishal; Seshadri, Vasudevan
2018-04-06
Plasmodium falciparum is a causative agent for malaria and has a complex life cycle in human and mosquito hosts. Translation repression of specific set of mRNA has been reported in gametocyte stages of this parasite. A conserved element present in the 3'UTR of some of these transcripts was identified. Biochemical studies have identified components of the RNA storage and/or translation inhibitor complex but it is not yet clear how the complex is specifically recruited on the RNA targeted for translation regulation. We used the 3'UTR region of translationally regulated transcripts to identify Phosphatidyl-inositol 5-phosphate 4-kinase (PIP4K2A) as the protein that associates with these RNAs. We further show that recombinant PIP4K2A has the RNA binding activity and can associate specifically with Plasmodium 3'UTR RNAs. Immunostainings show that hPIP4K2A is imported into the Plasmodium parasite from RBC. These results identify a novel RNA binding role for PIP4K2A that may play a role in Plasmodium propagation. Copyright © 2018 Elsevier Inc. All rights reserved.
Serial interactome capture of the human cell nucleus.
Conrad, Thomas; Albrecht, Anne-Susann; de Melo Costa, Veronica Rodrigues; Sauer, Sascha; Meierhofer, David; Ørom, Ulf Andersson
2016-04-04
Novel RNA-guided cellular functions are paralleled by an increasing number of RNA-binding proteins (RBPs). Here we present 'serial RNA interactome capture' (serIC), a multiple purification procedure of ultraviolet-crosslinked poly(A)-RNA-protein complexes that enables global RBP detection with high specificity. We apply serIC to the nuclei of proliferating K562 cells to obtain the first human nuclear RNA interactome. The domain composition of the 382 identified nuclear RBPs markedly differs from previous IC experiments, including few factors without known RNA-binding domains that are in good agreement with computationally predicted RNA binding. serIC extends the number of DNA-RNA-binding proteins (DRBPs), and reveals a network of RBPs involved in p53 signalling and double-strand break repair. serIC is an effective tool to couple global RBP capture with additional selection or labelling steps for specific detection of highly purified RBPs.
TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing.
Chendrimada, Thimmaiah P; Gregory, Richard I; Kumaraswamy, Easwari; Norman, Jessica; Cooch, Neil; Nishikura, Kazuko; Shiekhattar, Ramin
2005-08-04
MicroRNAs (miRNAs) are generated by a two-step processing pathway to yield RNA molecules of approximately 22 nucleotides that negatively regulate target gene expression at the post-transcriptional level. Primary miRNAs are processed to precursor miRNAs (pre-miRNAs) by the Microprocessor complex. These pre-miRNAs are cleaved by the RNase III Dicer to generate mature miRNAs that direct the RNA-induced silencing complex (RISC) to messenger RNAs with complementary sequence. Here we show that TRBP (the human immunodeficiency virus transactivating response RNA-binding protein), which contains three double-stranded, RNA-binding domains, is an integral component of a Dicer-containing complex. Biochemical analysis of TRBP-containing complexes revealed the association of Dicer-TRBP with Argonaute 2 (Ago2), the catalytic engine of RISC. The physical association of Dicer-TRBP and Ago2 was confirmed after the isolation of the ternary complex using Flag-tagged Ago2 cell lines. In vitro reconstitution assays demonstrated that TRBP is required for the recruitment of Ago2 to the small interfering RNA (siRNA) bound by Dicer. Knockdown of TRBP results in destabilization of Dicer and a consequent loss of miRNA biogenesis. Finally, depletion of the Dicer-TRBP complex via exogenously introduced siRNAs diminished RISC-mediated reporter gene silencing. These results support a role of the Dicer-TRBP complex not only in miRNA processing but also as a platform for RISC assembly.
RNA Helicases at work: binding and rearranging
Jankowsky, Eckhard
2010-01-01
RNA helicases are ubiquitous, highly conserved enzymes that participate in nearly all aspects of RNA metabolism. These proteins bind or remodel RNA or RNA–protein complexes in an ATP-dependent fashion. How RNA helicases physically perform their cellular tasks has been a longstanding question, but in recent years, intriguing models have started to link structure, mechanism and biological function for some RNA helicases. This review outlines our current view on major structural and mechanistic themes of RNA helicase function, and on emerging physical models for cellular roles of these enzymes. PMID:20813532
Chuang, Tzu-Wei; Lee, Kuo-Ming; Lou, Yuan-Chao; Lu, Chia-Chen; Tarn, Woan-Yuh
2016-04-15
Eukaryotic mRNA biogenesis involves a series of interconnected steps mediated by RNA-binding proteins. The exon junction complex core protein Y14 is required for nonsense-mediated mRNA decay (NMD) and promotes translation. Moreover, Y14 binds the cap structure of mRNAs and inhibits the activity of the decapping enzyme Dcp2. In this report, we show that an evolutionarily conserved tryptophan residue (Trp-73) of Y14 is critical for its binding to the mRNA cap structure. A Trp-73 mutant (W73V) bound weakly to mRNAs and failed to protect them from degradation. However, this mutant could still interact with the NMD and mRNA degradation factors and retained partial NMD activity. In addition, we found that the W73V mutant could not interact with translation initiation factors. Overexpression of W73V suppressed reporter mRNA translation in vitro and in vivo and reduced the level of a set of nascent proteins. These results reveal a residue of Y14 that confers cap-binding activity and is essential for Y14-mediated enhancement of translation. Finally, we demonstrated that Y14 may selectively and differentially modulate protein biosynthesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Goodier, John L; Zhang, Lili; Vetter, Melissa R; Kazazian, Haig H
2007-09-01
LINE-1 retrotransposons constitute one-fifth of human DNA and have helped shape our genome. A full-length L1 encodes a 40-kDa RNA-binding protein (ORF1p) and a 150-kDa protein (ORF2p) with endonuclease and reverse transcriptase activities. ORF1p is distinctive in forming large cytoplasmic foci, which we identified as cytoplasmic stress granules. A phylogenetically conserved central region of the protein is critical for wild-type localization and retrotransposition. Yeast two-hybrid screens revealed several RNA-binding proteins that coimmunoprecipitate with ORF1p and colocalize with ORF1p in foci. Two of these proteins, YB-1 and hnRNPA1, were previously reported in stress granules. We identified additional proteins associated with stress granules, including DNA-binding protein A, 9G8, and plasminogen activator inhibitor RNA-binding protein 1 (PAI-RBP1). PAI-RBP1 is a homolog of VIG, a part of the Drosophila melanogaster RNA-induced silencing complex (RISC). Other RISC components, including Ago2 and FMRP, also colocalize with PAI-RBP1 and ORF1p. We suggest that targeting ORF1p, and possibly the L1 RNP, to stress granules is a mechanism for controlling retrotransposition and its associated genetic and cellular damage.
Bradford, Seth S; Ross, Martin James; Fidai, Insiya; Cowan, James A
2014-06-01
The complex Cu-GGHYrFK-amide (1-Cu) was previously reported as a novel metallotherapeutic that catalytically inactivates stem loop IIb (SLIIb) of the hepatitis C virus (HCV) internal ribosomal entry site (IRES) RNA and demonstrates significant antiviral activity in a cellular HCV replicon assay. Herein we describe additional studies focused on understanding the cleavage mechanism as well as the relationship of catalyst configuration to structural recognition and site-selective cleavage of the structured RNA motif. These are advanced by use of a combination of MALDI-TOF mass spectrometry, melting temperature determinations, and computational analysis to develop a structural model for binding and reactivity toward SLIIb of the IRES RNA. In addition, the binding, reactivity, and structural chemistry of the all-D-amino acid form of this metallopeptide, complex 2-Cu, are reported and compared with those of complex 1-Cu. In vitro RNA binding and cleavage assays for complex 2-Cu show a KD value of 76 ± 3 nM, and Michaelis-Menten parameters of kcat =0.14 ± 0.01 min(-1) and KM =7.9 ± 1.2 μM, with a turnover number exceeding 40. In a luciferase-based cellular replicon assay Cu-GGhyrfk-amide shows activity similar to that of the 1-Cu parent peptide, with an IC50 value of 1.9 ± 0.4 μM and cytotoxicity exceeding 100 μM. RT-PCR experiments confirm a significant decrease in HCV RNA levels in replicon assays for up to nine days when treated with complex 1-Cu in three-day dosing increments. This study shows the influence that the α-carbon stereocenter has for this new class of compounds, while detailed mass spectrometry and computational analyses provide new insight into the mechanisms of recognition, binding, and reactivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Post-transcriptional trafficking and regulation of neuronal gene expression.
Goldie, Belinda J; Cairns, Murray J
2012-02-01
Intracellular messenger RNA (mRNA) traffic and translation must be highly regulated, both temporally and spatially, within eukaryotic cells to support the complex functional partitioning. This capacity is essential in neurons because it provides a mechanism for rapid input-restricted activity-dependent protein synthesis in individual dendritic spines. While this feature is thought to be important for synaptic plasticity, the structures and mechanisms that support this capability are largely unknown. Certainly specialized RNA binding proteins and binding elements in the 3' untranslated region (UTR) of translationally regulated mRNA are important, but the subtlety and complexity of this system suggests that an intermediate "specificity" component is also involved. Small non-coding microRNA (miRNA) are essential for CNS development and may fulfill this role by acting as the guide strand for mediating complex patterns of post-transcriptional regulation. In this review we examine post-synaptic gene regulation, mRNA trafficking and the emerging role of post-transcriptional gene silencing in synaptic plasticity.
Guanidinoneomycin B Recognition of an HIV-1 RNA Helix
Staple, David W.; Venditti, Vincenzo; Niccolai, Neri; Elson-Schwab, Lev; Tor, Yitzhak; Butcher, Samuel E.
2009-01-01
Aminoglycoside antibiotics are small-molecule drugs that bind RNA. The affinity and specificity of aminoglycoside binding to RNA can be increased through chemical modification, such as guanidinylation. Here, we report the binding of guanidinoneomycin B (GNB) to an RNA helix from the HIV-1 frameshift site. The binding of GNB increases the melting temperature (Tm) of the frameshift-site RNA by at least 10°8C, to a point at which a melting transition is not even observed in 2m urea. A structure of the complex was obtained by using multidimensional heteronuclear NMR spectroscopic methods. We also used a novel paramagnetic-probe assay to identify the site of GNB binding to the surface of the RNA. GNB makes major-groove contacts to two sets of Watson–Crick bases and is in van der Waals contact with a highly structured ACAA tetraloop. Rings I and II of GNB fit into the major groove and form the binding interface with the RNA, whereas rings III and IV are exposed to the solvent and disordered. The binding of GNB causes a broadening of the major groove across the binding site. PMID:18058789
Wang, Xurong; Zhang, Fuxian; Su, Rui; Li, Xiaowu; Chen, Wenyuan; Chen, Qingxiu; Yang, Tao; Wang, Jiawei; Liu, Hongrong; Fang, Qin; Cheng, Lingpeng
2018-06-25
Most double-stranded RNA (dsRNA) viruses transcribe RNA plus strands within a common innermost capsid shell. This process requires coordinated efforts by RNA-dependent RNA polymerase (RdRp) together with other capsid proteins and genomic RNA. Here we report the near-atomic resolution structure of the RdRp protein VP2 in complex with its cofactor protein VP4 and genomic RNA within an aquareovirus capsid using 200-kV cryoelectron microscopy and symmetry-mismatch reconstruction. The structure of these capsid proteins enabled us to observe the elaborate nonicosahedral structure within the double-layered icosahedral capsid. Our structure shows that the RdRp complex is anchored at the inner surface of the capsid shell and interacts with genomic dsRNA and four of the five asymmetrically arranged N termini of the capsid shell proteins under the fivefold axis, implying roles for these N termini in virus assembly. The binding site of the RNA end at VP2 is different from the RNA cap binding site identified in the crystal structure of orthoreovirus RdRp λ3, although the structures of VP2 and λ3 are almost identical. A loop, which was thought to separate the RNA template and transcript, interacts with an apical domain of the capsid shell protein, suggesting a mechanism for regulating RdRp replication and transcription. A conserved nucleoside triphosphate binding site was localized in our RdRp cofactor protein VP4 structure, and interactions between the VP4 and the genomic RNA were identified.
Monshausen, Michaela; Gehring, Niels H; Kosik, Kenneth S
2004-01-01
Members of the Staufen family of RNA-binding proteins are highly conserved cytoplasmic RNA transporters associated with RNA granules. staufen2 is specifically expressed in neurons where the delivery of RNA to dendrites is thought to have a role in plasticity. We found that Staufen2 interacts with the nuclear pore protein p62, with the RNA export protein Tap and with the exon-exon junction complex (EJC) proteins Y14-Mago. The interaction of Staufen2 with the Y14-Mago heterodimer seems to represent a highly conserved complex as the same proteins are involved in the Staufen-mediated localization of oskar mRNA in Drosophila oocytes. A pool of Staufen2 is present in neuronal nuclei and colocalizes to a large degree with p62 and partly with Tap, Y14, and Mago. We suggest a model whereby a set of conserved genes in the oskar mRNA export pathway may be recruited to direct a dendritic destination for mRNAs originating as a Staufen2 nuclear complex.
RNase-assisted RNA chromatography
Michlewski, Gracjan; Cáceres, Javier F.
2010-01-01
RNA chromatography combined with mass spectrometry represents a widely used experimental approach to identify RNA-binding proteins that recognize specific RNA targets. An important drawback of most of these protocols is the high background due to direct or indirect nonspecific binding of cellular proteins to the beads. In many cases this can hamper the detection of individual proteins due to their low levels and/or comigration with contaminating proteins. Increasing the salt concentration during washing steps can reduce background, but at the cost of using less physiological salt concentrations and the likely loss of important RNA-binding proteins that are less stringently bound to a given RNA, as well as the disassembly of protein or ribonucleoprotein complexes. Here, we describe an improved RNA chromatography method that relies on the use of a cocktail of RNases in the elution step. This results in the release of proteins specifically associated with the RNA ligand and almost complete elimination of background noise, allowing a more sensitive and thorough detection of RNA-binding proteins recognizing a specific RNA transcript. PMID:20571124
Mapping interactions between the RNA chaperone FinO and its RNA targets
Arthur, David C.; Tsutakawa, Susan; Tainer, John A.; Frost, Laura S.; Glover, J. N. Mark
2011-01-01
Bacterial conjugation is regulated by two-component repression comprising the antisense RNA FinP, and its protein co-factor FinO. FinO mediates base-pairing of FinP to the 5′-untranslated region (UTR) of traJ mRNA, which leads to translational inhibition of the transcriptional activator TraJ and subsequent down regulation of conjugation genes. Yet, little is known about how FinO binds to its RNA targets or how this interaction facilitates FinP and traJ mRNA pairing. Here, we use solution methods to determine how FinO binds specifically to its minimal high affinity target, FinP stem–loop II (SLII), and its complement SLIIc from traJ mRNA. Ribonuclease footprinting reveals that FinO contacts the base of the stem and the 3′ single-stranded tails of these RNAs. The phosphorylation or oxidation of the 3′-nucleotide blocks FinO binding, suggesting FinO binds the 3′-hydroxyl of its RNA targets. The collective results allow the generation of an energy-minimized model of the FinO–SLII complex, consistent with small-angle X-ray scattering data. The repression complex model was constrained using previously reported cross-linking data and newly developed footprinting results. Together, these data lead us to propose a model of how FinO mediates FinP/traJ mRNA pairing to down regulate bacterial conjugation. PMID:21278162
Rp-phosphorothioate modifications in RNase P RNA that interfere with tRNA binding.
Hardt, W D; Warnecke, J M; Erdmann, V A; Hartmann, R K
1995-01-01
We have used Rp-phosphorothioate modifications and a binding interference assay to analyse the role of phosphate oxygens in tRNA recognition by Escherichia coli ribonuclease P (RNase P) RNA. Total (100%) Rp-phosphorothioate modification at A, C or G positions of RNase P RNA strongly impaired tRNA binding and pre-tRNA processing, while effects were less pronounced at U positions. Partially modified E. coli RNase P RNAs were separated into tRNA binding and non-binding fractions by gel retardation. Rp-phosphorothioate modifications that interfered with tRNA binding were found 5' of nucleotides A67, G68, U69, C70, C71, G72, A130, A132, A248, A249, G300, A317, A330, A352, C353 and C354. Manganese rescue at positions U69, C70, A130 and A132 identified, for the first time, sites of direct metal ion coordination in RNase P RNA. Most sites of interference are at strongly conserved nucleotides and nine reside within a long-range base-pairing interaction present in all known RNase P RNAs. In contrast to RNase P RNA, 100% Rp-phosphorothioate substitutions in tRNA showed only moderate effects on binding to RNase P RNAs from E. coli, Bacillus subtilis and Chromatium vinosum, suggesting that pro-Rp phosphate oxygens of mature tRNA contribute relatively little to the formation of the tRNA-RNase P RNA complex. Images PMID:7540978
Ogram, Sushma A; Boone, Christopher D; McKenna, Robert; Flanegan, James B
2014-09-01
The mechanism of amiloride inhibition of Coxsackievirus B3 (CVB3) and poliovirus type 1 (PV1) RNA replication was investigated using membrane-associated RNA replication complexes. Amiloride was shown to inhibit viral RNA replication and VPgpUpU synthesis. However, the drug had no effect on polymerase elongation activity during either (-) strand or (+) strand synthesis. These findings indicated that amiloride inhibited the initiation of RNA synthesis by inhibiting VPg uridylylation. In addition, in silico binding studies showed that amiloride docks in the VPg binding site on the back of the viral RNA polymerase, 3D(pol). Since VPg binding at this site on PV1 3D(pol) was previously shown to be required for VPg uridylylation, our results suggest that amiloride inhibits VPg binding to 3D(pol). In summary, our findings are consistent with a model in which amiloride inhibits VPgpUpU synthesis and viral RNA replication by competing with VPg for binding to 3D(pol). Copyright © 2014 Elsevier Inc. All rights reserved.
Fu, Qinqin; Yuan, Y. Adam
2013-01-01
Intensive research interest has focused on small RNA-processing machinery and the RNA-induced silencing complex (RISC), key cellular machines in RNAi pathways. However, the structural mechanism regarding RISC assembly, the primary step linking small RNA processing and RNA-mediated gene silencing, is largely unknown. Human RNA helicase A (DHX9) was reported to function as an RISC-loading factor, and such function is mediated mainly by its dsRNA-binding domains (dsRBDs). Here, we report the crystal structures of human RNA helicase A (RHA) dsRBD1 and dsRBD2 domains in complex with dsRNAs, respectively. Structural analysis not only reveals higher siRNA duplex-binding affinity displayed by dsRBD1, but also identifies a crystallographic dsRBD1 pair of physiological significance in cooperatively recognizing dsRNAs. Structural observations are further validated by isothermal titration calorimetric (ITC) assay. Moreover, co-immunoprecipitation (co-IP) assay coupled with mutagenesis demonstrated that both dsRBDs are required for RISC association, and such association is mediated by dsRNA. Hence, our structural and functional efforts have revealed a potential working model for siRNA recognition by RHA tandem dsRBDs, and together they provide direct structural insights into RISC assembly facilitated by RHA. PMID:23361462
Fu, Qinqin; Yuan, Y Adam
2013-03-01
Intensive research interest has focused on small RNA-processing machinery and the RNA-induced silencing complex (RISC), key cellular machines in RNAi pathways. However, the structural mechanism regarding RISC assembly, the primary step linking small RNA processing and RNA-mediated gene silencing, is largely unknown. Human RNA helicase A (DHX9) was reported to function as an RISC-loading factor, and such function is mediated mainly by its dsRNA-binding domains (dsRBDs). Here, we report the crystal structures of human RNA helicase A (RHA) dsRBD1 and dsRBD2 domains in complex with dsRNAs, respectively. Structural analysis not only reveals higher siRNA duplex-binding affinity displayed by dsRBD1, but also identifies a crystallographic dsRBD1 pair of physiological significance in cooperatively recognizing dsRNAs. Structural observations are further validated by isothermal titration calorimetric (ITC) assay. Moreover, co-immunoprecipitation (co-IP) assay coupled with mutagenesis demonstrated that both dsRBDs are required for RISC association, and such association is mediated by dsRNA. Hence, our structural and functional efforts have revealed a potential working model for siRNA recognition by RHA tandem dsRBDs, and together they provide direct structural insights into RISC assembly facilitated by RHA.
Ribosomal proteins L5 and L11 co-operatively inactivate c-Myc via RNA-induced silencing complex.
Liao, J-M; Zhou, X; Gatignol, A; Lu, H
2014-10-09
Oncogene MYC is highly expressed in many human cancers and functions as a global regulator of ribosome biogenesis. Previously, we reported that ribosomal protein (RP) L11 binds to c-Myc and inhibits its transcriptional activity in response to ribosomal stress. Here, we show that RPL5, co-operatively with RPL11, guides the RNA-induced silencing complex (RISC) to c-Myc mRNA and mediates the degradation of the mRNA, consequently leading to inhibition of c-Myc activity. Knocking down of RPL5 induced c-Myc expression at both mRNA and protein levels, whereas overexpression of RPL5 suppressed c-Myc expression and activity. Immunoprecipitation revealed that RPL5 binds to 3'UTR of c-Myc mRNA and two subunits of RISC, TRBP (HIV-1 TAR RNA-binding protein) and Ago2, mediating the targeting of c-Myc mRNA by miRNAs. Interestingly, RPL5 and RPL11 co-resided on c-Myc mRNA and suppressed c-Myc expression co-operatively. These findings uncover a mechanism by which these two RPs can co-operatively suppress c-Myc expression, allowing a tightly controlled ribosome biogenesis in cells.
The zinc fingers of YY1 bind single-stranded RNA with low sequence specificity.
Wai, Dorothy C C; Shihab, Manar; Low, Jason K K; Mackay, Joel P
2016-11-02
Classical zinc fingers (ZFs) are traditionally considered to act as sequence-specific DNA-binding domains. More recently, classical ZFs have been recognised as potential RNA-binding modules, raising the intriguing possibility that classical-ZF transcription factors are involved in post-transcriptional gene regulation via direct RNA binding. To date, however, only one classical ZF-RNA complex, that involving TFIIIA, has been structurally characterised. Yin Yang-1 (YY1) is a multi-functional transcription factor involved in many regulatory processes, and binds DNA via four classical ZFs. Recent evidence suggests that YY1 also interacts with RNA, but the molecular nature of the interaction remains unknown. In the present work, we directly assess the ability of YY1 to bind RNA using in vitro assays. Systematic Evolution of Ligands by EXponential enrichment (SELEX) was used to identify preferred RNA sequences bound by the YY1 ZFs from a randomised library over multiple rounds of selection. However, a strong motif was not consistently recovered, suggesting that the RNA sequence selectivity of these domains is modest. YY1 ZF residues involved in binding to single-stranded RNA were identified by NMR spectroscopy and found to be largely distinct from the set of residues involved in DNA binding, suggesting that interactions between YY1 and ssRNA constitute a separate mode of nucleic acid binding. Our data are consistent with recent reports that YY1 can bind to RNA in a low-specificity, yet physiologically relevant manner. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Structure of the Nucleoprotein Binding Domain of Mokola Virus Phosphoprotein▿
Assenberg, René; Delmas, Olivier; Ren, Jingshan; Vidalain, Pierre-Olivier; Verma, Anil; Larrous, Florence; Graham, Stephen C.; Tangy, Frédéric; Grimes, Jonathan M.; Bourhy, Hervé
2010-01-01
Mokola virus (MOKV) is a nonsegmented, negative-sense RNA virus that belongs to the Lyssavirus genus and Rhabdoviridae family. MOKV phosphoprotein P is an essential component of the replication and transcription complex and acts as a cofactor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. Here we present a structure for this domain of MOKV P, obtained by expression of full-length P in Escherichia coli, which was subsequently truncated during crystallization. The structure has a high degree of homology with P of rabies virus, another member of Lyssavirus genus, and to a lesser degree with P of vesicular stomatitis virus (VSV), a member of the related Vesiculovirus genus. In addition, analysis of the crystal packing of this domain reveals a potential binding site for the nucleoprotein N. Using both site-directed mutagenesis and yeast two-hybrid experiments to measure P-N interaction, we have determined the relative roles of key amino acids involved in this interaction to map the region of P that binds N. This analysis also reveals a structural relationship between the N-RNA binding domain of the P proteins of the Rhabdoviridae and the Paramyxoviridae. PMID:19906936
Interaction of zanamivir with DNA and RNA: Models for drug DNA and drug RNA bindings
NASA Astrophysics Data System (ADS)
Nafisi, Shohreh; Kahangi, Fatemeh Ghoreyshi; Azizi, Ebrahim; Zebarjad, Nader; Tajmir-Riahi, Heidar-Ali
2007-03-01
Zanamivir (ZAN) is the first of a new generation of influenza virus-specific drugs known as neuraminidase inhibitors, which acts by interfering with life cycles of influenza viruses A and B. It prevents the virus spreading infection to other cells by blocking the neuraminidase enzyme present on the surface of the virus. The aim of this study was to examine the stability and structural features of calf thymus DNA and yeast RNA complexes with zanamivir in aqueous solution, using constant DNA or RNA concentration (12.5 mM) and various zanamivir/polynucleotide ( P) ratios of 1/20, 1/10, 1/4, and 1/2. FTIR and UV-visible spectroscopy are used to determine the drug external binding modes, the binding constant and the stability of zanamivir-DNA and RNA complexes in aqueous solution. Structural analysis showed major interaction of zanamivir with G-C (major groove) and A-T (minor groove) base pairs and minor perturbations of the backbone PO 2 group with overall binding constants of Kzanamivir-DNA = 1.30 × 10 4 M -1 and Kzanamivir-RNA = 1.38 × 10 4 M -1. The drug interaction induces a partial B to A-DNA transition, while RNA remains in A-conformation.
Scheckel, Claudia; Drapeau, Elodie; Frias, Maria A; Park, Christopher Y; Fak, John; Zucker-Scharff, Ilana; Kou, Yan; Haroutunian, Vahram; Ma'ayan, Avi
2016-01-01
Neuronal ELAV-like (nELAVL) RNA binding proteins have been linked to numerous neurological disorders. We performed crosslinking-immunoprecipitation and RNAseq on human brain, and identified nELAVL binding sites on 8681 transcripts. Using knockout mice and RNAi in human neuroblastoma cells, we showed that nELAVL intronic and 3' UTR binding regulates human RNA splicing and abundance. We validated hundreds of nELAVL targets among which were important neuronal and disease-associated transcripts, including Alzheimer's disease (AD) transcripts. We therefore investigated RNA regulation in AD brain, and observed differential splicing of 150 transcripts, which in some cases correlated with differential nELAVL binding. Unexpectedly, the most significant change of nELAVL binding was evident on non-coding Y RNAs. nELAVL/Y RNA complexes were specifically remodeled in AD and after acute UV stress in neuroblastoma cells. We propose that the increased nELAVL/Y RNA association during stress may lead to nELAVL sequestration, redistribution of nELAVL target binding, and altered neuronal RNA splicing. DOI: http://dx.doi.org/10.7554/eLife.10421.001 PMID:26894958
Yamasaki, Tomohito; Onishi, Masayuki; Kim, Eun-Jeong; Cerutti, Heriberto; Ohama, Takeshi
2016-09-20
Canonical microRNAs (miRNAs) are embedded in duplexed stem-loops in long precursor transcripts and are excised by sequential cleavage by DICER nuclease(s). In this miRNA biogenesis pathway, dsRNA-binding proteins play important roles in animals and plants by assisting DICER. However, these RNA-binding proteins are poorly characterized in unicellular organisms. Here we report that a unique RNA-binding protein, Dull slicer-16 (DUS16), plays an essential role in processing of primary-miRNA (pri-miRNA) transcripts in the unicellular green alga Chlamydomonas reinhardtii In animals and plants, dsRNA-binding proteins involved in miRNA biogenesis harbor two or three dsRNA-binding domains (dsRBDs), whereas DUS16 contains one dsRBD and also an ssRNA-binding domain (RRM). The null mutant of DUS16 showed a drastic reduction in most miRNA species. Production of these miRNAs was complemented by expression of full-length DUS16, but the expression of RRM- or dsRBD-truncated DUS16 did not restore miRNA production. Furthermore, DUS16 is predominantly localized to the nucleus and associated with nascent (unspliced form) pri-miRNAs and the DICER-LIKE 3 protein. These results suggest that DUS16 recognizes pri-miRNA transcripts cotranscriptionally and promotes their processing into mature miRNAs as a component of a microprocessor complex. We propose that DUS16 is an essential factor for miRNA production in Chlamydomonas and, because DUS16 is functionally similar to the dsRNA-binding proteins involved in miRNA biogenesis in animals and land plants, our report provides insight into this mechanism in unicellular eukaryotes.
Lysines in the RNA Polymerase II C-Terminal Domain Contribute to TAF15 Fibril Recruitment.
Janke, Abigail M; Seo, Da Hee; Rahmanian, Vahid; Conicella, Alexander E; Mathews, Kaylee L; Burke, Kathleen A; Mittal, Jeetain; Fawzi, Nicolas L
2018-05-01
Many cancer-causing chromosomal translocations result in transactivating protein products encoding FET family (FUS, EWSR1, TAF15) low-complexity (LC) domains fused to a DNA binding domain from one of several transcription factors. Recent work demonstrates that higher-order assemblies of FET LC domains bind the carboxy-terminal domain of the large subunit of RNA polymerase II (RNA pol II CTD), suggesting FET oncoproteins may mediate aberrant transcriptional activation by recruiting RNA polymerase II to promoters of target genes. Here we use nuclear magnetic resonance (NMR) spectroscopy and hydrogel fluorescence microscopy localization and fluorescence recovery after photobleaching to visualize atomic details of a model of this process, interactions of RNA pol II CTD with high-molecular weight TAF15 LC assemblies. We report NMR resonance assignments of the intact degenerate repeat half of human RNA pol II CTD alone and verify its predominant intrinsic disorder by molecular simulation. By measuring NMR spin relaxation and dark-state exchange saturation transfer, we characterize the interaction of RNA pol II CTD with amyloid-like hydrogel fibrils of TAF15 and hnRNP A2 LC domains and observe that heptads far from the acidic C-terminal tail of RNA pol II CTD bind TAF15 fibrils most avidly. Mutation of CTD lysines in heptad position 7 to consensus serines reduced the overall level of TAF15 fibril binding, suggesting that electrostatic interactions contribute to complex formation. Conversely, mutations of position 7 asparagine residues and truncation of the acidic tail had little effect. Thus, weak, multivalent interactions between TAF15 fibrils and heptads throughout RNA pol II CTD collectively mediate complex formation.
Binding of RNA by the Nucleoproteins of Influenza Viruses A and B
Labaronne, Alice; Swale, Christopher; Monod, Alexandre; Schoehn, Guy; Crépin, Thibaut; Ruigrok, Rob W. H.
2016-01-01
This paper describes a biochemical study for making complexes between the nucleoprotein of influenza viruses A and B (A/NP and B/NP) and small RNAs (polyUC RNAs from 5 to 24 nucleotides (nt)), starting from monomeric proteins. We used negative stain electron microscopy, size exclusion chromatography-multi-angle laser light scattering (SEC-MALLS) analysis, and fluorescence anisotropy measurements to show how the NP-RNA complexes evolve. Both proteins make small oligomers with 24-nt RNAs, trimers for A/NP, and dimers, tetramers, and larger complexes for B/NP. With shorter RNAs, the affinities of NP are all in the same range at 50 mM NaCl, showing that the RNAs bind on the same site. The affinity of B/NP for a 24-nt RNA does not change with salt. However, the affinity of A/NP for a 24-nt RNA is lower at 150 and 300 mM NaCl, suggesting that the RNA binds to another site, either on the same protomer or on a neighbour protomer. For our fluorescence anisotropy experiments, we used 6-fluorescein amidite (FAM)-labelled RNAs. By using a (UC)6-FAM3′ RNA with 150 mM NaCl, we observed an interesting phenomenon that gives macromolecular complexes similar to the ribonucleoprotein particles purified from the viruses. PMID:27649229
Jeong, Ji-Hye; Nam, Yeon-Ju; Kim, Seok-Yong; Kim, Eung-Gook; Jeong, Jooyoung; Kim, Hyong Kyu
2007-09-01
There is increasing evidence showing that mRNA is transported to the neuronal dendrites in ribonucleoprotein (RNP) complexes or RNA granules, which are aggregates of mRNA, rRNA, ribosomal proteins, and RNA-binding proteins. In these RNP complexes, Staufen, a double-stranded RNA-binding protein, is believed to be a core component that plays a key role in the dendritic mRNA transport. This study investigated the molecular mechanisms of the dendritic mRNA transport using green fluorescent protein-tagged Staufen2 produced employing a Sindbis viral expression system. The kinesin heavy chain was found to be associated with Staufen2. The inhibition of kinesin resulted in a significant decrease in the level of dendritic transport of the Staufen2-containing RNP complexes in neurons under non-stimulating or stimulating conditions. This suggests that the dendritic transport of the Staufen2-containing RNP complexes use kinesin as a motor protein. A mitogen-activated protein kinase inhibitor, PD98059, inhibited the activity-induced increase in the amount of both the Staufen2-containing RNP complexes and Ca(2+)/calmodulin-dependent protein kinase II alpha-subunit mRNA in the distal dendrites of cultured hippocampal neurons. Overall, these results suggest that dendritic mRNA transport is mediated via the Staufen2 and kinesin motor proteins and might be modulated by the neuronal activity and mitogen-activated protein kinase pathway.
Characterization of MRP RNA–protein interactions within the perinucleolar compartment
Pollock, Callie; Daily, Kelly; Nguyen, Van Trung; Wang, Chen; Lewandowska, Marzena Anna; Bensaude, Olivier; Huang, Sui
2011-01-01
The perinucleolar compartment (PNC) forms in cancer cells and is highly enriched with a subset of polymerase III RNAs and RNA-binding proteins. Here we report that PNC components mitochondrial RNA–processing (MRP) RNA, pyrimidine tract–binding protein (PTB), and CUG-binding protein (CUGBP) interact in vivo, as demonstrated by coimmunoprecipitation and RNA pull-down experiments. Glycerol gradient analyses show that this complex is large and sediments at a different fraction from known MRP RNA–containing complexes, the MRP ribonucleoprotein ribozyme and human telomerase reverse transcriptase. Tethering PNC components to a LacO locus recruits other PNC components, further confirming the in vivo interactions. These interactions are present both in PNC-containing and -lacking cells. High-resolution localization analyses demonstrate that MRP RNA, CUGBP, and PTB colocalize at the PNC as a reticulated network, intertwining with newly synthesized RNA. Furthermore, green fluorescent protein (GFP)–PTB and GFP-CUGBP show a slower rate of fluorescence recovery after photobleaching at the PNC than in the nucleoplasm, illustrating the different molecular interaction of the complexes associated with the PNC. These findings support a working model in which the MRP RNA–protein complex becomes nucleated at the PNC in cancer cells and may play a role in gene expression regulation at the DNA locus that associates with the PNC. PMID:21233287
Lee, Donghan; Walsh, Joseph D; Yu, Ping; Markus, Michelle A; Choli-Papadopoulou, Theodora; Schwieters, Charles D; Krueger, Susan; Draper, David E; Wang, Yun-Xing
2007-04-06
The L11 binding site is one of the most important functional sites in the ribosome. The N-terminal domain of L11 has been implicated as a "reversible switch" in facilitating the coordinated movements associated with EF-G-driven GTP hydrolysis. The reversible switch mechanism has been hypothesized to require conformational flexibility involving re-orientation and re-positioning of the two L11 domains, and warrants a close examination of the structure and dynamics of L11. Here we report the solution structure of free L11, and relaxation studies of free L11, L11 complexed to its 58 nt RNA recognition site, and L11 in a ternary complex with the RNA and thiostrepton antibiotic. The binding site of thiostrepton on L11 was also defined by analysis of structural and dynamics data and chemical shift mapping. The conclusions of this work are as follows: first, the binding of L11 to RNA leads to sizable conformation changes in the regions flanking the linker and in the hinge area that links a beta-sheet and a 3(10)-helix-turn-helix element in the N terminus. Concurrently, the change in the relative orientation may lead to re-positioning of the N terminus, as implied by a decrease of radius of gyration from 18.5 A to 16.2 A. Second, the regions, which undergo large conformation changes, exhibit motions on milliseconds-microseconds or nanoseconds-picoseconds time scales. Third, binding of thiostrepton results in more rigid conformations near the linker (Thr71) and near its putative binding site (Leu12). Lastly, conformational changes in the putative thiostrepton binding site are implicated by the re-emergence of cross-correlation peaks in the spectrum of the ternary complex, which were missing in that of the binary complex. Our combined analysis of both the chemical shift perturbation and dynamics data clearly indicates that thiostrepton binds to a pocket involving residues in the 3(10)-helix in L11.
Lee, Donghan; Walsh, Joseph D.; Yu, Ping; Markus, Michelle A.; Choli-Papadopoulou, Theodora; Schwieters, Charles D.; Krueger, Susan; Draper, David E.; Wang, Yun-Xing
2007-01-01
Summary The L11 binding site is one of the most important functional sites in the ribosome. The N-terminal domain of L11 has been implicated as a “reversible switch” in facilitating the coordinated movements associated with EF-G–driven GTP hydrolysis. The “reversible switch” mechanism has been hypothesized to require conformational flexibility involving re-orientation and re-positioning of the two L11 domains, and warrants a close examination of the structure and dynamics of L11. Here we report the solution structure of free L11, and relaxation studies of free L11, L11complexed to its 58 nt RNA recognition site, and L11 in a ternary complex with the RNA and thiostrepton antibiotic. The binding site of thiostrepton on L11 was also defined by analysis of structural and dynamics data and chemical shift mapping. The conclusions of this work are as follows: First, the binding of L11 to RNA leads to sizable conformation changes in the regions flanking the linker and in the hinge area that links a β-sheets and a 310-helix-turn-helix element in the N-terminus. Concurrently, the change in the relative orientation may lead to re-positioning of the N-terminus, as implied by a decrease of radius of gyration from 18.5 Å to 16.2 Å. Second, the regions, which undergo large conformation changes, exhibit motions on ms-μs or ns-ps time scales. Third, binding of thiostrepton results in more rigid conformations near the linker (Thr71) and near its putative binding site (Leu12). Lastly, conformational changes in the putative thiostrepton binding site are implicated by the re-emergence of cross-correlation peaks in the spectrum of the ternary complex, which were missing in that of the binary complex. Our combined analysis of both the chemical shift perturbation and dynamics data clearly indicates that thiostrepton binds to a pocket involving residues in the 310-helix in L11. PMID:17292917
Phosphorylation-regulated Binding of RNA Polymerase II to Fibrous Polymers of Low Complexity Domains
Xiang, Siheng; Wu, Leeju; Theodoropoulos, Pano; Mirzaei, Hamid; Han, Tina; Xie, Shanhai; Corden, Jeffry L.; McKnight, Steven L.
2014-01-01
SUMMARY The low complexity (LC) domains of the products of the fused in sarcoma (FUS), Ewings sarcoma (EWS) and TAF15 genes are translocated onto a variety of different DNA-binding domains and thereby assist in driving the formation of cancerous cells. In the context of the translocated fusion proteins, these LC sequences function as transcriptional activation domains. Here we show that polymeric fibers formed from these LC domains directly bind the C-terminal domain (CTD) of RNA polymerase II in a manner reversible by phosphorylation of the iterated, heptad repeats of the CTD. Mutational analysis indicates that the degree of binding between the CTD and the LC domain polymers correlates with the strength of transcriptional activation. These studies offer a simple means of conceptualizing how RNA polymerase II is recruited to active genes in its unphosphorylated state, and released for elongation following phosphorylation of the CTD. PMID:24267890
Alignment of RNA molecules: Binding energy and statistical properties of random sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valba, O. V., E-mail: valbaolga@gmail.com; Nechaev, S. K., E-mail: sergei.nechaev@gmail.com; Tamm, M. V., E-mail: thumm.m@gmail.com
2012-02-15
A new statistical approach to the problem of pairwise alignment of RNA sequences is proposed. The problem is analyzed for a pair of interacting polymers forming an RNA-like hierarchical cloverleaf structures. An alignment is characterized by the numbers of matches, mismatches, and gaps. A weight function is assigned to each alignment; this function is interpreted as a free energy taking into account both direct monomer-monomer interactions and a combinatorial contribution due to formation of various cloverleaf secondary structures. The binding free energy is determined for a pair of RNA molecules. Statistical properties are discussed, including fluctuations of the binding energymore » between a pair of RNA molecules and loop length distribution in a complex. Based on an analysis of the free energy per nucleotide pair complexes of random RNAs as a function of the number of nucleotide types c, a hypothesis is put forward about the exclusivity of the alphabet c = 4 used by nature.« less
RNA regulatory networks diversified through curvature of the PUF protein scaffold
Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; ...
2015-09-14
Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less
RNA regulatory networks diversified through curvature of the PUF protein scaffold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.
Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less
Anosova, Irina; Melnik, Svitlana; Tripsianes, Konstantinos; Kateb, Fatiha; Grummt, Ingrid; Sattler, Michael
2015-05-26
The chromatin remodeling complex NoRC, comprising the subunits SNF2h and TIP5/BAZ2A, mediates heterochromatin formation at major clusters of repetitive elements, including rRNA genes, centromeres and telomeres. Association with chromatin requires the interaction of the TAM (TIP5/ARBP/MBD) domain of TIP5 with noncoding RNA, which targets NoRC to specific genomic loci. Here, we show that the NMR structure of the TAM domain of TIP5 resembles the fold of the MBD domain, found in methyl-CpG binding proteins. However, the TAM domain exhibits an extended MBD fold with unique C-terminal extensions that constitute a novel surface for RNA binding. Mutation of critical amino acids within this surface abolishes RNA binding in vitro and in vivo. Our results explain the distinct binding specificities of TAM and MBD domains to RNA and methylated DNA, respectively, and reveal structural features for the interaction of NoRC with non-coding RNA. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
The role of RNA structure in the interaction of U1A protein with U1 hairpin II RNA
Law, Michael J.; Rice, Andrew J.; Lin, Patti; Laird-Offringa, Ite A.
2006-01-01
The N-terminal RNA Recognition Motif (RRM1) of the spliceosomal protein U1A interacting with its target U1 hairpin II (U1hpII) has been used as a paradigm for RRM-containing proteins interacting with their RNA targets. U1A binds to U1hpII via direct interactions with a 7-nucleotide (nt) consensus binding sequence at the 5′ end of a 10-nt loop, and via hydrogen bonds with the closing C–G base pair at the top of the RNA stem. Using surface plasmon resonance (Biacore), we have examined the role of structural features of U1hpII in binding to U1A RRM1. Mutational analysis of the closing base pair suggests it plays a minor role in binding and mainly prevents “breathing” of the loop. Lengthening the stem and nontarget part of the loop suggests that the increased negative charge of the RNA might slightly aid association. However, this is offset by an increase in dissociation, which may be caused by attraction of the RRM to nontarget parts of the RNA. Studies of a single stranded target and RNAs with untethered loops indicate that structure is not very relevant for association but is important for complex stability. In particular, breaking the link between the stem and the 5′ side of the loop greatly increases complex dissociation, presumably by hindering simultaneous contacts between the RRM and stem and loop nucleotides. While binding of U1A to a single stranded target is much weaker than to U1hpII, it occurs with nanomolar affinity, supporting recent evidence that binding of unstructured RNA by U1A has physiological significance. PMID:16738410
The role of RNA structure in the interaction of U1A protein with U1 hairpin II RNA.
Law, Michael J; Rice, Andrew J; Lin, Patti; Laird-Offringa, Ite A
2006-07-01
The N-terminal RNA Recognition Motif (RRM1) of the spliceosomal protein U1A interacting with its target U1 hairpin II (U1hpII) has been used as a paradigm for RRM-containing proteins interacting with their RNA targets. U1A binds to U1hpII via direct interactions with a 7-nucleotide (nt) consensus binding sequence at the 5' end of a 10-nt loop, and via hydrogen bonds with the closing C-G base pair at the top of the RNA stem. Using surface plasmon resonance (Biacore), we have examined the role of structural features of U1hpII in binding to U1A RRM1. Mutational analysis of the closing base pair suggests it plays a minor role in binding and mainly prevents "breathing" of the loop. Lengthening the stem and nontarget part of the loop suggests that the increased negative charge of the RNA might slightly aid association. However, this is offset by an increase in dissociation, which may be caused by attraction of the RRM to nontarget parts of the RNA. Studies of a single stranded target and RNAs with untethered loops indicate that structure is not very relevant for association but is important for complex stability. In particular, breaking the link between the stem and the 5' side of the loop greatly increases complex dissociation, presumably by hindering simultaneous contacts between the RRM and stem and loop nucleotides. While binding of U1A to a single stranded target is much weaker than to U1hpII, it occurs with nanomolar affinity, supporting recent evidence that binding of unstructured RNA by U1A has physiological significance.
Law, Michael J.; Linde, Michael E.; Chambers, Eric J.; Oubridge, Chris; Katsamba, Phinikoula S.; Nilsson, Lennart; Haworth, Ian S.; Laird-Offringa, Ite A.
2006-01-01
Previous kinetic investigations of the N-terminal RNA recognition motif (RRM) domain of spliceosomal protein U1A, interacting with its RNA target U1 hairpin II, provided experimental evidence for a ‘lure and lock’ model of binding in which electrostatic interactions first guide the RNA to the protein, and close range interactions then lock the two molecules together. To further investigate the ‘lure’ step, here we examined the electrostatic roles of two sets of positively charged amino acids in U1A that do not make hydrogen bonds to the RNA: Lys20, Lys22 and Lys23 close to the RNA-binding site, and Arg7, Lys60 and Arg70, located on ‘top’ of the RRM domain, away from the RNA. Surface plasmon resonance-based kinetic studies, supplemented with salt dependence experiments and molecular dynamics simulation, indicate that Lys20 predominantly plays a role in association, while nearby residues Lys22 and Lys23 appear to be at least as important for complex stability. In contrast, kinetic analyses of residues away from the RNA indicate that they have a minimal effect on association and stability. Thus, well-positioned positively charged residues can be important for both initial complex formation and complex maintenance, illustrating the multiple roles of electrostatic interactions in protein–RNA complexes. PMID:16407334
Cristofari, G; Gabus, C; Ficheux, D; Bona, M; Le Grice, S F; Darlix, J L
1999-12-17
Human immunodeficiency virus (HIV) and the distantly related yeast Ty3 retrotransposon encode reverse transcriptase (RT) and a nucleic acid-binding protein designated nucleocapsid protein (NCp) with either one or two zinc fingers, required for HIV-1 replication and Ty3 transposition, respectively. In vitro binding of HIV-1 NCp7 to viral 5' RNA and primer tRNA(3)(Lys) catalyzes formation of nucleoprotein complexes resembling the virion nucleocapsid. Nucleocapsid complex formation functions in viral RNA dimerization and tRNA annealing to the primer binding site (PBS). RT is recruited in these nucleoprotein complexes and synthesizes minus-strand cDNA initiated at the PBS. Recent results on yeast Ty3 have shown that the homologous NCp9 promotes annealing of primer tRNA(i)(Met) to a 5'-3' bipartite PBS, allowing RNA:tRNA dimer formation and initiation of cDNA synthesis at the 5' PBS (). To compare specific cDNA synthesis in a retrotransposon and HIV-1, we have established a Ty3 model system comprising Ty3 RNA with the 5'-3' PBS, primer tRNA(i)(Met), NCp9, and for the first time, highly purified Ty3 RT. Here we report that Ty3 RT is as active as retroviral HIV-1 or murine leukemia virus RT using a synthetic template-primer system. Moreover, and in contrast to what was found with retroviral RTs, retrotransposon Ty3 RT was unable to direct cDNA synthesis by self-priming. We also show that Ty3 nucleoprotein complexes were formed in vitro and that the N terminus of NCp9, but not the zinc finger, is required for complex formation, tRNA annealing to the PBS, RNA dimerization, and primer tRNA-directed cDNA synthesis by Ty3 RT. These results indicate that NCp9 chaperones bona fide cDNA synthesis by RT in the yeast Ty3 retrotransposon, as illustrated for NCp7 in HIV-1, reinforcing the notion that Ty3 NCp9 is an ancestor of HIV-1 NCp7.
Koloteva-Levine, Nadejda; Pinchasi, Dalia; Pereman, Idan; Zur, Amit; Brandeis, Michael; Elroy-Stein, Orna
2004-01-01
The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that mediates the proteolysis of cell cycle proteins in mitosis and G1. We used a yeast three-hybrid screen to identify proteins that interact with the internal ribosome entry site (IRES) of platelet-derived growth factor 2 mRNA. Surprisingly, this screen identified Apc5, although it does not harbor a classical RNA binding domain. We found that Apc5 binds the poly(A) binding protein (PABP), which directly binds the IRES element. PABP was found to enhance IRES-mediated translation, whereas Apc5 overexpression counteracted this effect. In addition to its association with the APC/C complex, Apc5 binds much heavier complexes and cosediments with the ribosomal fraction. In contrast to Apc3, which is associated only with the APC/C and remains intact during differentiation, Apc5 is degraded upon megakaryocytic differentiation in correlation with IRES activation. Expression of Apc5 in differentiated cells abolished IRES activation. This is the first report implying an additional role for an APC/C subunit, apart from its being part of the APC/C complex. PMID:15082755
RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.
Liu, Tina Y; Iavarone, Anthony T; Doudna, Jennifer A
2017-01-01
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.
Influence of Na+ and Mg2+ ions on RNA structures studied with molecular dynamics simulations.
Fischer, Nina M; Polêto, Marcelo D; Steuer, Jakob; van der Spoel, David
2018-06-01
The structure of ribonucleic acid (RNA) polymers is strongly dependent on the presence of, in particular Mg2+ cations to stabilize structural features. Only in high-resolution X-ray crystallography structures can ions be identified reliably. Here, we perform molecular dynamics simulations of 24 RNA structures with varying ion concentrations. Twelve of the structures were helical and the others complex folded. The aim of the study is to predict ion positions but also to evaluate the impact of different types of ions (Na+ or Mg2+) and the ionic strength on structural stability and variations of RNA. As a general conclusion Mg2+ is found to conserve the experimental structure better than Na+ and, where experimental ion positions are available, they can be reproduced with reasonable accuracy. If a large surplus of ions is present the added electrostatic screening makes prediction of binding-sites less reproducible. Distinct differences in ion-binding between helical and complex folded structures are found. The strength of binding (ΔG‡ for breaking RNA atom-ion interactions) is found to differ between roughly 10 and 26 kJ/mol for the different RNA atoms. Differences in stability between helical and complex folded structures and of the influence of metal ions on either are discussed.
Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.
2015-01-01
Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaru-ampornpan, Peera, E-mail: peera.jar@biotec.or.th; Narkpuk, Jaraspim; Wanitchang, Asawin
Highlights: •FluB nucleoprotein (BNP) can bind to FluA nucleoprotein (ANP). •BNP–ANP interaction inhibits FluA polymerase activity. •BNP binding prevents ANP from forming a functional FluA polymerase complex. •Nuclear localization of BNP is necessary for FluA polymerase inhibition. •Viral RNA is not required for the BNP–ANP interaction. -- Abstract: Upon co-infection with influenza B virus (FluB), influenza A virus (FluA) replication is substantially impaired. Previously, we have shown that the nucleoprotein of FluB (BNP) can inhibit FluA polymerase machinery, retarding the growth of FluA. However, the molecular mechanism underlying this inhibitory action awaited further investigation. Here, we provide evidence that BNPmore » hinders the proper formation of FluA polymerase complex by competitively binding to the nucleoprotein of FluA. To exert this inhibitory effect, BNP must be localized in the nucleus. The interaction does not require the presence of the viral RNA but needs an intact BNP RNA-binding motif. The results highlight the novel role of BNP as an anti-influenza A viral agent and provide insights into the mechanism of intertypic interference.« less
Interactions of Escherichia coli σ70 within the transcription elongation complex
Daube, Shirley S.; von Hippel, Peter H.
1999-01-01
A functional transcription elongation complex can be formed without passing through a promoter by adding a complementary RNA primer and core Escherichia coli RNA polymerase in trans to an RNA-primed synthetic bubble-duplex DNA framework. This framework consists of a double-stranded DNA sequence with an internal noncomplementary DNA “bubble” containing a hybridized RNA primer. On addition of core polymerase and the requisite NTPs, the RNA primer is extended in a process that manifests most of the properties of in vitro transcription elongation. This synthetic elongation complex can also be assembled by using holo rather than core RNA polymerase, and in this study we examine the interactions and fate of the σ70 specificity subunit of the holopolymerase in the assembly process. We show that the addition of holopolymerase to the bubble-duplex construct triggers the dissociation of the sigma factor from some complexes, whereas in others the RNA oligomer is released into solution instead. These results are consistent with an allosteric competition between σ70 and the nascent RNA strand within the elongation complex and suggest that both cannot be bound to the core polymerase simultaneously. However, the dissociation of σ70 from the complex can also be stimulated by binding of the holopolymerase to the DNA bubble duplex in the absence of a hybridized RNA primer, suggesting that the binding of the core polymerase to the bubble-duplex construct also triggers a conformational change that additionally weakens the sigma–core interaction. PMID:10411885
Computational biology of RNA interactions.
Dieterich, Christoph; Stadler, Peter F
2013-01-01
The biodiversity of the RNA world has been underestimated for decades. RNA molecules are key building blocks, sensors, and regulators of modern cells. The biological function of RNA molecules cannot be separated from their ability to bind to and interact with a wide space of chemical species, including small molecules, nucleic acids, and proteins. Computational chemists, physicists, and biologists have developed a rich tool set for modeling and predicting RNA interactions. These interactions are to some extent determined by the binding conformation of the RNA molecule. RNA binding conformations are approximated with often acceptable accuracy by sequence and secondary structure motifs. Secondary structure ensembles of a given RNA molecule can be efficiently computed in many relevant situations by employing a standard energy model for base pair interactions and dynamic programming techniques. The case of bi-molecular RNA-RNA interactions can be seen as an extension of this approach. However, unbiased transcriptome-wide scans for local RNA-RNA interactions are computationally challenging yet become efficient if the binding motif/mode is known and other external information can be used to confine the search space. Computational methods are less developed for proteins and small molecules, which bind to RNA with very high specificity. Binding descriptors of proteins are usually determined by in vitro high-throughput assays (e.g., microarrays or sequencing). Intriguingly, recent experimental advances, which are mostly based on light-induced cross-linking of binding partners, render in vivo binding patterns accessible yet require new computational methods for careful data interpretation. The grand challenge is to model the in vivo situation where a complex interplay of RNA binders competes for the same target RNA molecule. Evidently, bioinformaticians are just catching up with the impressive pace of these developments. Copyright © 2012 John Wiley & Sons, Ltd.
Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yeming; Opperman, Laura; Wickens, Marvin
2011-11-02
Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short regionmore » of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.« less
Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yeming; Opperman, Laura; Wickens, Marvin
2010-08-19
Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short regionmore » of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.« less
Mapping Hfq-RNA interaction surfaces using tryptophan fluorescence quenching
Robinson, Kirsten E.; Orans, Jillian; Kovach, Alexander R.; Link, Todd M.; Brennan, Richard G.
2014-01-01
Hfq is a posttranscriptional riboregulator and RNA chaperone that binds small RNAs and target mRNAs to effect their annealing and message-specific regulation in response to environmental stressors. Structures of Hfq-RNA complexes indicate that U-rich sequences prefer the proximal face and A-rich sequences the distal face; however, the Hfq-binding sites of most RNAs are unknown. Here, we present an Hfq-RNA mapping approach that uses single tryptophan-substituted Hfq proteins, all of which retain the wild-type Hfq structure, and tryptophan fluorescence quenching (TFQ) by proximal RNA binding. TFQ properly identified the respective distal and proximal binding of A15 and U6 RNA to Gram-negative Escherichia coli (Ec) Hfq and the distal face binding of (AA)3A, (AU)3A and (AC)3A to Gram-positive Staphylococcus aureus (Sa) Hfq. The inability of (GU)3G to bind the distal face of Sa Hfq reveals the (R-L)n binding motif is a more restrictive (A-L)n binding motif. Remarkably Hfq from Gram-positive Listeria monocytogenes (Lm) binds (GU)3G on its proximal face. TFQ experiments also revealed the Ec Hfq (A-R-N)n distal face-binding motif should be redefined as an (A-A-N)n binding motif. TFQ data also demonstrated that the 5′-untranslated region of hfq mRNA binds both the proximal and distal faces of Ec Hfq and the unstructured C-terminus. PMID:24288369
Thakur, Anil; Hinnebusch, Alan G
2018-05-01
The eukaryotic 43S preinitiation complex (PIC), bearing initiator methionyl transfer RNA (Met-tRNA i ) in a ternary complex (TC) with eukaryotic initiation factor 2 (eIF2)-GTP, scans the mRNA leader for an AUG codon in favorable context. AUG recognition evokes rearrangement from an open PIC conformation with TC in a "P OUT " state to a closed conformation with TC more tightly bound in a "P IN " state. eIF1 binds to the 40S subunit and exerts a dual role of enhancing TC binding to the open PIC conformation while antagonizing the P IN state, necessitating eIF1 dissociation for start codon selection. Structures of reconstituted PICs reveal juxtaposition of eIF1 Loop 2 with the Met-tRNA i D loop in the P IN state and predict a distortion of Loop 2 from its conformation in the open complex to avoid a clash with Met-tRNA i We show that Ala substitutions in Loop 2 increase initiation at both near-cognate UUG codons and AUG codons in poor context. Consistently, the D71A-M74A double substitution stabilizes TC binding to 48S PICs reconstituted with mRNA harboring a UUG start codon, without affecting eIF1 affinity for 40S subunits. Relatively stronger effects were conferred by arginine substitutions; and no Loop 2 substitutions perturbed the rate of TC loading on scanning 40S subunits in vivo. Thus, Loop 2-D loop interactions specifically impede Met-tRNA i accommodation in the P IN state without influencing the P OUT mode of TC binding; and Arg substitutions convert the Loop 2-tRNA i clash to an electrostatic attraction that stabilizes P IN and enhances selection of poor start codons in vivo.
Hacking RNA: Hakai promotes tumorigenesis by switching on the RNA-binding function of PSF
Figueroa, Angélica; Fujita, Yasuyuki; Gorospe, Myriam
2009-01-01
Hakai, an E3 ubiquitin ligase for the E-cadherin complex, plays a crucial role in lowering cell-cell contacts in epithelial cells, a hallmark feature of tumor progression. Recently, Hakai was also found to interact with PSF (PTB-associated splicing factor). While PSF can function as a DNA-binding protein with a tumor suppressive function, its association with Hakai promotes PSF’s RNA-binding ability and post-transcriptional influence on target mRNAs. Hakai overexpression enhanced the binding of PSF to mRNAs encoding cancer-related proteins, while knockdown of Hakai reduced the RNA-binding ability of PSF. Furthermore, the knockdown of PSF suppressed Hakai-induced cell proliferation. Thus, Hakai can affect the oncogenic phenotype both by altering E-cadherin-based intercellular adhesions and by increasing PSF’s ability to bind RNAs that promote cancer-related gene expression. PMID:19855157
Ni, Wen; Liu, Xiaohua; Tan, Lifeng
2018-05-24
Two chiral ruthenium(II) complexes containing ligand dppz-CO 2 Me (dppz-11-CO 2 Me = dipyrido[3,2-a,2',3'-c]phenazine-11-carboxylic acid methyl ester), Δ-[Ru(bpy) 2 dppz-11-CO 2 Me] 2+ (bpy = 2,2'-bipyridine; Δ-1) and Λ-[Ru(bpy) 2 dppz-11-CO 2 Me] 2+ (Λ-1), were synthesized and characterized. The binding of the two enantiomers with the triplex RNA poly(U)•poly(A)*poly(U) was carried out by various biophysical techniques. Analysis of the absorption and fluorescence features indicates that the binding strengths of the two enantiomers toward the triplex RNA differ only slightly from each other. The total increase in viscosity and shape of the curves for the triplex RNA with Λ-1 is similar to that with Δ-1, suggesting the binding modes of two enantiomers with the triplex RNA are intercalation. Thermal melting measurements indicate that the stabilization effects clearly depended on the concentrations of Λ-1 and Δ-1. However, the third-strand stabilizing effect of Δ-1 dramatically differs from that of Λ-1 when they interact with the chiral environment of the RNA triple at pH = 7.0 and [Na + ] = 35 mM. Combined with the CD (CD = circular dichroism) variations of the triplex RNA with either Λ-1 or Δ-1, the reason for their different triplex stabilization effects may originate from the two enantiomers through different orientations intercalating into nucleobases of the triplex. In addition, effects of higher ionic strengths on the triplex stabilization in the absence and presence of the two enantiomers have also been studied. The results presented here may be useful for understanding the binding properties of the triplex RNA with small molecule, particularly chiral ruthenium(II) complexes. Copyright © 2018 Elsevier Inc. All rights reserved.
Becker, Matthias M. M.; Lapouge, Karine; Segnitz, Bernd; Wild, Klemens; Sinning, Irmgard
2017-01-01
Co-translational protein targeting and membrane protein insertion is a fundamental process and depends on the signal recognition particle (SRP). In mammals, SRP is composed of the SRP RNA crucial for SRP assembly and function and six proteins. The two largest proteins SRP68 and SRP72 form a heterodimer and bind to a regulatory site of the SRP RNA. Despite their essential roles in the SRP pathway, structural information has been available only for the SRP68 RNA-binding domain (RBD). Here we present the crystal structures of the SRP68 protein-binding domain (PBD) in complex with SRP72-PBD and of the SRP72-RBD bound to the SRP S domain (SRP RNA, SRP19 and SRP68) detailing all interactions of SRP72 within SRP. The SRP72-PBD is a tetratricopeptide repeat, which binds an extended linear motif of SRP68 with high affinity. The SRP72-RBD is a flexible peptide crawling along the 5e- and 5f-loops of SRP RNA. A conserved tryptophan inserts into the 5e-loop forming a novel type of RNA kink-turn stabilized by a potassium ion, which we define as K+-turn. In addition, SRP72-RBD remodels the 5f-loop involved in ribosome binding and visualizes SRP RNA plasticity. Docking of the S domain structure into cryo-electron microscopy density maps reveals multiple contact sites between SRP68/72 and the ribosome, and explains the role of SRP72 in the SRP pathway. PMID:27899666
Trans‐acting translational regulatory RNA binding proteins
Harvey, Robert F.; Smith, Tom S.; Mulroney, Thomas; Queiroz, Rayner M. L.; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa
2018-01-01
The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans‐acting regulatory RNA‐binding proteins (RBPs) are necessary to provide mRNA‐specific translation, and these interact with 5′ and 3′ untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans‐acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans‐acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans‐acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: 1RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes2Translation > Translation Regulation3Translation > Translation Mechanisms PMID:29341429
A Distinct and Parallel Pathway for the Nuclear Import of an mRNA-binding Protein
Pemberton, Lucy F.; Rosenblum, Jonathan S.; Blobel, Günter
1997-01-01
Three independent pathways of nuclear import have so far been identified in yeast, each mediated by cognate nuclear transport factors, or karyopherins. Here we have characterized a new pathway to the nucleus, mediated by Mtr10p, a protein first identified in a screen for strains defective in polyadenylated RNA export. Mtr10p is shown to be responsible for the nuclear import of the shuttling mRNA-binding protein Npl3p. A complex of Mtr10p and Npl3p was detected in cytosol, and deletion of Mtr10p was shown to lead to the mislocalization of nuclear Npl3p to the cytoplasm, correlating with a block in import. Mtr10p bound peptide repeat-containing nucleoporins and Ran, suggesting that this import pathway involves a docking step at the nuclear pore complex and is Ran dependent. This pathway of Npl3p import is distinct and does not appear to overlap with another known import pathway for an mRNA-binding protein. Thus, at least two parallel pathways function in the import of mRNA-binding proteins, suggesting the need for the coordination of these pathways. PMID:9412460
Cellular functions of the microprocessor.
Macias, Sara; Cordiner, Ross A; Cáceres, Javier F
2013-08-01
The microprocessor is a complex comprising the RNase III enzyme Drosha and the double-stranded RNA-binding protein DGCR8 (DiGeorge syndrome critical region 8 gene) that catalyses the nuclear step of miRNA (microRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as an endonuclease. Recent global analyses of microprocessor and Dicer proteins have suggested novel functions for these components independent of their role in miRNA biogenesis. A HITS-CLIP (high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation) experiment designed to identify novel substrates of the microprocessor revealed that this complex binds and regulates a large variety of cellular RNAs. The microprocessor-mediated cleavage of several classes of RNAs not only regulates transcript levels, but also modulates alternative splicing events, independently of miRNA function. Importantly, DGCR8 can also associate with other nucleases, suggesting the existence of alternative DGCR8 complexes that may regulate the fate of a subset of cellular RNAs. The aim of the present review is to provide an overview of the diverse functional roles of the microprocessor.
RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA
Cui, Yalei; Huang, Tianzhi; Zhang, Xiaobo
2015-01-01
MicroRNAs (miRNAs) integrate with Argonaut (Ago) to create the RNA-induced silencing complex, and regulate gene expression by silencing target mRNAs. RNA editing of miRNA may affect miRNA processing, assembly of the Ago complex and target mRNA binding. However, the function of edited miRNA, assembled within the Ago complex, has not been extensively investigated. In this study, sequence analysis of the Ago complex of Marsupenaeus japonicus shrimp infected with white spot syndrome virus (WSSV) revealed that host ADAR (adenosine deaminase acting on RNA) catalysed A-to-I RNA editing of a viral miRNA (WSSV-miR-N12) at the +16 site. This editing of the non-seed sequence did not affect association of the edited miRNA with the Ago protein, but inhibited interaction between the miRNA and its target gene (wsv399). The WSSV early gene wsv399 inhibited WSSV infection. As a result, the RNA editing of miRNA caused virus latency. Our results highlight a novel example of miRNA editing in the miRNA-induced silencing complex. PMID:26674414
Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase.
Kaufmann, Isabelle; Martin, Georges; Friedlein, Arno; Langen, Hanno; Keller, Walter
2004-02-11
In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity.
Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase
Kaufmann, Isabelle; Martin, Georges; Friedlein, Arno; Langen, Hanno; Keller, Walter
2004-01-01
In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity. PMID:14749727
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Daisy W.; Borek, Dominika; Luthra, Priya
During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20–48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNP NTD complex, solved to 3.7 Å resolution, reveals how NPBP peptidemore » occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development.« less
Leung, Daisy W.; Borek, Dominika; Luthra, Priya; ...
2015-04-01
During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20–48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNP NTD complex, solved to 3.7 Å resolution, reveals how NPBP peptidemore » occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development.« less
Leung, Daisy W; Borek, Dominika; Luthra, Priya; Binning, Jennifer M; Anantpadma, Manu; Liu, Gai; Harvey, Ian B; Su, Zhaoming; Endlich-Frazier, Ariel; Pan, Juanli; Shabman, Reed S; Chiu, Wah; Davey, Robert A; Otwinowski, Zbyszek; Basler, Christopher F; Amarasinghe, Gaya K
2015-04-21
During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20-48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNPNTD complex, solved to 3.7 Å resolution, reveals how NPBP peptide occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Lintner, Nathanael G.; Kerou, Melina; Brumfield, Susan K.; Graham, Shirley; Liu, Huanting; Naismith, James H.; Sdano, Matthew; Peng, Nan; She, Qunxin; Copié, Valérie; Young, Mark J.; White, Malcolm F.; Lawrence, C. Martin
2011-01-01
In response to viral infection, many prokaryotes incorporate fragments of virus-derived DNA into loci called clustered regularly interspaced short palindromic repeats (CRISPRs). The loci are then transcribed, and the processed CRISPR transcripts are used to target invading viral DNA and RNA. The Escherichia coli “CRISPR-associated complex for antiviral defense” (CASCADE) is central in targeting invading DNA. Here we report the structural and functional characterization of an archaeal CASCADE (aCASCADE) from Sulfolobus solfataricus. Tagged Csa2 (Cas7) expressed in S. solfataricus co-purifies with Cas5a-, Cas6-, Csa5-, and Cas6-processed CRISPR-RNA (crRNA). Csa2, the dominant protein in aCASCADE, forms a stable complex with Cas5a. Transmission electron microscopy reveals a helical complex of variable length, perhaps due to substoichiometric amounts of other CASCADE components. A recombinant Csa2-Cas5a complex is sufficient to bind crRNA and complementary ssDNA. The structure of Csa2 reveals a crescent-shaped structure unexpectedly composed of a modified RNA-recognition motif and two additional domains present as insertions in the RNA-recognition motif. Conserved residues indicate potential crRNA- and target DNA-binding sites, and the H160A variant shows significantly reduced affinity for crRNA. We propose a general subunit architecture for CASCADE in other bacteria and Archaea. PMID:21507944
Lintner, Nathanael G; Kerou, Melina; Brumfield, Susan K; Graham, Shirley; Liu, Huanting; Naismith, James H; Sdano, Matthew; Peng, Nan; She, Qunxin; Copié, Valérie; Young, Mark J; White, Malcolm F; Lawrence, C Martin
2011-06-17
In response to viral infection, many prokaryotes incorporate fragments of virus-derived DNA into loci called clustered regularly interspaced short palindromic repeats (CRISPRs). The loci are then transcribed, and the processed CRISPR transcripts are used to target invading viral DNA and RNA. The Escherichia coli "CRISPR-associated complex for antiviral defense" (CASCADE) is central in targeting invading DNA. Here we report the structural and functional characterization of an archaeal CASCADE (aCASCADE) from Sulfolobus solfataricus. Tagged Csa2 (Cas7) expressed in S. solfataricus co-purifies with Cas5a-, Cas6-, Csa5-, and Cas6-processed CRISPR-RNA (crRNA). Csa2, the dominant protein in aCASCADE, forms a stable complex with Cas5a. Transmission electron microscopy reveals a helical complex of variable length, perhaps due to substoichiometric amounts of other CASCADE components. A recombinant Csa2-Cas5a complex is sufficient to bind crRNA and complementary ssDNA. The structure of Csa2 reveals a crescent-shaped structure unexpectedly composed of a modified RNA-recognition motif and two additional domains present as insertions in the RNA-recognition motif. Conserved residues indicate potential crRNA- and target DNA-binding sites, and the H160A variant shows significantly reduced affinity for crRNA. We propose a general subunit architecture for CASCADE in other bacteria and Archaea.
Hong, Suji; Ka, Donghyun; Yoon, Seo Jeong; Suh, Nayoung; Jeong, Migyeong; Suh, Jeong-Yong; Bae, Euiyoung
2018-02-23
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide microbial adaptive immunity against bacteriophages. In type I-F CRISPR-Cas systems, multiple Cas proteins (Csy1-4) compose a surveillance complex (Csy complex) with CRISPR RNA (crRNA) for target recognition. Here, we report the biochemical characterization of the Csy1-Csy2 subcomplex from Xanthomonas albilineans , including the analysis of its interaction with crRNA and AcrF2, an anti-CRISPR (Acr) protein from a phage that infects Pseudomonas aeruginosa The X. albilineans Csy1 and Csy2 proteins (XaCsy1 and XaCsy2, respectively) formed a stable heterodimeric complex that specifically bound the 8-nucleotide (nt) 5'-handle of the crRNA. In contrast, the XaCsy1-XaCsy2 heterodimer exhibited reduced affinity for the 28-nt X. albilineans CRISPR repeat RNA containing the 5'-handle sequence. Chromatographic and calorimetric analyses revealed tight binding between the Acr protein from the P. aeruginosa phage and the heterodimeric subunit of the X. albilineans Csy complex, suggesting that AcrF2 recognizes conserved features of Csy1-Csy2 heterodimers. We found that neither XaCsy1 nor XaCsy2 alone forms a stable complex with AcrF2 and the 5'-handle RNA, indicating that XaCsy1-XaCsy2 heterodimerization is required for binding them. We also solved the crystal structure of AcrF2 to a resolution of 1.34 Å, enabling a more detailed structural analysis of the residues involved in the interactions with the Csy1-Csy2 heterodimer. Our results provide information about the order of events during the formation of the multisubunit crRNA-guided surveillance complex and suggest that the Acr protein inactivating type I-F CRISPR-Cas systems has broad specificity. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Inhibition of Poly(A)-binding protein with a synthetic RNA mimic reduces pain sensitization in mice.
Barragán-Iglesias, Paulino; Lou, Tzu-Fang; Bhat, Vandita D; Megat, Salim; Burton, Michael D; Price, Theodore J; Campbell, Zachary T
2018-01-02
Nociceptors rely on cap-dependent translation to rapidly induce protein synthesis in response to pro-inflammatory signals. Comparatively little is known regarding the role of the regulatory factors bound to the 3' end of mRNA in nociceptor sensitization. Poly(A)-binding protein (PABP) stimulates translation initiation by bridging the Poly(A) tail to the eukaryotic initiation factor 4F complex associated with the mRNA cap. Here, we use unbiased assessment of PABP binding specificity to generate a chemically modified RNA-based competitive inhibitor of PABP. The resulting RNA mimic, which we designated as the Poly(A) SPOT-ON, is more stable than unmodified RNA and binds PABP with high affinity and selectivity in vitro. We show that injection of the Poly(A) SPOT-ON at the site of an injury can attenuate behavioral response to pain. Collectively, these results suggest that PABP is integral for nociceptive plasticity. The general strategy described here provides a broad new source of mechanism-based inhibitors for RNA-binding proteins and is applicable for in vivo studies.
Sex-lethal promotes nuclear retention of msl2 mRNA via interactions with the STAR protein HOW
Graindorge, Antoine; Carré, Clément; Gebauer, Fátima
2013-01-01
Female-specific repression of male-specific-lethal-2 (msl2) mRNA in Drosophila melanogaster provides a paradigm for coordinated control of gene expression by RNA-binding complexes. Repression is orchestrated by Sex-lethal (SXL), which binds to the 5′ and 3′ untranslated regions (UTRs) of the mRNA and inhibits splicing in the nucleus and subsequent translation in the cytoplasm. Here we show that SXL ensures msl2 silencing by yet a third mechanism that involves inhibition of nucleocytoplasmic transport of msl2 mRNA. To identify SXL cofactors in msl2 regulation, we devised a two-step purification method termed GRAB (GST pull-down and RNA affinity binding) and identified Held-Out-Wings (HOW) as a component of the msl2 5′ UTR-associated complex. HOW directly interacts with SXL and binds to two sequence elements in the msl2 5′ UTR. Depletion of HOW reduces the capacity of SXL to repress the expression of msl2 reporters without affecting SXL-mediated regulation of splicing or translation. Instead, HOW is required for SXL to retain msl2 transcripts in the nucleus. Cooperation with SXL confers a sex-specific role to HOW. Our results uncover a novel function of SXL in nuclear mRNA retention and identify HOW as a mediator of this function. PMID:23788626
Hemmes, Hans; Lakatos, Lóránt; Goldbach, Rob; Burgyán, József; Prins, Marcel
2007-01-01
RNA silencing plays a key role in antiviral defense as well as in developmental processes in plants and insects. Negative strand RNA viruses such as the plant virus Rice hoja blanca tenuivirus (RHBV) replicate in plants and in their insect transmission vector. Like most plant-infecting viruses, RHBV encodes an RNA silencing suppressor, the NS3 protein, and here it is demonstrated that this protein is capable of suppressing RNA silencing in both plants and insect cells. Biochemical analyses showed that NS3 efficiently binds siRNA as well as miRNA molecules. Binding of NS3 is greatly influenced by the size of small RNA molecules, as 21 nucleotide (nt) siRNA molecules are bound > 100 times more efficiently than 26 nt species. Competition assays suggest that the activity of NS3 is based on binding to siRNAs prior to strand separation during the assembly of the RNA-induced silencing complex. In addition, NS3 has a high affinity for miRNA/miRNA* duplexes, indicating that its activity might also interfere with miRNA-regulated gene expression in both insects and plants. PMID:17513697
Iyaguchi, Daisuke; Yao, Min; Tanaka, Isao; Toyota, Eiko
2009-01-01
Adenylate/uridylate-rich elements (AREs), which are found in the 3′-untranslated region (UTR) of many mRNAs, influence the stability of cytoplasmic mRNA. HuR (human antigen R) binds to AREs and regulates various genes. In order to reveal the RNA-recognition mechanism of HuR protein, an RNA-binding region of human HuR containing two N-terminal RNA-recognition motif domains bound to an 11-base RNA fragment has been crystallized. The crystals belonged to space group P212121, with unit-cell parameters a = 42.4, b = 44.9, c = 91.1 Å. X-ray diffraction data were collected to 1.8 Å resolution. PMID:19255485
Interaction of antitumor drug Sn(CH 3) 2Cl 2 with DNA and RNA
NASA Astrophysics Data System (ADS)
Nafisi, Shohreh; Sobhanmanesh, Amir; Esm-Hosseini, Majid; Alimoghaddam, Kamran; Tajmir-Riahi, Heidar Ali
2005-08-01
Sn(CH3)2Cl2 exerts its antitumor activity in a specific way. Unlike anticancer cis-Pt(NH3)2Cl2 drug which binds strongly to the nitrogen atoms of DNA bases, Sn(CH3)2Cl2 shows no major affinity towards base binding. Thus, the mechanism of action by which tinorganometallic compounds exert antitumor activity would be different from that of the cisplatin drug. The aim of this study was to examine the binding of Sn(CH3)2Cl2 with calf thymus DNA and yeast RNA in aqueous solutions at pH 7.1-6.6 with constant concentrations of DNA and RNA and various molar ratios of Sn(CH3)2Cl2/DNA (phosphate) and Sn(CH3)2Cl2/RNA of 1/40, 1/20, 1/10, 1/5. Fourier transform infrared (FTIR) and UV-visible difference spectroscopic methods were used to determine the Sn(CH3)2Cl2 binding mode, binding constant, sequence selectivity and structural variations of Sn(CH3)2Cl2/DNA and Sn(CH3)2Cl2/RNA complexes in aqueous solution. Sn(CH3)2Cl2 hydrolyzes in water to give Sn(CH3)2(OH)2 and [Sn(CH3)2(OH)(H2O)n]+ species. Spectroscopic evidence showed that interaction occurred mainly through (CH3)2Sn(IV) hydroxide and polynucleotide backbone phosphate group with overall binding constant of K(Sn(CH3)2Cl2-DNA)=1.47×105 M-1 and K(Sn(CH3)2Cl2-RNA)=7.33×105 M-1. Sn(CH3)2Cl2 induced no biopolymer conformational changes with DNA remaining in the B-family structure and RNA in A-conformation upon drug complexation.
Structural insights into the rhabdovirus transcription/replication complex.
Ivanov, Ivan; Yabukarski, Filip; Ruigrok, Rob W H; Jamin, Marc
2011-12-01
The rhabdoviruses have a non-segmented single stranded negative-sense RNA genome. Their multiplication in a host cell requires three viral proteins in addition to the viral RNA genome. The nucleoprotein (N) tightly encapsidates the viral RNA, and the N-RNA complex serves as the template for both transcription and replication. The viral RNA-dependent RNA polymerase is a two subunit complex that consists of a large subunit, L, and a non-catalytic cofactor, the phosphoprotein, P. P also acts as a chaperone of nascent RNA-free N by forming a N(0)-P complex that prevents N from binding to cellular RNAs and from polymerizing in the absence of RNA. Here, we discuss the recent molecular and structural studies of individual components and multi-molecular complexes that are involved in the transcription/replication complex of these viruses with regard to their implication in viral transcription and replication. Copyright © 2011 Elsevier B.V. All rights reserved.
Lejal, Nathalie; Tarus, Bogdan; Bouguyon, Edwige; Chenavas, Sylvie; Bertho, Nicolas; Delmas, Bernard; Ruigrok, Rob W. H.; Di Primo, Carmelo
2013-01-01
The nucleoprotein (NP) binds the viral RNA genome and associates with the polymerase in a ribonucleoprotein complex (RNP) required for transcription and replication of influenza A virus. NP has no cellular counterpart, and the NP sequence is highly conserved, which led to considering NP a hot target in the search for antivirals. We report here that monomeric nucleoprotein can be inhibited by a small molecule binding in its RNA binding groove, resulting in a novel antiviral against influenza A virus. We identified naproxen, an anti-inflammatory drug that targeted the nucleoprotein to inhibit NP-RNA association required for NP function, by virtual screening. Further docking and molecular dynamics (MD) simulations identified in the RNA groove two NP-naproxen complexes of similar levels of interaction energy. The predicted naproxen binding sites were tested using the Y148A, R152A, R355A, and R361A proteins carrying single-point mutations. Surface plasmon resonance, fluorescence, and other in vitro experiments supported the notion that naproxen binds at a site identified by MD simulations and showed that naproxen competed with RNA binding to wild-type (WT) NP and protected active monomers of the nucleoprotein against proteolytic cleavage. Naproxen protected Madin-Darby canine kidney (MDCK) cells against viral challenges with the H1N1 and H3N2 viral strains and was much more effective than other cyclooxygenase inhibitors in decreasing viral titers of MDCK cells. In a mouse model of intranasal infection, naproxen treatment decreased the viral titers in mice lungs. In conclusion, naproxen is a promising lead compound for novel antivirals against influenza A virus that targets the nucleoprotein in its RNA binding groove. PMID:23459490
The H/ACA RNP assembly factor SHQ1 functions as an RNA mimic.
Walbott, Hélène; Machado-Pinilla, Rosario; Liger, Dominique; Blaud, Magali; Réty, Stéphane; Grozdanov, Petar N; Godin, Kate; van Tilbeurgh, Herman; Varani, Gabriele; Meier, U Thomas; Leulliot, Nicolas
2011-11-15
SHQ1 is an essential assembly factor for H/ACA ribonucleoproteins (RNPs) required for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. SHQ1 binds dyskerin/NAP57, the catalytic subunit of human H/ACA RNPs, and this interaction is modulated by mutations causing X-linked dyskeratosis congenita. We report the crystal structure of the C-terminal domain of yeast SHQ1, Shq1p, and its complex with yeast dyskerin/NAP57, Cbf5p, lacking its catalytic domain. The C-terminal domain of Shq1p interacts with the RNA-binding domain of Cbf5p and, through structural mimicry, uses the RNA-protein-binding sites to achieve a specific protein-protein interface. We propose that Shq1p operates as a Cbf5p chaperone during RNP assembly by acting as an RNA placeholder, thereby preventing Cbf5p from nonspecific RNA binding before association with an H/ACA RNA and the other core RNP proteins.
RNA binding specificity of Ebola virus transcription factor VP30.
Schlereth, Julia; Grünweller, Arnold; Biedenkopf, Nadine; Becker, Stephan; Hartmann, Roland K
2016-09-01
The transcription factor VP30 of the non-segmented RNA negative strand Ebola virus balances viral transcription and replication. Here, we comprehensively studied RNA binding by VP30. Using a novel VP30:RNA electrophoretic mobility shift assay, we tested truncated variants of 2 potential natural RNA substrates of VP30 - the genomic Ebola viral 3'-leader region and its complementary antigenomic counterpart (each ∼155 nt in length) - and a series of other non-viral RNAs. Based on oligonucleotide interference, the major VP30 binding region on the genomic 3'-leader substrate was assigned to the internal expanded single-stranded region (∼ nt 125-80). Best binding to VP30 was obtained with ssRNAs of optimally ∼ 40 nt and mixed base composition; underrepresentation of purines or pyrimidines was tolerated, but homopolymeric sequences impaired binding. A stem-loop structure, particularly at the 3'-end or positioned internally, supports stable binding to VP30. In contrast, dsRNA or RNAs exposing large internal loops flanked by entirely helical arms on both sides are not bound. Introduction of a 5´-Cap(0) structure impaired VP30 binding. Also, ssDNAs bind substantially weaker than isosequential ssRNAs and heparin competes with RNA for binding to VP30, indicating that ribose 2'-hydroxyls and electrostatic contacts of the phosphate groups contribute to the formation of VP30:RNA complexes. Our results indicate a rather relaxed RNA binding specificity of filoviral VP30, which largely differs from that of the functionally related transcription factor of the Paramyxoviridae which binds to ssRNAs as short as 13 nt with a preference for oligo(A) sequences.
Antagonists of the miRNA-Argonaute 2 Protein Complex: Anti-miR-AGOs.
Schmidt, Marco F; Korb, Oliver; Abell, Chris
2017-01-01
microRNAs (miRNAs) have been identified as high-value drug targets. A widely applied strategy in miRNA inhibition is the use of antisense agents. However, it has been shown that oligonucleotides are poorly cell permeable because of their complex chemical structure and due to their negatively charged backbone. Consequently, the general application of oligonucleotides in therapy is limited. Since miRNAs' functions are executed exclusively by the Argonaute 2 protein, we therefore describe a protocol for the design of a novel miRNA inhibitor class: antagonists of the miRNA-Argonaute 2 protein complex, so-called anti-miR-AGOs, that not only block the crucial binding site of the target miRNA but also bind to the protein's active site. Due to their lower molecular weight and, thus, more drug-like chemical structure, the novel inhibitor class may show better pharmacokinetic properties than reported oligonucleotide inhibitors, enabling them for potential therapeutic use.
Choudhury, Nila Roy; Michlewski, Gracjan
2018-06-08
RNA-binding proteins mediate and control gene expression. As some examples, they regulate pre-mRNA synthesis and processing; mRNA localisation, translation and decay; and microRNA (miRNA) biogenesis and function. Here, we present a detailed protocol for RNA pull-down coupled to stable isotope labelling by amino acids in cell culture (SILAC) mass spectrometry (RP-SMS) that enables quantitative, fast and specific detection of RNA-binding proteins that regulate miRNA biogenesis. In general, this method allows for the identification of RNA-protein complexes formed using in vitro or chemically synthesized RNAs and protein extracts derived from cultured cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Systematic discovery of Xist RNA binding proteins
Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A.; Bharadwaj, Maheetha; Calabrese, J. Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y.
2015-01-01
Summary Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA- protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3′ RNA processing machinery. Xist, an essential lncRNA for X-chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK that participates in Xist-mediated gene silencing and histone modifications, but not Xist localization and Drosophila Split ends homolog Spen that interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing. PMID:25843628
Roles of yeast eIF2α and eIF2β subunits in the binding of the initiator methionyl-tRNA
Naveau, Marie; Lazennec-Schurdevin, Christine; Panvert, Michel; Dubiez, Etienne; Mechulam, Yves; Schmitt, Emmanuelle
2013-01-01
Heterotrimeric eukaryotic/archaeal translation initiation factor 2 (e/aIF2) binds initiator methionyl-tRNA and plays a key role in the selection of the start codon on messenger RNA. tRNA binding was extensively studied in the archaeal system. The γ subunit is able to bind tRNA, but the α subunit is required to reach high affinity whereas the β subunit has only a minor role. In Saccharomyces cerevisiae however, the available data suggest an opposite scenario with β having the most important contribution to tRNA-binding affinity. In order to overcome difficulties with purification of the yeast eIF2γ subunit, we designed chimeric eIF2 by assembling yeast α and β subunits to archaeal γ subunit. We show that the β subunit of yeast has indeed an important role, with the eukaryote-specific N- and C-terminal domains being necessary to obtain full tRNA-binding affinity. The α subunit apparently has a modest contribution. However, the positive effect of α on tRNA binding can be progressively increased upon shortening the acidic C-terminal extension. These results, together with small angle X-ray scattering experiments, support the idea that in yeast eIF2, the tRNA molecule is bound by the α subunit in a manner similar to that observed in the archaeal aIF2–GDPNP–tRNA complex. PMID:23193270
Melnikov, Sergey V.; Söll, Dieter; Steitz, Thomas A.
2016-01-01
Abstract Cisplatin is a widely prescribed anticancer drug, which triggers cell death by covalent binding to a broad range of biological molecules. Among cisplatin targets, cellular RNAs remain the most poorly characterized molecules. Although cisplatin was shown to inactivate essential RNAs, including ribosomal, spliceosomal and telomeric RNAs, cisplatin binding sites in most RNA molecules are unknown, and therefore it remains challenging to study how modifications of RNA by cisplatin contributes to its toxicity. Here we report a 2.6Å-resolution X-ray structure of cisplatin-modified 70S ribosome, which describes cisplatin binding to the ribosome and provides the first nearly atomic model of cisplatin–RNA complex. We observe nine cisplatin molecules bound to the ribosome and reveal consensus structural features of the cisplatin-binding sites. Two of the cisplatin molecules modify conserved functional centers of the ribosome—the mRNA-channel and the GTPase center. In the mRNA-channel, cisplatin intercalates between the ribosome and the messenger RNA, suggesting that the observed inhibition of protein synthesis by cisplatin is caused by impaired mRNA-translocation. Our structure provides an insight into RNA targeting and inhibition by cisplatin, which can help predict cisplatin-binding sites in other cellular RNAs and design studies to elucidate a link between RNA modifications by cisplatin and cisplatin toxicity. PMID:27079977
Grasso, Gianvito; Deriu, Marco Agostino; Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea
2017-01-01
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.
Patrulea, Viorica; Borchard, Gerrit; Möller, Michael; Danani, Andrea
2017-01-01
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine. PMID:29088239
Pagano, Mafalda; Castagnolo, Daniele; Bernardini, Martina; Fallacara, Anna Lucia; Laurenzana, Ilaria; Deodato, Davide; Kessler, Ulrich; Pilger, Beatrice; Stergiou, Lilli; Strunze, Stephan; Tintori, Cristina; Botta, Maurizio
2014-01-01
The influenza RNA polymerase complex, which consists of the three subunits PA, PB1, and PB2, is a promising target for the development of new antiviral drugs. A large library of benzofurazan compounds was synthesized and assayed against influenza virus A/WSN/33 (H1N1). Most of the new derivatives were found to act by inhibiting the viral RNA polymerase complex through disruption of the complex formed between subunits PA and PB1. Docking studies were also performed to elucidate the binding mode of benzofurazans within the PB1 binding site in PA and to identify amino acids involved in their mechanism of action. The predicted binding pose is fully consistent with the biological data and lays the foundation for the rational development of more effective PA-PB1 inhibitors. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lalev, A I; Abeyrathne, P D; Nazar, R N
2000-09-08
The interdependency of steps in the processing of pre-rRNA in Schizosaccharomyces pombe suggests that RNA processing, at least in part, acts as a quality control mechanism which helps assure that only functional RNA is incorporated into mature ribosomes. To determine further the role of the transcribed spacer regions in rRNA processing and to detect interactions which underlie the interdependencies, the ITS1 sequence was examined for its ability to form ribonucleoprotein complexes with cellular proteins. When incubated with protein extract, the spacer formed a specific large RNP. This complex was stable to fractionation by agarose or polyacrylamide gel electrophoresis. Modification exclusion analyses indicated that the proteins interact with a helical domain which is conserved in the internal transcribed spacers. Mutagenic analyses confirmed an interaction with this sequence and indicated that this domain is critical to the efficient maturation of the precursor RNA. The protein constituents, purified by affinity chromatography using the ITS1 sequence, retained an ability to form stable RNP. Protein analyses of gel purified complex, prepared with affinity-purified proteins, indicated at least 20 protein components ranging in size from 20-200 kDa. Peptide mapping by Maldi-Toff mass spectroscopy identified eight hypothetical RNA binding proteins which included four different RNA-binding motifs. Another protein was putatively identified as a pseudouridylate synthase. Additional RNA constituents were not detected. The significance of this complex with respect to rRNA maturation and interdependence in rRNA processing is discussed. Copyright 2000 Academic Press.
Zhang, Hong; Liu, Xuewen; He, Xiaojun; Liu, Ying; Tan, Lifeng
2014-11-01
There is renewed interest in investigating triple helices because these novel structures have been implicated as a possible means of controlling cellular processes by endogenous or exogenous mechanisms. Due to the Hoogsteen base pairing, triple helices are, however, thermodynamically less stable than the corresponding duplexes. The poor stability of triple helices limits their practical applications under physiological conditions. In contrast to DNA triple helices, small molecules stabilizing RNA triple helices at present are less well established. Furthermore, most of these studies are limited to organic compounds and, to a far lesser extent, to metal complexes. In this work, two Ru(II) complexes, [Ru(bpy)2(btip)](2+) (Ru1) and [Ru(phen)2(btip)](2+) (Ru2), have been synthesized and characterized. The binding properties of the two metal complexes with the triple RNA poly(U)˙poly(A)*poly(U) were studied by various biophysical and density functional theory methods. The main results obtained here suggest that the slight binding difference in Ru1 and Ru2 may be attributed to the planarity of the intercalative ligand and the LUMO level of Ru(II) complexes. This study further advances our knowledge on the triplex RNA-binding by metal complexes, particularly Ru(II) complexes.
Interactions of 2’-O-methyl oligoribonucleotides with the RNA models of the 30S subunit A-site
Jasiński, Maciej; Kulik, Marta; Wojciechowska, Monika; Stolarski, Ryszard
2018-01-01
Synthetic oligonucleotides targeting functional regions of the prokaryotic rRNA could be promising antimicrobial agents. Indeed, such oligonucleotides were proven to inhibit bacterial growth. 2’-O-methylated (2’-O-Me) oligoribonucleotides with a sequence complementary to the decoding site in 16S rRNA were reported as inhibitors of bacterial translation. However, the binding mode and structures of the formed complexes, as well as the level of selectivity of the oligonucleotides between the prokaryotic and eukaryotic target, were not determined. We have analyzed three 2’-O-Me oligoribonucleotides designed to hybridize with the models of the prokaryotic rRNA containing two neighboring aminoglycoside binding pockets. One pocket is the paromomycin/kanamycin binding site corresponding to the decoding site in the small ribosomal subunit and the other one is the close-by hygromycin B binding site whose dynamics has not been previously reported. Molecular dynamics (MD) simulations, as well as isothermal titration calorimetry, gel electrophoresis and spectroscopic studies have shown that the eukaryotic rRNA model is less conformationally stable (in terms of hydrogen bonds and stacking interactions) than the corresponding prokaryotic one. In MD simulations of the eukaryotic construct, the nucleotide U1498, which plays an important role in correct positioning of mRNA during translation, is flexible and spontaneously flips out into the solvent. In solution studies, the 2’-O-Me oligoribonucleotides did not interact with the double stranded rRNA models but all formed stable complexes with the single-stranded prokaryotic target. 2’-O-Me oligoribonucleotides with one and two mismatches bound less tightly to the eukaryotic target. This shows that at least three mismatches between the 2’-O-Me oligoribonucleotide and eukaryotic rRNA are required to ensure target selectivity. The results also suggest that, in the ribosome environment, the strand invasion is the preferred binding mode of 2’-O-Me oligoribonucleotides targeting the aminoglycoside binding sites in 16S rRNA. PMID:29351348
The L7Ae protein binds to two kink-turns in the Pyrococcus furiosus RNase P RNA
Lai, Stella M.; Lai, Lien B.; Foster, Mark P.; Gopalan, Venkat
2014-01-01
The RNA-binding protein L7Ae, known for its role in translation (as part of ribosomes) and RNA modification (as part of sn/oRNPs), has also been identified as a subunit of archaeal RNase P, a ribonucleoprotein complex that employs an RNA catalyst for the Mg2+-dependent 5′ maturation of tRNAs. To better understand the assembly and catalysis of archaeal RNase P, we used a site-specific hydroxyl radical-mediated footprinting strategy to pinpoint the binding sites of Pyrococcus furiosus (Pfu) L7Ae on its cognate RNase P RNA (RPR). L7Ae derivatives with single-Cys substitutions at residues in the predicted RNA-binding interface (K42C/C71V, R46C/C71V, V95C/C71V) were modified with an iron complex of EDTA-2-aminoethyl 2-pyridyl disulfide. Upon addition of hydrogen peroxide and ascorbate, these L7Ae-tethered nucleases were expected to cleave the RPR at nucleotides proximal to the EDTA-Fe–modified residues. Indeed, footprinting experiments with an enzyme assembled with the Pfu RPR and five protein cofactors (POP5, RPP21, RPP29, RPP30 and L7Ae–EDTA-Fe) revealed specific RNA cleavages, localizing the binding sites of L7Ae to the RPR's catalytic and specificity domains. These results support the presence of two kink-turns, the structural motifs recognized by L7Ae, in distinct functional domains of the RPR and suggest testable mechanisms by which L7Ae contributes to RNase P catalysis. PMID:25361963
Segerstolpe, Asa; Lundkvist, Pär; Osheim, Yvonne N; Beyer, Ann L; Wieslander, Lars
2008-08-01
In Saccharomyces cerevisiae, synthesis of the small ribosomal subunit requires assembly of the 35S pre-rRNA into a 90S preribosomal complex. SnoRNAs, including U3 snoRNA, and many trans-acting proteins are required for the ordered assembly and function of the 90S preribosomal complex. Here, we show that the conserved protein Mrd1p binds to the pre-rRNA early during transcription and is required for compaction of the pre-18S rRNA into SSU processome particles. We have exploited the fact that an Mrd1p-GFP fusion protein is incorporated into the 90S preribosomal complex, where it acts as a partial loss-of-function mutation. When associated with the pre-rRNA, Mrd1p-GFP functionally interacts with the essential Pwp2, Mpp10 and U3 snoRNP subcomplexes that are functionally interconnected in the 90S preribosomal complex. The fusion protein can partially support 90S preribosome-mediated cleavages at the A(0)-A(2) sites. At the same time, on a substantial fraction of transcripts, the composition and/or structure of the 90S preribosomal complex is perturbed by the fusion protein in such a way that cleavage of the 35S pre-rRNA is either blocked or shifted to aberrant sites. These results show that Mrd1p is required for establishing productive structures within the 90S preribosomal complex.
Sahu, Shriya; Philip, Finly; Scarlata, Suzanne
2014-01-01
C3PO plays a key role in promoting RNA-induced gene silencing. C3PO consists of two subunits of the endonuclease translin-associated factor X (TRAX) and six subunits of the nucleotide-binding protein translin. We have found that TRAX binds strongly to phospholipase Cβ (PLCβ), which transmits G protein signals from many hormones and sensory inputs. The association between PLCβ and TRAX is thought to underlie the ability of PLCβ to reverse gene silencing by small interfering RNAs. However, this reversal only occurs for some genes (e.g. GAPDH and LDH) but not others (e.g. Hsp90 and cyclophilin A). To understand this specificity, we carried out studies using fluorescence-based methods. In cells, we find that PLCβ, TRAX, and their complexes are identically distributed through the cytosol suggesting that selectivity is not due to large scale sequestration of either the free or complexed proteins. Using purified proteins, we find that PLCβ binds ∼5-fold more weakly to translin than to TRAX but ∼2-fold more strongly to C3PO. PLCβ does not alter TRAX-translin assembly to C3PO, and brightness studies suggest one PLCβ binds to one C3PO octamer without a change in the number of TRAX/translin molecules suggesting that PLCβ binds to an external site. Functionally, we find that C3PO hydrolyzes siRNA(GAPDH) at a faster rate than siRNA(Hsp90). However, when PLCβ is bound to C3PO, the hydrolysis rate of siRNA(GAPDH) becomes comparable with siRNA(Hsp90). Our results show that the selectivity of PLCβ toward certain genes lies in the rate at which the RNA is hydrolyzed by C3PO. PMID:24338081
Martínez de Alba, Angel Emilio; Sägesser, Rudolf; Tabler, Martin; Tsagris, Mina
2003-01-01
For the identification of RNA-binding proteins that specifically interact with potato spindle tuber viroid (PSTVd), we subjected a tomato cDNA expression library prepared from viroid-infected leaves to an RNA ligand screening procedure. We repeatedly identified cDNA clones that expressed a protein of 602 amino acids. The protein contains a bromodomain and was termed viroid RNA-binding protein 1 (VIRP1). The specificity of interaction of VIRP1 with viroid RNA was studied by different methodologies, which included Northwestern blotting, plaque lift, and electrophoretic mobility shift assays. VIRP1 interacted strongly and specifically with monomeric and oligomeric PSTVd positive-strand RNA transcripts. Other RNAs, for example, U1 RNA, did not bind to VIRP1. Further, we could immunoprecipitate complexes from infected tomato leaves that contained VIRP1 and viroid RNA in vivo. Analysis of the protein sequence revealed that VIRP1 is a member of a newly identified family of transcriptional regulators associated with chromatin remodeling. VIRP1 is the first member of this family of proteins, for which a specific RNA-binding activity is shown. A possible role of VIRP1 in viroid replication and in RNA mediated chromatin remodeling is discussed. PMID:12915580
Cell proteins bind to multiple sites within the 5' untranslated region of poliovirus RNA.
del Angel, R M; Papavassiliou, A G; Fernández-Tomás, C; Silverstein, S J; Racaniello, V R
1989-01-01
The 5' noncoding region of poliovirus RNA contains sequences necessary for translation and replication. These functions are probably carried out by recognition of poliovirus RNA by cellular and/or viral proteins. Using a mobility-shift electrophoresis assay and 1,10-phenanthroline/Cu+ footprinting, we demonstrate specific binding of cytoplasmic factors with a sequence from nucleotides 510-629 within the 5' untranslated region (UTR). Complex formation was also observed with a second sequence (nucleotides 97-182) within the 5' UTR. These two regions of the 5' UTR appear to be recognized by distinct cell factors as determined by competition analysis and the effects of ionic strength on complex formation. However, both complexes contain eukaryotic initiation factor 2 alpha, as revealed by their reaction with specific antibody. Images PMID:2554308
Poly(A)-binding proteins and mRNA localization: who rules the roost?
Gray, Nicola K; Hrabálková, Lenka; Scanlon, Jessica P; Smith, Richard W P
2015-12-01
RNA-binding proteins are often multifunctional, interact with a variety of protein partners and display complex localizations within cells. Mammalian cytoplasmic poly(A)-binding proteins (PABPs) are multifunctional RNA-binding proteins that regulate multiple aspects of mRNA translation and stability. Although predominantly diffusely cytoplasmic at steady state, they shuttle through the nucleus and can be localized to a variety of cytoplasmic foci, including those associated with mRNA storage and localized translation. Intriguingly, PABP sub-cellular distribution can alter dramatically in response to cellular stress or viral infection, becoming predominantly nuclear and/or being enriched in induced cytoplasmic foci. However, relatively little is known about the mechanisms that govern this distribution/relocalization and in many cases PABP functions within specific sites remain unclear. Here we discuss the emerging evidence with respect to these questions in mammals. © 2015 Authors; published by Portland Press Limited.
TAF11 assembles RISC loading complex to enhance RNAi efficiency
Liang, Chunyang; Wang, Yibing; Murota, Yukiko; Liu, Xiang; Smith, Dean; Siomi, Mikiko C.; Liu, Qinghua
2015-01-01
SUMMARY Assembly of the RNA-induced silencing complex (RISC) requires formation of the RISC loading complex (RLC), which contains Dicer-2(Dcr-2)-R2D2 complex and recruits duplex siRNA to Ago2 in Drosophila melanogaster. However, the precise composition and action mechanism of Drosophila RLC remain unclear. Here, we identified the missing factor of RLC as TATA-binding protein associated factor 11 (TAF11) by genetic screen. Although an annotated nuclear transcription factor, we found that TAF11 also associated with Dcr-2/R2D2 and localized to cytoplasmic D2 bodies. Consistent with defective RLC assembly in taf11−/− ovary extract, we reconstituted the RLC in vitro using recombinant Dcr-2-R2D2 complex, TAF11, and duplex siRNA. Furthermore, we showed that TAF11 tetramer facilitates Dcr-2-R2D2 tetramerization to enhance siRNA binding and RISC loading activities. Together, our genetic and biochemical studies define the molecular nature of Drosophila RLC and elucidate a novel cytoplasmic function of TAF11 in organizing RLC assembly to enhance RNAi efficiency. PMID:26257286
Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Andrew Loyd
Solution NMR was primarily used to characterize structure and dynamics in two different eukaryotic protein systems: the δ-Al-ε activation domain from c-jun and the Drosophila RNA-binding protein Sex-lethal. The second system is the Drosophila Sex-lethal (Sxl) protein, an RNA-binding protein which is the ``master switch`` in sex determination. Sxl contains two adjacent RNA-binding domains (RBDs) of the RNP consensus-type. The NMR spectrum of the second RBD (Sxl-RBD2) was assigned using multidimensional heteronuclear NMR, and an intermediate-resolution family of structures was calculated from primarily NOE distance restraints. The overall fold was determined to be similar to other RBDs: a βαβ-βαβ patternmore » of secondary structure, with the two helices packed against a 4-stranded anti-parallel β-sheet. In addition 15N T 1, T 2, and 15N/ 1H NOE relaxation measurements were carried out to characterize the backbone dynamics of Sxl-RBD2 in solution. RNA corresponding to the polypyrimidine tract of transformer pre-mRNA was generated and titrated into 3 different Sxl-RBD protein constructs. Combining Sxl-RBD1+2 (bht RBDs) with this RNA formed a specific, high affinity protein/RNA complex that is amenable to further NMR characterization. The backbone 1H, 13C, and 15N resonances of Sxl-RBD1+2 were assigned using a triple-resonance approach, and 15N relaxation experiments were carried out to characterize the backbone dynamics of this complex. The changes in chemical shift in Sxl-RBD1+2 upon binding RNA are observed using Sxl-RBD2 as a substitute for unbound Sxl-RBD1+2. This allowed the binding interface to be qualitatively mapped for the second domain.« less
Pseudouridine and N6-methyladenosine modifications weaken PUF protein/RNA interactions
AlSadhan, Ishraq; Merriman, Dawn K.; Al-Hashimi, Hashim M.; Herschlag, Daniel
2017-01-01
RNA modifications are ubiquitous in biology, with over 100 distinct modifications. While the vast majority were identified and characterized on abundant noncoding RNA such as tRNA and rRNA, the advent of sensitive sequencing-based approaches has led to the discovery of extensive and regulated modification of eukaryotic messenger RNAs as well. The two most abundant mRNA modifications—pseudouridine (Ψ) and N6-methyladenosine (m6A)—affect diverse cellular processes including mRNA splicing, localization, translation, and decay and modulate RNA structure. Here, we test the hypothesis that RNA modifications directly affect interactions between RNA-binding proteins and target RNA. We show that Ψ and m6A weaken the binding of the human single-stranded RNA binding protein Pumilio 2 (hPUM2) to its consensus motif, with individual modifications having effects up to approximately threefold and multiple modifications giving larger effects. While there are likely to be some cases where RNA modifications essentially fully ablate protein binding, here we see modest responses that may be more common. Such modest effects could nevertheless profoundly alter the complex landscape of RNA:protein interactions, and the quantitative rather than qualitative nature of these effects underscores the need for quantitative, systems-level accounting of RNA:protein interactions to understand post-transcriptional regulation. PMID:28138061
Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.
2016-01-01
Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3′-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3′-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP. PMID:27836661
CLIP-related methodologies and their application to retrovirology.
Bieniasz, Paul D; Kutluay, Sebla B
2018-05-02
Virtually every step of HIV-1 replication and numerous cellular antiviral defense mechanisms are regulated by the binding of a viral or cellular RNA-binding protein (RBP) to distinct sequence or structural elements on HIV-1 RNAs. Until recently, these protein-RNA interactions were studied largely by in vitro binding assays complemented with genetics approaches. However, these methods are highly limited in the identification of the relevant targets of RBPs in physiologically relevant settings. Development of crosslinking-immunoprecipitation sequencing (CLIP) methodology has revolutionized the analysis of protein-nucleic acid complexes. CLIP combines immunoprecipitation of covalently crosslinked protein-RNA complexes with high-throughput sequencing, providing a global account of RNA sequences bound by a RBP of interest in cells (or virions) at near-nucleotide resolution. Numerous variants of the CLIP protocol have recently been developed, some with major improvements over the original. Herein, we briefly review these methodologies and give examples of how CLIP has been successfully applied to retrovirology research.
Characterization of a novel RNA-binding region of eIF4GI critical for ribosomal scanning
Prévôt, Déborah; Décimo, Didier; Herbreteau, Cécile H.; Roux, Florence; Garin, Jérôme; Darlix, Jean-Luc; Ohlmann, Théophile
2003-01-01
The eukaryotic translation initiation factor eIF4GI binds several proteins and acts as a scaffold to promote preinitiation complex formation on the mRNA molecule (48S). Following mRNA attachment this complex scans along the messenger in a 5′ to 3′ direction until it locates and recognizes the initiation start codon. By using a combination of retroviral and picornaviral proteases (HIV-2 and L respectively) in the reticulocyte lysate system, we have characterized a 40 amino acid (aa) region of eIF4GI (aa 642–681) that exhibits general RNA-binding properties. Removal of this domain by proteolytic processing followed by translational assays showed virtually no inhibition of internal ribosome entry on the encephalomyocarditis virus, but resulted in drastic impairment of ribosome scanning as demonstrated by studying poliovirus and foot-and-mouth disease virus translation. Based on these findings, we propose that this 40 aa motif of eIF4GI is critical for ribosome scanning. PMID:12682023
Sun, Xin; Alzhanova-Ericsson, Alla T.; Visa, Neus; Aissouni, Youssef; Zhao, Jian; Daneholt, Bertil
1998-01-01
Balbiani ring (BR) pre-mRNP particles reside in the nuclei of salivary glands of the dipteran Chironomus tentans and carry the message for giant-sized salivary proteins. In the present study, we identify and characterize a new protein component in the BR ribonucleoprotein (RNP) particles, designated hrp23. The protein with a molecular mass of 20 kD has a single RNA-binding domain and a glycine-arginine-serine–rich auxiliary domain. As shown by immunoelectron microscopy, the hrp23 protein is added to the BR transcript concomitant with transcription, is still present in the BR particles in the nucleoplasm, but is absent from the BR particles that are bound to the nuclear pore complex or are translocating through the central channel of the complex. Thus, hrp23 is released just before or at the binding of the particles to the nuclear pore complex. It is noted that hrp23 behaves differently from two other BR RNP proteins earlier studied: hrp36 and hrp45. These proteins both reach the nuclear pore complex, and hrp36 even accompanies the RNA into the cytoplasm. It is concluded that each BR RNA-binding protein seems to have a specific flow pattern, probably related to the particular role of the protein in gene expression. PMID:9732280
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.
Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding sitemore » are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.« less
Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L
2015-06-05
Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Karow, Anne R; Theissen, Bettina; Klostermeier, Dagmar
2007-01-01
RNA helicases mediate structural rearrangements of RNA or RNA-protein complexes at the expense of ATP hydrolysis. Members of the DEAD box helicase family consist of two flexibly connected helicase domains. They share nine conserved sequence motifs that are involved in nucleotide binding and hydrolysis, RNA binding, and helicase activity. Most of these motifs line the cleft between the two helicase domains, and extensive communication between them is required for RNA unwinding. The two helicase domains of the Bacillus subtilis RNA helicase YxiN were produced separately as intein fusions, and a functional RNA helicase was generated by expressed protein ligation. The ligated helicase binds adenine nucleotides with very similar affinities to the wild-type protein. Importantly, its intrinsically low ATPase activity is stimulated by RNA, and the Michaelis-Menten parameters are similar to those of the wild-type. Finally, ligated YxiN unwinds a minimal RNA substrate to an extent comparable to that of the wild-type helicase, confirming authentic interdomain communication.
RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA.
Cui, Yalei; Huang, Tianzhi; Zhang, Xiaobo
2015-12-01
MicroRNAs (miRNAs) integrate with Argonaut (Ago) to create the RNA-induced silencing complex, and regulate gene expression by silencing target mRNAs. RNA editing of miRNA may affect miRNA processing, assembly of the Ago complex and target mRNA binding. However, the function of edited miRNA, assembled within the Ago complex, has not been extensively investigated. In this study, sequence analysis of the Ago complex of Marsupenaeus japonicus shrimp infected with white spot syndrome virus (WSSV) revealed that host ADAR (adenosine deaminase acting on RNA) catalysed A-to-I RNA editing of a viral miRNA (WSSV-miR-N12) at the +16 site. This editing of the non-seed sequence did not affect association of the edited miRNA with the Ago protein, but inhibited interaction between the miRNA and its target gene (wsv399). The WSSV early gene wsv399 inhibited WSSV infection. As a result, the RNA editing of miRNA caused virus latency. Our results highlight a novel example of miRNA editing in the miRNA-induced silencing complex. © 2015 The Authors.
Rational and Modular Design of Potent Ligands Targeting the RNA that Causes Myotonic Dystrophy 2
Lee, Melissa M.; Pushechnikov, Alexei; Disney, Matthew D.
2009-01-01
Most ligands targeting RNA are identified through screening a therapeutic target for binding members of a ligand library. A potential alternative way to construct RNA binders is through rational design using information about the RNA motifs ligands prefer to bind. Herein, we describe such an approach to design modularly assembled ligands targeting the RNA that causes myotonic dystrophy type 2 (DM2), a currently untreatable disease. A previous study identified that 6′-N-5-hexynoate kanamycin A (1) prefers to bind 2×2 nucleotide, pyrimidine-rich RNA internal loops. Multiple copies of such loops were found in the RNA hairpin that causes DM2. The 1 ligand was then modularly displayed on a peptoid scaffold with varied number and spacing to target several internal loops simultaneously. Modularly assembled ligands were tested for binding to a series of RNAs and for inhibiting the formation of the toxic DM2 RNA-muscleblind protein (MBNL-1) interaction. The most potent ligand displays three 1 modules, each separated by four spacing submonomers, and inhibits the formation of the RNA-protein complex with an IC50 of 25 nM. This ligand is higher affinity and more specific for binding DM2 RNA than MBNL-1. It binds the DM2 RNA at least 20-times more tightly than related RNAs and 15-fold more tightly than MBNL-1. A related control peptoid displaying 6′-N-5-hexynoate neamine (2) is >100-fold less potent at inhibiting the RNA-protein interaction and binds to DM2 RNA >125-fold more weakly. Uptake studies into a mouse myoblast cell line also show that the most potent ligand is cell permeable. PMID:19348464
Mickiewicz, Agnieszka; Sarzyńska, Joanna; Miłostan, Maciej; Kurzyńska-Kokorniak, Anna; Rybarczyk, Agnieszka; Łukasiak, Piotr; Kuliński, Tadeusz; Figlerowicz, Marek; Błażewicz, Jacek
2017-02-01
Plant Dicer-like proteins (DCLs) belong to the Ribonuclease III (RNase III) enzyme family. They are involved in the regulation of gene expression and antiviral defense through RNA interference pathways. A model plant, Arabidopsis thaliana encodes four DCL proteins (AtDCL1-4) that produce different classes of small regulatory RNAs. Our studies focus on AtDCL4 that processes double-stranded RNAs (dsRNAs) into 21 nucleotide trans-acting small interfering RNAs. So far, little is known about the structures of plant DCLs and the complexes they form with dsRNA. In this work, we present models of the catalytic core of AtDCL4 and AtDCL4-dsRNA complex constructed by computational methods. We built a homology model of the catalytic core of AtDCL4 comprising Platform, PAZ, Connector helix and two RNase III domains. To assemble the AtDCL4-dsRNA complex two modeling approaches were used. In the first method, to establish conformations that allow building a consistent model of the complex, we used Normal Mode Analysis for both dsRNA and AtDCL4. The second strategy involved template-based approach for positioning of the PAZ domain and manual arrangement of the Connector helix. Our results suggest that the spatial orientation of the Connector helix, Platform and PAZ relative to the RNase III domains is crucial for measuring dsRNA of defined length. The modeled complexes provide information about interactions that may contribute to the relative orientations of these domains and to dsRNA binding. All these information can be helpful for understanding the mechanism of AtDCL4-mediated dsRNA recognition and binding, to produce small RNA of specific size. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ohuchi, Shoji J; Sagawa, Fumihiko; Sakamoto, Taiichi; Inoue, Tan
2015-10-23
RNA-protein complexes (RNPs) are useful for constructing functional nano-objects because a variety of functional proteins can be displayed on a designed RNA scaffold. Here, we report circular permutations of an RNA-binding protein L7Ae based on the three-dimensional structure information to alter the orientation of the displayed proteins on the RNA scaffold. An electrophoretic mobility shift assay and atomic force microscopy (AFM) analysis revealed that most of the designed circular permutants formed an RNP nano-object. Moreover, the alteration of the enhanced green fluorescent protein (EGFP) orientation was confirmed with AFM by employing EGFP on the L7Ae permutant on the RNA. The results demonstrate that targeted fine-tuning of the stereo-specific fixation of a protein on a protein-binding RNA is feasible by using the circular permutation technique. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohuchi, Shoji J.; Sagawa, Fumihiko; Sakamoto, Taiichi
RNA-protein complexes (RNPs) are useful for constructing functional nano-objects because a variety of functional proteins can be displayed on a designed RNA scaffold. Here, we report circular permutations of an RNA-binding protein L7Ae based on the three-dimensional structure information to alter the orientation of the displayed proteins on the RNA scaffold. An electrophoretic mobility shift assay and atomic force microscopy (AFM) analysis revealed that most of the designed circular permutants formed an RNP nano-object. Moreover, the alteration of the enhanced green fluorescent protein (EGFP) orientation was confirmed with AFM by employing EGFP on the L7Ae permutant on the RNA. Themore » results demonstrate that targeted fine-tuning of the stereo-specific fixation of a protein on a protein-binding RNA is feasible by using the circular permutation technique.« less
Li, Hua; Zheng, Xiangtao; Koren, Viktoria; Vashist, Yogesh Kumar; Tsui, Tung Yu
2014-07-20
Small interfering RNAs (siRNAs) delivery remains a bottleneck for RNA interference (RNAi) - based therapies in the clinic. In the present study, a fusion protein with two cell-penetrating peptides (CPP), Hph1-Hph1, and a double-stranded RNA binding domain (dsRBD), was constructed for the siRNA delivery: dsRBD was designed to bind siRNA, and CPP would subsequently transport the dsRBD/siRNA complex into cells. We assessed the efficiency of the fusion protein, Hph1-Hph1-dsRBD, as a siRNA carrier. Calcium-condensed effects were assessed on GAPDH and green fluorescent protein (GFP) genes by western blot, real time polymerase chain reaction (RT-PCR), and flow cytometry analysis in vitro. Evaluations were also made in an in vivo heart transplantation model. The results demonstrated that the fusion protein, Hph1-Hph1-dsRBD, is highly efficient at delivering siRNA in vitro, and exhibits efficiency on GAPDH and GFP genes similar to or greater than lipofectamine. Interestingly, the calcium-condensed effects dramatically enhanced cellular uptake of the protein-siRNA complex. In vivo, Hph1-Hph1-dsRBD transferred and distributed ^ targeted siRNA throughout the whole mouse heart graft. Together, these results indicate that Hph1-Hph1-dsRBD has potential as an siRNA carrier for applications in the clinic or in biomedical research. Copyright © 2014 Elsevier B.V. All rights reserved.
Alniss, Hasan; Zamiri, Bita; Khalaj, Melisa; Pearson, Christopher E; Macgregor, Robert B
2018-01-22
An expansion of the hexanucleotide repeat (GGGGCC)n·(GGCCCC)n in the C9orf72 promoter has been shown to be the cause of Amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). The C9orf72 repeat can form four-stranded structures; the cationic porphyrin (TMPyP4) binds and distorts these structures. Isothermal titration calorimetry (ITC), and circular dichroism (CD) were used to study the binding of TMPyP4 to the C-rich and G-rich DNA and RNA oligos containing the hexanucleotide repeat at pH 7.5 and 0.1 M K + . The CD spectra of G-rich DNA and RNA TMPyP4 complexes showed features of antiparallel and parallel G-quadruplexes, respectively. The shoulder at 260 nm in the CD spectrum becomes more intense upon formation of complexes between TMPyP4 and the C-rich DNA. The peak at 290 nm becomes more intense in the c-rich RNA molecules, suggesting induction of an i-motif structure. The ITC data showed that TMPyP4 binds at two independent sites for all DNA and RNA molecules. For DNA, the data are consistent with TMPyP4 stacking on the terminal tetrads and intercalation. For RNA, the thermodynamics of the two binding modes are consistent with groove binding and intercalation. In both cases, intercalation is the weaker binding mode. These findings are considered with respect to the structural differences of the folded DNA and RNA molecules and the energetics of the processes that drive site-specific recognition by TMPyP4; these data will be helpful in efforts to optimize the specificity and affinity of the binding of porphyrin-like molecules. Copyright © 2018 Elsevier Inc. All rights reserved.
Functional Anatomy of the Human Microprocessor.
Nguyen, Tuan Anh; Jo, Myung Hyun; Choi, Yeon-Gil; Park, Joha; Kwon, S Chul; Hohng, Sungchul; Kim, V Narry; Woo, Jae-Sung
2015-06-04
MicroRNA (miRNA) maturation is initiated by Microprocessor composed of RNase III DROSHA and its cofactor DGCR8, whose fidelity is critical for generation of functional miRNAs. To understand how Microprocessor recognizes pri-miRNAs, we here reconstitute human Microprocessor with purified recombinant proteins. We find that Microprocessor is an ∼364 kDa heterotrimeric complex of one DROSHA and two DGCR8 molecules. Together with a 23-amino acid peptide from DGCR8, DROSHA constitutes a minimal functional core. DROSHA serves as a "ruler" by measuring 11 bp from the basal ssRNA-dsRNA junction. DGCR8 interacts with the stem and apical elements through its dsRNA-binding domains and RNA-binding heme domain, respectively, allowing efficient and accurate processing. DROSHA and DGCR8, respectively, recognize the basal UG and apical UGU motifs, which ensure proper orientation of the complex. These findings clarify controversies over the action mechanism of DROSHA and allow us to build a general model for pri-miRNA processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Mechanism of duplex DNA destabilization by RNA-guided Cas9 nuclease during target interrogation.
Mekler, Vladimir; Minakhin, Leonid; Severinov, Konstantin
2017-05-23
The prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (Cas9) endonuclease cleaves double-stranded DNA sequences specified by guide RNA molecules and flanked by a protospacer adjacent motif (PAM) and is widely used for genome editing in various organisms. The RNA-programmed Cas9 locates the target site by scanning genomic DNA. We sought to elucidate the mechanism of initial DNA interrogation steps that precede the pairing of target DNA with guide RNA. Using fluorometric and biochemical assays, we studied Cas9/guide RNA complexes with model DNA substrates that mimicked early intermediates on the pathway to the final Cas9/guide RNA-DNA complex. The results show that Cas9/guide RNA binding to PAM favors separation of a few PAM-proximal protospacer base pairs allowing initial target interrogation by guide RNA. The duplex destabilization is mediated, in part, by Cas9/guide RNA affinity for unpaired segments of nontarget strand DNA close to PAM. Furthermore, our data indicate that the entry of double-stranded DNA beyond a short threshold distance from PAM into the Cas9/single-guide RNA (sgRNA) interior is hindered. We suggest that the interactions unfavorable for duplex DNA binding promote DNA bending in the PAM-proximal region during early steps of Cas9/guide RNA-DNA complex formation, thus additionally destabilizing the protospacer duplex. The mechanism that emerges from our analysis explains how the Cas9/sgRNA complex is able to locate the correct target sequence efficiently while interrogating numerous nontarget sequences associated with correct PAMs.
The H/ACA RNP assembly factor SHQ1 functions as an RNA mimic
Walbott, Hélène; Machado-Pinilla, Rosario; Liger, Dominique; Blaud, Magali; Réty, Stéphane; Grozdanov, Petar N.; Godin, Kate; van Tilbeurgh, Herman; Varani, Gabriele; Meier, U. Thomas; Leulliot, Nicolas
2011-01-01
SHQ1 is an essential assembly factor for H/ACA ribonucleoproteins (RNPs) required for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. SHQ1 binds dyskerin/NAP57, the catalytic subunit of human H/ACA RNPs, and this interaction is modulated by mutations causing X-linked dyskeratosis congenita. We report the crystal structure of the C-terminal domain of yeast SHQ1, Shq1p, and its complex with yeast dyskerin/NAP57, Cbf5p, lacking its catalytic domain. The C-terminal domain of Shq1p interacts with the RNA-binding domain of Cbf5p and, through structural mimicry, uses the RNA–protein-binding sites to achieve a specific protein–protein interface. We propose that Shq1p operates as a Cbf5p chaperone during RNP assembly by acting as an RNA placeholder, thereby preventing Cbf5p from nonspecific RNA binding before association with an H/ACA RNA and the other core RNP proteins. PMID:22085966
Trim25 Is an RNA-Specific Activator of Lin28a/TuT4-Mediated Uridylation.
Choudhury, Nila Roy; Nowak, Jakub S; Zuo, Juan; Rappsilber, Juri; Spoel, Steven H; Michlewski, Gracjan
2014-11-20
RNA binding proteins have thousands of cellular RNA targets and often exhibit opposite or passive molecular functions. Lin28a is a conserved RNA binding protein involved in pluripotency and tumorigenesis that was previously shown to trigger TuT4-mediated pre-let-7 uridylation, inhibiting its processing and targeting it for degradation. Surprisingly, despite binding to other pre-microRNAs (pre-miRNAs), only pre-let-7 is efficiently uridylated by TuT4. Thus, we hypothesized the existence of substrate-specific cofactors that stimulate Lin28a-mediated pre-let-7 uridylation or restrict its functionality on non-let-7 pre-miRNAs. Through RNA pull-downs coupled with quantitative mass spectrometry, we identified the E3 ligase Trim25 as an RNA-specific cofactor for Lin28a/TuT4-mediated uridylation. We show that Trim25 binds to the conserved terminal loop (CTL) of pre-let-7 and activates TuT4, allowing for more efficient Lin28a-mediated uridylation. These findings reveal that protein-modifying enzymes, only recently shown to bind RNA, can guide the function of canonical ribonucleoprotein (RNP) complexes in cis, thereby providing an additional level of specificity.
Elkayam, Elad; Parmar, Rubina; Brown, Christopher R.; Willoughby, Jennifer L.; Theile, Christopher S.
2017-01-01
Abstract Efficient gene silencing by RNA interference (RNAi) in vivo requires the recognition and binding of the 5΄- phosphate of the guide strand of an siRNA by the Argonaute protein. However, for exogenous siRNAs it is limited by the rapid removal of the 5΄- phosphate of the guide strand by metabolic enzymes. Here, we have determined the crystal structure of human Argonaute-2 in complex with the metabolically stable 5΄-(E)-vinylphosphonate (5΄-E-VP) guide RNA at 2.5-Å resolution. The structure demonstrates how the 5΄ binding site in the Mid domain of human Argonaute-2 is able to adjust the key residues in the 5΄-nucleotide binding pocket to compensate for the change introduced by the modified nucleotide. This observation also explains improved binding affinity of the 5΄-E-VP -modified siRNA to human Argonaute-2 in-vitro, as well as the enhanced silencing in the context of the trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNA in mice relative to the un-modified siRNA. PMID:27903888
The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives.
Maraia, Richard J; Mattijssen, Sandy; Cruz-Gallardo, Isabel; Conte, Maria R
2017-11-01
La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.
Sugiyama, Shigeru; Nomura, Yusuke; Sakamoto, Taiichi; Kitatani, Tomoya; Kobayashi, Asako; Miyakawa, Shin; Takahashi, Yoshinori; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Nakamura, Yoshikazu; Matsumura, Hiroyoshi
2008-01-01
Aptamers, which are folded DNA or RNA molecules, bind to target molecules with high affinity and specificity. An RNA aptamer specific for the Fc fragment of human immunoglobulin G (IgG) has recently been identified and it has been demonstrated that an optimized 24-nucleotide RNA aptamer binds to the Fc fragment of human IgG and not to other species. In order to clarify the structural basis of the high specificity of the RNA aptamer, it was crystallized in complex with the Fc fragment of human IgG1. Preliminary X-ray diffraction studies revealed that the crystals belonged to the orthorhombic space group P21212, with unit-cell parameters a = 83.7, b = 107.2, c = 79.0 Å. A data set has been collected to 2.2 Å resolution. PMID:18931441
Vatovec, Sabina; Kovanda, Anja; Rogelj, Boris
2014-10-01
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are devastating neurodegenerative diseases that form two ends of a complex disease spectrum. Aggregation of RNA binding proteins is one of the hallmark pathologic features of ALS and FTDL and suggests perturbance of the RNA metabolism in their etiology. Recent identification of the disease-associated expansions of the intronic hexanucleotide repeat GGGGCC in the C9ORF72 gene further substantiates the case for RNA involvement. The expanded repeat, which has turned out to be the single most common genetic cause of ALS and FTLD, may enable the formation of complex DNA and RNA structures, changes in RNA transcription, and processing and formation of toxic RNA foci, which may sequester and inactivate RNA binding proteins. Additionally, the transcribed expanded repeat can undergo repeat-associated non-ATG-initiated translation resulting in accumulation of a series of dipeptide repeat proteins. Understanding the basis of the proposed mechanisms and shared pathways, as well as interactions with known key proteins such as TAR DNA-binding protein (TDP-43) are needed to clarify the pathology of ALS and/or FTLD, and make possible steps toward therapy development. Copyright © 2014 Elsevier Inc. All rights reserved.
Emara, Mohamed M; Liu, Hsuan; Davis, William G; Brinton, Margo A
2008-11-01
Previous data showed that the cellular proteins TIA-1 and TIAR bound specifically to the West Nile virus 3' minus-strand stem-loop [WNV3'(-)SL] RNA (37) and colocalized with flavivirus replication complexes in WNV- and dengue virus-infected cells (21). In the present study, the sites on the WNV3'(-)SL RNA required for efficient in vitro T-cell intracellular antigen-related (TIAR) and T-cell intracellular antigen-1 (TIA-1) protein binding were mapped to short AU sequences (UAAUU) located in two internal loops of the WNV3'(-)SL RNA structure. Infectious clone RNAs with all or most of the binding site nucleotides in one of the 3' (-)SL loops deleted or substituted did not produce detectable virus after transfection or subsequent passage. With one exception, deletion/mutation of a single terminal nucleotide in one of the binding sequences had little effect on the efficiency of protein binding or virus production, but mutation of a nucleotide in the middle of a binding sequence reduced both the in vitro protein binding efficiency and virus production. Plaque size, intracellular genomic RNA levels, and virus production progressively decreased with decreasing in vitro TIAR/TIA-1 binding activity, but the translation efficiency of the various mutant RNAs was similar to that of the parental RNA. Several of the mutant RNAs that inefficiently interacted with TIAR/TIA-1 in vitro rapidly reverted in vivo, indicating that they could replicate at a low level and suggesting that an interaction between TIAR/TIA-1 and the viral 3'(-)SL RNA is not required for initial low-level symmetric RNA replication but instead facilitates the subsequent asymmetric amplification of genome RNA from the minus-strand template.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, Megha; Leser, George P.; Kors, Christopher A.
Parainfluenza virus 5 (PIV5) belongs to the familyParamyxoviridae, which consists of enveloped viruses with a nonsegmented negative-strand RNA genome encapsidated by the nucleoprotein (N). Paramyxovirus replication is regulated by the phosphoprotein (P) through protein-protein interactions with N and the RNA polymerase (L). The chaperone activity of P is essential to maintain the unassembled RNA-free form of N in order to prevent nonspecific RNA binding and premature N oligomerization. Here, we determined the crystal structure of unassembled PIV5 N in complex with a P peptide (N 0P) derived from the N terminus of P (P50) at 2.65 Å. The PIV5 Nmore » 0P consists of two domains: an N-terminal domain (NTD) and a C-terminal domain (CTD) separated by a hinge region. The cleft at the hinge region of RNA-bound PIV5 N was previously shown to be an RNA binding site. The N 0P structure shows that the P peptide binds to the CTD of N and extends toward the RNA binding site to inhibit N oligomerization and, hence, RNA binding. Binding of P peptide also keeps the PIV5 N in the open form. A molecular dynamics (MD) analysis of both the open and closed forms of N shows the flexibility of the CTD and the preference of the N protein to be in an open conformation. The gradual opening of the hinge region, to release the RNA, was also observed. Together, these results advance our knowledge of the conformational swapping of N required for the highly regulated paramyxovirus replication. IMPORTANCEParamyxovirus replication is regulated by the interaction of P with N and L proteins. Here, we report the crystal structure of unassembled parainfluenza virus 5 (PIV5) N chaperoned with P peptide. Our results provide a detailed understanding of the binding of P to N. The conformational switching of N between closed and open forms during its initial interaction with P, as well as during RNA release, was analyzed. Our data also show the plasticity of the CTD and the importance of domain movement for conformational switching. The results improve our understanding of the mechanism of interchanging N conformations for RNA replication and release.« less
Aggarwal, Megha; Leser, George P; Kors, Christopher A; Lamb, Robert A
2018-03-01
Parainfluenza virus 5 (PIV5) belongs to the family Paramyxoviridae , which consists of enveloped viruses with a nonsegmented negative-strand RNA genome encapsidated by the nucleoprotein (N). Paramyxovirus replication is regulated by the phosphoprotein (P) through protein-protein interactions with N and the RNA polymerase (L). The chaperone activity of P is essential to maintain the unassembled RNA-free form of N in order to prevent nonspecific RNA binding and premature N oligomerization. Here, we determined the crystal structure of unassembled PIV5 N in complex with a P peptide (N 0 P) derived from the N terminus of P (P50) at 2.65 Å. The PIV5 N 0 P consists of two domains: an N-terminal domain (NTD) and a C-terminal domain (CTD) separated by a hinge region. The cleft at the hinge region of RNA-bound PIV5 N was previously shown to be an RNA binding site. The N 0 P structure shows that the P peptide binds to the CTD of N and extends toward the RNA binding site to inhibit N oligomerization and, hence, RNA binding. Binding of P peptide also keeps the PIV5 N in the open form. A molecular dynamics (MD) analysis of both the open and closed forms of N shows the flexibility of the CTD and the preference of the N protein to be in an open conformation. The gradual opening of the hinge region, to release the RNA, was also observed. Together, these results advance our knowledge of the conformational swapping of N required for the highly regulated paramyxovirus replication. IMPORTANCE Paramyxovirus replication is regulated by the interaction of P with N and L proteins. Here, we report the crystal structure of unassembled parainfluenza virus 5 (PIV5) N chaperoned with P peptide. Our results provide a detailed understanding of the binding of P to N. The conformational switching of N between closed and open forms during its initial interaction with P, as well as during RNA release, was analyzed. Our data also show the plasticity of the CTD and the importance of domain movement for conformational switching. The results improve our understanding of the mechanism of interchanging N conformations for RNA replication and release. Copyright © 2018 American Society for Microbiology.
FUNCTION OF PHLOEM-BORNE INFORMATION MACROMOLECULES IN INTEGRATING PLANT GROWTH & DEVELOPMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
William J. Lucas
2012-11-12
Studies on higher plants have revealed the operation of cell-to-cell and long-distance communication networks that mediate the transport of information macromolecules, such as proteins and RNA. Based on the findings from this DOE-funded project and results from other groups, it is now well established that the enucleate sieve tube system of the angiosperms contains a complex set of proteins including RNA binding proteins as well as a unique population of RNA molecules, comprised of both mRNA and small RNA species. Hetero-grafting experiments demonstrated that delivery of such RNA molecules, into the scion, is highly correlated with changes in developmental phenotypes.more » Furthermore, over the course of this project, our studies showed that plasmodesmata and the phloem are intimately involved in the local and systemic spread of sequence-specific signals that underlie gene silencing in plants. Major advances were also made in elucidating the underlying mechanisms that operate to mediate the selective entry and exit of proteins and RNA into and out of the phloem translocation stream. Our pioneering studies identified the first plant protein with the capacity to both bind specifically to small RNA molecules (si-RNA) and mediate in the cell-to-cell movement of such siRNA. Importantly, studies conducted with support from this DOE program also yielded a detailed characterization of the first phloem-mobile RNP complex isolated from pumpkin, namely the CmRBP50-RNP complex. This RNP complex was shown to bind, in a sequence-specific manner, to a set of transcripts encoding for transcription factors. The remarkable stability of this CmRBP50-RNP complex allows for long-distance delivery of bound transcripts from mature leaves into developing tissues and organs. Knowledge gained from this project can be used to exert control over the long-distance signaling networks used by plants to integrate their physiological and developmental programs at a whole plant level. Eventually, this information will aid in the engineering of elite plant lines with optimal traits for plant growth under non-ideal conditions, enhanced biomass and/or seed yield, and directed carbon allocation for efficient and sustainable biofuels production.« less
CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.
Hochstrasser, Megan L; Taylor, David W; Bhat, Prashant; Guegler, Chantal K; Sternberg, Samuel H; Nogales, Eva; Doudna, Jennifer A
2014-05-06
In bacteria, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) DNA-targeting complex Cascade (CRISPR-associated complex for antiviral defense) uses CRISPR RNA (crRNA) guides to bind complementary DNA targets at sites adjacent to a trinucleotide signature sequence called the protospacer adjacent motif (PAM). The Cascade complex then recruits Cas3, a nuclease-helicase that catalyzes unwinding and cleavage of foreign double-stranded DNA (dsDNA) bearing a sequence matching that of the crRNA. Cascade comprises the CasA-E proteins and one crRNA, forming a structure that binds and unwinds dsDNA to form an R loop in which the target strand of the DNA base pairs with the 32-nt RNA guide sequence. Single-particle electron microscopy reconstructions of dsDNA-bound Cascade with and without Cas3 reveal that Cascade positions the PAM-proximal end of the DNA duplex at the CasA subunit and near the site of Cas3 association. The finding that the DNA target and Cas3 colocalize with CasA implicates this subunit in a key target-validation step during DNA interference. We show biochemically that base pairing of the PAM region is unnecessary for target binding but critical for Cas3-mediated degradation. In addition, the L1 loop of CasA, previously implicated in PAM recognition, is essential for Cas3 activation following target binding by Cascade. Together, these data show that the CasA subunit of Cascade functions as an essential partner of Cas3 by recognizing DNA target sites and positioning Cas3 adjacent to the PAM to ensure cleavage.
Structural and biochemical studies of RIG-I antiviral signaling.
Feng, Miao; Ding, Zhanyu; Xu, Liang; Kong, Liangliang; Wang, Wenjia; Jiao, Shi; Shi, Zhubing; Greene, Mark I; Cong, Yao; Zhou, Zhaocai
2013-02-01
Retinoic acid-inducible gene I (RIG-I) is an important pattern recognition receptor that detects viral RNA and triggers the production of type-I interferons through the downstream adaptor MAVS (also called IPS-1, CARDIF, or VISA). A series of structural studies have elaborated some of the mechanisms of dsRNA recognition and activation of RIG-I. Recent studies have proposed that K63-linked ubiquitination of, or unanchored K63-linked polyubiquitin binding to RIG-I positively regulates MAVS-mediated antiviral signaling. Conversely phosphorylation of RIG-I appears to play an inhibitory role in controlling RIG-I antiviral signal transduction. Here we performed a combined structural and biochemical study to further define the regulatory features of RIG-I signaling. ATP and dsRNA binding triggered dimerization of RIG-I with conformational rearrangements of the tandem CARD domains. Full length RIG-I appeared to form a complex with dsRNA in a 2:2 molar ratio. Compared with the previously reported crystal structures of RIG-I in inactive state, our electron microscopic structure of full length RIG-I in complex with blunt-ended dsRNA, for the first time, revealed an exposed active conformation of the CARD domains. Moreover, we found that purified recombinant RIG-I proteins could bind to the CARD domain of MAVS independently of dsRNA, while S8E and T170E phosphorylation-mimicking mutants of RIG-I were defective in binding E3 ligase TRIM25, unanchored K63-linked polyubiquitin, and MAVS regardless of dsRNA. These findings suggested that phosphorylation of RIG inhibited downstream signaling by impairing RIG-I binding with polyubiquitin and its interaction with MAVS.
Lou, Tzu-Fang; Weidmann, Chase A; Killingsworth, Jordan; Tanaka Hall, Traci M; Goldstrohm, Aaron C; Campbell, Zachary T
2017-04-15
RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA. Copyright © 2016 Elsevier Inc. All rights reserved.
Fukunaga, Ryuya; Zamore, Phillip D
2014-01-01
The enzyme Dicer is central to the production of small silencing RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs). Like other insects, Drosophila melanogaster uses different Dicers to make siRNAs and miRNAs: Dicer-1 produces miRNAs from pre-miRNAs, whereas Dicer-2 generates siRNAs from long double-stranded RNA (dsRNA). How do the 2 Dicers achieve their substrate specificity? Here, we review recent findings that inorganic phosphate restricts the substrate specificity of Dicer-2 to long dsRNA. Inorganic phosphate inhibits Dicer-2 from binding and cleaving pre-miRNAs, without affecting the processing of long dsRNA. Crystal structures of a fragment of human Dicer in complex with an RNA duplex identify a phosphate-binding pocket that recognizes both the 5′-monophosphate of a substrate RNA and inorganic phosphate. We propose that inorganic phosphate occupies the phosphate-binding pocket in the fly Dicer-2, blocking binding of pre-miRNA and restricting pre-miRNA processing to Dicer-1. Thus, a small molecule can alter the substrate specificity of a nucleic acid-processing enzyme. PMID:24787225
Kenesi, Erzsébet; Lózsa, Rita
2017-01-01
Abstract In most eukaryotes, RNA silencing is an adaptive immune system regulating key biological processes including antiviral defense. To evade this response, viruses of plants, worms and insects have evolved viral suppressors of RNA silencing proteins (VSRs). Various VSRs, such as P1 from Sweet potato mild mottle virus (SPMMV), inhibit the activity of RNA-induced silencing complexes (RISCs) including an ARGONAUTE (AGO) protein loaded with a small RNA. However, the specific mechanisms explaining this class of inhibition are unknown. Here, we show that SPMMV P1 interacts with AGO1 and AGO2 from Arabidopsis thaliana, but solely interferes with AGO1 function. Moreover, a mutational analysis of a newly identified zinc finger domain in P1 revealed that this domain could represent an effector domain as it is required for P1 suppressor activity but not for AGO1 binding. Finally, a comparative analysis of the target RNA binding capacity of AGO1 in the presence of wild-type or suppressor-defective P1 forms revealed that P1 blocks target RNA binding to AGO1. Our results describe the negative regulation of RISC, the small RNA containing molecular machine. PMID:28499009
Walker, Sarah E; Zhou, Fujun; Mitchell, Sarah F; Larson, Victoria S; Valasek, Leos; Hinnebusch, Alan G; Lorsch, Jon R
2013-02-01
Eukaryotic translation initiation factor (eIF)4B stimulates recruitment of mRNA to the 43S ribosomal pre-initiation complex (PIC). Yeast eIF4B (yeIF4B), shown previously to bind single-stranded (ss) RNA, consists of an N-terminal domain (NTD), predicted to be unstructured in solution; an RNA-recognition motif (RRM); an unusual domain comprised of seven imperfect repeats of 26 amino acids; and a C-terminal domain. Although the mechanism of yeIF4B action has remained obscure, most models have suggested central roles for its RRM and ssRNA-binding activity. We have dissected the functions of yeIF4B's domains and show that the RRM and its ssRNA-binding activity are dispensable in vitro and in vivo. Instead, our data indicate that the 7-repeats and NTD are the most critical domains, which mediate binding of yeIF4B to the head of the 40S ribosomal subunit via interaction with Rps20. This interaction induces structural changes in the ribosome's mRNA entry channel that could facilitate mRNA loading. We also show that yeIF4B strongly promotes productive interaction of eIF4A with the 43S•mRNA PIC in a manner required for efficient mRNA recruitment.
Accurate prediction of RNA-binding protein residues with two discriminative structural descriptors.
Sun, Meijian; Wang, Xia; Zou, Chuanxin; He, Zenghui; Liu, Wei; Li, Honglin
2016-06-07
RNA-binding proteins participate in many important biological processes concerning RNA-mediated gene regulation, and several computational methods have been recently developed to predict the protein-RNA interactions of RNA-binding proteins. Newly developed discriminative descriptors will help to improve the prediction accuracy of these prediction methods and provide further meaningful information for researchers. In this work, we designed two structural features (residue electrostatic surface potential and triplet interface propensity) and according to the statistical and structural analysis of protein-RNA complexes, the two features were powerful for identifying RNA-binding protein residues. Using these two features and other excellent structure- and sequence-based features, a random forest classifier was constructed to predict RNA-binding residues. The area under the receiver operating characteristic curve (AUC) of five-fold cross-validation for our method on training set RBP195 was 0.900, and when applied to the test set RBP68, the prediction accuracy (ACC) was 0.868, and the F-score was 0.631. The good prediction performance of our method revealed that the two newly designed descriptors could be discriminative for inferring protein residues interacting with RNAs. To facilitate the use of our method, a web-server called RNAProSite, which implements the proposed method, was constructed and is freely available at http://lilab.ecust.edu.cn/NABind .
Kuo, Lili; Koetzner, Cheri A; Hurst, Kelley R; Masters, Paul S
2014-04-01
The coronavirus nucleocapsid (N) protein forms a helical ribonucleoprotein with the viral positive-strand RNA genome and binds to the principal constituent of the virion envelope, the membrane (M) protein, to facilitate assembly and budding. Besides these structural roles, N protein associates with a component of the replicase-transcriptase complex, nonstructural protein 3, at a critical early stage of infection. N protein has also been proposed to participate in the replication and selective packaging of genomic RNA and the transcription and translation of subgenomic mRNA. Coronavirus N proteins contain two structurally distinct RNA-binding domains, an unusual characteristic among RNA viruses. To probe the functions of these domains in the N protein of the model coronavirus mouse hepatitis virus (MHV), we constructed mutants in which each RNA-binding domain was replaced by its counterpart from the N protein of severe acute respiratory syndrome coronavirus (SARS-CoV). Mapping of revertants of the resulting chimeric viruses provided evidence for extensive intramolecular interactions between the two RNA-binding domains. Through analysis of viral RNA that was packaged into virions we identified the second of the two RNA-binding domains as a principal determinant of MHV packaging signal recognition. As expected, the interaction of N protein with M protein was not affected in either of the chimeric viruses. Moreover, the SARS-CoV N substitutions did not alter the fidelity of leader-body junction formation during subgenomic mRNA synthesis. These results more clearly delineate the functions of N protein and establish a basis for further exploration of the mechanism of genomic RNA packaging. This work describes the interactions of the two RNA-binding domains of the nucleocapsid protein of a model coronavirus, mouse hepatitis virus. The main finding is that the second of the two domains plays an essential role in recognizing the RNA structure that allows the selective packaging of genomic RNA into assembled virions.
Stephen, Preyesh; Ye, Sheng; Zhou, Ming; Song, Jian; Zhang, Rongguang; Wang, En-Duo; Giegé, Richard; Lin, Sheng-Xiang
2018-05-25
Aminoacyl-tRNA synthetases are essential components in protein biosynthesis. Arginyl-tRNA synthetase (ArgRS) belongs to the small group of aminoacyl-tRNA synthetases requiring cognate tRNA for amino acid activation. The crystal structure of Escherichia coli (Eco) ArgRS has been solved in complex with tRNA Arg at 3.0-Å resolution. With this first bacterial tRNA complex, we are attempting to bridge the gap existing in structure-function understanding in prokaryotic tRNA Arg recognition. The structure shows a tight binding of tRNA on the synthetase through the identity determinant A20 from the D-loop, a tRNA recognition snapshot never elucidated structurally. This interaction of A20 involves 5 amino acids from the synthetase. Additional contacts via U20a and U16 from the D-loop reinforce the interaction. The importance of D-loop recognition in EcoArgRS functioning is supported by a mutagenesis analysis of critical amino acids that anchor tRNA Arg on the synthetase; in particular, mutations at amino acids interacting with A20 affect binding affinity to the tRNA and specificity of arginylation. Altogether the structural and functional data indicate that the unprecedented ArgRS crystal structure represents a snapshot during functioning and suggest that the recognition of the D-loop by ArgRS is an important trigger that anchors tRNA Arg on the synthetase. In this process, A20 plays a major role, together with prominent conformational changes in several ArgRS domains that may eventually lead to the mature ArgRS:tRNA complex and the arginine activation. Functional implications that could be idiosyncratic to the arginine identity of bacterial ArgRSs are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Binding of transcription termination protein nun to nascent RNA and template DNA.
Watnick, R S; Gottesman, M E
1999-12-17
The amino-terminal arginine-rich motif of coliphage HK022 Nun binds phage lambda nascent transcript, whereas the carboxyl-terminal domain interacts with RNA polymerase (RNAP) and blocks transcription elongation. RNA binding is inhibited by zinc (Zn2+) and stimulated by Escherichia coli NusA. To study these interactions, the Nun carboxyl terminus was extended by a cysteine residue conjugated to a photochemical cross-linker. The carboxyl terminus contacted NusA and made Zn2+-dependent intramolecular contacts. When Nun was added to a paused transcription elongation complex, it cross-linked to the DNA template. Nun may arrest transcription by anchoring RNAP to DNA.
Mechanism of duplex DNA destabilization by RNA-guided Cas9 nuclease during target interrogation
Mekler, Vladimir; Minakhin, Leonid; Severinov, Konstantin
2017-01-01
The prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (Cas9) endonuclease cleaves double-stranded DNA sequences specified by guide RNA molecules and flanked by a protospacer adjacent motif (PAM) and is widely used for genome editing in various organisms. The RNA-programmed Cas9 locates the target site by scanning genomic DNA. We sought to elucidate the mechanism of initial DNA interrogation steps that precede the pairing of target DNA with guide RNA. Using fluorometric and biochemical assays, we studied Cas9/guide RNA complexes with model DNA substrates that mimicked early intermediates on the pathway to the final Cas9/guide RNA–DNA complex. The results show that Cas9/guide RNA binding to PAM favors separation of a few PAM-proximal protospacer base pairs allowing initial target interrogation by guide RNA. The duplex destabilization is mediated, in part, by Cas9/guide RNA affinity for unpaired segments of nontarget strand DNA close to PAM. Furthermore, our data indicate that the entry of double-stranded DNA beyond a short threshold distance from PAM into the Cas9/single-guide RNA (sgRNA) interior is hindered. We suggest that the interactions unfavorable for duplex DNA binding promote DNA bending in the PAM-proximal region during early steps of Cas9/guide RNA–DNA complex formation, thus additionally destabilizing the protospacer duplex. The mechanism that emerges from our analysis explains how the Cas9/sgRNA complex is able to locate the correct target sequence efficiently while interrogating numerous nontarget sequences associated with correct PAMs. PMID:28484024
Foda, Bardees M.; Downey, Kurtis M.; Fisk, John C.
2012-01-01
Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3′-to-5′ progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain. PMID:22798390
Exploring the impact of the side-chain length on peptide/RNA binding events.
Sbicca, Lola; González, Alejandro López; Gresika, Alexandra; Di Giorgio, Audrey; Closa, Jordi Teixido; Tejedor, Roger Estrada; Andréola, Marie-Line; Azoulay, Stéphane; Patino, Nadia
2017-07-19
The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (K D ) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.
Sequence, Structure, and Context Preferences of Human RNA Binding Proteins.
Dominguez, Daniel; Freese, Peter; Alexis, Maria S; Su, Amanda; Hochman, Myles; Palden, Tsultrim; Bazile, Cassandra; Lambert, Nicole J; Van Nostrand, Eric L; Pratt, Gabriel A; Yeo, Gene W; Graveley, Brenton R; Burge, Christopher B
2018-06-07
RNA binding proteins (RBPs) orchestrate the production, processing, and function of mRNAs. Here, we present the affinity landscapes of 78 human RBPs using an unbiased assay that determines the sequence, structure, and context preferences of these proteins in vitro by deep sequencing of bound RNAs. These data enable construction of "RNA maps" of RBP activity without requiring crosslinking-based assays. We found an unexpectedly low diversity of RNA motifs, implying frequent convergence of binding specificity toward a relatively small set of RNA motifs, many with low compositional complexity. Offsetting this trend, however, we observed extensive preferences for contextual features distinct from short linear RNA motifs, including spaced "bipartite" motifs, biased flanking nucleotide composition, and bias away from or toward RNA structure. Our results emphasize the importance of contextual features in RNA recognition, which likely enable targeting of distinct subsets of transcripts by different RBPs that recognize the same linear motif. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Basu, Abhijit; Jain, Niyati; Tolbert, Blanton S.; Komar, Anton A.
2017-01-01
Abstract RNA–protein interactions with physiological outcomes usually rely on conserved sequences within the RNA element. By contrast, activity of the diverse gamma-interferon-activated inhibitor of translation (GAIT)-elements relies on the conserved RNA folding motifs rather than the conserved sequence motifs. These elements drive the translational silencing of a group of chemokine (CC/CXC) and chemokine receptor (CCR) mRNAs, thereby helping to resolve physiological inflammation. Despite sequence dissimilarity, these RNA elements adopt common secondary structures (as revealed by 2D-1H NMR spectroscopy), providing a basis for their interaction with the RNA-binding GAIT complex. However, many of these elements (e.g. those derived from CCL22, CXCL13, CCR4 and ceruloplasmin (Cp) mRNAs) have substantially different affinities for GAIT complex binding. Toeprinting analysis shows that different positions within the overall conserved GAIT element structure contribute to differential affinities of the GAIT protein complex towards the elements. Thus, heterogeneity of GAIT elements may provide hierarchical fine-tuning of the resolution of inflammation. PMID:29069516
Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases
Jazurek, Magdalena; Ciesiolka, Adam; Starega-Roslan, Julia; Bilinska, Katarzyna; Krzyzosiak, Wlodzimierz J.
2016-01-01
RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases. PMID:27625393
The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation
Palioura, Sotiria; Sherrer, R. Lynn; Steitz, Thomas A.; Söll, Dieter; Simonović, Miljan
2010-01-01
Selenocysteine is the only genetically encoded amino acid in humans whose biosynthesis occurs on its cognate transfer RNA (tRNA). O-Phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS) catalyzes the final step of selenocysteine formation by a poorly understood tRNA-dependent mechanism. The crystal structure of human tRNASec in complex with SepSecS, phosphoserine, and thiophosphate, together with in vivo and in vitro enzyme assays, supports a pyridoxal phosphate–dependent mechanism of Sec-tRNASec formation. Two tRNASec molecules, with a fold distinct from other canonical tRNAs, bind to each SepSecS tetramer through their 13–base pair acceptor-TΨC arm (where Ψ indicates pseudouridine). The tRNA binding is likely to induce a conformational change in the enzyme’s active site that allows a phosphoserine covalently attached to tRNASec, but not free phosphoserine, to be oriented properly for the reaction to occur. PMID:19608919
He, M; Taussig, M J
1997-01-01
We describe a rapid, eukaryotic, in vitro method for selection and evolution of antibody combining sites using antibody-ribosome-mRNA (ARM) complexes as selection particles. ARMs carrying single-chain (VH/K) binding fragments specific for progesterone were selected using antigen-coupled magnetic beads; selection simultaneously captured the genetic information as mRNA, making it possible to generate and amplify cDNA by single-step RT-PCR on the ribosome-bound mRNA for further manipulation. Using mutant libraries, antigen-binding ARMs were enriched by a factor of 10(4)-10(5)-fold in a single cycle, with further enrichment in repeated cycles. While demonstrated here for antibodies, the method has the potential to be applied equally for selection of receptors or peptides from libraries. PMID:9396828
He, M; Taussig, M J
1997-12-15
We describe a rapid, eukaryotic, in vitro method for selection and evolution of antibody combining sites using antibody-ribosome-mRNA (ARM) complexes as selection particles. ARMs carrying single-chain (VH/K) binding fragments specific for progesterone were selected using antigen-coupled magnetic beads; selection simultaneously captured the genetic information as mRNA, making it possible to generate and amplify cDNA by single-step RT-PCR on the ribosome-bound mRNA for further manipulation. Using mutant libraries, antigen-binding ARMs were enriched by a factor of 10(4)-10(5)-fold in a single cycle, with further enrichment in repeated cycles. While demonstrated here for antibodies, the method has the potential to be applied equally for selection of receptors or peptides from libraries.
De novo design of RNA-binding proteins with a prion-like domain related to ALS/FTD proteinopathies.
Mitsuhashi, Kana; Ito, Daisuke; Mashima, Kyoko; Oyama, Munenori; Takahashi, Shinichi; Suzuki, Norihiro
2017-12-04
Aberrant RNA-binding proteins form the core of the neurodegeneration cascade in spectrums of disease, such as amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). Six ALS-related molecules, TDP-43, FUS, TAF15, EWSR1, heterogeneous nuclear (hn)RNPA1 and hnRNPA2 are RNA-binding proteins containing candidate mutations identified in ALS patients and those share several common features, including harboring an aggregation-prone prion-like domain (PrLD) containing a glycine/serine-tyrosine-glycine/serine (G/S-Y-G/S)-motif-enriched low-complexity sequence and rich in glutamine and/or asparagine. Additinally, these six molecules are components of RNA granules involved in RNA quality control and become mislocated from the nucleus to form cytoplasmic inclusion bodies (IBs) in the ALS/FTD-affected brain. To reveal the essential mechanisms involved in ALS/FTD-related cytotoxicity associated with RNA-binding proteins containing PrLDs, we designed artificial RNA-binding proteins harboring G/S-Y-G/S-motif repeats with and without enriched glutamine residues and nuclear-import/export-signal sequences and examined their cytotoxicity in vitro. These proteins recapitulated features of ALS-linked molecules, including insoluble aggregation, formation of cytoplasmic IBs and components of RNA granules, and cytotoxicity instigation. These findings indicated that these artificial RNA-binding proteins mimicked features of ALS-linked molecules and allowed the study of mechanisms associated with gain of toxic functions related to ALS/FTD pathogenesis.
Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study
2010-01-01
Background Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. Results An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs) have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. Conclusions The knowledge gained from our study provides useful insights on how to analyze various cross-platform RNAi data for uncovering of their complex mechanism. PMID:20380733
Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study.
Liu, Qi; Xu, Qian; Zheng, Vincent W; Xue, Hong; Cao, Zhiwei; Yang, Qiang
2010-04-10
Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs) have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. The knowledge gained from our study provides useful insights on how to analyze various cross-platform RNAi data for uncovering of their complex mechanism.
Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7.
Eichhorn, Catherine D; Yang, Yuan; Repeta, Lucas; Feigon, Juli
2018-06-26
The La and the La-related protein (LARP) superfamily is a diverse class of RNA binding proteins involved in RNA processing, folding, and function. Larp7 binds to the abundant long noncoding 7SK RNA and is required for 7SK ribonucleoprotein (RNP) assembly and function. The 7SK RNP sequesters a pool of the positive transcription elongation factor b (P-TEFb) in an inactive state; on release, P-TEFb phosphorylates RNA Polymerase II to stimulate transcription elongation. Despite its essential role in transcription, limited structural information is available for the 7SK RNP, particularly for protein-RNA interactions. Larp7 contains an N-terminal La module that binds UUU-3'OH and a C-terminal atypical RNA recognition motif (xRRM) required for specific binding to 7SK and P-TEFb assembly. Deletion of the xRRM is linked to gastric cancer in humans. We report the 2.2-Å X-ray crystal structure of the human La-related protein group 7 (hLarp7) xRRM bound to the 7SK stem-loop 4, revealing a unique binding interface. Contributions of observed interactions to binding affinity were investigated by mutagenesis and isothermal titration calorimetry. NMR 13 C spin relaxation data and comparison of free xRRM, RNA, and xRRM-RNA structures show that the xRRM is preordered to bind a flexible loop 4. Combining structures of the hLarp7 La module and the xRRM-7SK complex presented here, we propose a structural model for Larp7 binding to the 7SK 3' end and mechanism for 7SK RNP assembly. This work provides insight into how this domain contributes to 7SK recognition and assembly of the core 7SK RNP.
Effect of substrate RNA sequence on the cleavage reaction by a short ribozyme.
Ohmichi, T; Okumoto, Y; Sugimoto, N
1998-01-01
Leadzyme is a ribozyme that requires Pb2+. The catalytic sequence, CUGGGAGUCC, binds to an RNA substrate, GGACC downward arrowGAGCCAG, cleaving the RNA substrate at one site. We have investigated the effect of the substrate sequence on the cleavage activity of leadzyme using mutant substrates in order to structurally understand the RNA catalysis. The results showed that leadzyme acted as a catalyst for single site cleavage of a C5 deletion mutant substrate, GGAC downward arrowGAGCCAG, as well as the wild-type substrate. However, a mutant substrate GGACCGACCAG, which had G8 deleted from the wild-type substrate, was not cleaved. Kinetic studies by surface plasmon resonance indicated that the difference between active and inactive structures reflected the slow association and dissociation rate constants of complex formation induced by Pb2+rather than differences in complex stability. CD spectra showed that the active form of the substrate-leadzyme complex was rearranged by Pb2+binding. The G8 of the wild-type substrate, which was absent in the inactive complex, is not near the cleavage site. Thus, these results show that the active substrate-leadzyme complex has a Pb2+binding site at the junction between the unpaired region (asymmetric internal loop) and the stem region, which is distal to the cleavage site. Pb2+may play a role in rearranging the bases in the asymmetric internal loop to the correct position for catalysis. PMID:9837996
Moreno, Renata; Hernández-Arranz, Sofía; La Rosa, Ruggero; Yuste, Luis; Madhushani, Anjana; Shingler, Victoria; Rojo, Fernando
2015-01-01
The Crc protein is a global regulator that has a key role in catabolite repression and optimization of metabolism in Pseudomonads. Crc inhibits gene expression post-transcriptionally, preventing translation of mRNAs bearing an AAnAAnAA motif [the catabolite activity (CA) motif] close to the translation start site. Although Crc was initially believed to bind RNA by itself, this idea was recently challenged by results suggesting that a protein co-purifying with Crc, presumably the Hfq protein, could account for the detected RNA-binding activity. Hfq is an abundant protein that has a central role in post-transcriptional gene regulation. Herein, we show that the Pseudomonas putida Hfq protein can recognize the CA motifs of RNAs through its distal face and that Crc facilitates formation of a more stable complex at these targets. Crc was unable to bind RNA in the absence of Hfq. However, pull-down assays showed that Crc and Hfq can form a co-complex with RNA containing a CA motif in vitro. Inactivation of the hfq or the crc gene impaired catabolite repression to a similar extent. We propose that Crc and Hfq cooperate in catabolite repression, probably through forming a stable co-complex with RNAs containing CA motifs to result in inhibition of translation initiation. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Polevoda, Bogdan; Joseph, Rebecca; Friedman, Alan E.; Bennett, Ryan P.; Greiner, Rebecca; De Zoysa, Thareendra; Stewart, Ryan A.; Smith, Harold C.
2017-01-01
APOBEC3G (A3G) belongs to the AID/APOBEC protein family of cytidine deaminases (CDA) that bind to nucleic acids. A3G mutates the HIV genome by deamination of dC to dU, leading to accumulation of virus-inactivating mutations. Binding to cellular RNAs inhibits A3G binding to substrate single-stranded (ss) DNA and CDA activity. Bulk RNA and substrate ssDNA bind to the same three A3G tryptic peptides (amino acids 181–194, 314–320, and 345–374) that form parts of a continuously exposed protein surface extending from the catalytic domain in the C terminus of A3G to its N terminus. We show here that the A3G tyrosines 181 and 315 directly cross-linked ssDNA. Binding experiments showed that a Y315A mutation alone significantly reduced A3G binding to both ssDNA and RNA, whereas Y181A and Y182A mutations only moderately affected A3G nucleic acid binding. Consistent with these findings, the Y315A mutant exhibited little to no deaminase activity in an Escherichia coli DNA mutator reporter, whereas Y181A and Y182A mutants retained ∼50% of wild-type A3G activity. The Y315A mutant also showed a markedly reduced ability to assemble into viral particles and had reduced antiviral activity. In uninfected cells, the impaired RNA-binding capacity of Y315A was evident by a shift of A3G from high-molecular-mass ribonucleoprotein complexes to low-molecular-mass complexes. We conclude that Tyr-315 is essential for coordinating ssDNA interaction with or entry to the deaminase domain and hypothesize that RNA bound to Tyr-315 may be sufficient to competitively inhibit ssDNA deaminase-dependent antiviral activity. PMID:28381554
Hatoum-Aslan, Asma; Samai, Poulami; Maniv, Inbal; Jiang, Wenyan; Marraffini, Luciano A
2013-09-27
Small RNAs undergo maturation events that precisely determine the length and structure required for their function. CRISPRs (clustered regularly interspaced short palindromic repeats) encode small RNAs (crRNAs) that together with CRISPR-associated (cas) genes constitute a sequence-specific prokaryotic immune system for anti-viral and anti-plasmid defense. crRNAs are subject to multiple processing events during their biogenesis, and little is known about the mechanism of the final maturation step. We show that in the Staphylococcus epidermidis type III CRISPR-Cas system, mature crRNAs are measured in a Cas10·Csm ribonucleoprotein complex to yield discrete lengths that differ by 6-nucleotide increments. We looked for mutants that impact this crRNA size pattern and found that an alanine substitution of a conserved aspartate residue of Csm3 eliminates the 6-nucleotide increments in the length of crRNAs. In vitro, recombinant Csm3 binds RNA molecules at multiple sites, producing gel-shift patterns that suggest that each protein binds 6 nucleotides of substrate. In vivo, changes in the levels of Csm3 modulate the crRNA size distribution without disrupting the 6-nucleotide periodicity. Our data support a model in which multiple Csm3 molecules within the Cas10·Csm complex bind the crRNA with a 6-nucleotide periodicity to function as a ruler that measures the extent of crRNA maturation.
Heyduk, T; Niedziela-Majka, A
Fluorescence resonance energy transfer (FRET) is a technique allowing measurements of atomic-scale distances in diluted solutions of macromolecules under native conditions. This feature makes FRET a powerful tool to study complicated biological assemblies. In this report we review the applications of FRET to studies of transcription initiation by Escherichia coli RNA polymerase. The versatility of FRET for studies of a large macromolecular assembly such as RNA polymerase is illustrated by examples of using FRET to address several different aspects of transcription initiation by polymerase. FRET has been used to determine the architecture of polymerase, its complex with single-stranded DNA, and the conformation of promoter fragment bound to polymerase. FRET has been also used as a binding assay to determine the thermodynamics of promoter DNA fragment binding to the polymerase. Functional conformational changes in the specificity subunit of polymerase responsible for the modulation of the promoter binding activity of the enzyme and the mechanistic aspects of the transition from the initiation to the elongation complex were also investigated. Copyright 2002 Wiley Periodicals, Inc.
Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.
Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael
2017-04-15
Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain arrangements and dynamics. Principles of protein-RNA recognition and current approaches are reviewed and illustrated with recent studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, S; Kool, E T
1995-04-11
Described is a systematic study of the effects of varied backbone structure on the stabilities of pyr.pur.pyr triple helices. The effects were measured using six circular 34 base oligonucleotides containing DNA (D), RNA (R) and/or 2'-O-methyl-RNA (M) residues designed to bind a complementary single-stranded purine target strand by triple helix formation. Eighteen different backbone combinations were studied at pH 5.5 and 7.0 by optical melting experiments and the results compared with the stabilities of the corresponding Watson-Crick duplexes. When the target purine strand is DNA, all circles form pH-dependent triple helical complexes which are considerably stronger than the duplexes alone. When RNA is the target, five of the nine complexes studied are of the pH-dependent triplex type and the other four complexes are not significantly stronger than the corresponding duplexes. The results are useful in the design of the highest affinity ligands for single- and double-stranded DNAs and RNAs and also point out novel ways to engender DNA- or RNA-selective binding.
TAF11 Assembles the RISC Loading Complex to Enhance RNAi Efficiency.
Liang, Chunyang; Wang, Yibing; Murota, Yukiko; Liu, Xiang; Smith, Dean; Siomi, Mikiko C; Liu, Qinghua
2015-09-03
Assembly of the RNA-induced silencing complex (RISC) requires formation of the RISC loading complex (RLC), which contains the Dicer-2 (Dcr-2)-R2D2 complex and recruits duplex siRNA to Ago2 in Drosophila melanogaster. However, the precise composition and action mechanism of Drosophila RLC remain unclear. Here we identified the missing factor of RLC as TATA-binding protein-associated factor 11 (TAF11) by genetic screen. Although it is an annotated nuclear transcription factor, we found that TAF11 also associated with Dcr-2/R2D2 and localized to cytoplasmic D2 bodies. Consistent with defective RLC assembly in taf11(-/-) ovary extract, we reconstituted the RLC in vitro using the recombinant Dcr-2-R2D2 complex, TAF11, and duplex siRNA. Furthermore, we showed that TAF11 tetramer facilitates Dcr-2-R2D2 tetramerization to enhance siRNA binding and RISC loading activities. Together, our genetic and biochemical studies define the molecular nature of the Drosophila RLC and elucidate a cytoplasmic function of TAF11 in organizing RLC assembly to enhance RNAi efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.
Yang, Lingna; Wang, Chongyuan; Li, Fudong; Zhang, Jiahai; Nayab, Anam; Wu, Jihui; Shi, Yunyu; Gong, Qingguo
2017-09-29
MEX-3 is a K-homology (KH) domain-containing RNA-binding protein first identified as a translational repressor in Caenorhabditis elegans , and its four orthologs (MEX-3A-D) in human and mouse were subsequently found to have E3 ubiquitin ligase activity mediated by a RING domain and critical for RNA degradation. Current evidence implicates human MEX-3C in many essential biological processes and suggests a strong connection with immune diseases and carcinogenesis. The highly conserved dual KH domains in MEX-3 proteins enable RNA binding and are essential for the recognition of the 3'-UTR and post-transcriptional regulation of MEX-3 target transcripts. However, the molecular mechanisms of translational repression and the consensus RNA sequence recognized by the MEX-3C KH domain are unknown. Here, using X-ray crystallography and isothermal titration calorimetry, we investigated the RNA-binding activity and selectivity of human MEX-3C dual KH domains. Our high-resolution crystal structures of individual KH domains complexed with a noncanonical U-rich and a GA-rich RNA sequence revealed that the KH1/2 domains of human MEX-3C bound MRE10, a 10-mer RNA (5'-CAGAGUUUAG-3') consisting of an eight-nucleotide MEX-3-recognition element (MRE) motif, with high affinity. Of note, we also identified a consensus RNA motif recognized by human MEX-3C. The potential RNA-binding sites in the 3'-UTR of the human leukocyte antigen serotype ( HLA-A2 ) mRNA were mapped with this RNA-binding motif and further confirmed by fluorescence polarization. The binding motif identified here will provide valuable information for future investigations of the functional pathways controlled by human MEX-3C and for predicting potential mRNAs regulated by this enzyme. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
The yeast transcription elongation factor Spt4/5 is a sequence‐specific RNA binding protein
Blythe, Amanda J.; Yazar‐Klosinski, Berra; Webster, Michael W.; Chen, Eefei; Vandevenne, Marylène; Bendak, Katerina; Mackay, Joel P.; Hartzog, Grant A.
2016-01-01
Abstract The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates with RNAPII to regulate both transcriptional elongation and co‐transcriptional pre‐mRNA processing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We demonstrate here that yeast Spt4/5 can bind in a sequence‐specific manner to single stranded RNA containing AAN repeats. Furthermore, we show that the major protein determinants for RNA‐binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that associates directly with RNAPII, making significant steps towards elucidating the mechanism behind transcriptional control by Spt4/5. PMID:27376968
Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing
Pratt-Hyatt, Matthew; Pai, Dave A.; Haeusler, Rebecca A.; Wozniak, Glenn G.; Good, Paul D.; Miller, Erin L.; McLeod, Ian X.; Yates, John R.; Hopper, Anita K.; Engelke, David R.
2013-01-01
The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification. PMID:23898186
Cruz-Gallardo, Isabel; Del Conte, Rebecca; Velázquez-Campoy, Adrián; García-Mauriño, Sofía M; Díaz-Moreno, Irene
2015-05-11
A useful (2) J(N-H) coupling-based NMR spectroscopic approach is proposed to unveil, at the molecular level, the contribution of the imidazole groups of histidines from RNA/DNA-binding proteins on the modulation of binding to nucleic acids by pH. Such protonation/deprotonation events have been monitored on the single His96 located at the second RNA/DNA recognition motif (RRM2) of T-cell intracellular antigen-1 (TIA-1) protein. The pKa values of the His96 ionizable groups were substantially higher in the complexes with short U-rich RNA and T-rich DNA oligonucleotides than those of the isolated TIA-1 RRM2. Herein, the methodology applied to determine changes in pKa of histidine side chains upon DNA/RNA binding, gives valuable information to understand the pH effect on multidomain DNA/RNA-binding proteins that shuttle among different cellular compartments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solution structure of an ATP-binding RNA aptamer reveals a novel fold.
Dieckmann, T; Suzuki, E; Nakamura, G K; Feigon, J
1996-01-01
In vitro selection has been used to isolate several RNA aptamers that bind specifically to biological cofactors. A well-characterized example in the ATP-binding RNA aptamer family, which contains a conserved 11-base loop opposite a bulged G and flanked by regions of double-stranded RNA. The nucleotides in the consensus sequence provide a binding pocket for ATP (or AMP), which binds with a Kd in the micromolar range. Here we present the three-dimensional solution structure of a 36-nucleotide ATP-binding RNA aptamer complexed with AMP, determined from NMR-derived distance and dihedral angle restraints. The conserved loop and bulged G form a novel compact, folded structure around the AMP. The backbone tracing of the loop nucleotides can be described by a Greek zeta (zeta). Consecutive loop nucleotides G, A, A form a U-turn at the bottom of the zeta, and interact with the AMP to form a structure similar to a GNRA tetraloop, with AMP standing in for the final A. Two asymmetric G. G base pairs close the stems flanking the internal loop. Mutated aptamers support the existence of the tertiary interactions within the consensus nucleotides and with the AMP found in the calculated structures. PMID:8756406
ATP-independent diffusion of double-stranded RNA binding proteins
Koh, Hye Ran; Kidwell, Mary Anne; Ragunathan, Kaushik; Doudna, Jennifer A.; Myong, Sua
2013-01-01
The proteins harboring double-stranded RNA binding domains (dsRBDs) play diverse functional roles such as RNA localization, splicing, editing, export, and translation, yet mechanistic basis and functional significance of dsRBDs remain unclear. To unravel this enigma, we investigated transactivation response RNA binding protein (TRBP) consisting of three dsRBDs, which functions in HIV replication, protein kinase R(PKR)–mediated immune response, and RNA silencing. Here we report an ATP-independent diffusion activity of TRBP exclusively on dsRNA in a length-dependent manner. The first two dsRBDs of TRBP are essential for diffusion, whereas the third dsRBD is dispensable. Two homologs of TRBP, PKR activator and R3D1-L, displayed the same diffusion, implying a universality of the diffusion activity among this protein family. Furthermore, a Dicer–TRBP complex on dsRNA exhibited dynamic diffusion, which was correlated with Dicer’s catalytic activity. These results implicate the dsRNA-specific diffusion activity of TRBP that contributes to enhancing siRNA and miRNA processing by Dicer. PMID:23251028
Structure of the Cmr2 Subunit of the CRISPR-Cas RNA Silencing Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocozaki, Alexis I.; Ramia, Nancy F.; Shao, Yaming
Cmr2 is the largest and an essential subunit of a CRISPR RNA-Cas protein complex (the Cmr complex) that cleaves foreign RNA to protect prokaryotes from invading genetic elements. Cmr2 is thought to be the catalytic subunit of the effector complex because of its N-terminal HD nuclease domain. Here, however, we report that the HD domain of Cmr2 is not required for cleavage by the complex in vitro. The 2.3 {angstrom} crystal structure of Pyrococcus furiosus Cmr2 (lacking the HD domain) reveals two adenylyl cyclase-like and two {alpha}-helical domains. The adenylyl cyclase-like domains are arranged as in homodimeric adenylyl cyclases andmore » bind ADP and divalent metals. However, mutagenesis studies show that the metal- and ADP-coordinating residues of Cmr2 are also not critical for cleavage by the complex. Our findings suggest that another component provides the catalytic function and that the essential role by Cmr2 does not require the identified ADP- or metal-binding or HD domains in vitro.« less
RNA extraction from self-assembling peptide hydrogels to allow qPCR analysis of encapsulated cells.
Burgess, Kyle A; Workman, Victoria L; Elsawy, Mohamed A; Miller, Aline F; Oceandy, Delvac; Saiani, Alberto
2018-01-01
Self-assembling peptide hydrogels offer a novel 3-dimensional platform for many applications in cell culture and tissue engineering but are not compatible with current methods of RNA isolation; owing to interactions between RNA and the biomaterial. This study investigates the use of two techniques based on two different basic extraction principles: solution-based extraction and direct solid-state binding of RNA respectively, to extract RNA from cells encapsulated in four β-sheet forming self-assembling peptide hydrogels with varying net positive charge. RNA-peptide fibril interactions, rather than RNA-peptide molecular complexing, were found to interfere with the extraction process resulting in low yields. A column-based approach relying on RNA-specific binding was shown to be more suited to extracting RNA with higher purity from these peptide hydrogels owing to its reliance on strong specific RNA binding interactions which compete directly with RNA-peptide fibril interactions. In order to reduce the amount of fibrils present and improve RNA yields a broad spectrum enzyme solution-pronase-was used to partially digest the hydrogels before RNA extraction. This pre-treatment was shown to significantly increase the yield of RNA extracted, allowing downstream RT-qPCR to be performed.
Laudenbach, Beatrice Theres; Martínez-Montero, Saúl; Cencic, Regina; Habjan, Matthias; Pichlmair, Andreas; Damha, Masad J.; Pelletier, Jerry; Nagar, Bhushan
2017-01-01
IFIT1 (IFN-induced protein with tetratricopeptide repeats-1) is an effector of the host innate immune antiviral response that prevents propagation of virus infection by selectively inhibiting translation of viral mRNA. It relies on its ability to compete with the translation initiation factor eIF4F to specifically recognize foreign capped mRNAs, while remaining inactive against host mRNAs marked by ribose 2′-O methylation at the first cap-proximal nucleotide (N1). We report here several crystal structures of RNA-bound human IFIT1, including a 1.6-Å complex with capped RNA. IFIT1 forms a water-filled, positively charged RNA-binding tunnel with a separate hydrophobic extension that unexpectedly engages the cap in multiple conformations (syn and anti) giving rise to a relatively plastic and nonspecific mode of binding, in stark contrast to eIF4E. Cap-proximal nucleotides encircled by the tunnel provide affinity to compete with eIF4F while allowing IFIT1 to select against N1 methylated mRNA. Gel-shift binding assays confirm that N1 methylation interferes with IFIT1 binding, but in an RNA-dependent manner, whereas translation assays reveal that N1 methylation alone is not sufficient to prevent mRNA recognition at high IFIT1 concentrations. Structural and functional analysis show that 2′-O methylation at N2, another abundant mRNA modification, is also detrimental for RNA binding, thus revealing a potentially synergistic role for it in self- versus nonself-mRNA discernment. Finally, structure-guided mutational analysis confirms the importance of RNA binding for IFIT1 restriction of a human coronavirus mutant lacking viral N1 methylation. Our structural and biochemical analysis sheds new light on the molecular basis for IFIT1 translational inhibition of capped viral RNA. PMID:28251928
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koley, Sandip; Adhya, Samit, E-mail: nilugrandson@gmail.com
Highlights: •A tRNA translocating complex was assembled from purified proteins. •The complex translocates tRNA at a membrane potential of ∼60 mV. •Translocation requires Cys and His residues in the Fe–S center of RIC6 subunit. -- Abstract: Very little is known about how nucleic acids are translocated across membranes. The multi-subunit RNA Import Complex (RIC) from mitochondria of the kinetoplastid protozoon Leishmania tropica induces translocation of tRNAs across artificial or natural membranes, but the nature of the translocation pore remains unknown. We show that subunits RIC6 and RIC9 assemble on the membrane in presence of subunit RIC4A to form complex R3.more » Atomic Force Microscopy of R3 revealed particles with an asymmetric surface groove of ∼20 nm rim diameter and ∼1 nm depth. R3 induced translocation of tRNA into liposomes when the pH of the medium was lowered to ∼6 in the absence of ATP. R3-mediated tRNA translocation could also be induced at neutral pH by a K{sup +} diffusion potential with an optimum of 60–70 mV. Point mutations in the Cys{sub 2}–His{sub 2} Fe-binding motif of RIC6, which is homologous to the respiratory Complex III Fe–S protein, abrogated import induced by low pH but not by K{sup +} diffusion potential. These results indicate that the R3 complex forms a pore that is gated by a proton-generated membrane potential and that the Fe–S binding region of RIC6 has a role in proton translocation. The tRNA import complex of L. tropica thus contains a novel macromolecular channel distinct from the mitochondrial protein import pore that is apparently involved in tRNA import in some species.« less
Quarles, Kaycee A; Chadalavada, Durga; Showalter, Scott A
2015-06-01
The prevalence of double-stranded RNA (dsRNA) in eukaryotic cells has only recently been appreciated. Of interest here, RNA silencing begins with dsRNA substrates that are bound by the dsRNA-binding domains (dsRBDs) of their processing proteins. Specifically, processing of microRNA (miRNA) in the nucleus minimally requires the enzyme Drosha and its dsRBD-containing cofactor protein, DGCR8. The smallest recombinant construct of DGCR8 that is sufficient for in vitro dsRNA binding, referred to as DGCR8-Core, consists of its two dsRBDs and a C-terminal tail. As dsRBDs rarely recognize the nucleotide sequence of dsRNA, it is reasonable to hypothesize that DGCR8 function is dependent on the recognition of specific structural features in the miRNA precursor. Previously, we demonstrated that noncanonical structural elements that promote RNA flexibility within the stem of miRNA precursors are necessary for efficient in vitro cleavage by reconstituted Microprocessor complexes. Here, we combine gel shift assays with in vitro processing assays to demonstrate that neither the N-terminal dsRBD of DGCR8 in isolation nor the DGCR8-Core construct is sensitive to the presence of noncanonical structural elements within the stem of miRNA precursors, or to single-stranded segments flanking the stem. Extending DGCR8-Core to include an N-terminal heme-binding region does not change our conclusions. Thus, our data suggest that although the DGCR8-Core region is necessary for dsRNA binding and recruitment to the Microprocessor, it is not sufficient to establish the previously observed connection between RNA flexibility and processing efficiency. © 2015 Wiley Periodicals, Inc.
Missoury, Sophia; Plancqueel, Stéphane; Li de la Sierra-Gallay, Ines; Zhang, Wenhua; Liger, Dominique; Durand, Dominique; Dammak, Raoudha; Collinet, Bruno; van Tilbeurgh, Herman
2018-05-08
The universal N6-threonylcarbamoyladenosine (t6A) modification at position A37 of ANN-decoding tRNAs is essential for translational fidelity. In bacteria the TsaC enzyme first synthesizes an l-threonylcarbamoyladenylate (TC-AMP) intermediate. In cooperation with TsaB and TsaE, TsaD then transfers the l-threonylcarbamoyl-moiety from TC-AMP onto tRNA. We determined the crystal structure of the TsaB-TsaE-TsaD (TsaBDE) complex of Thermotoga maritima in presence of a non-hydrolysable AMPCPP. TsaE is positioned at the entrance of the active site pocket of TsaD, contacting both the TsaB and TsaD subunits and prohibiting simultaneous tRNA binding. AMPCPP occupies the ATP binding site of TsaE and is sandwiched between TsaE and TsaD. Unexpectedly, the binding of TsaE partially denatures the active site of TsaD causing loss of its essential metal binding sites. TsaE interferes in a pre- or post-catalytic step and its binding to TsaBD is regulated by ATP hydrolysis. This novel binding mode and activation mechanism of TsaE offers good opportunities for antimicrobial drug development.
Ferron, François; Li, Zongli; Danek, Eric I.; Luo, Dahai; Wong, Yeehwa; Coutard, Bruno; Lantez, Violaine; Charrel, Rémi; Canard, Bruno; Walz, Thomas; Lescar, Julien
2011-01-01
Rift Valley fever virus (RVFV), a Phlebovirus with a genome consisting of three single-stranded RNA segments, is spread by infected mosquitoes and causes large viral outbreaks in Africa. RVFV encodes a nucleoprotein (N) that encapsidates the viral RNA. The N protein is the major component of the ribonucleoprotein complex and is also required for genomic RNA replication and transcription by the viral polymerase. Here we present the 1.6 Å crystal structure of the RVFV N protein in hexameric form. The ring-shaped hexamers form a functional RNA binding site, as assessed by mutagenesis experiments. Electron microscopy (EM) demonstrates that N in complex with RNA also forms rings in solution, and a single-particle EM reconstruction of a hexameric N-RNA complex is consistent with the crystallographic N hexamers. The ring-like organization of the hexamers in the crystal is stabilized by circular interactions of the N terminus of RVFV N, which forms an extended arm that binds to a hydrophobic pocket in the core domain of an adjacent subunit. The conformation of the N-terminal arm differs from that seen in a previous crystal structure of RVFV, in which it was bound to the hydrophobic pocket in its own core domain. The switch from an intra- to an inter-molecular interaction mode of the N-terminal arm may be a general principle that underlies multimerization and RNA encapsidation by N proteins from Bunyaviridae. Furthermore, slight structural adjustments of the N-terminal arm would allow RVFV N to form smaller or larger ring-shaped oligomers and potentially even a multimer with a super-helical subunit arrangement. Thus, the interaction mode between subunits seen in the crystal structure would allow the formation of filamentous ribonucleocapsids in vivo. Both the RNA binding cleft and the multimerization site of the N protein are promising targets for the development of antiviral drugs. PMID:21589902
Trim25 Is an RNA-Specific Activator of Lin28a/TuT4-Mediated Uridylation
Choudhury, Nila Roy; Nowak, Jakub S.; Zuo, Juan; Rappsilber, Juri; Spoel, Steven H.; Michlewski, Gracjan
2014-01-01
Summary RNA binding proteins have thousands of cellular RNA targets and often exhibit opposite or passive molecular functions. Lin28a is a conserved RNA binding protein involved in pluripotency and tumorigenesis that was previously shown to trigger TuT4-mediated pre-let-7 uridylation, inhibiting its processing and targeting it for degradation. Surprisingly, despite binding to other pre-microRNAs (pre-miRNAs), only pre-let-7 is efficiently uridylated by TuT4. Thus, we hypothesized the existence of substrate-specific cofactors that stimulate Lin28a-mediated pre-let-7 uridylation or restrict its functionality on non-let-7 pre-miRNAs. Through RNA pull-downs coupled with quantitative mass spectrometry, we identified the E3 ligase Trim25 as an RNA-specific cofactor for Lin28a/TuT4-mediated uridylation. We show that Trim25 binds to the conserved terminal loop (CTL) of pre-let-7 and activates TuT4, allowing for more efficient Lin28a-mediated uridylation. These findings reveal that protein-modifying enzymes, only recently shown to bind RNA, can guide the function of canonical ribonucleoprotein (RNP) complexes in cis, thereby providing an additional level of specificity. PMID:25457611
Eswara, Manoja B K; Clayton, Ashley; Mangroo, Dev
2012-12-01
Utp8p is an essential nucleolar protein that channels aminoacyl-tRNAs from aminoacyl-tRNA synthetases in the nucleolus to the nuclear tRNA export receptors located in the nucleoplasm and nuclear pore complex in Saccharomyces cerevisiae. Utp8p is also part of the U3 snoRNA-associated protein complex involved in 18S rRNA biogenesis in the nucleolus. We report that Utp22p, which is another member of the U3 snoRNA-associated protein complex, is also an intranuclear component of the nuclear tRNA export machinery. Depletion of Utp22p results in nuclear retention of mature tRNAs derived from intron-containing and intronless precursors. Moreover, Utp22p copurifies with the nuclear tRNA export receptor Los1p, the aminoacyl-tRNA synthetase Tys1p and Utp8p, but not with the RanGTPase Gsp1p and the nuclear tRNA export receptor Msn5p. Utp22p interacts directly with Utp8p and Los1p in a tRNA-independent manner in vitro. Utp22p also interacts directly with Tys1p, but this binding is stimulated when Tys1p is bound to tRNA. However, Utp22p, unlike Utp8p, does not bind tRNA saturably. These data suggest that Utp22p recruits Utp8p to aminoacyl-tRNA synthetases in the nucleolus to collect aminoacyl-tRNA and then accompanies the Utp8p-tRNA complex to deliver the aminoacyl-tRNAs to Los1p but not Msn5p. It is possible that Nrap/Nol6, the mammalian orthologue of Utp22p, plays a role in channelling aminoacyl-tRNA to the nuclear tRNA export receptor exportin-t.
Structure of T7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme.
Jeruzalmi, D; Steitz, T A
1998-01-01
The T7 RNA polymerase-T7 lysozyme complex regulates phage gene expression during infection of Escherichia coli. The 2.8 A crystal structure of the complex reveals that lysozyme binds at a site remote from the polymerase active site, suggesting an indirect mechanism of inhibition. Comparison of the T7 RNA polymerase structure with that of the homologous pol I family of DNA polymerases reveals identities in the catalytic site but also differences specific to RNA polymerase function. The structure of T7 RNA polymerase presented here differs significantly from a previously published structure. Sequence similarities between phage RNA polymerases and those from mitochondria and chloroplasts, when interpreted in the context of our revised model of T7 RNA polymerase, suggest a conserved fold. PMID:9670025
Discrimination against RNA Backbones by a ssDNA Binding Protein.
Lloyd, Neil R; Wuttke, Deborah S
2018-05-01
Pot1 is the shelterin component responsible for the protection of the single-stranded DNA (ssDNA) overhang at telomeres in nearly all eukaryotic organisms. The C-terminal domain of the DNA-binding domain, Pot1pC, exhibits non-specific ssDNA recognition, achieved through thermodynamically equivalent alternative binding conformations. Given this flexibility, it is unclear how specificity for ssDNA over RNA, an activity required for biological function, is achieved. Examination of the ribose-position specificity of Pot1pC shows that ssDNA specificity is additive but not uniformly distributed across the ligand. High-resolution structures of several Pot1pC complexes with RNA-DNA chimeric ligands reveal Pot1pC discriminates against RNA by utilizing non-compensatory binding modes that feature significant rearrangement of the binding interface. These alternative conformations, accessed through both ligand and protein flexibility, recover much, but not all, of the binding energy, leading to the observed reduction in affinities. These findings suggest that intermolecular interfaces are remarkably sophisticated in their tuning of specificity toward flexible ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.
Morris, Kevin J; Corbett, Anita H
2018-06-15
The polyadenosine RNA-binding protein ZC3H14 is important in RNA processing. Although ZC3H14 is ubiquitously expressed, mutation of the ZC3H14 gene causes a non-syndromic form of intellectual disability. Here, we examine the function of ZC3H14 in the brain by identifying ZC3H14-interacting proteins using unbiased mass spectrometry. Through this analysis, we identified physical interactions between ZC3H14 and multiple RNA processing factors. Notably, proteins that comprise the THO complex were amongst the most enriched proteins. We demonstrate that ZC3H14 physically interacts with THO components and that these proteins are required for proper RNA processing, as loss of ZC3H14 or THO components leads to extended bulk poly(A) tail length. Furthermore, we identified the transcripts Atp5g1 and Psd95 as shared RNA targets of ZC3H14 and the THO complex. Our data suggest that ZC3H14 and the THO complex are important for proper processing of Atp5g1 and Psd95 RNA, as depletion of ZC3H14 or THO components leads to decreased steady-state levels of each mature transcript accompanied by accumulation of Atp5g1 and Psd95 pre-mRNA in the cytoplasm. Taken together, this work provides the first unbiased identification of nuclear ZC3H14-interacting proteins from the brain and links the functions of ZC3H14 and the THO complex in the processing of RNA.
Purification of Transcript-Specific mRNP Complexes Formed In Vivo from Saccharomyces cerevisiae.
Smith, Jenna E; Baker, Kristian E
2017-01-01
RNA binding proteins play critical roles in shaping the complex life cycle of cellular transcripts. For most RNAs, the association with a distinct complement of proteins serves to orchestrate its unique pattern of maturation, localization, translation, and stability. A key aspect to understanding how transcripts are differentially regulated lies, therefore, in the ability to identify the particular repertoire of protein binding partners associated with an individual transcript. We describe here an optimized experimental procedure for purifying a single mRNA population from yeast cells for the characterization of transcript-specific mRNA-protein complexes (mRNPs) as they exist in vivo. Chemical cross-linking is used to trap native mRNPs and facilitate the co-purification of protein complexes associated with an individual transcript population that is captured under stringent conditions from cell lysates through hybridization to complementary DNA oligonucleotides. The resulting mRNP is highly enriched and largely devoid of non-target transcripts, and can be used for a number of downstream analyses including protein identification by mass spectrometry.
Specificity and non-specificity in RNA–protein interactions
Jankowsky, Eckhard; Harris, Michael E.
2016-01-01
Gene expression is regulated by complex networks of interactions between RNAs and proteins. Proteins that interact with RNA have been traditionally viewed as either specific or non-specific; specific proteins interact preferentially with defined RNA sequence or structure motifs, whereas non-specific proteins interact with RNA sites devoid of such characteristics. Recent studies indicate that the binary “specific vs. non-specific” classification is insufficient to describe the full spectrum of RNA–protein interactions. Here, we review new methods that enable quantitative measurements of protein binding to large numbers of RNA variants, and the concepts aimed as describing resulting binding spectra: affinity distributions, comprehensive binding models and free energy landscapes. We discuss how these new methodologies and associated concepts enable work towards inclusive, quantitative models for specific and non-specific RNA–protein interactions. PMID:26285679
RNA polymerase I-Rrn3 complex at 4.8 Å resolution
NASA Astrophysics Data System (ADS)
Engel, Christoph; Plitzko, Jürgen; Cramer, Patrick
2016-07-01
Transcription of ribosomal DNA by RNA polymerase I (Pol I) requires the initiation factor Rrn3. Here we report the cryo-EM structure of the Pol I-Rrn3 complex at 4.8 Å resolution. The structure reveals how Rrn3 binding converts an inactive Pol I dimer into an initiation-competent monomeric complex and provides insights into the mechanisms of Pol I-specific initiation and regulation.
Chen, Fu; Sun, Huiyong; Wang, Junmei; Zhu, Feng; Liu, Hui; Wang, Zhe; Lei, Tailong; Li, Youyong; Hou, Tingjun
2018-06-21
Molecular docking provides a computationally efficient way to predict the atomic structural details of protein-RNA interactions (PRI), but accurate prediction of the three-dimensional structures and binding affinities for PRI is still notoriously difficult, partly due to the unreliability of the existing scoring functions for PRI. MM/PBSA and MM/GBSA are more theoretically rigorous than most scoring functions for protein-RNA docking, but their prediction performance for protein-RNA systems remains unclear. Here, we systemically evaluated the capability of MM/PBSA and MM/GBSA to predict the binding affinities and recognize the near-native binding structures for protein-RNA systems with different solvent models and interior dielectric constants (ϵ in ). For predicting the binding affinities, the predictions given by MM/GBSA based on the minimized structures in explicit solvent and the GBGBn1 model with ϵ in = 2 yielded the highest correlation with the experimental data. Moreover, the MM/GBSA calculations based on the minimized structures in implicit solvent and the GBGBn1 model distinguished the near-native binding structures within the top 10 decoys for 118 out of the 149 protein-RNA systems (79.2%). This performance is better than all docking scoring functions studied here. Therefore, the MM/GBSA rescoring is an efficient way to improve the prediction capability of scoring functions for protein-RNA systems. Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Götze, Michael; Dufourt, Jérémy; Ihling, Christian; Rammelt, Christiane; Pierson, Stephanie; Sambrani, Nagraj; Temme, Claudia; Sinz, Andrea; Simonelig, Martine; Wahle, Elmar
2017-10-01
Translational repression of maternal mRNAs is an essential regulatory mechanism during early embryonic development. Repression of the Drosophila nanos mRNA, required for the formation of the anterior-posterior body axis, depends on the protein Smaug binding to two Smaug recognition elements (SREs) in the nanos 3' UTR. In a comprehensive mass spectrometric analysis of the SRE-dependent repressor complex, we identified Smaug, Cup, Me31B, Trailer hitch, eIF4E, and PABPC, in agreement with earlier data. As a novel component, the RNA-dependent ATPase Belle (DDX3) was found, and its involvement in deadenylation and repression of nanos was confirmed in vivo. Smaug, Cup, and Belle bound stoichiometrically to the SREs, independently of RNA length. Binding of Me31B and Tral was also SRE-dependent, but their amounts were proportional to the length of the RNA and equimolar to each other. We suggest that "coating" of the RNA by a Me31B•Tral complex may be at the core of repression. © 2017 Götze et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors.
Ducrot, Cécile; Lefebvre, Olivier; Landrieux, Emilie; Guirouilh-Barbat, Josée; Sentenac, André; Acker, Joel
2006-04-28
Transcription factor TFIIIC is a multisubunit complex required for promoter recognition and transcriptional activation of class III genes. We describe here the reconstitution of complete recombinant yeast TFIIIC and the molecular characterization of its two DNA-binding domains, tauA and tauB, using the baculovirus expression system. The B block-binding module, rtauB, was reconstituted with rtau138, rtau91, and rtau60 subunits. rtau131, rtau95, and rtau55 formed also a stable complex, rtauA, that displayed nonspecific DNA binding activity. Recombinant rTFIIIC was functionally equivalent to purified yeast TFIIIC, suggesting that the six recombinant subunits are necessary and sufficient to reconstitute a transcriptionally active TFIIIC complex. The formation and the properties of rTFIIIC-DNA complexes were affected by dephosphorylation treatments. The combination of complete recombinant rTFIIIC and rTFIIIB directed a low level of basal transcription, much weaker than with the crude B'' fraction, suggesting the existence of auxiliary factors that could modulate the yeast RNA polymerase III transcription system.
Architecture of the RNA polymerase II-Mediator core initiation complex.
Plaschka, C; Larivière, L; Wenzeck, L; Seizl, M; Hemann, M; Tegunov, D; Petrotchenko, E V; Borchers, C H; Baumeister, W; Herzog, F; Villa, E; Cramer, P
2015-02-19
The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 Å resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.
Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation.
Edwards, Thomas E; Robinson, Bruce H; Sigurdsson, Snorri Th
2005-03-01
The Tat protein and the transactivation responsive (TAR) RNA form an essential complex in the HIV lifecycle, and mutations in the basic region of the Tat protein alter this RNA-protein molecular recognition. Here, EPR spectroscopy was used to identify amino acids, flanking an essential arginine of the Tat protein, which contribute to specific and rigid TAR-Tat complex formation by monitoring changes in the mobility of nitroxide spin-labeled TAR RNA nucleotides upon binding. Arginine to lysine N-terminal mutations did not affect TAR RNA interfacial dynamics. In contrast, C-terminal point mutations, R56 in particular, affected the mobility of nucleotides U23 and U38, which are involved in a base-triple interaction in the complex. This report highlights the role of dynamics in specific molecular complex formation and demonstrates the ability of EPR spectroscopy to study interfacial dynamics of macromolecular complexes.
Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P
2013-01-01
The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.
Activation of Elongation Factor G by Phosphate Analogues
Salsi, Enea; Farah, Elie
2016-01-01
EF-G is a universally conserved translational GTPase that promotes the translocation of tRNA and mRNA through the ribosome. EF-G binds to the ribosome in a GTP-bound form and subsequently catalyzes GTP hydrolysis. The contribution of the ribosome-stimulated GTP hydrolysis by EF-G to tRNA/mRNA translocation remains debated. Here, we show that while EF-G•GDP does not stably bind to the ribosome and induce translocation, EFG• GDP in complex with phosphate group analogues BeF3− and AlF4− promotes the translocation of tRNA and mRNA. Furthermore, the rates of mRNA translocation induced by EF-G in the presence of GTP and a non-hydrolysable analogue of GTP, GDP•BeF3−are similar. Our results are consistent with the model suggesting that GTP hydrolysis is not directly coupled to mRNA/tRNA translocation. Hence, GTP binding is required to induce the activated, translocation-competent conformation of EF-G while GTP hydrolysis triggers EF-G release from the ribosome. PMID:27063503
Walker, Sarah E.; Zhou, Fujun; Mitchell, Sarah F.; Larson, Victoria S.; Valasek, Leos; Hinnebusch, Alan G.; Lorsch, Jon R.
2013-01-01
Eukaryotic translation initiation factor (eIF)4B stimulates recruitment of mRNA to the 43S ribosomal pre-initiation complex (PIC). Yeast eIF4B (yeIF4B), shown previously to bind single-stranded (ss) RNA, consists of an N-terminal domain (NTD), predicted to be unstructured in solution; an RNA-recognition motif (RRM); an unusual domain comprised of seven imperfect repeats of 26 amino acids; and a C-terminal domain. Although the mechanism of yeIF4B action has remained obscure, most models have suggested central roles for its RRM and ssRNA-binding activity. We have dissected the functions of yeIF4B’s domains and show that the RRM and its ssRNA-binding activity are dispensable in vitro and in vivo. Instead, our data indicate that the 7-repeats and NTD are the most critical domains, which mediate binding of yeIF4B to the head of the 40S ribosomal subunit via interaction with Rps20. This interaction induces structural changes in the ribosome’s mRNA entry channel that could facilitate mRNA loading. We also show that yeIF4B strongly promotes productive interaction of eIF4A with the 43S•mRNA PIC in a manner required for efficient mRNA recruitment. PMID:23236192
Kenesi, Erzsébet; Carbonell, Alberto; Lózsa, Rita; Vértessy, Beáta; Lakatos, Lóránt
2017-07-27
In most eukaryotes, RNA silencing is an adaptive immune system regulating key biological processes including antiviral defense. To evade this response, viruses of plants, worms and insects have evolved viral suppressors of RNA silencing proteins (VSRs). Various VSRs, such as P1 from Sweet potato mild mottle virus (SPMMV), inhibit the activity of RNA-induced silencing complexes (RISCs) including an ARGONAUTE (AGO) protein loaded with a small RNA. However, the specific mechanisms explaining this class of inhibition are unknown. Here, we show that SPMMV P1 interacts with AGO1 and AGO2 from Arabidopsis thaliana, but solely interferes with AGO1 function. Moreover, a mutational analysis of a newly identified zinc finger domain in P1 revealed that this domain could represent an effector domain as it is required for P1 suppressor activity but not for AGO1 binding. Finally, a comparative analysis of the target RNA binding capacity of AGO1 in the presence of wild-type or suppressor-defective P1 forms revealed that P1 blocks target RNA binding to AGO1. Our results describe the negative regulation of RISC, the small RNA containing molecular machine. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Structures of ribonucleoprotein particle modification enzymes
Liang, Bo; Li, Hong
2016-01-01
Small nucleolar and Cajal body ribonucleoprotein particles (RNPs) are required for the maturation of ribosomes and spliceosomes. They consist of small nucleolar RNA or Cajal body RNA combined with partner proteins and represent the most complex RNA modification enzymes. Recent advances in structure and function studies have revealed detailed information regarding ribonucleoprotein assembly and substrate binding. These enzymes form intertwined RNA–protein assemblies that facilitate reversible binding of the large ribosomal RNA or small nuclear RNA. These revelations explain the specificity among the components in enzyme assembly and substrate modification. The multiple conformations of individual components and those of complete RNPs suggest a dynamic assembly process and justify the requirement of many assembly factors in vivo. PMID:21108865
PHOSPHOLIPASE Cβ CONNECTS G PROTEIN SIGNALING WITH RNA INTERFERENCE
Scarlata, Suzanne; Garwain, Osama; Williams, Leo; Burguera, Imanol Gonzalez; Rosati, Barbara; Sahu, Shriya; Guo, Yuanjian; Philip, Finly; Golebiewska, Urszula
2015-01-01
Phosphoinositide-specific-phospholipase Cβ (PLCβ) is the main effector of Gαq stimulation which is coupled to receptors that bind acetylcholine, bradykinin, dopamine, angiotensin II as well as other hormones and neurotransmitters. Using a yeast two-hybrid and other approaches, we have recently found that the same region of PLCβ that binds Gαq also interacts with Component 3 Promoter of RNA induced silencing complex (RISC) (C3PO), which is required for efficient activity of the RNA-induced silencing complex. In purified form, C3PO competes with Gαq for PLCβ binding and at high concentration can quench PLCβ activation. Additionally, we have found that the binding of PLCβ to C3PO inhibits its nuclease activity leading to reversal of RNA-induced silencing of specific genes. In cells, we found that PLCβ distributes between the plasma membrane where it localizes with Gαq, and in the cytosol where it localizes with C3PO. When cells are actively processing small interfering RNAs the interaction between PLCβ and C3PO gets stronger and leads to changes in the cellular distribution of PLCβ. The magnitude of attenuation is specific for different silencing RNAs. Our studies imply a direct link between calcium responses mediated through Gαq and post-transcriptional gene regulation through PLCβ. PMID:26746047
Phospholipase Cβ connects G protein signaling with RNA interference.
Scarlata, Suzanne; Garwain, Osama; Williams, Leo; Burguera, Imanol Gonzalez; Rosati, Barbara; Sahu, Shriya; Guo, Yuanjian; Philip, Finly; Golebiewska, Urszula
2016-05-01
Phosphoinositide-specific-phospholipase Cβ (PLCβ) is the main effector of Gαq stimulation which is coupled to receptors that bind acetylcholine, bradykinin, dopamine, angiotensin II as well as other hormones and neurotransmitters. Using a yeast two-hybrid and other approaches, we have recently found that the same region of PLCβ that binds Gαq also interacts with Component 3 Promoter of RNA induced silencing complex (C3PO), which is required for efficient activity of the RNA-induced silencing complex. In purified form, C3PO competes with Gαq for PLCβ binding and at high concentrations can quench PLCβ activation. Additionally, we have found that the binding of PLCβ to C3PO inhibits its nuclease activity leading to reversal of RNA-induced silencing of specific genes. In cells, we found that PLCβ distributes between the plasma membrane where it localizes with Gαq, and in the cytosol where it localizes with C3PO. When cells are actively processing small interfering RNAs the interaction between PLCβ and C3PO gets stronger and leads to changes in the cellular distribution of PLCβ. The magnitude of attenuation is specific for different silencing RNAs. Our studies imply a direct link between calcium responses mediated through Gαq and post-transcriptional gene regulation through PLCβ. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Yong-Eun; Park, Chungoo; Kim, Kyoon Eon; Kim, Kee K
2018-04-30
Alternative splicing is an essential process in eukaryotes, as it increases the complexity of gene expression by generating multiple proteins from a single pre-mRNA. However, information on the regulatory mechanisms for alternative splicing is lacking, because splicing occurs over a short period via the transient interactions of proteins within functional complexes of the spliceosome. Here, we investigated in detail the molecular mechanisms connecting alternative splicing with epigenetic mechanisms. We identified interactions between histone proteins and splicing factors such as Rbfox2, Rbfox3, and splicing factor proline and glutamine rich protein (SFPQ) by in vivo crosslinking and immunoprecipitation. Furthermore, we confirmed that splicing factors were bound to specific modified residues of histone proteins. Additionally, changes in histone methylation due to histone methyltransferase inhibitor treatment notably affected alternative splicing in selected genes. Therefore, we suggested that there may be crosstalk mechanisms connecting histone modifications and RNA-binding proteins that increase the local concentration of RNA-binding proteins in alternative exon loci of nucleosomes by binding specific modified histone proteins, leading to alternative splicing. This crosstalk mechanism may play a major role in epigenetic processes such as histone modification and the regulation of alternative splicing. Copyright © 2018 Elsevier Inc. All rights reserved.
Moqtaderi, Zarmik; Wang, Jie; Raha, Debasish; White, Robert J; Snyder, Michael; Weng, Zhiping; Struhl, Kevin
2010-05-01
Genome-wide occupancy profiles of five components of the RNA polymerase III (Pol III) machinery in human cells identified the expected tRNA and noncoding RNA targets and revealed many additional Pol III-associated loci, mostly near short interspersed elements (SINEs). Several genes are targets of an alternative transcription factor IIIB (TFIIIB) containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike nonexpressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner.
Moqtaderi, Zarmik; Wang, Jie; Raha, Debasish; White, Robert J.; Snyder, Michael; Weng, Zhiping; Struhl, Kevin
2012-01-01
Genome-wide occupancy profiles of five components of the RNA Polymerase III (Pol III) machinery in human cells identified the expected tRNA and non-coding RNA targets and revealed many additional Pol III-associated loci, mostly near SINEs. Several genes are targets of an alternative TFIIIB containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike non-expressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner. PMID:20418883
Identifying mRNA sequence elements for target recognition by human Argonaute proteins
Li, Jingjing; Kim, TaeHyung; Nutiu, Razvan; Ray, Debashish; Hughes, Timothy R.; Zhang, Zhaolei
2014-01-01
It is commonly known that mammalian microRNAs (miRNAs) guide the RNA-induced silencing complex (RISC) to target mRNAs through the seed-pairing rule. However, recent experiments that coimmunoprecipitate the Argonaute proteins (AGOs), the central catalytic component of RISC, have consistently revealed extensive AGO-associated mRNAs that lack seed complementarity with miRNAs. We herein test the hypothesis that AGO has its own binding preference within target mRNAs, independent of guide miRNAs. By systematically analyzing the data from in vivo cross-linking experiments with human AGOs, we have identified a structurally accessible and evolutionarily conserved region (∼10 nucleotides in length) that alone can accurately predict AGO–mRNA associations, independent of the presence of miRNA binding sites. Within this region, we further identified an enriched motif that was replicable on independent AGO-immunoprecipitation data sets. We used RNAcompete to enumerate the RNA-binding preference of human AGO2 to all possible 7-mer RNA sequences and validated the AGO motif in vitro. These findings reveal a novel function of AGOs as sequence-specific RNA-binding proteins, which may aid miRNAs in recognizing their targets with high specificity. PMID:24663241
Crystal Structures of the E. coli Transcription Initiation Complexes with a Complete Bubble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Yuhong; Steitz, Thomas A.
2015-05-01
During transcription initiation, RNA polymerase binds to promoter DNA to form an initiation complex containing a DNA bubble and enters into abortive cycles of RNA synthesis before escaping the promoter to transit into the elongation phase for processive RNA synthesis. Here we present the crystal structures of E. coli transcription initiation complexes containing a complete transcription bubble and de novo synthesized RNA oligonucleotides at about 6-Å resolution. The structures show how RNA polymerase recognizes DNA promoters that contain spacers of different lengths and reveal a bridging interaction between the 5'-triphosphate of the nascent RNA and the σ factor that maymore » function to stabilize the short RNA-DNA hybrids during the early stage of transcription initiation. The conformation of the RNA oligonucleotides and the paths of the DNA strands in the complete initiation complexes provide insights into the mechanism that controls both the abortive and productive RNA synthesis.« less
RNActive® Technology: Generation and Testing of Stable and Immunogenic mRNA Vaccines.
Rauch, Susanne; Lutz, Johannes; Kowalczyk, Aleksandra; Schlake, Thomas; Heidenreich, Regina
2017-01-01
Developing effective mRNA vaccines poses certain challenges concerning mRNA stability and ability to induce sufficient immune stimulation and requires a specific panel of techniques for production and testing. Here, we describe the production of stabilized mRNA with enhanced immunogenicity, generated using conventional nucleotides only, by introducing changes to the mRNA sequence and by complexation with the nucleotide-binding peptide protamine (RNActive® technology). Methods described here include the synthesis, purification, and protamine complexation of mRNA vaccines as well as a comprehensive panel of in vitro and in vivo methods for evaluation of vaccine quality and immunogenicity.
Hashimi, Hassan; Zíková, Alena; Panigrahi, Aswini K.; Stuart, Kenneth D.; Lukeš, Julius
2008-01-01
The uridine insertion/deletion RNA editing of kinetoplastid mitochondrial transcripts is performed by complex machinery involving a number of proteins and multiple protein complexes. Here we describe the effect of silencing of TbRGG1 gene by RNA interference on RNA editing in procyclic stage of Trypanosoma brucei. TbRGG1 is an essential protein for cell growth, the absence of which results in an overall decline of edited mRNAs, while the levels of never-edited RNAs remain unaltered. Repression of TbRGG1 expression has no effect on the 20S editosome and MRP1/2 complex. TAP-tag purification of TbRGG1 coisolated a novel multiprotein complex, and its association was further verified by TAP-tag analyses of two other components of the complex. TbRGG1 interaction with this complex appears to be mediated by RNA. Our results suggest that the TbRGG1 protein functions in stabilizing edited RNAs or editing efficiency and that the associated novel complex may have a role in mitochondrial RNA metabolism. We provisionally name it putative mitochondrial RNA-binding complex 1 (put-MRB complex 1). PMID:18369185
Zhang, Fan; Saini, Adesh K.; Shin, Byung-Sik; Nanda, Jagpreet; Hinnebusch, Alan G.
2015-01-01
The translation preinitiation complex (PIC) is thought to assume an open conformation when scanning the mRNA leader, with AUG recognition evoking a closed conformation and more stable P site interaction of Met-tRNAi; however, physical evidence is lacking that AUG recognition constrains interaction of mRNA with the 40S binding cleft. We compared patterns of hydroxyl radical cleavage of rRNA by Fe(II)-BABE tethered to unique sites in eIF1A in yeast PICs reconstituted with mRNA harboring an AUG or near-cognate (AUC) start codon. rRNA residues in the P site display reduced cleavage in AUG versus AUC PICs; and enhanced cleavage in the AUC complexes was diminished by mutations of scanning enhancer elements of eIF1A that increase near-cognate recognition in vivo. This suggests that accessibility of these rRNA residues is reduced by accommodation of Met-tRNAi in the P site (PIN state) and by their interactions with the anticodon stem of Met-tRNAi. Our cleavage data also provide evidence that AUG recognition evokes dissociation of eIF1 from its 40S binding site, ejection of the eIF1A-CTT from the P-site and rearrangement to a closed conformation of the entry channel with reduced mobility of mRNA. PMID:25670678
Mougel, M; Philippe, C; Ebel, J P; Ehresmann, B; Ehresmann, C
1988-01-01
We have investigated in detail the secondary and tertiary structures of E. coli 16S rRNA binding site of protein S15 using a variety of enzymatic and chemical probes. RNase T1 and nuclease S1 were used to probe unpaired nucleotides and RNase V1 to monitor base-paired or stacked nucleotides. Bases were probed with dimethylsulfate (at A(N-1), C(N-3) and G(N-7)), with 1-cyclohexyl-3 (2-(1-methylmorpholino)-ethyl)-carboiimide-p- toluenesulfonate (at U(N-3) and G(N-1)) and with diethylpyrocarbonate (at A(N-7)). The RNA region corresponding to nucleotides 652 to 753 was tested within: (1) the complete 16S rRNA molecule; (2) a 16S rRNA fragment corresponding to nucleotides 578 to 756 obtained by transcription in vitro; (3) the S15-16S rRNA complex; (4) the S15-fragment complex. Cleavage and modification sites were detected by primer extension with reverse transcriptase. Our results show that: (1) The synthetized fragment folds into the same overall secondary structure as in the complete 16S rRNA, with the exception of the large asymmetrical internal loop (nucleotides 673-676/714-733) which is fully accessible in the fragment while it appears conformationally heterogeneous in the 16S rRNA; (2) the reactivity patterns of the S15-16S rRNA and S15-fragment complexes are identical; (3) the protein protects defined RNA regions, located in the large interior loop and in the 3'-end strand of helix [655-672]-[734-751]; (4) the protein also causes enhanced chemical reactivity and enzyme accessibility interpreted as resulting from a local conformational rearrangement, induced by S15 binding. Images PMID:2453025
Role of large thermal fluctuations and magnesium ions in t-RNA selectivity of the ribosome
Guo, Zuojun; Gibson, Meghan; Sitha, Sanyasi; Chu, Steven; Mohanty, Udayan
2011-01-01
The fidelity of translation selection begins with the base pairing of codon-anticodon complex between the m-RNA and tRNAs. Binding of cognate and near-cognate tRNAs induces 30S subunit of the ribosome to wrap around the ternary complex, EF-Tu(GTP)aa-tRNA. We have proposed that large thermal fluctuations play a crucial role in the selection process. To test this conjecture, we have developed a theoretical technique to determine the probability that the ternary complex, as a result of large thermal fluctuations, forms contacts leading to stabilization of the GTPase activated state. We argue that the configurational searches for such processes are in the tail end of the probability distribution and show that the probability for this event is localized around the most likely configuration. Small variations in the repositioning of cognate relative to near-cognate complexes lead to rate enhancement of the cognate complex. The binding energies of over a dozen unique site-bound magnesium structural motifs are investigated and provide insights into the nature of interaction of divalent metal ions with the ribosome. PMID:21368154
Chromatin isolation by RNA purification (ChIRP).
Chu, Ci; Quinn, Jeffrey; Chang, Howard Y
2012-03-25
Long noncoding RNAs are key regulators of chromatin states for important biological processes such as dosage compensation, imprinting, and developmental gene expression (1,2,3,4,5,6,7). The recent discovery of thousands of lncRNAs in association with specific chromatin modification complexes, such as Polycomb Repressive Complex 2 (PRC2) that mediates histone H3 lysine 27 trimethylation (H3K27me3), suggests broad roles for numerous lncRNAs in managing chromatin states in a gene-specific fashion (8,9). While some lncRNAs are thought to work in cis on neighboring genes, other lncRNAs work in trans to regulate distantly located genes. For instance, Drosophila lncRNAs roX1 and roX2 bind numerous regions on the X chromosome of male cells, and are critical for dosage compensation (10,11). However, the exact locations of their binding sites are not known at high resolution. Similarly, human lncRNA HOTAIR can affect PRC2 occupancy on hundreds of genes genome-wide( 3,12,13), but how specificity is achieved is unclear. LncRNAs can also serve as modular scaffolds to recruit the assembly of multiple protein complexes. The classic trans-acting RNA scaffold is the TERC RNA that serves as the template and scaffold for the telomerase complex (14); HOTAIR can also serve as a scaffold for PRC2 and a H3K4 demethylase complex (13). Prior studies mapping RNA occupancy at chromatin have revealed substantial insights (15,16), but only at a single gene locus at a time. The occupancy sites of most lncRNAs are not known, and the roles of lncRNAs in chromatin regulation have been mostly inferred from the indirect effects of lncRNA perturbation. Just as chromatin immunoprecipitation followed by microarray or deep sequencing (ChIP-chip or ChIP-seq, respectively) has greatly improved our understanding of protein-DNA interactions on a genomic scale, here we illustrate a recently published strategy to map long RNA occupancy genome-wide at high resolution (17). This method, Chromatin Isolation by RNA Purification (ChIRP) (Figure 1), is based on affinity capture of target lncRNA:chromatin complex by tiling antisense-oligos, which then generates a map of genomic binding sites at a resolution of several hundred bases with high sensitivity and low background. ChIRP is applicable to many lncRNAs because the design of affinity-probes is straightforward given the RNA sequence and requires no knowledge of the RNA's structure or functional domains.
Spirin, Alexander S
2009-11-17
A model of the ATP-dependent unidirectional movement of the 43S ribosomal initiation complex (=40S ribosomal subunit + eIF1 + eIF1A + eIF2.GTP.Met-tRNA(i) + eIF3) during scanning of the 5'-untranslated region of eukaryotic mRNA is proposed. The model is based on the principles of molecular Brownian ratchet machines and explains several enigmatic data concerning the scanning complex. In this model, the one-dimensional diffusion of the ribosomal initiation complex along the mRNA chain is rectified into the net-unidirectional 5'-to-3' movement by the Feynman ratchet-and-pawl mechanism. The proposed mechanism is organized by the heterotrimeric protein eIF4F (=eIF4A + eIF4E + eIF4G), attached to the scanning ribosomal particle via eIF3, and the RNA-binding protein eIF4B that is postulated to play the role of the pawl. The energy for the useful work of the ratchet-and-pawl mechanism is supplied from ATP hydrolysis induced by the eIF4A subunit: ATP binding and its hydrolysis alternately change the affinities of eIF4A for eIF4B and for mRNA, resulting in the restriction of backward diffusional sliding of the 43S ribosomal complex along the mRNA chain, while stochastic movements ahead are allowed.
Cascajo, María V; Abdelmohsen, Kotb; Noh, Ji Heon; Fernández-Ayala, Daniel J M; Willers, Imke M; Brea, Gloria; López-Lluch, Guillermo; Valenzuela-Villatoro, Marina; Cuezva, José M; Gorospe, Myriam; Siendones, Emilio; Navas, Plácido
2016-07-02
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3'-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.
A Novel Association between Two Trypanosome-Specific Factors and the Conserved L5-5S rRNA Complex
Ciganda, Martin; Prohaska, Kimberly; Hellman, Kristina; Williams, Noreen
2012-01-01
P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are involved in and essential for ribosome biogenesis. The proteins interact with the 5S rRNA with nearly identical binding characteristics. We have shown that this interaction is achieved mainly through the LoopA region of the RNA, but P34 and P37 also protect the L5 binding site located on LoopC. We now provide evidence to show that these factors form a novel pre-ribosomal particle through interactions with both 5S rRNA and the L5 ribosomal protein. Further in silico and in vitro analysis of T. brucei L5 indicates a lower affinity for 5S rRNA than expected, based on other eukaryotic L5 proteins. We hypothesize that P34 and P37 complement L5 and bridge the interaction with 5S rRNA, stabilizing it and aiding in the early steps of ribosome biogenesis. PMID:22859981
Meyerson, Nicholas R; Zhou, Ligang; Guo, Yusong R; Zhao, Chen; Tao, Yizhi J; Krug, Robert M; Sawyer, Sara L
2017-11-08
TRIM25 is an E3 ubiquitin ligase that activates RIG-I to promote the antiviral interferon response. The NS1 protein from all strains of influenza A virus binds TRIM25, although not all virus strains block the interferon response, suggesting alternative mechanisms for TRIM25 action. Here we present a nuclear role for TRIM25 in specifically restricting influenza A virus replication. TRIM25 inhibits viral RNA synthesis through a direct mechanism that is independent of its ubiquitin ligase activity and the interferon pathway. This activity can be inhibited by the viral NS1 protein. TRIM25 inhibition of viral RNA synthesis results from its binding to viral ribonucleoproteins (vRNPs), the structures containing individual viral RNA segments, the viral polymerase, and multiple viral nucleoproteins. TRIM25 binding does not inhibit initiation of capped-RNA-primed viral mRNA synthesis by the viral polymerase. Rather, the onset of RNA chain elongation is inhibited because TRIM25 prohibits the movement of RNA into the polymerase complex. Copyright © 2017 Elsevier Inc. All rights reserved.
Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants.
Iki, Taichiro; Yoshikawa, Manabu; Meshi, Tetsuo; Ishikawa, Masayuki
2012-01-18
Posttranscriptional gene silencing is mediated by RNA-induced silencing complexes (RISCs) that contain AGO proteins and single-stranded small RNAs. The assembly of plant AGO1-containing RISCs depends on the molecular chaperone HSP90. Here, we demonstrate that cyclophilin 40 (CYP40), protein phosphatase 5 (PP5), and several other proteins with the tetratricopeptide repeat (TPR) domain associates with AGO1 in an HSP90-dependent manner in extracts of evacuolated tobacco protoplasts (BYL). Intriguingly, CYP40, but not the other TPR proteins, could form a complex with small RNA duplex-bound AGO1. Moreover, CYP40 that was synthesized by in-vitro translation using BYL uniquely facilitated binding of small RNA duplexes to AGO1, and as a result, increased the amount of mature RISCs that could cleave target RNAs. CYP40 was not contained in mature RISCs, indicating that the association is transient. Addition of PP5 or cyclophilin-binding drug cyclosporine A prevented the association of endogenous CYP40 with HSP90-AGO1 complex and inhibited RISC assembly. These results suggest that a complex of AGO1, HSP90, CYP40, and a small RNA duplex is a key intermediate of RISC assembly in plants.
Hatoum-Aslan, Asma; Samai, Poulami; Maniv, Inbal; Jiang, Wenyan; Marraffini, Luciano A.
2013-01-01
Small RNAs undergo maturation events that precisely determine the length and structure required for their function. CRISPRs (clustered regularly interspaced short palindromic repeats) encode small RNAs (crRNAs) that together with CRISPR-associated (cas) genes constitute a sequence-specific prokaryotic immune system for anti-viral and anti-plasmid defense. crRNAs are subject to multiple processing events during their biogenesis, and little is known about the mechanism of the final maturation step. We show that in the Staphylococcus epidermidis type III CRISPR-Cas system, mature crRNAs are measured in a Cas10·Csm ribonucleoprotein complex to yield discrete lengths that differ by 6-nucleotide increments. We looked for mutants that impact this crRNA size pattern and found that an alanine substitution of a conserved aspartate residue of Csm3 eliminates the 6-nucleotide increments in the length of crRNAs. In vitro, recombinant Csm3 binds RNA molecules at multiple sites, producing gel-shift patterns that suggest that each protein binds 6 nucleotides of substrate. In vivo, changes in the levels of Csm3 modulate the crRNA size distribution without disrupting the 6-nucleotide periodicity. Our data support a model in which multiple Csm3 molecules within the Cas10·Csm complex bind the crRNA with a 6-nucleotide periodicity to function as a ruler that measures the extent of crRNA maturation. PMID:23935102
Structural basis for 16S ribosomal RNA cleavage by the cytotoxic domain of colicin E3.
Ng, C Leong; Lang, Kathrin; Meenan, Nicola Ag; Sharma, Amit; Kelley, Ann C; Kleanthous, Colin; Ramakrishnan, V
2010-10-01
The toxin colicin E3 targets the 30S subunit of bacterial ribosomes and cleaves a phosphodiester bond in the decoding center. We present the crystal structure of the 70S ribosome in complex with the cytotoxic domain of colicin E3 (E3-rRNase). The structure reveals how the rRNase domain of colicin binds to the A site of the decoding center in the 70S ribosome and cleaves the 16S ribosomal RNA (rRNA) between A1493 and G1494. The cleavage mechanism involves the concerted action of conserved residues Glu62 and His58 of the cytotoxic domain of colicin E3. These residues activate the 16S rRNA for 2' OH-induced hydrolysis. Conformational changes observed for E3-rRNase, 16S rRNA and helix 69 of 23S rRNA suggest that a dynamic binding platform is required for colicin E3 binding and function.
Fernández, Francisco J; Gómez, Sara; Navas-Yuste, Sergio; López-Estepa, Miguel; Vega, M Cristina
2017-06-21
We demonstrate methods for the expression and purification of tRNA(UUU) in Escherichia coli and the analysis by gel retardation assays of the binding of tRNA(UUU) to TcdA, an N 6 -threonylcarbamoyladenosine (t 6 A) dehydratase, which cyclizes the threonylcarbamoyl side chain attached to A37 in the anticodon stem loop (ASL) of tRNAs to cyclic t 6 A (ct 6 A). Transcription of the synthetic gene encoding tRNA(UUU) is induced in E. coli with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and the cells containing tRNA are harvested 24 h post-induction. The RNA fraction is purified using the acid phenol extraction method. Pure tRNA is obtained by a gel filtration chromatography that efficiently separates the small-sized tRNA molecules from larger intact or fragmented nucleic acids. To analyze TcdA binding to tRNA(UUU), TcdA is mixed with tRNA(UUU) and separated on a native agarose gel at 4 °C. The free tRNA(UUU) migrates faster, while the TcdA-tRNA(UUU) complexes undergo a mobility retardation that can be observed upon staining of the gel. We demonstrate that TcdA is a tRNA(UUU)-binding enzyme. This gel retardation assay can be used to study TcdA mutants and the effects of additives and other proteins on binding.
Molecular analysis of the von hippel-lindau disease gene.
Chernoff, A; Kasparcova, V; Linehan, W M; Stolle, C A
2001-01-01
Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder that predisposes the affected individual to develop characteristic tumors. These include CNS hemangioblastoma, retinal angiomas, endolymphatic sac tumors, pancreatic cysts and tumors, epididymal cystadenomas, pheochromocytomas, renal cysts, and clear-cell renal carcinoma. The VHL gene was localized to 3p25 and then isolated by Latif et al. (1). The gene contains three exons with an open reading frame of 852 nucleotides, which encode a predicted protein of 284 amino acids. The VHL protein is believed to have several functions. It is involved in transcription regulation through its inhibition of elongation by binding to the B and C subunits of elongin. Mutations of VHL allow the B and C subunits to bind with the A subunit. This complex then overcomes "pausing" of RNA polymerase during mRNA transcription (2,3). Several studies suggest that the VHL protein is also involved in regulation of hypoxia-inducible transcripts, particularly vascular endothelial growth factor (VEGF), by altering mRNA stability (4,5). Therefore, VHL gene mutations permit the overexpression of VEGF under normoxic conditions, which leads to the angiogenesis believed to be required for tumor growth. The VHL-elongin BC complex (VBC) also binds two other proteins-CUL2 and Rbx1-in a complex that has structural similarity to other E3 ubiquitin ligase complexes (6). Such complexes mediate the degradation of cell-cycle regulatory proteins.
Interaction between the phage HK022 Nun protein and the nut RNA of phage lambda.
Chattopadhyay, S; Hung, S C; Stuart, A C; Palmer, A G; Garcia-Mena, J; Das, A; Gottesman, M E
1995-12-19
The nun gene product of prophage HK022 excludes phage lambda infection by blocking the expression of genes downstream from the lambda nut sequence. The Nun protein functions both by competing with lambda N transcription-antitermination protein and by actively inducing transcription termination on the lambda chromosome. We demonstrate that Nun binds directly to a stem-loop structure within nut RNA, boxB, which is also the target for the N antiterminator. The two proteins show comparable affinities for boxB and they compete with each other. Their interactions with boxB are similar, as shown by RNase protection experiments, NMR spectroscopy, and analysis of boxB mutants. Each protein binds the 5' strand of the boxB stem and the adjacent loop. The stem does not melt upon the binding of Nun or N, as the 3' strand remains sensitive to a double-strand-specific RNase. The binding of RNA partially protects Nun from proteolysis and changes its NMR spectra. Evidently, although Nun and N bind to the same surface of boxB RNA, their respective complexes interact differently with RNA polymerase, inducing transcription termination or antitermination, respectively.
King, Matthew R.; Matzat, Leah H.; Dale, Ryan K.; Lim, Su Jun; Lei, Elissa P.
2014-01-01
ABSTRACT Chromatin insulators are DNA–protein complexes that are situated throughout the genome that are proposed to contribute to higher-order organization and demarcation into distinct transcriptional domains. Mounting evidence in different species implicates RNA and RNA-binding proteins as regulators of chromatin insulator activities. Here, we identify the Drosophila hnRNP M homolog Rumpelstiltskin (Rump) as an antagonist of gypsy chromatin insulator enhancer-blocking and barrier activities. Despite ubiquitous expression of Rump, decreasing Rump levels leads to improvement of barrier activity only in tissues outside of the central nervous system (CNS). Furthermore, rump mutants restore insulator body localization in an insulator mutant background only in non-CNS tissues. Rump associates physically with core gypsy insulator proteins, and chromatin immunoprecipitation and sequencing analysis of Rump demonstrates extensive colocalization with a subset of insulator sites across the genome. The genome-wide binding profile and tissue specificity of Rump contrast with that of Shep, a recently identified RNA-binding protein that antagonizes gypsy insulator activity primarily in the CNS. Our findings indicate parallel roles for RNA-binding proteins in mediating tissue-specific regulation of chromatin insulator activity. PMID:24706949
Cooper, Lauren A; Stringer, Anne M; Wade, Joseph T
2018-04-17
In clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated) immunity systems, short CRISPR RNAs (crRNAs) are bound by Cas proteins, and these complexes target invading nucleic acid molecules for degradation in a process known as interference. In type I CRISPR-Cas systems, the Cas protein complex that binds DNA is known as Cascade. Association of Cascade with target DNA can also lead to acquisition of new immunity elements in a process known as primed adaptation. Here, we assess the specificity determinants for Cascade-DNA interaction, interference, and primed adaptation in vivo , for the type I-E system of Escherichia coli Remarkably, as few as 5 bp of crRNA-DNA are sufficient for association of Cascade with a DNA target. Consequently, a single crRNA promotes Cascade association with numerous off-target sites, and the endogenous E. coli crRNAs direct Cascade binding to >100 chromosomal sites. In contrast to the low specificity of Cascade-DNA interactions, >18 bp are required for both interference and primed adaptation. Hence, Cascade binding to suboptimal, off-target sites is inert. Our data support a model in which the initial Cascade association with DNA targets requires only limited sequence complementarity at the crRNA 5' end whereas recruitment and/or activation of the Cas3 nuclease, a prerequisite for interference and primed adaptation, requires extensive base pairing. IMPORTANCE Many bacterial and archaeal species encode CRISPR-Cas immunity systems that protect against invasion by foreign DNA. In the Escherichia coli CRISPR-Cas system, a protein complex, Cascade, binds 61-nucleotide (nt) CRISPR RNAs (crRNAs). The Cascade complex is directed to invading DNA molecules through base pairing between the crRNA and target DNA. This leads to recruitment of the Cas3 nuclease, which destroys the invading DNA molecule and promotes acquisition of new immunity elements. We made the first in vivo measurements of Cascade binding to DNA targets. Thus, we show that Cascade binding to DNA is highly promiscuous; endogenous E. coli crRNAs can direct Cascade binding to >100 chromosomal locations. In contrast, we show that targeted degradation and acquisition of new immunity elements require highly specific association of Cascade with DNA, limiting CRISPR-Cas function to the appropriate targets. Copyright © 2018 Cooper et al.
Attey, A; Belyaeva, T; Savery, N; Hoggett, J; Fujita, N; Ishihama, A; Busby, S
1994-10-25
DNAase I footprinting has been used to study open complexes between Escherichia coli RNA polymerase and the galactose operon P1 promoter, both in the absence and the presence of CRP (the cyclic AMP receptor protein, a transcription activator). From the effects of deletion of the C-terminal part of the RNA polymerase alpha subunit, we deduce that alpha binds at the upstream end of both the binary RNA polymerase-galP1 and ternary RNA polymerase-CRP-galP1 complexes. Disruption of the alpha-upstream contact suppresses open complex formation at galP1 at lower temperatures. In ternary RNA polymerase-CRP-galP1 complexes, alpha appears to make direct contact with Activating Region 1 in CRP. DNAase I footprinting has been used to detect and quantify interactions between purified alpha and CRP bound at galP1.
Attey, A; Belyaeva, T; Savery, N; Hoggett, J; Fujita, N; Ishihama, A; Busby, S
1994-01-01
DNAase I footprinting has been used to study open complexes between Escherichia coli RNA polymerase and the galactose operon P1 promoter, both in the absence and the presence of CRP (the cyclic AMP receptor protein, a transcription activator). From the effects of deletion of the C-terminal part of the RNA polymerase alpha subunit, we deduce that alpha binds at the upstream end of both the binary RNA polymerase-galP1 and ternary RNA polymerase-CRP-galP1 complexes. Disruption of the alpha-upstream contact suppresses open complex formation at galP1 at lower temperatures. In ternary RNA polymerase-CRP-galP1 complexes, alpha appears to make direct contact with Activating Region 1 in CRP. DNAase I footprinting has been used to detect and quantify interactions between purified alpha and CRP bound at galP1. Images PMID:7971267
Ancient Origins of Vertebrate-Specific Innate Antiviral Immunity
Mukherjee, Krishanu; Korithoski, Bryan; Kolaczkowski, Bryan
2014-01-01
Animals deploy various molecular sensors to detect pathogen infections. RIG-like receptor (RLR) proteins identify viral RNAs and initiate innate immune responses. The three human RLRs recognize different types of RNA molecules and protect against different viral pathogens. The RLR protein family is widely thought to have originated shortly before the emergence of vertebrates and rapidly diversified through a complex process of domain grafting. Contrary to these findings, here we show that full-length RLRs and their downstream signaling molecules were present in the earliest animals, suggesting that the RLR-based immune system arose with the emergence of multicellularity. Functional differentiation of RLRs occurred early in animal evolution via simple gene duplication followed by modifications of the RNA-binding pocket, many of which may have been adaptively driven. Functional analysis of human and ancestral RLRs revealed that the ancestral RLR displayed RIG-1-like RNA-binding. MDA5-like binding arose through changes in the RNA-binding pocket following the duplication of the ancestral RLR, which may have occurred either early in Bilateria or later, after deuterostomes split from protostomes. The sensitivity and specificity with which RLRs bind different RNA structures has repeatedly adapted throughout mammalian evolution, suggesting a long-term evolutionary arms race with viral RNA or other molecules. PMID:24109602
Molecular basis for the wide range of affinity found in Csr/Rsm protein-RNA recognition.
Duss, Olivier; Michel, Erich; Diarra dit Konté, Nana; Schubert, Mario; Allain, Frédéric H-T
2014-04-01
The carbon storage regulator/regulator of secondary metabolism (Csr/Rsm) type of small non-coding RNAs (sRNAs) is widespread throughout bacteria and acts by sequestering the global translation repressor protein CsrA/RsmE from the ribosome binding site of a subset of mRNAs. Although we have previously described the molecular basis of a high affinity RNA target bound to RsmE, it remains unknown how other lower affinity targets are recognized by the same protein. Here, we have determined the nuclear magnetic resonance solution structures of five separate GGA binding motifs of the sRNA RsmZ of Pseudomonas fluorescens in complex with RsmE. The structures explain how the variation of sequence and structural context of the GGA binding motifs modulate the binding affinity for RsmE by five orders of magnitude (∼10 nM to ∼3 mM, Kd). Furthermore, we see that conformational adaptation of protein side-chains and RNA enable recognition of different RNA sequences by the same protein contributing to binding affinity without conferring specificity. Overall, our findings illustrate how the variability in the Csr/Rsm protein-RNA recognition allows a fine-tuning of the competition between mRNAs and sRNAs for the CsrA/RsmE protein.
Hayes, Michael L; Giang, Karolyn; Berhane, Beniam; Mulligan, R Michael
2013-12-20
Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins are required as RNA binding specificity determinants in the RNA editing mechanism. Bioinformatic analysis has shown that most of the Arabidopsis PPR proteins necessary for RNA editing events include a C-terminal portion that shares structural characteristics with a superfamily of deaminases. The DYW deaminase domain includes a highly conserved zinc binding motif that shares characteristics with cytidine deaminases. The Arabidopsis PPR genes, ELI1 and DOT4, both have DYW deaminase domains and are required for single RNA editing events in chloroplasts. The ELI1 DYW deaminase domain was expressed as a recombinant protein in Escherichia coli and was shown to bind two zinc atoms per polypeptide. Thus, the DYW deaminase domain binds a zinc metal ion, as expected for a cytidine deaminase, and is potentially the catalytic component of an editing complex. Genetic complementation experiments demonstrate that large portions of the DYW deaminase domain of ELI1 may be eliminated, but the truncated genes retain the ability to restore editing site conversion in a mutant plant. These results suggest that the catalytic activity can be supplied in trans by uncharacterized protein(s) of the editosome.
Lee, Hui Sun; Lee, Soo Nam; Joo, Chul Hyun; Lee, Heuiran; Lee, Han Saem; Yoon, Seung Yong; Kim, Yoo Kyum; Choe, Han
2007-03-01
RNA interference (RNAi) is a 'knock-down' reaction to reduce expression of a specific gene through highly regulated, enzyme-mediated processes. Small interfering RNAs (siRNAs) are RNA molecules that play an effector role in RNAi and can bind the PAZ domains present in Dicer and RISC. We investigated the interaction between the PAZ domain and the siRNA-like duplexes through dissociation molecular dynamics (DMD) simulations. Specifically, we focused on the response of the PAZ domain to various 3'-overhang structures of the siRNA-like duplexes. We found that the siRNA-like duplex with the 3' UU-overhang made relatively more stable complex with the PAZ domain compared to those with 3' CC-, AA-, and GG-overhangs. The siRNA-like duplex with UU-overhang was easily dissociated from the PAZ domain once the structural stability of the complex is impaired. Interestingly, the 3' UU-overhang spent the least time at the periphery region of the binding pocket during the dissociation process, which can be mainly attributable to UU-overhang's smallest number of hydrogen bonds.
Schalk, Catherine; Cognat, Valérie; Graindorge, Stéfanie; Vincent, Timothée; Voinnet, Olivier; Molinier, Jean
2017-01-01
As photosynthetic organisms, plants need to prevent irreversible UV-induced DNA lesions. Through an unbiased, genome-wide approach, we have uncovered a previously unrecognized interplay between Global Genome Repair and small interfering RNAs (siRNAs) in the recognition of DNA photoproducts, prevalently in intergenic regions. Genetic and biochemical approaches indicate that, upon UV irradiation, the DNA DAMAGE-BINDING PROTEIN 2 (DDB2) and ARGONAUTE 1 (AGO1) of Arabidopsis thaliana form a chromatin-bound complex together with 21-nt siRNAs, which likely facilitates recognition of DNA damages in an RNA/DNA complementary strand-specific manner. The biogenesis of photoproduct-associated siRNAs involves the noncanonical, concerted action of RNA POLYMERASE IV, RNA-DEPENDENT RNA POLYMERASE-2, and DICER-LIKE-4. Furthermore, the chromatin association/dissociation of the DDB2-AGO1 complex is under the control of siRNA abundance and DNA damage signaling. These findings reveal unexpected nuclear functions for DCL4 and AGO1, and shed light on the interplay between small RNAs and DNA repair recognition factors at damaged sites. PMID:28325872
Nucleolin associates with a subset of the human Ro ribonucleoprotein complexes.
Fouraux, Michael A; Bouvet, Philippe; Verkaart, Sjoerd; van Venrooij, Walther J; Pruijn, Ger J M
2002-07-12
Ro RNPs are evolutionarily conserved, small cytoplasmic RNA-protein complexes with an unknown function. In human cells, Ro RNPs consist of one of the four hY RNAs and two core proteins: Ro60 and La. Recently, the association of hnRNP I and hnRNP K with particles containing hY1 and hY3 RNAs has been described. The association of three other proteins, namely calreticulin, Ro52 and RoBPI, with (subsets of) the Ro RNPs is still controversial. To gain more insight into the composition and function of the Ro RNPs, we have immunopurified these particles from HeLa cell extracts using monoclonal antibodies against Ro60 and La. Using this approach, we have identified the RNA-binding protein nucleolin as a novel subunit of Ro RNP particles containing hY1 or hY3 RNA, but not hY4 and hY5 RNA. Using an in vitro hY RNA-binding assay we established that the internal pyrimidine-rich loop of hY1 and hY3 RNA is essential for the association of nucleolin. The binding is critically dependent on the presence of all four RNP motifs of nucleolin, but not of the C-terminal RGG-box. Moreover, we demonstrate that, in contrast to nucleolin and hnRNP K, nucleolin and hnRNP I can bind simultaneously to the internal pyrimidine-rich loop of hY1 RNA. We postulate that nucleolin functions in the biogenesis and/or trafficking of hY1 and hY3 RNPs through the nucleolus and subsequent transport to the cytoplasm. (c) 2002 Elsevier Science Ltd.
Live Cell Genomics: RNA Exon-Specific RNA-Binding Protein Isolation.
Bell, Thomas J; Eberwine, James
2015-01-01
RNA-binding proteins (RBPs) are essential regulatory proteins that control all modes of RNA processing and regulation. New experimental approaches to isolate these indispensable proteins under in vivo conditions are needed to advance the field of RBP biology. Historically, in vitro biochemical approaches to isolate RBP complexes have been useful and productive, but biological relevance of the identified RBP complexes can be imprecise or erroneous. Here we review an inventive experimental to isolate RBPs under the in vivo conditions. The method is called peptide nucleic acid (PNA)-assisted identification of RBP (PAIR) technology and it uses cell-penetrating peptides (CPPs) to deliver photo-activatible RBP-capture molecule to the cytoplasm of the live cells. The PAIR methodology provides two significant advantages over the most commonly used approaches: (1) it overcomes the in vitro limitation of standard biochemical approaches and (2) the PAIR RBP-capture molecule is highly selective and adaptable which allows investigators to isolate exon-specific RBP complexes. Most importantly, the in vivo capture conditions and selectivity of the RBP-capture molecule yield biologically accurate and relevant RBP data.
Fischer, Frédéric; Huot, Jonathan L; Lorber, Bernard; Diss, Guillaume; Hendrickson, Tamara L; Becker, Hubert D; Lapointe, Jacques; Kern, Daniel
2012-06-01
Helicobacter pylori catalyzes Asn-tRNA(Asn) formation by use of the indirect pathway that involves charging of Asp onto tRNA(Asn) by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS), followed by conversion of the mischarged Asp into Asn by the GatCAB amidotransferase. We show that the partners of asparaginylation assemble into a dynamic Asn-transamidosome, which uses a different strategy than the Gln-transamidosome to prevent the release of the mischarged aminoacyl-tRNA intermediate. The complex is described by gel-filtration, dynamic light scattering and kinetic measurements. Two strategies for asparaginylation are shown: (i) tRNA(Asn) binds GatCAB first, allowing aminoacylation and immediate transamidation once ND-AspRS joins the complex; (ii) tRNA(Asn) is bound by ND-AspRS which releases the Asp-tRNA(Asn) product much slower than the cognate Asp-tRNA(Asp); this kinetic peculiarity allows GatCAB to bind and transamidate Asp-tRNA(Asn) before its release by the ND-AspRS. These results are discussed in the context of the interrelation between the Asn and Gln-transamidosomes which use the same GatCAB in H. pylori, and shed light on a kinetic mechanism that ensures faithful codon reassignment for Asn.
Hamdane, Nourdine; Stefanovsky, Victor Y.; Tremblay, Michel G.; Németh, Attila; Paquet, Eric; Lessard, Frédéric; Sanij, Elaine; Hannan, Ross; Moss, Tom
2014-01-01
Upstream Binding Factor (UBF) is a unique multi-HMGB-box protein first identified as a co-factor in RNA polymerase I (RPI/PolI) transcription. However, its poor DNA sequence selectivity and its ability to generate nucleosome-like nucleoprotein complexes suggest a more generalized role in chromatin structure. We previously showed that extensive depletion of UBF reduced the number of actively transcribed ribosomal RNA (rRNA) genes, but had little effect on rRNA synthesis rates or cell proliferation, leaving open the question of its requirement for RPI transcription. Using gene deletion in mouse, we now show that UBF is essential for embryo development beyond morula. Conditional deletion in cell cultures reveals that UBF is also essential for transcription of the rRNA genes and that it defines the active chromatin conformation of both gene and enhancer sequences. Loss of UBF prevents formation of the SL1/TIF1B pre-initiation complex and recruitment of the RPI-Rrn3/TIF1A complex. It is also accompanied by recruitment of H3K9me3, canonical histone H1 and HP1α, but not by de novo DNA methylation. Further, genes retain penta-acetyl H4 and H2A.Z, suggesting that even in the absence of UBF the rRNA genes can maintain a potentially active state. In contrast to canonical histone H1, binding of H1.4 is dependent on UBF, strongly suggesting that it plays a positive role in gene activity. Unexpectedly, arrest of rRNA synthesis does not suppress transcription of the 5S, tRNA or snRNA genes, nor expression of the several hundred mRNA genes implicated in ribosome biogenesis. Thus, rRNA gene activity does not coordinate global gene expression for ribosome biogenesis. Loss of UBF also unexpectedly induced the formation in cells of a large sub-nuclear structure resembling the nucleolar precursor body (NPB) of oocytes and early embryos. These somatic NPBs contain rRNA synthesis and processing factors but do not associate with the rRNA gene loci (NORs). PMID:25121932
LIM-domain proteins, LIMD1, Ajuba, and WTIP are required for microRNA-mediated gene silencing
James, Victoria; Zhang, Yining; Foxler, Daniel E.; de Moor, Cornelia H.; Kong, Yi Wen; Webb, Thomas M.; Self, Tim J.; Feng, Yungfeng; Lagos, Dimitrios; Chu, Chia-Ying; Rana, Tariq M.; Morley, Simon J.; Longmore, Gregory D.; Bushell, Martin; Sharp, Tyson V.
2010-01-01
In recent years there have been major advances with respect to the identification of the protein components and mechanisms of microRNA (miRNA) mediated silencing. However, the complete and precise repertoire of components and mechanism(s) of action remain to be fully elucidated. Herein we reveal the identification of a family of three LIM domain-containing proteins, LIMD1, Ajuba and WTIP (Ajuba LIM proteins) as novel mammalian processing body (P-body) components, which highlight a novel mechanism of miRNA-mediated gene silencing. Furthermore, we reveal that LIMD1, Ajuba, and WTIP bind to Ago1/2, RCK, Dcp2, and eIF4E in vivo, that they are required for miRNA-mediated, but not siRNA-mediated gene silencing and that all three proteins bind to the mRNA 5′ m7GTP cap–protein complex. Mechanistically, we propose the Ajuba LIM proteins interact with the m7GTP cap structure via a specific interaction with eIF4E that prevents 4EBP1 and eIF4G interaction. In addition, these LIM-domain proteins facilitate miRNA-mediated gene silencing by acting as an essential molecular link between the translationally inhibited eIF4E-m7GTP-5′cap and Ago1/2 within the miRISC complex attached to the 3′-UTR of mRNA, creating an inhibitory closed-loop complex. PMID:20616046
Thompson, R C; Dix, D B; Gerson, R B; Karim, A M
1981-01-10
The characteristics of a GTPase reaction between poly(U)-programmed ribosomes, EFTu . GTP, and the near-cognate aminoacyl (aa)-tRNA, Leu-tRNA Leu 2, have been studied to assess the role of this reaction in proofreading of the codon-anticodon interaction. The reaction resembles the GTPase reaction with cognate aa-tRNAs and EFTu . GTP in its substrate requirements, in its involving EFTu . GTP . aa-tRNA ternary complexes, and in its requiring a free ribosomal A-site. The noncognate reaction differs from the cognate one in that aa-tRNA becomes stably bound to the ribosomes only 5% of the time; it therefore seems best characterized as an abortive enzymatic binding reaction. The rate of reaction is a significant fraction (4%) of that of the cognate aa-tRNA, indicating that recognition of ternary complexes by ribosomes involves a level of error greater than that of translation as a whole. The rejection of the noncognate aa-tRNA following GTP hydrolysis is therefore a vital step in the translation process and fulfills the criteria set for a proofreading reaction. Leu-tRNA Leu 2 which escapes rejection through proofreading, forms a stable complex with the ribosomal A-site, so it appears that the Leu-tRNA2 which was rejected never reached the A-site and that proofreading precedes full A-site binding.
A role for the RNA pol II–associated PAF complex in AID-induced immune diversification
Willmann, Katharina L.; Milosevic, Sara; Pauklin, Siim; Schmitz, Kerstin-Maike; Rangam, Gopinath; Simon, Maria T.; Maslen, Sarah; Skehel, Mark; Robert, Isabelle; Heyer, Vincent; Schiavo, Ebe; Reina-San-Martin, Bernardo
2012-01-01
Antibody diversification requires the DNA deaminase AID to induce DNA instability at immunoglobulin (Ig) loci upon B cell stimulation. For efficient cytosine deamination, AID requires single-stranded DNA and needs to gain access to Ig loci, with RNA pol II transcription possibly providing both aspects. To understand these mechanisms, we isolated and characterized endogenous AID-containing protein complexes from the chromatin of diversifying B cells. The majority of proteins associated with AID belonged to RNA polymerase II elongation and chromatin modification complexes. Besides the two core polymerase subunits, members of the PAF complex, SUPT5H, SUPT6H, and FACT complex associated with AID. We show that AID associates with RNA polymerase-associated factor 1 (PAF1) through its N-terminal domain, that depletion of PAF complex members inhibits AID-induced immune diversification, and that the PAF complex can serve as a binding platform for AID on chromatin. A model is emerging of how RNA polymerase II elongation and pausing induce and resolve AID lesions. PMID:23008333
Khaĭrulina, Iu S; Molotkov, M V; Bulygin, K N; Graĭfer, D M; Ven'yaminova, A G; Frolova, L Iu; Stahl, J; Karpova, G G
2008-01-01
Protein S3 fragments were determined that crosslink to modified mRNA analogues in positions +5 to +12 relative to the first nucleotide in the P-site binding codon in model complexes mimicking states of ribosomes at the elongation and translation termination steps. The mRNA analogues contained a Phe codon UUU/UUC at the 5'-termini that could predetermine the position of the tRNA(Phe) on the ribosome by the location of P-site binding and perfluorophenylazidobenzoyl group at a nucleotide in various positions 3' of the UUU/UUC codon. The crosslinked S3 protein was isolated from 80S ribosomal complexes irradiated with mild UV light and subjected to cyanogen bromide-induced cleavage at methionine residues with subsequent identification of the crosslinked oligopeptides. An analysis of the positions of modified oligopeptides resulting from the cleavage showed that, in dependence on the positions of modified nucleotides in the mRNA analogue, the crosslinking sites were found in the N-terminal half of the protein (fragment 2-127) and/or in the C-terminal fragment 190-236; the latter reflects a new peculiarity in the structure of the mRNA binding center in the ribosome, unknown to date. The results of crosslinking did not depend on the type of A-site codon or on the presence of translation termination factor eRF1.
Structure of the Ebola VP35 interferon inhibitory domain.
Leung, Daisy W; Ginder, Nathaniel D; Fulton, D Bruce; Nix, Jay; Basler, Christopher F; Honzatko, Richard B; Amarasinghe, Gaya K
2009-01-13
Ebola viruses (EBOVs) cause rare but highly fatal outbreaks of viral hemorrhagic fever in humans, and approved treatments for these infections are currently lacking. The Ebola VP35 protein is multifunctional, acting as a component of the viral RNA polymerase complex, a viral assembly factor, and an inhibitor of host interferon (IFN) production. Mutation of select basic residues within the C-terminal half of VP35 abrogates its dsRNA-binding activity, impairs VP35-mediated IFN antagonism, and attenuates EBOV growth in vitro and in vivo. Because VP35 contributes to viral escape from host innate immunity and is required for EBOV virulence, understanding the structural basis for VP35 dsRNA binding, which correlates with suppression of IFN activity, is of high importance. Here, we report the structure of the C-terminal VP35 IFN inhibitory domain (IID) solved to a resolution of 1.4 A and show that VP35 IID forms a unique fold. In the structure, we identify 2 basic residue clusters, one of which is important for dsRNA binding. The dsRNA binding cluster is centered on Arg-312, a highly conserved residue required for IFN inhibition. Mutation of residues within this cluster significantly changes the surface electrostatic potential and diminishes dsRNA binding activity. The high-resolution structure and the identification of the conserved dsRNA binding residue cluster provide opportunities for antiviral therapeutic design. Our results suggest a structure-based model for dsRNA-mediated innate immune antagonism by Ebola VP35 and other similarly constructed viral antagonists.
Finarov, Igal; Moor, Nina; Kessler, Naama; Klipcan, Liron; Safro, Mark G
2010-03-10
The existence of three types of phenylalanyl-tRNA synthetase (PheRS), bacterial (alphabeta)(2), eukaryotic/archaeal cytosolic (alphabeta)(2), and mitochondrial alpha, is a prominent example of structural diversity within the aaRS family. PheRSs have considerably diverged in primary sequences, domain compositions, and subunit organizations. Loss of the anticodon-binding domain B8 in human cytosolic PheRS (hcPheRS) is indicative of variations in the tRNA(Phe) binding and recognition as compared to bacterial PheRSs. We report herein the crystal structure of hcPheRS in complex with phenylalanine at 3.3 A resolution. A novel structural module has been revealed at the N terminus of the alpha subunit. It stretches out into the solvent of approximately 80 A and is made up of three structural domains (DBDs) possessing DNA-binding fold. The dramatic reduction of aminoacylation activity for truncated N terminus variants coupled with structural data and tRNA-docking model testify that DBDs play crucial role in hcPheRS activity.
Pabis, Marta; Neufeld, Noa; Steiner, Michaela C.; Bojic, Teodora; Shav-Tal, Yaron; Neugebauer, Karla M.
2013-01-01
The nuclear cap-binding complex (CBC) binds to the 7-methyl guanosine cap present on every RNA polymerase II transcript. CBC has been implicated in many aspects of RNA biogenesis; in addition to roles in miRNA biogenesis, nonsense-mediated decay, 3′-end formation, and snRNA export from the nucleus, CBC promotes pre-mRNA splicing. An unresolved question is how CBC participates in splicing. To investigate CBC’s role in splicing, we used mass spectrometry to identify proteins that copurify with mammalian CBC. Numerous components of spliceosomal snRNPs were specifically detected. Among these, three U4/U6·U5 snRNP proteins (hBrr2, hPrp4, and hPrp31) copurified with CBC in an RNA-independent fashion, suggesting that a significant fraction of CBC forms a complex with the U4/U6·U5 snRNP and that the activity of CBC might be associated with snRNP recruitment to pre-mRNA. To test this possibility, CBC was depleted from HeLa cells by RNAi. Chromatin immunoprecipitation and live-cell imaging assays revealed decreased cotranscriptional accumulation of U4/U6·U5 snRNPs on active transcription units, consistent with a requirement for CBC in cotranscriptional spliceosome assembly. Surprisingly, recruitment of U1 and U2 snRNPs was also affected, indicating that RNA-mediated interactions between CBC and snRNPs contribute to splicing. On the other hand, CBC depletion did not impair snRNP biogenesis, ruling out the possibility that decreased snRNP recruitment was due to changes in nuclear snRNP concentration. Taken together, the data support a model whereby CBC promotes pre-mRNA splicing through a network of interactions with and among spliceosomal snRNPs during cotranscriptional spliceosome assembly. PMID:23793891
Deep sequencing of cardiac microRNA-mRNA interactomes in clinical and experimental cardiomyopathy
Matkovich, Scot J.; Dorn, Gerald W.
2018-01-01
Summary MicroRNAs are a family of short (~21 nucleotide) noncoding RNAs that serve key roles in cellular growth and differentiation and the response of the heart to stress stimuli. As the sequence-specific recognition element of RNA-induced silencing complexes (RISCs), microRNAs bind mRNAs and prevent their translation via mechanisms that may include transcript degradation and/or prevention of ribosome binding. Short microRNA sequences and the ability of microRNAs to bind to mRNA sites having only partial/imperfect sequence complementarity complicates purely computational analyses of microRNA-mRNA interactomes. Furthermore, computational microRNA target prediction programs typically ignore biological context, and therefore the principal determinants of microRNA-mRNA binding: the presence and quantity of each. To address these deficiencies we describe an empirical method, developed via studies of stressed and failing hearts, to determine disease-induced changes in microRNAs, mRNAs, and the mRNAs targeted to the RISC, without cross-linking mRNAs to RISC proteins. Deep sequencing methods are used to determine RNA abundances, delivering unbiased, quantitative RNA data limited only by their annotation in the genome of interest. We describe the laboratory bench steps required to perform these experiments, experimental design strategies to achieve an appropriate number of sequencing reads per biological replicate, and computer-based processing tools and procedures to convert large raw sequencing data files into gene expression measures useful for differential expression analyses. PMID:25836573
Deep sequencing of cardiac microRNA-mRNA interactomes in clinical and experimental cardiomyopathy.
Matkovich, Scot J; Dorn, Gerald W
2015-01-01
MicroRNAs are a family of short (~21 nucleotide) noncoding RNAs that serve key roles in cellular growth and differentiation and the response of the heart to stress stimuli. As the sequence-specific recognition element of RNA-induced silencing complexes (RISCs), microRNAs bind mRNAs and prevent their translation via mechanisms that may include transcript degradation and/or prevention of ribosome binding. Short microRNA sequences and the ability of microRNAs to bind to mRNA sites having only partial/imperfect sequence complementarity complicate purely computational analyses of microRNA-mRNA interactomes. Furthermore, computational microRNA target prediction programs typically ignore biological context, and therefore the principal determinants of microRNA-mRNA binding: the presence and quantity of each. To address these deficiencies we describe an empirical method, developed via studies of stressed and failing hearts, to determine disease-induced changes in microRNAs, mRNAs, and the mRNAs targeted to the RISC, without cross-linking mRNAs to RISC proteins. Deep sequencing methods are used to determine RNA abundances, delivering unbiased, quantitative RNA data limited only by their annotation in the genome of interest. We describe the laboratory bench steps required to perform these experiments, experimental design strategies to achieve an appropriate number of sequencing reads per biological replicate, and computer-based processing tools and procedures to convert large raw sequencing data files into gene expression measures useful for differential expression analyses.
Cestari, Igor; Kalidas, Savitha; Monnerat, Severine; Anupama, Atashi; Phillips, Margaret A.
2013-01-01
The genes for all cytoplasmic and potentially all mitochondrial aminoacyl-tRNA synthetases (aaRSs) were identified, and all those tested by RNA interference were found to be essential for the growth of Trypanosoma brucei. Some of these enzymes were localized to the cytoplasm or mitochondrion, but most were dually localized to both cellular compartments. Cytoplasmic T. brucei aaRSs were organized in a multiprotein complex in both bloodstream and procyclic forms. The multiple aminoacyl-tRNA synthetase (MARS) complex contained at least six aaRS enzymes and three additional non-aaRS proteins. Steady-state kinetic studies showed that association in the MARS complex enhances tRNA-aminoacylation efficiency, which is in part dependent on a MARS complex-associated protein (MCP), named MCP2, that binds tRNAs and increases their aminoacylation by the complex. Conditional repression of MCP2 in T. brucei bloodstream forms resulted in reduced parasite growth and infectivity in mice. Thus, association in a MARS complex enhances tRNA-aminoacylation and contributes to parasite fitness. The MARS complex may be part of a cellular regulatory system and a target for drug development. PMID:24126051
Iakhiaeva, Elena; Wower, Jacek; Wower, Iwona K.; Zwieb, Christian
2008-01-01
The signal recognition particle (SRP) plays a pivotal role in transporting proteins to cell membranes. In higher eukaryotes, SRP consists of an RNA molecule and six proteins. The largest of the SRP proteins, SRP72, was found previously to bind to the SRP RNA. A fragment of human SRP72 (72c′) bound effectively to human SRP RNA but only weakly to the similar SRP RNA of the archaeon Methanococcus jannaschii. Chimeras between the human and M. jannaschii SRP RNAs were constructed and used as substrates for 72c′. SRP RNA helical section 5e contained the 72c′ binding site. Systematic alteration within 5e revealed that the A240G and A240C changes dramatically reduced the binding of 72c′. Human SRP RNA with a single A240G change was unable to form a complex with full-length human SRP72. Two small RNA fragments, one composed of helical section 5ef, the other of section 5e, competed equally well for the binding of 72c′, demonstrating that no other regions of the SRPR RNA were required. The biochemical data completely agreed with the nucleotide conservation pattern observed across the phylogenetic spectrum. Thus, most eukaryotic SRP RNAs are likely to require for function an adenosine within their 5e motifs. The human 5ef RNA was remarkably resistant to ribonucleolytic attack suggesting that the 240-AUC-242 “loop” and its surrounding nucleotides form a peculiar compact structure recognized only by SRP72. PMID:18441046
Structural insights into RNA processing by the human RISC-loading complex.
Wang, Hong-Wei; Noland, Cameron; Siridechadilok, Bunpote; Taylor, David W; Ma, Enbo; Felderer, Karin; Doudna, Jennifer A; Nogales, Eva
2009-11-01
Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2.
Prajapati, Ranjit Kumar; Sengupta, Shreya; Rudra, Paulami; Mukhopadhyay, Jayanta
2016-01-15
Most bacterial RNA polymerases (RNAP) contain five conserved subunits, viz. 2α, β, β', and ω. However, in many Gram-positive bacteria, especially in fermicutes, RNAP is associated with an additional factor, called δ. For over three decades since its identification, it had been thought that δ functioned as a subunit of RNAP to enhance the level of transcripts by recycling RNAP. In support of the previous observations, we also find that δ is involved in recycling of RNAP by releasing the RNA from the ternary complex. We further show that δ binds to RNA and is able to recycle RNAP when the length of the nascent RNA reaches a critical length. However, in this work we decipher a new function of δ. Performing biochemical and mutational analysis, we show that Bacillus subtilis δ binds to DNA immediately upstream of the promoter element at A-rich sequences on the abrB and rrnB1 promoters and facilitates open complex formation. As a result, δ facilitates RNAP to initiate transcription in the second scale, compared with minute scale in the absence of δ. Using transcription assay, we show that δ-mediated recycling of RNAP cannot be the sole reason for the enhancement of transcript yield. Our observation that δ does not bind to RNAP holo enzyme but is required to bind to DNA upstream of the -35 promoter element for transcription activation suggests that δ functions as a transcriptional regulator. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Gleghorn; E Davydova; R Basu
2011-12-31
We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groupsmore » of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.« less
Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riback, Joshua A.; Katanski, Christopher D.; Kear-Scott, Jamie L.
In eukaryotic cells, diverse stresses trigger coalescence of RNA-binding proteins into stress granules. In vitro, stress-granule-associated proteins can demix to form liquids, hydrogels, and other assemblies lacking fixed stoichiometry. Observing these phenomena has generally required conditions far removed from physiological stresses. We show that poly(A)-binding protein (Pab1 in yeast), a defining marker of stress granules, phase separates and forms hydrogels in vitro upon exposure to physiological stress conditions. Other RNA-binding proteins depend upon low-complexity regions (LCRs) or RNA for phase separation, whereas Pab1’s LCR is not required for demixing, and RNA inhibits it. Based on unique evolutionary patterns, we createmore » LCR mutations, which systematically tune its biophysical properties and Pab1 phase separation in vitro and in vivo. Mutations that impede phase separation reduce organism fitness during prolonged stress. Poly(A)-binding protein thus acts as a physiological stress sensor, exploiting phase separation to precisely mark stress onset, a broadly generalizable mechanism.« less
DEAD-box Helicases as Integrators of RNA, Nucleotide and Protein Binding
Putnam, Andrea A.
2013-01-01
DEAD-box helicases perform diverse cellular functions in virtually all steps of RNA metabolism from Bacteria to Humans. Although DEAD-box helicases share a highly conserved core domain, the enzymes catalyze a wide range of biochemical reactions. In addition to the well established RNA unwinding and corresponding ATPase activities, DEAD-box helicases promote duplex formation and displace proteins from RNA. They can also function as assembly platforms for larger ribonucleoprotein complexes, and as metabolite sensors. This review aims to provide a perspective on the diverse biochemical features of DEAD-box helicases and connections to structural information. We discuss these data in the context of a model that views the enzymes as integrators of RNA, nucleotide, and protein binding. PMID:23416748
Austin, S; Dixon, R
1992-01-01
The prokaryotic activator protein NTRC binds to enhancer-like elements and activates transcription in response to nitrogen limitation by catalysing open complex formation by sigma 54 RNA polymerase holoenzyme. Formation of open complexes requires the phosphorylated form of NTRC and the reaction is ATP dependent. We find that NTRC has an ATPase activity which is activated by phosphorylation and is strongly stimulated by the presence of DNA containing specific NTRC binding sites. Images PMID:1534752
Huenges, M; Rölz, C; Gschwind, R; Peteranderl, R; Berglechner, F; Richter, G; Bacher, A; Kessler, H; Gemmecker, G
1998-01-01
The NusB protein of Escherichia coli is involved in the regulation of rRNA biosynthesis by transcriptional antitermination. In cooperation with several other proteins, it binds to a dodecamer motif designated rrn boxA on the nascent rRNA. The antitermination proteins of E.coli are recruited in the replication cycle of bacteriophage lambda, where they play an important role in switching from the lysogenic to the lytic cycle. Multidimensional heteronuclear NMR experiments were performed with recombinant NusB protein labelled with 13C, 15N and 2H. The three-dimensional structure of the protein was solved from 1926 NMR-derived distances and 80 torsion angle restraints. The protein folds into an alpha/alpha-helical topology consisting of six helices; the arginine-rich N-terminus appears to be disordered. Complexation of the protein with an RNA dodecamer equivalent to the rrn boxA site results in chemical shift changes of numerous amide signals. The overall packing of the protein appears to be conserved, but the flexible N-terminus adopts a more rigid structure upon RNA binding, indicating that the N-terminus functions as an arginine-rich RNA-binding motif (ARM). PMID:9670024
Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.
Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A
2013-01-01
Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.
Vessey, John P; Amadei, Gianluca; Burns, Sarah E; Kiebler, Michael A; Kaplan, David R; Miller, Freda D
2012-10-05
The cellular mechanisms that regulate self-renewal versus differentiation of mammalian somatic tissue stem cells are still largely unknown. Here, we asked whether an RNA complex regulates this process in mammalian neural stem cells. We show that the RNA-binding protein Staufen2 (Stau2) is apically localized in radial glial precursors of the embryonic cortex, where it forms a complex with other RNA granule proteins including Pumilio2 (Pum2) and DDX1, and the mRNAs for β-actin and mammalian prospero, prox1. Perturbation of this complex by functional knockdown of Stau2, Pum2, or DDX1 causes premature differentiation of radial glial precursors into neurons and mislocalization and misexpression of prox1 mRNA. Thus, a Stau2- and Pum2-dependent RNA complex directly regulates localization and, potentially, expression of target mRNAs like prox1 in mammalian neural stem cells, and in so doing regulates the balance of stem cell maintenance versus differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.
Mohagheghi, Fatemeh; Prudencio, Mercedes; Stuani, Cristiana; Cook, Casey; Jansen-West, Karen; Dickson, Dennis W; Petrucelli, Leonard; Buratti, Emanuele
2016-02-01
The aggregation and mislocalization of RNA-binding proteins leads to the aberrant regulation of RNA metabolism and is a key feature of many neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia. However, the pathological consequences of abnormal deposition of TDP-43 and other RNA-binding proteins remain unclear, as the specific molecular events that drive neurodegeneration have been difficult to identify and continue to be elusive. Here, we provide novel insight into the complexity of the RNA-binding protein network by demonstrating that the inclusion of exon 17b in the SORT1 mRNA, a pathologically relevant splicing event known to be regulated by TDP-43, is also considerably affected by additional RNA-binding proteins, such as hnRNP L, PTB/nPTB and hnRNP A1/A2. Most importantly, the expression of hnRNP A1/A2 and PTB/nPTB is significantly altered in patients with frontotemporal dementia with TDP-43-positive inclusions (FTLD-TDP), indicating that perturbations in RNA metabolism and processing in FTLD-TDP are not exclusively driven by a loss of TDP-43 function. These results also suggest that a comprehensive assessment of the RNA-binding protein network will dramatically advance our current understanding of the role of TDP-43 in disease pathogenesis, as well as enhance both diagnostic and therapeutic capabilities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
hnRNP L binds to CA repeats in the 3'UTR of bcl-2 mRNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dong-Hyoung; Lim, Mi-Hyun; Youn, Dong-Ye
We previously reported that the CA-repeat sequence in the 3'-untranslated region (3'UTR) of bcl-2 mRNA is involved in the decay of bcl-2 mRNA. However, the trans-acting factor for the CA element in bcl-2 mRNA remains unidentified. The heterogeneous nuclear ribonucleoprotein L (hnRNP L), an intron splicing factor, has been reported to bind to CA repeats and CA clusters in the 3'UTR of several genes. We reported herein that the CA repeats of bcl-2 mRNA have the potential to form a distinct ribonuclear protein complex in cytoplasmic extracts of MCF-7 cells, as evidenced by RNA electrophoretic mobility shift assays (REMSA). Amore » super-shift assay using the hnRNP L antibody completely shifted the complex. Immunoprecipitation with the hnRNP L antibody and MCF-7 cells followed by RT-PCR revealed that hnRNP L interacts with endogenous bcl-2 mRNA in vivo. Furthermore, the suppression of hnRNP L in MCF-7 cells by the transfection of siRNA for hnRNP L resulted in a delay in the degradation of RNA transcripts including CA repeats of bcl-2 mRNA in vitro, suggesting that the interaction between hnRNPL and CA repeats of bcl-2 mRNA participates in destabilizing bcl-2 mRNA.« less
NASA Astrophysics Data System (ADS)
Harris, Michael E.; Christian, Eric L.
There is a large and rapidly growing literature relating RNA function to metal ion identity and concentration; however, due to the complexity and large number of interactions it remains a significant experimental challenge to tie the interactions of individual ions to specific aspects of RNA function. Investigation of the ribonculeopro-tein enzyme RNase P function has assisted in defining characteristics of RNA—metal ion interactions and provided a useful model system for understanding RNA catalysis and ribonucleoprotein assembly. The goal of this chapter is to review progress in understanding the physical basis of functional metal ion interactions with P RNA and relate this progress to the development of our understanding of RNA metal ion interactions in general. The research results reviewed here encompass: (1) Determination of the contribution of divalent metal ion binding to specific aspects of enzyme function, (2) Identification of individual metal ion binding sites in P RNA and their contribution to function, and (3) The effect of protein binding on RNA—metal ion affinity.
IGF2BP3 modulates the interaction of invasion-associated transcripts with RISC
Ennajdaoui, Hanane; Howard, Jonathan M.; Sterne-Weiler, Timothy; Jahanbani, Fereshteh; Coyne, Doyle J.; Uren, Philip J.; Dargyte, Marija; Katzman, Sol; Draper, Jolene M.; Wallace, Andrew; Cazarez, Oscar; Burns, Suzanne C.; Qiao, Mei; Hinck, Lindsay; Smith, Andrew D.; Toloue, Masoud M.; Blencowe, Benjamin J.; Penalva, Luiz O.F.; Sanford, Jeremy R.
2016-01-01
Summary Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy. But its role(s) in pathogenesis remain enigmatic. Here, we interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches we identify 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and miRNA binding sites. IGF2BP3 promotes association of the RNA induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions. PMID:27210763
Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd, Richard E., E-mail: rlloyd@bcm.edu
Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizesmore » recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. - Highlights: • Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. • A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. • Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.« less
Rajgor, Dipen; Fiuza, Maria; Parkinson, Gabrielle T; Hanley, Jonathan G
2017-06-09
MicroRNAs (miRNAs) are important regulators of localized mRNA translation in neuronal dendrites. The presence of RNA-induced silencing complex proteins in these compartments and the dynamic miRNA expression changes that occur in response to neuronal stimulation highlight their importance in synaptic plasticity. Previously, we demonstrated a novel interaction between the major RNA-induced silencing complex component Argounaute-2 (Ago2) and the BAR (bin/amphiphysin/rvs) domain protein PICK1. PICK1 recruits Ago2 to recycling endosomes in dendrites, where it inhibits miRNA-mediated translational repression. Chemical induction of long-term depression via NMDA receptor activation causes the dissociation of Ago2 from PICK1 and a consequent increase in dendritic miRNA-mediated gene silencing. The mechanism that underlies the regulation of PICK1-Ago2 binding is unknown. In this study, we demonstrate that the PICK1-Ago2 interaction is directly sensitive to Ca 2+ ions so that high [Ca 2+ ] free reduces PICK1 binding to Ago2. Mutating a stretch of C-terminal Ca 2+ -binding residues in PICK1 results in a complete block of NMDA-induced PICK1-Ago2 disassociation in cortical neurons. Furthermore, the same mutant also blocks NMDA-stimulated miRNA-mediated gene silencing. This study defines a novel mechanism whereby elevated [Ca 2+ ] induced by NMDA receptor activation modulates Ago2 and miRNA activity via PICK1. Our work suggests a Ca 2+ -dependent process to regulate miRNA activity in neurons in response to the induction of long-term depression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, M.T.; Krohne, G.; Franke, W.W.
1991-01-01
To gain insight into the mechanisms involved in the formation of maternally stored mRNPs during Xenopus laevis development, we searched for soluble cytoplasmic proteins of the oocyte that are able to selectively bind mRNAs, using as substrate radiolabeled mRNA. In vitro mRNP assembly in solution was followed by UV-cross-linking and RNase digestion, resulting in covalent tagging of polypeptides by nucleotide transfer. Five polypeptides of approximately 54, 56 60, 70, and 100 kD (p54, p56, p60, p70, and p100) have been found to selectively bind mRNA and assemble into mRNPs. These polypeptides, which correspond to previously described native mRNP components, occurmore » in three different particle classes of approximately 4.5S, approximately 6S, and approximately 15S, as also determined by their reactions with antibodies against p54 and p56. Whereas the approximately 4.5S class contains p42, p60, and p70, probably each in the form of individual molecules or small complexes, the approximately 6S particles appears to consist only of p54 and p56, which occur in a near-stoichiometric ratio suggestive of a heterodimer complex. The approximately 15S particles contain, in addition to p54 and p56, p60 and p100 and this is the single occurring form of RNA-binding p100. We have also observed changes in the in vitro mRNA binding properties of these polypeptides during oogenesis and early embryonic development, in relation to their phosphorylation state and to the activity of an approximately 15S particle-associated protein kinase, suggesting that these proteins are involved in the developmental translational regulation of maternal mRNAs.« less
Datta, Kausiki; von Hippel, Peter H.
2008-01-01
Changes in near UV circular dichroism (CD) and fluorescence spectra of site-specifically placed pairs of 2-aminopurine residues have been used to probe the roles of the RNA hairpin and the RNA-DNA hybrid in controlling intrinsic termination of transcription. Functional transcription complexes were assembled directly by mixing preformed nucleic acid scaffolds of defined sequence with T7 RNA polymerase (RNAP). Scaffolds containing RNA hairpins immediately upstream of a GC-rich hybrid formed complexes of reduced stability, whereas the same hairpins adjacent to a hybrid of rU-dA base pairs triggered complex dissociation and transcript release. 2-Aminopurine probes at the upstream ends of the hairpin stems show that the hairpins open on RNAP binding and that stem re-formation begins after one or two RNA bases on the downstream side of the stem have emerged from the RNAP exit tunnel. Hairpins directly adjacent to the RNA-DNA hybrid weaken RNAP binding, decrease elongation efficiency, and disrupt the upstream end of the hybrid as well as interfere with the movement of the template base at the RNAP active site. Probing the edges of the DNA transcription bubble demonstrates that termination hairpins prevent translocation of the RNAP, suggesting that they transiently “lock” the polymerase to the nucleic acid scaffold and, thus, hold the RNA-DNA hybrid “in frame.” At intrinsic terminators the weak rU-dA hybrid and the adjacent termination hairpin combine to destabilize the elongation complex sufficiently to permit significant transcript release, whereas hairpin-dependent pausing provides time for the process to go to completion. PMID:18070878
Structural basis of RNA recognition and activation by innate immune receptor RIG-I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Fuguo; Ramanathan, Anand; Miller, Matthew T.
Retinoic-acid-inducible gene-I (RIG-I; also known as DDX58) is a cytoplasmic pathogen recognition receptor that recognizes pathogen-associated molecular pattern (PAMP) motifs to differentiate between viral and cellular RNAs. RIG-I is activated by blunt-ended double-stranded (ds)RNA with or without a 5'-triphosphate (ppp), by single-stranded RNA marked by a 5'-ppp and by polyuridine sequences. Upon binding to such PAMP motifs, RIG-I initiates a signalling cascade that induces innate immune defences and inflammatory cytokines to establish an antiviral state. The RIG-I pathway is highly regulated and aberrant signalling leads to apoptosis, altered cell differentiation, inflammation, autoimmune diseases and cancer. The helicase and repressor domainsmore » (RD) of RIG-I recognize dsRNA and 5'-ppp RNA to activate the two amino-terminal caspase recruitment domains (CARDs) for signalling. Here, to understand the synergy between the helicase and the RD for RNA binding, and the contribution of ATP hydrolysis to RIG-I activation, we determined the structure of human RIG-I helicase-RD in complex with dsRNA and an ATP analogue. The helicase-RD organizes into a ring around dsRNA, capping one end, while contacting both strands using previously uncharacterized motifs to recognize dsRNA. Small-angle X-ray scattering, limited proteolysis and differential scanning fluorimetry indicate that RIG-I is in an extended and flexible conformation that compacts upon binding RNA. These results provide a detailed view of the role of helicase in dsRNA recognition, the synergy between the RD and the helicase for RNA binding and the organization of full-length RIG-I bound to dsRNA, and provide evidence of a conformational change upon RNA binding. The RIG-I helicase-RD structure is consistent with dsRNA translocation without unwinding and cooperative binding to RNA. The structure yields unprecedented insight into innate immunity and has a broader impact on other areas of biology, including RNA interference and DNA repair, which utilize homologous helicase domains within DICER and FANCM.« less
Knuckles, Philip; Lence, Tina; Haussmann, Irmgard U.; Jacob, Dominik; Kreim, Nastasja; Carl, Sarah H.; Masiello, Irene; Hares, Tina; Villaseñor, Rodrigo; Hess, Daniel; Andrade-Navarro, Miguel A.; Biggiogera, Marco; Helm, Mark; Soller, Matthias; Bühler, Marc; Roignant, Jean-Yves
2018-01-01
N6-methyladenosine (m6A) is the most abundant mRNA modification in eukaryotes, playing crucial roles in multiple biological processes. m6A is catalyzed by the activity of methyltransferase-like 3 (Mettl3), which depends on additional proteins whose precise functions remain poorly understood. Here we identified Zc3h13 (zinc finger CCCH domain-containing protein 13)/Flacc [Fl(2)d-associated complex component] as a novel interactor of m6A methyltransferase complex components in Drosophila and mice. Like other components of this complex, Flacc controls m6A levels and is involved in sex determination in Drosophila. We demonstrate that Flacc promotes m6A deposition by bridging Fl(2)d to the mRNA-binding factor Nito. Altogether, our work advances the molecular understanding of conservation and regulation of the m6A machinery. PMID:29535189
Structure of RNA 3′-phosphate cyclase bound to substrate RNA
Desai, Kevin K.; Bingman, Craig A.; Cheng, Chin L.; Phillips, George N.
2014-01-01
RNA 3′-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3′-phosphate to form a 2′,3′-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA–AMP and RNA(3′)pp(5′)A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3′-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3′-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3′-phosphate is poised for in-line attack on the P–N bond that links the phosphorous atom of AMP to Nε of His307. Thus, we provide the first insights into RNA 3′-phosphate termini recognition and the mechanism of 3′-phosphate activation by an Rtc enzyme. PMID:25161314
Screening protein – Single stranded RNA complexes by NMR spectroscopy for structure determination☆
Foot, Jaelle N.; Feracci, Mikael; Dominguez, Cyril
2014-01-01
In the past few years, RNA molecules have been revealed to be at the center of numerous biological processes. Long considered as passive molecules transferring genetic information from DNA to proteins, it is now well established that RNA molecules play important regulatory roles. Associated with that, the number of identified RNA binding proteins (RBPs) has increased considerably and mutations in RNA molecules or RBP have been shown to cause various diseases, such as cancers. It is therefore crucial to understand at the molecular level how these proteins specifically recognise their RNA targets in order to design new generation drug therapies targeting protein–RNA complexes. Nuclear magnetic resonance (NMR) is a particularly well-suited technique to study such protein–RNA complexes at the atomic level and can provide valuable information for new drug discovery programs. In this article, we describe the NMR strategy that we and other laboratories use for screening optimal conditions necessary for structural studies of protein-single stranded RNA complexes, using two proteins, Sam68 and T-STAR, as examples. PMID:24096002
HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs
Daniels, Sylvanne M; Sinck, Lucile; Ward, Natalie J; Melendez-Peña, Carlos E; Scarborough, Robert J; Azar, Ibrahim; Rance, Elodie; Daher, Aïcha; Pang, Ka-Ming; Rossi, John J; Gatignol, Anne
2015-01-01
Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses. PMID:25668122
HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs.
Daniels, Sylvanne M; Sinck, Lucile; Ward, Natalie J; Melendez-Peña, Carlos E; Scarborough, Robert J; Azar, Ibrahim; Rance, Elodie; Daher, Aïcha; Pang, Ka-Ming; Rossi, John J; Gatignol, Anne
2015-01-01
Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses.
Liu, Lan; Ouyang, Miao; Rao, Jaladanki N.; Zou, Tongtong; Xiao, Lan; Chung, Hee Kyoung; Wu, Jing; Donahue, James M.; Gorospe, Myriam; Wang, Jian-Ying
2015-01-01
The mammalian intestinal epithelium is one of the most rapidly self-renewing tissues in the body, and its integrity is preserved through strict regulation. The RNA-binding protein (RBP) ELAV-like family member 1 (CELF1), also referred to as CUG-binding protein 1 (CUGBP1), regulates the stability and translation of target mRNAs and is implicated in many aspects of cellular physiology. We show that CELF1 competes with the RBP HuR to modulate MYC translation and regulates intestinal epithelial homeostasis. Growth inhibition of the small intestinal mucosa by fasting in mice was associated with increased CELF1/Myc mRNA association and decreased MYC expression. At the molecular level, CELF1 was found to bind the 3′-untranslated region (UTR) of Myc mRNA and repressed MYC translation without affecting total Myc mRNA levels. HuR interacted with the same Myc 3′-UTR element, and increasing the levels of HuR decreased CELF1 binding to Myc mRNA. In contrast, increasing the concentrations of CELF1 inhibited formation of the [HuR/Myc mRNA] complex. Depletion of cellular polyamines also increased CELF1 and enhanced CELF1 association with Myc mRNA, thus suppressing MYC translation. Moreover, ectopic CELF1 overexpression caused G1-phase growth arrest, whereas CELF1 silencing promoted cell proliferation. These results indicate that CELF1 represses MYC translation by decreasing Myc mRNA association with HuR and provide new insight into the molecular functions of RBPs in the regulation of intestinal mucosal growth. PMID:25808495
Caton, Evan A; Kelly, Erin K; Kamalampeta, Rajashekhar
2018-01-01
Abstract H/ACA ribonucleoproteins (H/ACA RNPs) are responsible for introducing many pseudouridines into RNAs, but are also involved in other cellular functions. Utilizing a purified and reconstituted yeast H/ACA RNP system that is active in pseudouridine formation under physiological conditions, we describe here the quantitative characterization of H/ACA RNP formation and function. This analysis reveals a surprisingly tight interaction of H/ACA guide RNA with the Cbf5p–Nop10p–Gar1p trimeric protein complex whereas Nhp2p binds comparably weakly to H/ACA guide RNA. Substrate RNA is bound to H/ACA RNPs with nanomolar affinity which correlates with the GC content in the guide-substrate RNA base pairing. Both Nhp2p and the conserved Box ACA element in guide RNA are required for efficient pseudouridine formation, but not for guide RNA or substrate RNA binding. These results suggest that Nhp2p and the Box ACA motif indirectly facilitate loading of the substrate RNA in the catalytic site of Cbf5p by correctly positioning the upper and lower parts of the H/ACA guide RNA on the H/ACA proteins. In summary, this study provides detailed insight into the molecular mechanism of H/ACA RNPs. PMID:29177505
Koh, Hye Ran; Wang, Xinlei; Myong, Sua
2016-08-01
TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. Copyright © 2016 Elsevier Inc. All rights reserved.
Kong, Lingbao; Fujimoto, Akira; Nakamura, Mariko; Aoyagi, Haruyo; Matsuda, Mami; Watashi, Koichi; Suzuki, Ryosuke; Arita, Minetaro; Yamagoe, Satoshi; Dohmae, Naoshi; Suzuki, Takehiro; Sakamaki, Yuriko; Ichinose, Shizuko; Suzuki, Tetsuro; Wakita, Takaji
2016-01-01
ABSTRACT It has been proposed that the hepatitis C virus (HCV) NS4B protein triggers the membranous HCV replication compartment, but the underlying molecular mechanism is not fully understood. Here, we screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis and identified 202 host proteins. Subsequent screening of replicon cells with small interfering RNA identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. The interaction between PREB and NS4B was confirmed by immunoprecipitation, immunofluorescence, and proximity ligation assays. PREB colocalized with double-stranded RNA and the newly synthesized HCV RNA labeled with bromouridine triphosphate in HCV replicon cells. Furthermore, PREB shifted to detergent-resistant membranes (DRMs), where HCV replication complexes reside, in the presence of NS4B expression in Huh7 cells. However, a PREB mutant lacking the NS4B-binding region (PREBd3) could not colocalize with double-stranded RNA and did not shift to the DRM in the presence of NS4B. These results indicate that PREB locates at the HCV replication complex by interacting with NS4B. PREB silencing inhibited the formation of the membranous HCV replication compartment and increased the protease and nuclease sensitivity of HCV replicase proteins and RNA in DRMs, respectively. Collectively, these data indicate that PREB promotes HCV RNA replication by participating in the formation of the membranous replication compartment and by maintaining its proper structure by interacting with NS4B. Furthermore, PREB was induced by HCV infection in vitro and in vivo. Our findings provide new insights into HCV host cofactors. IMPORTANCE The hepatitis C virus (HCV) protein NS4B can induce alteration of the endoplasmic reticulum and the formation of a membranous web structure, which provides a platform for the HCV replication complex. The molecular mechanism by which NS4B induces the membranous HCV replication compartment is not understood. We screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis, followed by screening with small interfering RNA. We identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. PREB is induced by HCV infection and recruited into the replication complex by interaction with NS4B. Recruited PREB promotes HCV RNA replication by participating in the formation of the membranous HCV replication compartment. To our knowledge, the effect of NS4B-binding protein on the formation of the membranous HCV replication compartment is newly described in this report. Our findings are expected to provide new insights into HCV host cofactors. PMID:26739056
Diffusional encounter of barnase and barstar.
Spaar, Alexander; Dammer, Christian; Gabdoulline, Razif R; Wade, Rebecca C; Helms, Volkhard
2006-03-15
We present an analysis of trajectories from Brownian dynamics simulations of diffusional protein-protein encounter for the well-studied system of barnase and barstar. This analysis reveals details about the optimal association pathways, the regions of the encounter complex, possible differences of the pathways for dissociation and association, the coupling of translational and rotation motion, and the effect of mutations on the trajectories. We found that a small free-energy barrier divides the energetically most favorable region into a region of the encounter complex above the barnase binding interface and a region around a second energy minimum near the RNA binding loop. When entering the region of the encounter complex from the region near the RNA binding loop, barstar has to change its orientation to increase the electrostatic attraction between the proteins. By concentrating the analysis on the successful binding trajectories, we found that the region of the second minimum is not essential for the binding of barstar to barnase. Nevertheless, this region may be helpful to steer barstar into the region of the encounter complex. When applying the same analysis to several barnase mutants, we found that single mutations may drastically change the free-energy landscape and may significantly alter the population of the two minima. Therefore, certain protein-protein pairs may require careful adaptation of the positions of encounter and transition states when interpreting mutation effects on kinetic rates of association and/or dissociation.
Förster, C; Limmer, S; Zeidler, W; Sprinzl, M
1994-01-01
tRNA(Val) from Escherichia coli was aminoacylated with [1-13C]valine and its complex with Thermus thermophilus elongation factor EF-Tu.GTP was analyzed by 13C NMR spectroscopy. The results suggest that the aminoacyl residue of the valyl-tRNA in ternary complex with bacterial EF-Tu and GTP is not attached to tRNA by a regular ester bond to either a 2'- or 3'-hydroxyl group; instead, an intermediate orthoester acid structure with covalent linkage to both vicinal hydroxyls of the terminal adenosine-76 is formed. Mutation of arginine-59 located in the effector region of EF-Tu, a conserved residue in protein elongation factors and the alpha subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins), abolishes the stabilization of the orthoester acid structure of aminoacyl-tRNA. PMID:8183898
Tabujew, Ilja; Freidel, Christoph; Krieg, Bettina; Helm, Mark; Koynov, Kaloian; Müllen, Klaus; Peneva, Kalina
2014-07-01
Here, the preparation of a novel block copolymer consisting of a statistical copolymer N-(2-hydroxypropyl) methacrylamide-s-N-(3-aminopropyl) methacrylamide and a short terminal 3-guanidinopropyl methacrylamide block is reported. This polymer structure forms neutral but water-soluble nanosized complexes with siRNA. The siRNA block copolymer complexes are first analyzed using agarose gel electrophoresis and their size is determined with fluorescence correlation spectroscopy. The protective properties of the polymer against RNA degradation are investigated by treating the siRNA block copolymer complexes with RNase V1. Heparin competition assays confirm the efficient release of the cargo in vitro. In addition, the utilization of microscale thermophoresis is demonstrated for the determination of the binding strength between a fluorescently labeled polyanion and a polymer molecule. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho
Shashni, Rajesh; Qayyum, M. Zuhaib; Vishalini, V.; Dey, Debashish; Sen, Ranjan
2014-01-01
The bacterial transcription terminator, Rho, terminates transcription at half of the operons. According to the classical model derived from in vitro assays on a few terminators, Rho is recruited to the transcription elongation complex (EC) by recognizing specific sites (rut) on the nascent RNA. Here, we explored the mode of in vivo recruitment process of Rho. We show that sequence specific recognition of the rut site, in majority of the Rho-dependent terminators, can be compromised to a great extent without seriously affecting the genome-wide termination function as well as the viability of Escherichia coli. These terminators function optimally only through a NusG-assisted recruitment and activation of Rho. Our data also indicate that at these terminators, Rho-EC-bound NusG interaction facilitates the isomerization of Rho into a translocase-competent form by stabilizing the interactions of mRNA with the secondary RNA binding site, thereby overcoming the defects of the primary RNA binding functions. PMID:25081210
Bovine oocytes and early embryos express Staufen and ELAVL RNA-binding proteins.
Calder, M D; Madan, P; Watson, A J
2008-05-01
RNA-binding proteins (RBP) influence RNA editing, localization, stability and translation and may contribute to oocyte developmental competence by regulating the stability and turnover of oogenetic mRNAs. The expression of Staufen 1 and 2 and ELAVL1, ELAVL2 RNA-binding proteins during cow early development was characterized. Cumulus-oocyte complexes were collected from slaughterhouse ovaries, matured, inseminated and subjected to embryo culture in vitro. Oocyte or preimplantation embryo pools were processed for RT-PCR and whole-mount immunofluorescence analysis of mRNA expression and protein distribution. STAU1 and STAU2 and ELAVL1 mRNAs and proteins were detected throughout cow preimplantation development from the germinal vesicle (GV) oocyte to the blastocyst stage. ELAVL2 mRNAs were detectable from the GV to the morula stage, whereas ELAVL2 protein was in all stages examined and localized to both cytoplasm and nuclei. The findings provide a foundation for investigating the role of RBPs during mammalian oocyte maturation and early embryogenesis.
Staufen1 senses overall transcript secondary structure to regulate translation
Ricci, Emiliano P; Kucukural, Alper; Cenik, Can; Mercier, Blandine C; Singh, Guramrit; Heyer, Erin E; Ashar-Patel, Ami; Peng, Lingtao; Moore, Melissa J
2015-01-01
Human Staufen1 (Stau1) is a double-stranded RNA (dsRNA)-binding protein implicated in multiple post-transcriptional gene-regulatory processes. Here we combined RNA immunoprecipitation in tandem (RIPiT) with RNase footprinting, formaldehyde cross-linking, sonication-mediated RNA fragmentation and deep sequencing to map Staufen1-binding sites transcriptome wide. We find that Stau1 binds complex secondary structures containing multiple short helices, many of which are formed by inverted Alu elements in annotated 3′ untranslated regions (UTRs) or in ‘strongly distal’ 3′ UTRs. Stau1 also interacts with actively translating ribosomes and with mRNA coding sequences (CDSs) and 3′ UTRs in proportion to their GC content and propensity to form internal secondary structure. On mRNAs with high CDS GC content, higher Stau1 levels lead to greater ribosome densities, thus suggesting a general role for Stau1 in modulating translation elongation through structured CDS regions. Our results also indicate that Stau1 regulates translation of transcription-regulatory proteins. PMID:24336223
Structures of the tRNA export factor in the nuclear and cytosolic states.
Cook, Atlanta G; Fukuhara, Noemi; Jinek, Martin; Conti, Elena
2009-09-03
Transfer RNAs are among the most ubiquitous molecules in cells, central to decoding information from messenger RNAs on translating ribosomes. In eukaryotic cells, tRNAs are actively transported from their site of synthesis in the nucleus to their site of function in the cytosol. This is mediated by a dedicated nucleo-cytoplasmic transport factor of the karyopherin-beta family (Xpot, also known as Los1 in Saccharomyces cerevisiae). Here we report the 3.2 A resolution structure of Schizosaccharomyces pombe Xpot in complex with tRNA and RanGTP, and the 3.1 A structure of unbound Xpot, revealing both nuclear and cytosolic snapshots of this transport factor. Xpot undergoes a large conformational change on binding cargo, wrapping around the tRNA and, in particular, binding to the tRNA 5' and 3' ends. The binding mode explains how Xpot can recognize all mature tRNAs in the cell and yet distinguish them from those that have not been properly processed, thus coupling tRNA export to quality control.
Structure of a low-population binding intermediate in protein-RNA recognition
Bardaro, Michael F.; Aprile, Francesco A.; Varani, Gabriele; Vendruscolo, Michele
2016-01-01
The interaction of the HIV-1 protein transactivator of transcription (Tat) and its cognate transactivation response element (TAR) RNA transactivates viral transcription and represents a paradigm for the widespread occurrence of conformational rearrangements in protein-RNA recognition. Although the structures of free and bound forms of TAR are well characterized, the conformations of the intermediates in the binding process are still unknown. By determining the free energy landscape of the complex using NMR residual dipolar couplings in replica-averaged metadynamics simulations, we observe two low-population intermediates. We then rationally design two mutants, one in the protein and another in the RNA, that weaken specific nonnative interactions that stabilize one of the intermediates. By using surface plasmon resonance, we show that these mutations lower the release rate of Tat, as predicted. These results identify the structure of an intermediate for RNA-protein binding and illustrate a general strategy to achieve this goal with high resolution. PMID:27286828
Amyloid-like assembly of the low complexity domain of yeast Nab3.
O'Rourke, Thomas W; Loya, Travis J; Head, PamelaSara E; Horton, John R; Reines, Daniel
2015-01-01
Termination of transcription of short non-coding RNAs is carried out in yeast by the Nab3-Nrd1-Sen1 complex. Nab3 and Nrd1 are hnRNP-like proteins that dimerize and bind RNA with sequence specificity. We show here that an essential region of Nab3 that is predicted to be prion-like based upon its sequence bias, formed amyloid-like filaments. A similar region from Nrd1 also assembled into filaments in vitro. The purified Nab3 domain formed a macroscopic gel whose lattice organization was observed by X-ray fiber diffraction. Filaments were resistant to dissociation in anionic detergent, bound the fluorescent dye thioflavin T, and showed a β-sheet rich structure by circular dichroism spectroscopy, similar to human amyloid β which served as a reference amyloid. A version of the Nab3 domain with a mutation that impairs its termination function, also formed fibers as observed by electron microscopy. Using a protein fragment interaction assay, the purified Nab3 domain was seen to interact with itself in living yeast. A similar observation was made for full length Nab3. These results suggest that the Nab3 and Nrd1 RNA-binding proteins can attain a complex polymeric form and raise the possibility that this property is important for organizing their functional state during termination. These findings are congruent with recent work showing that RNA binding proteins with low complexity domains form a dynamic subcellular matrix in which RNA metabolism takes place but can also aberrantly yield pathological aggregated particles.
Methyl Transfer by Substrate Signaling from a Knotted Protein Fold
Christian, Thomas; Sakaguchi, Reiko; Perlinska, Agata P.; Lahoud, Georges; Ito, Takuhiro; Taylor, Erika A.; Yokoyama, Shigeyuki; Sulkowska, Joanna I.; Hou, Ya-Ming
2017-01-01
Proteins with knotted configurations are restricted in conformational space relative to unknotted proteins. Little is known if knotted proteins have sufficient dynamics to communicate between spatially separated substrate-binding sites. In bacteria, TrmD is a methyl transferase that uses a knotted protein fold to catalyze methyl transfer from S-adenosyl methionine (AdoMet) to G37-tRNA. The product m1G37-tRNA is essential for life as a determinant to maintain protein synthesis reading-frame. Using an integrated approach of structure, kinetic, and computational analysis, we show here that the structurally constrained TrmD knot is required for its catalytic activity. Unexpectedly, the TrmD knot has complex internal movements that respond to AdoMet binding and signaling. Most of the signaling propagates the free energy of AdoMet binding to stabilize tRNA binding and to assemble the active site. This work demonstrates new principles of knots as an organized structure that captures the free energies of substrate binding to facilitate catalysis. PMID:27571175
Translation initiation mediated by nuclear cap-binding protein complex.
Ryu, Incheol; Kim, Yoon Ki
2017-04-01
In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap- dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation. [BMB Reports 2017; 50(4): 186-193].
Rsp5 WW domains interact directly with the carboxyl-terminal domain of RNA polymerase II.
Chang, A; Cheang, S; Espanel, X; Sudol, M
2000-07-07
RSP5 is an essential gene in Saccharomyces cerevisiae and was recently shown to form a physical and functional complex with RNA polymerase II (RNA pol II). The amino-terminal half of Rsp5 consists of four domains: a C2 domain, which binds membrane phospholipids; and three WW domains, which are protein interaction modules that bind proline-rich ligands. The carboxyl-terminal half of Rsp5 contains a HECT (homologous to E6-AP carboxyl terminus) domain that catalytically ligates ubiquitin to proteins and functionally classifies Rsp5 as an E3 ubiquitin-protein ligase. The C2 and WW domains are presumed to act as membrane localization and substrate recognition modules, respectively. We report that the second (and possibly third) Rsp5 WW domain mediates binding to the carboxyl-terminal domain (CTD) of the RNA pol II large subunit. The CTD comprises a heptamer (YSPTSPS) repeated 26 times and a PXY core that is critical for interaction with a specific group of WW domains. An analysis of synthetic peptides revealed a minimal CTD sequence that is sufficient to bind to the second Rsp5 WW domain (Rsp5 WW2) in vitro and in yeast two-hybrid assays. Furthermore, we found that specific "imperfect" CTD repeats can form a complex with Rsp5 WW2. In addition, we have shown that phosphorylation of this minimal CTD sequence on serine, threonine and tyrosine residues acts as a negative regulator of the Rsp5 WW2-CTD interaction. In view of the recent data pertaining to phosphorylation-driven interactions between the RNA pol II CTD and the WW domain of Ess1/Pin1, we suggest that CTD dephosphorylation may be a prerequisite for targeted RNA pol II degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogle, James M.; Brodersen, Ditlev E.; Clemons, William M.
Crystal structures of the 30S ribosomal subunit in complex with messenger RNA and cognate transfer RNA in the A site, both in the presence and absence of the antibiotic paromomycin, have been solved at between 3.1 and 3.3 angstroms resolution. Cognate transfer RNA (tRNA) binding induces global domain movements of the 30S subunit and changes in the conformation of the universally conserved and essential bases A1492, A1493, and G530 of 16S RNA. These bases interact intimately with the minor groove of the first two base pairs between the codon and anticodon, thus sensing Watson-Crick base-pairing geometry and discriminating against near-cognatemore » tRNA. The third, or 'wobble,' position of the codon is free to accommodate certain noncanonical base pairs. By partially inducing these structural changes, paromomycin facilitates binding of near-cognate tRNAs.« less
In silico analysis of miRNA-mediated gene regulation in OCA and OA genes.
Kamaraj, Balu; Gopalakrishnan, Chandrasekhar; Purohit, Rituraj
2014-12-01
Albinism is an autosomal recessive genetic disorder due to low secretion of melanin. The oculocutaneous albinism (OCA) and ocular albinism (OA) genes are responsible for melanin production and also act as a potential targets for miRNAs. The role of miRNA is to inhibit the protein synthesis partially or completely by binding with the 3'UTR of the mRNA thus regulating gene expression. In this analysis, we predicted the genetic variation that occurred in 3'UTR of the transcript which can be a reason for low melanin production thus causing albinism. The single nucleotide polymorphisms (SNPs) in 3'UTR cause more new binding sites for miRNA which binds with mRNA which leads to inhibit the translation process either partially or completely. The SNPs in the mRNA of OCA and OA genes can create new binding sites for miRNA which may control the gene expression and lead to hypopigmentation. We have developed a computational procedure to determine the SNPs in the 3'UTR region of mRNA of OCA (TYR, OCA2, TYRP1 and SLC45A2) and OA (GPR143) genes which will be a potential cause for albinism. We identified 37 SNPs in five genes that are predicted to create 87 new binding sites on mRNA, which may lead to abrogation of the translation process. Expression analysis confirms that these genes are highly expressed in skin and eye regions. It is well supported by enrichment analysis that these genes are mainly involved in eye pigmentation and melanin biosynthesis process. The network analysis also shows how the genes are interacting and expressing in a complex network. This insight provides clue to wet-lab researches to understand the expression pattern of OCA and OA genes and binding phenomenon of mRNA and miRNA upon mutation, which is responsible for inhibition of translation process at genomic levels.
Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-L-phenylalanine.
Sun, Renhua; Zheng, Heng; Fang, Zhengzhi; Yao, Wenbing
2010-01-01
The Methanococcus jannaschii tRNA(Tyr)/tyrosyl-tRNA synthetase pair has been engineered to incorporate unnatural amino acids into proteins in Escherichia coli site-specifically. In order to add other unnatural amino acids into proteins by this approach, the amino acid binding site of M. jannaschii tyrosyl-tRNA synthetase need to be mutated. The crystal structures of M. jannaschii tyrosyl-tRNA synthetase and its mutations were determined, which provided an opportunity to design aminoacyl-tRNA synthetases specific for other unnatural amino acids. In our study, we attempted to design aminoacyl-tRNA synthetases being able to deliver p-acetyl-L-phenylalanine into proteins. p-Acetyl-L-phenylalanine was superimposed on tyrosyl in M. jannaschii tyrosyl-tRNA synthetase-tyrosine complex. Tyr32 needed to be changed to non-polar amino acid with shorter side chain, Val, Leu, Ile, Gly or Ala, in order to reduce steric clash and provide hydrophobic environment to acetyl on p-acetyl-L-phenylalanine. Asp158 and Ile159 would be changed to specific amino acids for the same reason. So we designed 60 aminoacyl-tRNA synthetases. Binding of these aminoacyl-tRNA synthetases with p-acetyl-L-phenylalanine indicated that only 15 of them turned out to be able to bind p-acetyl-L-phenylalanine with reasonable poses. Binding affinity computation proved that the mutation of Tyr32Leu and Asp158Gly benefited p-acetyl-L-phenylalanine binding. And two of the designed aminoacyl-tRNA synthetases had considerable binding affinities. They seemed to be very promising to be able to incorporate p-acetyl-L-phenylalanine into proteins in E. coli. The results show that the combination of homology modeling and molecular docking is a feasible method to filter inappropriate mutations in molecular design and point out beneficial mutations. Copyright 2009 Elsevier Inc. All rights reserved.
Fonseca, Bruno D; Zakaria, Chadi; Jia, Jian-Jun; Graber, Tyson E; Svitkin, Yuri; Tahmasebi, Soroush; Healy, Danielle; Hoang, Huy-Dung; Jensen, Jacob M; Diao, Ilo T; Lussier, Alexandre; Dajadian, Christopher; Padmanabhan, Niranjan; Wang, Walter; Matta-Camacho, Edna; Hearnden, Jaclyn; Smith, Ewan M; Tsukumo, Yoshinori; Yanagiya, Akiko; Morita, Masahiro; Petroulakis, Emmanuel; González, Jose L; Hernández, Greco; Alain, Tommy; Damgaard, Christian K
2015-06-26
The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5'TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Darnell, James E.
2013-01-01
Several strong conclusions emerge concerning pre-mRNA processing from both old and newer experiments. The RNAPII complex is involved with pre-mRNA processing through binding of processing proteins to the CTD (carboxyl terminal domain) of the largest RNAPII subunit. These interactions are necessary for efficient processing, but whether factor binding to the CTD and delivery to splicing sites is obligatory or facilitatory is unsettled. Capping, addition of an m7Gppp residue (cap) to the initial transcribed residue of a pre-mRNA, occurs within seconds. Splicing of pre-mRNA by spliceosomes at particular sites is most likely committed during transcription by the binding of initiating processing factors and ∼50% of the time is completed in mammalian cells before completion of the primary transcript. This fact has led to an outpouring in the literature about “cotranscriptional splicing.” However splicing requires several minutes for completion and can take longer. The RNAPII complex moves through very long introns and also through regions dense with alternating exons and introns at an average rate of ∼3 kb per min and is, therefore, not likely detained at each splice site for more than a few seconds, if at all. Cleavage of the primary transcript at the 3′ end and polyadenylation occurs within 30 sec or less at recognized polyA sites, and the majority of newly polyadenylated pre-mRNA molecules are much larger than the average mRNA. Finally, it seems quite likely that the nascent RNA most often remains associated with the chromosomal locus being transcribed until processing is complete, possibly acquiring factors related to the transport of the new mRNA to the cytoplasm. PMID:23440351
Fonseca, Bruno D.; Zakaria, Chadi; Jia, Jian-Jun; Graber, Tyson E.; Svitkin, Yuri; Tahmasebi, Soroush; Healy, Danielle; Hoang, Huy-Dung; Jensen, Jacob M.; Diao, Ilo T.; Lussier, Alexandre; Dajadian, Christopher; Padmanabhan, Niranjan; Wang, Walter; Matta-Camacho, Edna; Hearnden, Jaclyn; Smith, Ewan M.; Tsukumo, Yoshinori; Yanagiya, Akiko; Morita, Masahiro; Petroulakis, Emmanuel; González, Jose L.; Hernández, Greco; Alain, Tommy; Damgaard, Christian K.
2015-01-01
The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5′TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1. PMID:25940091
Amicoumacin A inhibits translation by stabilizing mRNA interaction with the ribosome
Polikanov, Yury S.; Osterman, Ilya A.; Szal, Teresa; Tashlitsky, Vadim N.; Serebryakova, Marina V.; Kusochek, Pavel; Bulkley, David; Malanicheva, Irina A.; Efimenko, Tatyana A.; Efremenkova, Olga V.; Konevega, Andrey L.; Shaw, Karen J.; Bogdanov, Alexey A.; Rodnina, Marina V.; Dontsova, Olga A.; Mankin, Alexander S.; Steitz, Thomas A.; Sergiev, Petr V.
2014-01-01
SUMMARY We demonstrate that the antibiotic amicoumacin A (AMI) whose cellular target was unknown, is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G. PMID:25306919
Trachman, Robert J; Abdolahzadeh, Amir; Andreoni, Alessio; Cojocaru, Razvan; Knutson, Jay R; Ryckelynck, Michael; Unrau, Peter J; Ferré-D'Amaré, Adrian R
2018-05-24
Several RNA aptamers that bind small molecules and enhance their fluorescence have been successfully used to tag and track RNAs in vivo, but these genetically encodable tags have not yet achieved single-fluorophore resolution. Recently, Mango-II, an RNA that binds TO1-Biotin with ∼1 nM affinity and enhances its fluorescence by >1500-fold, was isolated by fluorescence selection from the pool that yielded the original RNA Mango. We determined the crystal structures of Mango-II in complex with two fluorophores, TO1-Biotin and TO3-Biotin, and found that despite their high affinity, the ligands adopt multiple distinct conformations, indicative of a binding pocket with modest stereoselectivity. Mutational analysis of the binding site led to Mango-II(A22U), which retains high affinity for TO1-Biotin but now discriminates >5-fold against TO3-biotin. Moreover, fluorescence enhancement of TO1-Biotin increases by 18%, while that of TO3-Biotin decreases by 25%. Crystallographic, spectroscopic, and analogue studies show that the A22U mutation improves conformational homogeneity and shape complementarity of the fluorophore-RNA interface. Our work demonstrates that even after extensive functional selection, aptamer RNAs can be further improved through structure-guided engineering.
Pilaz, Louis-Jan; Silver, Debra L.
2017-01-01
The mammalian cerebral cortex is a complex brain structure integral to our higher cognition. During embryonic cortical development, radial glial progenitors (RGCs) produce neurons and serve as physical structures for migrating neurons. Recent discoveries highlight new roles for RNA localization and local translation in RGCs, both at the cell body and at distal structures called basal endfeet. By implementing technologies from the field of RNA research to brain development, investigators can manipulate RNA-binding proteins as well as visualize single-molecule RNAs, live movement of mRNAs and their binding proteins, and translation. Going forward, these studies establish a framework for investigating how post-transcriptional RNA regulation helps shape RGC function and triggers neurodevelopmental diseases. PMID:28304078
Stefanovic, Snezana; Bassell, Gary J; Mihailescu, Mihaela Rita
2015-01-01
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by the CGG trinucleotide expansion in the 3'-untranslated region of the FMR1 gene on the X chromosome, that silences the expression of the Fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA which encodes for the postsynaptic density protein 95 (PSD-95), and together with the microRNA miR-125a, to play an important role in the reversible inhibition of the PSD-95 mRNA translation in neurons. The loss of FMRP in Fmr1 KO mice disables this translation control in the production of the PSD-95 protein. Interestingly, the miR-125a binding site on PSD-95 mRNA is embedded in the G-rich region bound by FMRP and postulated to adopt one or more G quadruplex structures. In this study, we have used different biophysical techniques to validate and characterize the formation of parallel G quadruplex structures and binding of miR-125a to its complementary sequence located within the 3' UTR of PSD-95 mRNA. Our results indicate that the PSD-95 mRNA G-rich region folds into alternate G quadruplex conformations that coexist in equilibrium. miR-125a forms a stable complex with PSD-95 mRNA, as evident by characteristic Watson-Crick base-pairing that coexists with one of the G quadruplex forms, suggesting a novel mechanism for G quadruplex structures to regulate the access of miR-125a to its binding site. © 2014 Stefanovic et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Molecular determinants of Cytochrome C oxidase IV mRNA axonal trafficking
Kar, Amar N.; Vargas, Jose Norberto S.; Chen, Cai-Yun; Kowalak, Jeffrey A; Gioio, Anthony E.; Kaplan, Barry B.
2017-01-01
In previous studies, we identified a putative 38-nucleotide stem-loop structure (zipcode) in the 3′ untranslated region of the cytochrome c oxidase subunit IV (COXIV) mRNA that was necessary and sufficient for the axonal localization of the message in primary superior cervical ganglion (SCG) neurons. However, little is known about the proteins that interact with the COXIV-zipcode and regulate the axonal trafficking and local translation of the COXIV message. To identify proteins involved in the axonal transport of the COXIV mRNA, we used the biotinylated 38-nucleotide COXIV RNA zipcode as bait in the affinity purification of COXIV zipcode binding proteins. Gel-shift assays of the biotinylated COXIV zipcode indicated that the putative stem-loop structure functions as a nucleation site for the formation of ribonucleoprotein complexes. Mass spectrometric analysis of the COXIV zipcode ribonucleoprotein complex led to the identification of a large number RNA binding proteins, including fused in sarcoma/translated in liposarcoma (FUS/TLS), and Y-box protein 1 (YB-1). Validation experiments, using western analyses, confirmed the presence of the candidate proteins in the COXIV zipcode affinity purified complexes obtained from SCG axons. Immunohistochemical studies show that FUS, and YB-1 are present in SCG axons. Importantly, RNA immunoprecipitation studies show that FUS, and YB-1 interact with endogenous axonal COXIV transcripts. siRNA-mediated downregulation of the candidate proteins FUS and YB-1 expression in the cell-bodies diminishes the levels of COXIV mRNA in the axon, suggesting functional roles for these proteins in the axonal trafficking of COXIV mRNA. PMID:28161363
Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism
Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K.; Lehtonen, Jukka Y.A.
2016-01-01
As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3′-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. PMID:26681690
King, Isabelle N.; Yartseva, Valeria; Salas, Donaldo; Kumar, Abhishek; Heidersbach, Amy; Ando, D. Michael; Stallings, Nancy R.; Elliott, Jeffrey L.; Srivastava, Deepak; Ivey, Kathryn N.
2014-01-01
MicroRNA (miRNA) maturation is regulated by interaction of particular miRNA precursors with specific RNA-binding proteins. Following their biogenesis, mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) where they interact with mRNAs to negatively regulate protein production. However, little is known about how mature miRNAs are regulated at the level of their activity. To address this, we screened for proteins differentially bound to the mature form of the miR-1 or miR-133 miRNA families. These muscle-enriched, co-transcribed miRNA pairs cooperate to suppress smooth muscle gene expression in the heart. However, they also have opposing roles, with the miR-1 family, composed of miR-1 and miR-206, promoting myogenic differentiation, whereas miR-133 maintains the progenitor state. Here, we describe a physical interaction between TDP-43, an RNA-binding protein that forms aggregates in the neuromuscular disease, amyotrophic lateral sclerosis, and the miR-1, but not miR-133, family. Deficiency of the TDP-43 Drosophila ortholog enhanced dmiR-1 activity in vivo. In mammalian cells, TDP-43 limited the activity of both miR-1 and miR-206, but not the miR-133 family, by disrupting their RISC association. Consistent with TDP-43 dampening miR-1/206 activity, protein levels of the miR-1/206 targets, IGF-1 and HDAC4, were elevated in TDP-43 transgenic mouse muscle. This occurred without corresponding Igf-1 or Hdac4 mRNA increases and despite higher miR-1 and miR-206 expression. Our findings reveal that TDP-43 negatively regulates the activity of the miR-1 family of miRNAs by limiting their bioavailability for RISC loading and suggest a processing-independent mechanism for differential regulation of miRNA activity. PMID:24719334
King, Isabelle N; Yartseva, Valeria; Salas, Donaldo; Kumar, Abhishek; Heidersbach, Amy; Ando, D Michael; Stallings, Nancy R; Elliott, Jeffrey L; Srivastava, Deepak; Ivey, Kathryn N
2014-05-16
MicroRNA (miRNA) maturation is regulated by interaction of particular miRNA precursors with specific RNA-binding proteins. Following their biogenesis, mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) where they interact with mRNAs to negatively regulate protein production. However, little is known about how mature miRNAs are regulated at the level of their activity. To address this, we screened for proteins differentially bound to the mature form of the miR-1 or miR-133 miRNA families. These muscle-enriched, co-transcribed miRNA pairs cooperate to suppress smooth muscle gene expression in the heart. However, they also have opposing roles, with the miR-1 family, composed of miR-1 and miR-206, promoting myogenic differentiation, whereas miR-133 maintains the progenitor state. Here, we describe a physical interaction between TDP-43, an RNA-binding protein that forms aggregates in the neuromuscular disease, amyotrophic lateral sclerosis, and the miR-1, but not miR-133, family. Deficiency of the TDP-43 Drosophila ortholog enhanced dmiR-1 activity in vivo. In mammalian cells, TDP-43 limited the activity of both miR-1 and miR-206, but not the miR-133 family, by disrupting their RISC association. Consistent with TDP-43 dampening miR-1/206 activity, protein levels of the miR-1/206 targets, IGF-1 and HDAC4, were elevated in TDP-43 transgenic mouse muscle. This occurred without corresponding Igf-1 or Hdac4 mRNA increases and despite higher miR-1 and miR-206 expression. Our findings reveal that TDP-43 negatively regulates the activity of the miR-1 family of miRNAs by limiting their bioavailability for RISC loading and suggest a processing-independent mechanism for differential regulation of miRNA activity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanli; Sheng, Gang; Juranek, Stefan
The slicer activity of the RNA-induced silencing complex is associated with argonaute, the RNase H-like PIWI domain of which catalyses guide-strand-mediated sequence-specific cleavage of target messenger RNA. Here we report on the crystal structure of Thermus thermophilus argonaute bound to a 5'-phosphorylated 21-base DNA guide strand, thereby identifying the nucleic-acid-binding channel positioned between the PAZ- and PIWI-containing lobes, as well as the pivot-like conformational changes associated with complex formation. The bound guide strand is anchored at both of its ends, with the solvent-exposed Watson-Crick edges of stacked bases 2 to 6 positioned for nucleation with the mRNA target, whereas twomore » critically positioned arginines lock bases 10 and 11 at the cleavage site into an unanticipated orthogonal alignment. Biochemical studies indicate that key amino acid residues at the active site and those lining the 5'-phosphate-binding pocket made up of the Mid domain are critical for cleavage activity, whereas alterations of residues lining the 2-nucleotide 3'-end-binding pocket made up of the PAZ domain show little effect.« less
Structural Switch of Lysyl-tRNA Synthetase Between Translation and Transcription
Ofir-Birin, Yifat; Fang, Pengfei; Bennett, Steven P.; Zhang, Hui-Min; Wang, Jing; Rachmin, Inbal; Shapiro, Ryan; Song, Jing; Dagan, Arie; Pozo, Jorge; Kim, Sunghoon; Marshall, Alan G.; Schimmel, Paul; Yang, Xiang-Lei; Nechushtan, Hovav; Razin, Ehud; Guo, Min
2013-01-01
SUMMARY Lysyl-tRNA synthetase (LysRS), a component of the translation apparatus, is released from the cytoplasmic multi-tRNA synthetase complex (MSC) to activate the transcription factor MITF in stimulated mast cells through undefined mechanisms. Here we show that Ser207-phosphorylation provokes a new conformer of LysRS that inactivates its translational, but activates its transcriptional function. The crystal structure of an MSC sub-complex established that LysRS is held in the MSC by binding to the N-terminus of the scaffold protein p38/AIMP2. Phosphorylation-created steric clashes at the LysRS domain interface disrupt its binding grooves for p38/AIMP2, releasing LysRS and provoking its nuclear translocation. This alteration also exposes the C-terminal domain of LysRS to bind to MITF and triggers LysRS-directed production of the second messenger Ap4A that activates MITF. Thus our results establish that a single conformational change triggered by phosphorylation leads to multiple effects driving an exclusive switch of LysRS function from translation to transcription. PMID:23159739
Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P.
2013-01-01
The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design. PMID:23844024
Goldie, Belinda J; Fitzsimmons, Chantel; Weidenhofer, Judith; Atkins, Joshua R; Wang, Dan O; Cairns, Murray J
2017-01-01
While the cytoplasmic function of microRNA (miRNA) as post-transcriptional regulators of mRNA has been the subject of significant research effort, their activity in the nucleus is less well characterized. Here we use a human neuronal cell model to show that some mature miRNA are preferentially enriched in the nucleus. These molecules were predominantly primate-specific and contained a sequence motif with homology to the consensus MAZ transcription factor binding element. Precursor miRNA containing this motif were shown to have affinity for MAZ protein in nuclear extract. We then used Ago1/2 RIP-Seq to explore nuclear miRNA-associated mRNA targets. Interestingly, the genes for Ago2-associated transcripts were also significantly enriched with MAZ binding sites and neural function, whereas Ago1-transcripts were associated with general metabolic processes and localized with SC35 spliceosomes. These findings suggest the MAZ transcription factor is associated with miRNA in the nucleus and may influence the regulation of neuronal development through Ago2-associated miRNA induced silencing complexes. The MAZ transcription factor may therefore be important for organizing higher order integration of transcriptional and post-transcriptional processes in primate neurons.
Cho, Won-Kyung; Jang, Moon Kyoo; Huang, Keven; Pise-Masison, Cynthia A; Brady, John N
2010-12-01
Positive transcription elongation factor b (P-TEFb) plays an important role in stimulating RNA polymerase II elongation for viral and cellular gene expression. P-TEFb is found in cells in either an active, low-molecular-weight (LMW) form or an inactive, high-molecular-weight (HMW) form. We report here that human T-lymphotropic virus type 1 (HTLV-1) Tax interacts with the cyclin T1 subunit of P-TEFb, forming a distinct Tax/P-TEFb LMW complex. We demonstrate that Tax can play a role in regulating the amount of HMW complex present in the cell by decreasing the binding of 7SK snRNP/HEXIM1 to P-TEFb. This is seen both in vitro using purified Tax protein and in vivo in cells transduced with Tax expression constructs. Further, we find that a peptide of cyclin T1 spanning the Tax binding domain inhibits the ability of Tax to disrupt HMW P-TEFb complexes. These results suggest that the direct interaction of Tax with cyclin T1 can dissociate P-TEFb from the P-TEFb/7SK snRNP/HEXIM1 complex for activation of the viral long terminal repeat (LTR). We also show that Tax competes with Brd4 for P-TEFb binding. Chromatin immunoprecipitation (ChIP) assays demonstrated that Brd4 and P-TEFb are associated with the basal HTLV-1 LTR, while Tax and P-TEFb are associated with the activated template. Furthermore, the knockdown of Brd4 by small interfering RNA (siRNA) activates the HTLV-1 LTR promoter, which results in an increase in viral expression and production. Our studies have identified Tax as a regulator of P-TEFb that is capable of affecting the balance between its association with the large inactive complex and the small active complex.
OST-HTH: a novel predicted RNA-binding domain
2010-01-01
Background The mechanism by which the arthropod Oskar and vertebrate TDRD5/TDRD7 proteins nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. Using sequence profile searches we identify a novel domain in these proteins that is widely conserved across eukaryotes and bacteria. Results Using contextual information from domain architectures, sequence-structure superpositions and available functional information we predict that this domain is likely to adopt the winged helix-turn-helix fold and bind RNA with a potential specificity for dsRNA. We show that in eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures. Conclusions Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized domain (DUF88). We present evidence that it is an RNAse belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains and might be recruited to degrade certain RNAs. Reviewers This article was reviewed by Sandor Pongor and Arcady Mushegian. PMID:20302647
Schwarz-Schilling, Matthaeus; Dupin, Aurore; Chizzolini, Fabio; Krishnan, Swati; Mansy, Sheref S; Simmel, Friedrich C
2018-04-11
Molecular complexes composed of RNA molecules and proteins are promising multifunctional nanostructures for a wide variety of applications in biological cells or in artificial cellular systems. In this study, we systematically address some of the challenges associated with the expression and assembly of such hybrid structures using cell-free gene expression systems. As a model structure, we investigated a pRNA-derived RNA scaffold functionalized with four distinct aptamers, three of which bind to proteins, streptavidin and two fluorescent proteins, while one binds the small molecule dye malachite green (MG). Using MG fluorescence and Förster resonance energy transfer (FRET) between the RNA-scaffolded proteins, we assess critical assembly parameters such as chemical stability, binding efficiency, and also resource sharing effects within the reaction compartment. We then optimize simultaneous expression and coassembly of the RNA-protein nanostructure within a single-compartment cell-free gene expression system. We demonstrate expression and assembly of the multicomponent nanostructures inside of emulsion droplets and their aptamer-mediated localization onto streptavidin-coated substrates, plus the successful assembly of the hybrid structures inside of bacterial cells.
Crystal structure of the Csm3-Csm4 subcomplex in the type III-A CRISPR-Cas interference complex.
Numata, Tomoyuki; Inanaga, Hideko; Sato, Chikara; Osawa, Takuo
2015-01-30
Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci play a pivotal role in the prokaryotic host defense system against invading genetic materials. The CRISPR loci are transcribed to produce CRISPR RNAs (crRNAs), which form interference complexes with CRISPR-associated (Cas) proteins to target the invading nucleic acid for degradation. The interference complex of the type III-A CRISPR-Cas system is composed of five Cas proteins (Csm1-Csm5) and a crRNA, and targets invading DNA. Here, we show that the Csm1, Csm3, and Csm4 proteins from Methanocaldococcus jannaschii form a stable subcomplex. We also report the crystal structure of the M. jannaschii Csm3-Csm4 subcomplex at 3.1Å resolution. The complex structure revealed the presence of a basic concave surface around their interface, suggesting the RNA and/or DNA binding ability of the complex. A gel retardation analysis showed that the Csm3-Csm4 complex binds single-stranded RNA in a non-sequence-specific manner. Csm4 structurally resembles Cmr3, a component of the type III-B CRISPR-Cas interference complex. Based on bioinformatics, we constructed a model structure of the Csm1-Csm4-Csm3 ternary complex, which provides insights into its role in the Csm interference complex. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ciganda, Martin; Williams, Noreen
2012-01-01
The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function. PMID:21957041
Dale, Ryan K; Matzat, Leah H; Lei, Elissa P
2014-08-01
Here we introduce metaseq, a software library written in Python, which enables loading multiple genomic data formats into standard Python data structures and allows flexible, customized manipulation and visualization of data from high-throughput sequencing studies. We demonstrate its practical use by analyzing multiple datasets related to chromatin insulators, which are DNA-protein complexes proposed to organize the genome into distinct transcriptional domains. Recent studies in Drosophila and mammals have implicated RNA in the regulation of chromatin insulator activities. Moreover, the Drosophila RNA-binding protein Shep has been shown to antagonize gypsy insulator activity in a tissue-specific manner, but the precise role of RNA in this process remains unclear. Better understanding of chromatin insulator regulation requires integration of multiple datasets, including those from chromatin-binding, RNA-binding, and gene expression experiments. We use metaseq to integrate RIP- and ChIP-seq data for Shep and the core gypsy insulator protein Su(Hw) in two different cell types, along with publicly available ChIP-chip and RNA-seq data. Based on the metaseq-enabled analysis presented here, we propose a model where Shep associates with chromatin cotranscriptionally, then is recruited to insulator complexes in trans where it plays a negative role in insulator activity. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Gabus, C; Derrington, E; Leblanc, P; Chnaiderman, J; Dormont, D; Swietnicki, W; Morillas, M; Surewicz, W K; Marc, D; Nandi, P; Darlix, J L
2001-06-01
Transmissible spongiform encephalopathies are fatal neurodegenerative diseases associated with the accumulation of a protease-resistant form of the prion protein (PrP). Although PrP is conserved in vertebrates, its function remains to be identified. In vitro PrP binds large nucleic acids causing the formation of nucleoprotein complexes resembling human immunodeficiency virus type 1 (HIV-1) nucleocapsid-RNA complexes and in vivo MuLV replication accelerates the scrapie infectious process, suggesting possible interactions between retroviruses and PrP. Retroviruses, including HIV-1 encode a major nucleic acid binding protein (NC protein) found within the virus where 2000 NC protein molecules coat the dimeric genome. NC is required in virus assembly and infection to chaperone RNA dimerization and packaging and in proviral DNA synthesis by reverse transcriptase (RT). In HIV-1, 5'-leader RNA/NC interactions appear to control these viral processes. This prompted us to compare and contrast the interactions of human and ovine PrP and HIV-1 NCp7 with HIV-1 5'-leader RNA. Results show that PrP has properties characteristic of NCp7 with respect to viral RNA dimerization and proviral DNA synthesis by RT. The NC-like properties of huPrP map to the N-terminal region of huPrP. Interestingly, PrP localizes in the membrane and cytoplasm of PrP-expressing cells. These findings suggest that PrP is a multifunctional protein possibly participating in nucleic acid metabolism.
Redirecting RNA splicing by SMAD3 turns TGF-β into a tumor promoter.
Tripathi, Veenu; Zhang, Ying E
2017-01-01
Transforming growth factor β (TGF-β) is a well-known growth inhibitor of normal epithelial cells, but it is also secreted by solid tumors to promote cancer progression. Our recent discovery of SMAD3-PCBP1 complex with direct RNA-binding properties has shed light on how this conversion is implemented by controlling pre-mRNA splicing patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dedic, Emil; Seweryn, Paulina; Jonstrup, Anette Thyssen
Highlights: • We show that S. cerevisiae Rrp6p and Rrp47p stabilise each other in vitro. • We determine molecular envelopes of the Rrp6p–Rrp47p complex by SAXS. • Rrp47p binds at the top of the Rrp6p exonuclease domain. • Rrp47p modulates the activity of Rrp6p on a variety of RNA substrates. • Rrp47p does not affect RNA affinity by Rrp6p. - Abstract: The RNase D-type 3′–5′ exonuclease Rrp6p from Saccharomyces cerevisiae is a nuclear-specific cofactor of the RNA exosome and associates in vivo with Rrp47p (Lrp1p). Here, we show using biochemistry and small-angle X-ray scattering (SAXS) that Rrp6p and Rrp47p associatemore » into a stable, heterodimeric complex with an elongated shape consistent with binding of Rrp47p to the nuclease domain and opposite of the HRDC domain of Rrp6p. Rrp47p reduces the exonucleolytic activity of Rrp6p on both single-stranded and structured RNA substrates without significantly altering the affinity towards RNA or the ability of Rrp6p to degrade RNA secondary structure.« less
Närvä, Elisa; Rahkonen, Nelly; Emani, Maheswara Reddy; Lund, Riikka; Pursiheimo, Huha-Pekka; Nästi, Juuso; Autio, Reija; Rasool, Omid; Denessiouk, Konstantin; Lähdesmäki, Harri; Rao, Anjana; Lahesmaa, Ritta
2012-01-01
Human embryonic stem cells (hESC) have a unique capacity to self-renew and differentiate into all the cell types found in human body. Although the transcriptional regulators of pluripotency are well studied, the role of cytoplasmic regulators is still poorly characterized. Here, we report a new stem cell-specific RNA-binding protein L1TD1 (ECAT11, FLJ10884) required for hESC self-renewal and cancer cell proliferation. Depletion of L1TD1 results in immediate downregulation of OCT4 and NANOG. Furthermore, we demonstrate that OCT4, SOX2, and NANOG all bind to the promoter of L1TD1. Moreover, L1TD1 is highly expressed in seminomas, and depletion of L1TD1 in these cancer cells influences self-renewal and proliferation. We show that L1TD1 colocalizes and interacts with LIN28 via RNA and directly with RNA helicase A (RHA). LIN28 has been reported to regulate translation of OCT4 in complex with RHA. Thus, we hypothesize that L1TD1 is part of the L1TD1-RHA-LIN28 complex that could influence levels of OCT4. Our results strongly suggest that L1TD1 has an important role in the regulation of stemness. PMID:22162396
Kuznedelov, Konstantin; Mekler, Vladimir; Lemak, Sofia; ...
2016-10-13
The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo. Shortened crRNAs assemble into altered-stoichiometry Cascademore » effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multi-subunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznedelov, Konstantin; Mekler, Vladimir; Lemak, Sofia
The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo. Shortened crRNAs assemble into altered-stoichiometry Cascademore » effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multi-subunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.« less
Chereji, Răzvan V.; Bharatula, Vasudha; Elfving, Nils; Blomberg, Jeanette; Larsson, Miriam; Morozov, Alexandre V.; Broach, James R.
2017-01-01
Abstract Mediator is a multi-unit molecular complex that plays a key role in transferring signals from transcriptional regulators to RNA polymerase II in eukaryotes. We have combined biochemical purification of the Saccharomyces cerevisiae Mediator from chromatin with chromatin immunoprecipitation in order to reveal Mediator occupancy on DNA genome-wide, and to identify proteins interacting specifically with Mediator on the chromatin template. Tandem mass spectrometry of proteins in immunoprecipitates of mediator complexes revealed specific interactions between Mediator and the RSC, Arp2/Arp3, CPF, CF 1A and Lsm complexes in chromatin. These factors are primarily involved in chromatin remodeling, actin assembly, mRNA 3′-end processing, gene looping and mRNA decay, but they have also been shown to enter the nucleus and participate in Pol II transcription. Moreover, we have found that Mediator, in addition to binding Pol II promoters, occupies chromosomal interacting domain (CID) boundaries and that Mediator in chromatin associates with proteins that have been shown to interact with CID boundaries, such as Sth1, Ssu72 and histone H4. This suggests that Mediator plays a significant role in higher-order genome organization. PMID:28575439
Purification of an eight subunit RNA polymerase I complex in Trypanosoma brucei.
Nguyen, Tu N; Schimanski, Bernd; Zahn, André; Klumpp, Birgit; Günzl, Arthur
2006-09-01
Trypanosoma brucei harbors a unique multifunctional RNA polymerase (pol) I which transcribes, in addition to ribosomal RNA genes, the gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. In consequence, this RNA pol I is recruited to three structurally different types of promoters and sequestered to two distinct nuclear locations, namely the nucleolus and the expression site body. This versatility may require parasite-specific protein-protein interactions, subunits or subunit domains. Thus far, data mining of trypanosomatid genomes have revealed 13 potential RNA pol I subunits which include two paralogous sets of RPB5, RPB6, and RPB10. Here, we analyzed a cDNA library prepared from procyclic insect form T. brucei and found that all 13 candidate subunits are co-expressed. Moreover, we PTP-tagged the largest subunit TbRPA1, tandem affinity-purified the enzyme complex to homogeneity, and determined its subunit composition. In addition to the already known subunits RPA1, RPA2, RPC40, 1RPB5, and RPA12, the complex contained RPC19, RPB8, and 1RPB10. Finally, to evaluate the absence of RPB6 in our purifications, we used a combination of epitope-tagging and reciprocal coimmunoprecipitation to demonstrate that 1RPB6 but not 2RPB6 binds to RNA pol I albeit in an unstable manner. Collectively, our data strongly suggest that T. brucei RNA pol I binds a distinct set of the RPB5, RPB6, and RPB10 paralogs.
Khanova, Elena; Esakova, Olga; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S
2012-04-01
Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.
Mondal, Samiran; Begum, Nasim A; Hu, Wenjun; Honjo, Tasuku
2016-03-15
Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID's structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions.
Mondal, Samiran; Begum, Nasim A.; Hu, Wenjun; Honjo, Tasuku
2016-01-01
Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID’s structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions. PMID:26929374
IGF2BP3 Modulates the Interaction of Invasion-Associated Transcripts with RISC.
Ennajdaoui, Hanane; Howard, Jonathan M; Sterne-Weiler, Timothy; Jahanbani, Fereshteh; Coyne, Doyle J; Uren, Philip J; Dargyte, Marija; Katzman, Sol; Draper, Jolene M; Wallace, Andrew; Cazarez, Oscar; Burns, Suzanne C; Qiao, Mei; Hinck, Lindsay; Smith, Andrew D; Toloue, Masoud M; Blencowe, Benjamin J; Penalva, Luiz O F; Sanford, Jeremy R
2016-05-31
Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy, but its role(s) in pathogenesis remains enigmatic. We interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches, we have identified 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation, and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and microRNA (miRNA) binding sites. IGF2BP3 promotes association of the RNA-induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Weber, Janine; Bao, Han; Hartlmüller, Christoph; Wang, Zhiqin; Windhager, Almut; Janowski, Robert; Madl, Tobias; Jin, Peng; Niessing, Dierk
2016-01-01
The neuronal DNA-/RNA-binding protein Pur-alpha is a transcription regulator and core factor for mRNA localization. Pur-alpha-deficient mice die after birth with pleiotropic neuronal defects. Here, we report the crystal structure of the DNA-/RNA-binding domain of Pur-alpha in complex with ssDNA. It reveals base-specific recognition and offers a molecular explanation for the effect of point mutations in the 5q31.3 microdeletion syndrome. Consistent with the crystal structure, biochemical and NMR data indicate that Pur-alpha binds DNA and RNA in the same way, suggesting binding modes for tri- and hexanucleotide-repeat RNAs in two neurodegenerative RNAopathies. Additionally, structure-based in vitro experiments resolved the molecular mechanism of Pur-alpha's unwindase activity. Complementing in vivo analyses in Drosophila demonstrated the importance of a highly conserved phenylalanine for Pur-alpha's unwinding and neuroprotective function. By uncovering the molecular mechanisms of nucleic-acid binding, this study contributes to understanding the cellular role of Pur-alpha and its implications in neurodegenerative diseases. DOI: http://dx.doi.org/10.7554/eLife.11297.001 PMID:26744780
Khandogin, Jana; Musier-Forsyth, Karin; York, Darrin M
2003-07-25
Human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein (NC) plays several important roles in the viral life-cycle and presents an attractive target for rational drug design. Here, the macromolecular reactivity of NC and its binding to RNA is characterized through determination of electrostatic and chemical descriptors derived from linear-scaling quantum calculations in solution. The computational results offer a rationale for the experimentally observed susceptibility of the Cys49 thiolate toward small-molecule electrophilic agents, and support the recently proposed stepwise protonation mechanism of the C-terminal Zn-coordination complex. The distinctive binding mode of NC to SL2 and SL3 stem-loops of the HIV-1 genomic RNA packaging signal is studied on the basis of protein side-chain contributions to the electrostatic binding energies. These results indicate the importance of several basic residues in the 3(10) helical region and the N-terminal zinc finger, and rationalize the presence of several evolutionarily conserved residues in NC. The combined reactivity and RNA-binding study provides new insights that may contribute toward the structure-based design of anti-HIV therapies.
Crystal Structure of a CRISPR RNA-guided Surveillance Complex Bound to a ssDNA Target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulepati, Sabin; Heroux, Annie; Bailey, Scott
In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kilodalton complex is called Cascade. We report the crystal structure of Cascade bound to a single-stranded DNA (ssDNA) target at a resolution of 3.03 angstroms. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This noncanonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of proteinmore » subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding.« less
Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target
Mulepati, Sabin; Héroux, Annie; Bailey, Scott
2015-01-01
In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kDa complex is called Cascade. Here we report the 3.03Å crystal structure of Cascade bound to a single-stranded DNA target. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This non-canonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of protein subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding. PMID:25123481
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonenberg, N.; Guertin, D.; Lee, K.A.W.
1982-12-01
Extracts form poliovirus-infected HeLa cells were used to study ribosome binding of native and denatured reovirus mRNAs and translation of capped mRNAs with different degrees of secondary structure. Here, the authors demonstrate that ribosomes in extracts from poliovirus-infected cells could form initiation complexes with denatured reovirus mRNA, in contrast to their inability to bind native reovirus mRNA. Furthermore, the capped alfalfa mosiac virus 4 RNA, which is most probable devoid of stable secondary structure at its 5' end, could be translated at much higher efficiency than could other capped mRNAs in extracts from poliovirus-infected cells.
Davis, William G; Blackwell, Jerry L; Shi, Pei-Yong; Brinton, Margo A
2007-09-01
RNase footprinting and nitrocellulose filter binding assays were previously used to map one major and two minor binding sites for the cell protein eEF1A on the 3'(+) stem-loop (SL) RNA of West Nile virus (WNV) (3). Base substitutions in the major eEF1A binding site or adjacent areas of the 3'(+) SL were engineered into a WNV infectious clone. Mutations that decreased, as well as ones that increased, eEF1A binding in in vitro assays had a negative effect on viral growth. None of these mutations affected the efficiency of translation of the viral polyprotein from the genomic RNA, but all of the mutations that decreased in vitro eEF1A binding to the 3' SL RNA also decreased viral minus-strand RNA synthesis in transfected cells. Also, a mutation that increased the efficiency of eEF1A binding to the 3' SL RNA increased minus-strand RNA synthesis in transfected cells, which resulted in decreased synthesis of genomic RNA. These results strongly suggest that the interaction between eEF1A and the WNV 3' SL facilitates viral minus-strand synthesis. eEF1A colocalized with viral replication complexes (RC) in infected cells and antibody to eEF1A coimmunoprecipitated viral RC proteins, suggesting that eEF1A facilitates an interaction between the 3' end of the genome and the RC. eEF1A bound with similar efficiencies to the 3'-terminal SL RNAs of four divergent flaviviruses, including a tick-borne flavivirus, and colocalized with dengue virus RC in infected cells. These results suggest that eEF1A plays a similar role in RNA replication for all flaviviruses.
Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family
Soufari, Heddy
2017-01-01
Precise regulation of mRNA processing, translation, localization, and stability relies on specific interactions with RNA-binding proteins whose biological function and target preference are dictated by their preferred RNA motifs. The RBPMS family of RNA-binding proteins is defined by a conserved RNA recognition motif (RRM) domain found in metazoan RBPMS/Hermes and RBPMS2, Drosophila couch potato, and MEC-8 from Caenorhabditis elegans. In order to determine the parameters of RNA sequence recognition by the RBPMS family, we have first used the N-terminal domain from MEC-8 in binding assays and have demonstrated a preference for two GCAC motifs optimally separated by >6 nucleotides (nt). We have also determined the crystal structure of the dimeric N-terminal RRM domain from MEC-8 in the unbound form, and in complex with an oligonucleotide harboring two copies of the optimal GCAC motif. The atomic details reveal the molecular network that provides specificity to all four bases in the motif, including multiple hydrogen bonds to the initial guanine. Further studies with human RBPMS, as well as Drosophila couch potato, confirm a general preference for this double GCAC motif by other members of the protein family and the presence of this motif in known targets. PMID:28003515
Extensive Use of RNA-Binding Proteins in Drosophila Sensory Neuron Dendrite Morphogenesis
Olesnicky, Eugenia C.; Killian, Darrell J.; Garcia, Evelyn; Morton, Mary C.; Rathjen, Alan R.; Sola, Ismail E.; Gavis, Elizabeth R.
2013-01-01
The large number of RNA-binding proteins and translation factors encoded in the Drosophila and other metazoan genomes predicts widespread use of post-transcriptional regulation in cellular and developmental processes. Previous studies identified roles for several RNA-binding proteins in dendrite branching morphogenesis of Drosophila larval sensory neurons. To determine the larger contribution of post-transcriptional gene regulation to neuronal morphogenesis, we conducted an RNA interference screen to identify additional Drosophila proteins annotated as either RNA-binding proteins or translation factors that function in producing the complex dendritic trees of larval class IV dendritic arborization neurons. We identified 88 genes encoding such proteins whose knockdown resulted in aberrant dendritic morphology, including alterations in dendritic branch number, branch length, field size, and patterning of the dendritic tree. In particular, splicing and translation initiation factors were associated with distinct and characteristic phenotypes, suggesting that different morphogenetic events are best controlled at specific steps in post-transcriptional messenger RNA metabolism. Many of the factors identified in the screen have been implicated in controlling the subcellular distributions and translation of maternal messenger RNAs; thus, common post-transcriptional regulatory strategies may be used in neurogenesis and in the generation of asymmetry in the female germline and embryo. PMID:24347626
Disabling Cas9 by an anti-CRISPR DNA mimic.
Shin, Jiyung; Jiang, Fuguo; Liu, Jun-Jie; Bray, Nicolas L; Rauch, Benjamin J; Baik, Seung Hyun; Nogales, Eva; Bondy-Denomy, Joseph; Corn, Jacob E; Doudna, Jennifer A
2017-07-01
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 gene editing technology is derived from a microbial adaptive immune system, where bacteriophages are often the intended target. Natural inhibitors of CRISPR-Cas9 enable phages to evade immunity and show promise in controlling Cas9-mediated gene editing in human cells. However, the mechanism of CRISPR-Cas9 inhibition is not known, and the potential applications for Cas9 inhibitor proteins in mammalian cells have not been fully established. We show that the anti-CRISPR protein AcrIIA4 binds only to assembled Cas9-single-guide RNA (sgRNA) complexes and not to Cas9 protein alone. A 3.9 Å resolution cryo-electron microscopy structure of the Cas9-sgRNA-AcrIIA4 complex revealed that the surface of AcrIIA4 is highly acidic and binds with a 1:1 stoichiometry to a region of Cas9 that normally engages the DNA protospacer adjacent motif. Consistent with this binding mode, order-of-addition experiments showed that AcrIIA4 interferes with DNA recognition but has no effect on preformed Cas9-sgRNA-DNA complexes. Timed delivery of AcrIIA4 into human cells as either protein or expression plasmid allows on-target Cas9-mediated gene editing while reducing off-target edits. These results provide a mechanistic understanding of AcrIIA4 function and demonstrate that inhibitors can modulate the extent and outcomes of Cas9-mediated gene editing.
Heyduk, E; Baichoo, N; Heyduk, T
2001-11-30
The alpha-subunit of Escherichia coli RNA polymerase plays an important role in the activity of many promoters by providing a direct protein-DNA contact with a specific sequence (UP element) located upstream of the core promoter sequence. To obtain insight into the nature of thermodynamic forces involved in the formation of this protein-DNA contact, the binding of the alpha-subunit of E. coli RNA polymerase to a fluorochrome-labeled DNA fragment containing the rrnB P1 promoter UP element sequence was quantitatively studied using fluorescence polarization. The alpha dimer and DNA formed a 1:1 complex in solution. Complex formation at 25 degrees C was enthalpy-driven, the binding was accompanied by a net release of 1-2 ions, and no significant specific ion effects were observed. The van't Hoff plot of temperature dependence of binding was linear suggesting that the heat capacity change (Deltac(p)) was close to zero. Protein footprinting with hydroxyradicals showed that the protein did not change its conformation upon protein-DNA contact formation. No conformational changes in the DNA molecule were detected by CD spectroscopy upon protein-DNA complex formation. The thermodynamic characteristics of the binding together with the lack of significant conformational changes in the protein and in the DNA suggested that the alpha-subunit formed a rigid body-like contact with the DNA in which a tight complementary recognition interface between alpha-subunit and DNA was not formed.
Beusch, Irene; Barraud, Pierre; Moursy, Ahmed; Cléry, Antoine; Allain, Frédéric Hai-Trieu
2017-01-01
HnRNP A1 regulates many alternative splicing events by the recognition of splicing silencer elements. Here, we provide the solution structures of its two RNA recognition motifs (RRMs) in complex with short RNA. In addition, we show by NMR that both RRMs of hnRNP A1 can bind simultaneously to a single bipartite motif of the human intronic splicing silencer ISS-N1, which controls survival of motor neuron exon 7 splicing. RRM2 binds to the upstream motif and RRM1 to the downstream motif. Combining the insights from the structure with in cell splicing assays we show that the architecture and organization of the two RRMs is essential to hnRNP A1 function. The disruption of the inter-RRM interaction or the loss of RNA binding capacity of either RRM impairs splicing repression by hnRNP A1. Furthermore, both binding sites within the ISS-N1 are important for splicing repression and their contributions are cumulative rather than synergistic. DOI: http://dx.doi.org/10.7554/eLife.25736.001 PMID:28650318
Identification of human microRNA targets from isolated argonaute protein complexes.
Beitzinger, Michaela; Peters, Lasse; Zhu, Jia Yun; Kremmer, Elisabeth; Meister, Gunter
2007-06-01
MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that regulate gene expression on the level of translation and/or mRNA stability. Mammalian miRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences in the 3' untranslated region (UTR) of specific target mRNAs. Computer algorithms based on factors such as free binding energy or sequence conservation have been used to predict miRNA target mRNAs. Based on such predictions, up to one third of all mammalian mRNAs seem to be under miRNA regulation. However, due to the low degree of complementarity between the miRNA and its target, such computer programs are often imprecise and therefore not very reliable. Here we report the first biochemical identification approach of miRNA targets from human cells. Using highly specific monoclonal antibodies against members of the Ago protein family, we co-immunoprecipitate Ago-bound mRNAs and identify them by cloning. Interestingly, most of the identified targets are also predicted by different computer programs. Moreover, we randomly analyzed six different target candidates and were able to experimentally validate five as miRNA targets. Our data clearly indicate that miRNA targets can be experimentally identified from Ago complexes and therefore provide a new tool to directly analyze miRNA function.
Stefanovic, Snezana; Bassell, Gary J.
2015-01-01
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by the CGG trinucleotide expansion in the 3′-untranslated region of the FMR1 gene on the X chromosome, that silences the expression of the Fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA which encodes for the postsynaptic density protein 95 (PSD-95), and together with the microRNA miR-125a, to play an important role in the reversible inhibition of the PSD-95 mRNA translation in neurons. The loss of FMRP in Fmr1 KO mice disables this translation control in the production of the PSD-95 protein. Interestingly, the miR-125a binding site on PSD-95 mRNA is embedded in the G-rich region bound by FMRP and postulated to adopt one or more G quadruplex structures. In this study, we have used different biophysical techniques to validate and characterize the formation of parallel G quadruplex structures and binding of miR-125a to its complementary sequence located within the 3′ UTR of PSD-95 mRNA. Our results indicate that the PSD-95 mRNA G-rich region folds into alternate G quadruplex conformations that coexist in equilibrium. miR-125a forms a stable complex with PSD-95 mRNA, as evident by characteristic Watson–Crick base-pairing that coexists with one of the G quadruplex forms, suggesting a novel mechanism for G quadruplex structures to regulate the access of miR-125a to its binding site. PMID:25406362
Targeting of cytosolic mRNA to mitochondria: naked RNA can bind to the mitochondrial surface.
Michaud, Morgane; Maréchal-Drouard, Laurence; Duchêne, Anne-Marie
2014-05-01
Mitochondria contain hundreds of proteins but only a few are encoded by the mitochondrial genome. The other proteins are nuclear-encoded and imported into mitochondria. These proteins can be translated on free cytosolic polysomes, then targeted and imported into mitochondria. Nonetheless, numerous cytosolic mRNAs encoding mitochondrial proteins are detected at the surface of mitochondria in yeast, plants and animals. The localization of mRNAs to the vicinity of mitochondria would be a way for mitochondrial protein sorting. The mechanisms responsible for mRNA targeting to mitochondria are not clearly identified. Sequences within the mRNA molecules (cis-elements), as well as a few trans-acting factors, have been shown to be essential for targeting of some mRNAs. In order to identify receptors involved in mRNA docking to the mitochondrial surface, we have developed an in vitro mRNA binding assay with isolated plant mitochondria. We show that naked mRNAs are able to bind to isolated mitochondria, and our results strongly suggest that mRNA docking to the plant mitochondrial outer membrane requires at least one component of TOM complex. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Wang, Lan; Zhu, Jiang; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Xiao-Wei; Xia, Wei; Xie, Fang-Fei; He, Pei; Bing, Peng-Fei; Qiu, Ying-Hua; Lin, Xiang; Lu, Xin; Zhang, Lei; Yi, Neng-Jun; Zhang, Yong-Hong; Lei, Shu-Feng
2018-02-01
MicroRNAs (miRNAs) can regulate gene expression through binding to complementary sites in the 3'-untranslated regions of target mRNAs, which will lead to existence of correlation in expression between miRNA and mRNA. However, the miRNA-mRNA correlation patterns are complex and remain largely unclear yet. To establish the global correlation patterns in human peripheral blood mononuclear cells (PBMCs), multiple miRNA-mRNA correlation analyses and expression quantitative trait locus (eQTL) analysis were conducted in this study. We predicted and achieved 861 miRNA-mRNA pairs (65 miRNAs, 412 mRNAs) using multiple bioinformatics programs, and found global negative miRNA-mRNA correlations in PBMC from all 46 study subjects. Among the 861 pairs of correlations, 19.5% were significant (P < 0.05) and ~70% were negative. The correlation network was complex and highlighted key miRNAs/genes in PBMC. Some miRNAs, such as hsa-miR-29a, hsa-miR-148a, regulate a cluster of target genes. Some genes, e.g., TNRC6A, are regulated by multiple miRNAs. The identified genes tend to be enriched in molecular functions of DNA and RNA binding, and biological processes such as protein transport, regulation of translation and chromatin modification. The results provided a global view of the miRNA-mRNA expression correlation profile in human PBMCs, which would facilitate in-depth investigation of biological functions of key miRNAs/mRNAs and better understanding of the pathogenesis underlying PBMC-related diseases.
Zhu, Yali; Cherukuri, Nil Celebi; Jackel, Jamie N; Wu, Zetang; Crary, Monica; Buckley, Kenneth J; Bisaro, David M; Parris, Deborah S
2012-03-01
Ebola virus (EBOV) causes a lethal hemorrhagic fever for which there is no approved effective treatment or prevention strategy. EBOV VP35 is a virulence factor that blocks innate antiviral host responses, including the induction of and response to alpha/beta interferon. VP35 is also an RNA silencing suppressor (RSS). By inhibiting microRNA-directed silencing, mammalian virus RSSs have the capacity to alter the cellular environment to benefit replication. A reporter gene containing specific microRNA target sequences was used to demonstrate that prior expression of wild-type VP35 was able to block establishment of microRNA silencing in mammalian cells. In addition, wild-type VP35 C-terminal domain (CTD) protein fusions were shown to bind small interfering RNA (siRNA). Analysis of mutant proteins demonstrated that reporter activity in RSS assays did not correlate with their ability to antagonize double-stranded RNA (dsRNA)-activated protein kinase R (PKR) or bind siRNA. The results suggest that enhanced reporter activity in the presence of VP35 is a composite of nonspecific translational enhancement and silencing suppression. Moreover, most of the specific RSS activity in mammalian cells is RNA binding independent, consistent with VP35's proposed role in sequestering one or more silencing complex proteins. To examine RSS activity in a system without interferon, VP35 was tested in well-characterized plant silencing suppression assays. VP35 was shown to possess potent plant RSS activity, and the activities of mutant proteins correlated strongly, but not exclusively, with RNA binding ability. The results suggest the importance of VP35-protein interactions in blocking silencing in a system (mammalian) that cannot amplify dsRNA.
Yan, Yumeng; Wen, Zeyu; Zhang, Di; Huang, Sheng-You
2018-05-18
RNA-RNA interactions play fundamental roles in gene and cell regulation. Therefore, accurate prediction of RNA-RNA interactions is critical to determine their complex structures and understand the molecular mechanism of the interactions. Here, we have developed a physics-based double-iterative strategy to determine the effective potentials for RNA-RNA interactions based on a training set of 97 diverse RNA-RNA complexes. The double-iterative strategy circumvented the reference state problem in knowledge-based scoring functions by updating the potentials through iteration and also overcame the decoy-dependent limitation in previous iterative methods by constructing the decoys iteratively. The derived scoring function, which is referred to as DITScoreRR, was evaluated on an RNA-RNA docking benchmark of 60 test cases and compared with three other scoring functions. It was shown that for bound docking, our scoring function DITScoreRR obtained the excellent success rates of 90% and 98.3% in binding mode predictions when the top 1 and 10 predictions were considered, compared to 63.3% and 71.7% for van der Waals interactions, 45.0% and 65.0% for ITScorePP, and 11.7% and 26.7% for ZDOCK 2.1, respectively. For unbound docking, DITScoreRR achieved the good success rates of 53.3% and 71.7% in binding mode predictions when the top 1 and 10 predictions were considered, compared to 13.3% and 28.3% for van der Waals interactions, 11.7% and 26.7% for our ITScorePP, and 3.3% and 6.7% for ZDOCK 2.1, respectively. DITScoreRR also performed significantly better in ranking decoys and obtained significantly higher score-RMSD correlations than the other three scoring functions. DITScoreRR will be of great value for the prediction and design of RNA structures and RNA-RNA complexes.
Pascale, Lise; Azoulay, Stéphane; Di Giorgio, Audrey; Zenacker, Laura; Gaysinski, Marc; Clayette, Pascal; Patino, Nadia
2013-01-01
RNA is a major drug target, but the design of small molecules that modulate RNA function remains a great challenge. In this context, a series of structurally homologous ‘polyamide amino acids’ (PAA) was studied as HIV-1 trans-activating response (TAR) RNA ligands. An extensive thermodynamic study revealed the occurence of an enthalpy–entropy compensation phenomenon resulting in very close TAR affinities for all PAA. However, their binding modes and their ability to compete with the Tat fragment strongly differ according to their structure. Surprisingly, PAA that form loose complexes with TAR were shown to be stronger Tat competitors than those forming tight ones, and thermal denaturation studies demonstrated that loose complexes are more stable than tight ones. This could be correlated to the fact that loose and tight ligands induce distinct RNA conformational changes as revealed by circular dichroism experiments, although nuclear magnetic resonance (NMR) experiments showed that the TAR binding site is the same in all cases. Finally, some loose PAA also display promising inhibitory activities on HIV-infected cells. Altogether, these results lead to a better understanding of RNA interaction modes that could be very useful for devising new ligands of relevant RNA targets. PMID:23605042
Pascale, Lise; Azoulay, Stéphane; Di Giorgio, Audrey; Zenacker, Laura; Gaysinski, Marc; Clayette, Pascal; Patino, Nadia
2013-06-01
RNA is a major drug target, but the design of small molecules that modulate RNA function remains a great challenge. In this context, a series of structurally homologous 'polyamide amino acids' (PAA) was studied as HIV-1 trans-activating response (TAR) RNA ligands. An extensive thermodynamic study revealed the occurence of an enthalpy-entropy compensation phenomenon resulting in very close TAR affinities for all PAA. However, their binding modes and their ability to compete with the Tat fragment strongly differ according to their structure. Surprisingly, PAA that form loose complexes with TAR were shown to be stronger Tat competitors than those forming tight ones, and thermal denaturation studies demonstrated that loose complexes are more stable than tight ones. This could be correlated to the fact that loose and tight ligands induce distinct RNA conformational changes as revealed by circular dichroism experiments, although nuclear magnetic resonance (NMR) experiments showed that the TAR binding site is the same in all cases. Finally, some loose PAA also display promising inhibitory activities on HIV-infected cells. Altogether, these results lead to a better understanding of RNA interaction modes that could be very useful for devising new ligands of relevant RNA targets.
Fu, Xu; Wang, Zhihua; Li, Lixin; Dong, Shishang; Li, Zhucui; Jiang, Zhenzuo; Wang, Yuefei; Shui, Wenqing
2016-01-01
The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. PMID:27403722
McDermott, Suzanne M.; Davis, Ilan
2013-01-01
In the Drosophila oocyte, gurken (grk) mRNA encodes a secreted TGF-α signal that specifies the future embryonic dorso-ventral axes by altering the fate of the surrounding epithelial follicle cells. We previously identified a number of RNA binding proteins that associate specifically with the 64 nucleotide grk localization signal, including the Drosophila orthologue of polypyrimidine tract-binding protein (PTB), Hephaestus (Heph). To test whether Heph is required for correct grk mRNA or protein function, we used immunoprecipitation to validate the association of Heph with grk mRNA and characterized the heph mutant phenotype. We found that Heph is a component of grk mRNP complexes but heph germline clones show that Heph is not required for grk mRNA localization. Instead, we identify a novel function for Heph in the germline and show that it is required for proper Grk protein localization. Furthermore, we show that Heph is required in the oocyte for the correct organization of the actin cytoskeleton and dorsal appendage morphogenesis. Our results highlight a requirement for an mRNA binding protein in the localization of Grk protein, which is independent of mRNA localization, and we propose that Heph is required in the germline for efficient Grk signalling to the somatic follicle cells during dorso-ventral patterning. PMID:23894566
Comprehensive Identification of RNA-Binding Proteins by RNA Interactome Capture.
Castello, Alfredo; Horos, Rastislav; Strein, Claudia; Fischer, Bernd; Eichelbaum, Katrin; Steinmetz, Lars M; Krijgsveld, Jeroen; Hentze, Matthias W
2016-01-01
RNA associates with RNA-binding proteins (RBPs) from synthesis to decay, forming dynamic ribonucleoproteins (RNPs). In spite of the preeminent role of RBPs regulating RNA fate, the scope of cellular RBPs has remained largely unknown. We have recently developed a novel and comprehensive method to identify the repertoire of active RBPs of cultured cells, called RNA interactome capture. Using in vivo UV cross-linking on cultured cells, proteins are covalently bound to RNA if the contact between the two is direct ("zero distance"). Protein-RNA complexes are purified by poly(A) tail-dependent oligo(dT) capture and analyzed by quantitative mass spectrometry. Because UV irradiation is applied to living cells and purification is performed using highly stringent washes, RNA interactome capture identifies physiologic and direct protein-RNA interactions. Applied to HeLa cells, this protocol revealed the near-complete repertoire of RBPs, including hundreds of novel RNA binders. Apart from its RBP discovery capacity, quantitative and comparative RNA interactome capture can also be used to study the responses of the RBP repertoire to different physiological cues and processes, including metabolic stress, differentiation, development, or the response to drugs.
Bratkowski, Matthew; Unarta, Ilona Christy; Zhu, Lizhe; Shubbar, Murtada; Huang, Xuhui; Liu, Xin
2018-02-02
Functional cross-talk between the promoter and terminator of a gene has long been noted. Promoters and terminators are juxtaposed to form gene loops in several organisms, and gene looping is thought to be involved in transcriptional regulation. The general transcription factor IIB (TFIIB) and the C-terminal domain phosphatase Ssu72, essential factors of the transcription preinitiation complex and the mRNA processing and polyadenylation complex, respectively, are important for gene loop formation. TFIIB and Ssu72 interact both genetically and physically, but the molecular basis of this interaction is not known. Here we present a crystal structure of the core domain of TFIIB in two new conformations that differ in the relative distance and orientation of the two cyclin-like domains. The observed extraordinary conformational plasticity may underlie the binding of TFIIB to multiple transcription factors and promoter DNAs that occurs in distinct stages of transcription, including initiation, reinitiation, and gene looping. We mapped the binding interface of the TFIIB-Ssu72 complex using a series of systematic, structure-guided in vitro binding and site-specific photocross-linking assays. Our results indicate that Ssu72 competes with acidic activators for TFIIB binding and that Ssu72 disrupts an intramolecular TFIIB complex known to impede transcription initiation. We also show that the TFIIB-binding site on Ssu72 overlaps with the binding site of symplekin, a component of the mRNA processing and polyadenylation complex. We propose a hand-off model in which Ssu72 mediates a conformational transition in TFIIB, accounting for the role of Ssu72 in transcription reinitiation, gene looping, and promoter-terminator cross-talk. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Picornavirus Modification of a Host mRNA Decay Protein
Rozovics, Janet M.; Chase, Amanda J.; Cathcart, Andrea L.; Chou, Wayne; Gershon, Paul D.; Palusa, Saiprasad; Wilusz, Jeffrey; Semler, Bert L.
2012-01-01
ABSTRACT Due to the limited coding capacity of picornavirus genomic RNAs, host RNA binding proteins play essential roles during viral translation and RNA replication. Here we describe experiments suggesting that AUF1, a host RNA binding protein involved in mRNA decay, plays a role in the infectious cycle of picornaviruses such as poliovirus and human rhinovirus. We observed cleavage of AUF1 during poliovirus or human rhinovirus infection, as well as interaction of this protein with the 5′ noncoding regions of these viral genomes. Additionally, the picornavirus proteinase 3CD, encoded by poliovirus or human rhinovirus genomic RNAs, was shown to cleave all four isoforms of recombinant AUF1 at a specific N-terminal site in vitro. Finally, endogenous AUF1 was found to relocalize from the nucleus to the cytoplasm in poliovirus-infected HeLa cells to sites adjacent to (but distinct from) putative viral RNA replication complexes. PMID:23131833
Recognition of U-rich RNA by Hfq from the Gram-positive pathogen Listeria monocytogenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovach, Alexander R.; Hoff, Kirsten E.; Canty, John T.
Hfq is a post-transcriptional regulator that binds U- and A-rich regions of sRNAs and their target mRNAs to stimulate their annealing in order to effect translation regulation and, often, to alter their stability. The functional importance of Hfq and its RNA-binding properties are relatively well understood in Gram-negative bacteria, whereas less is known about the RNAbinding properties of this riboregulator in Gram-positive species. Here, we describe the structure of Hfq from the Grampositive pathogen Listeria monocytogenes in its RNA-free form and in complex with a U 6 oligoribonucleotide. As expected, the protein takes the canonical hexameric toroidal shape of allmore » other known Hfq structures. The U 6 RNA binds on the “proximal face” in a pocket formed by conserved residues Q9, N42, F43, and K58. Additionally residues G5 and Q6 are involved in protein-nucleic and inter-subunit contacts that promote uracil specificity. Unlike Staphylococcus aureus (Sa) Hfq, Lm Hfq requires magnesium to bind U 6 with high affinity. In contrast, the longer oligo-uridine, U 16, binds Lm Hfq tightly in the presence or absence of magnesium, thereby suggesting the importance of additional residues on the proximal face and possibly the lateral rim in RNA interaction. Lastly, intrinsic tryptophan fluorescence quenching (TFQ) studies reveal, surprisingly, that Lm Hfq can bind (GU) 3G and U6 on its proximal and distal faces, indicating a less stringent adenine-nucleotide specificity site on the distal face as compared to the Gram-positive Hfq proteins from Sa and Bacillus subtilis and suggesting as yet uncharacterized RNA-binding modes on both faces.« less
Recognition of U-rich RNA by Hfq from the Gram-positive pathogen Listeria monocytogenes
Kovach, Alexander R.; Hoff, Kirsten E.; Canty, John T.; ...
2014-08-22
Hfq is a post-transcriptional regulator that binds U- and A-rich regions of sRNAs and their target mRNAs to stimulate their annealing in order to effect translation regulation and, often, to alter their stability. The functional importance of Hfq and its RNA-binding properties are relatively well understood in Gram-negative bacteria, whereas less is known about the RNAbinding properties of this riboregulator in Gram-positive species. Here, we describe the structure of Hfq from the Grampositive pathogen Listeria monocytogenes in its RNA-free form and in complex with a U 6 oligoribonucleotide. As expected, the protein takes the canonical hexameric toroidal shape of allmore » other known Hfq structures. The U 6 RNA binds on the “proximal face” in a pocket formed by conserved residues Q9, N42, F43, and K58. Additionally residues G5 and Q6 are involved in protein-nucleic and inter-subunit contacts that promote uracil specificity. Unlike Staphylococcus aureus (Sa) Hfq, Lm Hfq requires magnesium to bind U 6 with high affinity. In contrast, the longer oligo-uridine, U 16, binds Lm Hfq tightly in the presence or absence of magnesium, thereby suggesting the importance of additional residues on the proximal face and possibly the lateral rim in RNA interaction. Lastly, intrinsic tryptophan fluorescence quenching (TFQ) studies reveal, surprisingly, that Lm Hfq can bind (GU) 3G and U6 on its proximal and distal faces, indicating a less stringent adenine-nucleotide specificity site on the distal face as compared to the Gram-positive Hfq proteins from Sa and Bacillus subtilis and suggesting as yet uncharacterized RNA-binding modes on both faces.« less
Dias, José; Renault, Louis; Pérez, Javier; Mirande, Marc
2013-08-16
In animal cells, nine aminoacyl-tRNA synthetases are associated with the three auxiliary proteins p18, p38, and p43 to form a stable and conserved large multi-aminoacyl-tRNA synthetase complex (MARS), whose molecular mass has been proposed to be between 1.0 and 1.5 MDa. The complex acts as a molecular hub for coordinating protein synthesis and diverse regulatory signal pathways. Electron microscopy studies defined its low resolution molecular envelope as an overall rather compact, asymmetric triangular shape. Here, we have analyzed the composition and homogeneity of the native mammalian MARS isolated from rabbit liver and characterized its overall internal structure, size, and shape at low resolution by hydrodynamic methods and small-angle x-ray scattering in solution. Our data reveal that the MARS exhibits a much more elongated and multi-armed shape than expected from previous reports. The hydrodynamic and structural features of the MARS are large compared with other supramolecular assemblies involved in translation, including ribosome. The large dimensions and non-compact structural organization of MARS favor a large protein surface accessibility for all its components. This may be essential to allow structural rearrangements between the catalytic and cis-acting tRNA binding domains of the synthetases required for binding the bulky tRNA substrates. This non-compact architecture may also contribute to the spatiotemporal controlled release of some of its components, which participate in non-canonical functions after dissociation from the complex.
Joseph, Thomas T; Osman, Roman
2012-01-01
In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA) is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC) that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the Argonaute-guide complex binds and silences complementary target mRNAs; certain Argonautes cleave the target. Mismatches between guide strand and the target mRNA decrease cleavage efficiency. Thus, loading and silencing both require that signals about the presence of a mismatched base pair are communicated from the mismatch site to effector sites. These effector sites include the active site, to prevent target cleavage; the binding groove, to modify nucleic acid binding affinity; and surface allosteric sites, to control recruitment of additional proteins to form the RISC. To examine how such signals may be propagated, we analyzed the network of internal allosteric pathways in Argonaute exhibited through correlations of residue-residue interactions. The emerging network can be described as a set of pathways emanating from the core of the protein near the active site, distributed into the bulk of the protein, and converging upon a distributed cluster of surface residues. Nucleotides in the guide strand "seed region" have a stronger relationship with the protein than other nucleotides, concordant with their importance in sequence selectivity. Finally, any of several seed region guide-target mismatches cause certain Argonaute residues to have modified correlations with the rest of the protein. This arises from the aggregation of relatively small interaction correlation changes distributed across a large subset of residues. These residues are in effector sites: the active site, binding groove, and surface, implying that direct functional consequences of guide-target mismatches are mediated through the cumulative effects of a large number of internal allosteric pathways.
Joseph, Thomas T.; Osman, Roman
2012-01-01
In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA) is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC) that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the Argonaute-guide complex binds and silences complementary target mRNAs; certain Argonautes cleave the target. Mismatches between guide strand and the target mRNA decrease cleavage efficiency. Thus, loading and silencing both require that signals about the presence of a mismatched base pair are communicated from the mismatch site to effector sites. These effector sites include the active site, to prevent target cleavage; the binding groove, to modify nucleic acid binding affinity; and surface allosteric sites, to control recruitment of additional proteins to form the RISC. To examine how such signals may be propagated, we analyzed the network of internal allosteric pathways in Argonaute exhibited through correlations of residue-residue interactions. The emerging network can be described as a set of pathways emanating from the core of the protein near the active site, distributed into the bulk of the protein, and converging upon a distributed cluster of surface residues. Nucleotides in the guide strand “seed region” have a stronger relationship with the protein than other nucleotides, concordant with their importance in sequence selectivity. Finally, any of several seed region guide-target mismatches cause certain Argonaute residues to have modified correlations with the rest of the protein. This arises from the aggregation of relatively small interaction correlation changes distributed across a large subset of residues. These residues are in effector sites: the active site, binding groove, and surface, implying that direct functional consequences of guide-target mismatches are mediated through the cumulative effects of a large number of internal allosteric pathways. PMID:23028290
Joining the dots - protein-RNA interactions mediating local mRNA translation in neurons.
Gallagher, Christopher; Ramos, Andres
2018-06-01
Establishing and maintaining the complex network of connections required for neuronal communication requires the transport and in situ translation of large groups of mRNAs to create local proteomes. In this Review, we discuss the regulation of local mRNA translation in neurons and the RNA-binding proteins that recognise RNA zipcode elements and connect the mRNAs to the cellular transport networks, as well as regulate their translation control. However, mRNA recognition by the regulatory proteins is mediated by the combinatorial action of multiple RNA-binding domains. This increases the specificity and affinity of the interaction, while allowing the protein to recognise a diverse set of targets and mediate a range of mechanisms for translational regulation. The structural and molecular understanding of the interactions can be used together with novel microscopy and transcriptome-wide data to build a mechanistic framework for the regulation of local mRNA translation. © 2018 Federation of European Biochemical Societies.
Hardwick, Steven W.; Luisi, Ben F.
2013-01-01
RNA helicases are compact, machine-like proteins that can harness the energy of nucleoside triphosphate binding and hydrolysis to dynamically remodel RNA structures and protein-RNA complexes. Through such activities, helicases participate in virtually every process associated with the expression of genetic information. Often found as components of multi-enzyme assemblies, RNA helicases facilitate the processivity of RNA degradation, the remodeling of protein interactions during maturation of structured RNA precursors, and fidelity checks of RNA quality. In turn, the assemblies modulate and guide the activities of the helicases. We describe the roles of RNA helicases with a conserved “DExD/H box” sequence motif in representative examples of such machineries from bacteria, archaea and eukaryotes. The recurrent occurrence of such helicases in complex assemblies throughout the course of evolution suggests a common requirement for their activities to meet cellular demands for the dynamic control of RNA metabolism. PMID:23064154
Piñol-Roma, S
1999-01-01
rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin-a major nucleolar RNA-binding protein-contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.
Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism.
Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K; Lehtonen, Jukka Y A
2016-04-20
As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3'-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Y.L.; Garges, S.; Adhya, S.
1988-06-01
Four cAMP-independent receptor protein mutants (designated CRP* mutants) isolated previously are able to activate in vivo gene transcription in the absence of cAMP and their activity can be enhanced by cAMP or cGMP. One of the four mutant proteins, CRP*598 (Arg-142 to His, Ala-144 to Thr), has been characterized with regard to its conformational properties and ability to bind to and support abortive initiation from the lac promoter. Binding of wild-type CRP to its site on the lac promoter and activation of abortive initiation by RNA polymerase on this promoter are effected by cAMP but not by cGMP. CRP*598 canmore » activate lacP{sup +}-directed abortive initiation in the presence of cAMP and less efficiently in the presence of cGMP or in the absence of cyclic nucleotide. DNase I protection (footprinting) indicates that cAMP-CRP* binds to its site on the lac promoter whereas unliganded CRP* and cGMP-CRP* form a stable complex with the ({sup 32}P)lacP{sup +} fragment only in the presence of RNA polymerase, showing cooperative binding of two heterologous proteins. This cooperative binding provides strong evidence for a contact between CRP and RNA polymerase for activation of transcription. Although cGMP binds to CRP, it cannot replace cAMP in effecting the requisite conformational transition necessary for site-specific promoter binding.« less
Tarus, Bogdan; Bertrand, Hélène; Zedda, Gloria; Di Primo, Carmelo; Quideau, Stéphane; Slama-Schwok, Anny
2015-01-01
The nucleoprotein (NP) binds the viral RNA genome as oligomers assembled with the polymerase in a ribonucleoprotein complex required for transcription and replication of influenza A virus. Novel antiviral candidates targeting the nucleoprotein either induced higher order oligomers or reduced NP oligomerization by targeting the oligomerization loop and blocking its insertion into adjacent nucleoprotein subunit. In this study, we used a different structure-based approach to stabilize monomers of the nucleoprotein by drugs binding in its RNA-binding groove. We recently identified naproxen as a drug competing with RNA binding to NP with antiinflammatory and antiviral effects against influenza A virus. Here, we designed novel derivatives of naproxen by fragment extension for improved binding to NP. Molecular dynamics simulations suggested that among these derivatives, naproxen A and C0 were most promising. Their chemical synthesis is described. Both derivatives markedly stabilized NP monomer against thermal denaturation. Naproxen C0 bound tighter to NP than naproxen at a binding site predicted by MD simulations and shown by competition experiments using wt NP or single-point mutants as determined by surface plasmon resonance. MD simulations suggested that impeded oligomerization and stabilization of monomeric NP is likely to be achieved by drugs binding in the RNA grove and inducing close to their binding site conformational changes of key residues hosting the oligomerization loop as observed for the naproxen derivatives. Naproxen C0 is a potential antiviral candidate blocking influenza nucleoprotein function. PMID:25333630
Tarus, Bogdan; Bertrand, Hélène; Zedda, Gloria; Di Primo, Carmelo; Quideau, Stéphane; Slama-Schwok, Anny
2015-09-01
The nucleoprotein (NP) binds the viral RNA genome as oligomers assembled with the polymerase in a ribonucleoprotein complex required for transcription and replication of influenza A virus. Novel antiviral candidates targeting the nucleoprotein either induced higher order oligomers or reduced NP oligomerization by targeting the oligomerization loop and blocking its insertion into adjacent nucleoprotein subunit. In this study, we used a different structure-based approach to stabilize monomers of the nucleoprotein by drugs binding in its RNA-binding groove. We recently identified naproxen as a drug competing with RNA binding to NP with antiinflammatory and antiviral effects against influenza A virus. Here, we designed novel derivatives of naproxen by fragment extension for improved binding to NP. Molecular dynamics simulations suggested that among these derivatives, naproxen A and C0 were most promising. Their chemical synthesis is described. Both derivatives markedly stabilized NP monomer against thermal denaturation. Naproxen C0 bound tighter to NP than naproxen at a binding site predicted by MD simulations and shown by competition experiments using wt NP or single-point mutants as determined by surface plasmon resonance. MD simulations suggested that impeded oligomerization and stabilization of monomeric NP is likely to be achieved by drugs binding in the RNA grove and inducing close to their binding site conformational changes of key residues hosting the oligomerization loop as observed for the naproxen derivatives. Naproxen C0 is a potential antiviral candidate blocking influenza nucleoprotein function.
Small RNA sorting: matchmaking for Argonautes
Czech, Benjamin; Hannon, Gregory J.
2013-01-01
Small RNAs directly or indirectly impact nearly every biological process in eukaryotic cells. To perform their myriad roles, not only must precise small RNA species be generated, but they must also be loaded into specific effector complexes called RNA-induced silencing complexes (RISCs). Argonaute proteins form the core of RISCs and different members of this large family have specific expression patterns, protein binding partners and biochemical capabilities. In this Review, we explore the mechanisms that pair specific small RNA strands with their partner proteins, with an eye towards the substantial progress that has been recently made in understanding the sorting of the major small RNA classes — microRNAs (miRNAs) and small interfering RNAs (siRNAs) — in plants and animals. PMID:21116305
Physicochemical characterization of native and modified sodium caseinate- Vitamin A complexes.
Gupta, Chitra; Arora, Sumit; Syama, M A; Sharma, Apurva
2018-04-01
Native and modified sodium caseinate- Vitamin A complexes {Sodium caseinate- Vit A complex by stirring (NaCas-VA ST), succinylated sodium caseinate- Vit A complex by stirring (SNaCas-VA ST), reassembled sodium caseinate- Vit A complex (RNaCas-VA) and reassembled succinylated sodium caseinate- Vit A complex (RSNaCas-VA)} were prepared and characterized for their physicochemical characteristics e.g. particle size, zeta potential, turbidity analysis and tryptophan intensities which confirmed structural modification of both native (NaCas-VA ST) and modified (SNaCas-VA ST, RNaCas-VA and RSNaCas- VA) proteins upon complex formation with vitamin A. Binding of vitamin A to milk protein reduced the turbidity caused by vitamin A, however, the particle size and zeta potential of milk protein increased after complexation. Microstructure details of NaCas (spray dried) showed uniform spherical structure, however, other milk proteins and milk protein- Vit A complexes (freeze dried) showed broken glass and flaky structures. Tiny particles were observed on the surface of reassembled protein and reassembled protein- Vit A complexes. Binding of vitamin A to milk protein did not have an influence on the electrophoretic mobility and elution profile (RP-HPLC). Copyright © 2018 Elsevier Ltd. All rights reserved.
Barajas, Brook C; Tanaka, Motoko; Robinson, Bridget A; Phuong, Daryl J; Chutiraka, Kasana; Reed, Jonathan C; Lingappa, Jaisri R
2018-04-01
During immature capsid assembly, HIV-1 genome packaging is initiated when Gag first associates with unspliced HIV-1 RNA by a poorly understood process. Previously, we defined a pathway of sequential intracellular HIV-1 capsid assembly intermediates; here we sought to identify the intermediate in which HIV-1 Gag first associates with unspliced HIV-1 RNA. In provirus-expressing cells, unspliced HIV-1 RNA was not found in the soluble fraction of the cytosol, but instead was largely in complexes ≥30S. We did not detect unspliced HIV-1 RNA associated with Gag in the first assembly intermediate, which consists of soluble Gag. Instead, the earliest assembly intermediate in which we detected Gag associated with unspliced HIV-1 RNA was the second assembly intermediate (~80S intermediate), which is derived from a host RNA granule containing two cellular facilitators of assembly, ABCE1 and the RNA granule protein DDX6. At steady-state, this RNA-granule-derived ~80S complex was the smallest assembly intermediate that contained Gag associated with unspliced viral RNA, regardless of whether lysates contained intact or disrupted ribosomes, or expressed WT or assembly-defective Gag. A similar complex was identified in HIV-1-infected T cells. RNA-granule-derived assembly intermediates were detected in situ as sites of Gag colocalization with ABCE1 and DDX6; moreover these granules were far more numerous and smaller than well-studied RNA granules termed P bodies. Finally, we identified two steps that lead to association of assembling Gag with unspliced HIV-1 RNA. Independent of viral-RNA-binding, Gag associates with a broad class of RNA granules that largely lacks unspliced viral RNA (step 1). If a viral-RNA-binding domain is present, Gag further localizes to a subset of these granules that contains unspliced viral RNA (step 2). Thus, our data raise the possibility that HIV-1 packaging is initiated not by soluble Gag, but by Gag targeted to a subset of host RNA granules containing unspliced HIV-1 RNA.
Barajas, Brook C.; Tanaka, Motoko; Robinson, Bridget A.; Phuong, Daryl J.; Reed, Jonathan C.
2018-01-01
During immature capsid assembly, HIV-1 genome packaging is initiated when Gag first associates with unspliced HIV-1 RNA by a poorly understood process. Previously, we defined a pathway of sequential intracellular HIV-1 capsid assembly intermediates; here we sought to identify the intermediate in which HIV-1 Gag first associates with unspliced HIV-1 RNA. In provirus-expressing cells, unspliced HIV-1 RNA was not found in the soluble fraction of the cytosol, but instead was largely in complexes ≥30S. We did not detect unspliced HIV-1 RNA associated with Gag in the first assembly intermediate, which consists of soluble Gag. Instead, the earliest assembly intermediate in which we detected Gag associated with unspliced HIV-1 RNA was the second assembly intermediate (~80S intermediate), which is derived from a host RNA granule containing two cellular facilitators of assembly, ABCE1 and the RNA granule protein DDX6. At steady-state, this RNA-granule-derived ~80S complex was the smallest assembly intermediate that contained Gag associated with unspliced viral RNA, regardless of whether lysates contained intact or disrupted ribosomes, or expressed WT or assembly-defective Gag. A similar complex was identified in HIV-1-infected T cells. RNA-granule-derived assembly intermediates were detected in situ as sites of Gag colocalization with ABCE1 and DDX6; moreover these granules were far more numerous and smaller than well-studied RNA granules termed P bodies. Finally, we identified two steps that lead to association of assembling Gag with unspliced HIV-1 RNA. Independent of viral-RNA-binding, Gag associates with a broad class of RNA granules that largely lacks unspliced viral RNA (step 1). If a viral-RNA-binding domain is present, Gag further localizes to a subset of these granules that contains unspliced viral RNA (step 2). Thus, our data raise the possibility that HIV-1 packaging is initiated not by soluble Gag, but by Gag targeted to a subset of host RNA granules containing unspliced HIV-1 RNA. PMID:29664940
The role of Cas8 in type I CRISPR interference.
Cass, Simon D B; Haas, Karina A; Stoll, Britta; Alkhnbashi, Omer S; Sharma, Kundan; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita; Bolt, Edward L
2015-05-05
CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use 'cascade' [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5-Cas7-crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA. © 2015 Authors.
Radebaugh, C A; Kubaska, W M; Hoffman, L H; Stiffler, K; Paule, M R
1998-10-16
The fundamental transcription initiation factor (TIF) for ribosomal RNA expression by eukaryotic RNA polymerase I, TIF-IB, has been purified to near homogeneity from Acanthamoeba castellanii using standard techniques. The purified factor consists of the TATA-binding protein and four TATA-binding protein-associated factors with relative molecular weights of 145,000, 99,000, 96,000, and 91,000. This yields a calculated native molecular weight of 460, 000, which compares well with its mass determined by scanning transmission electron microscopy (493,000) and its sedimentation rate, which is close to RNA polymerase I (515,000). Both impure and nearly homogeneous TIF-IB exhibit an apparent equilibrium dissociation constant of 56 +/- 3 pM. However, although impure TIF-IB can form a promoter-DNA complex resistant to challenge by other promoter-containing DNAs, near homogeneous TIF-IB cannot do so. An additional transcription factor, dubbed TIF-IE, restores the ability of near homogeneous TIF-IB to sequester DNA into a committed complex.
ATtRACT-a database of RNA-binding proteins and associated motifs.
Giudice, Girolamo; Sánchez-Cabo, Fátima; Torroja, Carlos; Lara-Pezzi, Enrique
2016-01-01
RNA-binding proteins (RBPs) play a crucial role in key cellular processes, including RNA transport, splicing, polyadenylation and stability. Understanding the interaction between RBPs and RNA is key to improve our knowledge of RNA processing, localization and regulation in a global manner. Despite advances in recent years, a unified non-redundant resource that includes information on experimentally validated motifs, RBPs and integrated tools to exploit this information is lacking. Here, we developed a database named ATtRACT (available athttp://attract.cnic.es) that compiles information on 370 RBPs and 1583 RBP consensus binding motifs, 192 of which are not present in any other database. To populate ATtRACT we (i) extracted and hand-curated experimentally validated data from CISBP-RNA, SpliceAid-F, RBPDB databases, (ii) integrated and updated the unavailable ASD database and (iii) extracted information from Protein-RNA complexes present in Protein Data Bank database through computational analyses. ATtRACT provides also efficient algorithms to search a specific motif and scan one or more RNA sequences at a time. It also allows discoveringde novomotifs enriched in a set of related sequences and compare them with the motifs included in the database.Database URL:http:// attract. cnic. es. © The Author(s) 2016. Published by Oxford University Press.
Cofactor-dependent specificity of a DEAD-box protein.
Young, Crystal L; Khoshnevis, Sohail; Karbstein, Katrin
2013-07-16
DEAD-box proteins, a large class of RNA-dependent ATPases, regulate all aspects of gene expression and RNA metabolism. They can facilitate dissociation of RNA duplexes and remodeling of RNA-protein complexes, serve as ATP-dependent RNA-binding proteins, or even anneal duplexes. These proteins have highly conserved sequence elements that are contained within two RecA-like domains; consequently, their structures are nearly identical. Furthermore, crystal structures of DEAD-box proteins with bound RNA reveal interactions exclusively between the protein and the RNA backbone. Together, these findings suggest that DEAD-box proteins interact with their substrates in a nonspecific manner, which is confirmed in biochemical experiments. Nevertheless, this contrasts with the need to target these enzymes to specific substrates in vivo. Using the DEAD-box protein Rok1 and its cofactor Rrp5, which both function during maturation of the small ribosomal subunit, we show here that Rrp5 provides specificity to the otherwise nonspecific biochemical activities of the Rok1 DEAD-domain. This finding could reconcile the need for specific substrate binding of some DEAD-box proteins with their nonspecific binding surface and expands the potential roles of cofactors to specificity factors. Identification of helicase cofactors and their RNA substrates could therefore help define the undescribed roles of the 19 DEAD-box proteins that function in ribosome assembly.