Science.gov

Sample records for rna expression levels

  1. Expression levels of microRNA-375 in pancreatic cancer.

    PubMed

    Song, Shiduo; Zhou, Jian; He, Songbing; Zhu, Dongming; Zhang, Zixiang; Zhao, Hua; Wang, Yi; Li, Dechun

    2013-05-01

    MicroRNAs (miRNAs) are small, non-coding RNAs of endogenous origin that have been increasingly shown to have altered expressions in various cancer types. The expression levels of miR-375 have not been comprehensively investigated in pancreatic cancer. In this study, total RNA was extracted from 44 pairs of pancreatic cancer tissues and non-tumor adjacent tissues, as well as from four pancreatic cancer cell lines, Panc-1, SW1990, BxpC3 and Patu8988. Following polyadenylation and reverse transcription, the expression levels of miR-375 were determined by real-time PCR and the difference in expression was calculated using the 2(-ΔΔCt) method. The correlation between the expression levels of miR-375 and clinicopathological characteristics of pancreatic cancer was also assessed. miR-375 expression was frequently downregulated in the pancreatic cancer tissues compared to their non-tumor counterparts (P<0.05; paired t-test). Moreover, a significantly low expression of miR-375 was found in the pancreatic cancer cell lines (Panc-1, P=0.016; SW1990, P=0.016; BxPC3, P=0.018; Patu8988, P=0.017; paired t-test). However, no significant correlations were observed between the low expression of miR-375 and parameters including gender, age, tumor size, tumor location and histological grade (P>0.05). The low expression of miR-375 was correlated with pT stage, lymph node metastases and pTNM stage (P<0.05) (non-parametric test; Mann-Whitney U test between 2 groups and Kruskal-Wallis H test for ≥3 groups). In conclusion, miR-375 is potentially involved in the carcinogenesis of pancreatic cancers and serves as is a potential biomarker for pancreatic cancer.

  2. Comparison of microRNA expression levels between initial and recurrent glioblastoma specimens.

    PubMed

    Ilhan-Mutlu, Aysegül; Wöhrer, Adelheid; Berghoff, Anna Sophie; Widhalm, Georg; Marosi, Christine; Wagner, Ludwig; Preusser, Matthias

    2013-05-01

    Glioblastoma is the most frequent primary brain tumour in adults. Recent therapeutic advances increased patient's survival, but tumour recurrence inevitably occurs. The pathobiological mechanisms involved in glioblastoma recurrence are still unclear. MicroRNAs are small RNAs proposed o have important roles for cancer including proliferation, aggressiveness and metastases development. There exist only few data on the involvement of microRNAs in glioblastoma recurrence. We selected the following 7 microRNAs with potential relevance for glioblastoma pathobiology by means of a comprehensive literature search: microRNA-10b, microRNA-21, microRNA-181b, microRNA-181c, microRNA-195, microRNA-221 and microRNA-222. We further selected 15 primary glioblastoma patients, of whom formalin fixed and paraffin embedded tissue (FFPE) of the initial and recurrence surgery were available. All patients had received first line treatment consisting of postoperative combined radiochemotherapy with temozolomide (n = 15). Non-neoplastic brain tissue samples from 3 patients with temporal lobe epilepsy served as control. The expression of the microRNAs were analysed by RT-qPCR. These were correlated with each other and with clinical parameters. All microRNAs showed detectable levels of expressions in glioblastoma group, whereas microRNA-10b was not detectable in epilepsy patients. MicroRNAs except microRNA-21 showed significantly higher levels in epilepsy patients when compared to the levels of first resection of glioblastoma. Comparison of microRNA levels between first and second resections revealed no significant change. Cox regression analyses showed no significant association of microRNA expression levels in the tumor tissue with progression free survival times. Expression levels of microRNA-10b, microRNA-21, microRNA-181b, microRNA-181c, microRNA-195, microRNA-221 and microRNA-222 do not differ significantly between initial and recurrent glioblastoma.

  3. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  4. High level of ezrin mRNA expression in an osteosarcoma biopsy sample with lung metastasis.

    PubMed

    Ogino, Wakako; Takeshima, Yasuhiro; Mori, Takeshi; Yanai, Tomoko; Hayakawa, Akira; Akisue, Toshihiro; Kurosaka, Masahiro; Matsuo, Masafumi

    2007-07-01

    Osteosarcoma (OS) remains a life-threatening malignancy and its molecular character is not fully understood. Ezrin is a cytoskeleton linker protein involved in regulating the growth and metastatic capacity of cancer cells. However, the correlation between ezrin mRNA expression and clinical severity has not yet been examined in OS biopsy samples. Furthermore, recent evidence has demonstrated that the level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression is increased in human cancers of various origins, but this has not yet been examined in OS cells. To clarify the correlation between the clinical severity and the levels of ezrin and GAPDH mRNA expression, we quantified these mRNA levels in 4 pediatric OS biopsy samples using real-time quantitative polymerase chain reaction. Among these 4 samples, ezrin mRNA expression was approximately 5-fold higher in a case with lung metastasis compared with the other cases without metastasis, suggesting an association between the ezrin mRNA expression level and metastasis. On the other hand, the GAPDH mRNA expression level was not related to the clinical severity. This is the first report to demonstrate a high level of ezrin mRNA expression in an OS biopsy sample with lung metastasis.

  5. Comprehensive expression analysis of miRNA in breast cancer at the miRNA and isomiR levels.

    PubMed

    Wu, Xianjin; Zeng, Rong; Wu, Shaoke; Zhong, Jixin; Yang, Lawei; Xu, Junfa

    2015-02-25

    Breast cancer (BC) is the main factor that leads cause of cancer death in women worldwide. A class of small non-coding RNAs, microRNAs (miRNAs), has been widely studied in human cancers as crucial regulatory molecule. Recent studies indicate that a series of isomiRs can be yielded from a miRNA locus, and these physiological miRNA isoforms have versatile roles in miRNA biogenesis. Herein, we performed a comprehensive analysis of miRNAs at the miRNA and isomiR levels in BC using next-generation sequencing data from The Cancer Genome Atlas (TCGA). Abnormally expressed miRNA (miR-21, miR-221, miR-155, miR-30e and miR-25) and isomiR profiles could be obtained at the miRNA and isomiR levels, and similar biological roles could be detected. IsomiR expression profiles should be further concerned, and especially isomiRs are actual regulatory molecules in the miRNA-mRNA regulatory networks. The study provides a comprehensive expression analysis at the miRNA and isomiR levels in BC, which indicates biological roles of isomiRs.

  6. Inflammation-related microRNA expression level in the bovine milk is affected by mastitis

    PubMed Central

    Lai, Yu-Chang; Fujikawa, Takuro; Maemura, Tadashi; Ando, Takaaki; Kitahara, Go; Endo, Yasuyuki; Yamato, Osamu; Koiwa, Masateru; Kubota, Chikara

    2017-01-01

    MicroRNA (miRNA) in tissue and liquid samples have been shown to be associated with many diseases including inflammation. We aimed to identify inflammation-related miRNA expression level in the bovine mastitis milk. Expression level of inflammation-related miRNA in milk from mastitis-affected and normal cows was analyzed using qPCR. We found that expression level of miR-21, miR-146a, miR-155, miR-222, and miR-383 was significantly upregulated in California mastitis test positive (CMT+) milk. We further analyzed these miRNA using a chip-based QuantStudio Digital PCR System. The digital PCR results correlated with those of qPCR, demonstrating upregulation of miR-21, miR-146a, miR-155, miR-222, and miR-383 in CMT+ milk. In conclusion, we identified miRNA that are upregulated in CMT+ milk. These miRNA exhibited sensitivity and specificity greater than 80% for differentiating between CMT+ milk and normal milk. Our findings suggest that inflammation-related miRNA expression level in the bovine milk was affected by mastitis, and miRNA in milk have potential for use as biomarkers of bovine mastitis. PMID:28520748

  7. Inflammation-related microRNA expression level in the bovine milk is affected by mastitis.

    PubMed

    Lai, Yu-Chang; Fujikawa, Takuro; Maemura, Tadashi; Ando, Takaaki; Kitahara, Go; Endo, Yasuyuki; Yamato, Osamu; Koiwa, Masateru; Kubota, Chikara; Miura, Naoki

    2017-01-01

    MicroRNA (miRNA) in tissue and liquid samples have been shown to be associated with many diseases including inflammation. We aimed to identify inflammation-related miRNA expression level in the bovine mastitis milk. Expression level of inflammation-related miRNA in milk from mastitis-affected and normal cows was analyzed using qPCR. We found that expression level of miR-21, miR-146a, miR-155, miR-222, and miR-383 was significantly upregulated in California mastitis test positive (CMT+) milk. We further analyzed these miRNA using a chip-based QuantStudio Digital PCR System. The digital PCR results correlated with those of qPCR, demonstrating upregulation of miR-21, miR-146a, miR-155, miR-222, and miR-383 in CMT+ milk. In conclusion, we identified miRNA that are upregulated in CMT+ milk. These miRNA exhibited sensitivity and specificity greater than 80% for differentiating between CMT+ milk and normal milk. Our findings suggest that inflammation-related miRNA expression level in the bovine milk was affected by mastitis, and miRNA in milk have potential for use as biomarkers of bovine mastitis.

  8. Reduced beta 2-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme.

    PubMed Central

    Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L

    1994-01-01

    We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels. Images PMID:8036151

  9. Reduced beta 2-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme.

    PubMed

    Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L

    1994-06-25

    We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels.

  10. Circulating irisin levels and muscle FNDC5 mRNA expression are independent of IL-15 levels in mice.

    PubMed

    Quinn, LeBris S; Anderson, Barbara G; Conner, Jennifer D; Wolden-Hanson, Tami

    2015-11-01

    Interleukin-15 (IL-15) and irisin are exercise-induced myokines that exert favorable effects on energy expenditure and metabolism. IL-15 can induce PGC-1α expression, which in turn induces expression of irisin and its precursor, FNDC5. Therefore, the present study tested the hypothesis that increases in circulating irisin levels and muscle FNDC5 mRNA expression are dependent on IL-15. Circulating irisin levels and gastrocnemius muscle FNDC5 mRNA expression were examined following acute exercise in control and IL-15-deleted (IL-15 KO) mice, following injection of IL-15 into IL-15 KO mice, and in transgenic mice with elevated circulating IL-15 levels (IL-15 Tg mice). Circulating IL-15 levels and muscle PGC-1α and PPARδ mRNA expressions were determined as positive controls. No effect of IL-15 deletion on post-exercise serum irisin levels or muscle FNDC5 mRNA expression was detected. While serum IL-15 levels and muscle PGC-1α expression were elevated post-exercise in control mice, both serum irisin levels and muscle FNDC5 expression decreased shortly after exercise in both control and IL-15 KO mice. A single injection of recombinant IL-15 into IL-15 KO mice that significantly increased muscle PPARδ and PGC-1α mRNA expressions had no effect on circulating irisin release, but modestly induced muscle FNDC5 expression. Additionally, serum irisin and gastrocnemius muscle FNDC5 expression in IL-15 Tg mice were similar to those of control mice. Muscle FNDC5 mRNA expression and irisin release are not IL-15-dependent in mice.

  11. Accurate Estimation of Expression Levels of Homologous Genes in RNA-seq Experiments

    NASA Astrophysics Data System (ADS)

    Paşaniuc, Bogdan; Zaitlen, Noah; Halperin, Eran

    Next generation high throughput sequencing (NGS) is poised to replace array based technologies as the experiment of choice for measuring RNA expression levels. Several groups have demonstrated the power of this new approach (RNA-seq), making significant and novel contributions and simultaneously proposing methodologies for the analysis of RNA-seq data. In a typical experiment, millions of short sequences (reads) are sampled from RNA extracts and mapped back to a reference genome. The number of reads mapping to each gene is used as proxy for its corresponding RNA concentration. A significant challenge in analyzing RNA expression of homologous genes is the large fraction of the reads that map to multiple locations in the reference genome. Currently, these reads are either dropped from the analysis, or a naïve algorithm is used to estimate their underlying distribution. In this work, we present a rigorous alternative for handling the reads generated in an RNA-seq experiment within a probabilistic model for RNA-seq data; we develop maximum likelihood based methods for estimating the model parameters. In contrast to previous methods, our model takes into account the fact that the DNA of the sequenced individual is not a perfect copy of the reference sequence. We show with both simulated and real RNA-seq data that our new method improves the accuracy and power of RNA-seq experiments.

  12. Accurate estimation of expression levels of homologous genes in RNA-seq experiments.

    PubMed

    Paşaniuc, Bogdan; Zaitlen, Noah; Halperin, Eran

    2011-03-01

    Abstract Next generation high-throughput sequencing (NGS) is poised to replace array-based technologies as the experiment of choice for measuring RNA expression levels. Several groups have demonstrated the power of this new approach (RNA-seq), making significant and novel contributions and simultaneously proposing methodologies for the analysis of RNA-seq data. In a typical experiment, millions of short sequences (reads) are sampled from RNA extracts and mapped back to a reference genome. The number of reads mapping to each gene is used as proxy for its corresponding RNA concentration. A significant challenge in analyzing RNA expression of homologous genes is the large fraction of the reads that map to multiple locations in the reference genome. Currently, these reads are either dropped from the analysis, or a naive algorithm is used to estimate their underlying distribution. In this work, we present a rigorous alternative for handling the reads generated in an RNA-seq experiment within a probabilistic model for RNA-seq data; we develop maximum likelihood-based methods for estimating the model parameters. In contrast to previous methods, our model takes into account the fact that the DNA of the sequenced individual is not a perfect copy of the reference sequence. We show with both simulated and real RNA-seq data that our new method improves the accuracy and power of RNA-seq experiments.

  13. MicroRNA Expression in Abdominal and Gluteal Adipose Tissue Is Associated with mRNA Expression Levels and Partly Genetically Driven

    PubMed Central

    Rantalainen, Mattias; Herrera, Blanca M.; Nicholson, George; Bowden, Rory; Wills, Quin F.; Min, Josine L.; Neville, Matt J.; Barrett, Amy; Allen, Maxine; Rayner, Nigel W.; Fleckner, Jan; McCarthy, Mark I.; Zondervan, Krina T.; Karpe, Fredrik

    2011-01-01

    To understand how miRNAs contribute to the molecular phenotype of adipose tissues and related traits, we performed global miRNA expression profiling in subcutaneous abdominal and gluteal adipose tissue of 70 human subjects and characterised which miRNAs were differentially expressed between these tissues. We found that 12% of the miRNAs were significantly differentially expressed between abdominal and gluteal adipose tissue (FDR adjusted p<0.05) in the primary study, of which 59 replicated in a follow-up study of 40 additional subjects. Further, 14 miRNAs were found to be associated with metabolic syndrome case-control status in abdominal tissue and three of these replicated (primary study: FDR adjusted p<0.05, replication: p<0.05 and directionally consistent effect). Genome-wide genotyping was performed in the 70 subjects to enable miRNA expression quantitative trait loci (eQTL) analysis. Candidate miRNA eQTLs were followed-up in the additional 40 subjects and six significant, independent cis-located miRNA eQTLs (primary study: p<0.001; replication: p<0.05 and directionally consistent effect) were identified. Finally, global mRNA expression profiling was performed in both tissues to enable association analysis between miRNA and target mRNA expression levels. We find 22% miRNAs in abdominal and 9% miRNAs in gluteal adipose tissue with expression levels significantly associated with the expression of corresponding target mRNAs (FDR adjusted p<0.05). Taken together, our results indicate a clear difference in the miRNA molecular phenotypic profile of abdominal and gluteal adipose tissue, that the expressions of some miRNAs are influenced by cis-located genetic variants and that miRNAs are associated with expression levels of their predicted mRNA targets. PMID:22102887

  14. MicroRNA expression in abdominal and gluteal adipose tissue is associated with mRNA expression levels and partly genetically driven.

    PubMed

    Rantalainen, Mattias; Herrera, Blanca M; Nicholson, George; Bowden, Rory; Wills, Quin F; Min, Josine L; Neville, Matt J; Barrett, Amy; Allen, Maxine; Rayner, Nigel W; Fleckner, Jan; McCarthy, Mark I; Zondervan, Krina T; Karpe, Fredrik; Holmes, Chris C; Lindgren, Cecilia M

    2011-01-01

    To understand how miRNAs contribute to the molecular phenotype of adipose tissues and related traits, we performed global miRNA expression profiling in subcutaneous abdominal and gluteal adipose tissue of 70 human subjects and characterised which miRNAs were differentially expressed between these tissues. We found that 12% of the miRNAs were significantly differentially expressed between abdominal and gluteal adipose tissue (FDR adjusted p<0.05) in the primary study, of which 59 replicated in a follow-up study of 40 additional subjects. Further, 14 miRNAs were found to be associated with metabolic syndrome case-control status in abdominal tissue and three of these replicated (primary study: FDR adjusted p<0.05, replication: p<0.05 and directionally consistent effect). Genome-wide genotyping was performed in the 70 subjects to enable miRNA expression quantitative trait loci (eQTL) analysis. Candidate miRNA eQTLs were followed-up in the additional 40 subjects and six significant, independent cis-located miRNA eQTLs (primary study: p<0.001; replication: p<0.05 and directionally consistent effect) were identified. Finally, global mRNA expression profiling was performed in both tissues to enable association analysis between miRNA and target mRNA expression levels. We find 22% miRNAs in abdominal and 9% miRNAs in gluteal adipose tissue with expression levels significantly associated with the expression of corresponding target mRNAs (FDR adjusted p<0.05). Taken together, our results indicate a clear difference in the miRNA molecular phenotypic profile of abdominal and gluteal adipose tissue, that the expressions of some miRNAs are influenced by cis-located genetic variants and that miRNAs are associated with expression levels of their predicted mRNA targets.

  15. Neuropeptide Y mRNA expression levels following chronic olanzapine, clozapine and haloperidol administration in rats.

    PubMed

    Huang, X-F; Deng, Chao; Zavitsanou, Katerina

    2006-06-01

    Using quantitative in situ hybridization, this study examined regional changes in rat brain mRNA levels encoding neuropeptide Y (NPY) following olanzapine, clozapine and haloperidol administration (1.2, 1.5 and 2.0 mg/kg, oral) for 36 days. The NPY mRNA expression levels and patterns were examined after the last drug administration at both time points enabling the measurement of immediate effect at 2h and the effects after 48 h of drug administration. It was found that all these drugs had an immediate effect on NPY mRNA expression, while virtually all these changes normalized 48 h after the drug treatments. A similarity in altered NPY mRNA expression patterns was seen between the olanzapine and clozapine groups; however, haloperidol was very different. Olanzapine and clozapine administration decreased NPY mRNA levels in the nucleus accumbens, striatum and anterior cingulate cortex (from -60% to -77%, p<0.05). Haloperidol decreased NPY mRNA expression in the amygdala and hippocampus (-69%, -64%, p<0.05). In the lateral septal nucleus, NPY mRNA levels significantly decreased in the olanzapine group (-66%, p<0.05), a trend toward a decrease was observed in the clozapine group, and no change was found in the haloperidol treated group. These results suggest that the different effects of atypical and typical antipsychotics on NPY systems may reflect the neural chemical mechanisms responsible for the differences between these drugs in their effects in treating positive and negative symptoms of schizophrenia. The immediate decrease of NPY mRNA levels suggests an immediate reduction of NPY biosynthesis in response to these drugs.

  16. Translational signatures and mRNA levels are highly correlated in human stably expressed genes.

    PubMed

    Line, Sergio R P; Liu, Xiaoming; de Souza, Ana Paula; Yu, Fuli

    2013-04-19

    Gene expression is one of the most relevant biological processes of living cells. Due to the relative small population sizes, it is predicted that human gene sequences are not strongly influenced by selection towards expression efficiency. One of the major problems in estimating to what extent gene characteristics can be selected to maximize expression efficiency is the wide variation that exists in RNA and protein levels among physiological states and different tissues. Analyses of datasets of stably expressed genes (i.e. with consistent expression between physiological states and tissues) would provide more accurate and reliable measurements of associations between variations of a specific gene characteristic and expression, and how distinct gene features work to optimize gene expression. Using a dataset of human genes with consistent expression between physiological states we selected gene sequence signatures related to translation that can predict about 42% of mRNA variation. The prediction can be increased to 51% when selecting genes that are stably expressed in more than 1 tissue. These genes are enriched for translation and ribosome biosynthesis processes and have higher translation efficiency scores, smaller coding sequences and 3' UTR sizes and lower folding energies when compared to other datasets. Additionally, the amino acid frequencies weighted by expression showed higher correlations with isoacceptor tRNA gene copy number, and smaller absolute correlation values with biosynthetic costs. Our results indicate that human gene sequence characteristics related to transcription and translation processes can co-evolve in an integrated manner in order to optimize gene expression.

  17. MicroRNA-199b expression level and coliform count in irritable bowel syndrome.

    PubMed

    Mansour, Marwa A; Sabbah, Norhan A; Mansour, Shymaa A; Ibrahim, Amany M

    2016-05-01

    Irritable bowel syndrome (IBS) is a common intestinal disorder. The pathophysiology of IBS may involve an altered intestinal microbiota. Recent studies have shown that alterations in microRNA (miRNA) levels have affected IBS and its subtypes. We aimed to compare both the count of Coliform and serum level of miRNA-199b between patients with IBS and healthy controls and to find the relationship between the Coliform and miRNAs in patients with IBS. Patients with IBS were classified into three subgroups based on their predominant bowel pattern as defined by Rome III criteria. Quantitative culture of Coliform and determination of serum miRNA-199b expression level by quantitative real-time PCR in IBS group versus healthy controls were performed. There was a significant increase in the count of Coliform in patients with IBS and its different subtypes when compared with healthy controls. There was a significant decrease of serum miR-199b expression level in patients with IBS and its different subtypes when compared with healthy controls with the highest level (1.9 ± 0.53 log scale) in healthy controls and lowest one (0.71 ± 0.27 log scale) in IBS with diarrhea (IBS-D) subtype. Moreover, there was a negative correlation between the count of Coliform and the serum miRNA-199b expression level in IBS. This study reported that there was a significant increase in the count of Coliform and a decrease in the serum miRNA-199b expression level. In addition, there was a negative correlation between them in patients with IBS and its different subtypes when compared with healthy controls. © 2016 IUBMB Life, 68(5):335-342, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  18. Gallium nitrate regulates rat osteoblast expression of osteocalcin protein and mRNA levels.

    PubMed

    Guidon, P T; Salvatori, R; Bockman, R S

    1993-01-01

    Gallium nitrate, a group IIIa metal salt, has been found to be clinically effective for the treatment of accelerated bone resorption in cancer-related hypercalcemia and Paget's disease. Here we report the effects of gallium nitrate on osteocalcin mRNA and protein levels on the rat osteoblast-like cell line ROS 17/2.8. Gallium nitrate reduced both constitutive and vitamin D3-stimulated osteocalcin protein levels in culture medium by one-half and osteocalcin mRNA levels to one-third to one-tenth of control. Gallium nitrate also inhibited vitamin D3 stimulation of osteocalcin and osteopontin mRNA levels but did not affect constitutive osteopontin mRNA levels. Among several different metals examined, gallium was unique in its ability to reduce osteocalcin mRNA levels without decreasing levels of other mRNAs synthesized by ROS 17/2.8 cells. The effects of gallium nitrate on osteocalcin mRNA and protein synthesis mimic those seen when ROS 17/2.8 cells are exposed to transforming growth factor beta 1 (TGF beta 1); however, TGF-beta 1 was not detected in gallium nitrate-treated ROS 17/2.8 cell media. Use of the RNA polymerase II inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that gallium nitrate did not alter the stability of osteocalcin mRNA. Transient transfection assays using the rat osteocalcin promoter linked to the bacterial reporter gene chloramphenicol acetyltransferase indicated that gallium nitrate blocked reporter gene expression stimulated by the osteocalcin promoter. This is the first reported effect of gallium nitrate on isolated osteoblast cells.

  19. Steroid hormone receptor gene expression in human breast cancer cells: inverse relationship between oestrogen and glucocorticoid receptor messenger RNA levels.

    PubMed

    Hall, R E; Lee, C S; Alexander, I E; Shine, J; Clarke, C L; Sutherland, R L

    1990-12-15

    The relative expression in human breast cancer cells of messenger ribonucleic acids (mRNA) encoding different steroid hormone receptors is unknown. Accordingly, mRNA levels in total RNA extracted from 13 human breast cancer cell lines were measured by Northern analysis employing complementary DNA probes for the human oestrogen (ER), progesterone (PR), androgen (AR), vitamin D3 (VDR) and glucocorticoid receptors (GR). The 7 ER+ lines expressed a single 6.4 kilobases (kb) ER mRNA. Interestingly, low concentrations of ER mRNA were detected in the ER- cell lines, MDA-MB-330 and BT 20. PR mRNA, predominantly a 13.5 kb species, was expressed in the 6 lines known to be ER+, PR+ by radioligand binding; however, one ER+ cell line, MDA-MB-134, failed to express PR mRNA. A 10.5 kb AR mRNA was expressed at significantly higher levels in ER+ than ER- cell lines. All cell lines expressed a single 4.6 kb mRNA for VDR and a single 7.4 kb mRNA for GR. ER and PR mRNA levels were positively correlated (p = 0.011) and each was positively correlated with androgen receptor (AR) mRNA levels (p less than or equal to 0.009). ER, PR and AR mRNAs were negatively associated with GR levels (p less than or equal to 0.012), while ER and AR mRNA levels were negatively correlated with mRNA for the epidermal growth factor receptor. In contrast, levels of VDR mRNA were unrelated to the concentration of any other steroid receptor mRNA. Our data demonstrate the coordinate expression of ER, PR and AR genes, and an inverse relationship between sex steroid hormone receptor and GR gene expression in human breast cancer cell lines.

  20. Maternal mRNA expression levels of H19 are inversely associated with risk of macrosomia

    PubMed Central

    Jiang, Hua; Yu, Yang; Xun, Pengcheng; Zhang, Jun; Luo, Guanghua

    2014-01-01

    Introduction To investigate the associations between the mRNA levels of H19 in term placenta and risk of macrosomia. Material and methods Term placentas were collected from 37 macrosomia and 37 matched neonates with normal birth weight (controls) born in Changzhou Women and Children Health Hospital, Jiangsu province, P. R. China from March 1 to June 30, 2008. The mRNA levels of H19 in those placentas were measured by real-time polymerase chain reaction (PCR). Simple and multiple logistic regression models were used to explore the risk factors in the development of macrosomia. All analyses were performed using Stata 10.0 (StataCorp, College Station, Texas, USA). Results The average H19 mRNA level of the macrosomia group was 1.450 ±0.456 while in the control group it was 2.080 ±1.296. Based on the result of Student's t test, there was a significant difference in H19 mRNA level between the macrosomia group and the control group (p = 0.008). After controlling for potential confounders, the multivariable adjusted odds ratio (OR) of macrosomia for those in the highest tertile of H19 mRNA level was 0.12 (95% CI: 0.02–0.59) when compared to those in the lowest tertile (p for linear trend = 0.009). Conclusions The term placental H19 mRNA levels were inversely related to the occurrence of macrosomia. Our findings suggest that the low expression of H19 mRNA may contribute to the development of macrosomia. PMID:25097584

  1. Maternal mRNA expression levels of H19 are inversely associated with risk of macrosomia.

    PubMed

    Jiang, Hua; Yu, Yang; Xun, Pengcheng; Zhang, Jun; Luo, Guanghua; Wang, Qiuwei

    2014-06-29

    To investigate the associations between the mRNA levels of H19 in term placenta and risk of macrosomia. Term placentas were collected from 37 macrosomia and 37 matched neonates with normal birth weight (controls) born in Changzhou Women and Children Health Hospital, Jiangsu province, P. R. China from March 1 to June 30, 2008. The mRNA levels of H19 in those placentas were measured by real-time polymerase chain reaction (PCR). Simple and multiple logistic regression models were used to explore the risk factors in the development of macrosomia. All analyses were performed using Stata 10.0 (StataCorp, College Station, Texas, USA). The average H19 mRNA level of the macrosomia group was 1.450 ±0.456 while in the control group it was 2.080 ±1.296. Based on the result of Student's t test, there was a significant difference in H19 mRNA level between the macrosomia group and the control group (p = 0.008). After controlling for potential confounders, the multivariable adjusted odds ratio (OR) of macrosomia for those in the highest tertile of H19 mRNA level was 0.12 (95% CI: 0.02-0.59) when compared to those in the lowest tertile (p for linear trend = 0.009). The term placental H19 mRNA levels were inversely related to the occurrence of macrosomia. Our findings suggest that the low expression of H19 mRNA may contribute to the development of macrosomia.

  2. Comprehensive expression analysis of FSHD candidate genes at the mRNA and protein level.

    PubMed

    Klooster, Rinse; Straasheijm, Kirsten; Shah, Bharati; Sowden, Janet; Frants, Rune; Thornton, Charles; Tawil, Rabi; van der Maarel, Silvère

    2009-12-01

    In facioscapulohumeral muscular dystrophy (FSHD) the majority of patients carry a D4Z4 macrosatellite repeat contraction in the subtelomere of chromosome 4q. Several disease mechanisms have been proposed to explain how repeat contraction causes muscular dystrophy. All proposed mechanisms foresee a change from a closed to a more open chromatin structure followed by loss of control over expression of genes in or proximal to D4Z4. Initially, a distance and residual repeat size-dependent upregulation of the candidate genes FRG2, FRG1 and ANT1 was observed, but most successive expression studies failed to support transcriptional upregulation of 4qter genes. Moreover, chromatin studies do not provide evidence for a cis-spreading mechanism operating at 4qter in FSHD. In part, this inconsistency may be explained by differences in the techniques used, and the use of RNA samples obtained from different muscle groups. The aim of this study is to comprehensively and uniformly study the expression of the FSHD candidate genes FRG1, FRG2, CRYM, ANT1, ALP, PITX1 and LRP2BP at the RNA and protein level in identically processed primary myoblasts, myotubes and quadriceps muscle. Expression was compared between samples obtained from FSHD patients and normal controls with samples from myotonic dystrophy type 1 patients as disease controls. No consistent changes in RNA or protein expression levels were observed between the samples. The one exception was a selective increase in FRG2 mRNA expression in FSHD myotubes. This study provides further evidence that there is no demonstrable consistent, large magnitude, overexpression of any of the FSHD candidate genes.

  3. RNA-Binding Protein AUF1 Promotes Myogenesis by Regulating MEF2C Expression Levels

    PubMed Central

    Panda, Amaresh C.; Abdelmohsen, Kotb; Yoon, Je-Hyun; Martindale, Jennifer L.; Yang, Xiaoling; Curtis, Jessica; Mercken, Evi M.; Chenette, Devon M.; Zhang, Yongqing; Schneider, Robert J.; Becker, Kevin G.; de Cabo, Rafael

    2014-01-01

    The mammalian RNA-binding protein AUF1 (AU-binding factor 1, also known as heterogeneous nuclear ribonucleoprotein D [hnRNP D]) binds to numerous mRNAs and influences their posttranscriptional fate. Given that many AUF1 target mRNAs encode muscle-specific factors, we investigated the function of AUF1 in skeletal muscle differentiation. In mouse C2C12 myocytes, where AUF1 levels rise at the onset of myogenesis and remain elevated throughout myocyte differentiation into myotubes, RNP immunoprecipitation (RIP) analysis indicated that AUF1 binds prominently to Mef2c (myocyte enhancer factor 2c) mRNA, which encodes the key myogenic transcription factor MEF2C. By performing mRNA half-life measurements and polysome distribution analysis, we found that AUF1 associated with the 3′ untranslated region (UTR) of Mef2c mRNA and promoted MEF2C translation without affecting Mef2c mRNA stability. In addition, AUF1 promoted Mef2c gene transcription via a lesser-known role of AUF1 in transcriptional regulation. Importantly, lowering AUF1 delayed myogenesis, while ectopically restoring MEF2C expression levels partially rescued the impairment of myogenesis seen after reducing AUF1 levels. We propose that MEF2C is a key effector of the myogenesis program promoted by AUF1. PMID:24891619

  4. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition.

    PubMed

    Cava, Claudia; Bertoli, Gloria; Ripamonti, Marilena; Mauri, Giancarlo; Zoppis, Italo; Della Rosa, Pasquale Anthony; Gilardi, Maria Carla; Castiglioni, Isabella

    2014-01-01

    Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment. Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify potential markers that can be used for BC classification, we analyzed mRNAs expression profiles, gene copy numbers, microRNAs expression and their association with tumor grade in BC microarray-derived datasets. From mRNA expression results, we found that grade 2 BC is most likely a mixture of grade 1 and grade 3 that have been misclassified, being described by the gene signature of either grade 1 or grade 3. We assessed the potential of the new approach of integrating mRNA expression profile, copy number alterations, and microRNA expression levels to select a limited number of genomic BC biomarkers. The combination of mRNA profile analysis and copy number data with microRNA expression levels led to the identification of two gene signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV and DDX19A) respectively, the latter obtained through a meta-analytical procedure. The 42-based gene signature identifies 4 classes of up- or down-regulated microRNAs (17 microRNAs) and of their 17 target mRNA, and the 4-based genes signature identified 4 microRNAs (Hsa-miR-320d, Hsa-miR-139-5p, Hsa-miR-567 and Hsa-let-7c). These results are discussed from a biological point of view with respect to pathological features of BC. Our identified mRNAs and microRNAs were validated as prognostic factors of BC disease progression, and could potentially facilitate the implementation of assays for laboratory validation, due to their reduced number.

  5. BCL6 mRNA Expression Level in Invasive Duct Carcinoma not otherwise Specified

    PubMed Central

    Badr, Eman; Masoud, Eman; Eldien, Marwa Serag

    2016-01-01

    Introduction B-Cell Lymphoma 6 (BCL6) has an oncogenic role in tumourigenesis of various malignancies. It represses genes involved in terminal differentiation and plays complementary role with Signal Transducer and Activator of Transcription 3 (STAT3) in triple-negative breast cancer cellular function. Aim To evaluate the expression of BCL6 in cancer breast and determine its correlation with the clinico-pathological features including the molecular subtype of breast carcinoma. Materials and Methods This prospective case control study was carried out on 150 patients, divided into 100 cases of invasive duct carcinoma not otherwise specified and 50 benign breast lesions including fibroadenoma and fibrocystic disease. Fresh tissues were excised, which were then subjected to RNA extraction. The BCL6 mRNA level was assessed using real-time reverse transcription Polymerase Chain Reaction (PCR). Results There was a significant higher levels of BCL6 mRNA in malignant cases compared to benign ones (p<0.001). The level of BCL6 mRNA was higher in cases showing advanced tumor stage (p<0.04), triple negative subtype and associated in situ component (p<0.001) compared to cases with an early stage, luminal or Her 2-neu positive subtypes and those lacking in situ component. Conclusion BCL6 is up-regulated in breast cancer and is associated with poor prognostic features such as advanced stage and triple negative molecular subtype. BCL6 inhibitors might be considered as targeted therapy for breast cancer. PMID:28208987

  6. Kaposi's sarcoma-associated herpesvirus microRNA single-nucleotide polymorphisms identified in clinical samples can affect microRNA processing, level of expression, and silencing activity.

    PubMed

    Han, Soo-Jin; Marshall, Vickie; Barsov, Eugene; Quiñones, Octavio; Ray, Alex; Labo, Nazzarena; Trivett, Matthew; Ott, David; Renne, Rolf; Whitby, Denise

    2013-11-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs that can produce 25 KSHV mature microRNAs. We previously reported single-nucleotide polymorphisms (SNPs) in KSHV-encoded pre-microRNA and mature microRNA sequences from clinical samples (V. Marshall et al., J. Infect. Dis., 195:645-659, 2007). To determine whether microRNA SNPs affect pre-microRNA processing and, ultimately, mature microRNA expression levels, we performed a detailed comparative analysis of (i) mature microRNA expression levels, (ii) in vitro Drosha/Dicer processing, and (iii) RNA-induced silencing complex-dependent targeting of wild-type (wt) and variant microRNA genes. Expression of pairs of wt and variant pre-microRNAs from retroviral vectors and measurement of KSHV mature microRNA expression by real-time reverse transcription-PCR (RT-PCR) revealed differential expression levels that correlated with the presence of specific sequence polymorphisms. Measurement of KSHV mature microRNA expression in a panel of primary effusion lymphoma cell lines by real-time RT-PCR recapitulated some observed expression differences but suggested a more complex relationship between sequence differences and expression of mature microRNA. Furthermore, in vitro maturation assays demonstrated significant SNP-associated changes in Drosha/DGCR8 and/or Dicer processing. These data demonstrate that SNPs within KSHV-encoded pre-microRNAs are associated with differential microRNA expression levels. Given the multiple reports on the involvement of microRNAs in cancer, the biological significance of these phenotypic and genotypic variants merits further studies in patients with KSHV-associated malignancies.

  7. Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Single-Nucleotide Polymorphisms Identified in Clinical Samples Can Affect MicroRNA Processing, Level of Expression, and Silencing Activity

    PubMed Central

    Han, Soo-Jin; Marshall, Vickie; Barsov, Eugene; Quiñones, Octavio; Ray, Alex; Labo, Nazzarena; Trivett, Matthew; Ott, David; Renne, Rolf

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs that can produce 25 KSHV mature microRNAs. We previously reported single-nucleotide polymorphisms (SNPs) in KSHV-encoded pre-microRNA and mature microRNA sequences from clinical samples (V. Marshall et al., J. Infect. Dis., 195:645–659, 2007). To determine whether microRNA SNPs affect pre-microRNA processing and, ultimately, mature microRNA expression levels, we performed a detailed comparative analysis of (i) mature microRNA expression levels, (ii) in vitro Drosha/Dicer processing, and (iii) RNA-induced silencing complex-dependent targeting of wild-type (wt) and variant microRNA genes. Expression of pairs of wt and variant pre-microRNAs from retroviral vectors and measurement of KSHV mature microRNA expression by real-time reverse transcription-PCR (RT-PCR) revealed differential expression levels that correlated with the presence of specific sequence polymorphisms. Measurement of KSHV mature microRNA expression in a panel of primary effusion lymphoma cell lines by real-time RT-PCR recapitulated some observed expression differences but suggested a more complex relationship between sequence differences and expression of mature microRNA. Furthermore, in vitro maturation assays demonstrated significant SNP-associated changes in Drosha/DGCR8 and/or Dicer processing. These data demonstrate that SNPs within KSHV-encoded pre-microRNAs are associated with differential microRNA expression levels. Given the multiple reports on the involvement of microRNAs in cancer, the biological significance of these phenotypic and genotypic variants merits further studies in patients with KSHV-associated malignancies. PMID:24006441

  8. The Role of Neuropeptide Y mRNA Expression Level in Distinguishing Different Types of Depression.

    PubMed

    Yue, Yingying; Jiang, Haitang; Yin, Yingying; Zhang, Yuqun; Liang, Jinfeng; Li, Shenghua; Wang, Jun; Lu, Jianxin; Geng, Deqin; Wu, Aiqin; Yuan, Yonggui

    2016-01-01

    Previous studies demonstrate that the protein of neuropeptide Y (NPY) is abnormal in depression patients, but the changes of NPY in different types of depression are unclear. This study was aimed to examine protein and mRNA expression levels of NPY in 159 cases with four groups including post-stroke depression (PSD) group, stroke without depression (Non-PSD) group, major depressive disorder (MDD) group and normal control (NC) group. The protein and gene expression analysis were performed by enzyme-linked immunosorbent assay (ELISA) and quantitative polymerase chain reaction-based methods. One way analysis of variance (ANOVA), chi-square tests and nonparametric test were used to evaluate general characteristics, clinical and biological materials. In order to explore the role of NPY in different types of depression, the partial correlations, binary logistic regression analysis and receiver operating characteristic (ROC) curve were calculated for PSD and MDD groups. There are significant differences of NPY protein (Fdf(3) = 5.167, P = 0.002) and mRNA expression levels ([Formula: see text] = 20.541, P < 0.001) among four groups. Bonferroni multiple comparisons found that the NPY protein was significantly decreased in PSD (FBonferroni = -7.133, P = 0.002) and Non-PSD group (FBonferroni = -5.612, P = 0.018) compared with NC group. However, contrasted with MDD group, the mRNA expression was increased in PSD and Non-PSD group by nonparametric test (all P < 0.05). In binary logistic analyses, NPY mRNA expression was independent predictors of PSD (odds ratio: 1.452, 95% CI, 1.081-1.951, P = 0.013). The ROC curve showed NPY mRNA had a general prognostic accuracy (area under the curve: 0.766, 95% CI, 0.656-0.876, P < 0.001). This is the first study to explore the distinguishing function of NPY in different types of depression. It will provide help in the identification of different subtypes of depression.

  9. The Role of Neuropeptide Y mRNA Expression Level in Distinguishing Different Types of Depression

    PubMed Central

    Yue, Yingying; Jiang, Haitang; Yin, Yingying; Zhang, Yuqun; Liang, Jinfeng; Li, Shenghua; Wang, Jun; Lu, Jianxin; Geng, Deqin; Wu, Aiqin; Yuan, Yonggui

    2016-01-01

    Previous studies demonstrate that the protein of neuropeptide Y (NPY) is abnormal in depression patients, but the changes of NPY in different types of depression are unclear. This study was aimed to examine protein and mRNA expression levels of NPY in 159 cases with four groups including post-stroke depression (PSD) group, stroke without depression (Non-PSD) group, major depressive disorder (MDD) group and normal control (NC) group. The protein and gene expression analysis were performed by enzyme-linked immunosorbent assay (ELISA) and quantitative polymerase chain reaction-based methods. One way analysis of variance (ANOVA), chi-square tests and nonparametric test were used to evaluate general characteristics, clinical and biological materials. In order to explore the role of NPY in different types of depression, the partial correlations, binary logistic regression analysis and receiver operating characteristic (ROC) curve were calculated for PSD and MDD groups. There are significant differences of NPY protein (Fdf(3) = 5.167, P = 0.002) and mRNA expression levels (χKruskal2-Wallis, df(3) = 20.541, P < 0.001) among four groups. Bonferroni multiple comparisons found that the NPY protein was significantly decreased in PSD (FBonferroni = −7.133, P = 0.002) and Non-PSD group (FBonferroni = −5.612, P = 0.018) compared with NC group. However, contrasted with MDD group, the mRNA expression was increased in PSD and Non-PSD group by nonparametric test (all P < 0.05). In binary logistic analyses, NPY mRNA expression was independent predictors of PSD (odds ratio: 1.452, 95% CI, 1.081–1.951, P = 0.013). The ROC curve showed NPY mRNA had a general prognostic accuracy (area under the curve: 0.766, 95% CI, 0.656–0.876, P < 0.001). This is the first study to explore the distinguishing function of NPY in different types of depression. It will provide help in the identification of different subtypes of depression. PMID:28082897

  10. RNA/DNA ratio and LPL and MyoD mRNA expressions in muscle of Oreochromis niloticus fed with elevated levels of palm oil

    NASA Astrophysics Data System (ADS)

    Ayisi, Christian Larbi; Zhao, Jinliang

    2016-02-01

    Palm oil is of great potential as one of the sustainable alternatives to fish oil (FO) in aquafeeds. In this present study, five isonitrogenous diets (32% crude protein) with elevated palm oil levels of 0%, 2%, 4%, 6% and 8% were used during an 8-week feeding trial to evaluate its effects on RNA/DNA ratio and lipoprotein lipase (LPL) and MyoD mRNA expressions in muscle of Oreochromis niloticus. The results showed that RNA, DNA content as well as ratio of RNA to DNA were significantly affected ( P < 0.05), in each case the highest was recorded in fish group subjected to 6% palm oil level. There was a strong positive correlation between nucleic acid concentration (RNA concentration and RNA: DNA ratio) and specific growth rate (SGR), protein efficiency ratio (PER), while a negative correlation existed between nucleic acid concentration (RNA concentration and RNA: DNA ratio) and feed conversion ratio (FCR). The mRNA expressions of LPL and MyoD in muscle were not significantly affected by the different palm oil levels, although the highest expression was observed in fish fed with 6% palm oil level. There also existed a strong positive correlation between the mRNA expression of LPL, MyoD and SGR, PER, while their correlation with FCR was negative. In conclusion, elevated palm oil affected the RNA, DNA concentration as well as RNA/DNA ratio significantly, although the mRNA expression of LPL and MyoD were not affected significantly by elevated palm oil levels.

  11. Bimodal distribution of RNA expression levels in human skeletal muscle tissue

    PubMed Central

    2011-01-01

    Background Many human diseases and phenotypes are related to RNA expression, levels of which are influenced by a wide spectrum of genetic and exposure-related factors. In a large genome-wide study of muscle tissue expression, we found that some genes exhibited a bimodal distribution of RNA expression, in contrast to what is usually assumed in studies of a single healthy tissue. As bimodality has classically been considered a hallmark of genetic control, we assessed the genome-wide prevalence, cause, and association of this phenomenon with diabetes-related phenotypes in skeletal muscle tissue from 225 healthy Pima Indians using exon array expression chips. Results Two independent batches of microarrays were used for bimodal assessment and comparison. Of the 17,881 genes analyzed, eight (GSTM1, HLA-DRB1, ERAP2, HLA-DRB5, MAOA, ACTN3, NR4A2, and THNSL2) were found to have bimodal expression replicated in the separate batch groups, while 24 other genes had evidence of bimodality in only one group. Some bimodally expressed genes had modest associations with pre-diabetic phenotypes, of note ACTN3 with insulin resistance. Most of the other bimodal genes have been reported to be involved with various other diseases and characteristics. Association of expression with cis genetic variation in a subset of 149 individuals found all but one of the confirmed bimodal genes and nearly half of all potential ones to be highly significant expression quantitative trait loci (eQTL). The rare prevalence of these bimodally expressed genes found after controlling for batch effects was much lower than the prevalence reported in other studies. Additional validation in data from separate muscle expression studies confirmed the low prevalence of bimodality we observed. Conclusions We conclude that the prevalence of bimodal gene expression is quite rare in healthy muscle tissue (<0.2%), and is much lower than limited reports from other studies. The major cause of these clearly bimodal

  12. Comparative evaluation of isoform-level gene expression estimation algorithms for RNA-seq and exon-array platforms

    PubMed Central

    Dapas, Matthew; Kandpal, Manoj; Bi, Yingtao

    2017-01-01

    Abstract Given that the majority of multi-exon genes generate diverse functional products, it is important to evaluate expression at the isoform level. Previous studies have demonstrated strong gene-level correlations between RNA sequencing (RNA-seq) and microarray platforms, but have not studied their concordance at the isoform level. We performed transcript abundance estimation on raw RNA-seq and exon-array expression profiles available for common glioblastoma multiforme samples from The Cancer Genome Atlas using different analysis pipelines, and compared both the isoform- and gene-level expression estimates between programs and platforms. The results showed better concordance between RNA-seq/exon-array and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) platforms for fold change estimates than for raw abundance estimates, suggesting that fold change normalization against a control is an important step for integrating expression data across platforms. Based on RT-qPCR validations, eXpress and Multi-Mapping Bayesian Gene eXpression (MMBGX) programs achieved the best performance for RNA-seq and exon-array platforms, respectively, for deriving the isoform-level fold change values. While eXpress achieved the highest correlation with the RT-qPCR and exon-array (MMBGX) results overall, RSEM was more highly correlated with MMBGX for the subset of transcripts that are highly variable across the samples. eXpress appears to be most successful in discriminating lowly expressed transcripts, but IsoformEx and RSEM correlate more strongly with MMBGX for highly expressed transcripts. The results also reinforce how potentially important isoform-level expression changes can be masked by gene-level estimates, and demonstrate that exon arrays yield comparable results to RNA-seq for evaluating isoform-level expression changes. PMID:26944083

  13. TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.

    PubMed

    Guedes de Almeida, Luciana; Sergio, Luiz Philippe da Silva; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza

    2017-08-01

    Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.

  14. Increased ceramide synthase 2 and 6 mRNA levels in breast cancer tissues and correlation with sphingosine kinase expression.

    PubMed

    Erez-Roman, Racheli; Pienik, Reut; Futerman, Anthony H

    2010-01-01

    Intervention in the ceramide metabolic pathway is emerging as a novel means to regulate cancer and to modify the activity of chemotherapeutic drugs. We now study mRNA expression levels of the six ceramide synthase (CerS) genes in breast cancer tissue. CerS2 and CerS6 mRNA was significantly elevated in breast cancer tissue compared to paired normal tissue, with approximately half of the individuals showing elevated CerS2 and CerS6 mRNA. A significant correlation was found between CerS2 and CerS6 expression, and between CerS4 and CerS2/CerS6 expression. Moreover, patients that expressed higher CerS2 or 4 mRNA levels tended to show no changes in sphingosine kinase 1 levels, and likewise patients that expressed no change in CerS2 or CerS4 mRNA levels tended to express higher levels of sphingosine kinase 1. Together these results suggest an important role for the CerS genes in breast cancer etiology or diagnosis.

  15. Avoidance of stochastic RNA interactions can be harnessed to control protein expression levels in bacteria and archaea

    PubMed Central

    Umu, Sinan Uğur; Poole, Anthony M; Dobson, Renwick CJ; Gardner, Paul P

    2016-01-01

    A critical assumption of gene expression analysis is that mRNA abundances broadly correlate with protein abundance, but these two are often imperfectly correlated. Some of the discrepancy can be accounted for by two important mRNA features: codon usage and mRNA secondary structure. We present a new global factor, called mRNA:ncRNA avoidance, and provide evidence that avoidance increases translational efficiency. We also demonstrate a strong selection for the avoidance of stochastic mRNA:ncRNA interactions across prokaryotes, and that these have a greater impact on protein abundance than mRNA structure or codon usage. By generating synonymously variant green fluorescent protein (GFP) mRNAs with different potential for mRNA:ncRNA interactions, we demonstrate that GFP levels correlate well with interaction avoidance. Therefore, taking stochastic mRNA:ncRNA interactions into account enables precise modulation of protein abundance. DOI: http://dx.doi.org/10.7554/eLife.13479.001 PMID:27642845

  16. Specific responses in rat small intestinal epithelial mRNA expression and protein levels during chemotherapeutic damage and regeneration.

    PubMed

    Verburg, Melissa; Renes, Ingrid B; Van Nispen, Danielle J P M; Ferdinandusse, Sacha; Jorritsma, Marieke; Büller, Hans A; Einerhand, Alexandra W C; Dekker, Jan

    2002-11-01

    The rapidly dividing small intestinal epithelium is very sensitive to the cytostatic drug methotrexate. We investigated the regulation of epithelial gene expression in rat jejunum during methotrexate-induced damage and regeneration. Ten differentiation markers were localized on tissue sections and quantified at mRNA and protein levels relative to control levels. We analyzed correlations in temporal expression patterns between markers. mRNA expression of enterocyte and goblet cell markers decreased significantly during damage for a specific period. Of these, sucrase-isomaltase (-62%) and CPS (-82%) were correlated. Correlations were also found between lactase (-76%) and SGLT1 (-77%) and between I-FABP (-52%) and L-FABP (-45%). Decreases in GLUT5 (-53%), MUC2 (-43%), and TFF3 (-54%) mRNAs occurred independently of any of the other markers. In contrast, lysozyme mRNA present in Paneth cells increased (+76%). At the protein level, qualitative and quantitative changes were in agreement with mRNA expression, except for Muc2 (+115%) and TFF3 (+81%), which increased significantly during damage, following independent patterns. During regeneration, expression of each marker returned to control levels. The enhanced expression of cytoprotective molecules (Muc2, TFF3, lysozyme) during damage represents maintenance of goblet cell and Paneth cell functions, most likely to protect the epithelium. Decreased expression of enterocyte-specific markers represents decreased enterocyte function, of which fatty acid transporters were least affected.

  17. Analysis of xanthine dehydrogenase mRNA levels in mutants affecting the expression of the rosy locus.

    PubMed Central

    Covington, M; Fleenor, D; Devlin, R B

    1984-01-01

    Xanthine dehydrogenase (XDH) mRNA levels were measured in a number of mutants and natural variants affecting XDH gene expression. Two variants, ry+4 and ry+10, contain cis-acting elements which map to a region flanking the 5' end of the XDH gene. Ry+4, which has 2-3 times more XDH protein than a wild type strain, has 3.2 times more XDH mRNA. Ry+10 has 50% of the wild type XDH level and 54% of the wild type XDH mRNA level. Three rosy mutants which map within the structural gene were also examined. Two of these had little if any XDH mRNA, but the third mutant had 1.3 times more XDH mRNA than wild type flies. Another mutant, ry2 , which contains no XDH protein and has a 9KB transposable element inserted into the XDH gene, has normal levels of XDH mRNA transcripts which are also the same size as those found in the wild type strain. Changes in XDH mRNA levels were measured during Drosophila development and found to parallel changes in the amount of XDH protein. In addition, there were no large changes in the size of XDH mRNA during development. Images PMID:6588363

  18. The Contribution of RNA Decay Quantitative Trait Loci to Inter-Individual Variation in Steady-State Gene Expression Levels

    PubMed Central

    Pai, Athma A.; Cain, Carolyn E.; Mizrahi-Man, Orna; De Leon, Sherryl; Lewellen, Noah; Veyrieras, Jean-Baptiste; Degner, Jacob F.; Gaffney, Daniel J.; Pickrell, Joseph K.; Stephens, Matthew; Pritchard, Jonathan K.; Gilad, Yoav

    2012-01-01

    Recent gene expression QTL (eQTL) mapping studies have provided considerable insight into the genetic basis for inter-individual regulatory variation. However, a limitation of all eQTL studies to date, which have used measurements of steady-state gene expression levels, is the inability to directly distinguish between variation in transcription and decay rates. To address this gap, we performed a genome-wide study of variation in gene-specific mRNA decay rates across individuals. Using a time-course study design, we estimated mRNA decay rates for over 16,000 genes in 70 Yoruban HapMap lymphoblastoid cell lines (LCLs), for which extensive genotyping data are available. Considering mRNA decay rates across genes, we found that: (i) as expected, highly expressed genes are generally associated with lower mRNA decay rates, (ii) genes with rapid mRNA decay rates are enriched with putative binding sites for miRNA and RNA binding proteins, and (iii) genes with similar functional roles tend to exhibit correlated rates of mRNA decay. Focusing on variation in mRNA decay across individuals, we estimate that steady-state expression levels are significantly correlated with variation in decay rates in 10% of genes. Somewhat counter-intuitively, for about half of these genes, higher expression is associated with faster decay rates, possibly due to a coupling of mRNA decay with transcriptional processes in genes involved in rapid cellular responses. Finally, we used these data to map genetic variation that is specifically associated with variation in mRNA decay rates across individuals. We found 195 such loci, which we named RNA decay quantitative trait loci (“rdQTLs”). All the observed rdQTLs are located near the regulated genes and therefore are assumed to act in cis. By analyzing our data within the context of known steady-state eQTLs, we estimate that a substantial fraction of eQTLs are associated with inter-individual variation in mRNA decay rates. PMID:23071454

  19. MicroRNA 203 expression in keratinocytes is dependent on regulation of p53 levels by E6.

    PubMed

    McKenna, Declan J; McDade, Simon S; Patel, Daksha; McCance, Dennis J

    2010-10-01

    A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miRNA 203 (miR-203), which has previously been shown to play an important role in epithelial cell biology by regulating p63 levels. We investigated how expression of human papillomavirus type 16 (HPV16) oncoproteins E6 and E7 affected miR-203 expression during proliferation and differentiation of HFKs. We demonstrated that miR-203 expression is reduced in HFKs where p53 function is compromised, either by the viral oncoprotein E6 or by knockout of p53 using short hairpin RNAs (p53i). We show that the induction of miR-203 observed during calcium-induced differentiation of HFKs is significantly reduced in HFKs expressing E6 and in p53i HFKs. Induction of miR-203 in response to DNA damage is also reduced in the absence of p53. We report that proliferation of HFKs is dependent on the level of miR-203 expression and that overexpression of miR-203 can reduce overproliferation in E6/E7-expressing and p53i HFKs. In summary, these results indicate that expression of miR-203 is dependent on p53, which may explain how expression of HPV16 E6 can disrupt the balance between proliferation and differentiation, as well as the response to DNA damage, in keratinocytes.

  20. Distinct roles and differential expression levels of Wnt5a mRNA isoforms in colorectal cancer cells

    PubMed Central

    Huang, Tsui-Chin; Huang, Chi-Chen; Ko, Chiung-Yuan; Lee, Yi-Chao; Lin, Ding-Yen; Cheng, Ya-Wen

    2017-01-01

    The canonical Wnt/β-catenin pathway is constitutively activated in more than 90% of colorectal cancer (CRC) cases in which β-catenin contributes to CRC cell growth and survival. In contrast to the Wnt/β-catenin pathway, the non-canonical Wnt pathway can antagonize functions of the canonical Wnt/β-catenin pathway. Wnt5a is a key factor in the non-canonical Wnt pathway, and it plays diverse roles in different types of cancers. It was shown that reintroducing Wnt5a into CRC cells resulted in inhibited cell proliferation and impaired cell motility. However, contradictory results were reported describing increased Wnt5a expression being associated with a poor prognosis of CRC patients. Recently, it was shown that the diverse roles of Wnt5a are due to two distinct roles of Wnt5a isoforms. However, the exact roles and functions of the Wnt5a isoforms in CRC remain largely unclear. The present study for the first time showed the ambiguous role of Wnt5a in CRC was due to the encoding of distinct roles of the various Wnt5a mRNA isoforms. A relatively high expression level of the Wnt5a-short (S) isoform transcript and a low expression level of the Wnt5a-long (L) isoform transcript were detected in CRC cell lines and specimens. In addition, high expression levels of the Wnt5a-S mRNA isoform and low expression levels of the Wnt5a-L mRNA isoform were significantly positively correlated with tumor depth of CRC patients. Furthermore, knockdown of the endogenous expression of the Wnt5a-S mRNA isoform in HCT116 cells drastically inhibited their growth ability by inducing apoptosis through induction of FASLG expression and reduction of TNFRSF11B expression. Moreover, reactivation of methylation inactivation of the Wnt5a-L mRNA isoform by treatment with 5-azacytidine (5-Aza) enhanced the siWnt5a-S isoform's ability to induce apoptosis. Finally, we showed that the simultaneous reactivation of Wnt5a-L mRNA isoform and knockdown of Wnt5a-S mRNA isoform expression enhanced siWnt5a

  1. Expression levels of estrogen receptor α mRNA in peripheral blood cells are an independent biomarker for postmenopausal osteoporosis.

    PubMed

    Chou, Chi-Wen; Chiang, Tsay-I; Chang, I-Chang; Huang, Chung-Hung; Cheng, Ya-Wen

    2016-06-01

    The up- and down-regulation of the osteoclastogenesis response depends on the estrogen/estrogen receptor (ER) signaling pathway. Previous reports have shown that the promoter hypermethylation and gene polymorphism of ERα are risks for menopausal osteoporosis. No previous study has evaluated the expression levels of ERα mRNA in menopausal osteoporosis using human subjects. We hypothesized that ERα mRNA expression may show less resistance to postmenopausal osteoporosis. In this study, we enrolled 107 women older than 45 years without menstruation and classified them into control, osteopenia, and osteoporosis groups depending on their T-scores. The ERα mRNA levels in peripheral blood cells (PBCs) were analyzed via quantitative real-time reverse-transcription polymerase chain reaction (QRT-PCR), and estrogen in the serum was detected via ELISA. ERα mRNA levels in PBCs had a negative correlation with age and a positive correlation with estrogen and BAP in the osteopenia and osteoporosis groups, but not in the control group. Additionally, multivariate analysis showed that older age (> 55 years), and low ERα mRNA levels in PBLs (≦ 250.39 copies/μg DNA) were associated with an approximately 9.188-, and 31.25-fold risk of osteoporosis. We conclude that ERα mRNA levels in PBLs could be used as an independent risk factor for postmenopausal osteoporosis. Our findings suggested that ERα mRNA levels in PBLs may be more important than age and serum estrogen levels.

  2. mRNA and protein expression levels of four candidate genes for ear size in Erhualian and Large White pigs.

    PubMed

    Zhang, L C; Liang, J; Pu, L; Zhang, Y B; Wang, L G; Liu, X; Yan, H; Wang, L X

    2017-04-13

    Porcine ear size is an important characteristic for distinguishing among pig breeds. In a previous genome-wide association study of porcine ear size, LEM domain-containing 3 (LEMD3), methionine sulfoxide reductase B3 (MSRB3), high mobility group AT-hook 2 (HMGA2), and Wnt inhibitory factor 1 (WIF1) were implicated as important candidate genes for ear size. This study investigated the expression levels of four candidate genes for ear size in Erhualian and Large White pigs. Ten Erhualian pigs with large ears and eight Large White pigs with small ears at 60 days of age were examined. The mRNA expression levels of the four candidate genes were quantified by real-time polymerase chain reaction. WIF1 mRNA expression was significantly higher in Large White than in Erhualian pigs (P < 0.05), whereas the expression levels of the other three genes were not significantly different between the two breeds. The protein expression levels of the four genes were analyzed using western blot. WIF1 protein expression was significantly higher in Large White than in Erhualian pigs (P < 0.01), whereas MSRB3 protein expression was significantly higher in Erhualian than in Large White pigs (P < 0.05). There were no significant differences between the two breeds in residual protein expression. These results suggest that WIF1 is the main causal gene for ear size in pigs.

  3. Identification of HAVCR1 gene haplotypes associated with mRNA expression levels and susceptibility to autoimmune diseases.

    PubMed

    García-Lozano, José Raúl; Abad, Cristina; Escalera, Ana; Torres, Belén; Fernández, Olga; García, Alicia; Sánchez-Román, Julio; Sabio, José-Mario; Ortego-Centeno, Norberto; Raya-Alvarez, Enrique; Núñez-Roldán, Antonio; Martín, Javier; González-Escribano, María Francisca

    2010-08-01

    Human HAVCR1 gene maps on 5q33.2, a region linked with susceptibility to allergic and autoimmune diseases. The aims of the present study were to define the haplotypes of HAVCR1 gene taking into account both HapMap Project SNP haplotypes and exon 4 variants, to investigate a possible relationship between these haplotypes and mRNA expression levels, and to assess whether HAVCR1 gene is involved in susceptibility to rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Genotyping of three ins/del variants in the exon 4 was performed by fragment length analysis. Five tag SNPs genotypes and mRNA levels were determined using TaqMan assays. We defined four major haplotypes in our population: the two major haplotypes (named haplotypes A and B) bear both the 5383_5397del variant and the two most common SNP sets found in the CEU population. Quantification analysis revealed that genotype B/B had the highest median of mRNA expression levels (vs. BX + XX, p < 0.0001). Additionally, frequency of the genotype BB was significantly higher in RA patients than in controls (12.3 vs. 5.9% in controls, p = 0.0046, p (c) = 0.014, OR = 2.23, 95% CI 1.23-4.10). Our results support a relationship between HAVCR1 haplotypes and mRNA expression levels, and suggest an association of this gene with autoimmune diseases.

  4. Serum and aqueous xanthine oxidase levels, and mRNA expression in anterior lens epithelial cells in pseudoexfoliation.

    PubMed

    Simavli, Huseyin; Tosun, Mehmet; Bucak, Yasin Y; Erdurmus, Mesut; Ocak, Zeynep; Onder, Halil I; Acar, Muradiye

    2015-07-01

    The aim of this study was to determine serum and aqueous xanthine oxidase (XO) levels, and mRNA expression in anterior lens epithelial cells in pseudoexfoliation (PEX). In this prospective study, serum, aqueous and anterior lens capsules were taken from 21 patients with PEX and 23 normal subjects who had undergone routine cataract surgery. Serum and aqueous XO levels were analyzed using the colorimetric method. mRNA expression of XO in anterior lens epithelial cells was evaluated using reverse transcription polymerase chain reaction analysis. Serum XO levels (means ± standard deviations) were 207.0 ± 86.1 IU/mL and 240.6 ± 114.1 IU/mL in the normal and PEX groups, respectively (p = 0.310). Aqueous XO levels (means ± standard deviations) were 65.5 ± 54.3 IU/mL in the normal group and 130.5 ± 117.4 IU/mL in the PEX group (p = 0.028). There was a 2.9 fold decrease in mRNA expression in anterior lens epithelial cells of PEX, which is significantly lower than the normal group (p = 0.01). Higher aqueous XO levels lacking associated different serum XO suggests higher oxidative stress in the aqueous. Higher aqueous XO levels in PEX with decreased mRNA expression in anterior lens epithelial cells indicate possible overexpression of XO in other structures related to the aqueous.

  5. The Prognostic Value of BRCA1 mRNA Expression Levels Following Neoadjuvant Chemotherapy in Breast Cancer

    PubMed Central

    Margeli, Mireia; Cirauqui, Beatriz; Castella, Eva; Tapia, Gustavo; Costa, Carlota; Gimenez-Capitan, Ana; Barnadas, Agusti; Ronco, Maria Sanchez; Benlloch, Susana; Taron, Miquel; Rosell, Rafael

    2010-01-01

    Background A fraction of sporadic breast cancers has low BRCA1 expression. BRCA1 mutation carriers are more likely to achieve a pathological complete response with DNA-damage-based chemotherapy compared to non-mutation carriers. Furthermore, sporadic ovarian cancer patients with low levels of BRCA1 mRNA have longer survival following platinum-based chemotherapy than patients with high levels of BRCA1 mRNA. Methodology/Principal Findings Tumor biopsies were obtained from 86 breast cancer patients who were candidates for neoadjuvant chemotherapy, treated with four cycles of neoadjuvant fluorouracil, epirubicin and cyclophosphamide. Estrogen receptor (ER), progesterone receptor (PR), HER2, cytokeratin 5/6 and vimentin were examined by tissue microarray. HER2 were also assessed by chromogenic in situ hybridization, and BRCA1 mRNA was analyzed in a subset of 41 patients for whom sufficient tumor tissue was available by real-time quantitative PCR. Median time to progression was 42 months and overall survival was 55 months. In the multivariate analysis for time to progression and overall survival for 41 patients in whom BRCA1 could be assessed, low levels of BRCA1 mRNA, positive PR and negative lymph node involvement predicted a significantly lower risk of relapse, low levels of BRCA1 mRNA and positive PR were the only variables associated with significantly longer survival. Conclusions/Significance We provide evidence for a major role for BRCA1 mRNA expression as a marker of time to progression and overall survival in sporadic breast cancers treated with anthracycline-based chemotherapy. These findings can be useful for customizing chemotherapy. PMID:20209131

  6. Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels

    PubMed Central

    2013-01-01

    Background Amyotrophic Lateral Sclerosis (ALS) is a progressive, adult onset, fatal neurodegenerative disease of motor neurons. There is emerging evidence that alterations in RNA metabolism may be critical in the pathogenesis of ALS. MicroRNAs (miRNAs) are small non-coding RNAs that are key determinants of mRNA stability. Considering that miRNAs are increasingly being recognized as having a role in a variety of neurodegenerative diseases, we decided to characterize the miRNA expression profile in spinal cord (SC) tissue in sporadic ALS (sALS) and controls. Furthermore, we performed functional analysis to identify a group of dysregulated miRNAs that could be responsible for the selective suppression of low molecular weight neurofilament (NFL) mRNA observed in ALS. Results Using TaqMan arrays we analyzed 664 miRNAs and found that a large number of miRNAs are differentially expressed in ventral lumbar SC in sALS compared to controls. We observed that the majority of dysregulated miRNAs are down-regulated in sALS SC tissues. Ingenuity Pathway Analysis (IPA) showed that dysregulated miRNAs are linked with nervous system function and cell death. We used two prediction algorithms to develop a panel of miRNAs that have recognition elements within the human NFL mRNA 3′UTR, and then we performed functional analysis for these miRNAs. Our results demonstrate that three miRNAs that are dysregulated in sALS (miR-146a*, miR-524-5p and miR-582-3p) are capable of interacting with NFL mRNA 3′UTR in a manner that is consistent with the suppressed steady state mRNA levels observed in spinal motor neurons in ALS. Conclusions The miRNA expression profile is broadly altered in the SC in sALS. Amongst these is a group of dysregulated miRNAs directly regulate the NFL mRNA 3′UTR, suggesting a role in the selective suppression of NFL mRNA in the ALS spinal motor neuron neurofilamentous aggregate formation. PMID:23705811

  7. Altered microRNA expression profile in Amyotrophic Lateral Sclerosis: a role in the regulation of NFL mRNA levels.

    PubMed

    Campos-Melo, Danae; Droppelmann, Cristian A; He, Zhongping; Volkening, Kathryn; Strong, Michael J

    2013-05-24

    Amyotrophic Lateral Sclerosis (ALS) is a progressive, adult onset, fatal neurodegenerative disease of motor neurons. There is emerging evidence that alterations in RNA metabolism may be critical in the pathogenesis of ALS. MicroRNAs (miRNAs) are small non-coding RNAs that are key determinants of mRNA stability. Considering that miRNAs are increasingly being recognized as having a role in a variety of neurodegenerative diseases, we decided to characterize the miRNA expression profile in spinal cord (SC) tissue in sporadic ALS (sALS) and controls. Furthermore, we performed functional analysis to identify a group of dysregulated miRNAs that could be responsible for the selective suppression of low molecular weight neurofilament (NFL) mRNA observed in ALS. Using TaqMan arrays we analyzed 664 miRNAs and found that a large number of miRNAs are differentially expressed in ventral lumbar SC in sALS compared to controls. We observed that the majority of dysregulated miRNAs are down-regulated in sALS SC tissues. Ingenuity Pathway Analysis (IPA) showed that dysregulated miRNAs are linked with nervous system function and cell death. We used two prediction algorithms to develop a panel of miRNAs that have recognition elements within the human NFL mRNA 3'UTR, and then we performed functional analysis for these miRNAs. Our results demonstrate that three miRNAs that are dysregulated in sALS (miR-146a*, miR-524-5p and miR-582-3p) are capable of interacting with NFL mRNA 3'UTR in a manner that is consistent with the suppressed steady state mRNA levels observed in spinal motor neurons in ALS. The miRNA expression profile is broadly altered in the SC in sALS. Amongst these is a group of dysregulated miRNAs directly regulate the NFL mRNA 3'UTR, suggesting a role in the selective suppression of NFL mRNA in the ALS spinal motor neuron neurofilamentous aggregate formation.

  8. Cistanches Herba aqueous extract affecting serum BGP and TRAP and bone marrow Smad1 mRNA, Smad5 mRNA, TGF-β1 mRNA and TIEG1 mRNA expression levels in osteoporosis disease.

    PubMed

    Liang, Hai-Dong; Yu, Fang; Tong, Zhi-Hong; Zhang, Hong-Quan; Liang, Wu

    2013-02-01

    We studied molecular mechanism of Cistanches Herba aqueous extract (CHAE) in ovariectomized (OVX) rats, as an experimental model of postmenopausal osteoporosis. Female rats were either sham-operated or bilaterally OVX; and at 60 days postoperatively. The OVX group (n = 8) received an ovariectomy and treatment with normal saline for 90 days commencing from 20th post ovariectomy day. The ovariectomized +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy and were treated with Cistanches Herba aqueous extract of 100 mg/kg body weight daily for 90 days commencing from 22nd post ovariectomy day. The ovariectomy +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy, and were treated with the of 200 mg/kg body weight daily for 90 days commencing from 20th post ovariectomy day. Serum BGP and TRAP, E2, FSH and LH level, bone marrow Smad1, Smad5, TGF-β1 and TIEG1 mRNA expression levels were examined. Results showed that serum BGP and TRAP, FSH and LH levels were significantly increased, whereas E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels were significantly decreased in OVX rats compared to sham rats. 90 days of CHAE treatment could significantly decrease serum BGP and TRAP, FSH and LH levels, and increase E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels in OVX rats. It can be concluded that CHAE play its protective effect against OVX-induced bone degeneration partly by regulating some bone metabolism related genes, e.g. Smad1, Smad5, TGF-β1 and TIEG1.

  9. Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas.

    PubMed

    Hiroki, Eri; Akahira, Jun-Ichi; Suzuki, Fumihiko; Nagase, Satoru; Ito, Kiyoshi; Suzuki, Takashi; Sasano, Hironobu; Yaegashi, Nobuo

    2010-01-01

    This study aimed to determine the expression profiles of microRNAs (miRNAs) in endometrial serous adenocarcinoma and to examine the association between miRNA expression and clinical outcomes. Twenty-one patients diagnosed with endometrial serous adenocarcinoma between January 2001 and December 2006 were enrolled. miRNA expression profiles were examined using miRNA microarray and qRT-PCR. miRNA expression levels were correlated with clinicopathological variables and survival rates. A total of 120 miRNAs were differentially expressed in endometrial serous adenocarcinoma compared to normal endometria. Of these, 54 miRNAs were down-regulated (>2-fold), including miR-101, miR-10b*, miR-152, and miR-29b, and the remainder were up-regulated (>2-fold), including miR-200a, miR-200b, and miR-205. Decreased expression of miR-10b*, miR-29b, and miR-455-5p was correlated with vascular invasion (P = 0.048, P = 0.013, and P = 0.032, respectively). Univariate analysis revealed that lower expression of miR-101, miR-10b*, miR-139-5p, miR-152, miR-29b, and miR-455-5p was significantly correlated with poor overall survival (P < 0.05), and reduced expression of miR-152, miR-29b, and miR-455-5p was significantly correlated with poor disease-free survival (P < 0.05). Multivariate analysis demonstrated that decreased expression of miR-152 (P = 0.021) was a statistically independent risk factor for overall survival, and decreased expression levels of miR-101 (P = 0.016) and miR-152 (P = 0.010) were statistically independent risk factors for disease-free survival. In addition, transfection of miR-101 or miR-152 precursors into an endometrial serous carcinoma cell line inhibited cell growth (P < 0.0001 and P = 0.01, respectively). Moreover, strong positive immunoreactivity of cyclooxygenase-2 (COX-2) was significantly correlated with down-regulation of miR-101 (P = 0.035). These findings suggest that the dysregulation of miRNAs is associated with the poor prognosis in endometrial serous

  10. Long non-coding and endogenous retroviral RNA levels are associated with proinflammatory cytokine mRNA expression in peripheral blood cells: Implications for schizophrenia.

    PubMed

    Melbourne, Jennifer K; Chase, Kayla A; Feiner, Benjamin; Rosen, Cherise; Sharma, Rajiv P

    2017-09-14

    Recent research indicates that the expression of long non-coding and endogenous retroviral RNAs is coordinated with the activity of immune molecules often dysregulated in schizophrenia. We measured the expression of TMEVPG1, NRON, HERV-W env and HERV-W gag in blood cells from participants with schizophrenia and controls. We report that a) expression levels of these non-coding RNAs are correlated with proinflammatory cytokine mRNA expression in all participants, b) HERV-W transcripts are negatively correlated with atypical antipsychotic use in participants with schizophrenia, and c) that these RNAs are transcribed in response to proinflammatory stimuli in a THP-1 monocyte cell line. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure

    SciTech Connect

    Tin-Tin-Win-Shwe Mitsushima, Dai; Yamamoto, Shoji; Fukushima, Atsushi; Funabashi, Toshiya; Kobayashi, Takahiro; Fujimaki, Hidekazu

    2008-01-15

    Recently, there have been increasing reports that nano-sized component of particulate matter can reach the brain and may be associated with neurodegenerative diseases. Previously, our laboratory has studied the effect of intranasal instillation of nano-sized carbon black (CB) (14 nm and 95 nm) on brain cytokine and chemokine mRNA expressions and found that 14-nm CB increased IL-1{beta}, TNF-{alpha}, CCL2 and CCL3 mRNA expressions in the olfactory bulb, not in the hippocampus of mice. To investigate the effect of a single administration of nanoparticles on neurotransmitters and proinflammatory cytokines in a mouse olfactory bulb, we performed in vivo microdialysis and real-time PCR methods. Ten-week-old male BALB/c mice were implanted with guide cannula in the right olfactory bulb and, 1 week later, were instilled vehicle or CB (14 nm, 250 {mu}g) intranasally. Six hours after the nanoparticle instillation, the mice were intraperitoneally injected with normal saline or 50 {mu}g of bacteria cell wall component lipoteichoic acid (LTA), which may potentiate CB-induced neurologic effect. Extracellular glutamate and glycine levels were significantly increased in the olfactory bulb of CB-instilled mice when compared with vehicle-instilled control mice. Moreover, we found that LTA further increased glutamate and glycine levels. However, no alteration of taurine and GABA levels was observed in the olfactory bulb of the same mice. We also detected immunological changes in the olfactory bulb 11 h after vehicle or CB instillation and found that IL-1{beta} mRNA expression was significantly increased in CB- and LTA-treated mice when compared with control group. However, TNF-{alpha} mRNA expression was increased significantly in CB- and saline-treated mice when compared with control group. These findings suggest that nanoparticle CB may modulate the extracellular amino acid neurotransmitter levels and proinflammatory cytokine IL-1 {beta} mRNA expressions synergistically with LTA

  12. Anguillicola crassus infection affects mRNA expression levels in gas gland tissue of European yellow and silver eel

    PubMed Central

    Schneebauer, Gabriel; Dirks, Ron P.

    2017-01-01

    Using Illumina sequencing, we investigated transcriptional changes caused by the nematode Anguillicola crassus within yellow and silver eels by comparing swimbladder samples of uninfected yellow with infected yellow eels, and uninfected silver with infected silver eels, respectively. In yellow eel gas gland, the infection caused a modification of steady state mRNA levels of 1675 genes, most of them being upregulated. Functional annotation analysis based on GO terms was used to categorize identified genes with regard to swimbladder metabolism or response to the infection. In yellow eels, the most prominent category was ‘immune response’, including various inflammatory components, complement proteins, and immunoglobulins. The elevated expression of several glucose and monocarboxylate transporters indicated an attempt to maintain the level of glucose metabolism, even in due to the infection thickened swimbladder tissue. In silver eel swimbladder tissue, on the contrary, the mRNA levels of only 291 genes were affected. Genes in the categories ‘glucose metabolism’ and ‘ROS metabolism’ barely responded to the infection and even the reaction of the immune system was much less pronounced compared to infected yellow eels. However, in the category ‘extracellular matrix’, the mRNA levels of several mucin genes were strongly elevated, suggesting increased mucus production as a defense reaction against the parasite. The present study revealed a strong reaction to an Anguillicola crassus infection on mRNA expression levels in swimbladder tissue of yellow eels, whereas in silver eels the changes ware almost negligible. A possible explanation for this difference is that the silvering process requires so much energy that there is not much scope to cope with the additional challenge of a nematode infection. Another possible explanation could be that gas-secreting activity of the silver eel swimbladder was largely reduced, which could coincide with a reduced

  13. Anguillicola crassus infection affects mRNA expression levels in gas gland tissue of European yellow and silver eel.

    PubMed

    Schneebauer, Gabriel; Dirks, Ron P; Pelster, Bernd

    2017-01-01

    Using Illumina sequencing, we investigated transcriptional changes caused by the nematode Anguillicola crassus within yellow and silver eels by comparing swimbladder samples of uninfected yellow with infected yellow eels, and uninfected silver with infected silver eels, respectively. In yellow eel gas gland, the infection caused a modification of steady state mRNA levels of 1675 genes, most of them being upregulated. Functional annotation analysis based on GO terms was used to categorize identified genes with regard to swimbladder metabolism or response to the infection. In yellow eels, the most prominent category was 'immune response', including various inflammatory components, complement proteins, and immunoglobulins. The elevated expression of several glucose and monocarboxylate transporters indicated an attempt to maintain the level of glucose metabolism, even in due to the infection thickened swimbladder tissue. In silver eel swimbladder tissue, on the contrary, the mRNA levels of only 291 genes were affected. Genes in the categories 'glucose metabolism' and 'ROS metabolism' barely responded to the infection and even the reaction of the immune system was much less pronounced compared to infected yellow eels. However, in the category 'extracellular matrix', the mRNA levels of several mucin genes were strongly elevated, suggesting increased mucus production as a defense reaction against the parasite. The present study revealed a strong reaction to an Anguillicola crassus infection on mRNA expression levels in swimbladder tissue of yellow eels, whereas in silver eels the changes ware almost negligible. A possible explanation for this difference is that the silvering process requires so much energy that there is not much scope to cope with the additional challenge of a nematode infection. Another possible explanation could be that gas-secreting activity of the silver eel swimbladder was largely reduced, which could coincide with a reduced responsiveness to other

  14. Mechanical Stimulation Increases Knee Meniscus Gene RNA-level Expression in Adipose-derived Stromal Cells

    PubMed Central

    Meier, Elizabeth M.; Wu, Bin; Siddiqui, Aamir; Tepper, Donna G.; Longaker, Michael T.

    2016-01-01

    Background: Efforts have been made to engineer knee meniscus tissue for injury repair, yet most attempts have been unsuccessful. Creating a cell source that resembles the complex, heterogeneous phenotype of the meniscus cell remains difficult. Stem cell differentiation has been investigated, mainly using bone marrow mesenchymal cells and biochemical means for differentiation, resulting in no solution. Mechanical stimulation has been investigated to an extent with no conclusion. Here, we explore the potential for and effectiveness of mechanical stimulation to induce the meniscal phenotype in adipose-derived stromal cells. Methods: Human adipose-derived stromal cells were chosen for their fibrogenic nature and conduciveness for chondrogenesis. Biochemical and mechanical stimulation were investigated. Biochemical stimulation included fibrogenic and chondrogenic media. For mechanical stimulation, a custom-built device was used to apply constant, cyclical, uniaxial strain for up to 6 hours. Strain and frequency varied. Results: Under biochemical stimulation, both fibrogenic (collagen I, versican) and chondrogenic (collagen II, Sox9, aggrecan) genes were expressed by cells exposed to either fibrogenic or chondrogenic biochemical factors. Mechanical strain was found to preferentially promote fibrogenesis over chondrogenesis, confirming that tensile strain is an effective fibrogenic cue. Three hours at 10% strain and 1 Hz in chondrogenic media resulted in the highest expression of fibrochondrogenic genes. Although mechanical stimulation did not seem to affect protein level expression, biochemical means did affect protein level presence of collagen fibers. Conclusion: Mechanical stimulation can be a useful differentiation tool for mechanoresponsive cell types as long as biochemical factors are also integrated. PMID:27757329

  15. Mechanical Stimulation Increases Knee Meniscus Gene RNA-level Expression in Adipose-derived Stromal Cells.

    PubMed

    Meier, Elizabeth M; Wu, Bin; Siddiqui, Aamir; Tepper, Donna G; Longaker, Michael T; Lam, Mai T

    2016-09-01

    Efforts have been made to engineer knee meniscus tissue for injury repair, yet most attempts have been unsuccessful. Creating a cell source that resembles the complex, heterogeneous phenotype of the meniscus cell remains difficult. Stem cell differentiation has been investigated, mainly using bone marrow mesenchymal cells and biochemical means for differentiation, resulting in no solution. Mechanical stimulation has been investigated to an extent with no conclusion. Here, we explore the potential for and effectiveness of mechanical stimulation to induce the meniscal phenotype in adipose-derived stromal cells. Human adipose-derived stromal cells were chosen for their fibrogenic nature and conduciveness for chondrogenesis. Biochemical and mechanical stimulation were investigated. Biochemical stimulation included fibrogenic and chondrogenic media. For mechanical stimulation, a custom-built device was used to apply constant, cyclical, uniaxial strain for up to 6 hours. Strain and frequency varied. Under biochemical stimulation, both fibrogenic (collagen I, versican) and chondrogenic (collagen II, Sox9, aggrecan) genes were expressed by cells exposed to either fibrogenic or chondrogenic biochemical factors. Mechanical strain was found to preferentially promote fibrogenesis over chondrogenesis, confirming that tensile strain is an effective fibrogenic cue. Three hours at 10% strain and 1 Hz in chondrogenic media resulted in the highest expression of fibrochondrogenic genes. Although mechanical stimulation did not seem to affect protein level expression, biochemical means did affect protein level presence of collagen fibers. Mechanical stimulation can be a useful differentiation tool for mechanoresponsive cell types as long as biochemical factors are also integrated.

  16. Mamld1 Deficiency Significantly Reduces mRNA Expression Levels of Multiple Genes Expressed in Mouse Fetal Leydig Cells but Permits Normal Genital and Reproductive Development

    PubMed Central

    Miyado, Mami; Nakamura, Michiko; Miyado, Kenji; Morohashi, Ken-ichirou; Sano, Shinichiro; Nagata, Eiko; Fukami, Maki

    2012-01-01

    Although mastermind-like domain containing 1 (MAMLD1) (CXORF6) on human chromosome Xq28 has been shown to be a causative gene for 46,XY disorders of sex development with hypospadias, the biological function of MAMLD1/Mamld1 remains to be elucidated. In this study, we first showed gradual and steady increase of testicular Mamld1 mRNA expression levels in wild-type male mice from 12.5 to 18.5 d postcoitum. We then generated Mamld1 knockout (KO) male mice and revealed mildly but significantly reduced testicular mRNA levels (65–80%) of genes exclusively expressed in Leydig cells (Star, Cyp11a1, Cyp17a1, Hsd3b1, and Insl3) as well as grossly normal testicular mRNA levels of genes expressed in other cell types or in Leydig and other cell types. However, no demonstrable abnormality was identified for cytochrome P450 17A1 and 3β-hydroxysteroid dehydrogenase (HSD3B) protein expression levels, appearance of external and internal genitalia, anogenital distance, testis weight, Leydig cell number, intratesticular testosterone and other steroid metabolite concentrations, histological findings, in situ hybridization findings for sonic hedgehog (the key molecule for genital tubercle development), and immunohistochemical findings for anti-Müllerian hormone (Sertoli cell marker), HSD3B (Leydig cell marker), and DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 (germ cell marker) in the KO male mice. Fertility was also normal. These findings imply that Mamld1 deficiency significantly reduces mRNA expression levels of multiple genes expressed in mouse fetal Leydig cells but permits normal genital and reproductive development. The contrastive phenotypic findings between Mamld1 KO male mice and MAMLD1 mutation positive patients would primarily be ascribed to species difference in the fetal sex development. PMID:23087174

  17. Fast Bootstrapping-Based Estimation of Confidence Intervals of Expression Levels and Differential Expression from RNA-Seq Data.

    PubMed

    Mandric, Igor; Temate-Tiagueu, Yvette; Shcheglova, Tatiana; Al Seesi, Sahar; Zelikovsky, Alex; Mandoiu, Ion I

    2017-06-10

    This note presents IsoEM2 and IsoDE2, new versions with enhanced features and faster runtime of the IsoEM and IsoDE packages for expression level estimation and differential expression. IsoEM2 estimates FPKM and TPM levels for genes and isoforms with confidence intervals through bootstrapping, while IsoDE2 performs differential expression (DE) analysis using the bootstrap samples generated by IsoEM2. Both tools are available with a command line interface as well as a graphical user interface through wrappers for the Galaxy platform. The source code of this software suite is available at https://github.com/mandricigor/isoem2 . The Galaxy wrappers are available at https://toolshed.g2.bx.psu.edu/view/saharlcc/isoem2_isode2/c6d2dbdf0a4d. imandric1@student.gsu.edu , ion@engr.uconn.edu.

  18. The level of residual dispersion variation and the power of differential expression tests for RNA-Seq data.

    PubMed

    Mi, Gu; Di, Yanming

    2015-01-01

    RNA-Sequencing (RNA-Seq) has been widely adopted for quantifying gene expression changes in comparative transcriptome analysis. For detecting differentially expressed genes, a variety of statistical methods based on the negative binomial (NB) distribution have been proposed. These methods differ in the ways they handle the NB nuisance parameters (i.e., the dispersion parameters associated with each gene) to save power, such as by using a dispersion model to exploit an apparent relationship between the dispersion parameter and the NB mean. Presumably, dispersion models with fewer parameters will result in greater power if the models are correct, but will produce misleading conclusions if not. This paper investigates this power and robustness trade-off by assessing rates of identifying true differential expression using the various methods under realistic assumptions about NB dispersion parameters. Our results indicate that the relative performances of the different methods are closely related to the level of dispersion variation unexplained by the dispersion model. We propose a simple statistic to quantify the level of residual dispersion variation from a fitted dispersion model and show that the magnitude of this statistic gives hints about whether and how much we can gain statistical power by a dispersion-modeling approach.

  19. The Level of Residual Dispersion Variation and the Power of Differential Expression Tests for RNA-Seq Data

    PubMed Central

    Mi, Gu; Di, Yanming

    2015-01-01

    RNA-Sequencing (RNA-Seq) has been widely adopted for quantifying gene expression changes in comparative transcriptome analysis. For detecting differentially expressed genes, a variety of statistical methods based on the negative binomial (NB) distribution have been proposed. These methods differ in the ways they handle the NB nuisance parameters (i.e., the dispersion parameters associated with each gene) to save power, such as by using a dispersion model to exploit an apparent relationship between the dispersion parameter and the NB mean. Presumably, dispersion models with fewer parameters will result in greater power if the models are correct, but will produce misleading conclusions if not. This paper investigates this power and robustness trade-off by assessing rates of identifying true differential expression using the various methods under realistic assumptions about NB dispersion parameters. Our results indicate that the relative performances of the different methods are closely related to the level of dispersion variation unexplained by the dispersion model. We propose a simple statistic to quantify the level of residual dispersion variation from a fitted dispersion model and show that the magnitude of this statistic gives hints about whether and how much we can gain statistical power by a dispersion-modeling approach. PMID:25849826

  20. Gonadal mRNA expression levels of TGFbeta superfamily signaling factors correspond with post-hatching morphological development in American alligators.

    PubMed

    Moore, B C; Hamlin, H J; Botteri, N L; Guillette, L J

    2010-01-01

    Paracrine factor signaling regulates many aspects of vertebrate gonadal development. We investigated key ovarian and testicular morphological markers of the American alligator (Alligator mississippiensis) during the first 5 months post-hatching and correlated gonadal development with mRNA expression levels of a suite of regulatory factors. In both sexes, we observed significant morphology changes, including ovarian follicle assembly and meiotic progression of testicular germ cells. Concomitant with these changes were sexually dimorphic and ontogenetically variable mRNA expressions. In ovaries, FOXL2, aromatase, and follistatin mRNA expression was greater than in testes at all ages. At one week after hatching, we observed ovarian medullary remodeling in association with elevated activin/inhibin beta A subunit, follistatin, and aromatase mRNA expressions. Three and 5 months following hatching and concomitant with follicle assembly, ovaries showed increased mRNA expression levels of GDF9 and the mitotic factor PCNA. In testes, the activin/inhibin alpha and beta B subunit transcript levels were greater than in ovaries at all ages. Elevated testicular expression of GDF9 mRNA levels at 5 months after hatching aligned with increased spermatogenic activity. We propose that the mRNA expression levels and concomitant morphological changes observed here affect the establishment of alligator reproductive health and later fertility. (c) 2010 S. Karger AG, Basel.

  1. Gonadal mRNA Expression Levels of TGFβ Superfamily Signaling Factors Correspond with Post-Hatching Morphological Development in American Alligators

    PubMed Central

    Moore, B.C.; Hamlin, H.J.; Botteri, N.L.; Guillette, L.J.

    2010-01-01

    Paracrine factor signaling regulates many aspects of vertebrate gonadal development. We investigated key ovarian and testicular morphological markers of the American alligator (Alligator mississippiensis) during the first 5 months post-hatching and correlated gonadal development with mRNA expression levels of a suite of regulatory factors. In both sexes, we observed significant morphology changes, including ovarian follicle assembly and meiotic progression of testicular germ cells. Concomitant with these changes were sexually dimorphic and ontogenetically variable mRNA expressions. In ovaries, FOXL2, aromatase, and follistatin mRNA expression was greater than in testes at all ages. At one week after hatching, we observed ovarian medullary remodeling in association with elevated activin/inhibin βA subunit, follistatin, and aromatase mRNA expressions. Three and 5 months following hatching and concomitant with follicle assembly, ovaries showed increased mRNA expression levels of GDF9 and the mitotic factor PCNA. In testes, the activin/inhibin α and βB subunit transcript levels were greater than in ovaries at all ages. Elevated testicular expression of GDF9 mRNA levels at 5 months after hatching aligned with increased spermatogenic activity. We propose that the mRNA expression levels and concomitant morphological changes observed here affect the establishment of alligator reproductive health and later fertility. PMID:20110644

  2. Intraindividual variation of microRNA expression levels in plasma and peripheral blood mononuclear cells and the associations of these levels with the pathogenesis of autoimmune thyroid diseases.

    PubMed

    Otsu, Hiroshi; Watanabe, Mikio; Inoue, Naoya; Masutani, Ryota; Iwatani, Yoshinori

    2017-05-01

    microRNAs (miRNAs) circulate in the blood and negatively regulate the expression of mRNAs. Some miRNAs are associated with the development of autoimmune thyroid diseases (AITD); however, there are few reports on the association between miRNA expression and the pathogenesis of AITD or the physiological variations of circulating miRNAs, which are important to examine as biomarkers. We examined the circadian and day-to-day variations in the expression levels of 5 miRNAs (miR-125a, miR-146a, miR-155, let-7e and miR-106a) in plasma and peripheral blood mononuclear cells (PBMC). We also analysed the expression levels of two of these miRNAs (miR-146a and miR-155) in 20 healthy controls, 60 Graves' disease (GD) patients and 50 Hashimoto's disease (HD) patients. For each miRNA, we observed wide intraindividual variation [coefficient of variation value (CV): 70%-100%] compared to measurement error (CV: 20%-40%). In patients with AITD, HD, GD in remission and mild HD, the expression levels of miR-146a in PBMC were increased 296%, 328%, 348% and 464% above the levels in healthy controls, respectively (p=0.0443 and p=0.0273, p=0.0267 and p=0.0052, respectively). In severe HD, the expression level of miR-155 in plasma was increased to 347% of that in healthy controls (p=0.0256). The expression levels of miRNAs in plasma and PBMC showed wide intraindividual variation. In addition, miR-146a may be associated with the development of AITD.

  3. Loss of Pnn expression attenuates expression levels of SR family splicing factors and modulates alternative pre-mRNA splicing in vivo

    SciTech Connect

    Chiu Yali; Ouyang Pin . E-mail: ouyang@mail.cgu.edu.tw

    2006-03-10

    SR and SR-related proteins have been implicated as trans-acting factors that play an important role in splice selection and are involved at specific stages of spliceosome formation. A well-established property of SR protein splicing factors is their ability to influence selection of alternative splice sites in a concentration-dependent manner. Identification of molecules that regulate SR family protein expression is therefore of vital importance in RNA biology. Here we report that depletion of Pnn expression, a SR-related protein with functions involved in pre-mRNA splicing and mRNA export, induces reduced expression of a subset of cellular proteins, especially that of SR family proteins, including SC35, SRm300, SRp55, and SRp40, but not that of other nuclear proteins, such as p53, Mdm2, and ki67. Knocking down Pnn expression was achieved in vitro by siRNA transfection. Expression levels of SR and SR-related proteins in Pnn-depleted cells as compared to those in control cells were evaluated by immunofluorescent staining and Western blot with specific antibodies. In addition, we also demonstrate that loss of Pnn expression could modulate splice site selection of model reporter gene in vivo. Our finding is significant in terms of regulation of SR protein cellular concentration because it reveals that Pnn may play a general role in the control of the cellular amount of family SR proteins through down-regulation of its own expression, thereby providing us with a better understanding of the cellular mechanism by which Pnn fulfills its biological function.

  4. Appetite regulating peptides in red-bellied piranha, Pygocentrus nattereri: cloning, tissue distribution and effect of fasting on mRNA expression levels.

    PubMed

    Volkoff, Hélène

    2014-06-01

    cDNAs encoding the appetite regulating peptides apelin, cocaine and amphetamine regulated transcript (CART), cholecystokinin (CCK), peptide YY (PYY) and orexin were isolated in red-bellied piranha and their mRNA tissue and brain distributions examined. When compared to other fish, the sequences obtained for all peptides were most similar to that of other Characiforme fish, as well as to Cypriniformes. All peptides were widely expressed within the brain and in several peripheral tissues, including gastrointestinal tract. In order to assess the role of these peptides in the regulation of feeding of red-bellied piranha, we compared the brain mRNA expression levels of these peptides, as well as the gut mRNA expression of CCK and PYY, between fed and 7-day fasted fish. Within the brain, fasting induced a significant increase in both apelin and orexin mRNA expressions and a decrease in CART mRNA expression, but there where were no significant differences for either PYY or CCK brain mRNA expressions between fed and fasted fish. Within the intestine, PYY mRNA expression was lower in fasted fish compared to fed fish but there was no significant difference for CCK intestine mRNA expression between fed and fasted fish. Our results suggest that these peptides, perhaps with the exception of CCK, play a major role in the regulation of feeding of red-bellied piranha.

  5. Quantitative analysis of the mRNA expression levels of BCL2 and BAX genes in human osteoarthritis and normal articular cartilage: An investigation into their differential expression.

    PubMed

    Karaliotas, Georgios I; Mavridis, Konstantinos; Scorilas, Andreas; Babis, George C

    2015-09-01

    Osteoarthritis (OA) is primarily characterized by articular cartilage degeneration and chondrocyte loss. Although the role of apoptosis in cartilage pathobiology remains to be elucidated, the apoptotic B‑cell CLL/lymphoma 2 (BCL2) gene family is considered to be involved in OA. The purpose of the present study was to quantitatively analyze the mRNA expression profiles of the BCL2‑associated X protein (BAX) and BCL2 genes in human OA and in normal cartilage. Cartilage tissue samples were obtained from 78 patients undergoing total knee arthroplasty for OA (OA group) and orthopedic interventions for causes other than OA (control group). Total RNA was isolated from the cartilage tissue specimens and reverse transcribed into cDNA. A highly sensitive and specific reverse transcription quantitative polymerase chain reaction assay was developed for quantification of the mRNA levels of BAX and BCL2, using beta‑2 microglobulin as an endogenous control for normalization purposes. Gene expression analysis was performed using the comparative Ct (2(‑ΔΔCt)) method. The mRNA expression of BAX presented an increasing trend in the OA group compared with the control group, although without statistically significace (P=0.099). By contrast, the expression ratio of BCL2/BAX was found to be significantly decreased (2.76‑fold) in the OA group compared with the normal cartilage control group (P=0.022). A notable 4.6‑fold overexpression of median mRNA levels of BAX was also observed in patients with stage III OA compared with the control (P=0.034), while the BCL2/BAX ratio was markedly (2.5‑fold) decreased (P=0.024). A marked positive correlation was observed between the mRNA levels of BAX and BCL2 in the control group (r(s)=0.728; P<0.001), which was also present in the OA group, although to a lesser degree (r(s)=0.532; P<0.001). These results further implicate apoptosis in the pathogenesis of OA, through molecular mechanisms, which include the aberrant expression of the

  6. Can balneotherapy modify microRNA expression levels in osteoarthritis? A comparative study in patients with knee osteoarthritis

    NASA Astrophysics Data System (ADS)

    Giannitti, C.; De Palma, A.; Pascarelli, N. A.; Cheleschi, S.; Giordano, N.; Galeazzi, M.; Fioravanti, Antonella

    2017-08-01

    The aim of this study was to evaluate the whole-blood levels of miR-155, miR-223, miR-181a, miR-146a, and miR-let-7e in patients with bilateral knee osteoarthritis (OA) after a cycle of mud-bath therapy (MBT). Thirty-two patients with knee OA defined by the ACR criteria were included. Twenty-one patients (MBT group) were daily treated with a combination of local mud-packs at 42 °C and baths in mineral water, at 37 °C for 15 min, for 12 applications over a period of 2 weeks, in addition to standard therapy; 11 patients (control group) continued their conventional treatment alone. Global pain score evaluated by visual analog scale (VAS), WOMAC subscores, and microRNA expression were evaluated at baseline and after 2 weeks. Peripheral whole blood was collected into PAXgene™ Blood RNA tubes, stored at - 80 °C, and total RNA was extracted. The expression of miR-155, miR-223, miR-181a, miR-146a, and miR-let-7e was determined by qRT-PCR. After MBT, we observed a statistically significant improvement of clinical parameters and a significant decrease of miR-155, miR-181a, miR-146a (p < 0.001), and miR-223 (p < 0.01) expression levels. No clinical and biochemical modifications were detected in the control group. No significant variations of miR-let-7e were shown in both groups after 2 weeks. In conclusion, MBT can modify the expression of miR-155, miR-181a, miR-146a, and miR-223, which are upregulated in OA. It could be due to the heat stress and the hydrostatic pressure, since some miRNAs were found to be temperature- and mechano-responsive. Further studies are needed to better explain the mechanism of action of MBT and the role of miRNAs in OA.

  7. MicroRNA expression profiling using microarrays.

    PubMed

    Love, Cassandra; Dave, Sandeep

    2013-01-01

    MicroRNAs are small noncoding RNAs which are able to regulate gene expression at both the transcriptional and translational levels. There is a growing recognition of the role of microRNAs in nearly every tissue type and cellular process. Thus there is an increasing need for accurate quantitation of microRNA expression in a variety of tissues. Microarrays provide a robust method for the examination of microRNA expression. In this chapter, we describe detailed methods for the use of microarrays to measure microRNA expression and discuss methods for the analysis of microRNA expression data.

  8. Penicillin-Binding Protein 5 Sequence Alteration and Levels of plp5 mRNA Expression in Clinical Isolates of Enterococcus faecium with Different Levels of Ampicillin Resistance.

    PubMed

    Belhaj, Mondher; Boutiba-Ben Boubaker, Ilhem; Slim, Amin

    2016-04-01

    Eighty-two nonduplicated ampicillin-resistant Enterococcus faecium (AREF) isolates from clinical infections at the Charles Nicolle Hospital of Tunisia were investigated. They were collected from January 2001 to December 2009. Genetic relationship between them was studied using pulsed-field gel electrophoresis. The amino acid sequence difference variations of the C-terminal part of penicillin-binding protein 5 (PBP5) versus levels of expressed mRNA were investigated by polymerase chain reaction (PCR), sequencing, and real-time PCR quantification of (PBP5), respectively. No β-lactamase activity was detected and none of our strains showed resistance to glycopeptides, which retain their therapeutic efficiency against enterococcal infections in our hospital. Pattern analysis of the strains revealed six main clones disseminating in different wards. Sequence data revealed the existence of 19 different plp5 alleles with a difference in 16 amino acid positions spanning from residue 414 to 632. Each allele presented at least five amino acid substitutions (His-470→Gln, Asn-496→Lys, Ala-499→Thr, Glu-525→Asp, and Glu-629→Val). No correlation between amino acid sequence polymorphism of PBP5 and levels of ampicillin resistance was detected. The levels of plp5 mRNA expression varied between strains and did not always correlate with levels of ampicillin resistance in clinical AREF.

  9. Arginase-1 mRNA expression correlates with myeloid-derived suppressor cell levels in peripheral blood of NSCLC patients.

    PubMed

    Heuvers, Marlies E; Muskens, Femke; Bezemer, Koen; Lambers, Margaretha; Dingemans, Anne-Marie C; Groen, Harry J M; Smit, Egbert F; Hoogsteden, Henk C; Hegmans, Joost P J J; Aerts, Joachim G J V

    2013-09-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature and progenitor myeloid cells with immunosuppressive activity that are increased in cancer patients. Until now, the characterization of MDSC in humans was very challenging. The aim of this study was to determine the characterization and optimal assessment of MDSC and to investigate their presence and function in blood of advanced-stage NSCLC patients. We determined MDSC and lymphocyte populations in peripheral blood mononuclear cells (PBMC) samples of 185 treatment-naïve NSCLC patients and 20 healthy controls (HC). NSCLC patients had an increased population of PMN-MDSC compared to HC (p < 0.0001). Frequencies of CD4(+) and CD8(+) T-cells were significantly decreased in NSCLC patients (p < 0.0001 and p = 0.05). We found that PMN-MDSC were able to suppress T-cell proliferation in vitro. qRT-PCR showed that arginase-1 (Arg-1) mRNA is mainly expressed by MDSC and that the level of Arg-1 in PBMC correlates with the frequency of MDSC in PBMC (Spearman's rho: 0.797). There were significant differences in MDSC and lymphocyte populations between NSCLC patients and HC. We found that MDSC frequencies are stable up to six hours at room temperature after blood was drawn and that cryopreservation leads to a strong decrease of MDSC in PBMC. We show that Arg-1 mRNA expression is a valuable method to determine the levels of MDSC in peripheral blood of cancer patients. This method is therefore a useful alternative for the complex flowcytometric analysis in large multicenter patient studies.

  10. Chtop (Chromatin target of Prmt1) auto-regulates its expression level via intron retention and nonsense-mediated decay of its own mRNA

    PubMed Central

    Izumikawa, Keiichi; Yoshikawa, Harunori; Ishikawa, Hideaki; Nobe, Yuko; Yamauchi, Yoshio; Philipsen, Sjaak; Simpson, Richard J; Isobe, Toshiaki; Takahashi, Nobuhiro

    2016-01-01

    Chtop (chromatin target of Prmt1) regulates various aspects of gene expression including transcription and mRNA export. Despite these important functions, the regulatory mechanism underlying Chtop expression remains undetermined. Using Chtop-expressing human cell lines, we demonstrate that Chtop expression is controlled via an autoregulatory negative feedback loop whereby Chtop binds its own mRNA to retain intron 2 during splicing; a premature termination codon present at the 5′ end of intron 2 leads to nonsense-mediated decay of the mRNA. We also show that Chtop interacts with exon 2 of Chtop mRNA via its arginine-glycine-rich (RG) domain, and with intron 2 via its N-terminal (N1) domain; both are required for retention of intron 2. In addition, we show that hnRNP H accelerates intron 2 splicing of Chtop mRNA in a manner dependent on Chtop expression level, suggesting that Chtop and hnRNP H regulate intron 2 retention of Chtop mRNA antagonistically. Thus, the present study provides a novel molecular mechanism by which mRNA and protein levels are constitutively regulated by intron retention. PMID:27683223

  11. Hydrostatic Pressure Regulates MicroRNA Expression Levels in Osteoarthritic Chondrocyte Cultures via the Wnt/β-Catenin Pathway

    PubMed Central

    Cheleschi, Sara; De Palma, Anna; Pecorelli, Alessandra; Pascarelli, Nicola Antonio; Valacchi, Giuseppe; Belmonte, Giuseppe; Carta, Serafino; Galeazzi, Mauro; Fioravanti, Antonella

    2017-01-01

    Mechanical loading and hydrostatic pressure (HP) regulate chondrocytes’ metabolism; however, how mechanical stimulation acts remain unclear. MicroRNAs (miRNAs) play an important role in cartilage homeostasis, mechanotransduction, and in the pathogenesis of osteoarthritis (OA). This study investigated the effects of a cyclic HP (1–5 MPa), in both normal and OA human chondrocytes, on the expression of miR-27a/b, miR-140, miR-146a/b, and miR-365, and of their target genes (MMP-13, ADAMTS-5, IGFBP-5, and HDAC-4). Furthermore, we assessed the possible involvement of Wnt/β-catenin pathway in response to HP. Chondrocytes were exposed to HP for 3h and the evaluations were performed immediately after pressurization, and following 12, 24, and 48 h. Total RNA was extracted and used for real-time PCR. β-catenin was detected by Western blotting analysis and immunofluorescence. In OA chondrocytes, HP induced a significant increase (p < 0.01) of the expression levels of miR-27a/b, miR-140, and miR-146a, and a significant reduction (p < 0.01) of miR-365 at all analyzed time points. MMP-13, ADAMTS-5, and HDAC-4 were significantly downregulated following HP, while no significant modification was found for IGFBP-5. β-catenin levels were significantly increased (p < 0.001) in OA chondrocytes at basal conditions and significantly reduced (p < 0.01) by HP. Pressurization did not cause any significant modification in normal cells. In conclusion, in OA chondrocytes, HP restores the expression levels of some miRNAs, downregulates MMP-13, ADAMTS-5, and HDAC-4, and modulates the Wnt/β-catenin pathway activation. PMID:28085114

  12. Clinical Usefulness of Monitoring Expression Levels of CCL24 (Eotaxin-2) mRNA on the Ocular Surface in Patients with Vernal Keratoconjunctivitis and Atopic Keratoconjunctivitis

    PubMed Central

    2016-01-01

    Purpose. This study aimed to evaluate the clinical efficacy of using expression levels of CCL24 (eotaxin-2) mRNA on the ocular surface as a biomarker in patients with vernal keratoconjunctivitis (VKC) and atopic keratoconjunctivitis (AKC). Methods. Eighteen patients with VKC or AKC (VKC/AKC group) and 12 control subjects (control group) were enrolled in this study. The VKC/AKC clinical score was determined by objective findings in patients by using the 5-5-5 exacerbation grading scale. All subjects underwent modified impression cytology and specimens were obtained from the upper tarsal conjunctiva. Expression levels of CCL24 (eotaxin-2) mRNA on the ocular surface were determined using real-time reverse transcription polymerase chain reaction. Results. The VKC group was divided into two subgroups, depending on the clinical score: the active stage subgroup with 100 points or more of clinical scores and the stable stage subgroup with 100 points or less. CCL24 (eotaxin-2) mRNA expression levels in the active VKC/AKC stage subgroup were significantly higher than those in the stable VKC/AKC subgroup and the control group. Clinical scores correlated significantly with CCL24 (eotaxin-2) mRNA expression levels in the VKC group. Conclusions. CCL24 (eotaxin-2) mRNA expression levels on the ocular surface are a useful biomarker for clinical severity of VKC/AKC. PMID:27721987

  13. The classification of mRNA expression levels by the phosphorylation state of RNAPII CTD based on a combined genome-wide approach

    PubMed Central

    2011-01-01

    Background Cellular function is regulated by the balance of stringently regulated amounts of mRNA. Previous reports revealed that RNA polymerase II (RNAPII), which transcribes mRNA, can be classified into the pausing state and the active transcription state according to the phosphorylation state of RPB1, the catalytic subunit of RNAPII. However, genome-wide association between mRNA expression level and the phosphorylation state of RNAPII is unclear. While the functional importance of pausing genes is clear, such as in mouse Embryonic Stem cells for differentiation, understanding this association is critical for distinguishing pausing genes from active transcribing genes in expression profiling data, such as microarrays and RNAseq. Therefore, we examined the correlation between the phosphorylation of RNAPII and mRNA expression levels using a combined analysis by ChIPseq and RNAseq. Results We first performed a precise quantitative measurement of mRNA by performing an optimized calculation in RNAseq. We then visualized the recruitment of various phosphorylated RNAPIIs, such as Ser2P and Ser5P. A combined analysis using optimized RNAseq and ChIPseq for phosphorylated RNAPII revealed that mRNA levels correlate with the various phosphorylation states of RNAPII. Conclusions We demonstrated that the amount of mRNA is precisely reflected by the phased phosphorylation of Ser2 and Ser5. In particular, even the most "pausing" genes, for which only Ser5 is phosphorylated, were detectable at a certain level of mRNA. Our analysis indicated that the complexity of quantitative regulation of mRNA levels could be classified into three categories according to the phosphorylation state of RNAPII. PMID:22011111

  14. Cytokine mRNA expressions after racing at a high altitude and at sea level in horses with exercise-induced pulmonary hemorrhage.

    PubMed

    Saulez, Montague N; Godfroid, Jacques; Bosman, Anamarie; Stiltner, Jackie L; Breathnach, Cormac C; Horohov, David W

    2010-04-01

    To determine concentrations of cytokine mRNA in horses with exercise-induced pulmonary hemorrhage (EIPH) after racing. 97 Thoroughbreds. Following tracheobronchoscopy, the severity of EIPH was graded (scale of 0 to 4), and venous blood samples were collected from 10 horses in each grade. After RNA isolation and cDNA synthesis, real-time PCR assay was conducted to detect cytokinespecific mRNA for interleukin (IL)-1, IL-6, and IL-10; interferon (INF)-gamma; and tumor necrosis factor (TNF)-alpha. Neither location nor grade of EIPH affected the expression of IL-1 and INF-gamma. There was significantly greater overall expression of IL-6 mRNA at sea level, with significantly more IL-6 expressed in horses with grade 4 EIPH than in horses with grade 0, 1, or 2 EIPH. At a high altitude, no difference was detected for IL-6 expression among the various EIPH grades. There was significantly greater overall expression of TNF-alpha mRNA at a high altitude; however, there was no difference within the various grades of EIPH. Expression of IL-10 was significantly affected by grade of EIPH because horses with grade 3 EIPH expressed significantly more IL-10 mRNA than did horses with grade 0 or 2 EIPH; this expression was not affected by location. At sea level, increased IL-6 expression was associated with more severe EIPH, and altitude may affect gene expressions of the proinflammatory cytokine TNF-alpha and anti-inflammatory cytokine IL-6. Studies on protein concentrations of cytokine expression are needed. The pathophysiologic importance of these findings remains to be explained.

  15. Expression of NK1 receptor at the protein and mRNA level in the porcine female reproductive system.

    PubMed

    Bukowski, R

    2014-01-01

    The presence and distribution of substance P (SP) receptor NK1 was studied in the ovary, the oviduct and the uterus (uterine horn and cervix) of the domestic pig using the methods of molecular biology (RT-PCR and immunoblot) and immunohistochemistry. The expression of NK1 receptor at mRNA level was confirmed with RT-PCR in all the studied parts of the porcine female reproductive system by the presence of 525 bp PCR product and at the protein level by the detection of 46 kDa protein band in immunoblot. Immunohistochemical staining revealed the cellular distribution of NK1 receptor protein. In the ovary NKI receptor was present in the wall of arterial blood vessels, as well as in ovarian follicles of different stages of development. In the tubular organs the NK1 receptor immunohistochemical stainings were observed in the wall of the arterial blood vessels, in the muscular membrane, as well as in the mucosal epithelium. The study confirmed the presence of NK1 receptor in the tissues of the porcine female reproductive tract which clearly points to the possibility that SP can influence porcine ovary, oviduct and uterus.

  16. Effect of Danshen aqueous extract on serum hs-CRP, IL-8, IL-10, TNF-α levels, and IL-10 mRNA, TNF-α mRNA expression levels, cerebral TGF-β1 positive expression level and its neuroprotective mechanisms in CIR rats.

    PubMed

    Liang, Xue-Yun; Li, Hai-Ning; Yang, Xiao-Yan; Zhou, Wen-Yan; Niu, Jian-Guo; Chen, Ben-Dong

    2013-04-01

    To observe the effects of Danshen aqueous extract (DSAE) on the cerebral tissue and nerve stem cells in cerebral ischemia reperfusion (CIR) rats. The model rats were prepared by occlusion of the middle cerebral artery for 2 h and then by reperfusion. They were randomly divided into five groups: a control group, an CIR group and three DSAE-treated groups. As compared with the sham control group, there was significant increase (P < 0.05, P < 0.01) in the serum high-sensitivity C-reactive protein (hs-CRP) and interleukin-8 (IL-8) levels, interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α) levels, and IL-10 mRNA, TNF-α mRNA expression levels, function score, Infarct size, TUNEL + cell counts, cerebral transforming growth factor beta 1 (TGF-β1) positive expression and cerebral neuron specific enolase (NSE) levels, and decrease in fas-associated protein with death domain (FADD) and death-associated protein (Daxx) positive expression levels in the CIR group. Compared with CIR group, DSAE treatment dose-dependently significantly decreased serum hs-CRP, IL-8, IL-10, TNF-α levels, and IL-10 mRNA, TNF-α mRNA expression levels, function score, Infarct size, TUNEL + cell counts, cerebral TGF-β1 positive expression and cerebral NSE levels, and increase FADD and Daxx positive expression levels in the CIR + DSAE groups. Taken together, these results suggest that DSAE has a neuroprotective role in the CIR rats, which may be related to improvement of immunity function, proteins and genes expression.

  17. Gene expression in scrapie. Cloning of a new scrapie-responsive gene and the identification of increased levels of seven other mRNA transcripts.

    PubMed

    Dandoy-Dron, F; Guillo, F; Benboudjema, L; Deslys, J P; Lasmézas, C; Dormont, D; Tovey, M G; Dron, M

    1998-03-27

    To define genes associated with or responsible for the neurodegenerative changes observed in transmissible spongiform encephalopathies, we analyzed gene expression in scrapie-infected mouse brain using "mRNA differential display." The RNA transcripts of eight genes were increased 3-8-fold in the brains of scrapie-infected animals. Five of these genes have not previously been reported to exhibit increased expression in this disease: cathepsin S, the C1q B-chain of complement, apolipoprotein D, and two previously unidentified genes denominated scrapie-responsive gene (ScRG)-1 and ScRG-2, which are preferentially expressed in brain tissue. Increased expression of the three remaining genes, beta2 microglobulin, F4/80, and metallothionein II, has previously been reported to occur in experimental scrapie. Kinetic analysis revealed a concomitant increase in the levels of ScRG-1, cathepsin S, the C1q B-chain of complement, and beta2 microglobulin mRNA as well as glial fibrillary acidic protein and F4/80 transcripts, markers of astrocytosis and microglial activation, respectively. In contrast, the level of ScRG-2, apolipoprotein D, and metallothionein II mRNA was only increased at the terminal stage of the disease. ScRG-1 mRNA was found to be preferentially expressed in glial cells and to code for a short protein of 47 amino acids with a strong hydrophobic N-terminal region.

  18. The Expression Level of mRNA, Protein, and DNA Methylation Status of FOSL2 of Uyghur in XinJiang in Type 2 Diabetes

    PubMed Central

    Cao, Guolei; Wang, Xiaoli

    2016-01-01

    Objective. We investigated the expression levels of both FOSL2 mRNA and protein as well as evaluating DNA methylation in the blood of type 2 diabetes mellitus (T2DM) Uyghur patients from Xinjiang. This study also evaluated whether FOSL2 gene expression had demonstrated any associations with clinical and biochemical indicators of T2DM. Methods. One hundred Uyghur subjects where divided into two groups, T2DM and nonimpaired glucose tolerance (NGT) groups. DNA methylation of FOSL2 was also analyzed by MassARRAY Spectrometry and methylation data of individual units were generated by the EpiTyper v1.0.5 software. The expression levels of FOS-like antigen 2 (FOSL2) and the protein expression levels were analyzed. Results. Significant differences were observed in mRNA and protein levels when compared with the NGT group, while methylation rates of eight CpG units within the FOSL2 gene were higher in the T2DM group. Methylation of CpG sites was found to inversely correlate with expression of other markers. Conclusions. Results show that a correlation between mRNA, protein, and DNA methylation of FOSL2 gene exists among T2DM patients from Uyghur. FOSL2 protein and mRNA were downregulated and the DNA became hypermethylated, all of which may be involved in T2DM pathogenesis in this population. PMID:28050569

  19. MEIS1 intronic risk haplotype associated with restless legs syndrome affects its mRNA and protein expression levels

    PubMed Central

    Xiong, Lan; Catoire, Hélène; Dion, Patrick; Gaspar, Claudia; Lafrenière, Ronald G.; Girard, Simon L.; Levchenko, Anastasia; Rivière, Jean-Baptiste; Fiori, Laura; St-Onge, Judith; Bachand, Isabelle; Thibodeau, Pascale; Allen, Richard; Earley, Christopher; Turecki, Gustavo; Montplaisir, Jacques; Rouleau, Guy A.

    2009-01-01

    Restless legs syndrome (RLS) is a common neurological disorder characterized by an irresistible urge to move the legs at night, which is often accompanied by unpleasant sensations. A recent genomewide association study identified an association between RLS and intronic markers from the MEIS1 gene. Comparative genomic analysis indicates that MEIS1 is the only gene encompassed in this evolutionarily conserved chromosomal segment, i.e. a conservation synteny block, from mammals to fish. We carried out a series of experiments to delineate the role of MEIS1 in RLS pathogenesis and the underlying genetic mechanism. We sequenced all 13 MEIS1 exons and their splice junctions in 285 RLS probands with confirmed clinical diagnosis and did not identify any causative coding or exon–intron junction mutations. We found no evidence of structural variation or disease-associated haplotype differential splicing. However, sequencing of conserved regions of MEIS1 introns 8 and 9 identified a novel single nucleotide polymorphism (C13B_2) significantly associated with RLS (allelic association, P = 1.81E−07). We detected a significant decrease in MEIS1 mRNA expression by quantitative real-time polymerase chain reaction in lymphoblastoid cell lines (LCLs) and brain tissues from RLS patients homozygous for the intronic RLS risk haplotype, compared with those homozygous for the non-risk haplotype. Finally, we found significantly decreased MEIS1 protein levels in the same batch of LCLs and brain tissues from the homozygous carriers of the risk haplotype, compared with the homozygous non-carriers. Therefore, these data suggest that reduced expression of the MEIS1 gene, possibly through intronic cis-regulatory element(s), predisposes to RLS. PMID:19126776

  20. MicroRNA expression analysis using the Affymetrix Platform.

    PubMed

    Dee, Suzanne; Getts, Robert C

    2012-01-01

    Microarrays have been used extensively for messenger RNA expression monitoring. Recently, microarrays have been designed to interrogate expression levels of noncoding RNAs. Here, we describe methods for RNA labeling and the use of a miRNA array to identify and measure microRNA present in RNA samples.

  1. p53 missense but not truncation mutations are associated with low levels of p21CIP1/WAF1 mRNA expression in primary human sarcomas

    PubMed Central

    Mousses, S; Gokgoz, N; Wunder, J S; Ozcelik, H; Bull, S; Bell, R S; Andrulis, I L

    2001-01-01

    Many growth-suppressing signals converge to control the levels of the CDK inhibitor p21CIP1/WAF1. Some human cancers exhibit low levels of expression of p21CIP1/WAF1and mutations in p53 have been implicated in this down-regulation. To evaluate whether the presence of p53 mutations was related to the in vivo expression of p21CIP1/WAF1 mRNA in sarcomas we measured the p21CIP1/WAF1 mRNA levels for a group of 71 primary bone and soft tissue tumours with known p53 status. As expected, most tumours with p53 mutations expressed low levels of p21CIP1/WAF1 mRNA. However, we identified a group of tumours with p53 gene mutations that exhibited normal or higher levels of p21CIP1/WAF1 mRNA. The p53 mutations in the latter group were not the common missense mutations in exons 4–9, but were predominantly nonsense mutations predicted to result in truncation of the p53 protein. The results of this study suggest that different types of p53 mutations can have different effects on the expression of downstream genes such as p21CIP1/WAF1 in human sarcomas. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11401317

  2. Activation of gene expression by herpes simplex virus type 1 ICP0 occurs at the level of mRNA synthesis.

    PubMed Central

    Jordan, R; Schaffer, P A

    1997-01-01

    ICP0 is a nuclear phosphoprotein involved in the activation of herpes simplex virus type 1 (HSV-1) gene expression during lytic infection and reactivation from viral latency. Although available evidence suggests that ICP0 acts at the level of transcription, definitive studies specifically addressing this issue have not been reported. In the present study we measured the ability of ICP0 to activate gene expression (i) from promoters representing the major kinetic classes of viral genes in transient expression assays and (ii) from the same promoters during viral infection at multiplicities of infection ranging from 0.1 to 5.0 PFU/cell. The levels of synthesis and steady-state accumulation of mRNA, mRNA stability, and levels of protein synthesis were compared in cells transfected with a reporter plasmid in the presence and absence of ICP0 and in cells infected with wild-type HSV-1 or an ICP0 null mutant, n212. In transient expression assays and during viral infection at all multiplicities tested, the levels of steady-state mRNA and protein were significantly lower in the absence of ICP0, indicating that ICP0 activates gene expression at the level of mRNA accumulation. In transient expression assays and during infection at low multiplicities (< 1 PFU/cell) in the presence or absence of ICP0, marked increases in the levels of viral mRNAs accompanied by proportional increases in the levels of protein synthesis were observed with increasing multiplicity. At a high multiplicity (5 PFU/cell) in the presence or absence of ICP0, mRNA levels did not increase as a function of multiplicity and changes in the levels of protein were no longer related to changes in the levels of mRNA. Collectively, these tests indicate that transcription of viral genes is rate limiting at low multiplicities and that translation is rate limiting at high multiplicities, independent of ICP0. Consistent with the lower levels of mRNA detected in the absence of ICP0, the rates of transcription initiation

  3. Correlated Levels of mRNA and Soma Size in Single Identified Neurons: Evidence for Compartment-specific Regulation of Gene Expression

    PubMed Central

    Ransdell, Joseph L.; Faust, Tyler B.; Schulz, David J.

    2010-01-01

    In addition to the overall complexity of transcriptional regulation, cells also must take into account the subcellular distribution of these gene products. This is particularly challenging for morphologically complex cells such as neurons. Yet the interaction between cellular morphology and gene expression is poorly understood. Here we provide some of the first evidence for a relationship between neuronal compartment size and maintenance of mRNA levels in neurons. We find that single-cell transcript levels of 18S rRNA, GAPDH, and EF1-alpha, all gene products with primary functions in the cell soma, are strongly correlated to soma size in multiple distinct neuronal types. Levels of mRNA for the K+ channel shal, which is localized exclusively to the soma, are negatively correlated with soma size, suggesting that gene expression does not simply track positively with compartment size. Conversely, levels of beta-actin and beta-tubulin mRNA, which are major cytoskeletal proteins of neuronal processes, do not correlate with soma size, but are strongly correlated with one another. Additionally, actin/tubulin expression levels correlate with voltage-gated ion channels that are uniquely localized to axons. These results suggest that steady-state transcript levels are differentially regulated based on the subcellular compartment within which a given gene product primarily acts. PMID:21119779

  4. Effect of the increased stability of the penicillin amidase mRNA on the protein expression levels.

    PubMed

    Viegas, Sandra C; Schmidt, Dorothea; Kasche, Volker; Arraiano, Cecília M; Ignatova, Zoya

    2005-09-12

    Several factors at transcriptional, post-transcriptional or post-translational level determine the fate of a target protein and can severely restrict its yield. Here, we focus on the post-transcriptional regulation of the biosynthesis of the periplasmic protein, penicillin amidase (PA). The PA mRNA stability was determined under depleted RNase conditions in strains carrying single or multiple RNase deletions. Single deletion of the endonuclease RNase E yielded, as the highest, a fourfold stabilization of the PA mRNA. This effect, however, was reduced twice at post-translational level. The RNase II, generating secondary exonucleolytic cleavages in the mRNA, although not significantly influencing the PA mRNA decay, led also to an increase of the amount of mature PA. The non-proportional correlation between increased mRNA longevity and amount of active enzyme propose that the rational strategies for yield improvement must be based on a simultaneous tuning of more than one yield restricting factor.

  5. Zip1, Zip2, and Zip8 mRNA expressions were associated with growth hormone level during the growth hormone provocation test in children with short stature.

    PubMed

    Sun, Ping; Wang, Shifu; Jiang, Yali; Tao, Yanting; Tian, Yuanyuan; Zhu, Kai; Wan, Haiyan; Zhang, Lehai; Zhang, Lianying

    2013-10-01

    Short stature of children is affected by multiple factors. One of them is growth hormone (GH) deficiency. Growth hormone therapy can increase the final height of children with growth hormone deficiency. Zinc is found to induce dimerization and to enhance the bioactivity of human GH. Two gene families have been identified involved in zinc homeostasis. Previous studies in our laboratory have shown that Zip1, Zip2, Zip6, and ZnT1 mRNA were associated with zinc level in established human breast cancer in nude mice model; Zip8 was significantly lower in zinc-deficient Wistar rats in kidney. In this study, five zinc transporters: Zip1, Zip2, Zip6, Zip8, and ZnT1 were chosen. We aimed to investigate the mRNA expression of zinc transporters and to explore the relationship between zinc transporters and growth hormone in short stature children. Growth hormone provocation test is used to confirm the diagnosis of growth hormone deficiency. Six short children for the test were enrolled. At the same time, 15 sex- and age-matched normal children were enrolled as control. The expression levels of zinc transporters in peripheral blood mononuclear cells were determined by quantitative real-time PCR. Zip1 and Zip2 mRNA expression positively correlated with growth hormone level (r = 0.5133, P = 0.0371; r = 0.6719, P = 0.0032); Zip8 mRNA expression negatively correlated with growth hormone level (r = -0.5264, P = 0.0285) during the test in short stature children. The average expression level of Zip2 was significantly higher and Zip6, Zip8 mRNA levels were significantly lower in short stature children than in health controls at 0 min (P < 0.05, P < 0.05).

  6. Responses of Bovine Innate Immunity to Mycobacterium avium subsp. paratuberculosis Infection Revealed by Changes in Gene Expression and Levels of MicroRNA

    PubMed Central

    Malvisi, Michela; Morandi, Nicola

    2016-01-01

    Paratuberculosis in cattle is a chronic granulomatous gastroenteritis caused by Mycobacterium avium subsp. paratubercolosis (MAP) which is endemic worldwide. In dairy herds, it is responsible for huge economic losses. However, current diagnostic methods do not detect subclinical infection making control of the disease difficult. The identification of MAP infected animals during the sub-clinical phase of infection would play a key role in preventing the dissemination of the pathogen and in reducing transmission. Gene expression and circulating microRNA (miRNA) signatures have been proposed as biomarkers of disease both in the human and veterinary medicine. In this paper, gene expression and related miRNA levels were investigated in cows positive for MAP, by ELISA and culture, in order to identify potential biomarkers to improve diagnosis of MAP infection. Three groups, each of 5 animals, were used to compare the results of gene expression from positive, exposed and negative cows. Overall 258 differentially expressed genes were identified between unexposed, exposed, but ELISA negative and positive groups which were involved in biological functions related to inflammatory response, lipid metabolism and small molecule biochemistry. Differentially expressed miRNA was also found among the three groups: 7 miRNAs were at a lower level and 2 at a higher level in positive animals vs unexposed animals, while 5 and 3 miRNAs were respectively reduced and increased in the exposed group compared to the unexposed group. Among the differentially expressed miRNAs 6 have been previously described as immune-response related and two were novel miRNAs. Analysis of the miRNA levels showed correlation with expression of their target genes, known to be involved in the immune process. This study suggests that miRNA expression is affected by MAP infection and play a key role in tuning the host response to infection. The miRNA and gene expression profiles may be biomarkers of infection and

  7. Joint cytokine quantification in two rodent arthritis models: kinetics of expression, correlation of mRNA and protein levels and response to prednisolone treatment

    PubMed Central

    RIOJA, I; BUSH, K A; BUCKTON, J B; DICKSON, M C; LIFE, P F

    2004-01-01

    Biomarker quantification in disease tissues from animal models of rheumatoid arthritis (RA) can help to provide insights into the mechanisms of action of novel therapeutic agents. In this study we validated the kinetics of IL-1β, TNF-α and IL-6 mRNA and protein expression levels in joints from DBA/1OlaHsd murine collagen-induced arthritis (CIA) and Lewis rat Streptococcal cell wall (SCW)-induced arthritis by real-time polymerase chain reaction (PCR) TaqMan® and Enzyme-linked immunosorbent assay (ELISA). Prednisolone was used as a reference to investigate any correlation between clinical response and cytokine levels at selected time-points. To our knowledge this is the first report showing a close pattern of expression between mRNA and protein for IL-1β and IL-6, but not for TNF-α, in these two models of RA. The kinetics of expression for these biomarkers suggested that the optimal sampling time-points to study the effect of compounds on both inflammation and cytokine levels were day 4 postonset in CIA and day 3 after i.v challenge in SCW-induced arthritis. Prednisolone reduced joint swelling through a mechanism associated with a reduction in IL-1β and IL-6 protein and mRNA expression levels. At the investigated time points, protein levels for TNF-α in arthritic joints were lower than the lower limit of detection of the ELISA, whereas mRNA levels for this cytokine were reliably detected. These observations suggest that RT-PCR TaqMan® is a sensitive technique that can be successfully applied to the quantification of mRNA levels in rodent joints from experimental arthritis models providing insights into mechanisms of action of novel anti-inflammatory drugs. PMID:15196245

  8. VEGF-A immunohistochemical and mRNA expression in tissues and its serum levels in potentially malignant oral lesions and oral squamous cell carcinomas.

    PubMed

    Nayak, Seema; Goel, Madhu Mati; Chandra, Saumya; Bhatia, Vikram; Mehrotra, Divya; Kumar, Sandeep; Makker, Annu; Rath, S K; Agarwal, S P

    2012-03-01

    The aim of the study was to investigate whether the estimation of circulating Vascular endothelial growth factor-A (VEGF-A) levels by ELISA could be used as surrogate of VEGF-A expression in tissues of pre-malignant oral lesions (PMOLs) and oral squamous cell carcinoma (OSCC) as compared to that in healthy controls. The study samples comprised of tissue and blood samples from 60 PMOLs, 60 OSCC, and 20 healthy controls. Serum VEGF-A levels were determined by an ELISA based assay (Quantikine human VEGF; R & D System, Minneapolis USA). Tissue VEGF-A expression and microvessel density (MVD) were assessed by immunohistochemistry (IHC) using antibodies against VEGF-A and CD-34 on formalin fixed paraffin embedded (FFPE) tissue sections. VEGF-A mRNA expression was analyzed by real-time PCR in snap frozen tissues. Serum VEGF-A levels and immunohistochemical VEGF-A expression were significantly high in PMOLs and OSCC in comparison with controls. VEGF mRNA gene expression showed more than 50-fold increase in PMOLs and OSCC. VEGF-A levels in serum correlated in a linear fashion with the tissue expression in oral pre-malignant and malignant lesions, suggesting that the serum levels may serve as surrogate material for tissue expression of VEGF-A.

  9. PAI-1 mRNA expression and plasma level in rheumatoid arthritis: relationship with 4G/5G PAI-1 polymorphism.

    PubMed

    Muñoz-Valle, José Francisco; Ruiz-Quezada, Sandra Luz; Oregón-Romero, Edith; Navarro-Hernández, Rosa Elena; Castañeda-Saucedo, Eduardo; De la Cruz-Mosso, Ulises; Illades-Aguiar, Berenice; Leyva-Vázquez, Marco Antonio; Castro-Alarcón, Natividad; Parra-Rojas, Isela

    2012-12-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting the synovial membrane, cartilage and bone. PAI-1 is a key regulator of the fibrinolytic system through which plasminogen is converted to plasmin. The plasmin activates the matrix metalloproteinase system, which is closely related with the joint damage and bone destruction in RA. The aim of this study was to investigate the relationship between 4G/5G PAI-1 polymorphism with mRNA expression and PAI-1 plasma protein levels in RA patients. 113 RA patients and 123 healthy subjects (HS) were included in the study. The 4G/5G PAI-1 polymorphism was determined by polymerase chain reaction-restriction fragment length polymorphism method; the PAI-1 mRNA expression was determined by real-time PCR; and the soluble PAI-1 (sPAI-1) levels were quantified using an ELISA kit. No significant differences in the genotype and allele frequencies of 4G/5G PAI-1 polymorphism were found between RA patients and HS. However, the 5G/5G genotype was the most frequent in both studied groups: RA (42%) and HS (44%). PAI-1 mRNA expression was slightly increased (0.67 fold) in RA patients with respect to HS (P = 0.0001). In addition, in RA patients, the 4G/4G genotype carriers showed increased PAI-1 mRNA expression (3.82 fold) versus 4G/5G and 5G/5G genotypes (P = 0.0001), whereas the sPAI-1 plasma levels did not show significant differences. Our results indicate that the 4G/5G PAI-1 polymorphism is not a marker of susceptibility in the Western Mexico. However, the 4G/4G genotype is associated with high PAI-1 mRNA expression but not with the sPAI-1 levels in RA patients.

  10. Correlation of mRNA and protein levels: Cell type-specific gene expression of cluster designation antigens in the prostate

    PubMed Central

    Pascal, Laura E; True, Lawrence D; Campbell, David S; Deutsch, Eric W; Risk, Michael; Coleman, Ilsa M; Eichner, Lillian J; Nelson, Peter S; Liu, Alvin Y

    2008-01-01

    Background: Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD) genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate – basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial – and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. Results: Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63). Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50) but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. Conclusion: Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers. PMID:18501003

  11. Sublethal effects of chlorantraniliprole on juvenile hormone levels and mRNA expression of JHAMT and FPPS genes in the rice stem borer, Chilo suppressalis.

    PubMed

    Xu, Beibei; Qian, Kun; Zhang, Nan; Miao, Lijun; Cai, Jingxuan; Lu, Mingxing; Du, Yuzhou; Wang, Jianjun

    2017-10-01

    Juvenile hormone (JH) regulates the development and reproduction of insects. The sublethal effects of chlorantraniliprole on JH levels and mRNA expression of JH acid methyltransferase gene (CsJHAMT) and farnesyl diphosphate synthase genes (CsFPPS1 and CsFPPS2) in Chilo suppressalis (Walker) were investigated. Exposure of sublethal concentrations of chlorantraniliprole (LC10 and LC30 ) to the third instar larvae of C. suppressalis significantly increased the JH levels in all developmental stages investigated including larvae 72 h after treatment, the first, third and fifth day of female pupae, as well as newly emerged, 12-h-old and 24-h-old female adults. A general trend of increased mRNA expression levels of CsJHAMT, CsFPPS1and CsFPPS2 was also observed in LC10 and LC30 treatment groups. Notably, the mRNA expression level of CsJHAMT significantly increased by 7.46-fold in the larvae 72 h after LC30 treatment. A significant increase of the mRNA expression levels of CsFPPS2 was also observed in the fifth day female pupae of LC10 and LC30 treatment groups (2.60-fold and 2.62-fold, respectively) as well as in 12-h-old female adults of the LC30 treatment group (3.45-fold). Sublethal concentrations of chlorantraniliprole might upregulate the expression of JH biosynthesis genes and in turn result in an increase of JH level in C. suppressalis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Measuring expression levels of small regulatory RNA molecules from body fluids and formalin-fixed, paraffin-embedded samples.

    PubMed

    Gyongyosi, Adrienn; Docs, Otto; Czimmerer, Zsolt; Orosz, Laszlo; Horvath, Attila; Török, Olga; Mehes, Gabor; Nagy, Laszlo; Balint, Balint L

    2014-01-01

    MicroRNAs are involved in the regulation of various pathophysiological processes such as immune regulation and cancer. Next-generation sequencing methods enable us to monitor their presence in various types of samples but we need flexible methods for validating datasets generated by high-throughput methods. Here we describe the detailed protocols to be used with our MiRNA Primer Design Tool assay design system. The presented methods allow the flexible design of the oligonucleotides needed for the RT-qPCR detection of any variant of small regulatory RNA molecules from virtually any species. This method can be used to measure miRNA levels from formalin-fixed, paraffin-embedded (FFPE) samples and various body fluids. As an example, we show the results of the hsa-miR-515-3p, hsa-miR-325, and hsa-miR-155 quantification using a specific UPL probe (Universal Probe Library) and a stem-loop RT-qPCR assay. The small nucleolar RNA RNU43 is used as endogenous control for normalization of the results. Urine from healthy pregnant women and FFPE samples from patients diagnosed with colorectal cancer and treated with antibody-based anti-EGFR monotherapy were used as samples.

  13. Effects of Perfluoroalkyl Compounds on mRNA Expression Levels of Thyroid Hormone-Responsive Genes in Primary Cultures of Avian Neuronal Cells

    PubMed Central

    Vongphachan, Viengtha; Cassone, Cristina G.; Wu, Dongmei; Chiu, Suzanne; Crump, Doug; Kennedy, Sean W.

    2011-01-01

    There is growing interest in assessing the neurotoxic and endocrine disrupting potential of perfluoroalkyl compounds (PFCs). Several studies have reported in vitro and in vivo effects related to neuronal development, neural cell differentiation, prenatal and postnatal development and behavior. PFC exposure altered hormone levels and the expression of hormone-responsive genes in mammalian and aquatic species. This study is the first to assess the effects of PFCs on messenger RNA (mRNA) expression in primary cultures of neuronal cells in two avian species: the domestic chicken (Gallus domesticus) and herring gull (Larus argentatus). The following thyroid hormone (TH)–responsive genes were examined using real-time reverse transcription-PCR: type II iodothyronine 5′-deiodinase (D2), D3, transthyretin (TTR), neurogranin (RC3), octamer motif–binding factor (Oct-1), and myelin basic protein. Several PFCs altered the mRNA expression levels of genes associated with the TH pathway in avian neuronal cells. Short-chained PFCs (less than eight carbons) altered the expression of TH-responsive genes (D2, D3, TTR, and RC3) in chicken embryonic neuronal cells to a greater extent than long-chained PFCs (more than or equal to eight carbons). Variable transcriptional changes were observed in herring gull embryonic neuronal cells exposed to short-chained PFCs; mRNA levels of Oct-1 and RC3 were upregulated. This is the first study to report that PFC exposure alters mRNA expression in primary cultures of avian neuronal cells and may provide insight into the possible mechanisms of action of PFCs in the avian brain. PMID:21212296

  14. [Selection and construction of cell line stably expressing survivin gene in lower level through eukaryotic plasmid vector of shRNA].

    PubMed

    Wang, Wen-Xia; Sun, Shan-Zhen; Song, Ying

    2008-06-01

    To construct a short hairpin RNA(shRNA) interference expression plasmid vector of survivin gene, transfect tongue squamous cell carcinoma line Tca8113 which expressed survivin gene in a high level, and choose the cells whose survivin gene were suppressed significantly. Two pairs of oligonucleotide sequences specific for survivin gene were designed and synthesized, and cloned into pSilencer-2.1U6-neo plasmid. The recombinant plasmids (named PS1 and PS2) were amplified in Ecoli. DH5alpha was identified by restriction digestion, PCR and sequencing. The vectors were transfected into Tca8113 cells with lipofectamine 2000. After selection with G418, the stable cell clones were attained. Survivn expression was assayed with real-time quantitative PCR and Western blotting. SAS8.0 software package was used for Student t test. Two vectors were constructed successfully and stable cell clones with PS1 or PS2 plasmid were obtained. As compared with those of control, survivin expression of transfected cell with PS1 or PS2 in mRNA level was significantly suppressed (P<0.05). In protein level, only those of transfected cell with PS2 was significantly suppressed (P<0.01). The shRNA interference expression plasmid vectors of survivin gene are successfully constructed, and Tca8113 cells which express survivin gene in a stable lower level are attained, which enable us to carry out further research on gene therapy of oral squamous cell carcinoma. Supported by National Natural Science Foundation of China (Grant No.30572056).

  15. Correlation of Cyfra 21-1 levels in saliva and serum with CK19 mRNA expression in oral squamous cell carcinoma.

    PubMed

    Malhotra, Rewa; Urs, Aadithya B; Chakravarti, Anita; Kumar, Suman; Gupta, V K; Mahajan, Bhawna

    2016-07-01

    Oral squamous cell carcinoma (OSCC) accounts for 90 % of malignant lesions of oral cavity. The study assessed the potential of Cyfra 21-1 as a tumor marker in OSCC. The study included 50 patients of OSCC to evaluate levels of Cyfra 21-1 in serum and saliva by electrochemiluminescent immunoassay (ECLIA) and CK19 messenger RNA (mRNA) expression in tissue by florescent quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR) along with healthy individuals as control. The salivary and serum Cyfra 21-1 levels in patients of OSCC were significantly higher compared to controls (p value < 0.01). There was a 2.75-fold increase in CK19 mRNA expression in OSCC cases compared to controls. A significant positive correlation was found between serum and salivary Cyfra 21-1, serum Cyfra 21-1, and CK19 mRNA expression and between salivary Cyfra 21-1 and CK19 mRNA expression. Among these, correlation between serum and salivary Cyfra 21-1 was highly significant. Salivary and serum Cyfra 21-1 showed significantly elevated levels in grade II OSCC compared to grade I histopathologically. Elevated levels of salivary Cyfra 21-1 were associated with recurrence in OSCC patients. Reverse operating curve constructed using 3 ng/ml as a cutoff for serum Cyfra 21-1 revealed the sensitivity and specificity to be 88 and 78.2 %, respectively. Using a cutoff value of 8.5 ng/ml for salivary Cyfra 21-1, the sensitivity was found to be 93.8 % and specificity 84.3 %. We advocate salivary Cyfra 21-1 as a better diagnostic marker over serum Cyfra 21-1 as well as a potential marker in the prognosis of OSCC.

  16. Swimming training down-regulates plasma leptin levels, but not adipose tissue ob mRNA expression.

    PubMed

    Benatti, F B; Polacow, V O; Ribeiro, S M L; Gualano, B; Coelho, D F; Rogeri, P S; Costa, A S; Lancha Junior, A H

    2008-10-01

    The aim of the present study was to assess the effects of endurance training on leptin levels and adipose tissue gene expression and their association with insulin, body composition and energy intake. Male Wistar rats were randomly divided into two groups: trained (N = 18) and sedentary controls (N = 20). The trained group underwent swimming training for 9 weeks. Leptin and insulin levels, adiposity and leptin gene expression in epididymal and inguinal adipose tissue were determined after training. There were no differences in energy intake between groups. Trained rats had a decreased final body weight (-10%), relative and total body fat (-36 and -55%, respectively) and insulin levels (-55%) compared with controls (P < 0.05). Although trained animals showed 56% lower leptin levels (2.58 +/- 1.05 vs 5.89 +/- 2.89 ng/mL in control; P < 0.05), no difference in leptin gene expression in either fat depot was demonstrable between groups. Stepwise multiple regression analysis showed that lower leptin levels in trained rats were due primarily to their lower body fat mass. After adjustment for total body fat, leptin levels were still 20% (P < 0.05) lower in exercised rats. In conclusion, nine weeks of swimming training did not affect leptin gene expression, but did lead to a decrease in leptin levels that was independent of changes in body fat.

  17. Racial Differences in Expression Levels of miRNA Machinery-Related Genes, Dicer, Drosha, DGCR8, and AGO2, in Asian Korean Papillary Thyroid Carcinoma and Comparative Validation Using the Cancer Genome Atlas

    PubMed Central

    Kim, Jaegil; Park, Woo-Jae; Jeong, Kwang-Joon; Kang, Sun Hee; Kwon, Sun Young

    2017-01-01

    Aberrant regulation of microRNA (miRNA) machinery components is associated with various human cancers, including papillary thyroid carcinoma (PTC), which is the most common type of thyroid cancer, and a higher prevalent female malignancy. The purpose of this study is to investigate racial differences in mRNA expression levels of four miRNA machinery components, Dicer, Drosha, DGCR8, and AGO2, and their correlations with clinicopathological characteristics. Forty PTC samples from female Asian Korean PTC patients were enrolled. Using qPCR, we examined mRNA expression levels of the components and next validated our results by comparison with results of female white American in the TCGA PTC project. Interestingly, mRNA expression levels of the selected factors were altered in the TCGA PTC samples. However, only Drosha showed a significantly lower expression level in Asian Korean PTC samples. Furthermore, the mRNA expression levels of the four components showed no association with clinicopathological characteristics in both groups. On the other hand, positive correlations were observed between altered mRNA expression levels of Dicer and Drosha and DGCR8 and Drosha in TCGA PTC samples. These findings collectively revealed that altered mRNA expression levels of miRNA machinery components might be responsible for racial differences in the carcinogenesis of PTC. PMID:28352639

  18. Hyperglycaemia suppresses microRNA expression in platelets to increase P2RY12 and SELP levels in type 2 diabetes mellitus.

    PubMed

    Fejes, Zsolt; Póliska, Szilárd; Czimmerer, Zsolt; Káplár, Miklós; Penyige, András; Gál Szabó, Gabriella; Beke Debreceni, Ildikó; Kunapuli, Satya P; Kappelmayer, János; Nagy, Béla

    2017-02-28

    Megakaryocyte (MK)-derived miRNAs have been detected in platelets. Here, we analysed the expression of platelet and circulating miR-223, miR-26b, miR-126 and miR-140 that might be altered with their target mRNAs in type 2 diabetes mellitus (DM2). MiRNAs were isolated from leukocyte-depleted platelets and plasma samples obtained from 28 obese DM2, 19 non-DM obese and 23 healthy individuals. The effect of hyperglycaemia on miRNAs was also evaluated in MKs using MEG-01 and K562 cells under hyperglycaemic conditions after 8 hours up to four weeks. Quantitation of mature miRNA, pre-miRNAs and target mRNA levels (P2RY12 and SELP) were measured by RT-qPCR. To prove the association of miR-26b and miR-140 with SELP (P-selectin) mRNA level, overexpression or inhibition of these miRNAs in MEG-01 MKs was performed using mimics or anti-miRNAs, respectively. The contribution of calpain substrate Dicer to modulation of miRNAs was studied by calpain inhibition. Platelet activation was evaluated via surface P-selectin by flow cytometry. Mature and pre-forms of investigated miRNAs were significantly reduced in DM2, and platelet P2RY12 and SELP mRNA levels were elevated by two-fold at increased platelet activation compared to controls. Significantly blunted miRNA expressions were observed by hyperglycaemia in MEG-01 and K562-MK cells versus baseline values, while the manipulation of miR-26b and miR-140 expression affected SELP mRNA level. Calpeptin pretreatment restored miRNA levels in hyperglycaemic MKs. Overall, miR-223, miR-26b, miR-126 and miR-140 are expressed at a lower level in platelets and MKs in DM2 causing upregulation of P2RY12 and SELP mRNAs that may contribute to adverse platelet function.

  19. The Co-Induced Effects of Molybdenum and Cadmium on the Trace Elements and the mRNA Expression Levels of CP and MT in Duck Testicles.

    PubMed

    Xia, Bing; Chen, Hua; Hu, Guoliang; Wang, Liqi; Cao, Huabin; Zhang, Caiying

    2016-02-01

    To investigate the chronic toxicity of molybdenum (Mo) and cadmium (Cd) on the trace elements and the mRNA expression levels of ceruloplasmin (CP) and metallothionein (MT) in duck testicles, 120 healthy 11-day-old male ducks were randomly divided into six groups with 20 ducks in each group. Ducks were treated with the diet containing different dosages of Mo or Cd. The source of Mo and Cd was hexaammonium molybdate ([(NH4)6Mo7O24·4H2O]) and cadmium sulfate (3CdSO4·8H2O), respectively, in this study. After being treated for 60 and 120 days, ten male birds in each group were randomly selected and euthanized and then testicles were aseptically collected for determining the mRNA expression levels of MT and CP, antioxidant indexes, and contents of trace elements in the testicle. In addition, testicle tissues at 120 days were subjected to histopathological analysis with the optical microscope. The results showed that co-exposure to Mo and Cd resulted in an increase in malondialdehyde (MDA) level while decrease in xanthine oxidase (XOD) and catalase (CAT) activities. The mRNA expression level of MT gene was upregulated while CP was decreased in combination groups. Contents of Mo, copper (Cu), iron (Fe), and zinc (Zn) decreased in combined groups while Cd increased in Cd and combined groups at 120 days. Furthermore, severe congestion, low sperm count, and malformation were observed in low dietary of Mo combined with Cd group and high dietary of Mo combined with Cd group. Our results suggested that Mo and Cd might aggravate testicular degeneration synergistically through altering the mRNA expression levels of MT and CP, increasing lipid peroxidation through inhibiting related enzyme activities and disturbing homeostasis of trace elements in testicles. Interaction of Mo and Cd may have a synergistic effect on the testicular toxicity.

  20. Increased TRPV1 and PAR2 mRNA expression levels are associated only with the esophageal reflux symptoms, but not with the extraesophageal reflux symptoms.

    PubMed

    Kim, Jin Joo; Kim, Nayoung; Choi, Yoon Jin; Kim, Joo Sung; Jung, Hyun Chae

    2016-08-01

    Transient receptor potential vanilloid-1 (TRPV1) receptor and proteinase-activated receptor 2 (PAR2) have been implicated in the mechanism of acid-induced inflammation in gastroesophageal reflux disease (GERD). We aimed to evaluate TRPV1 and PAR2 mRNA expression levels in the GERD patients and their relationship with endoscopic findings and reflux symptoms.Sixteen healthy controls, 45 patients with erosive reflux disease (ERD), and 14 nonerosive reflux disease (NERD) patients received endoscopy and completed questionnaires. Quantitative real-time polymerase chain reactions (qPCR) of TRPV1, glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), PAR2, and interleukin (IL)-8 were performed in the distal esophagus specimen.The levels of TRPV1, GDNF, NGF, PAR2, and IL-8 mRNA expression were highest in the ERD group followed by NERD and control groups and the differences between control and ERD groups were statistically significant. Within the ERD group, patients with grade B in Los Angeles (LA) classification showed significantly higher levels of TRPV1, GDNF, and NGF mRNA expression than those with grade A. Presence of reflux symptoms was associated with significant higher levels of TRPV1, PAR2, and IL-8. Notably not extraesophageal but esophageal reflux symptoms were significantly associated with them.Upregulation of TRPV1 and PAR2 pathways might play a role in the development of distal esophageal inflammation and reflux symptoms. And extraesophageal reflux symptoms might not be associated with these processes.

  1. Increased TRPV1 and PAR2 mRNA expression levels are associated only with the esophageal reflux symptoms, but not with the extraesophageal reflux symptoms

    PubMed Central

    Kim, Jin Joo; Kim, Nayoung; Choi, Yoon Jin; Kim, Joo Sung; Jung, Hyun Chae

    2016-01-01

    Abstract Transient receptor potential vanilloid-1 (TRPV1) receptor and proteinase-activated receptor 2 (PAR2) have been implicated in the mechanism of acid-induced inflammation in gastroesophageal reflux disease (GERD). We aimed to evaluate TRPV1 and PAR2 mRNA expression levels in the GERD patients and their relationship with endoscopic findings and reflux symptoms. Sixteen healthy controls, 45 patients with erosive reflux disease (ERD), and 14 nonerosive reflux disease (NERD) patients received endoscopy and completed questionnaires. Quantitative real-time polymerase chain reactions (qPCR) of TRPV1, glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), PAR2, and interleukin (IL)-8 were performed in the distal esophagus specimen. The levels of TRPV1, GDNF, NGF, PAR2, and IL-8 mRNA expression were highest in the ERD group followed by NERD and control groups and the differences between control and ERD groups were statistically significant. Within the ERD group, patients with grade B in Los Angeles (LA) classification showed significantly higher levels of TRPV1, GDNF, and NGF mRNA expression than those with grade A. Presence of reflux symptoms was associated with significant higher levels of TRPV1, PAR2, and IL-8. Notably not extraesophageal but esophageal reflux symptoms were significantly associated with them. Upregulation of TRPV1 and PAR2 pathways might play a role in the development of distal esophageal inflammation and reflux symptoms. And extraesophageal reflux symptoms might not be associated with these processes. PMID:27512850

  2. Reduction and fragmentation of elastic fibers in the skin of obese mice is associated with altered mRNA expression levels of fibrillin-1 and neprilysin.

    PubMed

    Makihara, Hiroko; Hidaka, Moeko; Sakai, Yui; Horie, Yoshiko; Mitsui, Hideaki; Ohashi, Kenichi; Goshima, Yoshio; Akase, Tomoko

    2017-09-01

    Our previous research suggested that obesity induces structural fragility in the skin. Elastic fibers impart strength and elasticity. In this study, we determined whether elastic fibers decrease in the skin of obese mice. To confirm alterations in elastic fiber content due to obesity, we used spontaneously obese model mice (TSOD) and control mice (TSNO). Furthermore, to evaluate the elastin structure and gene expression dependent on the severity of obesity, an obesity-enhanced mouse model was developed by feeding a high fat diet to TSOD (TSOD-HF). Back skin samples were stained with hematoxylin and eosin and Elastica van Gieson for microscopic examination, and the samples were stained for immunohistochemical analysis of neprilysin. Gene expression levels were determined using a real-time PCR system. The abundance of elastic fibers beneath the epidermis was remarkably reduced and fragmented in TSOD as compared with TSNO. Fibrillin-1 mRNA levels in TSOD were significantly suppressed compared with those in TSNO, whereas neprilysin mRNA levels and immunohistochemical expression in TSOD were significantly increased, as compared with those in TSNO. The reduction of elastic fibers was enhanced and the expression levels of elastic fiber formed factors were significantly suppressed in TSOD-HF, as compared with those in the TSOD. The abundance of elastic fibers was reduced and fragmented in obesity, suggesting that the reduction in elastic fibers is initially caused by increased neprilysin and decreased fibrillin-1 expression, which may inhibit formation and stabilization of elastic fibers, resulting in skin fragility in obesity.

  3. Increased duodenal DMT-1 expression and unchanged HFE mRNA levels in HFE-associated hereditary hemochromatosis and iron deficiency.

    PubMed

    Byrnes, V; Barrett, S; Ryan, E; Kelleher, T; O'Keane, C; Coughlan, B; Crowe, J

    2002-01-01

    HFE-associated hereditary hemochromatosis is characterized by imbalances of iron homeostasis and alterations in intestinal iron absorption. The identification of the HFE gene and the apical iron transporter divalent metal transporter-1, DMT-1, provide a direct method to address the mechanisms of iron overload in this disease. The aim of this study was to evaluate the regulation of duodenal HFE and DMT-1 gene expression in HFE-associated hereditary hemochromatosis. Small bowel biopsies and serum iron indices were obtained from a total of 33 patients. The study population comprised 13 patients with hereditary hemochromatosis (C282Y homozygous), 10 patients with iron deficiency anemia, and 10 apparently healthy controls, all of whom were genotyped for the two common mutations in the HFE gene (C282Y and H63D). Total RNA was isolated from tissue and amplified via RT-PCR for HFE, DMT-1, and the internal control GAPDH. DMT-1 protein expression was additionally assessed by immunohistochemistry. Levels of HFE mRNA did not differ significantly between patient groups (P = 0.09), specifically between C282Y homozygotes and iron deficiency anemic patients, when compared to controls (P = 0.09, P = 0.9, respectively). In contrast, DMT-1 mRNA levels were at least twofold greater in patients with hereditary hemochromatosis and iron deficiency anemia when compared to controls (P = 0.02, P = 0.01, respectively). Heightened DMT-1 protein expression correlated with mRNA levels in all patients. Loss of HFE function in hereditary hemochromatosis is not derived from inhibition of its gene expression. DMT-1 expression in C282Y homozygote subjects is consistent with the hypothesis of a "paradoxical" duodenal iron deficiency in hereditary hemochromatosis. The observed twofold upregulation of the DMT-1 is consistent with the slow but steady increase in body iron stores observed in those presenting with clinical features of hereditary hemochromatosis.

  4. An evaluation of the effects of acute and chronic L-tyrosine administration on BDNF levels and BDNF mRNA expression in the rat brain.

    PubMed

    Ferreira, Gabriela K; Scaini, Giselli; Jeremias, Isabela C; Carvalho-Silva, Milena; Gonçalves, Cinara L; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2014-04-01

    Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia.

  5. Changes in serum hyaluronic acid levels and expression of CD44 and CD44 mRNA in hepatic sinusoidal endothelial cells after major hepatectomy in cirrhotic rats.

    PubMed

    Saegusa, Shotaro; Isaji, Shuji; Kawarada, Yoshifumi

    2002-06-01

    Serum hyaluronic acid (HA) is widely distributed in connective tissues, and the majority of circulating HA is degraded by hepatic sinusoidal endothelial cells (SECs) via a receptor recycling pathway. Our previous clinical study revealed that monitoring serum HA levels after hepatectomy is useful in predicting the development of liver failure. In the present study, to determine the mechanism of the high HA levels after hepatectomy, especially in patients with liver cirrhosis, expression of the major HA receptor, CD44, and its mRNA was investigated in SECs isolated from rats with thioacetamide-induced liver cirrhosis subjected to 70% hepatectomy (group I) and from rats with a normal liver that were subjected to 70% hepatectomy (group II). The 48-hour postoperative survival rate in group I (13.3%) was significantly lower than in group II (100%). In group II, the expression of CD44 mRNA had increased significantly at 6 hours after hepatectomy, and this was followed by progressive increases in expression of CD44, indicating activation of SEC function. The increased serum HA levels after hepatectomy in group II became normal as CD44 expression increased. By contrast, the expression of CD44 and CD44 mRNA in group I was markedly attenuated after hepatectomy. The very low CD44 expression was followed by a significant and sustained increase in serum HA levels, indicating functional failure of the SECs. These results suggest that the significantly impaired functional reserve of SECs in liver cirrhosis is associated with increased mortality after 70% hepatectomy.

  6. Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire).

    PubMed

    Oliveira, Ernna H; Macedo, Claudia; Donate, Paula B; Almeida, Renata S; Pezzi, Nicole; Nguyen, Catherine; Rossi, Marcos A; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Passos, Geraldo A

    2013-01-01

    In the thymus of non-obese diabetic (NOD) mice, the expression of the autoimmune regulator (Aire) gene varies with age, and its down-regulation in young mice precedes the later emergence of type 1 diabetes mellitus (T1D). In addition, the insulin (Ins2) peripheral tissue antigen (PTA) gene, which is Aire-dependent, is also deregulated in these mice. Based in these findings, we hypothesized that the imbalance in PTA gene expression in the thymus can be associated with slight variations in Aire transcript levels. To test this, we used siRNA to knockdown Aire by in vivo electro-transfection of the thymus of BALB/c mice. The efficiency of the electro-transfection was monitored by assessing the presence of irrelevant Cy3-labeled siRNA in the thymic stroma. Importantly, Aire-siRNA reached medullary thymic epithelial cells (mTECs) down-regulating Aire. As expected, the in vivo Aire knockdown was partial and transient; the maximum 59% inhibition occurred in 48 h. The Aire knockdown was sufficient to down-regulate PTA genes; however, surprisingly, several others, including Ins2, were up-regulated. The modulation of these genes after in vivo Aire knockdown was comparable to that observed in NOD mice before the emergence of T1D. The in vitro transfections of 3.10 mTEC cells with Aire siRNA resulted in samples featuring partial (69%) and complete (100%) Aire knockdown. In these Aire siRNA-transfected 3.10 mTECs, the expression of PTA genes, including Ins2, was down-regulated. This suggests that the expression profile of PTA genes in mTECs is affected by fine changes in the transcription level of Aire. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers

    SciTech Connect

    Hanova, Monika; Stetina, Rudolf; Vodickova, Ludmila; Vaclavikova, Radka; Hlavac, Pavel; Smerhovsky, Zdenek; Naccarati, Alessio; Polakova, Veronika; Soucek, Pavel; Kuricova, Miroslava; Manini, Paola; Kumar, Rajiv; Hemminki, Kari; Vodicka, Pavel

    2010-11-01

    Decreased levels of single-strand breaks in DNA (SSBs), reflecting DNA damage, have previously been observed with increased styrene exposure in contrast to a dose-dependent increase in the base-excision repair capacity. To clarify further the above aspects, we have investigated the associations between SSBs, micronuclei, DNA repair capacity and mRNA expression in XRCC1, hOGG1 and XPC genes on 71 styrene-exposed and 51 control individuals. Styrene concentrations at workplace and in blood characterized occupational exposure. The workers were divided into low (below 50 mg/m{sup 3}) and high (above 50 mg/m{sup 3}) styrene exposure groups. DNA damage and DNA repair capacity were analyzed in peripheral blood lymphocytes by Comet assay. The mRNA expression levels were determined by qPCR. A significant negative correlation was observed between SSBs and styrene concentration at workplace (R = - 0.38, p = 0.001); SSBs were also significantly higher in men (p = 0.001). The capacity to repair irradiation-induced DNA damage was the highest in the low exposure group (1.34 {+-} 1.00 SSB/10{sup 9} Da), followed by high exposure group (0.72 {+-} 0.81 SSB/10{sup 9} Da) and controls (0.65 {+-} 0.82 SSB/10{sup 9} Da). The mRNA expression levels of XRCC1, hOGG1 and XPC negatively correlated with styrene concentrations in blood and at workplace (p < 0.001) and positively with SSBs (p < 0.001). Micronuclei were not affected by styrene exposure, but were higher in older persons and in women (p < 0.001). In this study, we did not confirm previous findings on an increased DNA repair response to styrene-induced genotoxicity. However, negative correlations of SSBs and mRNA expression levels of XRCC1, hOGG1 and XPC with styrene exposure warrant further highly-targeted study.

  8. Effects of breeds and dietary protein levels on the growth performance, energy expenditure and expression of avUCP mRNA in chickens.

    PubMed

    Li, Qihua; Xu, Zhiqiang; Liu, L; Yu, Hongxin; Rong, Hua; Tao, Linli; Zhang, Xi; Chen, Xiaobo; Gu, Dahai; Fan, Yueyuan; Li, Xiaoqin; Ge, Changrong; Tian, Yunbo; Jia, Junjing

    2013-04-01

    The physiological mechanisms of thermogenesis, energy balance and energy expenditure are poorly understood in poultry. The aim of this study was designed to investigate the physiological roles of avian uncoupling protein (avUCP) regulating in energy balance and thermogenesis by using three chicken breeds of existence striking genetic difference and feeding with different dietary protein levels. Three chicken breeds including broilers, hybrid chickens, and non-selection Wuding chickens were used in this study. Total 150 chicks of 1 day of age, with 50 from each breed were reared under standard conditions on starter diets to 30 days. At 30 days of age, forty chicks from each breed chicks were divided into two groups. One group was fed low protein diet (LP, 17.0 %), and the other group was fed high protein diet (HP, 19.5 %) for 60 days. Wuding chickens showed the lowest feed conversion efficiency (FCE) and the highest expressions of avUCP mRNA association with high plasma T3 and insulin concentrations. Hybrid chickens showed the lowest expressions of avUCP mRNA association with high FCE and energy efficiency. Expressions of avUCP mRNA association with diet-induced thermogenesis (DIT) were only observed in broiler and hybrid chickens. The expressions of avUCP mRNA were positive association with plasma insulin, T3 and NEFA concentrations. Age influence on the expression of avUCP mRNA were observed only for hybrid and broiler chickens. It seems that both roles of avUCP regulation thermogenesis and lipid utilisation as fuel were observed in the present study response to variation in dietary protein and breeds.

  9. Chronic toxicity of pesticides to the mRNA expression levels of metallothioneins and cytochrome P450 1A genes in rainbow trout.

    PubMed

    Ceyhun, Saltuk Bugrahan; Aksakal, Ercüment; Kirim, Birsen; Atabeyoglu, Kübra; Erdogan, Orhan

    2012-03-01

    The hazardous effects of pesticides on various metabolic pathways are a great problem for environmental health and should be well determined. In the present study, the authors treated rainbow trout with 0.6 μg/L deltamethrin for 28 days and 1.6 mg/L 2,2-dichlorovinyl dimethyl phosphate for 21 days. After this time period, the authors observed alterations in mRNA expression levels of MT-A, MT-B and CYP-1A. Chronic exposure to low levels of pesticides may have a more significant effect on fish populations than acute poisoning. While both pesticides caused a significant increase on mRNA levels of MT-A and CYP-1A, MT-B mRNA levels were increased significantly only upon deltamethin administration. The significant increase in mRNA levels of the corresponding genes may be considered as a defence mechanism in addition to the antioxidants against oxidative stress, as well as a detoxification mechanism against adverse effects of pesticides.

  10. Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNA-induced silencing complex (RISC) components argonaute-1, argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer.

    PubMed

    Sand, Michael; Skrygan, Marina; Georgas, Dimitrios; Arenz, Christoph; Gambichler, Thilo; Sand, Daniel; Altmeyer, Peter; Bechara, Falk G

    2012-11-01

    The microprocessor complex mediates intranuclear biogenesis of precursor microRNAs from the primary microRNA transcript. Extranuclear, mature microRNAs are incorporated into the RNA-induced silencing complex (RISC) before interaction with complementary target mRNA leads to transcriptional repression or cleavage. In this study, we investigated the expression profiles of the microprocessor complex subunit DiGeorge syndrome critical region gene 8 (DGCR8) and the RISC components argonaute-1 (AGO1), argonaute-2 (AGO2), as well as double-stranded RNA-binding proteins PACT, TARBP1, and TARBP2 in epithelial skin cancer and its premalignant stage. Patients with premalignant actinic keratoses (AK, n = 6), basal cell carcinomas (BCC, n = 15), and squamous cell carcinomas (SCC, n = 7) were included in the study. Punch biopsies were harvested from the center of the tumors (lesional), from healthy skin sites (intraindividual controls), and from healthy skin sites in a healthy control group (n = 16; interindividual control). The DGCR8, AGO1, AGO2, PACT, TARBP1, and TARBP2 mRNA expression levels were detected by quantitative real-time reverse transcriptase polymerase chain reaction. The DGCR8, AGO1, AGO2, PACT, and TARBP1 expression levels were significantly higher in the AK, BCC, and SCC groups than the healthy controls (P < 0.05). There was no significant difference in the TARBP2 expression levels between groups (P > 0.05). This study indicates that major components of the miRNA pathway, such as the microprocessor complex and RISC, are dysregulated in epithelial skin cancer.

  11. Identification of condition-specific regulatory modules through multi-level motif and mRNA expression analysis

    PubMed Central

    Chen, Li; Wang, Yue; Hoffman, Eric P.; Riggins, Rebecca B.; Clarke, Robert

    2013-01-01

    Many computational methods for identification of transcription regulatory modules often result in many false positives in practice due to noise sources of binding information and gene expression profiling data. In this paper, we propose a multi-level strategy for condition-specific gene regulatory module identification by integrating motif binding information and gene expression data through support vector regression and significant analysis. We have demonstrated the feasibility of the proposed method on a yeast cell cycle data set. The study on a breast cancer microarray data set shows that it can successfully identify the significant and reliable regulatory modules associated with breast cancer. PMID:20054984

  12. The relative expression levels of insulin-like growth factor 1 and myostatin mRNA in the asynchronous development of skeletal muscle in ducks during early development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Shan, Yanju; Ji, Gaige; Xu, Wenjuan; Shu, Jingting; Li, Huifang

    2015-08-10

    Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in seawater acclimated Dungeness crab Metacarcinus magister.

    PubMed

    Martin, Michael; Fehsenfeld, Sandra; Sourial, Mary M; Weihrauch, Dirk

    2011-10-01

    In the present study of the marine Dungeness crabs Metacarcinus magister, the long term effects of high environmental ammonia (HEA) on hemolymph ammonia and urea concentrations, branchial ammonia excretion rates and mRNA expression levels of the crustacean Rh-like ammonia transporter (RhMM), H(+)-ATPase (subunit B), Na(+)/K(+)-ATPase (α-subunit) and Na(+)/H(+)-exchanger (NHE) were investigated. Under control conditions, the crabs' hemolymph exhibited a total ammonia concentration of 179.3±14.5μmol L(-1), while urea accounted for 467.2±33.5μmol L(-1), respectively. Both anterior and posterior gills were capable of excreting ammonia against a 16-fold inwardly directed gradient. Under control conditions, mRNA expression levels of RhMM were high in the gills in contrast to very low expression levels in all other tissues investigated, including the antennal gland, hepatopancreas, and skeletal muscle. After exposure to 1mmol L(-1) NH(4)Cl, hemolymph ammonia increased within the first 12h to ca. 500µmol L(-1) and crabs were able the keep this hemolymph ammonia level for at least 4 days. During this initial period, branchial RhMM and H(+)-ATPase (subunit B) mRNA expression levels roughly doubled. After 14 days of HEA exposure, hemolymph ammonia raised up to environmental levels, whereas urea levels increased by ca. 30%. At the same time, whole animal ammonia and urea excretion vanished. Additionally, branchial RhMM, H(+)-ATPase, Na(+)/K(+)-ATPase and NHE mRNA levels decreased significantly after long term HEA exposure, whereas expression levels of RhMM in the internal tissues increased substantially. Interestingly, crabs acclimated to HEA showed no mortality even after 4 weeks of HEA exposure. This suggests that M. magister possesses a highly adaptive mechanism to cope with elevated ammonia concentrations in its body fluids, including an up-regulation of an Rh-like ammonia transporter in the internal tissues and excretion or storage of waste nitrogen in a so far

  14. Antisense RNA suppression of peroxidase gene expression

    SciTech Connect

    Lagrimini, L.M.; Bradford, S.; De Leon, F.D. )

    1989-04-01

    The 5{prime} half the anionic peroxidase cDNA of tobacco was inserted into a CaMV 35S promoter/terminator expression cassette in the antisense configuration. This was inserted into the Agrobacterium-mediated plant transformation vector pCIBIO which includes kanamycin selection, transformed into two species of tobacco (N. tabacum and M. sylvestris), and plants were subsequently regenerated on kanamycin. Transgenic plants were analyzed for peroxidase expression and found to have 3-5 fold lower levels of peroxidase than wild-type plants. Isoelectric focusing demonstrated that the antisense RNA only suppressed the anionic peroxidase. Wound-induced peroxidase expression was found not to be affected by the antisense RNA. Northern blots show a greater than 5 fold suppression of anionic peroxidase mRNA in leaf tissue, and the antisense RNA was expressed at a level 2 fold over the endogenous mRNA. Plants were self-pollinated and F1 plants showed normal segregation. N. sylvestris transgenic plants with the lowest level of peroxidase are epinastic, and preliminary results indicate elevated auxin levels. Excised pith tissue from both species of transgenic plants rapidly collapse when exposed to air, while pith tissue from wild-type plants showed little change when exposed to air. Further characterization of these phenotypes is currently being made.

  15. The Allergic Airway Inflammation Repository--a user-friendly, curated resource of mRNA expression levels in studies of allergic airways.

    PubMed

    Gawel, D R; Rani James, A; Benson, M; Liljenström, R; Muraro, A; Nestor, C E; Zhang, H; Gustafsson, M

    2014-08-01

    Public microarray databases allow analysis of expression levels of candidate genes in different contexts. However, finding relevant microarray data is complicated by the large number of available studies. We have compiled a user-friendly, open-access database of mRNA microarray experiments relevant to allergic airway inflammation, the Allergic Airway Inflammation Repository (AAIR, http://aair.cimed.ike.liu.se/). The aim is to allow allergy researchers to determine the expression profile of their genes of interest in multiple clinical data sets and several experimental systems quickly and intuitively. AAIR also provides quick links to other relevant information such as experimental protocols, related literature and raw data files.

  16. MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia

    PubMed Central

    Hervé, Mylène

    2016-01-01

    ABSTRACT Familial dysautonomia (FD) is a rare neurodegenerative disease caused by a mutation in intron 20 of the IKBKAP gene (c.2204+6T>C), leading to tissue-specific skipping of exon 20 and a decrease in the synthesis of the encoded protein IKAP (also known as ELP1). Small non-coding RNAs known as microRNAs (miRNAs) are important post-transcriptional regulators of gene expression and play an essential role in the nervous system development and function. To better understand the neuronal specificity of IKAP loss, we examined expression of miRNAs in human olfactory ecto-mesenchymal stem cells (hOE-MSCs) from five control individuals and five FD patients. We profiled the expression of 373 miRNAs using microfluidics and reverse transcription coupled to quantitative PCR (RT-qPCR) on two biological replicate series of hOE-MSC cultures from healthy controls and FD patients. This led to the total identification of 26 dysregulated miRNAs in FD, validating the existence of a miRNA signature in FD. We then selected the nine most discriminant miRNAs for further analysis. The signaling pathways affected by these dysregulated miRNAs were largely within the nervous system. In addition, many targets of these dysregulated miRNAs had been previously demonstrated to be affected in FD models. Moreover, we found that four of our nine candidate miRNAs target the neuron-specific splicing factor NOVA1. We demonstrated that overexpression of miR-203a-3p leads to a decrease of NOVA1, counter-balanced by an increase of IKAP, supporting a potential interaction between NOVA1 and IKAP. Taken together, these results reinforce the choice of miRNAs as potential therapeutic targets and suggest that NOVA1 could be a regulator of FD pathophysiology. PMID:27483351

  17. MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia.

    PubMed

    Hervé, Mylène; Ibrahim, El Chérif

    2016-08-01

    Familial dysautonomia (FD) is a rare neurodegenerative disease caused by a mutation in intron 20 of the IKBKAP gene (c.2204+6T>C), leading to tissue-specific skipping of exon 20 and a decrease in the synthesis of the encoded protein IKAP (also known as ELP1). Small non-coding RNAs known as microRNAs (miRNAs) are important post-transcriptional regulators of gene expression and play an essential role in the nervous system development and function. To better understand the neuronal specificity of IKAP loss, we examined expression of miRNAs in human olfactory ecto-mesenchymal stem cells (hOE-MSCs) from five control individuals and five FD patients. We profiled the expression of 373 miRNAs using microfluidics and reverse transcription coupled to quantitative PCR (RT-qPCR) on two biological replicate series of hOE-MSC cultures from healthy controls and FD patients. This led to the total identification of 26 dysregulated miRNAs in FD, validating the existence of a miRNA signature in FD. We then selected the nine most discriminant miRNAs for further analysis. The signaling pathways affected by these dysregulated miRNAs were largely within the nervous system. In addition, many targets of these dysregulated miRNAs had been previously demonstrated to be affected in FD models. Moreover, we found that four of our nine candidate miRNAs target the neuron-specific splicing factor NOVA1. We demonstrated that overexpression of miR-203a-3p leads to a decrease of NOVA1, counter-balanced by an increase of IKAP, supporting a potential interaction between NOVA1 and IKAP. Taken together, these results reinforce the choice of miRNAs as potential therapeutic targets and suggest that NOVA1 could be a regulator of FD pathophysiology. © 2016. Published by The Company of Biologists Ltd.

  18. Alpha1-chimaerin, a Rac1 GTPase-activating protein, is expressed at reduced mRNA levels in the brain of Alzheimer's disease patients

    PubMed Central

    Kato, Tomoko; Konishi, Yoshihiro; Shimohama, Shun; Beach, Thomas G.; Akatsu, Hiroyasu; Tooyama, Ikuo

    2015-01-01

    Alpha1-chimaerin is a GTPase-activating protein (GAP) for Rac1, a member of the Rho small GTPase family, whose action leads to the inactivation of Rac1. Rac1 activity is upregulated in Alzheimer's disease, but little is known about the role of α1-chimaerin. In this study, we investigated the expression and localization of α1-chimaerin mRNA in postmortem human brains from patients with Alzheimer's disease and control subjects. In situ hybridization studies demonstrated that α1-chimaerin was expressed by neurons in the neo-cortex of the temporal lobe and the hippocampus of both controls and Alzheimer's disease cases, with the signal intensity dramatically decreased in patients with Alzheimer's disease. Real-time PCR analysis confirmed a significant reduction of α1-chimaerin mRNA expression in the temporal cortex of Alzheimer's disease cases. In contrast, α2-chimaerin mRNA levels showed no significant difference between the groups. The present study showed reduced α1-chimaerin expression in the brain of Alzheimer's disease cases, suggesting a role in the upregulation of Rac1 activity during the disease process. PMID:25676811

  19. Variations in endothelin receptor B subtype 2 (EDNRB2) coding sequences and mRNA expression levels in 4 Muscovy duck plumage colour phenotypes.

    PubMed

    Wu, N; Qin, H; Wang, M; Bian, Y; Dong, B; Sun, G; Zhao, W; Chang, G; Xu, Q; Chen, G

    2017-04-01

    1. Endothelin receptor B subtype 2 (EDNRB2) is a paralog of EDNRB, which encodes a 7-transmembrane G-protein coupled receptor. Previous studies reported that EDNRB was essential for melanoblast migration in mammals and ducks. 2. Muscovy ducks have different plumage colour phenotypes. Variations in EDNRB2 coding sequences (CDSs) and mRNA expression levels were investigated in 4 different Muscovy duck plumage colour phenotypes, including black, black mutant, silver and white head. 3. The EDNRB2 gene from Muscovy duck was cloned; it had a length of 6435 bp and encoded 437 amino acids. The coding region was screened and potential single nucleotide polymorphisms were identified. Eight mutations were obtained, including one missense variant (c.64C > T) and 7 synonymous substitutions. The substitutions were associated with plumage colour phenotypes. 4. The EDNRB2 mRNA expression levels were compared between feather pulp from black birds and black mutant birds. The results indicated that EDNRB2 transcripts in feather pulp were significantly higher in black feathers than in white feathers. 5. The results determined the variation of EDNRB2 CDS and mRNA expression in Muscovy ducks of various plumage colours.

  20. Effects of estrogen on food intake, serum leptin levels and leptin mRNA expression in adipose tissue of female rats.

    PubMed

    Fungfuang, Wirasak; Terada, Misao; Komatsu, Noriyuki; Moon, Changjong; Saito, Toru R

    2013-09-01

    The integration of metabolism and reproduction involves complex interactions of hypothalamic neuropeptides with metabolic hormones, fuels, and sex steroids. Of these, estrogen influences food intake, body weight, and the accumulation and distribution of adipose tissue. In this study, the effects of estrogen on food intake, serum leptin levels, and leptin mRNA expression were evaluated in ovariectomized rats. Seven-week-old female Wistar-Imamichi rats were ovariectomized and divided into three treatment groups: group 1 (the control group) received sesame oil, group 2 was given 17β-estradiol benzoate, and group 3 received 17β-estradiol benzoate plus progesterone. The body weight and food consumption of each rat were determined daily. Serum leptin levels and leptin mRNA expression were measured by ELISA and quantitative RT-PCR, respectively. Food consumption in the control group was significantly higher (P<0.05) than that in groups 2 and 3, although body weight did not significantly differ among the three groups. The serum leptin concentration and leptin mRNA expression were significantly higher (P<0.05) in groups 2 and 3 than in group 1, but no significant difference existed between groups 2 and 3. In conclusion, estrogen influenced food intake via the modulation of leptin signaling pathway in ovariectomized rats.

  1. Efficient use of artificial micro-RNA to downregulate the expression of genes at the post-transcriptional level in Arabidopsis thaliana.

    PubMed

    Ud-Din, A; Rauf, M; Ghafoor, S; Khattak, M N K; Hameed, M W; Shah, H; Jan, S; Muhammad, K; Rehman, A; Inamullah

    2016-04-07

    Micro-RNAs are cellular components regulating gene expression at the post-transcription level. In the present study, artificial micro-RNAs were used to decrease the transcript level of two genes, AtExpA8 (encoding an expansin) and AHL25 (encoding an AT-hook motif nuclear localized protein) in Arabidopsis thaliana. The backbone of the Arabidopsis endogenous MIR319a micro-RNA was used in a site-directed mutagenesis approach for the generation of artificial micro-RNAs targeting two genes. The recombinant cassettes were expressed under the control of the CaMV 35S promoter in individual A. thaliana plants. Transgenic lines of the third generation were tested by isolating total RNA and by subsequent cDNA synthesis using oligo-dT18 primers and mRNAs as templates. The expression of the two target genes was checked through quantitative real-time polymerase chain reaction to confirm reduced transcript levels for AtExpA8 and AHL25. Downregulation of AtExpA8 resulted in the formation of short hypocotyls compared with those of the wild-type control in response to low pH and high salt concentration. This technology could be used to prevent the expression of exogenous and invading genes posing a threat to the normal cellular physiology of the host plant.

  2. Alterations in trace element levels and mRNA expression of Hsps and inflammatory cytokines in livers of duck exposed to molybdenum or/and cadmium.

    PubMed

    Cao, Huabin; Gao, Feiyan; Xia, Bing; Zhang, Mengmeng; Liao, Yilin; Yang, Zhi; Hu, Guoliang; Zhang, Caiying

    2016-03-01

    To evaluate the effects of dietary Molybdenum (Mo) or/and Cadmium (Cd) on trace elements and the mRNA expression levels of heat shock proteins (Hsps) and inflammatory cytokines in duck livers. 240 healthy 11-day-old ducks were randomly divided into six groups with 40 ducks in each group, which were treated with Mo or/and Cd at different doses on the basal diet for 120 days. On days 30, 60, 90 and 120, 10 birds in each group were randomly selected and euthanized and then the livers were collected to determine the contents of Mo, Cd, copper (Cu), iron (Fe), zine (Zn), Selenium (Se) and the mRNA expression levels of Hsps, inflammatory cytokines. In addition, liver tissues at 120 days were subjected to histopathological analysis with the optical microscope. The results showed that the mRNA expression of Hsp60, Hsp70, Hsp90, tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and cyclooxygenase-2 (COX-2) were significantly (P<0.01) upregulated in combination groups; Contents of Cu, Fe, Zn, and Se decreased in combined groups (P<0.05) in the later period of the test while contents of Mo and Cd significantly increased (P<0.01); Furthermore severe hepatocyte diffuse fatty, hepatic cords swelling, hepatic sinusoid disappeared, and inflammatory cells infiltrated around the hepatic central vein were observed in Mo combined with Cd groups. The results indicated that dietary Mo or/and Cd might lead to stress, inflammatory response, tissue damage and disturb homeostasis of trace elements in duck livers. Moreover the two elements showed a possible synergistic relationship. And the high mRNA expression of HSPs and inflammatory cytokines may play a role in the resistance of liver toxicity induced by Mo and Cd. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Developmental changes in the hypothalamic mRNA expression levels of brain-derived neurotrophic factor and serum leptin levels: Their responses to fasting in male and female rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Yano, Kiyohito; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Yiliyasi, Maira; Kuwahara, Akira; Irahara, Minoru

    2016-11-01

    The actions and responses of hypothalamic appetite regulatory factors change markedly during the neonatal to pre-pubertal period in order to maintain appropriate metabolic and nutritional conditions. In this study, we examined the developmental changes in the hypothalamic mRNA levels of brain-derived neurotrophic factor (BDNF), which is a potent anorectic factor and the changes in the sensitivity of the hypothalamic expression of this factor to fasting during the neonatal to pre-pubertal period. Under fed conditions, hypothalamic BDNF mRNA expression decreased during development in both male and female rats. Similarly, the serum levels of leptin, which is a positive regulator of hypothalamic BDNF expression, also tended to fall during the developmental period. The serum leptin level and the hypothalamic BDNF mRNA level were found to be positively correlated in both sexes under the fed conditions. Hypothalamic BDNF mRNA expression was decreased by 24h fasting (separating the rats from their mothers) in the early neonatal period (postnatal day 10) in both males and females, but no such changes were seen at postnatal day 20. Twenty-four hours' fasting (food deprivation) did not affect hypothalamic BDNF mRNA expression in the pre-pubertal period (postnatal day 30). On the other hand, the rats' serum leptin levels were decreased by 24h fasting (separating the rats from their mothers at postnatal day 10 and 20, and food deprivation at postnatal day 30) throughout the early neonatal to pre-pubertal period. The correlation between serum leptin and hypothalamic BDNF mRNA levels was not significant under the fasted conditions. It can be speculated that leptin partially regulates hypothalamic BDNF mRNA levels, but only in fed conditions. Such changes in hypothalamic BDNF expression might play a role in maintaining appropriate metabolic and nutritional conditions and promoting normal physical development. In addition, because maternal separation induces a negative energy

  4. Modeling Equilibrium of microRNA Expression

    PubMed Central

    Chan, Lawrence W. C.

    2011-01-01

    MicroRNAs are a class of non-coding RNAs and the dysregulated expression of these short RNA molecules was frequently observed in cancer cells. The steady state level of microRNA concentration may differentiate the biological function of the cells between normal and impaired. To understand the steady state or equilibrium of microRNAs, their interactions with transcription factors and target genes need to be explored and visualized through prediction and network analysis algorithms. This article discusses the application of mathematical model for simulating the dynamics of network feedback loop so as to decipher the mechanism of microRNA regulation. PMID:22303331

  5. Regulation of interleukin 3 mRNA expression in mast cells occurs at the posttranscriptional level and is mediated by calcium ions

    SciTech Connect

    Wodnar-Filipowicz, A.; Moroni, C. )

    1990-01-01

    Interleukin 3 (IL-3) is transiently produced by murine bone marrow-derived mast cells in response to antigen stimulation of the high-affinity immunoglobulin E receptors. The authors have studied the postreceptor signaling pathways involved in regulating expression of the IL-3 gene in the murine mass cell PB-3c. Large amounts of IL-3 mRNA accumulated after exposure of cells to calcium ionophore A23187, a reagent that increases intracellular Ca{sup 2+}. Phorbol 12-myristate 13-acetate, which stimulates protein kinase C, did not induce IL-3 mRNA accumulation, although it did potentiate the effect of A23187. Nuclear run-on analysis showed that the IL-3 gene is constitutively transcribed in unstimulated cells and that treatment with A23187 and/or phorbol ester has no influence on its transcription rate. The effect of A23187 was found to be due to stabilization of the IL-3 mRNA. In cells maintained in the presence of A23187 the IL-3 mRNA was stable during 3 hr of incubation with actinomycin D, whereas removal of A23187 under the same conditions resulted in rapid degradation of the mRNA. These results indicate that control of expression of the IL-3 gene in mast cells is primarily at the posttranscriptional level and that the Ca{sup 2+}-dependent signal-transduction pathway plays an important role in this process. Synthesis of granulocyte/macrophage colony-stimulating factor mRNA in response to A23187 and phorbol ester was found to be subject to both transcriptional and posttranscriptional regulation.

  6. Evaluation of three reference genes of Escherichia coli for mRNA expression level normalization in view of salt and organic acid stress exposure in food.

    PubMed

    Peng, Silvio; Stephan, Roger; Hummerjohann, Jörg; Tasara, Taurai

    2014-06-01

    Escherichia coli can adapt to various stress conditions encountered in food through induction of stress response genes encoding proteins that counteract the respective stresses. To understand the impact and the induction of these genes under food-associated stresses, changes in the levels of their mRNA expression in response to such stresses can be analysed. Relative quantification of mRNA levels by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) requires normalization to reference genes with stable expression under the experimental conditions being investigated. We examined the validity of three housekeeping genes (cysG, hcaT and rssA) among E. coli strains exposed to salt and organic acid stress. The rssA gene was shown to be the most stably expressed gene under such stress adaptation experimental models. The cysG gene was the least stable, whereas the hcaT gene showed similar interstrain variability as rssA but lower expression stability in the different stress adaptation models. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Low-level light-emitting diode therapy increases mRNA expressions of IL-10 and type I and III collagens on Achilles tendinitis in rats.

    PubMed

    Xavier, Murilo; de Souza, Renato Aparecido; Pires, Viviane Araújo; Santos, Ana Paula; Aimbire, Flávio; Silva, José Antônio; Albertini, Regiane; Villaverde, Antonio Balbin

    2014-01-01

    The present study investigated the effects of low-level light-emitting diode (LED) therapy (880 ± 10 nm) on interleukin (IL)-10 and type I and III collagen in an experimental model of Achilles tendinitis. Thirty male Wistar rats were separated into six groups (n = 5), three groups in the experimental period of 7 days, control group, tendinitis-induced group, and LED therapy group, and three groups in the experimental period of 14 days, tendinitis group, LED therapy group, and LED group with the therapy starting at the 7th day after tendinitis induction (LEDT delay). Tendinitis was induced in the right Achilles tendon using an intratendinous injection of 100 μL of collagenase. The LED parameters were: optical power of 22 mW, spot area size of 0.5 cm(2), and irradiation time of 170 s, corresponding to 7.5 J/cm(2) of energy density. The therapy was initiated 12 h after the tendinitis induction, with a 48-h interval between irradiations. The IL-10 and type I and III collagen mRNA expression were evaluated by real-time polymerase chain reaction at the 7th and 14th days after tendinitis induction. The results showed that LED irradiation increased IL-10 (p < 0.001) in treated group on 7-day experimental period and increased type I and III collagen mRNA expression in both treated groups of 7- and 14-day experimental periods (p < 0.05), except by type I collagen mRNA expression in LEDT delay group. LED (880 nm) was effective in increasing mRNA expression of IL-10 and type I and III collagen. Therefore, LED therapy may have potentially therapeutic effects on Achilles tendon injuries.

  8. PARP1 promotes gene expression at the post-transcriptional level by modulating the RNA-binding protein HuR

    PubMed Central

    Ke, Yueshuang; Han, Yanlong; Guo, Xiaolan; Wen, Jitao; Wang, Ke; Jiang, Xue; Tian, Xue; Ba, Xueqing; Boldogh, Istvan; Zeng, Xianlu

    2017-01-01

    Poly(ADP-ribosyl)ation (PARylation) is mainly catalysed by poly-ADP-ribose polymerase 1 (PARP1), whose role in gene transcription modulation has been well established. Here we show that, in response to LPS exposure, PARP1 interacts with the adenylateuridylate-rich element-binding protein embryonic lethal abnormal vision-like 1 (Elavl1)/human antigen R (HuR), resulting in its PARylation, primarily at site D226. PARP inhibition and the D226 mutation impair HuR's PARylation, nucleocytoplasmic shuttling and mRNA binding. Increases in mRNA level or stability of pro-inflammatory cytokines/chemokines are abolished by PARP1 ablation or inhibition, or blocked in D226A HuR-expressing cells. The present study demonstrates a mechanism to regulate gene expression at the post-transcriptional level, and suggests that blocking the interaction of PARP1 with HuR could be a strategy to treat inflammation-related diseases that involve increased mRNA stability. PMID:28272405

  9. Effects of Molybdenum or/and Cadmium on mRNA Expression Levels of Inflammatory Cytokines and HSPs in Duck Spleens.

    PubMed

    Cao, Huabin; Zhang, Mengmeng; Xia, Bing; Xiong, Jin; Zong, Yibo; Hu, Guoliang; Zhang, Caiying

    2016-03-01

    Cadmium (Cd) and high dietary intake of molybdenum (Mo) can cause multiple-organ injury in animals, but the co-induced toxicity of Mo and Cd to spleen in ducks is not well understood. The aim of this study was to investigate the co-induced effects of Mo and Cd on the mRNA expression levels of inflammatory cytokines and heat shock proteins (HSPs) in duck spleens. Two hundred forty healthy 11-day-old ducks were randomly divided into six groups and treated with a commercial diet containing Mo or/and Cd. After being treated with Mo or/and Cd for 30, 60, 90, and 120 days, the mRNA expression levels of nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), HSP60, HSP70, and HSP90 were examined in duck spleens. Histopathology was examined in duck spleens at 120 days. The results indicated that the mRNA expression levels of HSPs were significantly upregulated in the co-induced groups (P < 0.01), while these decreased in the high dietary intake of Mo combined with Cd group at 120 days. Exposure to Mo or/and Cd upregulated the mRNA expression levels of NF-κB, COX-2, and TNF-α in the combination groups (P < 0.01). Furthermore, severe congestion, bleeding, splenic corpuscle structure fuzzy, wall thickness of sheath artery thickening, and oxyhematin were observed in the spleens of combination groups. Meanwhile, the organizational structure damage of the combined groups was more severe than that of the other groups. These results suggested that exposure to Mo or/and Cd might lead to tissue damage, and high expression of HSPs and inflammatory cytokines may play a role in the resistance of spleen toxicity induced by Mo or/and Cd. Interaction of Mo and Cd may have a synergistic effect on spleen toxicity.

  10. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes.

    PubMed

    Guerrero, F D; Jones, J T; Mullet, J E

    1990-07-01

    Reduction of turgor in pea shoots caused the accumulation of several poly(A) RNAs. cDNA clones derived from three different poly(A) RNAs which accumulate in wilted pea shoots were isolated, sequenced and expression of the corresponding genes examined. Clone 7a encoded a 289 amino acid protein. The C-terminal 180 amino acids of this protein were homologous to soybean nodulin-26. RNA hybridizing to cDNA 7a was abundant in roots, and induced in shoots by dehydration, heat shock and to a small extent by ABA. Hydropathic plots indicate that the protein encoded by cDNA 7a contains six potential membrane spanning domains similar to proteins which form ion channels. Clone 15a encoded a 363 amino acid protein with high homology to cysteine proteases. RNA hybridizing to cDNA 15a was more abundant in roots than shoots of control plants. Dehydration of pea shoots induced cDNA 15a mRNA levels whereas heat shock or ABA treatment did not. Clone 26g encoded a 508 amino acid protein with 30% residue identity to several aldehyde dehydrogenases. RNA hybridizing to cDNA 26g was induced by dehydration of shoots but not roots and heat shock and ABA did not modulate RNA levels. Levels of the three poly(A) RNAs increased 4-6-fold by 4 h after wilting and this increase was not altered by pretreatment of shoots with cycloheximide. When wilted shoots were rehydrated, RNA hybridizing to cDNA 26g declined to pre-stress levels within 2 h. Run-on transcription experiments using nuclei from pea shoots showed that transcription of the genes which encode the three poly(A) RNAs was induced within 30 min following reduction of shoot turgor. One of the genes showed a further increase in transcription by 4 h after dehydration whereas transcription of the other 2 genes declined. These results indicate that plant cells respond to changes in cell turgor by rapidly increasing transcription of several genes. Furthermore, the expression of the turgor-responsive genes varies with respect to the time course of

  11. Resistance to antidepressant treatment is associated with polymorphisms in the leptin gene, decreased leptin mRNA expression, and decreased leptin serum levels.

    PubMed

    Kloiber, Stefan; Ripke, Stephan; Kohli, Martin A; Reppermund, Simone; Salyakina, Daria; Uher, Rudolf; McGuffin, Peter; Perlis, Roy H; Hamilton, Steven P; Pütz, Benno; Hennings, Johannes; Brückl, Tanja; Klengel, Torsten; Bettecken, Thomas; Ising, Marcus; Uhr, Manfred; Dose, Tatjana; Unschuld, Paul G; Zihl, Josef; Binder, Elisabeth; Müller-Myhsok, Bertram; Holsboer, Florian; Lucae, Susanne

    2013-07-01

    Leptin, a peptide hormone from adipose tissue and key player in weight regulation, has been suggested to be involved in sleep and cognition and to exert antidepressant-like effects, presumably via its action on the HPA-axis and hippocampal function. This led us to investigate whether genetic variants in the leptin gene, the level of leptin mRNA-expression and leptin serum concentrations are associated with response to antidepressant treatment. Our sample consisted of inpatients from the Munich Antidepressant Response Signature (MARS) project with weekly Hamilton Depression ratings, divided into two subsamples. In the exploratory sample (n=251) 17 single nucleotide polymorphisms (SNPs) covering the leptin gene region were genotyped. We found significant associations of several SNPs with impaired antidepressant treatment outcome and impaired cognitive performance after correction for multiple testing. The SNP (rs10487506) showing the highest association with treatment response (p=3.9×10(-5)) was analyzed in the replication sample (n=358) and the association could be verified (p=0.021) with response to tricyclic antidepressants. In an additional meta-analysis combining results from the MARS study with data from the Genome-based Therapeutic Drugs for Depression (GENDEP) and the Sequenced Treatment Alternatives to Relieve Depression (STAR(⁎)D) studies, nominal associations of several polymorphisms in the upstream vicinity of rs10487506 with treatment outcome were detected (p=0.001). In addition, we determined leptin mRNA expression in lymphocytes and leptin serum levels in subsamples of the MARS study. Unfavorable treatment outcome was accompanied with decreased leptin mRNA and leptin serum levels. Our results suggest an involvement of leptin in antidepressant action and cognitive function in depression with genetic polymorphisms in the leptin gene, decreased leptin gene expression and leptin deficiency in serum being risk factors for resistance to antidepressant

  12. Focus on RNA isolation: obtaining RNA for microRNA (miRNA) expression profiling analyses of neural tissue

    PubMed Central

    Wang, Wang-Xia; Rajeev, Bernard W.; Baldwin, Donald A.; Isett, R. Benjamin; Ren, Na; Stromberg, Arnold; Nelson, Peter T.

    2008-01-01

    MicroRNAs (miRNAs) are present in all known plant and animal tissues and appear to be somewhat concentrated in the mammalian nervous system. Many different miRNA expression profiling platforms have been described. However, relatively little research has been published to establish the importance of ‘upstream’ variables in RNA isolation for neural miRNA expression profiling. We tested whether apparent changes in miRNA expression profiles may be associated with tissue processing, RNA isolation techniques, or different cell types in the sample. RNA isolation was performed on a single brain sample using eight different RNA isolation methods, and results were correlated using a conventional miRNA microarray and then cross-referenced to Northern blots. Differing results were seen between samples obtained using different RNA isolation techniques and between microarray and Northern blot results. Another complication of miRNA microarrays is tissue-level heterogeneity of cellular composition. To investigate this phenomenon, miRNA expression profiles were determined and compared between highly-purified primary cerebral cortical cell preparations of rat primary E15–E18 neurons versus rat primary E15–E18 astrocytes. Finally, to assess the importance of dissecting human brain gray matter from subjacent white matter in cerebral cortical studies, miRNA expression profiles were compared between gray matter and immediately contiguous white matter. The results suggest that for microarray studies, cellular composition is important, and dissecting white matter from gray matter improves the specificity of the results. Based on these data, recommendations for miRNA expression profiling in neural tissues, and considerations worthy of further study, are discussed. PMID:18316046

  13. Cinnamaldehyde up-regulates the mRNA expression level of TRPV1 receptor potential ion channel protein and its function in primary rat DRG neurons in vitro.

    PubMed

    Sui, Feng; Lin, Na; Guo, Jian-You; Zhang, Chang-Bin; Du, Xin-Liang; Zhao, Bao-Sheng; Liu, Hong-Bin; Yang, Na; Li, Lan-Fang; Guo, Shu-Ying; Huo, Hai-Ru; Jiang, Ting-Liang

    2010-01-01

    Cinnamaldehyde (1) is a pharmacologically active ingredient isolated from cassia twig (Ramulus Cinnamomi), which is commonly used in herbal remedies to treat fever-related diseases. Both TRPV1 and TRPM8 ion channel proteins are abundantly expressed in sensory neurons, and are assumed to act as a thermosensor, with the former mediating the feeling of warmth and the latter the feeling of cold in the body. Both of them have recently been reported to be involved in thermoregulation. The purpose of this paper is to further uncover the antipyretic mechanisms of 1 by investigating its effects on the mRNA expression levels and functions of both TRPV1 and TRPM8. The results showed that 1 could up-regulate the mRNA expression levels of TRPV1 at both 37 and 39 degrees C, and its calcium-mediating function was significantly increased at 39 degrees C, all of which could not be blocked by pretreatment of the neuronal cells with ruthenium red, a general transient receptor potential (TRP) blocker, indicating that the action of 1 was achieved through a non-TRPA1 channel pathway. In conclusion, the findings in our in vitro studies might account for part of the peripheral molecular mechanisms for the antipyretic action of 1.

  14. Influence of functional polymorphisms in TNF-α, IL-8, and IL-10 cytokine genes on mRNA expression levels and risk of gastric cancer.

    PubMed

    de Oliveira, Juliana Garcia; Rossi, Ana Flávia Teixeira; Nizato, Daniela Manchini; Cadamuro, Aline Cristina Targa; Jorge, Yvana Cristina; Valsechi, Marina Curado; Venâncio, Larissa Paola Rodrigues; Rahal, Paula; Pavarino, Érika Cristina; Goloni-Bertollo, Eny Maria; Silva, Ana Elizabete

    2015-12-01

    Functional polymorphisms in promoter regions can produce changes in the affinity of transcription factors, thus altering the messenger ribonucleic acid (mRNA) expression levels of inflammatory cytokines associated with the risk of cancer development. The goal of this study was to evaluate the influence that polymorphisms in the cytokine genes known as TNF-α-308 G/A (rs1800629), TNF-α-857 C/T (rs1799724), IL-8-251 T/A (rs4073), IL-8-845 T/C (rs2227532), and IL-10-592 C/A (rs1800872) have on changes to mRNA expression levels and on the risks of chronic gastritis (CG) and gastric cancer (GC). A sample of 723 individuals was genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Relative mRNA expression levels were measured using quantitative real-time PCR (qPCR). Polymorphisms TNF-α-308 G/A and IL-8-251 A/T were not associated with risks of these gastric lesions. However, TNF-α-857 C/T, IL-8-845 T/C, and IL-10-592 C/A were found to be associated with a higher risk of GC, and IL-10-592 C/A was found to be associated with a higher risk of CG. The relative mRNA expression levels (RQ) of TNF-α, IL-8, and IL-10 were markedly downregulated in the CG group (median RQs = 0.128, 0.247, and 0.614, respectively), while the RQ levels of TNF-α in the GC group were upregulated (RQ = 2.749), but were basal for IL-8 (RQ = 1.053) and downregulated for IL-10 (RQ = 0.179). When the groups were stratified according to wild-type and polymorphic alleles, only for IL-8-845 T/C the polymorphic allele was found to influence the expression levels of this cytokine. IL-8-845 C allele carriers were significantly upregulated in both groups (GC and CG; RQ = 3.138 and 2.181, respectively) when compared to TT homozygotes (RQ = -0.407 and 0.165, respectively). In silico analysis in the IL-8 promoter region revealed that the presence of the variant C allele in position -845 is responsible for the presence of the binding

  15. Heat Stress Regulates the Expression of Genes at Transcriptional and Post-Transcriptional Levels, Revealed by RNA-seq in Brachypodium distachyon

    PubMed Central

    Chen, Shoukun; Li, Haifeng

    2017-01-01

    Heat stress greatly affects plant growth/development and influences the output of crops. With the increased occurrence of extreme high temperature, the negative influence on cereal products from heat stress becomes severer and severer. It is urgent to reveal the molecular mechanism in response to heat stress in plants. In this research, we used RNA-seq technology to identify differentially expressed genes (DEGs) in leaves of seedlings, leaves and inflorescences at heading stage of Brachypodium distachyon, one model plant of grasses. Results showed many genes in responding to heat stress. Of them, the expression level of 656 DEGs were altered in three groups of samples treated with high temperature. Gene ontology (GO) analysis showed that the highly enriched DEGs were responsible for heat stress and protein folding. According to KEGG pathway analysis, the DEGs were related mainly to photosynthesis-antenna proteins, the endoplasmic reticulum, and the spliceosome. Additionally, the expression level of 454 transcription factors belonging to 49 gene families was altered, as well as 1,973 splicing events occurred after treatment with high temperature. This research lays a foundation for characterizing the molecular mechanism of heat stress response and identifying key genes for those responses in plants. These findings also clearly show that heat stress regulates the expression of genes not only at transcriptional level, but also at post-transcriptional level. PMID:28119730

  16. Temporal Variation for the Expression of Catalase in DROSOPHILA MELANOGASTER: Correlations between Rates of Enzyme Synthesis and Levels of Translatable Catalase-Messenger RNA

    PubMed Central

    Bewley, Glenn C.; Mackay, William J.; Cook, Julia L.

    1986-01-01

    Two variants that alter the temporal expression of catalase have been isolated from a set of third chromosome substitution lines. Each variant has been mapped to a cytogenetic interval flanked by the visible markers st (3-44.0) and cu (3-50.0) at a map position of 47.0, which is within or near the interval 75D-76A previously identified as containing the catalase structural gene on the bases of dosage responses to segmental aneuploidy. Each variant operates by modulating the rate of enzyme synthesis and the level of translatable catalase-mRNA. PMID:3091448

  17. Intraovarian expression of GnRH-1 and gonadotropin mRNA and protein levels in Siberian hamsters during the estrus cycle and photoperiod induced regression/recrudescence

    PubMed Central

    Shahed, Asha; Young, Kelly A.

    2010-01-01

    The hypothalamic-pituitary-gonadal (HPG) axis is the key reproductive regulator in vertebrates. While gonadotropin releasing hormone (GnRH), follicle stimulating (FSH), and luteinizing (LH) hormones are primarily produced in the hypothalamus and pituitary, they can be synthesized in the gonads, suggesting an intraovarian GnRH-gonadotropin axis. Because these hormones are critical for follicle maturation and steroidogenesis, we hypothesized that this intraovarian axis may be important in photoperiod-induced ovarian regression/recrudescence in seasonal breeders. Thus, we investigated GnRH-1 and gonadotropin mRNA and protein expression in Siberian hamster ovaries during (1) the estrous cycle; where ovaries from cycling long day hamsters (LD;16L:8D) were collected at proestrus, estrus, diestrus I, and diestrus II and (2) during photoperiod induced regression/ recrudescence; where ovaries were collected from hamsters exposed to 14wks of LD, short days (SD;8L:16D), or 8wks post-transfer to LD after 14wks SD (PT). GnRH-1, LHβ, FSHβ, and common α subunit mRNA expression was observed in cycling ovaries. GnRH-1 expression peaked at diestrus I compared to other stages (p<0.05). FSHβ and LHβ mRNA levels peaked at proestrus and diestrus I (p<0.05), with no change in the α subunit across the cycle (p>0.05). SD exposure decreased ovarian mass and plasma estradiol concentrations (p<0.05) and increased GnRH-1, LHβ, FSHβ, and α subunit mRNA expression as compared to LD and, except for LH, compared to PT (p<0.05). GnRH and gonadotropin protein was also dynamically expressed across the estrous cycle and photoperiod exposure. The presence of cycling intraovarian GnRH-1 and gonadotropin mRNA suggests that these hormones may be locally involved in ovarian maintenance during SD regression and/or could potentially serve to prime ovaries for rapid recrudescence. PMID:20955709

  18. Unregulated long non-coding RNA-AK058003 promotes the proliferation, invasion and metastasis of breast cancer by regulating the expression levels of the γ-synuclein gene.

    PubMed

    He, Kai; Wang, Peilin

    2015-05-01

    The aim of the present study was to investigate the function of long chain non-coding RNA (lncRNA) in breast cancer cells. Quantitative polymerase chain reaction was used to measure mRNA expression levels in breast cancer tissues, adjacent tissues and in MCF-7 breast cancer cells. Western blot analysis was used to determine the protein expression levels. In addition, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was employed to measure the rates of cell proliferation. The invasion and migration of the MCF-7 cells were examined using a Transwell® assay. The expression levels of lncRNA-AK058003 were increased significantly in the breast cancer tissues and were found to strongly correlate with the severity of the breast cancer clinical stage. Bioinformatics analysis revealed that the γ-synuclein gene (SNCG) may be a target gene regulated by lncRNA-AK058003. Thus, lncRNA-AK058803 was downregulated using small interfering RNA, and the mRNA and protein expression levels of SNCG were shown to be significantly reduced. Furthermore, the proliferation, invasion and migration rates of the MCF-7 breast cancer cells were significantly reduced. Therefore, the results demonstrated that unregulated lncRNA-AK058003 in breast cancer cells promotes cancer cell proliferation, invasion and metastasis via the regulation of SNCG expression.

  19. Analysis of Microarray and RNA-seq Expression Profiling Data.

    PubMed

    Hung, Jui-Hung; Weng, Zhiping

    2017-03-01

    Gene expression profiling refers to the simultaneous measurement of the expression levels of a large number of genes (often all genes in a genome), typically in multiple experiments spanning a variety of cell types, treatments, or environmental conditions. Expression profiling is accomplished by assaying mRNA levels with microarrays or next-generation sequencing technologies (RNA-seq). This introduction describes normalization and analysis of data generated from microarray or RNA-seq experiments.

  20. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    SciTech Connect

    Egloff, Caroline; Crump, Doug; Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T.; Kennedy, Sean W.

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  1. Investigation of MicroRNA-21 Expression Levels in Serum and Stool as a Potential Non-Invasive Biomarker for Diagnosis of Colorectal Cancer.

    PubMed

    Bastaminejad, Saiyad; Taherikalani, Morovat; Ghanbari, Reza; Akbari, Akbar; Shabab, Nooshin; Saidijam, Massoud

    2017-03-01

    Most cancer studies focus on exploring non-invasive biomarkers for cancer detection. In the present study, we sought to investigate the expression level of microRNA-21 (miR-21), as a potential diagnostic marker, in serum and stool samples from 40 patients with colorectal cancer (CRC) and 40 healthy controls. Quantitative real-time RT-PCR was applied to determine the relative expression level of miR-21 in serum and stool. At the same time, the sensitivity and specificity of this marker was evaluated by receiver operating characteristic (ROC) curve analysis. miR-21 expression levels of serum and stool were up-regulated 12.1 (P<0.05, 95% CI: 5.774-34.045) and 10.0 (P<0.05, 95% CI: 0.351-16.260) times in CRC patients, respectively, when compared to the control group. The sensitivity and specificity of miR-21 was found to be 86.05% and 72.97%, respectively (an area under the ROC curve [AUC] of 0.783). The stool miR-21 level in CRC patients was much higher than that in the healthy controls, showing a sensitivity of 86.05% and a specificity of 81.08% (AUC: 0.829). The expression level of miR-21 in stool was able to significantly distinguish CRC tumor, node, metastasis stages III-IV from stages I-II, with a sensitivity and specificity of 88.1% and 81.6%, respectively (AUC: 0.872). The results of this study indicated that miR-21 expression levels in serum and stool can be considered as a potential diagnostic biomarker for the diagnosis of CRC patients. However, more studies are required to confirm the validity of miR-21 as a valuable non-invasive diagnostic tool for CRC.

  2. Investigation of MicroRNA-21 Expression Levels in Serum and Stool as a Potential Non-Invasive Biomarker for Diagnosis of Colorectal Cancer

    PubMed Central

    Bastaminejad, Saiyad; Taherikalani, Morovat; Ghanbari, Reza; Akbari, Akbar; Shabab, Nooshin; Saidijam, Massoud

    2017-01-01

    Background: Most cancer studies focus on exploring non-invasive biomarkers for cancer detection. In the present study, we sought to investigate the expression level of microRNA-21 (miR-21), as a potential diagnostic marker, in serum and stool samples from 40 patients with colorectal cancer (CRC) and 40 healthy controls. Methods: Quantitative real-time RT-PCR was applied to determine the relative expression level of miR-21 in serum and stool. At the same time, the sensitivity and specificity of this marker was evaluated by receiver operating characteristic (ROC) curve analysis. Results: miR-21 expression levels of serum and stool were up-regulated 12.1 (P<0.05, 95% CI: 5.774-34.045) and 10.0 (P<0.05, 95% CI: 0.351-16.260) times in CRC patients, respectively, when compared to the control group. The sensitivity and specificity of miR-21 was found to be 86.05% and 72.97%, respectively (an area under the ROC curve [AUC] of 0.783). The stool miR-21 level in CRC patients was much higher than that in the healthy controls, showing a sensitivity of 86.05% and a specificity of 81.08% (AUC: 0.829). The expression level of miR-21 in stool was able to significantly distinguish CRC tumor, node, metastasis stages III-IV from stages I-II, with a sensitivity and specificity of 88.1% and 81.6%, respectively (AUC: 0.872). Conclusion: The results of this study indicated that miR-21 expression levels in serum and stool can be considered as a potential diagnostic biomarker for the diagnosis of CRC patients. However, more studies are required to confirm the validity of miR-21 as a valuable non-invasive diagnostic tool for CRC. PMID:27432735

  3. Effects of Brn-3a protein and RNA expression in rat brain following low-level lead exposure during development on spatial learning and memory.

    PubMed

    Chang, Wei; Chen, Jun; Wei, Qing-yi; Chen, Xue-min

    2006-06-20

    The developing nervous system is preferentially vulnerable to lead exposure with alterations in neuronal and glial cells of the brain. Chronic exposure to lead (Pb2+) causes deficits of learning and memory in children and spatial learning deficits in developing rats. Brn-3a is a member of the Pit-Oct-Unc (POU) family of transcription factors that is expressed predominantly in neuronal cells. It exists in two forms, with the long form containing 84 amino acids at the N-terminus that are lacking in the short form. The N-terminal domain unique to the long form induces expression of the Bcl-2 gene and protects neuronal cells against apoptosis whereas the C-terminal POU domain common to both forms is sufficient for activating a number of other neuronally expressed genes and stimulating neuronal process outgrowth. We examined Brn-3a protein and RNA expression in rat brain following low-level lead exposure during development and subsequent effects on spatial learning and memory. Two groups of rats were investigated: a control group and a lead-exposed group (0.2% lead acetate in the drinking water of the dam from gestational day 15 to postnatal day 21). Levels of Brn-3a were measured in rat cortex, hippocampus and cerebellum by immunohistochemistry and in situ hybridization, both protein and mRNA levels were reduced in lead-exposed group (p < 0.05). In Morris water maze, we found spatial learning deficits in rats of lead-exposed group (p < 0.05). These data suggest that the alteration of Brn-3a may play a key role in the mechanisms underlying lead neurotoxicity.

  4. ERBB2 in Cat Mammary Neoplasias Disclosed a Positive Correlation between RNA and Protein Low Expression Levels: A Model for erbB-2 Negative Human Breast Cancer

    PubMed Central

    Abreu, Rui M. V.; Bastos, Estela; Amorim, Irina; Gut, Ivo G.; Gärtner, Fátima; Chaves, Raquel

    2013-01-01

    Human ERBB2 is a proto-oncogene that codes for the erbB-2 epithelial growth factor receptor. In human breast cancer (HBC), erbB-2 protein overexpression has been repeatedly correlated with poor prognosis. In more recent works, underexpression of this gene has been described in HBC. Moreover, it is also recognised that oncogenes that are commonly amplified or deleted encompass point mutations, and some of these are associated with HBC. In cat mammary lesions (CMLs), the overexpression of ERBB2 (27%–59.6%) has also been described, mostly at the protein level and although cat mammary neoplasias are considered to be a natural model of HBC, molecular information is still scarce. In the present work, a cat ERBB2 fragment, comprising exons 10 to 15 (ERBB2_10–15) was achieved for the first time. Allelic variants and genomic haplotype analyses were also performed, and differences between normal and CML populations were observed. Three amino acid changes, corresponding to 3 non-synonymous genomic sequence variants that were only detected in CMLs, were proposed to damage the 3D structure of the protein. We analysed the cat ERBB2 gene at the DNA (copy number determination), mRNA (expression levels assessment) and protein levels (in extra- and intra protein domains) in CML samples and correlated the last two evaluations with clinicopathological features. We found a positive correlation between the expression levels of the ERBB2 RNA and erbB-2 protein, corresponding to the intracellular region. Additionally, we detected a positive correlation between higher mRNA expression and better clinical outcome. Our results suggest that the ERBB2 gene is post-transcriptionally regulated and that proteins with truncations and single point mutations are present in cat mammary neoplastic lesions. We would like to emphasise that the recurrent occurrence of low erbB-2 expression levels in cat mammary tumours, suggests the cat mammary neoplasias as a valuable model for erbB-2 negative HBC

  5. ERBB2 in cat mammary neoplasias disclosed a positive correlation between RNA and protein low expression levels: a model for erbB-2 negative human breast cancer.

    PubMed

    Santos, Sara; Baptista, Cláudia S; Abreu, Rui M V; Bastos, Estela; Amorim, Irina; Gut, Ivo G; Gärtner, Fátima; Chaves, Raquel

    2013-01-01

    Human ERBB2 is a proto-oncogene that codes for the erbB-2 epithelial growth factor receptor. In human breast cancer (HBC), erbB-2 protein overexpression has been repeatedly correlated with poor prognosis. In more recent works, underexpression of this gene has been described in HBC. Moreover, it is also recognised that oncogenes that are commonly amplified or deleted encompass point mutations, and some of these are associated with HBC. In cat mammary lesions (CMLs), the overexpression of ERBB2 (27%-59.6%) has also been described, mostly at the protein level and although cat mammary neoplasias are considered to be a natural model of HBC, molecular information is still scarce. In the present work, a cat ERBB2 fragment, comprising exons 10 to 15 (ERBB2_10-15) was achieved for the first time. Allelic variants and genomic haplotype analyses were also performed, and differences between normal and CML populations were observed. Three amino acid changes, corresponding to 3 non-synonymous genomic sequence variants that were only detected in CMLs, were proposed to damage the 3D structure of the protein. We analysed the cat ERBB2 gene at the DNA (copy number determination), mRNA (expression levels assessment) and protein levels (in extra- and intra protein domains) in CML samples and correlated the last two evaluations with clinicopathological features. We found a positive correlation between the expression levels of the ERBB2 RNA and erbB-2 protein, corresponding to the intracellular region. Additionally, we detected a positive correlation between higher mRNA expression and better clinical outcome. Our results suggest that the ERBB2 gene is post-transcriptionally regulated and that proteins with truncations and single point mutations are present in cat mammary neoplastic lesions. We would like to emphasise that the recurrent occurrence of low erbB-2 expression levels in cat mammary tumours, suggests the cat mammary neoplasias as a valuable model for erbB-2 negative HBC.

  6. Quantifying Temporal Autocorrelations for the Expression of Geobacter species mRNA Gene Transcripts at Variable Ammonium Levels during in situ U(VI) Bioremediation

    NASA Astrophysics Data System (ADS)

    Mouser, P. J.

    2010-12-01

    In order to develop decision-making tools for the prediction and optimization of subsurface bioremediation strategies, we must be able to link the molecular-scale activity of microorganisms involved in remediation processes with biogeochemical processes observed at the field-scale. This requires the ability to quantify changes in the in situ metabolic condition of dominant microbes and associate these changes to fluctuations in nutrient levels throughout the bioremediation process. It also necessitates a need to understand the spatiotemporal variability of the molecular-scale information to develop meaningful parameters and constraint ranges in complex bio-physio-chemical models. The expression of three Geobacter species genes (ammonium transporter (amtB), nitrogen fixation (nifD), and a housekeeping gene (recA)) were tracked at two monitoring locations that differed significantly in ammonium (NH4+) concentrations during a field-scale experiment where acetate was injected into the subsurface to simulate Geobacteraceae in a uranium-contaminated aquifer. Analysis of amtB and nifD mRNA transcript levels indicated that NH4+ was the primary form of fixed nitrogen during bioremediation. Overall expression levels of amtB were on average 8-fold higher at NH4+ concentrations of 300 μM or more than at lower NH4+ levels (average 60 μM). The degree of temporal correlation in Geobacter species mRNA expression levels was calculated at both locations using autocorrelation methods that describe the relationship between sample semi-variance and time lag. At the monitoring location with lower NH4+, a temporal correlation lag of 8 days was observed for both amtB and nifD transcript patterns. At the location where higher NH4+ levels were observed, no discernable temporal correlation lag above the sampling frequency (approximately every 2 days) was observed for amtB or nifD transcript fluctuations. Autocorrelation trends in recA expression levels at both locations indicated that

  7. HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer

    PubMed Central

    2013-01-01

    Introduction Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial. Methods HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro. Results Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, P <0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, P <0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (P = 0.004), but not in HER2-positive/ESR1-negative tumors. Conclusions Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group. Introduction The human epidermal growth factor receptor 2 (HER2) is the prototype of a predictive biomarker for targeted treatment [1-8]. International initiatives have established the

  8. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  9. Cyp1B1 mRNA expression in correlation to cotinine levels with respect to the Cyp1B1 L432V gene polymorphism.

    PubMed

    Helmig, Simone; Seelinger, Jens Udo; Philipp-Gehlhaar, Monika; Döhrel, Juliane; Schneider, Joachim

    2010-12-01

    Cytochrome P450 1B1 (CYP1B1) is involved in the activation of a broad spectrum of procarcinogens. An association of the Cyp1B1 Leu432Val polymorphism with cancer as well as an impact on the enzyme activity has been described. To study gene-environmental interactions we investigated the quantitative Cyp1B1 mRNA expression in smokers (N = 102) and non-smokers (N = 192) with regards to the Cyp1B1 L432V gene polymorphism. Tobacco smoke exposure was assessed by serum cotinine levels. Genotypes were analysed by melting curve analysis and quantification of Cyp1B1 mRNA by real-time PCR. In comparing Cyp1B1 expression, significant differences between the two homozygote genotypes *1/*1 and *3/*3 (0.105 ± 0.019; n = 26 vs. 0.051 ± 0.017; n = 14; P = 0.039) and between the heterozygote genotype *1/*3 and *3/*3 (0.121 ± 0.029; n = 55 vs. 0.051 ± 0.017; n = 14; P = 0.039) of smokers were revealed. According to the serum cotinine levels, three subgroups (low; medium; high) were build. The group "high" (0.248 ± 0.089; n = 32) showed proportionally high Cyp1B1 mRNA expression compared to "medium" (0.101 ± 0.024; n = 33), "low" (0.086 ± 0.015; n = 32) and non-smokers (0.084 ± 0.007; n = 176). This result was reflected in the homozygote *1/*1 and the heterozygote *1/*3 genotypes. In contrast the homozygote *3/*3 genotype was missing the high Cyp1B1 mRNA expression in the cotinine subgroup "high". Our results suggest that genotypes carrying the C-allele (*1/*1 and *1/*3) at Cyp1B1 Leu432Val polymorphism show a higher response to environmental factors, such as tobacco smoke than homozygote *3/*3 genotypes.

  10. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins

    PubMed Central

    Xiao, Lan; Rao, Jaladanki N.; Cao, Shan; Liu, Lan; Chung, Hee Kyoung; Zhang, Yun; Zhang, Jennifer; Liu, Yulan; Gorospe, Myriam; Wang, Jian-Ying

    2016-01-01

    Epithelial cells line the intestinal mucosa and form an important barrier to a wide array of noxious substances in the lumen. Disruption of the barrier integrity occurs commonly in various pathologies. Long noncoding RNAs (lncRNAs) control diverse biological processes, but little is known about the role of lncRNAs in regulation of the gut permeability. Here we show that the lncRNA SPRY4-IT1 regulates the intestinal epithelial barrier function by altering expression of tight junction (TJ) proteins. SPRY4-IT1 silencing led to dysfunction of the epithelial barrier in cultured cells by decreasing the stability of mRNAs encoding TJ proteins claudin-1, claudin-3, occludin, and JAM-1 and repressing their translation. In contrast, increasing the levels of SPRY4-IT1 in the intestinal mucosa protected the gut barrier in mice exposed to septic stress by increasing the abundance of TJ proteins. SPRY4-IT1 directly interacted with TJ mRNAs, and this process was enhanced through the association with the RNA-binding protein HuR. Of interest, the intestinal mucosa from patients with increased gut permeability exhibited a decrease in the levels of SPRY4-IT1. These findings highlight a novel role for SPRY4-IT1 in controlling the intestinal epithelial barrier and define a mechanism by which SPRY4-IT1 modulates TJ expression by altering the stability and translation of TJ mRNAs. PMID:26680741

  11. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins.

    PubMed

    Xiao, Lan; Rao, Jaladanki N; Cao, Shan; Liu, Lan; Chung, Hee Kyoung; Zhang, Yun; Zhang, Jennifer; Liu, Yulan; Gorospe, Myriam; Wang, Jian-Ying

    2016-02-15

    Epithelial cells line the intestinal mucosa and form an important barrier to a wide array of noxious substances in the lumen. Disruption of the barrier integrity occurs commonly in various pathologies. Long noncoding RNAs (lncRNAs) control diverse biological processes, but little is known about the role of lncRNAs in regulation of the gut permeability. Here we show that the lncRNA SPRY4-IT1 regulates the intestinal epithelial barrier function by altering expression of tight junction (TJ) proteins. SPRY4-IT1 silencing led to dysfunction of the epithelial barrier in cultured cells by decreasing the stability of mRNAs encoding TJ proteins claudin-1, claudin-3, occludin, and JAM-1 and repressing their translation. In contrast, increasing the levels of SPRY4-IT1 in the intestinal mucosa protected the gut barrier in mice exposed to septic stress by increasing the abundance of TJ proteins. SPRY4-IT1 directly interacted with TJ mRNAs, and this process was enhanced through the association with the RNA-binding protein HuR. Of interest, the intestinal mucosa from patients with increased gut permeability exhibited a decrease in the levels of SPRY4-IT1. These findings highlight a novel role for SPRY4-IT1 in controlling the intestinal epithelial barrier and define a mechanism by which SPRY4-IT1 modulates TJ expression by altering the stability and translation of TJ mRNAs.

  12. Melatonin treatment alters glucosensing capacity and mRNA expression levels of peptides related to food intake control in rainbow trout hypothalamus.

    PubMed

    Conde-Sieira, Marta; Librán-Pérez, Marta; López Patiño, Marcos A; Soengas, José L; Míguez, Jesús M

    2012-08-01

    As demonstrated in previous studies, the functioning of brain glucosensing systems in rainbow trout is altered under stress conditions in a way that they are unable to respond properly to changes in glucose levels. Melatonin has been postulated as necessary for homeostatic control of energy metabolism in several vertebrate groups, and in fish it has been suggested as an anti-stress molecule. To evaluate the possible effects of melatonin on glucosensing, we have incubated hypothalamus and hindbrains of rainbow trout at different glucose concentrations in the presence of increased doses (0.01, 1, and 100nM) of melatonin assessing whether or not the responses to changes in glucose levels of parameters related to glucosensing (glucose, glycogen and glucose 6-phosphate levels, activities of GK, GSase and PK, and mRNA content of GK, GLUT2, Kir6.x-like, and SUR-like) are modified in the presence of melatonin. While no effects of melatonin were observed in hindbrain, in hypothalamus melatonin treatment up-regulated glucosensing parameters, especially under hypo- and normo-glycaemic conditions. The effects of melatonin in hypothalamus occurred apparently through MT(1) receptors since most effects were counteracted by the presence of luzindole but not by the presence of 4-P-PDOT. Moreover, melatonin treatment induced in hypothalamus increased mRNA expression levels of NPY and decreased mRNA levels of POMC, CART, and CRF. A role of the hormone in daily re-adjustment of hypothalamic glucosensor machinery is discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. MicroRNA-34a expression levels in serum and intratumoral tissue can predict bone metastasis in patients with hepatocellular carcinoma

    PubMed Central

    Zhang, Li; Yang, Ping; Fan, Jia; Tang, Zhao-You; Zeng, Zhao-Chong

    2016-01-01

    Hepatocellular carcinoma (HCC) patients with bone metastasis (BM) suffer from pain and other symptoms that significantly reduce their quality of life. We screened a microRNA (miRNA) microarray to identify potential serum biomarkers for BM in HCC patients. A miRNA microarray was used to screen for BM-related miRNAs in paired serum samples from HCC patients with BM and from HCC patients without BM. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to quantify candidate miRNAs in serum samples from 106 independent HCC patients. Levels of candidate miRNAs in tissue samples from an independent cohort of 296 HCC patients were evaluated by in situ hybridization and intratumoral tissue microarray. The migration and invasion capabilities of HCCLM3 and SMMC-7721 cells were evaluated following treatment with a mimic and an inhibitor of miR-34a. Ninety miRNAs were differentially expressed in sera from HCC patients with BM when compared with sera from non-BM HCC patients (P < 0.05). Only miR-34a and miR-498 had false discovery rates (FDRs) < 0.05. In cohorts of 106 and 296 HCC patients, we found that reduced serum and intratumoral miR-34a expression levels were independent risk factors for developing BM. Migration and invasion experiments indicated that a reverse correlation existed between miR-34a and HCC tumor migration and invasion. This study demonstrates the potential for the use of miR-34a as a serum and intratumoral tissue biomarker for predicting the risk of BM in HCC patients. PMID:27893432

  14. Evaluation of immune and stress status in harbour porpoises (Phocoena phocoena): can hormones and mRNA expression levels serve as indicators to assess stress?

    PubMed Central

    2013-01-01

    Background The harbour porpoise is exposed to increasing pressure caused by anthropogenic activities in its marine environment. Numerous offshore wind farms are planned or under construction in the North and Baltic Seas, which will increase underwater noise during both construction and operation. A better understanding of how anthropogenic impacts affect the behaviour, health, endocrinology, immunology and physiology of the animals is thus needed. The present study compares levels of stress hormones and mRNA expression of cytokines and acute-phase proteins in blood samples of harbour porpoises exposed to different levels of stress during handling, in rehabilitation or permanent human care. Free-ranging harbour porpoises, incidentally caught in pound nets in Denmark, were compared to harbour porpoises in rehabilitation at SOS Dolfijn in Harderwijk, the Netherlands, and individuals permanently kept in human care in the Dolfinarium Harderwijk and Fjord & Belt Kerteminde, Denmark. Blood samples were investigated for catecholamines, adrenaline, noradrenaline and dopamine, as well as for adrenocorticotropic hormone (ACTH), cortisol, metanephrine and normetanephrine. mRNA expression levels of relevant cell mediators (cytokines IL-10 and TNFα, acute-phase proteins haptoglobin and C-reactive protein and the heat shock protein HSP70) were measured using real-time PCR. Results Biomarker expression levels varied between free-ranging animals and porpoises in human care. Hormone and cytokine ranges showed correlations to each other and to the health status of investigated harbour porpoises. Hormone concentrations were higher in free-ranging harbour porpoises than in animals in human care. Adrenaline can be used as a parameter for the initial reaction to acute stress situations; noradrenaline, dopamine, ACTH and cortisol are more likely indicators for the following minutes of acute stress. There is evidence for different correlations between production of normetanephrine

  15. Expression of retinoblastoma gene product (pRb) in mantle cell lymphomas. Correlation with cyclin D1 (PRAD1/CCND1) mRNA levels and proliferative activity.

    PubMed Central

    Jares, P.; Campo, E.; Pinyol, M.; Bosch, F.; Miquel, R.; Fernandez, P. L.; Sanchez-Beato, M.; Soler, F.; Perez-Losada, A.; Nayach, I.; Mallofré, C.; Piris, M. A.; Montserrat, E.; Cardesa, A.

    1996-01-01

    Mantle cell lymphomas (MCLs) are molecularly characterized by bcl-1 rearrangement and constant cyclin D1 (PRAD-1/CCND1) gene overexpression. Cyclin D1 is a G1 cyclin that participates in the control of the cell cycle progression by interacting with the retinoblastoma gene product (pRb). Inactivation of the Rb tumor suppressor gene has been implicated in the development of different types of human tumors including some high grade non-Hodgkin's lymphomas. To determine the role of the retinoblastoma gene in the pathogenesis of MCLs and its possible interaction with cyclin D1, pRb expression was examined in 23 MCLs including 17 typical and 6 blastic variants by immunohistochemistry and Western blot. Rb gene structure was studied in 13 cases by Southern blot. Cytogenetic analysis was performed in 5 cases. The results were compared with the cyclin D1 mRNA levels examined by Northern analysis, and the proliferative activity of the tumors was measured by Ki-67 growth fraction and flow cytometry. pRb was expressed in all MCLs. The expression varied from case to case (mean, 14.1% of positive cells; range, 1.3 to 42%) with a significant correlation with the proliferative activity of the tumors (mitotic index r = 0.85; Ki-67 r = 0.7; S phase = 0.73). Blastic variants showed higher numbers of pRb-positive cells (mean, 29%) than the typical cases (10%; P < 0.005) by immunohistochemistry and, concordantly, higher levels of expression by Western blot. In addition, the blastic cases also had an increased expression of the phosphorylated protein. No alterations in Rb gene structure were observed by Southern blot analysis. Cyclin D1 mRNA levels were independent of pRb expression and the proliferative activity of the tumors. These findings suggest that pRb in MCLs is normally regulated in relation to the proliferative activity of the tumors. Cyclin D1 overexpression may play a role in the maintenance of cell proliferation by overcoming the suppressive growth control of pRb. Images

  16. Onapristone (ZK299) and mifepristone (RU486) regulate the messenger RNA and protein expression levels of the progesterone receptor isoforms A and B in the bovine endometrium.

    PubMed

    Rekawiecki, Robert; Kowalik, Magdalena K; Kotwica, Jan

    2015-08-01

    The aim of this study was to examine whether progesterone (P(4)) and its antagonists, onapristone (ZK299) and mifepristone (RU486), affect the levels of PGRA and PGRB messenger RNA (mRNA) and protein in the cow uterus which may be important in understanding whether the final physiological effect evoked by an antagonist depends on PGR isoform bound to the antagonist. Endometrial slices on Days 6 to 10 and 17 to 20 of the estrous cycle were treated for 6 or 24 hours for mRNA and protein expression analysis, respectively, with P4, ZK299, or RU486 at a dose of 10(-4), 10(-5), or 10(-6) M. In the samples on Days 6 to 10 of the estrous cycle, PGRAB mRNA was stimulated by P(4) (10(-4) M; P < 0.01) and RU486 (10(-6); P < 0.001) and was decreased by ZK299 (10(-5); P < 0.05). In contrast, PGRB mRNA was decreased by the all P(4) (P < 0.01) and ZK299 (P < 0.001) doses and by two of the RU486 doses (10(-4) M; P < 0.01 and 10(-5) M; P < 0.01). In samples on Days 17 to 20 of the estrous cycle, PGRAB mRNA was stimulated by RU486 (10(-5) M; P < 0.001). PGRB mRNA was decreased by P(4) (10(-4) and 10(-5) M; P < 0.001), ZK299 (10(-4) and 10(-5) M; P < 0.001), and RU486 (10(-4) M; P < 0.01 and 10(-6) M; P < 0.001) and was increased by ZK299 (10(-6) M; P < 0.001) and RU486 (10(-5) M; P < 0.001). In samples on Days 6 to 10 of the estrous cycle, PGRB protein levels were decreased (P < 0.05) by all three ZK299 doses and by two of the RU486 doses (10(-4) M; P < 0.05 and 10(-5) M; P < 0.01). In contrast, in samples on Days 17 to 20, both PGRA and PGRB protein levels were decreased by ZK299 stimulation (10(-5) M; P < 0.05 and 10(-5) M; P < 0.01, respectively), whereas only PGRA protein levels were increased by RU486 (10(-5) M; P < 0.01). Both ZK299 and RU486 may exhibit both agonist and antagonist properties depending on which receptor isoform they affect. As a result, an increase or decrease in the expression of a particular PGR isoform will be observed.

  17. Effects of ischemic preconditioning on myocardium Caspase-3, SOCS-1, SOCS-3, TNF-α and IL-6 mRNA expression levels in myocardium IR rats.

    PubMed

    Ma, Jiangwei; Qiao, Zengyong; Xu, Biao

    2013-10-01

    The aim of this study was to characterise the effects of ischemic preconditioning (IP) on heart function parameters (ΔST and ΔT), activities of serum creatine kinase (CK), lactate dehydrogenase (LDH), and levels of serum nitric oxide (NO), malondialdehyde (MDA), and myocardium Caspase-3 mRNA, SOCS-1, SOCS-3, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) expression levels and Apoptosis index in myocardium IR rats. Results showed that ΔST and ΔST values in IP group were markedly lower than those in IR group. Compared with IR group, IP significantly (p < 0.01) decreased serum CK (0.83 ± 0.09 vs 1.36 ± 0.15), LDH (5613 ± 462 vs 7106 ± 492) activities and MDA (11.32 ± 1.05 vs 15.49 ± 1.26) level, increased the serum NO (86.39 ± 7.03 vs 53.77 ± 4.27) level in IR group. The IP induced a significant decreased in myocardium Caspase-3 mRNA (0.303 ± 0.021 vs 0.515 ± 0.022) gene expression (p < 0.01) compared to IR model group. The IP induced a significant decreased in myocardium SOCS-1 (0.241 ± 0.031 vs 0.596 ± 0.036), SOCS-3 (0.258 ± 0.031 vs 0.713 ± 0.057), TNF-α (0.137 ± 0.011 vs 0.427 ± 0.035) and IL-6 (0.314 ± 0.021 vs 0.719 ± 0.064) mRNA gene expression (p < 0.01) compared to IR model group. We conclude that IP is effective in the therapy of heart disease. These findings may have implications for the clinical development of preconditioning-based therapies for ischemic heart disease.

  18. Expression of insulin-like growth factor I receptors at mRNA and protein levels during metamorphosis of Japanese flounder (Paralichthys olivaceus).

    PubMed

    Zhang, Junling; Shi, Zhiyi; Cheng, Qi; Chen, Xiaowu

    2011-08-01

    Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Changes of Antioxidant Function and the mRNA Expression Levels of Apoptosis Genes in Duck Ovaries Caused by Molybdenum or/and Cadmium.

    PubMed

    Cao, Huabin; Xia, Bing; Zhang, Mengmeng; Liao, Yilin; Yang, Zhi; Hu, Guoliang; Zhang, Caiying

    2016-06-01

    To investigate the effects of molybdenum (Mo) combined with cadmium (Cd) on the antioxidant function and the mRNA expression levels of apoptosis-related genes in duck ovaries, 60 healthy 11-old-day female ducks were treated with hexaammonium molybdate ([(NH4)6Mo7O24·4H2O]) or/and cadmium sulfate (3CdSO4·8H2O) at different doses on a daily basis for 120 days. On the 120th day, ten female birds in each group were euthanized, and the ovaries and blood were collected to determine the antioxidant indexes and the mRNA expression levels of Bak-1, Bcl-2, and caspase-3 in ovaries. In addition, ovary tissues were subjected to histopathological analysis with optical microscope. The total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity decreased significantly (P < 0.01) in treated groups comparing with control while the nitric oxide synthase (NOS) activity increased (P < 0.01) both in ovary tissue and serum. The Bak-1 and caspase-3 expressions were upregulated while the Bcl-2 was downgraded by Mo or/and Cd. Biomolecules were affected in all metal-treated groups, whereas combined-treated animals showed greater effects. What is more, pathological damage in Mo and Cd combination treated groups was more severe. The results from the present study indicated that Mo or/and Cd caused oxidative stress and apoptosis in duck ovaries. Combination of Mo and Cd showed additive or synergistic effect leading to apoptosis and oxidative stress, and the pathway might be the mitochondrial pathway.

  20. Expression levels of microRNA-145 and microRNA-10b are associated with metastasis in non-small cell lung cancer.

    PubMed

    Li, Yongwen; Li, Ying; Liu, Jinghao; Fan, Yaguang; Li, Xin; Dong, Ming; Liu, Hongyu; Chen, Jun

    2016-01-01

    Although metastasis remains the overwhelming cause of death for patients with non-small cell lung cancer (NSCLC), the underlying mechanisms of metastasis remain unknown. Accumulating evidence suggests that microRNAs (miRNAs) are key players in the regulation of tumor cell invasion and metastasis. Expression of miR-9, miR-10b, miR-145, and miR-155, 4 miRNAs previously shown to play roles in metastasis in other tumor types, was compared in lymph node (LN)-positive NSCLC versus LN-negative NSCLC. Expression of miR-145 was significantly lower in LN-positive NSCLC (P < 0.05), while expression of miR-10b was significantly higher (P < 0.05). Expression of both miR-145 and miR-10b was correlated with lymph node metastasis in NSCLC (both Ps < 0.001). In addition, miR-10b facilitated the migration and invasion of lung cancer cell line A549, while miR-145 suppressed the migration and invasion capacity of A549 in vitro. These results suggest that miR-10b and miR-145 may act as an oncogene or tumor suppressor gene, respectively, in NSCLC metastasis.

  1. Expression levels of microRNA-145 and microRNA-10b are associated with metastasis in non-small cell lung cancer

    PubMed Central

    Li, Yongwen; Li, Ying; Liu, Jinghao; Fan, Yaguang; Li, Xin; Dong, Ming; Liu, Hongyu; Chen, Jun

    2016-01-01

    ABSTRACT Although metastasis remains the overwhelming cause of death for patients with non-small cell lung cancer (NSCLC), the underlying mechanisms of metastasis remain unknown. Accumulating evidence suggests that microRNAs (miRNAs) are key players in the regulation of tumor cell invasion and metastasis. Expression of miR-9, miR-10b, miR-145, and miR-155, 4 miRNAs previously shown to play roles in metastasis in other tumor types, was compared in lymph node (LN)-positive NSCLC versus LN-negative NSCLC. Expression of miR-145 was significantly lower in LN-positive NSCLC (P < 0.05), while expression of miR-10b was significantly higher (P < 0.05). Expression of both miR-145 and miR-10b was correlated with lymph node metastasis in NSCLC (both Ps < 0.001). In addition, miR-10b facilitated the migration and invasion of lung cancer cell line A549, while miR-145 suppressed the migration and invasion capacity of A549 in vitro. These results suggest that miR-10b and miR-145 may act as an oncogene or tumor suppressor gene, respectively, in NSCLC metastasis. PMID:26909466

  2. Asymptotic behavior of distributions of mRNA and protein levels in a model of stochastic gene expression

    NASA Astrophysics Data System (ADS)

    Bobrowski, Adam; Lipniacki, Tomasz; Pichór, Katarzyna; Rudnicki, Ryszard

    2007-09-01

    The paper is devoted to a stochastic process introduced in the recent paper by Lipniacki et al. [T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.RE Brasier, M. Kimmel, Transcriptional stochasticity in gene expression, JE Theor. Biol. 238 (2006) 348-367] in modelling gene expression in eukaryotes. Starting from the full generator of the process we show that its distributions satisfy a (Fokker-Planck-type) system of partial differential equations. Then, we construct a c0 Markov semigroup in L1 space corresponding to this system. The main result of the paper is asymptotic stability of the involved semigroup in the set of densities.

  3. Different levels of hsp70 and hsc70 mRNA expression in Iberian fish exposed to distinct river conditions

    PubMed Central

    Jesus, Tiago F.; Inácio, Ângela; Coelho, Maria M.

    2013-01-01

    Comprehension of the mechanisms by which ectotherms, such as fish, respond to thermal stress is paramount for understanding the threats that environmental changes may pose to wild populations. Heat shock proteins are molecular chaperones with an important role in several stress conditions such as high temperatures. In the Iberian Peninsula, particularly in Portugal, freshwater fish of the genus Squalius are subject to daily and seasonal temperature variations. To examine the extent to which different thermal regimes influence the expression patterns of hsp70 and hsc70 transcripts we exposed two species of Squalius (S. torgalensis and S. carolitertii) to different temperatures (20, 25, 30 and 35 °C). At 35 °C, there was a significant increase in the expression of hsp70 and hsc70 in the southern species, S. torgalensis, while the northern species, S. carolitertii, showed no increase in the expression of these genes; however, some individuals of the latter species died when exposed to 35 °C. These results suggest that S. torgalensis may cope better with harsher temperatures that are characteristic of this species natural environment; S. carolitertii, on the other hand, may be unable to deal with the extreme temperatures faced by the southern species. PMID:23569409

  4. Relationship of high CH50 level and interruption of cascade reaction of complement mRNA expression in acute venous thromboembolism patients

    PubMed Central

    Wen, Siwan; Yang, Fan; Wang, Lemin; Duan, Qianglin; Gong, Zhu; Lv, Wei

    2014-01-01

    In patients with pulmonary embolism (PE), forepart components of complements were activated. However there are interruption/decrease of cascade reaction and cytolytic effects in complement system. This study detected CRP, CH50, C3 and C4 levels in patients with venous thromboembolism (VTE) and compare with the imbalance of complement associated gene mRNA expression in PE patients. There was significant increase of CH50 in acute VTE patients. Even though CH50 increased significantly in acute VTE patients and had a relatively high sensitivity, cytolytic effects of complements might decrease, based on the genomics results of complement cascade reactions imbalance/interruption and increased total complements in VTE patients. PMID:25232435

  5. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    PubMed Central

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  6. Telomere Length, TERT, and miRNA Expression

    PubMed Central

    Slattery, Martha L.; Herrick, Jennifer S.; Pellatt, Andrew J.; Wolff, Roger K.; Mullany, Lila E.

    2016-01-01

    It has been proposed that miRNAs are involved in the control of telomeres. We test that hypothesis by examining the association between miRNAs and telomere length (TL). Additionally, we evaluate if genetic variation in telomerase reverse transcriptase (TERT) is associated with miRNA expression levels. We use data from a population-based study of colorectal cancer (CRC), where we have previously shown associations between TL and TERT and CRC, to test associations between TL and miRNA expression and TERT and miRNA expression. To gain insight into functions of miRNAs associated with TERT we tested linear associations between miRNAs and their targeted gene mRNAs. An Agilent platform that contained information on over 2000 miRNAs was used. TL was measured using a multiplexed quantitative PCR (qPCR). RNAseq was used to assess gene expression. Our sample consisted of 1152 individuals with SNP data and miRNA expression data; 363 individuals with both TL and miRNA; and 148 individuals with miRNA and mRNA data. Thirty-three miRNAs were directly associated with TL after adjusting for age and sex (false discovery rate (FDR) of 0.05). TERT rs2736118 was associated with differences in miRNA expression between carcinoma and normal colonic mucosa for 75 miRNAs (FDR <0.05). Genes regulated by these miRNAs, as indicated by mRNA/miRNA associations, were associated with major signaling pathways beyond their TL-related functions, including PTEN, and PI3K/AKT signaling. Our data support a direct association between miRNAs and TL; differences in miRNA expression levels by TERT genotype were observed. Based on miRNA and targeted mRNA associations our data suggest that TERT is involved in non-TL-related functions by acting through altered miRNA expression. PMID:27627813

  7. Placental leptin mRNA expression and serum leptin levels in pre-eclampsia associated with HIV infection.

    PubMed

    Haffejee, Firoza; Naicker, Thajasvarie; Singh, Moganavelli; Kharsany, Ayesha B M; Adhikari, Miriam; Singh, Ravesh; Maharaj, Niren; Moodley, Jagidesa

    2017-01-01

    Leptin, primarily produced by adipocytes, is implicated in the development of pre-eclampsia. This study examines placental leptin production and serum leptin levels in HIV infected and uninfected normotensive and pre-eclamptic pregnancies. Placental leptin production was analysed by RT-PCR and serum leptin levels by ELISA in normotensive (n = 90) and pre-eclamptic (n = 90) pregnancies which were further stratified by HIV status. Placental leptin production was higher in pre-eclampsia compared to normotensive pregnancies irrespective of HIV status (p = .04). Serum leptin was non-significantly raised in HIV uninfected (p = .42) but lower in HIV-infected (p = .03) pre-eclampsia. The latter had lower BMI (p = .007) and triceps skin-fold thickness (p < .001) than the HIV uninfected groups with a significant correlation between serum leptin and triceps skin-fold thickness (p < .001), indicative of less adipose tissue in HIV-infected women with consequently lower serum leptin. Thus, serum leptin levels are not indicative of increased placental production when pre-eclampsia is associated with HIV infection.

  8. Effect of low levels of dietary available phosphorus on phosphorus utilization, bone mineralization, phosphorus transporter mRNA expression and performance in growing pigs.

    PubMed

    Pokharel, Bishwo B; Regassa, Alemu; Nyachoti, Charles M; Kim, Woo K

    2017-03-03

    A study was conducted to examine the effects of different dietary levels of available phosphorus (aP) on P excretion, bone mineralization, performance and the mRNA expression of sodium-dependent P transporters in growing pigs. Sixty-day old growing pigs (n = 54) with an average initial BW of 19.50 ± 1.11 kg were randomly allocated to a control diet (C) containing 0.23% available phosphorus (aP), T1 containing 0.17% aP and T2 containing 0.11% aP. There were 6 pens per treatment with 3 pigs per pen. Body weight and feed intake were measured weekly. At the end of each week, one pig from each pen was housed in a metabolic crate for 24 h to collect fecal and urine samples and then sacrificed to obtain third metacarpal (MC3) bones and jejunal and kidney samples. Bones were scanned by Dual Energy X-ray Absorptiometry (DEXA). Fecal and urine samples were sub-sampled and analyzed for P content. The expression of P transporter mRNA in jejunum and kidney samples was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Data were analyzed using GLM procedure of the Statistical Analysis System (SAS Institute version 9.2). Pigs fed the T2 diet had reduced (P < 0.05) average daily gain (ADG) and gain to feed (G:F) compared to those fed the C diet during week 2. Overall, ADG and G:F were also reduced (P < 0.05) in pigs fed the T2 diet compared to those fed the C and T1 diets. Bone mineral density (BMD) and bone mineral content (BMC) were reduced (P < 0.05) in pigs fed the T2 diet compared to those fed the C diet throughout the experiment. At week 1, jejunal mRNA expression of Na (+)-dependent phosphate transporter 2 (SLC34A2) was increased (P < 0.01) in pigs fed the T2 diet compared to C diet. Renal mRNA expression of Na(+)-dependent phosphate transporter 1 (SLC34A1) and SLC34A3 were increased (P < 0.05) in pigs fed the T2 diet compared to those fed the C diet at week 2 and was accompanied by lower (P < 0.05) urinary P in pigs fed the T2 diet during week 2

  9. Aestivation Induces Changes in the mRNA Expression Levels and Protein Abundance of Two Isoforms of Urea Transporters in the Gills of the African Lungfish, Protopterus annectens.

    PubMed

    Chng, You R; Ong, Jasmine L Y; Ching, Biyun; Chen, Xiu L; Hiong, Kum C; Wong, Wai P; Chew, Shit F; Lam, Siew H; Ip, Yuen K

    2017-01-01

    The African lungfish, Protopterus annectens, is ammonotelic in water despite being ureogenic. When it aestivates in mucus cocoon on land, ammonia is detoxified to urea. During the maintenance phase of aestivation, urea accumulates in the body, which is subsequently excreted upon arousal. Urea excretion involves urea transporters (UT/Ut). This study aimed to clone and sequence the ut isoforms from the gills of P. annectens, and to test the hypothesis that the mRNA and/or protein expression levels of ut/Ut isoforms could vary in the gills of P. annectens during the induction, maintenance, and arousal phases of aestivation. Two isoforms of ut, ut-a2a and ut-a2b, were obtained from the gills of P. annectens. ut-a2a consisted of 1227 bp and coded for 408 amino acids with an estimated molecular mass of 44.7 kDa, while ut-a2b consisted of 1392 bp and coded for 464 amino acids with an estimated molecular mass of 51.2 kDa. Ut-a2a and Ut-a2b of P. annectens had a closer phylogenetic relationship with Ut/UT of tetrapods than Ut of fishes. While the mRNA expression pattern of ut-a2a and ut-a2b across various tissues of P. annectens differed, the transcript levels of ut-a2a and ut-a2b in the gills were comparable, indicating that they might be equally important for branchial urea excretion during the initial arousal phase of aestivation. During the maintenance phase of aestivation, the transcript level of ut-a2a increased significantly, but the protein abundance of Ut-a2a remained unchanged in the gills of P. annectens. This could be an adaptive feature to prepare for an increase in the production of Ut-a2a upon arousal. Indeed, arousal led to a significant increase in the branchial Ut-a2a protein abundance. Although the transcript level of ut-a2b remained unchanged, there were significant increases in the protein abundance of Ut-a2b in the gills of P. annectens throughout the three phases of aestivation. The increase in the protein abundance of Ut-a2b during the maintenance

  10. Aestivation Induces Changes in the mRNA Expression Levels and Protein Abundance of Two Isoforms of Urea Transporters in the Gills of the African Lungfish, Protopterus annectens

    PubMed Central

    Chng, You R.; Ong, Jasmine L. Y.; Ching, Biyun; Chen, Xiu L.; Hiong, Kum C.; Wong, Wai P.; Chew, Shit F.; Lam, Siew H.; Ip, Yuen K.

    2017-01-01

    The African lungfish, Protopterus annectens, is ammonotelic in water despite being ureogenic. When it aestivates in mucus cocoon on land, ammonia is detoxified to urea. During the maintenance phase of aestivation, urea accumulates in the body, which is subsequently excreted upon arousal. Urea excretion involves urea transporters (UT/Ut). This study aimed to clone and sequence the ut isoforms from the gills of P. annectens, and to test the hypothesis that the mRNA and/or protein expression levels of ut/Ut isoforms could vary in the gills of P. annectens during the induction, maintenance, and arousal phases of aestivation. Two isoforms of ut, ut-a2a and ut-a2b, were obtained from the gills of P. annectens. ut-a2a consisted of 1227 bp and coded for 408 amino acids with an estimated molecular mass of 44.7 kDa, while ut-a2b consisted of 1392 bp and coded for 464 amino acids with an estimated molecular mass of 51.2 kDa. Ut-a2a and Ut-a2b of P. annectens had a closer phylogenetic relationship with Ut/UT of tetrapods than Ut of fishes. While the mRNA expression pattern of ut-a2a and ut-a2b across various tissues of P. annectens differed, the transcript levels of ut-a2a and ut-a2b in the gills were comparable, indicating that they might be equally important for branchial urea excretion during the initial arousal phase of aestivation. During the maintenance phase of aestivation, the transcript level of ut-a2a increased significantly, but the protein abundance of Ut-a2a remained unchanged in the gills of P. annectens. This could be an adaptive feature to prepare for an increase in the production of Ut-a2a upon arousal. Indeed, arousal led to a significant increase in the branchial Ut-a2a protein abundance. Although the transcript level of ut-a2b remained unchanged, there were significant increases in the protein abundance of Ut-a2b in the gills of P. annectens throughout the three phases of aestivation. The increase in the protein abundance of Ut-a2b during the maintenance

  11. Silencing of bach1 gene by small interfering RNA-mediation regulates invasive and expression level of miR-203, miR-145, matrix metalloproteinase-9, and CXCR4 receptor in MDA-MB-468 breast cancer cells.

    PubMed

    Mohammadzadeh, Reza; Saeid Harouyan, Mojgan; Ale Taha, Seyed Mansour

    2017-03-01

    Recently experimental validation of the networks revealed bach1, a basic leucine zipper transcription factor, as the common regulator of several functional invasive genes. The expression of bach1 and its target genes was linked to the higher risk of breast cancer recurrence in patients. The aim of this study was to investigate the effect of specific bach1 small interfering RNAs, on the invasive and expression level of miR-203, miR-145, matrix metalloproteinase-9, and CXCR4 receptor which play a role in cancer metastasis, in MDA-MB-468 cell lines. Small interfering RNA transfection was performed with transfection regent. The survival effects of small interfering RNA were determined using trypan blue assay cells. The expression level of messenger RNA and matrix metalloproteinase-9 to assess cell invasion and the expression level of miR-203, miR-145, and CXCR4 receptor were measured by quantitative real-time polymerase chain reaction analysis on the MDA-MB-468 cell lines. Transfection with small interfering RNA significantly suppressed the expression of bach1 gene in dose-dependent manner after 48 h ( p < 0.0001). A significant reduction in cell invasion and CXCR4 receptor, matrix metalloproteinase-9 expression were observed ( p < 0.0001). It was also a dramatic increase in the expression level of miR-203 and miR-145 ( p < 0.0001). Our results suggest that the bach1-specific small interfering RNA effectively decrease CXCR4 receptor, matrix metalloproteinase-9 expression and breast adenocarcinoma cells invasive, also increased the expression of tumor-suppressive microRNA-203 and miR-145. Thus, these microRNAs may play a role in invasive/metastasis of carcinogenic breast cancer cells. Therefore, bach1 knockdown can be considered as a potent adjuvant in breast cancer therapy.

  12. Gonadotropin-induced changes in oviducal mRNA expression levels of sex steroid hormone receptors and activin-related signaling factors in the alligator.

    PubMed

    Moore, Brandon C; Forouhar, Sara; Kohno, Satomi; Botteri, Nicole L; Hamlin, Heather J; Guillette, Louis J

    2012-01-15

    Oviducts respond to hormonal cues from ovaries with tissue proliferation and differentiation in preparation of transporting and fostering gametes. These responses produce oviducal microenvironments conducive to reproductive success. Here, we investigated changes in circulating plasma sex steroid hormones concentrations and ovarian and oviducal mRNA expression to an in vivo gonadotropin (FSH) challenge in sexually immature, five-month-old alligators. Further, we investigated differences in these observed responses between alligators hatched from eggs collected at a heavily-polluted (Lake Apopka, FL) and minimally-polluted (Lake Woodruff, FL) site. In oviducts, we measured mRNA expression of estrogen, progesterone, and androgen receptors and also beta A and B subunits which homo- or heterodimerize to produce the transforming growth factor activin. In comparison, minimal inhibin alpha subunit mRNA expression suggests that these oviducts produce a primarily activin-dominated signaling milieu. Ovaries responded to a five-day FSH challenge with increased expression of steroidogenic enzyme mRNA which was concomitant with increased circulating sex steroid hormone concentrations. Oviducts in the FSH-challenged Lake Woodruff alligators increased mRNA expression of progesterone and androgen receptors, proliferating cell nuclear antigen, and the activin signaling antagonist follistatin. In contrast, Lake Apopka alligators displayed a diminished increase in ovarian CYP19A1 aromatase expression and no increase in oviducal AR expression, as compared to those observed in Lake Woodruff alligators. These results demonstrate that five-month-old female alligators display an endocrine-responsive ovarian-oviducal axis and environmental pollution exposure may alter these physiological responses.

  13. Gonadotropin-induced changes in oviducal mRNA expression levels of sex steroid hormone receptors and activin-related signaling factors in the alligator

    PubMed Central

    Moore, Brandon C.; Forouhar, Sara; Kohno, Satomi; Botteri, Nicole L.; Hamlin, Heather J.; Guillette, Louis J.

    2011-01-01

    Oviducts respond to hormonal cues from ovaries with tissue proliferation and differentiation in preparation of transporting and fostering gametes. These responses produce oviducal microenvironments conducive to reproductive success. Here we investigated changes in circulating plasma sex steroid hormones concentrations and ovarian and oviducal mRNA expression to an in vivo gonadotropin (FSH) challenge in sexually immature, five-month-old alligators. Further, we investigated differences in these observed responses between alligators hatched from eggs collected at a heavily-polluted (Lake Apopka, FL) and minimally-polluted (Lake Woodruff, FL) site. In oviducts, we measured mRNA expression of estrogen, progesterone, and androgen receptors and also beta A and B subunits which homo- or heterodimerize to produce the transforming growth factor activin. In comparison, minimal inhibin alpha subunit mRNA expression suggests that these oviducts produce a primarily activin-dominated signaling milieu. Ovaries responded to a five-day FSH challenge with increased expression of steroidogenic enzyme mRNA which was concomitant with increased circulating sex steroid hormone concentrations. Oviducts in the FSH-challenged Lake Woodruff alligators increased mRNA expression of progesterone and androgen receptors, proliferating cell nuclear antigen, and the activin signaling antagonist follistatin. In contrast, Lake Apopka alligators displayed a diminished increase in ovarian CYP19A1 aromatase expression and no increase in oviducal AR expression, as compared to those observed in Lake Woodruff alligators. These results demonstrate that five-month-old female alligators display an endocrine-responsive ovarian-oviducal axis and environmental pollution exposure may alter these physiological responses. PMID:22154572

  14. Effects of Lactobacillus casei on the expression and the activity of cytochromes P450 and on the CYP mRNA level in the intestine and the liver of male rats.

    PubMed

    Matuskova, Zuzana; Siller, Michal; Tunkova, Alena; Anzenbacherova, Eva; Zacharova, Alice; Tlaskalova-Hogenova, Helena; Zidek, Zdenek; Anzenbacher, Pavel

    2011-01-01

    The aim of the study was to find whether probiotic Lactobacillus casei influences the expression or the activity of cytochromes P450 (CYP) and whether it has an influence on the level of CYP mRNA in male rats. Live bacterial suspension of L. casei was administered orally (gavage) to healthy male Wistar rats daily for 7 days. Control group of rats was treated with the saline solution. Sections of the duodenum, jejunum, ileum, caecum and colon were dissected from each experimental animal. In all individual samples, the expression of selected CYPs was determined by Western blotting. The levels of expression of CYPs were also evaluated by mRNA using the real-time PCR method. There were changes observed in the expression of CYP enzymes and in the CYP mRNA levels along the intestine after application of L. casei. The expression of CYP1A1 enzyme was found to be decreased in the proximal part of the jejunum and colon, CYP1A1 mRNA level was decreased in the distal part of the jejunum, ileum and caecum. Thus, the changes in CYP1A1 protein or mRNA were observed along the intestine of male rats. Similarly, a decreased expression of the caecal CYP2E1 mRNA and of the duodenal CYP3A9 mRNA after treatment of rats with L. casei was found. Probiotic L. casei might be able to contribute to prevention against colorectal cancer by decreasing levels of certain forms of xenobiotic-metabolizing enzymes; moreover, in general, there is a possibility of interactions with concomitantly taken pharmacotherapeutic agents.

  15. Circular RNA expression profiles and features in human tissues: a study using RNA-seq data.

    PubMed

    Xu, Tianyi; Wu, Jing; Han, Ping; Zhao, Zhongming; Song, Xiaofeng

    2017-10-03

    Circular RNA (circRNA) is one type of noncoding RNA that forms a covalently closed continuous loop. Similar to long noncoding RNA (lncRNA), circRNA can act as microRNA (miRNA) 'sponges' to regulate gene expression, and its abnormal expression is related to diseases such as atherosclerosis, nervous system disorders and cancer. So far, there have been no systematic studies on circRNA abundance and expression profiles in human adult and fetal tissues. We explored circRNA expression profiles using RNA-seq data for six adult and fetal normal tissues (colon, heart, kidney, liver, lung, and stomach) and four gland normal tissues (adrenal gland, mammary gland, pancreas, and thyroid gland). A total of 8120, 25,933 and 14,433 circRNAs were detected by at least two supporting junction reads in adult, fetal and gland tissues, respectively. Among them, 3092, 14,241 and 6879 circRNAs were novel when compared to the published results. In each adult tissue type, we found at least 1000 circRNAs, among which 36.97-50.04% were tissue-specific. We reported 33 circRNAs that were ubiquitously expressed in all the adult tissues we examined. To further explore the potential "housekeeping" function of these circRNAs, we constructed a circRNA-miRNA-mRNA regulatory network containing 17 circRNAs, 22 miRNAs and 90 mRNAs. Furthermore, we found that both the abundance and the relative expression level of circRNAs were higher in fetal tissue than adult tissue. The number of circRNAs in gland tissues, especially in mammary gland (9665 circRNA candidates), was higher than that of other adult tissues (1160-3777). We systematically investigated circRNA expression in a variety of human adult and fetal tissues. Our observation of different expression level of circRNAs in adult and fetal tissues suggested that circRNAs might play their role in a tissue-specific and development-specific fashion. Analysis of circRNA-miRNA-mRNA network provided potential targets of circRNAs. High expression level of circ

  16. Methyl protodioscin increases ABCA1 expression and cholesterol efflux while inhibiting gene expressions for synthesis of cholesterol and triglycerides by suppressing SREBP transcription and microRNA 33a/b levels.

    PubMed

    Ma, Weilie; Ding, Hang; Gong, Xiaohua; Liu, Zhen; Lin, Yalin; Zhang, Zhizhen; Lin, Guorong

    2015-04-01

    Sterol regulatory element-binding proteins (SREBPs) regulate homeostasis of LDL, HDL and triglycerides. This study was aimed to determine if inhibition of SREBPs by methyl protodioscin (MPD) regulates downstream gene and protein expressions of lipid metabolisms. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. The underlying mechanisms for the effects is that MPD inhibits the transcription of SREBP1c and SREBP2, and decreases levels of microRNA 33a/b hosted in the introns of SREBPs, which leads to reciprocally increase ABCA1 levels. In HepG2 cells, MPD shows the same effects as these observed in THP-1 macrophages. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis. MPD further promotes LDL receptor through reducing the PCSK9 level. Collectively, the study demonstrates that MPD potentially increase HDL cholesterol while reducing LDL cholesterol and triglycerides. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs.

    PubMed

    Kametani, Yoshie; Ohshima, Shino; Miyamoto, Asuka; Shigenari, Atsuko; Takasu, Masaki; Imaeda, Noriaki; Matsubara, Tatsuya; Tanaka, Masafumi; Shiina, Takashi; Kamiguchi, Hiroshi; Suzuki, Ryuji; Kitagawa, Hitoshi; Kulski, Jerzy K; Hirayama, Noriaki; Inoko, Hidetoshi; Ando, Asako

    2016-01-01

    The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA)-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs) by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation.

  18. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs

    PubMed Central

    Kametani, Yoshie; Ohshima, Shino; Miyamoto, Asuka; Shigenari, Atsuko; Takasu, Masaki; Imaeda, Noriaki; Matsubara, Tatsuya; Tanaka, Masafumi; Shiina, Takashi; Kamiguchi, Hiroshi; Suzuki, Ryuji; Kitagawa, Hitoshi; Kulski, Jerzy K.; Hirayama, Noriaki; Inoko, Hidetoshi; Ando, Asako

    2016-01-01

    The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA)-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs) by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation. PMID:27760184

  19. High level of viral microRNA-BART20-5p expression is associated with worse survival of patients with Epstein-Barr virus-associated gastric cancer

    PubMed Central

    Kwon, Oh Kyoung; Lee, Seung Soo; Chung, Ho Young; Yu, Wansik; Bae, Han Ik; Seo, An Na; Kang, Hyojeung; Lee, Suk Kyeong; Jeon, Seong Woo; Hur, Keun; Kim, Jong Gwang

    2017-01-01

    This study analyzed the relationship between several Epstein-Barr virus (EBV) microRNA (miRNA) expression profiles and the clinicopathologic features of patients with EBV-associated gastric cancer. The miRNA expression was examined in 59 tumor and 39 paired normal mucosal tissues from available formalin-fixed paraffin embedded tissue samples. The expression levels of miR-BamHI fragment A rightward transcript (BART)1-5p, miR-BART4-5p, and miR-BART20-5p were determined using a quantitative real-time polymerase chain reaction. The expression of all three analyzed EBV microRNAs was significantly higher in the tumor tissue than in the paired normal tissue (P < 0.001 for each). When the median value of the EBV microRNA expression levels was used as the cutoff point, a high BART20-5p expression was associated with worse recurrence-free survival (P = 0.034) in a multivariate analysis including age and pathologic stage. In conclusion, the expression level of BART20-5p may predict recurrence-free survival for patients with EBV-associated gastric cancer. Further studies are warranted to clarify the roles of EBV BART microRNAs in the carcinogenesis, and their potential as a biomarker and therapeutic target for EBV-associated gastric cancer. PMID:28122341

  20. Microarray analysis of circular RNA expression patterns in polarized macrophages

    PubMed Central

    Zhang, Yingying; Zhang, Yao; Li, Xueqin; Zhang, Mengying; Lv, Kun

    2017-01-01

    Circular RNAs (circRNAs) are generated from diverse genomic locations and are a new player in the regulation of post-transcriptional gene expression. Recent studies have revealed that circRNAs play a crucial role in fine-tuning the level of microRNA (miRNA)-mediated regulation of gene expression by sequestering miRNAs. The interaction of circRNAs with disease-associated miRNAs suggests that circRNAs are important in the pathology of disease. However, the effects and roles of circRNAs in macrophage polarization have yet to be explored. In the present study, we performed a circRNA microarray to compare the circRNA expression profiles of bone marrow-derived macrophages (BMDMs) under two distinct polarizing conditions (M1 macrophages induced by interferon-γ and LPS stimulation, and M2 macrophages induced by interleukin-4 stimulation). Our results showed that a total of 189 circRNAs were differentially expressed between M1 and M2 macrophages. Differentially expressed circRNAs with a high fold-change were selected for validation by RT-qPCR: circRNA-003780, circRNA-010056, and circRNA-010231 were upregulated and circRNA-003424, circRNA-013630, circRNA-001489 and circRNA-018127 were downregulated (fold-change >4, P<0.05) in M1 compared to M2, which was found to correlate with the microarray data. Furthermore, the most differentially expressed circRNAs within all the comparisons were annotated in detail with circRNA/miRNA interaction information using miRNA target prediction software. In conclusion, the present study provides novel insight into the role of circRNAs in macrophage differentiation and polarization. PMID:28075448

  1. Effects of long-term treatment with the luteinizing hormone-releasing hormone (LHRH) agonist Decapeptyl and the LHRH antagonist Cetrorelix on the levels of pituitary LHRH receptors and their mRNA expression in rats

    PubMed Central

    Horvath, Judit E.; Bajo, Ana M.; Schally, Andrew V.; Kovacs, Magdolna; Herbert, Francine; Groot, Kate

    2002-01-01

    The effects of depot formulations of the luteinizing hormone-releasing hormone (LHRH) agonist Decapeptyl (25 μg/day) for 30 days or LHRH antagonist Cetrorelix pamoate (100 μg/day) for 30 days and daily injections of 100 μg of Decapeptyl for 10 days on the expression of mRNA for pituitary LHRH receptor (LHRH-R) and the levels of LHRH-R protein were evaluated in rats. Serum sex steroid concentrations and the weights of the reproductive organs were greatly reduced in all groups treated with analogs, demonstrating an efficient blockade of the pituitary–gonadal axis. Decapeptyl microcapsules elevated serum LH in female rats, but decreased it in male rats. LHRH-R mRNA expression in female pituitaries was reduced to 41% and 56–65% on days 10 and 30, respectively, whereas LHRH-R protein was 64% of control on day 10 and returned to pretreatment levels on day 30. Decapeptyl microcapsules reduced LHRH-R mRNA expression in male pituitaries to 58% on day 30 but not LHRH-R protein. Daily injections of Decapeptyl caused a desensitization of LH responses in female rats, while raising LHRH-R mRNA expression in female rats by 23% and LHRH-R protein levels by 119%. Cetrorelix pamoate reduced serum LH in female rats and diminished LHRH-R mRNA to 30% and 26% and LHRH-R protein to 57% and 48% on days 10 and 30, respectively. Elevated LHRH-R protein levels of ovariectomized rats were reduced after 10-day treatment with Cetrorelix or 100 μg/day Decapeptyl. Thus, changes in the mRNA expression after treatment with Cetrorelix, but not always Decapeptyl, paralleled those of LHRH-R protein. The inhibitory effect of Cetrorelix on serum LH, pituitary LHRH-R mRNA, and LHRH-R protein was greater than that of Decapeptyl. PMID:12409615

  2. Differential expression of microRNA (miRNA) in chordoma reveals a role for miRNA-1 in Met expression.

    PubMed

    Duan, Zhenfeng; Choy, Edwin; Nielsen, G Petur; Rosenberg, Andrew; Iafrate, John; Yang, Cao; Schwab, Joe; Mankin, Henry; Xavier, Ramnik; Hornicek, Francis J

    2010-06-01

    Emerging evidence suggests that microRNA (miRNA) expression signatures in cancer may have important diagnostic, prognostic, and therapeutic value, but there is no data on miRNA expression in chordoma. The purpose of this study was to identify the role of miRNAs in human chordoma. We analyzed miRNA expression in chordoma-derived cell lines and chordoma tissue by using miRNA microarray technology with unsupervised hierarchical clustering analysis. The relative expression levels of these miRNAs were confirmed by real-time quantitative RT-PCR and Northern blot analysis. To characterize the potential role of miRNA-1, miRNA-1 was stably transfected into a chordoma cell line, UCH1. The expression of miRNA-1 targeted gene Met in chordoma tissues was also studied. We observe that human chordoma tissues and cell lines can be distinguished from normal muscle tissue by comparing miRNA expression profiles. Several miRNAs were differentially expressed in chordoma cell lines compared to controls, and similar expression patterns were found in primary chordoma tissues. Importantly, we were able to show for the first time, to our knowledge, that expression of miRNA-1 and miRNA-206, two miRNAs implicated in a number of other cancer types, were markedly decreased in both chordoma tissues and cell lines. When chordoma cell lines were transfected with miRNA-1, downregulation of known miRNA-1 targets was observed. These targets included Met and HDAC4-two genes that were observed to be overexpressed in chordoma. Our results demonstrate that some miRNAs are differentially expressed in chordoma and, in particular, miRNA-1 may have a functional effect on chordoma tumor pathogenesis.

  3. Immunolabelling, histochemistry and in situ hybridisation in human skeletal muscle fibres to detect myosin heavy chain expression at the protein and mRNA level

    PubMed Central

    SERRANO, A. L.; PÉREZ, MARGARITA; LUCÍA, A.; CHICHARRO, J. L.; QUIROZ-ROTHE, E.; RIVERO, J. L. L.

    2001-01-01

    The distribution of muscle fibres classified on the basis of their content of different myosin heavy chain (MHC) isoforms was analysed in vastus lateralis muscle biopsies of 15 young men (with an average age of 22 y) by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies, myofibrillar ATPase (mATPase) histochemistry and in situ hybridisation with probes specific for MHC β-slow, MHC-IIA and MHC-IIX. The characterisation of a large number of individual fibres was compared and correlated on a fibre-to-fibre basis. The panel of monoclonal antibodies used in the study allowed classification of human skeletal muscle fibres into 5 categories according to the MHC isoform they express at the protein level, types I, I+IIA, IIA, IIAX and IIX. Hybrid fibres coexpressing two isoforms represented a considerable proportion of the fibre composition (about 14%) and were clearly underestimated by mATPase histochemistry. For a very high percentage of fibres there was a precise correspondence between the MHC protein isoforms and mRNA transcripts. The integrated methods used demonstrate a high degree of precision of the immunohistochemical procedure used for the identification and quantification of human skeletal muscle fibre types. The monoclonal antibody S5-8H2 is particularly useful for identifying hybrid IIAX fibres. This protocol offers new prospects for muscle fibre classification in human experimental studies. PMID:11554510

  4. Expression at mRNA level of cytokines and A238L gene in porcine blood-derived macrophages infected in vitro with African swine fever virus (ASFV) isolates of different virulence.

    PubMed

    Gil, S; Spagnuolo-Weaver, M; Canals, A; Sepúlveda, N; Oliveira, J; Aleixo, A; Allan, G; Leitão, A; Martins, C L V

    2003-11-01

    Porcine macrophage cultures were infected with two ASFV isolates of variable virulence and mRNA levels of several relevant macrophage-derived cytokines were quantified by real time PCR. At six hours post infection, a clear enhancement of mRNA expression of TNFalpha, IL6, IL12 and IL15 was observed in macrophages infected with the low virulent ASFV/NH/P68 (NHV) when compared to those infected with the highly virulent ASFV/L60 (L60). The sequence of the A238L gene homologue to the cellular IkappaB was found identical in both viral isolates and its expression at mRNA level was higher in macrophages infected with NHV when compared to macrophages infected with L60. Furthermore our results suggest a negative correlation between the mRNA expression of A238L gene and the mRNA expression of the above mentioned cytokines (with the exception of IL10) in L60 infected macrophages in opposition to the positive correlation (with exception of the IL1) suggested in NHV infection. Overall, our data strongly emphasize that virulence of ASFV isolates may depend on their capacity to regulate the expression of macrophage-derived cytokines relevant for the development of host protective responses by yet unknown mechanisms triggered by the virus at early stages of the cellular infection.

  5. Changes in liver PPARalpha mRNA expression in response to two levels of high-safflower-oil diets correlate with changes in adiposity and serum leptin in rats and mice.

    PubMed

    Hsu, Shan-Ching; Huang, Ching-jang

    2007-02-01

    The ligand-dependent transcription factor peroxisome proliferator-activated receptor alpha (PPARalpha) is known to be activated by common fatty acids and to regulate the expression of genes of various lipid oxidation pathways and transport. High-fat diets provide more fatty acids, which presumably could enhance lipid catabolism through up-regulation of PPARalpha signaling. However, high intake of fat could also lead to obesity. To examine PPARalpha signaling in high-fat feeding and obesity, this study examined the hepatic mRNA expression of PPARalpha and some of its target genes in Wistar rats and C57BL/6J mice fed two levels (20% or 30% wt/wt) of high-safflower-oil (SFO; oleic-acid-rich) diets until animals showed significantly higher body weight (13 weeks for rats and 22 weeks for mice) than those of control groups fed a 5% SFO diet. At the end of these respective feeding periods, only the rats fed 30% SFO and the mice fed 20% SFO among the two groups fed high-fat diets showed significantly higher body weight, white adipose tissue weight, serum leptin and mRNA expression of PPARalpha (P<.05) compared to the respective control groups. Despite elevated acyl-CoA (a PPARalpha target gene) protein and activity in both groups fed high-fat diets, the mRNA expression level of most PPARalpha target genes examined correlated mainly to PPARalpha mRNA levels and not to fat intake or liver lipid levels. The observation that the liver PPARalpha mRNA expression in groups fed high-fat diets was significantly higher only in obese animals with elevated serum leptin implied that obesity and associated hyperleptinemia might have a stronger impact than dietary SFO intake per se on PPARalpha-regulated mRNA expression in the liver.

  6. Molecular characterization of argininosuccinate synthase and argininosuccinate lyase from the liver of the African lungfish Protopterus annectens, and their mRNA expression levels in the liver, kidney, brain and skeletal muscle during aestivation.

    PubMed

    Chng, You R; Ong, Jasmine L Y; Ching, Biyun; Chen, Xiu L; Wong, Wai P; Chew, Shit F; Ip, Yuen K

    2014-10-01

    Argininosuccinate synthase (Ass) and argininosuccinate lyase (Asl) are involved in arginine synthesis for various purposes. The complete cDNA coding sequences of ass and asl from the liver of Protopterus annectens consisted of 1,296 and 1,398 bp, respectively. Phylogenetic analyses revealed that the deduced Ass and Asl of P. annectens had close relationship with that of the cartilaginous fish Callorhinchus milii. Besides being strongly expressed in the liver, ass and asl expression were detectable in many tissues/organs. In the liver, mRNA expression levels of ass and asl increased significantly during the induction phase of aestivation, probably to increase arginine production to support increased urea synthesis. The increases in ass and asl mRNA expression levels during the prolonged maintenance phase and early arousal phase of aestivation could reflect increased demand on arginine for nitric oxide (NO) production in the liver. In the kidney, there was a significant decrease in ass mRNA expression level after 6 months of aestivation, indicating possible decreases in the synthesis and supply of arginine to other tissues/organs. In the brain, changes in ass and asl mRNA expression levels during the three phases of aestivation could be related to the supply of arginine for NO synthesis in response to conditions that resemble ischaemia and ischaemia-reperfusion during the maintenance and arousal phase of aestivation, respectively. The decrease in ass mRNA expression level, accompanied with decreases in the concentrations of arginine and NO, in the skeletal muscle of aestivating P. annectens might ameliorate the potential of disuse muscle atrophy.

  7. Comparative effects of low-level laser therapy pre- and post-injury on mRNA expression of MyoD, myogenin, and IL-6 during the skeletal muscle repair.

    PubMed

    Alves, Agnelo Neves; Ribeiro, Beatriz Guimarães; Fernandes, Kristianne Porta Santos; Souza, Nadhia Helena Costa; Rocha, Lília Alves; Nunes, Fabio Daumas; Bussadori, Sandra Kalil; Mesquita-Ferrari, Raquel Agnelli

    2016-05-01

    This study analyzed the effect of pre-injury and post-injury irradiation with low-level laser therapy (LLLT) on the mRNA expression of myogenic regulatory factors and interleukin 6 (IL-6) during the skeletal muscle repair. Male rats were divided into six groups: control group, sham group, LLLT group, injury group; pre-injury LLLT group, and post-injury LLLT group. LLLT was performed with a diode laser (wavelength 780 nm; output power 40 mW' and total energy 3.2 J). Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly onto the belly of the tibialis anterior (TA) muscle. After euthanasia, the TA muscle was removed for the isolation of total RNA and analysis of MyoD, myogenin, and IL-6 using real-time quantitative PCR. Significant increases were found in the expression of MyoD mRNA at 3 and 7 days as well as the expression of myogenin mRNA at 14 days in the post-injury LLLT group in comparison to injury group. A significant reduction was found in the expression of IL-6 mRNA at 3 and 7 days in the pre-injury LLLT and post-injury LLLT groups. A significant increase in IL-6 mRNA was found at 14 days in the post-injury LLLT group in comparison to the injury group. LLLT administered following muscle injury modulates the mRNA expression of MyoD and myogenin. Moreover, the both forms of LLLT administration were able to modulate the mRNA expression of IL-6 during the muscle repair process.

  8. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level

    PubMed Central

    Kortmann, Maike; Kuhl, Vanessa; Klaffl, Simon; Bott, Michael

    2015-01-01

    Corynebacterium glutamicum has become a favourite model organism in white biotechnology. Nevertheless, only few systems for the regulatable (over)expression of homologous and heterologous genes are currently available, all of which are based on the endogenous RNA polymerase. In this study, we developed an isopropyl-β-d-1-thiogalactopyranosid (IPTG)-inducible T7 expression system in the prophage-free strain C. glutamicum MB001. For this purpose, part of the DE3 region of Escherichia coli BL21(DE3) including the T7 RNA polymerase gene 1 under control of the lacUV5 promoter was integrated into the chromosome, resulting in strain MB001(DE3). Furthermore, the expression vector pMKEx2 was constructed allowing cloning of target genes under the control of the T7lac promoter. The properties of the system were evaluated using eyfp as heterologous target gene. Without induction, the system was tightly repressed, resulting in a very low specific eYFP fluorescence (= fluorescence per cell density). After maximal induction with IPTG, the specific fluorescence increased 450-fold compared with the uninduced state and was about 3.5 times higher than in control strains expressing eyfp under control of the IPTG-induced tac promoter with the endogenous RNA polymerase. Flow cytometry revealed that T7-based eyfp expression resulted in a highly uniform population, with 99% of all cells showing high fluorescence. Besides eyfp, the functionality of the corynebacterial T7 expression system was also successfully demonstrated by overexpression of the C. glutamicum pyk gene for pyruvate kinase, which led to an increase of the specific activity from 2.6 to 135 U mg−1. It thus presents an efficient new tool for protein overproduction, metabolic engineering and synthetic biology approaches with C. glutamicum. PMID:25488698

  9. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level.

    PubMed

    Kortmann, Maike; Kuhl, Vanessa; Klaffl, Simon; Bott, Michael

    2015-03-01

    Corynebacterium glutamicum has become a favourite model organism in white biotechnology. Nevertheless, only few systems for the regulatable (over)expression of homologous and heterologous genes are currently available, all of which are based on the endogenous RNA polymerase. In this study, we developed an isopropyl-β-D-1-thiogalactopyranosid (IPTG)-inducible T7 expression system in the prophage-free strain C. glutamicum MB001. For this purpose, part of the DE3 region of Escherichia coli BL21(DE3) including the T7 RNA polymerase gene 1 under control of the lacUV5 promoter was integrated into the chromosome, resulting in strain MB001(DE3). Furthermore, the expression vector pMKEx2 was constructed allowing cloning of target genes under the control of the T7lac promoter. The properties of the system were evaluated using eyfp as heterologous target gene. Without induction, the system was tightly repressed, resulting in a very low specific eYFP fluorescence (= fluorescence per cell density). After maximal induction with IPTG, the specific fluorescence increased 450-fold compared with the uninduced state and was about 3.5 times higher than in control strains expressing eyfp under control of the IPTG-induced tac promoter with the endogenous RNA polymerase. Flow cytometry revealed that T7-based eyfp expression resulted in a highly uniform population, with 99% of all cells showing high fluorescence. Besides eyfp, the functionality of the corynebacterial T7 expression system was also successfully demonstrated by overexpression of the C. glutamicum pyk gene for pyruvate kinase, which led to an increase of the specific activity from 2.6 to 135 U mg(-1). It thus presents an efficient new tool for protein overproduction, metabolic engineering and synthetic biology approaches with C. glutamicum.

  10. Macrophage migration inhibitory factor promoter polymorphisms (-794 CATT 5-8 and -173 G>C): relationship with mRNA expression and soluble MIF levels in young obese subjects.

    PubMed

    Matia-García, Inés; Salgado-Goytia, Lorenzo; Muñoz-Valle, José F; García-Arellano, Samuel; Hernández-Bello, Jorge; Salgado-Bernabé, Aralia B; Parra-Rojas, Isela

    2015-01-01

    We analyzed the relationship of -794 CATT5-8 and -173 G>C MIF polymorphisms with mRNA and soluble MIF in young obese subjects. A total of 250 young subjects, 150 normal-weight and 100 obese subjects, were recruited in the study. Genotyping of -794 CATT5-8 and -173 G>C MIF polymorphisms was performed by PCR and PCR-RFLP, respectively. MIF mRNA expression was determined by real-time PCR and serum MIF levels were measured using an ELISA kit. For both MIF promoter polymorphisms, no significant differences in the genotype and allele frequencies between groups were observed. MIF mRNA expression was slightly higher in obese subjects than in normal-weight subjects (1.38-fold), while soluble MIF levels did not show differences between groups. In addition, we found an increase in MIF mRNA expression in carriers of the 6,6 and C/C genotypes and the 6G haplotype of the -794 CATT5-8 and -173 G>C MIF polymorphisms, although it was not significant. In conclusion, this study found no relationship between obesity and MIF gene promoter polymorphisms with MIF mRNA expression in young obese subjects.

  11. Macrophage Migration Inhibitory Factor Promoter Polymorphisms (−794 CATT5–8 and −173 G>C): Relationship with mRNA Expression and Soluble MIF Levels in Young Obese Subjects

    PubMed Central

    Matia-García, Inés; Salgado-Goytia, Lorenzo; Muñoz-Valle, José F.; García-Arellano, Samuel; Hernández-Bello, Jorge; Salgado-Bernabé, Aralia B.; Parra-Rojas, Isela

    2015-01-01

    We analyzed the relationship of −794 CATT5–8 and −173 G>C MIF polymorphisms with mRNA and soluble MIF in young obese subjects. A total of 250 young subjects, 150 normal-weight and 100 obese subjects, were recruited in the study. Genotyping of −794 CATT5–8 and −173 G>C MIF polymorphisms was performed by PCR and PCR-RFLP, respectively. MIF mRNA expression was determined by real-time PCR and serum MIF levels were measured using an ELISA kit. For both MIF promoter polymorphisms, no significant differences in the genotype and allele frequencies between groups were observed. MIF mRNA expression was slightly higher in obese subjects than in normal-weight subjects (1.38-fold), while soluble MIF levels did not show differences between groups. In addition, we found an increase in MIF mRNA expression in carriers of the 6,6 and C/C genotypes and the 6G haplotype of the −794 CATT5–8 and −173 G>C MIF polymorphisms, although it was not significant. In conclusion, this study found no relationship between obesity and MIF gene promoter polymorphisms with MIF mRNA expression in young obese subjects. PMID:25972622

  12. Detecting microRNA activity from gene expression data

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources. PMID:20482775

  13. Effect of recombinant growth hormone on expression of growth hormone receptor, insulin-like growth factor mRNA and serum level of leptin in growing pigs.

    PubMed

    Xu, Qingfu; Zhao, Zhihui; Ni, Yingdong; Zhao, Ruqian; Chen, Jie

    2003-04-01

    Sixteen Large White x Landrace castrated male pigs were allotted into treatment and control group. The treatment group was injected intramuscularly with recombinant porcine growth hormone (rpGH, 4 mg d(-1)) and the control group with vehicle for 28 days. Animals were slaughtered 4 h after final injection for liver, longissimus dorsi (LD) muscle and blood sampling. Serum concentration of insulin-like growth factor 1 (IGF-I) and leptin were determined by RIA. The total RNA was extracted from tissues to measure the abundance of growth hormone receptor (GHR), IGF-I mRNA by RT-PCR with 18S rRNA internal standard. Results showed that rpGH enhanced the average daily weight gain by 26.1% (P < 0.05), the serum IGF-I concentration by 70.94% (P < 0.01), decreased serum leptin by 34.8% (P < 0.01). The relative abundance of GHR and IGF-I mRNA in liver were increased by 24.45% (P < 0.05) and 45.30% (P < 0.01), respectively, but no difference of GHR (P > 0.05) and IGF-I mRNA (P > 0.05) in LD between GH treated and control group was found. These results suggest that rpGH can up-regulate hepatic GHR and IGF-I gene expression and improve animal growth. However the effect of rpGH on GHR and IGF-I gene expression are tissue-specific.

  14. Association of expression of selenoprotein P in mRNA and protein levels with metabolic syndrome in subjects with cardiovascular disease: Results of the Selenegene study.

    PubMed

    Gharipour, Mojgan; Sadeghi, Masoumeh; Salehi, Mansour; Behmanesh, Mehrdad; Khosravi, Elham; Dianatkhah, Minoo; Haghjoo Javanmard, Shaghayegh; Razavi, Rouzbeh; Gharipour, Amin

    2017-03-01

    Selenoprotein P (SeP) is involved in transporting selenium from the liver to target tissues. Because SeP confers protection against disease by reducing chronic oxidative stress, the present study aimed to assess the level of SeP in the serum of patients with metabolic syndrome (MetS) with a history of cardiovascular disease (CVD). A cross-sectional study was conducted in 63 and 71 subjects with and without MetS in the presence of documented CVD. All demographic, anthropometric and cardiometabolic variables (lipids, blood glucose, blood pressure) were assessed. Lifestyle-related factors and personal history and familial CVD risk factors were recorded. The expression of SELP in mRNA and protein levels in the serum was measured, and MetS was determined using ATPIII criteria. Binary logistic regression analysis demonstrated MetS and SeP to be dependent and independent variables, respectively. Mean of systolic and diastolic blood pressure, triglyceride, high-density lipoprotein-cholesterol, fasting blood sugar, body mass index and waist circumference were higher among subjects with MetS (p = 0.05). The mean of selenium was higher among subjects with MetS, whereas the mean of SeP was lower among subjects with MetS (p < 0.001). In the unadjusted model, the SeP had decreased odds for MetS [odds ratio (OR) = 0.995; 95% confidence interval (CI) = 0.989-1.00] (p < 0.04). Furthermore, the association between MetS and SeP levels remained marginally significant even after adjusting for potential confounders such as age, gender, family history, smoking status and nutrition. SeP and waist circumference show a significant relationship (OR =0.995; 95% CI = 0.990-1.00) (p < 0.033). We have demonstrated a significant decrease in circulating SeP levels according to MetS status in patients with documented cardiovascular disease. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Altered microRNA-9 Expression Level is Directly Correlated with Pathogenesis of Nonalcoholic Fatty Liver Disease by Targeting Onecut2 and SIRT1

    PubMed Central

    Ao, Ran; Wang, Ying; Tong, Jing; Wang, Bai-Fang

    2016-01-01

    Background MicroRNA-9 (miR-9) was detected in nonalcoholic fatty liver disease (NAFLD) patients to understand the role of miR-9 in NAFLD development. Material/Methods Between February 2014 and February 2015, 105 cases of NAFLD were recruited and confirmed by liver biopsy pathology, including patients with mild NAFLD (n=58) and moderate-severe NAFLD (n=47); nonalcoholic steatohepatitis (NASH) (n=53) and non-NASH (n=52); and 50 healthy participants were regarded as the healthy control group. MiR-9 expression was measured by qRT-PCR. For in vitro experiments, L-02 normal liver cells were divided into normal control group (cultured with original culture medium), dimethyl sulfoxide (DMSO) group (cultured with DMSO) and oleic acid group (cultured with oleic acid to induce fatty change), and MTT assay was used to measure the effect of different oleic acid concentrations on cell proliferation. Nile red staining was used to detect intracellular accumulation of lipid droplets. Further, synthetic miR-9 mimic and its control and miR-9 inhibitors and its control were independently transfected into L-02 cells. Results MiR-9 levels in the mild NAFLD group and moderate-severe NAFLD group were significantly higher than in the healthy control group (both P<0.05). Mean fluorescence intensity of lipid droplets increased with the duration of induction, and were dramatically higher in oleate-treated L-02 cells; intracellular triglyceride (TG) content was also higher. miR-9 levels significantly increased following oleate induction. Importantly, miR-9 levels were significantly elevated upon miR-9 mimic transfection. Conversely, miR-9 level was lowered with miR-9 inhibitors transfection. Additionally, Onecut2 and SIRT1 were identified as miR-9 targets. Conclusions A positive relationship between miR-9 and steatosis was established with our results that miR-9 mimic transfection decreased intracellular lipid content. Finally, we identified 2 miR-9 targets, Onecut2 and SIRT1, which may be

  16. Neuronal Activity Regulates Hippocampal miRNA Expression

    PubMed Central

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control. PMID:21984899

  17. High temperature induces cyp26b1 mRNA expression and delays meiotic initiation of germ cells by increasing cortisol levels during gonadal sex differentiation in Japanese flounder.

    PubMed

    Yamaguchi, Toshiya; Kitano, Takeshi

    2012-03-09

    The Japanese flounder (Paralichthys olivaceus) is a teleost fish with an XX/XY sex determination system. XX flounder can be induced to develop into phenotypic females or males, by rearing them at 18°C or 27°C, respectively, during the sex differentiation period. Therefore, the flounder provides an excellent model to study the molecular mechanisms underlying temperature-dependent sex determination. We previously showed that cortisol, the major glucocorticoid produced by the interrenal cells in teleosts, causes female-to-male sex reversal by directly suppressing mRNA expression of ovary-type aromatase (cyp19a1), a steroidogenic enzyme responsible for the conversion of androgens to estrogens in the gonads. Furthermore, an inhibitor of cortisol synthesis prevented masculinization of XX flounder at 27°C, suggesting that masculinization by high temperature is due to the suppression of cyp19a1 mRNA expression by elevated cortisol levels during gonadal sex differentiation in the flounder. In the present study, we found that exposure to high temperature during gonadal sex differentiation upregulates the mRNA expression of retinoid-degrading enzyme (cyp26b1) concomitantly with masculinization of XX gonads and delays meiotic initiation of germ cells. We also found that cortisol induces cyp26b1 mRNA expression and suppresses specific meiotic marker synaptonemal complex protein 3 (sycp3) mRNA expression in gonads during the sexual differentiation. In conclusion, these results suggest that exposure to high temperature induces cyp26b1 mRNA expression and delays meiotic initiation of germ cells by elevating cortisol levels during gonadal sex differentiation in Japanese flounder.

  18. mRNA expression levels of the biological factors uPAR, uPAR-del4/5, and rab31, displaying prognostic value in breast cancer, are not clinically relevant in advanced ovarian cancer.

    PubMed

    Kotzsch, Matthias; Dorn, Julia; Doetzer, Kristina; Schmalfeldt, Barbara; Krol, Janna; Baretton, Gustavo; Kiechle, Marion; Schmitt, Manfred; Magdolen, Viktor

    2011-11-01

    High tumor tissue mRNA expression of the tumor biological factors uPAR, uPAR-del4/5, or rab31 is associated with shorter distant metastasis-free and overall survival in breast cancer patients. To evaluate whether these factors are also clinically relevant in ovarian cancer, we quantified the respective mRNA levels in primary tumor tissue of advanced ovarian cancer patients (n=103) and evaluated their association with clinicopathological parameters and patients' prognosis. mRNA expression levels of all three markers did not show any significant association with overall or progression-free survival, demonstrating that these factors have no prognostic value in advanced ovarian cancer.

  19. Prognostic Importance of MN1 Transcript Levels, and Biologic Insights From MN1-Associated Gene and MicroRNA Expression Signatures in Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study

    PubMed Central

    Langer, Christian; Marcucci, Guido; Holland, Kelsi B.; Radmacher, Michael D.; Maharry, Kati; Paschka, Peter; Whitman, Susan P.; Mrózek, Krzysztof; Baldus, Claudia D.; Vij, Ravi; Powell, Bayard L.; Carroll, Andrew J.; Kolitz, Jonathan E.; Caligiuri, Michael A.; Larson, Richard A.; Bloomfield, Clara D.

    2009-01-01

    Purpose To determine the prognostic importance of the meningioma 1 (MN1) gene expression levels in the context of other predictive molecular markers, and to derive MN1 associated gene– and microRNA–expression profiles in cytogenetically normal acute myeloid leukemia (CN-AML). Patients and Methods MN1 expression was measured in 119 untreated primary CN-AML adults younger than 60 years by real-time reverse-transcriptase polymerase chain reaction. Patients were also tested for FLT3, NPM1, CEBPA, and WT1 mutations, MLL partial tandem duplications, and BAALC and ERG expression. Gene- and microRNA-expression profiles were attained by performing genome-wide microarray assays. Patients were intensively treated on two first-line Cancer and Leukemia Group B clinical trials. Results Higher MN1 expression associated with NPM1 wild-type (P < .001), increased BAALC expression (P = .004), and less extramedullary involvement (P = .01). In multivariable analyses, higher MN1 expression associated with a lower complete remission rate (P = .005) after adjustment for WBC; shorter disease-free survival (P = .01) after adjustment for WT1 mutations, FLT3 internal tandem duplications (FLT3-ITD), and high ERG expression; and shorter survival (P = .04) after adjustment for WT1 and NPM1 mutations, FLT3-ITD, and WBC. Gene- and microRNA-expression profiles suggested that high MN1 expressers share features with high BAALC expressers and patients with wild-type NPM1. Higher MN1 expression also appears to be associated with genes and microRNAs that are active in aberrant macrophage/monocytoid function and differentiation. Conclusion MN1 expression independently predicts outcome in CN-AML patients. The MN1 gene- and microRNA-expression signatures suggest biologic features that could be exploited as therapeutic targets. PMID:19451432

  20. Cross-sectional relations of whole-blood miRNA expression levels and hand grip strength in a community sample.

    PubMed

    Murabito, Joanne M; Rong, Jian; Lunetta, Kathryn L; Huan, Tianxiao; Lin, Honghuang; Zhao, Qiang; Freedman, Jane E; Tanriverdi, Kahraman; Levy, Daniel; Larson, Martin G

    2017-08-01

    MicroRNAs (miRNAs) regulate gene expression with emerging data suggesting miRNAs play a role in skeletal muscle biology. We sought to examine the association of miRNAs with grip strength in a community-based sample. Framingham Heart Study Offspring and Generation 3 participants (n = 5668 54% women, mean age 55 years, range 24, 90 years) underwent grip strength measurement and miRNA profiling using whole blood from fasting morning samples. Linear mixed-effects regression modeling of grip strength (kg) versus continuous miRNA 'Cq' values and versus binary miRNA expression was performed. We conducted an integrative miRNA-mRNA coexpression analysis and examined the enrichment of biologic pathways for the top miRNAs associated with grip strength. Grip strength was lower in women than in men and declined with age with a mean 44.7 (10.0) kg in men and 26.5 (6.3) kg in women. Among 299 miRNAs interrogated for association with grip strength, 93 (31%) had FDR q value < 0.05, 54 (18%) had an FDR q value < 0.01, and 15 (5%) had FDR q value < 0.001. For almost all miRNA-grip strength associations, increasing miRNA concentration is associated with increasing grip strength. miR-20a-5p (FDR q 1.8 × 10(-6) ) had the most significant association and several among the top 15 miRNAs had links to skeletal muscle including miR-126-3p, miR-30a-5p, and miR-30d-5p. The top associated biologic pathways included metabolism, chemokine signaling, and ubiquitin-mediated proteolysis. Our comprehensive assessment in a community-based sample of miRNAs in blood associated with grip strength provides a framework to further our understanding of the biology of muscle strength. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  1. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats.

    PubMed

    Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar

    2015-12-21

    We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats.

  2. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    PubMed Central

    Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar

    2015-01-01

    We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578

  3. Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP and L-FABP in non-alcoholic fatty liver disease.

    PubMed

    Higuchi, Nobito; Kato, Masaki; Tanaka, Masatake; Miyazaki, Masayuki; Takao, Shinichiro; Kohjima, Motoyuki; Kotoh, Kazuhiro; Enjoji, Munechika; Nakamuta, Makoto; Takayanagi, Ryoichi

    2011-11-01

    Non-alcoholic fatty liver disease (NAFLD) is considered a hepatic manifestation of metabolic syndrome, which is known to be associated with insulin resistance (IR). NAFLD occurs when the rate of hepatic fatty acid uptake from plasma and de novo fatty acid synthesis is greater than the rate of fatty acid oxidation and excretion as very low-density lipoprotein (VLDL). To estimate the effects of IR on hepatic lipid excretion, mRNA expression levels of genes involved in VLDL assembly were analyzed in NAFLD liver. Twenty-two histologically proven NAFLD patients and 10 healthy control subjects were enrolled in this study. mRNA was extracted from liver biopsy samples and real-time PCR was performed to quantify the expression levels of apolipoprotein B (apoB), microsomal triglyceride transfer protein (MTP) and liver fatty-acid binding protein (L-FABP). Hepatic expression levels of the genes were compared between NAFLD patients and control subjects. In NAFLD patients, we also examined correlations between expression levels of the genes and metabolic factors, including IR, and the extent of obesity and hepatic lipid accumulation. Hepatic expression levels of apoB, MTP and L-FABP were significantly up-regulated in NAFLD patients compared to control subjects. The expression levels of MTP were correlated with those of apoB, but not with those of L-FABP. In the NAFLD liver, the expression levels of MTP were significantly reduced in patients with HOMA-IR >2.5. In addition, a significant reduction in MTP expression was observed in livers with advanced steatosis. Enhanced expression of genes involved in VLDL assembly may be promoted to release excess lipid from NAFLD livers. However, the progression of IR and hepatic steatosis may attenuate this compensatory process.

  4. A high-throughput microRNA expression profiling system.

    PubMed

    Guo, Yanwen; Mastriano, Stephen; Lu, Jun

    2014-01-01

    As small noncoding RNAs, microRNAs (miRNAs) regulate diverse biological functions, including physiological and pathological processes. The expression and deregulation of miRNA levels contain rich information with diagnostic and prognostic relevance and can reflect pharmacological responses. The increasing interest in miRNA-related research demands global miRNA expression profiling on large numbers of samples. We describe here a robust protocol that supports high-throughput sample labeling and detection on hundreds of samples simultaneously. This method employs 96-well-based miRNA capturing from total RNA samples and on-site biochemical reactions, coupled with bead-based detection in 96-well format for hundreds of miRNAs per sample. With low-cost, high-throughput, high detection specificity, and flexibility to profile both small and large numbers of samples, this protocol can be adapted in a wide range of laboratory settings.

  5. An integrated analysis of differential miRNA and mRNA expressions in human gallstones.

    PubMed

    Yang, Bin; Liu, Bin; Bi, Pinduan; Wu, Tao; Wang, Qiang; Zhang, Jie

    2015-04-01

    Gallstone disease, including cholesterol precipitation in bile, increased bile salt hydrophobicity and gallbladder inflammation. Here, we investigated miRNA and mRNA involved in the formation of gallstones, and explored the molecular mechanisms in the development of gallstones. Differentially expressed 17 miRNAs and 525 mRNA were identified based on Illumina sequencing from gallbladder mucosa of patients with or without gallstones, and were validated by randomly selected 6 miRNAs and 8 genes using quantitative RT-PCR. 114 miRNA target genes were identified, whose functions and regulating pathways were related to gallstones. The differentially expressed genes were enriched upon lipoprotein binding and some metabolic pathways, and differentially expressed miRNAs enriched upon ABC transportation and cancer related pathways. A molecular regulatory network consisting of 17 differentially expressed miRNAs, inclusive of their target genes, was constructed. miR-210 and its potential target gene ATP11A were found to be differentially expressed in both miRNA and mRNA profiles. ATP11A was a direct target of miR-210, which was predicted to regulate the ABC-transporters pathway. The expression levels of ATP11A in the gallstone showed inverse correlation with miR-210 expression, and up-regulation of miR-210 could reduce ATP11A expression in HGBEC. This is the first report that indicates the existence of differences in miRNA and mRNA expression in patients with or without gallstones. Our data shed light on further investigating the mechanisms of gallstone formation.

  6. Effects of environmental stress on mRNA expression levels of seven genes related to oxidative stress and growth in Atlantic salmon Salmo salar L. of farmed, hybrid and wild origin

    PubMed Central

    2012-01-01

    Background Ten generations of domestication selection has caused farmed Atlantic salmon Salmo salar L. to deviate from wild salmon in a range of traits. Each year hundreds of thousands of farmed salmon escape into the wild. Thus, interbreeding between farmed escapees and wild conspecifics represents a significant threat to the genetic integrity of wild salmon populations. In a previous study we demonstrated how domestication has inadvertently selected for reduced responsiveness to stress in farmed salmon. To complement that study, we have evaluated the expression of seven stress-related genes in head kidney of salmon of farmed, hybrid and wild origin exposed to environmentally induced stress. Results In general, the crowding stressor used to induce environmental stress did not have a strong impact on mRNA expression levels of the seven genes, except for insulin-like growth factor-1 (IGF-1) that was downregulated in the stress treatment relative to the control treatment. mRNA expression levels of glutathione reductase (GR), Cu/Zn superoxide dismutase (Cu/Zn SOD), Mn superoxide dismutase (Mn SOD), glutathione peroxidase (GP) and IGF-1 were affected by genetic origin, thus expressed significantly different between the salmon of farmed, hybrid or wild origin. A positive relationship was detected between body size of wild salmon and mRNA expression level of the IGF-1 gene, in both environments. No such relationship was observed for the hybrid or farmed salmon. Conclusion Farmed salmon in this study displayed significantly elevated mRNA levels of the IGF-1 gene relative to the wild salmon, in both treatments, while hybrids displayed a non additive pattern of inheritance. As IGF-1 mRNA levels are positively correlated to growth rate, the observed positive relationship between body size and IGF-1 mRNA levels detected in the wild but neither in the farmed nor the hybrid salmon, could indicate that growth selection has increased IGF-1 levels in farmed salmon to the extent

  7. Down-regulation of flavonoid 3'-hydroxylase gene expression by virus-induced gene silencing in soybean reveals the presence of a threshold mRNA level associated with pigmentation in pubescence.

    PubMed

    Nagamatsu, Atsushi; Masuta, Chikara; Matsuura, Hideyuki; Kitamura, Keisuke; Abe, Jun; Kanazawa, Akira

    2009-01-01

    Changes in flavonoid content are often manifested as altered pigmentation in plant tissues. Two loci have been identified as controlling pigmentation in soybean pubescence. Of these, the T locus appears to encode flavonoid 3'-hydroxylase (F3'H) protein: the T and t alleles are associated with tawny and gray colors, respectively, in pubescence. We previously down-regulated F3'H gene expression by virus-induced gene silencing (VIGS) in soybean. Despite this successful VIGS, the tawny pubescence pigmentation proved to be unchanged in greenhouse-grown plants. We hypothesized that the reduced mRNA level of the F3'H gene resulting from VIGS remained high enough to induce pigmentation. To verify this hypothesis, in the present study, we performed F3'H VIGS on plants grown under controlled conditions, in which the steady-state mRNA level of the F3'H gene was reduced to approximately 5% of that of greenhouse-grown plants. This VIGS treatment resulted in the loss of tawny pigmentation in pubescence, suggesting that the sf3'h1 gene is involved in the control of pigmentation in pubescence. We detected a marked decrease in target mRNA, an accumulation of short interfering RNAs (siRNAs), and a decrease in quercetin content relative to kaempferol in leaf tissues, indicating that sequence-specific mRNA degradation of the F3'H gene was induced. These results suggest that leaf tissues have a threshold mRNA level of the F3'H gene, which is associated with the occurrence of tawny pigmentation in pubescence. The estimated threshold mRNA level for pigmentation in pubescence was approximately 3% of the steady-state mRNA level of the F3'H gene in greenhouse-grown plants.

  8. CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis

    PubMed Central

    Jin, Xi; Feng, Chun-yan; Xiang, Zun; Chen, Yi-peng; Li, You-ming

    2016-01-01

    The pathogenesis of nonalcoholic steatohepatitis (NASH) is still unclear, where involvement of circRNA is considered for its active role as “miRNA sponge”. Therefore, we aimed to investigate the circRNA expression pattern in NASH and further construct the circRNA-miRNA-mRNA network for in-depth mechanism exploration. Briefly, NASH mice model was established by Methionine and choline deficiency (MCD) diet feeding. Liver circRNA and mRNA profile was initially screened by microarray and ensuing qRT-PCR verification was carried out. The overlapped predicted miRNAs as downstream targets of circRNAs and upstream regulators of mRNAs were verified by qRT-PCR and final circRNA-miRNA-mRNA network was constructed. Gene Ontology (GO) and KEGG pathway analysis were further applied to enrich the huge mRNA microarray data. To sum up, there were 69 up and 63 down regulated circRNAs as well as 2760 up and 2465 down regulated mRNAs in NASH group, comparing with control group. Randomly selected 13 of 14 mRNAs and 2 of 8 circRNAs were successfully verified by qRT-PCR. Through predicted overlapped miRNA verification, four circRNA-miRNA-mRNA pathways were constructed, including circRNA_002581-miR-122-Slc1a5, circRNA_002581- miR-122-Plp2, circRNA_002581-miR-122-Cpeb1 and circRNA_007585-miR-326- UCP2. GO and KEGG pathway analysis also enriched specific mRNAs. Therefore, circRNA profile may serve as candidate for NASH diagnosis and circRNA-miRNA -mRNA pathway may provide novel mechanism for NASH. PMID:27677588

  9. Altered Sex Hormone Concentrations and Gonadal mRNA Expression Levels of Activin Signaling Factors in Hatchling Alligators From a Contaminated Florida Lake

    PubMed Central

    MOORE, BRANDON C.; KOHNO, SATOMI; COOK, ROBERT W.; ALVERS, ASHLEY L.; HAMLIN, HEATHER J.; WOODRUFF, TERESA K.; GUILLETTE, LOUIS J.

    2014-01-01

    Activins and estrogens participate in regulating the breakdown of ovarian germ cell nests and follicle assembly in mammals. In 1994, our group reported elevated frequencies of abnormal, multioocytic ovarian follicles in 6 month old, environmental contaminant-exposed female alligators after gonadotropin challenge. Here, we investigated if maternal contribution of endocrine disrupting contaminants to the egg subsequently alters estrogen/inhibin/activin signaling in hatchling female offspring, putatively predisposing an increased frequency of multioocytic follicle formation. We quantified basal and exogenous gonadotropin-stimulated concentrations of circulating plasma steroid hormones and ovarian activin signaling factor mRNA abundance in hatchling alligators from the same contaminated (Lake Apopka) and reference (Lake Woodruff) Florida lakes, as examined in 1994. Basal circulating plasma estradiol and testosterone concentrations were greater in alligators from the contaminated environment, whereas activin/inhibin βA subunit and follistatin mRNA abundances were lower than values measured in ovaries from reference lake animals. Challenged, contaminant-exposed animals showed a more robust increase in plasma estradiol concentration following an acute follicle stimulating hormone (FSH) challenge compared with reference site alligators. Aromatase and follistatin mRNA levels increased in response to an extended FSH challenge in the reference site animals, but not in the contaminant-exposed animals. In hatchling alligators, ovarian follicles have not yet formed; therefore, these endocrine differences are likely to affect subsequent ovarian development, including ovarian follicle assembly. PMID:20166196

  10. Altered sex hormone concentrations and gonadal mRNA expression levels of activin signaling factors in hatchling alligators from a contaminated Florida lake.

    PubMed

    Moore, Brandon C; Kohno, Satomi; Cook, Robert W; Alvers, Ashley L; Hamlin, Heather J; Woodruff, Teresa K; Guillette, Louis J

    2010-04-01

    Activins and estrogens participate in regulating the breakdown of ovarian germ cell nests and follicle assembly in mammals. In 1994, our group reported elevated frequencies of abnormal, multioocytic ovarian follicles in 6 month old, environmental contaminant-exposed female alligators after gonadotropin challenge. Here, we investigated if maternal contribution of endocrine disrupting contaminants to the egg subsequently alters estrogen/inhibin/activin signaling in hatchling female offspring, putatively predisposing an increased frequency of multioocytic follicle formation. We quantified basal and exogenous gonadotropin-stimulated concentrations of circulating plasma steroid hormones and ovarian activin signaling factor mRNA abundance in hatchling alligators from the same contaminated (Lake Apopka) and reference (Lake Woodruff) Florida lakes, as examined in 1994. Basal circulating plasma estradiol and testosterone concentrations were greater in alligators from the contaminated environment, whereas activin/inhibin betaA subunit and follistatin mRNA abundances were lower than values measured in ovaries from reference lake animals. Challenged, contaminant-exposed animals showed a more robust increase in plasma estradiol concentration following an acute follicle stimulating hormone (FSH) challenge compared with reference site alligators. Aromatase and follistatin mRNA levels increased in response to an extended FSH challenge in the reference site animals, but not in the contaminant-exposed animals. In hatchling alligators, ovarian follicles have not yet formed; therefore, these endocrine differences are likely to affect subsequent ovarian development, including ovarian follicle assembly. 2010 Wiley-Liss, Inc.

  11. Changes in rRNA levels during stress invalidates results from mRNA blotting: fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels.

    PubMed

    Hansen, M C; Nielsen, A K; Molin, S; Hammer, K; Kilstrup, M

    2001-08-01

    Regulation of gene expression can be analyzed by a number of different techniques. Some techniques monitor the level of specific mRNA directly, and others monitor indirectly by determining the level of enzymes encoded by the mRNA. Each method has its own inherent way of normalization. When results obtained by these techniques are compared between experiments in which differences in growth rates, strains, or stress treatments occur, the normalization procedure may have a significant impact on the results. In this report we present a solution to the normalization problem in RNA slot blotting experiments, in which mRNA levels routinely are normalized to a fixed amount of extracted total RNA. The cellular levels of specific mRNA species were estimated using a renormalization with the total RNA content per cell. By a combination of fluorescence in situ rRNA hybridization, which estimates the relative level of rRNA per cell, and slot blotting to rRNA probes, which estimates the level of rRNA per extracted total RNA, the amount of RNA per cell was calculated in a series of heat shock experiments with the gram-positive bacterium Lactococcus lactis. It was found that the level of rRNA per cell decreased to 30% in the course of the heat shock. This lowered ribosome level led to a decrease in the total RNA content, resulting in a gradually increasing overestimation of the mRNA levels throughout the experiment. Using renormalized cellular mRNA levels, the HrcA-mediated regulation of the genes in the hrcA-grpE-dnaK operon was analyzed. The hybridization data suggested a complex heat shock regulation indicating that the mRNA levels continued to rise after 30 min, but after renormalization the calculated average cellular levels exhibited a much simpler induction pattern, eventually attaining a moderately increased value.

  12. miRNA and mRNA expression analysis reveals potential sex-biased miRNA expression

    PubMed Central

    Guo, Li; Zhang, Qiang; Ma, Xiao; Wang, Jun; Liang, Tingming

    2017-01-01

    Recent studies suggest that mRNAs may be differentially expressed between males and females. This study aimed to perform expression analysis of mRNA and its main regulatory molecule, microRNA (miRNA), to discuss the potential sex-specific expression patterns using abnormal expression profiles from The Cancer Genome Atlas database. Generally, deregulated miRNAs and mRNAs had consistent expression between males and females, but some miRNAs may be oppositely expressed in specific diseases: up-regulated in one group and down-regulated in another. Studies of miRNA gene families and clusters further confirmed that these sequence or location related miRNAs might have opposing expression between sexes. The specific miRNA might have greater expression divergence across different groups, suggesting flexible expression across different individuals, especially in tumor samples. The typical analysis regardless of the sex will ignore or balance these sex-specific deregulated miRNAs. Compared with flexible miRNAs, their targets of mRNAs showed relative stable expression between males and females. These relevant results provide new insights into miRNA-mRNA interaction and sex difference. PMID:28045090

  13. Severe von Willebrand disease due to a defect at the level of von Willebrand factor mRNA expression: Detection by exonic PCR-restriction fragment length polymorphism analysis

    SciTech Connect

    Nichols, W.C.; Lyons, S.E.; Harrison, J.S.; Cody, R.L.; Ginsburg, D. )

    1991-05-01

    von Willebrand disease (vWD), the most common inherited bleeding disorder in humans, results from abnormalities in the plasma clotting protein von Willebrand factor (vWF). Severe (type III) vWD is autosomal recessive in inheritance and is associated with extremely low or undetectable vWF levels. The authors report a method designed to distinguish mRNA expression from the two vWF alleles by PCR analysis of peripheral blood platelet RNA using DNA sequence polymorphisms located within exons of the vWF gene. This approach was applied to a severe-vWD pedigree in which three of eight siblings are affected and the parents and additional siblings are clinically normal. Each parent was shown to carry a vWF allele that is silent at the mRNA level. Family members inheriting both abnormal alleles are affected with severe vWD, whereas individuals with only one abnormal allele are asymptomatic. Given the frequencies of the two exon polymorphisms reported here, this analysis should be applicable to {approx}70% of type I and type III vWD patients. This comparative DNA and RNA PCR-restriction fragment length polymorphism approach may also prove useful in identifying defects at the level of gene expression associated with other genetic disorders.

  14. Genetic variants in microRNA genes: impact on microRNA expression, function, and disease

    PubMed Central

    Cammaerts, Sophia; Strazisar, Mojca; De Rijk, Peter; Del Favero, Jurgen

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression and like any other gene, their coding sequences are subject to genetic variation. Variants in miRNA genes can have profound effects on miRNA functionality at all levels, including miRNA transcription, maturation, and target specificity, and as such they can also contribute to disease. The impact of variants in miRNA genes is the focus of the present review. To put these effects into context, we first discuss the requirements of miRNA transcripts for maturation. In the last part an overview of available databases and tools and experimental approaches to investigate miRNA variants related to human disease is presented. PMID:26052338

  15. Insulin-like growth factor II in human adrenal and pheochromocytomas and Wilms tumors: expression at the mRNA and protein level

    SciTech Connect

    Haselbacher, G.K.; Irminger, J.C.; Zapf, J.; Ziegler, W.H.; Humbel, R.E.

    1987-02-01

    Two forms of insulin-like growth factor (IGF) II with molecular masses of 10 and 7.5 kDa, respectively, were found in tumor tissue from human adrenal pheochromocytomas. The tumors contained 5.3-7.1 ..mu..g of immunoreactive IGF-II per g of tissue, which is about 20 times more than in adrenal medulla. The total bioactive IGF measured by radioimmunoassay in the pheochromocytomas exceeded that in normal liver or kidney, which contained only the 7.5-kDa IGF-II species, by a factor of approx.100. By contrast, the amount of IGF-I was just measurable and did not vary significantly between tumor and normal tissue. The high amounts of IGF-II in the pheochromocytomas were not reflected, however, by a corresponding increase of mRNA. The opposite situations was found in Wilms tumors, where IGF-II content was in the same range as in nontumor tissues despite increased expression of IGF-II mRNA.

  16. Evaluation of Alpha 1-Antitrypsin and the Levels of mRNA Expression of Matrix Metalloproteinase 7, Urokinase Type Plasminogen Activator Receptor and COX-2 for the Diagnosis of Colorectal Cancer

    PubMed Central

    Bujanda, Luis; Sarasqueta, Cristina; Cosme, Angel; Hijona, Elizabeth; Enríquez-Navascués, José M.; Placer, Carlos; Villarreal, Eloisa; Herreros-Villanueva, Marta; Giraldez, María D.; Gironella, Meritxell; Balaguer, Francesc; Castells, Antoni

    2013-01-01

    Background Colorectal cancer (CRC) is the second most common cause of death from cancer in both men and women in the majority of developed countries. Molecular tests of blood could potentially provide this ideal screening tool. Aim Our objective was to assess the usefulness of serum markers and mRNA expression levels in the diagnosis of CRC. Methods In a prospective study, we measured mRNA expression levels of 13 markers (carbonic anhydrase, guanylyl cyclase C, plasminogen activator inhibitor, matrix metalloproteinase 7 (MMP7), urokinase-type plasminogen activator receptor (uPAR), urokinase-type plasminogen activator, survivin, tetranectin, vascular endothelial growth factor (VEGF), cytokeratin 20, thymidylate synthase, cyclooxygenase 2 (COX-2), and CD44) and three proteins in serum (alpha 1 antitrypsin, carcinoembryonic antigen (CEA) and activated C3 in 42 patients with CRC and 33 with normal colonoscopy results. Results Alpha 1-antitrypsin was the serum marker that was most useful for CRC diagnosis (1.79±0.25 in the CRC group vs 1.27±0.25 in the control group, P<0.0005). The area under the ROC curve for alpha 1-antitrypsin was 0.88 (0.79–0.96). The mRNA expression levels of five markers were statistically different between CRC cases and controls: those for which the ROC area was over 75% were MMP7 (0.81) and tetranectin (0.80), COX-2 (0.78), uPAR (0.78) and carbonic anhydrase (0.77). The markers which identified early stage CRC (Stages I and II) were alpha 1-antitrypsin, uPAR, COX-2 and MMP7. Conclusions Serum alpha 1-antitrypsin and the levels of mRNA expression of MMP7, COX-2 and uPAR have good diagnostic accuracy for CRC, even in the early stages. PMID:23300952

  17. Polyester: simulating RNA-seq datasets with differential transcript expression

    PubMed Central

    Frazee, Alyssa C.; Jaffe, Andrew E.; Langmead, Ben; Leek, Jeffrey T.

    2015-01-01

    Motivation: Statistical methods development for differential expression analysis of RNA sequencing (RNA-seq) requires software tools to assess accuracy and error rate control. Since true differential expression status is often unknown in experimental datasets, artificially constructed datasets must be utilized, either by generating costly spike-in experiments or by simulating RNA-seq data. Results: Polyester is an R package designed to simulate RNA-seq data, beginning with an experimental design and ending with collections of RNA-seq reads. Its main advantage is the ability to simulate reads indicating isoform-level differential expression across biological replicates for a variety of experimental designs. Data generated by Polyester is a reasonable approximation to real RNA-seq data and standard differential expression workflows can recover differential expression set in the simulation by the user. Availability and implementation: Polyester is freely available from Bioconductor (http://bioconductor.org/). Contact: jtleek@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25926345

  18. Expression of constitutive cyclo-oxygenase (COX-1) in rats with streptozotocin-induced diabetes; effects of treatment with evening primrose oil or an aldose reductase inhibitor on COX-1 mRNA levels.

    PubMed

    Fang, C; Jiang, Z; Tomlinson, D R

    1997-02-01

    Altered prostanoid metabolism participates in the pathogenesis of diabetic complications. The rate-limiting enzyme in the control of prostanoid metabolism is constitutive cyclo-oxygenase (COX-1). This study examined the possibility that altered prostanoid metabolism derives from altered COX-1 expression in those tissues from diabetic rats, with characteristic changes in prostanoid production and related haemodynamics. This account also describes a procedure for estimation of minute amounts of COX-1 mRNA by reverse transcription and competitive polymerase chain reaction (RT-cPCR) amplification. In streptozotocin-diabetic rats (STZ-D, 55 mg/kg body weight), compared with age-matched controls, the level of COX-1 mRNA (in attomoles/micrograms tRNA +/- 1SD) was significantly decreased in sciatic nerve (0.50 +/- 0.26 versus 0.89 +/- 0.32 in controls; P < 0.05) and thoracic aorta (3.99 +/- 1.67 versus 8.80 +/- 2.37 in controls; P < 0.05). There were no differences in COX-1 mRNA in diabetic and control rat kidney and retina, though there was a trend towards increased expression with diabetes in the latter. Evening primrose oil (EPO) treatment increased COX-1 mRNA in nerve and retina to levels in diabetic rats that were higher than those of non-diabetic controls (1.21 +/- 0.28 for nerve and 0.065 +/- 0.017 for retina, where control retinae gave 0.031 +/- 0.020-see above for nerve). Treatment of diabetic rats with an aldose reductase inhibitor was without effect on COX-1 mRNA levels in the tissues examined. This study demonstrates that the changes in COX-1 mRNA levels in diabetic rats are organ specific and suggests that altered prostanoid metabolism can, in part, be explained by altered COX-1 expression. Apart from providing arachidonate as substrate for COX, EPO stimulates COX-1 expression in some tissues.

  19. Pre-profiling factors influencing serum microRNA levels

    PubMed Central

    2014-01-01

    Background MicroRNAs (miRNAs) are non-coding RNAs that negatively regulate gene expression by preventing the translation of specific mRNA transcripts. Recent studies have shown that miRNAs are stably expressed in human serum samples, making them good candidates for the non-invasive detection of disease. However, before circulating miRNAs can be used reliably as biomarkers of disease, the pre-measurement variables that may affect serum miRNA levels must be assessed. Methods In this study we used quantitative RT-PCR to examine the effect of hemolysis, fasting, and smoking on the levels of 742 miRNAs in the serum of healthy individuals. We also compared serum miRNA profiles of samples taken from healthy individuals over different time periods to assess normal serum miRNA fluctuations. Results We have found that mechanical hemolysis of blood samples can significantly alter serum miRNA quantification and have identified 162 miRNAs that are significantly up-regulated in hemolysed serum samples. Conversely, fasting and smoking were demonstrated to not have a significant effect on the overall serum miRNA profiles of healthy individuals. The serum miRNA profiles of matched samples taken from individuals over varying time periods showed a high correlation and no miRNAs were significantly differentially expressed in these samples further suggesting the utility of serum miRNAs as biomarkers of disease. Taking the above results into consideration, we have identified miR-99a-5p and miR-139-5p as novel endogenous controls for serum miRNA studies due to their consistency across all sample sets. Conclusion These results identify important pre-profiling factors that should be taken into consideration when identifying endogenous controls and candidate biomarkers for circulating miRNA studies. PMID:25093010

  20. Effects of varying dietary iodine supplementation levels as iodide or iodate on thyroid status as well as mRNA expression and enzyme activity of antioxidative enzymes in tissues of grower/finisher pigs.

    PubMed

    Li, Qimeng; Mair, Christiane; Schedle, Karl; Hellmayr, Isabella; Windisch, Wilhelm

    2013-02-01

    The objective of this study was to investigate the influence of high dietary iodine supply and different iodine sources on thyroid status and oxidative stress in target tissues of the thyroid hormones in fattening pigs. Eighty castrates (body weight: 33.3 ± 0.4 kg) were randomly allotted into five different treatments: The control diet contained 150 μg I/kg as KI, the other feeding groups were supplemented with 4,000 μg I/kg (as KI and KIO(3)) and 10,000 μg I/kg (as KI and KIO(3)), respectively. The mRNA expression levels of sodium/iodide symporter (NIS) and key antioxidant enzymes (Cu/Zn SOD, CAT, GPx) were analyzed in thyroid gland, liver, kidney, muscle, and adipose tissue sampled during slaughter. Furthermore, antioxidant enzyme activities and the effect on lipid peroxidation (MDA) were determined in liver and muscle. In thyroid gland, a significant downregulation of NIS and Cu/Zn SOD mRNA expression was observed in high-iodine groups. In liver, a source effect on the mRNA expression of Cu/Zn SOD between KI and KIO(3) at 4,000 μg I/kg was shown. In contrast, not SOD but GPx activity was affected by iodine source with strongest downregulation in high KIO(3) group. In muscle, GPx activity was affected by both iodine source and dose, showing stronger downregulation in KI groups. In kidney and adipose tissue, oxidative stress parameters showed no or only unsystematic changes. However, variation in iodine supply had no effect on MDA concentrations. NIS expression was significantly decreased with increased iodine supplementation, which is to ensure the thyroid gland function. However, the alleviating effect of iodine supplementation observed in antioxidant enzyme mRNA expression and activity did not reflect on the lipid peroxide level.

  1. Vascular endothelial growth factor A (VEGF-A) mRNA expression levels decrease after menopause in normal breast tissue but not in breast cancer lesions

    PubMed Central

    Greb, R R; Maier, I; Wallwiener, D; Kiesel, L

    1999-01-01

    We hypothesized that the regulation of microvascular functions and angiogenesis in breast tissue, a well known target of ovarian steroid action, is dependent on the hormonal exposure of the breast. Relative expression levels of VEGF-A (vascular endothelial growth factor A), a putative key regulator of angiogenesis in breast cancer, were analysed in the tumour and the adjacent non-neoplastic breast tissue of 19 breast cancer patients by quantitative reverse transcriptase polymerase chain reaction. In non-neoplastic breast specimens the expression levels of all detected VEGF-A-isoforms (189, 165, 121) were significantly higher in premenopausal compared to post-menopausal women (P = 0.02) and were inversely correlated with the patient's age (P = 0.006). In contrast, in cancerous tissues menopausal status had no influence on VEGF-A-expression levels. Benign and malignant tissues exhibited a similar expression pattern of VEGF-A-isoforms relative to each other. Thus, the regulation of the vasculature in normal breast tissue, as opposed to breast cancer tissue, appears to be hormonally dependent. Endogenous and therapeutically used hormonal steroids might, therefore, cause clinically relevant changes of the angiogenic phenotype of the human breast. © 1999 Cancer Research Campaign PMID:10496346

  2. Effect of polysaccharides extract of rhizoma atractylodis macrocephalae on thymus, spleen and cardiac indexes, caspase-3 activity ratio, Smac/DIABLO and HtrA2/Omi protein and mRNA expression levels in aged rats.

    PubMed

    Guo, Ling; Sun, Yong Le; Wang, Ai Hong; Xu, Chong En; Zhang, Meng Yuan

    2012-10-01

    This study was designed to determine the possible protective effect of polysaccharides extract of rhizoma atractylodis macrocephalae on heart function in aged rats. Polysaccharides extract of rhizoma atractylodis macrocephalae was administered to aged rats. Results showed that thymus, spleen and cardiac indexs were significantly increased, whereas caspase-3 activity ratio, Smac/DIABLO and HtrA2/Omi protein expression, Smac/DIABLO and HtrA2/Omi mRNA expression levels were markedly reduced. It can be concluded that polysaccharides extract of rhizoma atractylodis macrocephalae may enhance immunity and improve heart function in aged rats.

  3. The levels of glutathione and nitrite-nitrate and the expression of Bcl-2 mRNA in ovariectomized rats treated by raloxifene against kainic acid.

    PubMed

    Armagan, Guliz; Kanit, Lutfiye; Terek, Cosan M; Sozmen, Eser Y; Yalcin, Ayfer

    2009-01-01

    The selective estrogen receptor modulators (SERMs) are compounds that activate the estrogen receptors with different estrogenic and antiestrogenic tissue-specific effects. The similar effects of SERMs on estrogen encourage the efforts in the research of neuroprotective effects of SERMs. In our study, the potential neuroprotective effects of raloxifene were investigated on the brain cortex of ovariectomized rats after kainic acid-induced oxidative stress. To show the neuroprotective effect of raloxifene against a neurodegenerative agent, kainic acid, expression of Bcl-2, total glutathione (GSH), and nitrite-nitrate levels were investigated in the rat brain cortex. Our results demostrate that raloxifene treatment against oxidative stress significantly increases the expression of Bcl-2 and the level of GSH in the brain cortex.

  4. MicroRNA expression in the aging mouse thymus.

    PubMed

    Ye, Yaqiong; Li, Daotong; Ouyang, Dan; Deng, Li; Zhang, Yuan; Ma, Yongjiang; Li, Yugu

    2014-09-01

    MicroRNAs (miRNAs) have been implicated in the process of aging in many model organisms, such as Caenorhabditis elegans, and in many organs, such as the mouse lung and human epididymis. However, the role of miRNAs in the thymus tissues of the aging mouse remains unclear. To address this question, we investigated the miRNA expression profiles in the thymuses of 1-, 10- and 19-month-old mice using miRNA array and qRT-PCR assays. A total of 223 mouse miRNAs were screened, and the expression levels of those miRNAs exhibited gradual increases and decreases over the course of thymus aging. Fifty miRNAs in the 10-month-old thymus and 81 miRNAs in the 19-month-old thymus were defined as differentially expressed miRNAs (p<0.05) in comparison with their levels in the 1-month-old mouse, and approximately one-third of these miRNAs were grouped within 11 miRNA clusters. Each miRNA cluster contained 2 to 5 miRNA genes, and most of the cluster members displayed similar expression patterns, being either increased or decreased. In addition, Ingenuity Pathway Analysis (IPA) software and the IPA database were used to analyze the 12 miRNAs that exhibited significant expression changes, revealing that as many as 15 pathways may be involved. Thus, our current study determined the expression profiles of miRNAs in the mouse thymus during the process of aging. The results suggested that these miRNAs could become meaningful biomarkers for studying thymus aging and that the aging-related alternations in miRNA expression may be involved in the regulation of cell proliferation, apoptosis, development and carcinogenesis/tumorigenesis.

  5. Effects of tryptophan starvation on levels of the trp RNA-binding attenuation protein (TRAP) and anti-TRAP regulatory protein and their influence on trp operon expression in Bacillus subtilis.

    PubMed

    Yang, Wen-Jen; Yanofsky, Charles

    2005-03-01

    The anti-TRAP protein (AT), encoded by the rtpA gene of Bacillus subtilis, can bind to and inhibit the tryptophan-activated trp RNA-binding attenuation protein (TRAP). AT binding can prevent TRAP from promoting transcription termination in the leader region of the trp operon, thereby increasing trp operon expression. We show here that AT levels continue to increase as tryptophan starvation becomes more severe, whereas the TRAP level remains relatively constant and independent of tryptophan starvation. Assuming that the functional form of AT is a trimer, we estimate that the ratios of AT trimers per TRAP molecule are 0.39 when the cells are grown under mild tryptophan starvation conditions, 0.83 under more severe starvation conditions, and approximately 2.0 when AT is expressed maximally. As the AT level is increased, a corresponding increase is observed in the anthranilate synthase level. When AT is expressed maximally, the anthranilate synthase level is about 70% of the level observed in a strain lacking TRAP. In a nutritional shift experiment where excess phenylalanine and tyrosine could potentially starve cells of tryptophan, both the AT level and anthranilate synthase activity were observed to increase. Expression of the trp operon is clearly influenced by the level of AT.

  6. A Kampo (traditional Japanese herbal) medicine, Hochuekkito, pretreatment in mice prevented influenza virus replication accompanied with GM-CSF expression and increase in several defensin mRNA levels.

    PubMed

    Dan, Katsuaki; Akiyoshi, Hiroko; Munakata, Kaori; Hasegawa, Hideki; Watanabe, Kenji

    2013-01-01

    A Kampo medicine, Hochuekkito (TJ-41), with an influenza virus-preventing effect had life-extending effectiveness, and immunological responses other than interferon (IFN)-α release were examined. TJ-41 (1 g/kg) was given to C57BL/6 male mice orally once a day for 2 weeks. Mice were then intranasally infected with influenza virus. After infection, virus titers and various parameters, mRNA levels and protein expression, for immunoresponses in the bronchoalveolar lavage fluid or removed lung homogenate, were measured by plaque assay, quantitative RT-PCR and ELISA. IFN-α and -β levels of TJ-41-treated mice were higher than those of the control. Toll-like receptor TLR7 and TLR9 mRNAs were elevated after infection, but retinoic acid-inducible gene (RIG-1) family mRNA levels, RIG-1, melanoma differentiation-associated gene 5 and Leishmania G protein 2 showed no response in either TJ-41 or control groups. Interferon regulatory transcription factor (IRF)-3 mRNA levels to stimulate type I (α/β) IFN were increased, but IRF-7 did not change. Only granulocyte-macrophage colony-stimulating factor (GM-CSF) after Hochuekkito treatment was significantly elevated 2 and 3 days after infection. The mRNA levels of 7 defensins after infection increased compared to preinfection values. The key roles of TJ-41 were not only stimulation of type I IFN release but also GM-CSF-derived anti-inflammation activity. Furthermore, defensin (antimicrobial peptide) mRNA levels increased by infection and were further enhanced by TJ-41 treatment. Defensin might prevent influenza virus replication.

  7. Increased miRNA-22 expression sensitizes esophageal squamous cell carcinoma to irradiation

    PubMed Central

    Wang, Xiao-chun; Zhang, Zhu-Bo; Wang, Yue-Ying; Wu, Hong-Ying; Li, De-Guan; Meng, Ai-Min; Fan, Fei-Yue

    2013-01-01

    miRNA-22 was previously reported to be a tumor suppressor. The aim of this study was to explore the expression and function of miRNA-22 in esophageal squamous cell carcinoma (ESCC). Expression of miRNA-22 in 100 ESCC tissues was examined by q-PCR. The correlation between miRNA-22 level and clinicopathological features was analyzed using SPSS16.0 statistical software. Moreover, the effect of miRNA-22 expression on radiosensitivity of ESCC cells was examined. miRNA-22 expression decreased in ESCC tissues, and statistical analyses showed that the expression of miRNA-22 was associated with the stage of clinical classification. No correlation was found between miRNA-22 expression and the overall survival of ESCC patients. However, significant positive correlation was found between miRNA-22 expression and the survival of patients who received radiotherapy (P < 0.05). Increased expression of miRNA-22 sensitized ESCC cells to γ-ray radiation and promoted the apoptosis of ESCC cells induced by γ-ray radiation. Increased expression level of miRNA-22 had effects on Rad51 expression after irradiation. These results demonstrate for the first time that decreased miRNA-22 expression correlates with increased radiotherapy resistance of ESCC, and that this effect is mediated, at least in part, by the Rad51 pathway. PMID:23188185

  8. Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets.

    PubMed

    Hall, Elin; Volkov, Petr; Dayeh, Tasnim; Esguerra, Jonathan Lou S; Salö, Sofia; Eliasson, Lena; Rönn, Tina; Bacos, Karl; Ling, Charlotte

    2014-12-03

    Epigenetic factors regulate tissue-specific expression and X-chromosome inactivation. Previous studies have identified epigenetic differences between sexes in some human tissues. However, it is unclear whether epigenetic modifications contribute to sex-specific differences in insulin secretion and metabolism. Here, we investigate the impact of sex on the genome-wide DNA methylation pattern in human pancreatic islets from 53 males and 34 females, and relate the methylome to changes in expression and insulin secretion. Glucose-stimulated insulin secretion is higher in female versus male islets. Genome-wide DNA methylation data in human islets clusters based on sex. While the chromosome-wide DNA methylation level on the X-chromosome is higher in female versus male islets, the autosomes do not display a global methylation difference between sexes. Methylation of 8,140 individual X-chromosome sites and 470 autosomal sites shows sex-specific differences in human islets. These include sites in/near AR, DUSP9, HNF4A, BCL11A and CDKN2B. 61 X-chromosome genes and 18 autosomal genes display sex-specific differences in both DNA methylation and expression. These include NKAP, SPESP1 and APLN, which exhibited lower expression in females. Functional analyses demonstrate that methylation of NKAP and SPESP1 promoters in vitro suppresses their transcriptional activity. Silencing of Nkap or Apln in clonal beta-cells results in increased insulin secretion. Differential methylation between sexes is associated with altered levels of microRNAs miR-660 and miR-532 and related target genes. Chromosome-wide and gene-specific sex differences in DNA methylation associate with altered expression and insulin secretion in human islets. Our data demonstrate that epigenetics contribute to sex-specific metabolic phenotypes.

  9. Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat.

    PubMed

    Pires, Débora; Xavier, Murilo; Araújo, Tiago; Silva, José Antônio; Aimbire, Flavio; Albertini, Regiane

    2011-01-01

    Low-level laser therapy (LLLT) has been found to produce anti-inflammatory effects in a variety of disorders. Tendinopathies are directly related to unbalance in expression of pro- and anti-inflammatory cytokines which are responsible by degeneration process of tendinocytes. In the current study, we decided to investigate if LLLT could reduce mRNA expression for TNF-α, IL-1β, IL-6, TGF-β cytokines, and COX-2 enzyme. Forty-two male Wistar rats were divided randomly in seven groups, and tendinitis was induced with a collagenase intratendinea injection. The mRNA expression was evaluated by real-time PCR in 7th and 14th days after tendinitis. LLLT irradiation with wavelength of 780 nm required for 75 s with a dose of 7.7 J/cm(2) was administered in distinct moments: 12 h and 7 days post tendinitis. At the 12 h after tendinitis, the animals were irradiated once in intercalate days until the 7th or 14th day in and them the animals were killed, respectively. In other series, 7 days after tendinitis, the animals were irradiated once in intercalated days until the 14th day and then the animals were killed. LLLT in both acute and chronic phases decreased IL-6, COX-2, and TGF-β expression after tendinitis, respectively, when compared to tendinitis groups: IL-6, COX-2, and TGF-β. The LLLT not altered IL-1β expression in any time, but reduced the TNF-α expression; however, only at chronic phase. We conclude that LLLT administered with this protocol reduces one of features of tendinopathies that is mRNA expression for pro-inflammatory mediators.

  10. Increased apolipoprotein E and c-fms gene expression without elevated interleukin 1 or 6 mRNA levels indicates selective activation of macrophage functions in advanced human atheroma.

    PubMed Central

    Salomon, R N; Underwood, R; Doyle, M V; Wang, A; Libby, P

    1992-01-01

    Cells found within atherosclerotic lesions can produce in culture protein mediators that may participate in atherogenesis. To test whether human atheromata actually contain transcripts for certain of these genes, we compared levels of mRNAs in carotid or coronary atheromata and in nonatherosclerotic human vessels by polymerase chain reaction (PCR) amplification of cDNAs reverse-transcribed from RNA. We measured PCR products (generated during exponential amplification) by incorporation of 32P-labeled primers. Levels of interleukin 1 alpha, 1 beta, or 6 mRNAs in plaques and controls did not differ. Compared to uninvolved vessels, plaques did contain higher levels of mRNA encoding platelet-derived growth factor A chain (42 +/- 24 vs. 12 +/- 10 fmol of product; mean +/- SD; n = 8 and 8, respectively; P = 0.007) and B chain (41 +/- 36 vs. 4 +/- 3 fmol of product, n = 14 and 6, respectively; P = 0.024). Atherosclerotic lesions consistently had much higher levels of apolipoprotein E (apoE) mRNA than did control vessels (131 +/- 71 vs. 5 +/- 3 fmol of product; n = 12 and 10, respectively; P less than 0.001). Direct RNA blot analyses confirmed elevated levels of apoE mRNA in plaque extracts. To test whether mononuclear phagocytes might be a source of the apoE mRNA, we studied a selective marker for cells of the monocytic lineage, the c-fms protooncogene, which encodes the receptor for macrophage colony-stimulating factor. Plaques also contained elevated levels of c-fms mRNA (30 +/- 17 vs. 5 +/- 3 fmol of product; n = 10 and 7, respectively; P = 0.002). Immunohistochemical colocalization demonstrated apoE protein in association with macrophages in plaques, whereas nonatherosclerotic vessels showed no immunoreactive apoE. ApoE produced locally in atheroma might modulate the functions of lesional T cells or promote "reverse cholesterol transport" by associating with high density lipoprotein particles, thus targeting them for peripheral uptake. Macrophages within the advanced

  11. Flexible expressed region analysis for RNA-seq with derfinder

    PubMed Central

    Collado-Torres, Leonardo; Nellore, Abhinav; Frazee, Alyssa C.; Wilks, Christopher; Love, Michael I.; Langmead, Ben; Irizarry, Rafael A.; Leek, Jeffrey T.; Jaffe, Andrew E.

    2017-01-01

    Differential expression analysis of RNA sequencing (RNA-seq) data typically relies on reconstructing transcripts or counting reads that overlap known gene structures. We previously introduced an intermediate statistical approach called differentially expressed region (DER) finder that seeks to identify contiguous regions of the genome showing differential expression signal at single base resolution without relying on existing annotation or potentially inaccurate transcript assembly. We present the derfinder software that improves our annotation-agnostic approach to RNA-seq analysis by: (i) implementing a computationally efficient bump-hunting approach to identify DERs that permits genome-scale analyses in a large number of samples, (ii) introducing a flexible statistical modeling framework, including multi-group and time-course analyses and (iii) introducing a new set of data visualizations for expressed region analysis. We apply this approach to public RNA-seq data from the Genotype-Tissue Expression (GTEx) project and BrainSpan project to show that derfinder permits the analysis of hundreds of samples at base resolution in R, identifies expression outside of known gene boundaries and can be used to visualize expressed regions at base-resolution. In simulations, our base resolution approaches enable discovery in the presence of incomplete annotation and is nearly as powerful as feature-level methods when the annotation is complete. derfinder analysis using expressed region-level and single base-level approaches provides a compromise between full transcript reconstruction and feature-level analysis. The package is available from Bioconductor at www.bioconductor.org/packages/derfinder. PMID:27694310

  12. Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma.

    PubMed

    Maire, Georges; Martin, Jeff W; Yoshimoto, Maisa; Chilton-MacNeill, Susan; Zielenska, Maria; Squire, Jeremy A

    2011-03-01

    Osteosarcoma is an aggressive sarcoma of the bone characterized by a high level of genetic instability and recurrent DNA deletions and amplifications. This study assesses whether deregulation of microRNA (miRNA) expression is a post-transcriptional mechanism leading to gene expression changes in osteosarcoma. miRNA expression profiling was performed for 723 human miRNAs in 7 osteosarcoma tumors, and 38 miRNAs differentially expressed ≥10-fold (28 under- and 10 overexpressed) were identified. In most cases, observed changes in miRNA expression were DNA copy number-correlated. However, various mechanisms of alteration, including positional and/or epigenetic modifications, may have contributed to the expression change of 23 closely linked miRNAs in cytoband 14q32. To develop a comprehensive molecular genetic map of osteosarcoma, the miRNA profiles were integrated with previously published array comparative genomic hybridization DNA imbalance and mRNA gene expression profiles from a set of partially overlapping osteosarcoma tumor samples. Many of the predicted gene targets of differentially expressed miRNA are involved in intracellular signaling pathways important in osteosarcoma, including Notch, RAS/p21, MAPK, Wnt, and the Jun/FOS pathways. By integrating data on copy number variation with mRNA and miRNA expression profiles, we identified osteosarcoma-associated gene expression changes that are DNA copy number-correlated, DNA copy number-independent, mRNA-driven, and/or modulated by miRNA expression. These data collectively suggest that miRNAs provide a novel post-transcriptional mechanism for fine-tuning the expression of specific genes and pathways relevant to osteosarcoma. Thus, the miRNA identified in this manner may provide a starting point for experimentally modulating therapeutically relevant pathways in this tumor.

  13. A microRNA expression signature predicts meningioma recurrence.

    PubMed

    Zhi, Feng; Zhou, Guangxin; Wang, Suinuan; Shi, Yimin; Peng, Ya; Shao, Naiyuan; Guan, Wei; Qu, Hongtao; Zhang, Yi; Wang, Qiang; Yang, Changchun; Wang, Rong; Wu, Sujia; Xia, Xiwei; Yang, Yilin

    2013-01-01

    The aberrant expression of microRNAs (miRNAs) is associated with a variety of diseases, including cancer. In our study, we examined the miRNA expression profile of meningiomas, which is a common type of benign intracranial tumor derived from the protective meninges membranes that surround the brain and spinal cord. To define a typical human meningioma miRNA profile, the expression of 200 miRNAs in a training sample set were screened using quantitative reverse transcription polymerase chain reaction analysis, and then significantly altered miRNAs were validated in a secondary independent sample set. Kaplan-Meier and univariate/multivariate Cox proportional hazard regression analyses were performed to assess whether miRNA expression could predict the recurrence of meningioma after tumor resection. After a two-phase selection and validation process, 14 miRNAs were found to exhibit significantly different expression profiles in meningioma samples compared to normal adjacent tissue (NAT) samples. Unsupervised clustering analysis indicated that the 14-miRNA profile differed between tumor and NAT samples. Downregulation of miR-29c-3p and miR-219-5p were found to be associated with advanced clinical stages of meningioma. Kaplan-Meier analysis showed that high expression of miR-190a and low expression of miR-29c-3p and miR-219-5p correlated significantly with higher recurrence rates in meningioma patients. Cox proportional hazard regression analysis revealed that miR-190a expression level is an important prognostic predictor that is independent of other clinicopathological factors. Our results suggest that the use of miRNA profiling has significant potential as an effective diagnostic and prognostic marker in defining the expression signature of meningiomas and in predicting postsurgical outcomes. Copyright © 2012 UICC.

  14. Identification of a novel P450 gene belonging to the CYP4 family in the clam Ruditapes philippinarum, and analysis of basal- and benzo(a)pyrene-induced mRNA expression levels in selected tissues.

    PubMed

    Pan, Luqing; Liu, Na; Xu, Chaoqun; Miao, Jingjing

    2011-11-01

    A novel full-length cDNA encoding a CYP4 protein was initially cloned from the clam, Ruditapes philippinarum. The nucleotide sequence contained an open reading frame coding for 442 amino acids and the deduced amino acid sequence showed 42.6-49.1% identity with other species CYP4s. The phylogenetic analysis demonstrated that the clam CYP4 was clustered within the CYP4s branch. The clam CYP4 mRNA expression was detected in gill, digestive gland, adductor muscle and mantle, and highest transcription level was observed in digestive gland compared to other tissues. Quantitative real-time RT-PCR analysis revealed that there was no notable change in CYP4 mRNA expression in gill of R. philippinarum exposure to benzo(a)pyrene (BaP), while the mRNA expression was induced significantly in the digestive gland of the clam by 0.2 ppb (μgL(-1)) BaP (p<0.05). The results suggest that CYP4 of the clam may serve as a useful biomarker of marine environmental PAH pollution. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. NMDA Mediated Contextual Conditioning Changes miRNA Expression

    PubMed Central

    Kye, Min Jeong; Zhou, Miou; Steen, Judith A.; Sahin, Mustafa; Kosik, Kenneth S.; Silva, Alcino J.

    2011-01-01

    We measured the expression of 187 miRNAs using quantitative real time PCR in the hippocampal CA1 region of contextually conditioned mice and cultured embryonic rat hippocampal neurons after neuronal stimulation with either NMDA or bicuculline. Many of the changes in miRNA expression after these three types of stimulation were similar. Surprisingly, the expression level of half of the 187 measured miRNAs was changed in response to contextual conditioning in an NMDA receptor-dependent manner. Genes that control miRNA biogenesis and components of the RISC also exhibited activity induced expression changes and are likely to contribute to the widespread changes in the miRNA profile. The widespread changes in miRNA expression are consistent with the finding that genes up-regulated by contextual conditioning have longer 3′ UTRs and more predicted binding sites for miRNAs. Among the miRNAs that changed their expression after contextual conditioning, several inhibit inhibitors of the mTOR pathway. These findings point to a role for miRNAs in learning and memory that includes mTOR-dependent modulation of protein synthesis. PMID:21931811

  16. RNA decay modulates gene expression and controls its fidelity

    PubMed Central

    GHOSH, SHUBHENDU; JACOBSON, ALLAN

    2010-01-01

    Maintenance of cellular function relies on the expression of genetic information with high fidelity, a process in which RNA molecules form an important link. mRNAs are intermediates that define the proteome, rRNAs and tRNAs are effector molecules that act together to decode mRNA sequence information, and small noncoding RNAs can regulate mRNA half-life and translatability. The steady-state levels of these RNAs occur through transcriptional and post-transcriptional regulatory mechanisms, of which RNA decay pathways are integral components. RNA decay can initiate from the ends of a transcript or through endonucleolytic cleavage, and numerous factors that catalyze or promote these reactions have been identified and characterized. The rate at which decay occurs depends on RNA sequence or structural elements and usually requires the RNA to be modified in a way that allows recruitment of the decay machinery to the transcript through the binding of accessory factors or small RNAs. The major RNA decay pathways also play important roles in the quality control of gene expression. Acting in both the nucleus and cytoplasm, multiple quality control factors monitor newly synthesized transcripts, or mRNAs undergoing translation, for properties essential to function, including structural integrity or the presence of complete open reading frames. Transcripts targeted by these surveillance mechanisms are rapidly shunted into conventional decay pathways where they are degraded rapidly to ensure that they do not interfere with the normal course of gene expression. Collectively, degradative mechanisms are important determinants of the extent of gene expression and play key roles in maintaining its accuracy. PMID:21132108

  17. The RNA helicase/transcriptional co-regulator, p68 (DDX5), stimulates expression of oncogenic protein kinase, Polo-like kinase-1 (PLK1), and is associated with elevated PLK1 levels in human breast cancers

    PubMed Central

    Iyer, R Sumanth; Nicol, Samantha M; Quinlan, Philip R; Thompson, Alastair M; Meek, David W; Fuller-Pace, Frances V

    2014-01-01

    p68 (DDX5) acts both as an ATP-dependent RNA helicase and as a transcriptional co-activator of several cancer-associated transcription factors, including the p53 tumor suppressor. p68 is aberrantly expressed in a high proportion of cancers, but the oncogenic drive for, or the consequences of, these expression changes remain unclear. Here we show that elevated p68 expression in a cohort of human breast cancers is associated significantly with elevated levels of the oncogenic protein kinase, Polo-like kinase-1 (PLK1). Patients expressing detectable levels of both p68 and PLK1 have a poor prognosis, but only if they also have mutation in the TP53 gene (encoding p53), suggesting that p68 can regulate PLK1 levels in a manner that is suppressed by p53. In support of this hypothesis, we show that p68 stimulates expression from the PLK1 promoter, and that silencing of endogenous p68 expression downregulates endogenous PLK1 gene expression. In the absence of functional p53, p68 stimulates the expression of PLK1 both at basal levels and in response to the clinically relevant drug, etoposide. In keeping with a role as a transcriptional activator/co-activator, chromatin immuno-precipitation analysis shows that p68 is associated with the PLK1 promoter, irrespective of the p53 status. However, its recruitment is stimulated by etoposide in cells lacking p53, suggesting that p53 can oppose association of p68 with the PLK1 promoter. These data provide a model in which p68 and p53 interplay regulates PLK1 expression, and which describes the behavior of these molecules, and the outcome of their interaction, in human breast cancer. PMID:24626184

  18. Expression Levels of PIWI-interacting RNA, piR-823, Are Deregulated in Tumor Tissue, Blood Serum and Urine of Patients with Renal Cell Carcinoma.

    PubMed

    Iliev, Robert; Fedorko, Michal; Machackova, Tana; Mlcochova, Hana; Svoboda, Marek; Pacik, Dalibor; Dolezel, Jan; Stanik, Michal; Slaby, Ondrej

    2016-12-01

    Renal cell carcinoma (RCC) is the most common neoplasm of adult kidney accounting for about 3% of adult malignancies. P-Element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a new class of naturally occurring, short non-coding RNAs involved in silencing of transposable elements and in sequence-specific chromatin modifications. There were preliminary data published indicating that piR-823 expression is deregulated in circulating tumor cells and tumor tissue in gastric and kidney cancer, respectively. In our study, we analyzed piR-823 levels in 588 biological specimens: tumor tissue (N=153), adjacent renal parenchyma (N=121), blood serum (N=178) and urine (N=20) of patients undergoing nephrectomy for RCC; and in blood serum (N=101) and urine (N=15) of matched healthy controls. Expression levels of piR-823 were determined in all biological specimens by quantitative real-time polymerase chain reaction, compared in patients and controls, and correlated with clinicopathological features of RCC. We identified a significant down-regulation of piR-823 in tumor tissue [p<0.0001, area under the curve (AUC)=0.7945]. On the contrary in blood serum and urine, the expression of piR-823 was significantly higher in patients with RCC compared to healthy individuals (p=0.0005, AUC=0.6264 and p=0.0157, AUC=0.7433, respectively). We further observed higher levels of piR-823 in tumor tissue to be associated with shorter disease-free survival of patients (p=0.0186) and a trend for higher piR-823 levels in serum to be associated with advanced clinical stages of RCC (p=0.0691). There were no other significant associations of piR-823 levels in any type of biological specimen with clinicopathological features of RCC. piR-823 is down-regulated in tumor tissue, but positively correlated with worse outcome, indicating its complex role in RCC pathogenesis. In blood serum, piR-823 is up-regulated, but with unsatisfactory analytical performance. Preliminary data indicate the promising

  19. Changes in rasT24 expression do not induce changes in c-jun, jun-B, or jun-D RNA levels in rat liver epithelial cells.

    PubMed

    Krizman, D B; Lebovitz, R M; Lieberman, M W

    1990-01-01

    We used a series of rat liver epithelial (RLE) cell lines that carry a zinc-regulatable metallothionein/rasT24 fusion gene (MTrasT24) to investigate the relation of ras oncogene expression to steady-state RNA levels of the jun family of genes. In these cells, steady-state RNA levels of c-jun, jun-B, and jun-D were unrelated to rasT24 RNA levels or the phenotypic changes induced by the ras oncogene. Steady-state levels of the three jun mRNAs varied among different rasT24 transformed clones, and, although some clones exhibited concomitant induction of rasT24 and jun mRNAs, other clones exhibited no such correlation. We conclude that the effects of rasT24 in transformed RLE cells do not appear to be mediated by c-jun, jun-B, or jun-D and that studies examining only a single transformed clone may give misleading results with respect to the role of various oncogenes in the transformation process.

  20. Low-level lasers on microRNA and uncoupling protein 2 mRNA levels in human breast cancer cells

    NASA Astrophysics Data System (ADS)

    Canuto, K. S.; Teixeira, A. F.; Rodrigues, J. A.; Paoli, F.; Nogueira, E. M.; Mencalha, A. L.; Fonseca, A. S.

    2017-06-01

    MicroRNA is short non-coding RNA and is a mediator of post-transcriptional regulation of gene expression. In addition, uncoupling proteins (UCPs) regulate thermogenesis, metabolic and energy balance, and decrease reactive oxygen species production. Both microRNA and UCP2 expression can be altered in cancer cells. At low power, laser wavelength, frequency, fluence and emission mode deternube photobiological responses, which are the basis of low-level laser therapy. There are few studies on miRNA and UCP mRNA levels after low-level laser exposure on cancer cells. In this work, we evaluate the micrRNA (mir-106b and mir-15a) and UCP2 mRNA levels in human breast cancer cells exposed to low-level lasers. MDA-MB-231 human breast cancer cells were exposed to low-level red and infrared lasers, total RNA was extracted for cDNA synthesis and mRNA levels by real time quantitative polymerase chain reaction were evaluated. Data show that mir-106b and mir-15a relative levels are not altered, but UCP2 mRNA relative levels are increased in MDA-MB-231 human breast cancer cells exposed to low-level red and infrared lasers at fluences used in therapeutic protocols.

  1. Differential expression in RNA-seq: a matter of depth.

    PubMed

    Tarazona, Sonia; García-Alcalde, Fernando; Dopazo, Joaquín; Ferrer, Alberto; Conesa, Ana

    2011-12-01

    Next-generation sequencing (NGS) technologies are revolutionizing genome research, and in particular, their application to transcriptomics (RNA-seq) is increasingly being used for gene expression profiling as a replacement for microarrays. However, the properties of RNA-seq data have not been yet fully established, and additional research is needed for understanding how these data respond to differential expression analysis. In this work, we set out to gain insights into the characteristics of RNA-seq data analysis by studying an important parameter of this technology: the sequencing depth. We have analyzed how sequencing depth affects the detection of transcripts and their identification as differentially expressed, looking at aspects such as transcript biotype, length, expression level, and fold-change. We have evaluated different algorithms available for the analysis of RNA-seq and proposed a novel approach--NOISeq--that differs from existing methods in that it is data-adaptive and nonparametric. Our results reveal that most existing methodologies suffer from a strong dependency on sequencing depth for their differential expression calls and that this results in a considerable number of false positives that increases as the number of reads grows. In contrast, our proposed method models the noise distribution from the actual data, can therefore better adapt to the size of the data set, and is more effective in controlling the rate of false discoveries. This work discusses the true potential of RNA-seq for studying regulation at low expression ranges, the noise within RNA-seq data, and the issue of replication.

  2. Increase in flavan-3-ols by silencing flavonol synthase mRNA affects the transcript expression and activity levels of antioxidant enzymes in tobacco.

    PubMed

    Mahajan, M; Joshi, R; Gulati, A; Yadav, S K

    2012-09-01

    Flavonoids are plant secondary metabolites widespread throughout the plant kingdom involved in many physiological and biochemical functions. Amongst the flavonoids, flavan-3-ols (catechin and epicatechin) are known for their direct free radical scavenging activity in vitro, but studies on their antioxidant potential and interaction with antioxidant enzymes in vivo are lacking. Here, the flavonoid pathway was engineered by silencing a gene encoding flavonol synthase (FLS) in tobacco to direct the flow of metabolites towards production of flavan-3-ols. FLS silencing reduced flavonol content 17-53%, while it increased catechin and epicatechin content 51-93% and 18-27%, respectively. The silenced lines showed a significant increase in expression of genes for dihydroflavonol reductase and anthocyanidin synthase, a downstream gene towards epicatechin production, with no significant change in expression of other genes of the flavonoid pathway. Effects of accumulation of flavan-3-ols in FLS silenced lines on transcript level and activities of antioxidant enzymes were studied. Transcripts of the antioxidant enzymes glutathione reductase (GR), ascorbate peroxidase (APx), and catalase (CAT) increased, while glutathione-S-transferase (GST), decreased in FLS silenced lines. Enhanced activity of all the antioxidant enzymes was observed in silenced tobacco lines. To validate the affect of flavan-3-ols on the antioxidant system, in vitro experiments were conducted with tobacco seedlings exposed to two concentrations of catechin (10  and 50 μm) for 2 days. In vitro exposed seedlings produced similar levels of transcripts and activity of antioxidant enzymes as FLS silenced seedlings. Results suggest that flavan-3-ols (catechin) might be increasing activity of GR, Apx and CAT by elevating their mRNAs levels. Since these enzymes are involved in scavenging of reactive oxygen species, this strategy would help in tailoring crops for enhanced catechin production as well as making

  3. Massive bowel resection upregulates the intestinal mRNA expression levels of cellular retinol-binding protein II and apolipoprotein A-IV and alters the intestinal vitamin A status in rats.

    PubMed

    Hebiguchi, Taku; Mezaki, Yoshihiro; Morii, Mayako; Watanabe, Ryo; Yoshikawa, Kiwamu; Miura, Mitsutaka; Imai, Katsuyuki; Senoo, Haruki; Yoshino, Hiroaki

    2015-03-01

    Short bowel (SB) syndrome causes the malabsorption of various nutrients. Among these, vitamin A is important for a number of physiological activities. Vitamin A is absorbed by epithelial cells of the small intestine and is discharged into the lymphatic vessels as a component of chylomicrons and is delivered to the liver. In the present study, we used a rat model of SB syndrome in order to assess its effects on the expression of genes associated with the absorption, transport and metabolism of vitamin A. In the rats with SB, the intestinal mRNA expression levels of cellular retinol-binding protein II (CRBP II, gene symbol Rbp2) and apolipoprotein A-IV (gene symbol Apoa4) were higher than those in the sham-operated rats, as shown by RT-qPCR. Immunohistochemical analysis revealed that absorptive epithelial cells stained positive for both CRBP II and lecithin retinol acyltransferase, which are both required for the effective esterification of vitamin A. In the rats with SB, the retinol content in the ileum and the retinyl ester content in the jejunum were lower than those in the sham-operated rats, as shown by quantitative analysis of retinol and retinyl esters by high performance liquid chromatography. These results suggest that the elevated mRNA expression levels of Rbp2 and Apoa4 in the rats with SB contribute to the effective esterification and transport of vitamin A.

  4. The expression level of BAALC-associated microRNA miR-3151 is an independent prognostic factor in younger patients with cytogenetic intermediate-risk acute myeloid leukemia

    PubMed Central

    Díaz-Beyá, M; Brunet, S; Nomdedéu, J; Cordeiro, A; Tormo, M; Escoda, L; Ribera, J M; Arnan, M; Heras, I; Gallardo, D; Bargay, J; Queipo de Llano, M P; Salamero, O; Martí, J M; Sampol, A; Pedro, C; Hoyos, M; Pratcorona, M; Castellano, J J; Nomdedeu, M; Risueño, R M; Sierra, J; Monzó, M; Navarro, A; Esteve, J

    2015-01-01

    Acute myeloid leukemia (AML) is a heterogeneous disease whose prognosis is mainly related to the biological risk conferred by cytogenetics and molecular profiling. In elderly patients (⩾60 years) with normal karyotype AML miR-3151 have been identified as a prognostic factor. However, miR-3151 prognostic value has not been examined in younger AML patients. In the present work, we have studied miR-3151 alone and in combination with BAALC, its host gene, in a cohort of 181 younger intermediate-risk AML (IR-AML) patients. Patients with higher expression of miR-3151 had shorter overall survival (P=0.0025), shorter leukemia-free survival (P=0.026) and higher cumulative incidence of relapse (P=0.082). Moreover, in the multivariate analysis miR-3151 emerged as independent prognostic marker in both the overall series and within the unfavorable molecular prognostic category. Interestingly, the combined determination of both miR-3151 and BAALC improved this prognostic stratification, with patients with low levels of both parameters showing a better outcome compared with those patients harboring increased levels of one or both markers (P=0.003). In addition, we studied the microRNA expression profile associated with miR-3151 identifying a six-microRNA signature. In conclusion, the analysis of miR-3151 and BAALC expression may well contribute to an improved prognostic stratification of younger patients with IR-AML. PMID:26430723

  5. Reduction of polyhedrin mRNA and protein expression levels in Sf9 and Hi5 cell lines, but not in Sf21 cells, infected with Autographa californica multiple nucleopolyhedrovirus fp25k mutants.

    PubMed

    Cheng, Xin-Hua; Hillman, Christopher C; Zhang, Chuan-Xi; Cheng, Xiao-Wen

    2013-01-01

    During cell infection, the fp25k gene of baculoviruses frequently mutates, producing the few polyhedra (FP) per cell phenotype with reduced polyhedrin (polh) expression levels compared with wild-type baculoviruses. Here we report that the fp25k gene of the model baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), contains two hypermutable seven-adenine (A7) mononucleotide repeats (MNRs) that were mutated to A8 MNRs and a TTAA site that had host DNA insertions, producing fp25k mutants during Sf21 cell infection. The FP phenotype in Sf9 and Hi5 cells was more pronounced than in Sf21 cells. AcMNPV fp25k mutants produced similar levels of polyhedra or enhanced GFP, which were both under the control of the AcMNPV polh promoter for expression, in Sf21 cells but lower levels in Sf9 and Hi5 cells compared with AcMNPV with an intact fp25k gene. This correlated with the polh mRNA levels detected in each cell line. The majority of Sf21 cells infected with fp25 mutants showed high polh promoter-mediated GFP expression levels. Two cell lines subcloned from Sf21 cells that were infected with fp25k mutants showed different GFP expression levels. Furthermore, a small proportion of Hi5 cells infected with fp25k mutants showed higher production of polyhedra and GFP expression than the rest, and the latter was not correlated with increased m.o.i. Therefore, these data suggest that AcMNPV polh promoter-mediated gene expression activities differ in the three cell lines and are influenced by different cells within the cell line.

  6. Impact of deltamethrin exposure on mRNA expression levels of metallothionein A, B and cytochrome P450 1A in rainbow trout muscles.

    PubMed

    Erdoğan, Orhan; Ceyhun, Saltuk Buğrahan; Ekinci, Deniz; Aksakal, Ercüment

    2011-09-15

    Metallothioneins (MT) are widely utilized to identify specific responses to heavy metal pollution. In addition, there is evidence demonstrating that in vertebrates MT synthesis is stimulated by different endogenous and exogenous agents in particular compounds leading to production of ROS. Also, cytochrome P450 1A can enhance the generation of ROS. On this basis, MT and CYP 1A induction can be considered as biomarkers of oxidative stress. In the current study, we examined the influences of pesticide administration on the expression of MT-A, MT-B and CYP 1A. For this purpose, we produced muscle metallothionein-A, metallothionein-B and cytochrome P450 1A cDNAs and used quantitative RT-PCR to assay mRNAs in rainbow trout exposed to acute and long-term deltamethrin administration. We observed that deltamethrin exposure significantly (p<0.05) increased the expression levels of Cyp1A, MT-A and MT-B in a time dependent manner. Results of our study contributes to the identification of inducers of such biomarkers in addition to well known agents. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Quantitative analysis of mRNA expression levels and DNA methylation profiles of three neighboring genes: FUS1, NPRL2/G21 and RASSF1A in non-small cell lung cancer patients.

    PubMed

    Pastuszak-Lewandoska, Dorota; Kordiak, Jacek; Migdalska-Sęk, Monika; Czarnecka, Karolina H; Antczak, Adam; Górski, Paweł; Nawrot, Ewa; Kiszałkiewicz, Justyna M; Domańska, Daria; Brzeziańska-Lasota, Ewa

    2015-06-26

    Tumor suppressor gene (TSG) inactivation plays a crucial role in carcinogenesis. FUS1, NPRL2/G21 and RASSF1A are TSGs from LUCA region at 3p21.3, a critical chromosomal region in lung cancer development. The aim of the study was to analyze and compare the expression levels of these 3 TSGs in NSCLC, as well as in macroscopically unchanged lung tissue surrounding the primary lesion, and to look for the possible epigenetic mechanism of TSG inactivation via gene promoter methylation. Expression levels of 3 TSGs and 2 DNA methyltransferases, DNMT1 and DNMT3B, were assessed using real-time PCR method (qPCR) in 59 primary non-small cell lung tumors and the matched macroscopically unchanged lung tissue samples. Promoter methylation status of TSGs was analyzed using methylation-specific PCRs (MSP method) and Methylation Index (MI) value was calculated for each gene. The expression of all three TSGs were significantly different between NSCLC subtypes: RASSF1A and FUS1 expression levels were significantly lower in squamous cell carcinoma (SCC), and NPRL2/G21 in adenocarcinoma (AC). RASSF1A showed significantly lower expression in tumors vs macroscopically unchanged lung tissues. Methylation frequency was 38-76%, depending on the gene. The highest MI value was found for RASSF1A (52%) and the lowest for NPRL2/G21 (5%). The simultaneous decreased expression and methylation of at least one RASSF1A allele was observed in 71% tumor samples. Inverse correlation between gene expression and promoter methylation was found for FUS1 (rs = -0.41) in SCC subtype. Expression levels of DNMTs were significantly increased in 75-92% NSCLCs and were significantly higher in tumors than in normal lung tissue. However, no correlation between mRNA expression levels of DNMTs and DNA methylation status of the studied TSGs was found. The results indicate the potential role of the studied TSGs in the differentiation of NSCLC histopathological subtypes. The significant differences in RASSF1A expression

  8. Highest trkB mRNA expression in the entorhinal cortex among hippocampal subregions in the adult rat: contrasting pattern with BDNF mRNA expression.

    PubMed

    Tokuyama, W; Hashimoto, T; Li, Y X; Okuno, H; Miyashita, Y

    1998-11-20

    Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, regulate synaptic functions in the hippocampus of the adult rodent. In previous studies, in situ hybridization methods have been used to evaluate regional differences in BDNF and trkB mRNA expression levels in hippocampal subregions. However, these studies have failed to reach consensus regarding the regional differences in the mRNA expression levels. In the present study, we quantitated mRNA expression levels using two different methods, ribonuclease protection assays and a quantitative reverse-transcription polymerase chain reaction technique, in four hippocampal subregions: the entorhinal cortex, dentate gyrus (DG), CA3 and CA1. These two methods yielded the same results. We found that BDNF and trkB mRNA expression levels did not covary in the four subregions. BDNF and full length trkB (trkB FL) mRNA in the entorhinal cortex and the DG show contrasting expression patterns. The expression level of BDNF mRNA was highest in the DG among the hippocampal subregions and low in the entorhinal cortex and the CA1, whereas the trkB FL mRNA expression level was highest in the entorhinal cortex, low in the DG and lowest in the CA3. These results suggest regional differences in BDNF/TrkB signaling for maintenance and modifiability of neuronal connections in the hippocampal formation.

  9. miRNA expression during prickly pear cactus fruit development.

    PubMed

    Rosas-Cárdenas, Flor de Fátima; Caballero-Pérez, Juan; Gutiérrez-Ramos, Ximena; Marsch-Martínez, Nayelli; Cruz-Hernández, Andrés; de Folter, Stefan

    2015-02-01

    miRNAs are a class of small non-coding RNAs that regulate gene expression. They are involved in the control of many developmental processes, including fruit development. The increasing amount of information on miRNAs, on their expression, abundance, and conservation between various species, provides a new opportunity to study the role of miRNAs in non-model plant species. In this work, we used a combination of Northern blot and tissue print hybridization analysis to identify conserved miRNAs expressed during prickly pear cactus (Opuntia ficus indica) fruit development. Comparative profiling detected the expression of 34 miRNAs, which were clustered in three different groups that were associated with the different phases of fruit development. Variation in the level of miRNA expression was observed. Gradual expression increase of several miRNAs was observed during fruit development, including miR164. miR164 was selected for stem-loop RT-PCR and for a detailed spatial-temporal expression analysis. At early floral stages, miR164 was mainly localized in meristematic tissues, boundaries and fusion zones, while it was more homogenously expressed in fruit tissues. Our results provide the first evidence of miRNA expression in the prickly pear cactus and provide the basis for future research on miRNAs in Opuntia. Moreover, our analyses suggest that miR164 plays different roles during prickly pear cactus fruit development.

  10. Control of Cytokine mRNA Expression by RNA-binding Proteins and microRNAs

    PubMed Central

    Palanisamy, V.; Jakymiw, A.; Van Tubergen, E.A.; D’Silva, N.J.; Kirkwood, K.L.

    2012-01-01

    Cytokines are critical mediators of inflammation and host defenses. Regulation of cytokines can occur at various stages of gene expression, including transcription, mRNA export, and post- transcriptional and translational levels. Among these modes of regulation, post-transcriptional regulation has been shown to play a vital role in controlling the expression of cytokines by modulating mRNA stability. The stability of cytokine mRNAs, including TNFα, IL-6, and IL-8, has been reported to be altered by the presence of AU-rich elements (AREs) located in the 3′-untranslated regions (3′UTRs) of the mRNAs. Numerous RNA-binding proteins and microRNAs bind to these 3′UTRs to regulate the stability and/or translation of the mRNAs. Thus, this paper describes the cooperative function between RNA-binding proteins and miRNAs and how they regulate AU-rich elements containing cytokine mRNA stability/degradation and translation. These mRNA control mechanisms can potentially influence inflammation as it relates to oral biology, including periodontal diseases and oral pharyngeal cancer progression. PMID:22302144

  11. Vibrational force alters mRNA expression in osteoblasts.

    PubMed

    Tjandrawinata, R R; Vincent, V L; Hughes-Fulford, M

    1997-05-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  12. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  13. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  14. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    USDA-ARS?s Scientific Manuscript database

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p <0.05) differentially expressed after cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  15. Molecular characterization of myostatin from the skeletal muscle of the African lungfish, Protopterus annectens, and changes in its mRNA and protein expression levels during three phases of aestivation.

    PubMed

    Ong, Jasmine L Y; Chng, You R; Ching, Biyun; Chen, Xiu L; Hiong, Kum C; Wong, Wai P; Chew, Shit F; Ip, Yuen K

    2017-05-01

    African lungfishes can aestivate and remain torpid without food and water for years, but disuse muscle atrophy is not prominent during aestivation. This study aimed to clone myostatin (mstn/Mstn), a factor associated with disuse muscle atrophy in mammals, from the skeletal muscle of the African lungfish Protopterus annectens, and to determine its mRNA expression level and protein abundance therein during the induction, maintenance, and arousal phases of aestivation. The complete coding cDNA sequence of mstn comprised 1128 bp, encoding for 376 amino acids with an estimated molecular mass of 42.9 kDa. It was grouped together with Mstn/MSTN of coelacanth and tetrapods in a clade separated from teleost Mstn. After 6 days (the induction phase) of aestivation, the mstn transcript level in the muscle increased significantly, while the protein abundance of Mstn remained comparable to the control. Following that, a significant increase in the expression levels of mstn/Mstn occurred on day 12 (the early maintenance phase) of aestivation. After 6 months of aestivation (the prolonged maintenance phase), the expression levels of mstn/Mstn returned to control levels, indicating the possible impediment of a drastic increase in muscle degradation to prevent muscle atrophy. During 1-3 days of arousal from aestivation, the expression levels of mstn/Mstn in the muscle remained comparable to the control. Hence, tissue reconstruction/regeneration of certain organs might not involve the mobilization of amino acids from the muscle during the early arousal. These results provide insights into how aestivating P. annectens regulates the expression of mstn/Mstn possibly to ameliorate disuse muscle atrophy.

  16. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1

    PubMed Central

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem–loop structure containing the branch site near its apical loop and the 3′ splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing. PMID:26546116

  17. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1.

    PubMed

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem-loop structure containing the branch site near its apical loop and the 3' splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing.

  18. MicroRNA function in mast cell biology: protocols to characterize and modulate microRNA expression.

    PubMed

    Maltby, Steven; Plank, Maximilian; Ptaschinski, Catherine; Mattes, Joerg; Foster, Paul S

    2015-01-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules that can modulate mRNA levels through RNA-induced silencing complex (RISC)-mediated degradation. Recognition of target mRNAs occurs through imperfect base pairing between an miRNA and its target, meaning that each miRNA can target a number of different mRNAs to modulate gene expression. miRNAs have been proposed as novel therapeutic targets and many studies are aimed at characterizing miRNA expression patterns and functions within a range of cell types. To date, limited research has focused on the function of miRNAs specifically in mast cells; however, this is an emerging field. In this chapter, we will briefly overview miRNA synthesis and function and the current understanding of miRNAs in hematopoietic development and immune function, emphasizing studies related to mast cell biology. The chapter will conclude with fundamental techniques used in miRNA studies, including RNA isolation, real-time PCR and microarray approaches for quantification of miRNA expression levels, and antagomir design to interfere with miRNA function.

  19. A high-fat diet reduces ceramide synthesis by decreasing adiponectin levels and decreases lipid content by modulating HMG-CoA reductase and CPT-1 mRNA expression in the skin.

    PubMed

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi

    2011-09-01

    Molecules involved in skin function are greatly affected by nutritional conditions. However, the mechanism linking high-fat (HF) diets with these alterations is not well understood. This study aimed to investigate the molecular changes in skin function that result from HF diets. Sprague-Dawley rats were fed HF diets for 28 days. The skin levels of ceramide, lipids and mRNAs involved in lipid metabolism were evaluated using TLC, oil red O staining and quantitative PCR, respectively. The serum adiponectin concentration was determined by ELISA. HF diets led to reduced ceramide levels and lowered skin lipid content. They also decreased mRNA levels of serine palmitoyltransferase (SPT) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the skin and those of peroxisome proliferator-activated receptor-α -PPAR-α), which upregulates SPT and HMG-CoA reductase expression. The HF diets reduced the serum concentration of adiponectin, which acts upstream of PPAR-α. Finally, these diets led to increased mRNA levels of carnitine palmitoyltransferase-1, the rate-limiting enzyme that acts in β-oxidation. Our study suggests that HF diets reduce ceramide and lipid synthesis in the skin by reducing levels of SPT and HMG-CoA reductase through lowered adiponectin and PPAR-α activity. Additionally, they decrease lipid content by enhancing β-oxidation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cloning and sequence analysis of a vasa homolog in the European sea bass (Dicentrarchus labrax): tissue distribution and mRNA expression levels during early development and sex differentiation.

    PubMed

    Blázquez, Mercedes; González, Alicia; Mylonas, Constantinos C; Piferrer, Francesc

    2011-01-15

    Vasa is a protein expressed mainly in germ cells and conserved across taxa. However, sex-related differences and environmental influences on vasa expression have not been documented. This study characterized the cDNA of a vasa homolog in the European sea bass, Dicentrarchuslabrax (sb-vasa), a gonochoristic fish with temperature influences on gonadogenesis. The 1911 bp open reading frame predicted a 637-amino acid protein with the eight conserved domains typical of Vasa proteins. Comparisons of the deduced amino acid sequence with those of other vertebrates and invertebrates revealed the highest homology (68-85%) with those of other teleosts. An updated tree with the full-length sequences for Vasa proteins in 66 species belonging to six different phyla was constructed, establishing the evolutionary relationships of Vasa amino acid sequences. European sea bass vasa was highly expressed in gonads with little or no expression in other tissues. Real time RT-PCR quantification of the temporal expression of sb-vasa from early development throughout sex differentiation showed that mRNA levels were high in unfertilized eggs, decreased during larval development and increased again during the period of germ cell proliferation. Rearing of fish at high temperature resulted in further increased sb-vasa levels, most likely reflecting temperature effects on both somatic and gonadal growth. Differences in expression were also found well before sex differentiation and persisted until the end of the first year, with higher levels present in females. These differences in expression demonstrate the implication of vasa during the initial stages of fish sex differentiation and gametogenesis and suggest that, through its helicase activity, it might be implicated in the translational regulation of mRNAs involved in the specification and differentiation of gonadal-specific cell types.

  1. High Levels of EBV-Encoded RNA 1 (EBER1) Trigger Interferon and Inflammation-Related Genes in Keratinocytes Expressing HPV16 E6/E7

    PubMed Central

    Aromseree, Sirinart; Middeldorp, Jaap M.; Pientong, Chamsai; van Eijndhoven, Monique; Ramayanti, Octavia; Lougheed, Sinéad M.; Pegtel, D. Michiel; Steenbergen, Renske D. M.; Ekalaksananan, Tipaya

    2017-01-01

    Different types of cells infected with Epstein-Barr virus (EBV) can release exosomes containing viral components that functionally affect neighboring cells. Previously, we found that EBV was localized mostly in infiltrating lymphocytes within the stromal layer of cervical lesions. In this study, we aimed to determine effects of exosome-transferred EBV-encoded RNAs (EBERs) on keratinocytes expressing human papillomavirus (HPV) 16 E6/E7 (DonorI-HPV16 HFKs). Lipid transfection of in vitro-transcribed EBER1 molecules (ivt EBER1) into DonorI-HPV16 HFKs caused strong induction of interferon (IFN)-related genes and interleukin 6 (IL-6). To gain insights into the physiological situation, monocyte-derived dendritic cells (moDCs), low passage DonorI-HPV16 HFKs and primary keratinocytes were used as recipient cells for internalization of exosomes from wild-type EBV (wt EBV) or B95-8 EBV-infected lymphoblastoid cell lines (LCLs). qRT-PCR was used to determine the expression of EBER1, HPV16 E6/E7, IFN-related genes and IL-6 in recipient cells. The secretion of inflammatory cytokines was investigated using cytometric bead array. Wt EBV-modified exosomes induced both IFN-related genes and IL-6 upon uptake into moDCs, while exosomes from B95-8 EBV LCLs induced only IL-6 in moDCs. Internalization of EBV–modified exosomes was demonstrated in DonorI-HPV16 HFKs, yielding only EBER1 but not EBER2. However, EBER1 transferred by exosomes did not induce IFN-related genes or IL-6 expression and inflammatory cytokine secretion in DonorI-HPV16 HFKs and primary keratinocytes. EBER1 copy numbers in exosomes from wt EBV-infected LCLs were 10-fold higher than in exosomes from B95-8 LCLs (equal cell equivalent), whereas ivt EBER1 was used at approximately 100-fold higher concentration than in exosomes. These results demonstrated that the induction of IFN-related genes and IL-6 by EBER1 depends on quantity of EBER1 and type of recipient cells. High levels of EBER1 in cervical cells or

  2. The specificity of long noncoding RNA expression.

    PubMed

    Gloss, Brian S; Dinger, Marcel E

    2016-01-01

    Over the last decade, long noncoding RNAs (lncRNAs) have emerged as a fundamental molecular class whose members play pivotal roles in the regulation of the genome. The observation of pervasive transcription of mammalian genomes in the early 2000s sparked a revolution in the understanding of information flow in eukaryotic cells and the incredible flexibility and dynamic nature of the transcriptome. As a molecular class, distinct loci yielding lncRNAs are set to outnumber those yielding mRNAs. However, like many important discoveries, the road leading to uncovering this diverse class of molecules that act through a remarkable repertoire of mechanisms, was not a straight one. The same characteristic that most distinguishes lncRNAs from mRNAs, i.e. their developmental-stage, tissue-, and cell-specific expression, was one of the major impediments to their discovery and recognition as potentially functional regulatory molecules. With growing numbers of lncRNAs being assigned to biological functions, the specificity of lncRNA expression is now increasingly recognized as a characteristic that imbues lncRNAs with great potential as biomarkers and for the development of highly targeted therapeutics. Here we review the history of lncRNA research and how technological advances and insight into biological complexity have gone hand-in-hand in shaping this revolution. We anticipate that as increasing numbers of these molecules, often described as the dark matter of the genome, are characterized and the structure-function relationship of lncRNAs becomes better understood, it may ultimately be feasible to decipher what these non-(protein)-coding genes encode. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation.

    PubMed

    Sihto, Henna-Maria; Tasara, Taurai; Stephan, Roger; Johler, Sophia

    2014-07-01

    Staphylococcus aureus represents the most prevalent cause of food-borne intoxications worldwide. While being repressed by competing bacteria in most matrices, this pathogen exhibits crucial competitive advantages during growth at high salt concentrations or low pH, conditions frequently encountered in food production and preservation. We aimed to identify reference genes that could be used to normalize qPCR mRNA expression levels during growth of S. aureus in food-related osmotic (NaCl) and acidic (lactic acid) stress adaptation models. Expression stability of nine housekeeping genes was evaluated in full (LB) and nutrient-deficient (CYGP w/o glucose) medium under conditions of osmotic (4.5% NaCl) and acidic stress (lactic acid, pH 6.0) after 2-h exposure. Among the set of candidate reference genes investigated, rplD, rpoB,gyrB, and rho were most stably expressed in LB and thus represent the most suitable reference genes for normalization of qPCR data in osmotic or lactic acid stress models in a rich medium. Under nutrient-deficient conditions, expression of rho and rpoB was highly stable across all tested conditions. The presented comprehensive data on changes in expression of various S. aureus housekeeping genes under conditions of osmotic and lactic acid stress facilitate selection of reference genes for qPCR-based stress response models. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. RNA polymerase errors cause splicing defects and can be regulated by differential expression of RNA polymerase subunits.

    PubMed

    Carey, Lucas B

    2015-12-10

    Errors during transcription may play an important role in determining cellular phenotypes: the RNA polymerase error rate is >4 orders of magnitude higher than that of DNA polymerase and errors are amplified >1000-fold due to translation. However, current methods to measure RNA polymerase fidelity are low-throughout, technically challenging, and organism specific. Here I show that changes in RNA polymerase fidelity can be measured using standard RNA sequencing protocols. I find that RNA polymerase is error-prone, and these errors can result in splicing defects. Furthermore, I find that differential expression of RNA polymerase subunits causes changes in RNA polymerase fidelity, and that coding sequences may have evolved to minimize the effect of these errors. These results suggest that errors caused by RNA polymerase may be a major source of stochastic variability at the level of single cells.

  5. RNA polymerase errors cause splicing defects and can be regulated by differential expression of RNA polymerase subunits

    PubMed Central

    Carey, Lucas B

    2015-01-01

    Errors during transcription may play an important role in determining cellular phenotypes: the RNA polymerase error rate is >4 orders of magnitude higher than that of DNA polymerase and errors are amplified >1000-fold due to translation. However, current methods to measure RNA polymerase fidelity are low-throughout, technically challenging, and organism specific. Here I show that changes in RNA polymerase fidelity can be measured using standard RNA sequencing protocols. I find that RNA polymerase is error-prone, and these errors can result in splicing defects. Furthermore, I find that differential expression of RNA polymerase subunits causes changes in RNA polymerase fidelity, and that coding sequences may have evolved to minimize the effect of these errors. These results suggest that errors caused by RNA polymerase may be a major source of stochastic variability at the level of single cells. DOI: http://dx.doi.org/10.7554/eLife.09945.001 PMID:26652005

  6. Detection of Long Noncoding RNA Expression by Nonradioactive Northern Blots.

    PubMed

    Hu, Xiaowen; Feng, Yi; Hu, Zhongyi; Zhang, Youyou; Yuan, Chao-Xing; Xu, Xiaowei; Zhang, Lin

    2016-01-01

    With the advances in sequencing technology and transcriptome analysis, it is estimated that up to 75 % of the human genome is transcribed into RNAs. This finding prompted intensive investigations on the biological functions of noncoding RNAs and led to very exciting discoveries of microRNAs as important players in disease pathogenesis and therapeutic applications. Research on long noncoding RNAs (lncRNAs) is in its infancy, yet a broad spectrum of biological regulations has been attributed to lncRNAs. As a novel class of RNA transcripts, the expression level and splicing variants of lncRNAs are various. Northern blot analysis can help us learn about the identity, size, and abundance of lncRNAs. Here we describe how to use northern blot to determine lncRNA abundance and identify different splicing variants of a given lncRNA.

  7. Endothelin-1 and endothelin receptor mRNA expression in normal and atherosclerotic human arteries.

    PubMed

    Winkles, J A; Alberts, G F; Brogi, E; Libby, P

    1993-03-31

    Endothelin-1 (ET-1) is a potent vasoconstrictor peptide implicated in a number of human diseases including atherosclerosis. ET-1 binds to two distinct G protein-coupled receptors, known as the ETA and ETB receptor subtypes. In this study, we have examined ET-1, ETA and ETB mRNA expression levels in human vascular cells cultured in vitro and in normal and atherosclerotic human arteries. The results indicate that (a) ET-1 mRNA is constitutively expressed by endothelial cells but not by smooth muscle cells, (b) endothelial cells express only ETB mRNA but smooth muscle cells co-express ETA and ETB mRNA, and (c) in comparison to normal aorta, ET-1 mRNA expression is elevated and endothelin receptor mRNA expression is repressed in atherosclerotic lesions.

  8. RNA expression profile of calcified bicuspid, tricuspid, and normal human aortic valves by RNA sequencing.

    PubMed

    Guauque-Olarte, Sandra; Droit, Arnaud; Tremblay-Marchand, Joël; Gaudreault, Nathalie; Kalavrouziotis, Dimitri; Dagenais, Francois; Seidman, Jonathan G; Body, Simon C; Pibarot, Philippe; Mathieu, Patrick; Bossé, Yohan

    2016-10-01

    The molecular mechanisms leading to premature development of aortic valve stenosis (AS) in individuals with a bicuspid aortic valve are unknown. The objective of this study was to identify genes differentially expressed between calcified bicuspid aortic valves (BAVc) and tricuspid valves with (TAVc) and without (TAVn) AS using RNA sequencing (RNA-Seq). We collected 10 human BAVc and nine TAVc from men who underwent primary aortic valve replacement. Eight TAVn were obtained from men who underwent heart transplantation. mRNA levels were measured by RNA-Seq and compared between valve groups. Two genes were upregulated, and none were downregulated in BAVc compared with TAVc, suggesting a similar gene expression response to AS in individuals with bicuspid and tricuspid valves. There were 462 genes upregulated and 282 downregulated in BAVc compared with TAVn. In TAVc compared with TAVn, 329 genes were up- and 170 were downregulated. A total of 273 upregulated and 147 downregulated genes were concordantly altered between BAVc vs. TAVn and TAVc vs. TAVn, which represent 56 and 84% of significant genes in the first and second comparisons, respectively. This indicates that extra genes and pathways were altered in BAVc. Shared pathways between calcified (BAVc and TAVc) and normal (TAVn) aortic valves were also more extensively altered in BAVc. The top pathway enriched for genes differentially expressed in calcified compared with normal valves was fibrosis, which support the remodeling process as a therapeutic target. These findings are relevant to understand the molecular basis of AS in patients with bicuspid and tricuspid valves.

  9. On a stochastic gene expression with pre-mRNA, mRNA and protein contribution.

    PubMed

    Rudnicki, Ryszard; Tomski, Andrzej

    2015-12-21

    In this paper we develop a model of stochastic gene expression, which is an extension of the model investigated in the paper [T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.R. Brasier, M. Kimmel, Transcriptional stochasticity in gene expression, J. Theor. Biol. 238 (2006) 348-367]. In our model, stochastic effects still originate from random fluctuations in gene activity status, but we precede mRNA production by the formation of pre-mRNA, which enriches classical transcription phase. We obtain a stochastically regulated system of ordinary differential equations (ODEs) describing evolution of pre-mRNA, mRNA and protein levels. We perform mathematical analysis of a long-time behavior of this stochastic process, identified as a piece-wise deterministic Markov process (PDMP). We check exact results using numerical simulations for the distributions of all three types of particles. Moreover, we investigate the deterministic (adiabatic) limit state of the process, when depending on parameters it can exhibit two specific types of behavior: bistability and the existence of the limit cycle. The latter one is not present when only two kinds of gene expression products are considered.

  10. Immunosuppression during active tuberculosis is characterized by decreased interferon- gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor- beta , and interleukin-4 mRNA levels.

    PubMed

    Roberts, Teri; Beyers, Nulda; Aguirre, Ana; Walzl, Gerhard

    2007-03-15

    The balance between effector and regulatory responses after Mycobacterium tuberculosis infection may dictate outcome and progression to active disease. We investigated effector and regulatory T cell responses in bacille Calmette-Guerin (BCG)-stimulated peripheral blood mononuclear cells and whole blood cultures from persons with active tuberculosis (TB), persons with TB at the end of 6 months of treatment, and healthy control subjects with latent TB infection. All 3 groups displayed BCG-induced increases in effector and regulatory T cell phenotypes as defined by CD4(+)CD25(lo) and CD4(+)CD25(hi) T cells, respectively. In case patients with active disease, BCG stimulation induced the lowest increase of CD25, CD4(+)CD25(hi), CTLA-4, and interferon- gamma . However, these case patients expressed the highest mRNA levels of forkhead box P3, transforming growth factor (TGF)- beta , and interleukin (IL)-4 and a lower T-bet : GATA-3 ratio. There were no significant differences in IL-4 delta 2, IL-10, or TGF- beta receptor-II mRNA expression between groups. Together, these results suggest that immunosuppression seen after mycobacterial stimulation in case patients with active TB is associated with naturally occurring regulatory T cells.

  11. Cell-type-specific signatures of microRNAs on target mRNA expression.

    PubMed

    Sood, Pranidhi; Krek, Azra; Zavolan, Mihaela; Macino, Giuseppe; Rajewsky, Nikolaus

    2006-02-21

    Although it is known that the human genome contains hundreds of microRNA (miRNA) genes and that each miRNA can regulate a large number of mRNA targets, the overall effect of miRNAs on mRNA tissue profiles has not been systematically elucidated. Here, we show that predicted human mRNA targets of several highly tissue-specific miRNAs are typically expressed in the same tissue as the miRNA but at significantly lower levels than in tissues where the miRNA is not present. Conversely, highly expressed genes are often enriched in mRNAs that do not have the recognition motifs for the miRNAs expressed in these tissues. Together, our data support the hypothesis that miRNA expression broadly contributes to tissue specificity of mRNA expression in many human tissues. Based on these insights, we apply a computational tool to directly correlate 3' UTR motifs with changes in mRNA levels upon miRNA overexpression or knockdown. We show that this tool can identify functionally important 3' UTR motifs without cross-species comparison.

  12. Hypolipidemic effects of crude extract of adlay seed (Coix lachrymajobi var. mayuen) in obesity rat fed high fat diet: relations of TNF-alpha and leptin mRNA expressions and serum lipid levels.

    PubMed

    Kim, Sung Ok; Yun, Su-Jin; Jung, Bomi; Lee, Eunjoo H; Hahm, Dae-Hyun; Shim, Insop; Lee, Hye-Jung

    2004-07-30

    To find out whether the expressions of these adipocyte markers are influenced by oriental medicine, obesity rats induced by high fat diet (HFD) for 8 weeks were injected with 50 mg/100 g body weight adlay seed crude extract (ACE), daily for 4 weeks. The results are summarized as follows: HFD + ACE group significantly reduced food intakes and body weights. Weights of epididymal and peritoneal fat were dramatically increased in HFD groups compared with those of normal diet (ND) group but significantly decreased more in HFD + ACE group than those of HFD + saline group (sham). Those of brown adipocytes were increased in HFD + ACE group compared to ND and sham groups but there was no significant difference. The sizes in white adipose tissue (WAT) by microscope were markedly larger in HFD groups than ND group but considerably reduced in HFD + ACE group compared with sham group. The levels of triglyceride, total-cholesterol and leptin in blood serum were significantly decreased in HFD + ACE group compared to those of sham group. Leptin and TNF-alpha mRNA expressions in WAT of rats were remarkably increased more in sham group than in those of ND group. Those of HFD + ACE group were significantly decreased compared with those of sham group, especially. TNF-alpha mRNA expression in HFD + ACE group was declined more than that of ND group. In conclusion, treatments of ACE modulated expressions of leptin and TNF-alpha and reduced body weights, food intake, fat size, adipose tissue mass and serum hyperlipidemia in obesity rat fed HFD. Accordingly, the oriental medicine extract, adlay seed crude extract, can be considered for obesity therapies controlling.

  13. Determinants of effective lentivirus-driven microRNA expression in vivo

    PubMed Central

    Mishima, Takuya; Sadovsky, Elena; Gegick, Margaret E.; Sadovsky, Yoel

    2016-01-01

    Manipulation of microRNA (miRNA) levels, including overexpression of mature species, has become an important biological tool, even motivating miRNA-based therapeutics. To assess key determinants of miRNA overexpression in a mammalian system in vivo, we sought to bypass the laborious generation of a transgenic animal by exploiting placental trophoblast-specific gene manipulation using lentiviral vectors, which has been instrumental in elucidating trophoblast biology. We examined the impact of several key components of miRNA stem loops and their flanking sequences on the efficiency of mature miRNA expression in vivo. By combining established and novel approaches for miRNA expression, we engineered lentivirus-driven miRNA expression plasmids, which we tested in the mouse placenta. We found that reverse sense inserts minimized single-strand splicing and degradation, and that maintaining longer, poly-A-containing arms flanking the miRNA stem-loop markedly enhanced transgenic miRNA expression. Additionally, we accomplished overexpression of diverse mammalian, drosophila, or C. elegans miRNAs, either based on native context or using a “cassette” replacement of the mature miRNA sequence. Together, we have identified primary miRNA sequences that are paramount for effective expression of mature miRNAs, and validated their role in mice. Principles established by our findings may guide the design of efficient miRNA vectors for in vivo use. PMID:27627961

  14. Cytokine mRNA expression in postischemic/reperfused myocardium.

    PubMed Central

    Herskowitz, A.; Choi, S.; Ansari, A. A.; Wesselingh, S.

    1995-01-01

    While the role of cytokines in mediating injury during hind limb skeletal muscle ischemia followed by reperfusion has recently been described, the role of cytokines in myocardial infarction and ischemia/reperfusion have remained relatively unexplored. We hypothesize that cytokines play an important role in the regulation of postischemic myocardial inflammation. This study reports the temporal sequence of proinflammatory cytokine gene expression in postischemic/reperfused myocardium and localizes interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha)-protein by immunostaining. Rats were subjected to either permanent left anterior descending (LAD) occlusion or to 35 minutes of LAD occlusion followed by reperfusion and sacrificed up to 7 days later. Rat-specific oligonucleotide probes were used to semiquantitatively assess the relative expression of mRNA for TNF-alpha, IL-1 beta, IL-2, IL-6, interferon-gamma (IFN-gamma), and transforming growth factor-beta 1 (TGF-beta 1) utilizing the reverse transcriptase-polymerase chain reaction amplification technique. Increased cardiac mRNA levels for all cytokines except IL-6 and IFN-gamma were measurable within 15 to 30 minutes of LAD occlusion and increased levels were generally sustained for 3 hours. During early reperfusion, mRNA levels for IL-6 and TGF-beta 1 were significantly reduced compared with permanent LAD occlusion. In both groups, cytokine mRNA levels all returned to baseline levels at 24 hours, while IL-1 beta, TNF-alpha, and TGF-beta 1 mRNA levels again rose significantly at 7 days only in animals with permanent LAD occlusion. Immunostaining for IL-1 beta and TNF-alpha protein revealed two patterns of reactivity: 1) microvascular staining for both IL-1 beta and TNF-alpha protein only in postischemic reperfused myocardium in early post-reperfusion time points; and 2) staining of infiltrating macrophages in healing infarct zones which was most prominent at 7 days after permanent LAD occlusion

  15. RNA-FISH to analyze allele-specific expression.

    PubMed

    Braidotti, G

    2001-01-01

    One of the difficulties associated with the analysis of imprinted gene expression is the need to distinguish RNA synthesis occurring at the maternal vs the paternally inherited copy of the gene. Most of the techniques used to examine allele-specific expression exploit naturally occurring polymorphisms and measure steady-state levels of RNA isolated from a pool of cells. Hence, a restriction fragment length polymorphism (RFLP) an be exploited in a heterozygote, by a reverse transcriptase polymerase chain reaction (RT-PCR)- based procedure, to analyze maternal vs paternal gene expression. The human IGF2R gene was analyzed in this way. Smrzka et al. (1) were thus able to show that the IGF2R gene possesses a hemimethylated, intronic CpG island analogous to the mouse imprinting box. However, IGF2R mRNA was detected that possessed the RFLP from both the maternal and paternal alleles in all but one of the 70 lymphoblastoid samples. (The one monoallelic sample reactivated its paternal allele with continued cell culturing.) It was concluded that monoallelic expression of the human gene is a polymorphic trait occurring in a small minority of all tested samples (reviewed in refs. 2,3). Although this is a sound conclusion, the question remains: Is the human IGF2R gene imprinted?

  16. Inter-Individual Differences in RNA Levels in Human Peripheral Blood

    PubMed Central

    Chomczynski, Piotr; Wilfinger, William W.; Eghbalnia, Hamid R.; Kennedy, Amy; Rymaszewski, Michal; Mackey, Karol

    2016-01-01

    Relatively little is known about the range of RNA levels in human blood. This report provides assessment of peripheral blood RNA level and its inter-individual differences in a group of 35 healthy humans consisting of 25 females and 10 males ranging in age from 50 to 89 years. In this group, the average total RNA level was 14.59 μg/ml of blood, with no statistically significant difference between females and males. The individual RNA level ranged from 6.7 to 22.7 μg/ml of blood. In healthy subjects, the repeated sampling of an individual’s blood showed that RNA level, whether high or low, was stable. The inter-individual differences in RNA level in blood can be attributed to both, differences in cell number and the amount of RNA per cell. The 3.4-fold range of inter-individual differences in total RNA levels, documented herein, should be taken into account when evaluating the results of quantitative RT-PCR and/or RNA sequencing studies of human blood. Based on the presented results, a comprehensive assessment of gene expression in blood should involve determination of both the amount of mRNA per unit of total RNA (U / ng RNA) and the amount of mRNA per unit of blood (U / ml blood) to assure a thorough interpretation of physiological or pathological relevance of study results. PMID:26863434

  17. Efficient expression of a protein coding gene under the control of an RNA polymerase I promoter.

    PubMed

    Palmer, T D; Miller, A D; Reeder, R H; McStay, B

    1993-07-25

    In mammalian cells, RNA polymerase I transcripts are uncapped and retain a polyphosphate 5' terminus. It is probably for this reason that they are poorly translated as messenger RNA. We show in this report that insertion of an Internal Ribosome Entry Site (IRES) into the 5' leader of an RNA polymerase I transcript overcomes the block to translation, presumably by substituting for the 5' trimethyl G cap. Addition of an SV40 polyA addition signal also enhances protein production from the RNA polymerase I transcript. RNA Polymerase I driven expression vectors containing both elements produce protein at levels comparable to that produced from RNA polymerase II driven expression vectors which utilize a retroviral LTR. RNA Polymerase I driven expression vectors may have a variety of uses both for basic research and for practical expression of recombinant proteins.

  18. Quantification of mRNA Levels Using Real-Time Polymerase Chain Reaction (PCR).

    PubMed

    Li, Yiyi; Wang, Kai; Chen, Longhua; Zhu, Xiaoxia; Zhou, Jie

    2016-01-01

    Real-time quantitative reverse transcription PCR technique has advanced greatly over the past 20 years. Messenger RNA (mRNA) levels in cells or tissues can be quantified by this approach. It is well known that changes in mRNA expression in disease, and correlation of mRNA expression profiles with clinical parameters, serve as clinically relevant biomarkers. Hence, accurate determination of the mRNA levels is critically important in describing the biological, pathological, and clinical roles of genes in health and disease. This chapter describes a real-time PCR approach to detect and quantify mRNA expression levels, which can be used for both laboratorial and clinical studies in breast cancer research.

  19. Integrated analysis of microRNA and mRNA expression profiles in HBx-expressing hepatic cells

    PubMed Central

    Chen, Ruo-Chan; Wang, Juan; Kuang, Xu-Yuan; Peng, Fang; Fu, Yong-Ming; Huang, Yan; Li, Ning; Fan, Xue-Gong

    2017-01-01

    AIM To identify the miRNA-mRNA regulatory network in hepatitis B virus X (HBx)-expressing hepatic cells. METHODS A stable HBx-expressing human liver cell line L02 was established. The mRNA and miRNA expression profiles of L02/HBx and L02/pcDNA liver cells were identified by RNA-sequencing analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed to investigate the function of candidate biomarkers, and the relationship between miRNA and mRNA was studied by network analysis. RESULTS Compared with L02/pcDNA cells, 742 unregulated genes and 501 downregulated genes were determined as differentially expressed in L02/HBx cells. Gene ontology analysis suggested that the differentially expressed genes were relevant to different biological processes. Concurrently, 22 differential miRNAs were also determined in L02/HBx cells. Furthermore, integrated analysis of miRNA and mRNA expression profiles identified a core miRNA-mRNA regulatory network that is correlated with the carcinogenic role of HBx. CONCLUSION Collectively, the miRNA-mRNA network-based analysis could be useful to elucidate the potential role of HBx in liver cell malignant transformation and shed light on the underlying molecular mechanism and novel therapy targets for hepatocellular carcinoma. PMID:28348484

  20. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155

    PubMed Central

    Chung, Kwan-Ho; Hart, Christopher C.; Al-Bassam, Sarmad; Avery, Adam; Taylor, Jennifer; Patel, Paresh D.; Vojtek, Anne B.; Turner, David L.

    2006-01-01

    Vector-based RNA interference (RNAi) has emerged as a valuable tool for analysis of gene function. We have developed new RNA polymerase II expression vectors for RNAi, designated SIBR vectors, based upon the non-coding RNA BIC. BIC contains the miR-155 microRNA (miRNA) precursor, and we find that expression of a short region of the third exon of mouse BIC is sufficient to produce miR-155 in mammalian cells. The SIBR vectors use a modified miR-155 precursor stem–loop and flanking BIC sequences to express synthetic miRNAs complementary to target RNAs. Like RNA polymerase III driven short hairpin RNA vectors, the SIBR vectors efficiently reduce target mRNA and protein expression. The synthetic miRNAs can be expressed from an intron, allowing coexpression of a marker or other protein with the miRNAs. In addition, intronic expression of a synthetic miRNA from a two intron vector enhances RNAi. A SIBR vector can express two different miRNAs from a single transcript for effective inhibition of two different target mRNAs. Furthermore, at least eight tandem copies of a synthetic miRNA can be expressed in a polycistronic transcript to increase the inhibition of a target RNA. The SIBR vectors are flexible tools for a variety of RNAi applications. PMID:16614444

  1. Noncytopathic Sindbis virus RNA vectors for heterologous gene expression

    PubMed Central

    Agapov, Eugene V.; Frolov, Ilya; Lindenbach, Brett D.; Prágai, Béla M.; Schlesinger, Sondra; Rice, Charles M.

    1998-01-01

    Infection of vertebrate cells with alphaviruses normally leads to prodigious expression of virus-encoded genes and a dramatic inhibition of host protein synthesis. Recombinant Sindbis viruses and replicons have been useful as vectors for high level foreign gene expression, but the cytopathic effects of viral replication have limited their use to transient studies. We recently selected Sindbis replicons capable of persistent, noncytopathic growth in BHK cells and describe here a new generation of Sindbis vectors useful for long-term foreign gene expression based on such replicons. Foreign genes of interest as well as the dominant selectable marker puromycin N-acteyltransferase, which confers resistance to the drug puromycin, were expressed as subgenomic transcripts of noncytopathic replicons or defective-interfering genomes complemented in trans by a replicon. Based on these strategies, we developed vectors that can be initiated via either RNA or DNA transfection and analyzed them for their level and stability of foreign gene expression. Noncytopathic Sindbis vectors express reasonably high levels of protein in nearly every cell. These vectors should prove to be flexible tools for the rapid expression of heterologous genes under conditions in which cellular metabolism is not perturbed, and we illustrate their utility with a number of foreign proteins. PMID:9789028

  2. Effect of fluoride and low versus high levels of dietary calcium on mRNA expression of osteoprotegerin and osteoprotegerin ligand in the bone of rats.

    PubMed

    Yu, Jun; Gao, Yanhui; Sun, Dianjun

    2013-06-01

    The ratio of osteoprotegerin ligand (OPGL) to osteoprotegerin (OPG) determines the delicate balance between bone resorption and synthesis. The main objective of the present study is to investigate the possible role of OPGL and OPG in the bone metabolism of rats exposed to fluoride and the protective or aggravating effect of calcium (Ca). In a 6-month study, 270 weanling male Sprague-Dawley rats weighing between 70 and 90 g were divided randomly into six groups of 45 rats in each group. Three groups (groups I, III, and V)served as controls and drank deionized water and were fed purified rodent diets containing either 1,000 mg Ca/kg (low Ca), 5,000 mg Ca/kg (normal Ca), or 20,000 mg Ca/kg (high Ca). The three experimental groups (groups II, IV, and VI) were given the same diets but they drank water containing 100 mg F ion/L (from NaF). Every 2 months 15 rats were randomly selected from each group and sacrificed for the study. The ratio of OPGL mRNA to OPG mRNA was significantly increased by the sixth month in the distal femur joints of the F-exposed rats. Serum tartrate-resistant acid phosphatase activity and serum calcitonin activity in the F-exposed groups was increased, although changes were not apparent in the serum alkaline phosphatase or Gla-containing proteins, especially in the low calcium and high calcium diet F-exposed groups. The results indicated that OPG and OPGL may play important roles in skeletal fluorosis, and that fluoride may enhance osteoclast formation and induce osteoclastic bone destruction. A high Ca diet did not play a protective role, but rather may aggravate the damage of fluoride.

  3. Integration of quantitated expression estimates from polyA-selected and rRNA-depleted RNA-seq libraries.

    PubMed

    Bush, Stephen J; McCulloch, Mary E B; Summers, Kim M; Hume, David A; Clark, Emily L

    2017-06-13

    The availability of fast alignment-free algorithms has greatly reduced the computational burden of RNA-seq processing, especially for relatively poorly assembled genomes. Using these approaches, previous RNA-seq datasets could potentially be processed and integrated with newly sequenced libraries. Confounding factors in such integration include sequencing depth and methods of RNA extraction and selection. Different selection methods (typically, either polyA-selection or rRNA-depletion) omit different RNAs, resulting in different fractions of the transcriptome being sequenced. In particular, rRNA-depleted libraries sample a broader fraction of the transcriptome than polyA-selected libraries. This study aimed to develop a systematic means of accounting for library type that allows data from these two methods to be compared. The method was developed by comparing two RNA-seq datasets from ovine macrophages, identical except for RNA selection method. Gene-level expression estimates were obtained using a two-part process centred on the high-speed transcript quantification tool Kallisto. Firstly, a set of reference transcripts was defined that constitute a standardised RNA space, with expression from both datasets quantified against it. Secondly, a simple ratio-based correction was applied to the rRNA-depleted estimates. The outcome is an almost perfect correlation between gene expression estimates, independent of library type and across the full range of levels of expression. A combination of reference transcriptome filtering and a ratio-based correction can create equivalent expression profiles from both polyA-selected and rRNA-depleted libraries. This approach will allow meta-analysis and integration of existing RNA-seq data into transcriptional atlas projects.

  4. The centrality of RNA for engineering gene expression

    PubMed Central

    Chappell, James; Takahashi, Melissa K; Meyer, Sarai; Loughrey, David; Watters, Kyle E; Lucks, Julius

    2013-01-01

    Synthetic biology holds promise as both a framework for rationally engineering biological systems and a way to revolutionize how we fundamentally understand them. Essential to realizing this promise is the development of strategies and tools to reliably and predictably control and characterize sophisticated patterns of gene expression. Here we review the role that RNA can play towards this goal and make a case for why this versatile, designable, and increasingly characterizable molecule is one of the most powerful substrates for engineering gene expression at our disposal. We discuss current natural and synthetic RNA regulators of gene expression acting at key points of control – transcription, mRNA degradation, and translation. We also consider RNA structural probing and computational RNA structure predication tools as a way to study RNA structure and ultimately function. Finally, we discuss how next-generation sequencing methods are being applied to the study of RNA and to the characterization of RNA's many properties throughout the cell. PMID:24124015

  5. RNA-Skim: a rapid method for RNA-Seq quantification at transcript level.

    PubMed

    Zhang, Zhaojun; Wang, Wei

    2014-06-15

    RNA-Seq technique has been demonstrated as a revolutionary means for exploring transcriptome because it provides deep coverage and base pair-level resolution. RNA-Seq quantification is proven to be an efficient alternative to Microarray technique in gene expression study, and it is a critical component in RNA-Seq differential expression analysis. Most existing RNA-Seq quantification tools require the alignments of fragments to either a genome or a transcriptome, entailing a time-consuming and intricate alignment step. To improve the performance of RNA-Seq quantification, an alignment-free method, Sailfish, has been recently proposed to quantify transcript abundances using all k-mers in the transcriptome, demonstrating the feasibility of designing an efficient alignment-free method for transcriptome quantification. Even though Sailfish is substantially faster than alternative alignment-dependent methods such as Cufflinks, using all k-mers in the transcriptome quantification impedes the scalability of the method. We propose a novel RNA-Seq quantification method, RNA-Skim, which partitions the transcriptome into disjoint transcript clusters based on sequence similarity, and introduces the notion of sig-mers, which are a special type of k-mers uniquely associated with each cluster. We demonstrate that the sig-mer counts within a cluster are sufficient for estimating transcript abundances with accuracy comparable with any state-of-the-art method. This enables RNA-Skim to perform transcript quantification on each cluster independently, reducing a complex optimization problem into smaller optimization tasks that can be run in parallel. As a result, RNA-Skim uses <4% of the k-mers and <10% of the CPU time required by Sailfish. It is able to finish transcriptome quantification in <10 min per sample by using just a single thread on a commodity computer, which represents >100 speedup over the state-of-the-art alignment-based methods, while delivering comparable or higher

  6. RNA-Skim: a rapid method for RNA-Seq quantification at transcript level

    PubMed Central

    Zhang, Zhaojun; Wang, Wei

    2014-01-01

    Motivation: RNA-Seq technique has been demonstrated as a revolutionary means for exploring transcriptome because it provides deep coverage and base pair-level resolution. RNA-Seq quantification is proven to be an efficient alternative to Microarray technique in gene expression study, and it is a critical component in RNA-Seq differential expression analysis. Most existing RNA-Seq quantification tools require the alignments of fragments to either a genome or a transcriptome, entailing a time-consuming and intricate alignment step. To improve the performance of RNA-Seq quantification, an alignment-free method, Sailfish, has been recently proposed to quantify transcript abundances using all k-mers in the transcriptome, demonstrating the feasibility of designing an efficient alignment-free method for transcriptome quantification. Even though Sailfish is substantially faster than alternative alignment-dependent methods such as Cufflinks, using all k-mers in the transcriptome quantification impedes the scalability of the method. Results: We propose a novel RNA-Seq quantification method, RNA-Skim, which partitions the transcriptome into disjoint transcript clusters based on sequence similarity, and introduces the notion of sig-mers, which are a special type of k-mers uniquely associated with each cluster. We demonstrate that the sig-mer counts within a cluster are sufficient for estimating transcript abundances with accuracy comparable with any state-of-the-art method. This enables RNA-Skim to perform transcript quantification on each cluster independently, reducing a complex optimization problem into smaller optimization tasks that can be run in parallel. As a result, RNA-Skim uses <4% of the k-mers and <10% of the CPU time required by Sailfish. It is able to finish transcriptome quantification in <10 min per sample by using just a single thread on a commodity computer, which represents >100 speedup over the state-of-the-art alignment-based methods, while delivering

  7. Canonical correlation analysis for RNA-seq co-expression networks

    PubMed Central

    Hong, Shengjun; Chen, Xiangning; Jin, Li; Xiong, Momiao

    2013-01-01

    Digital transcriptome analysis by next-generation sequencing discovers substantial mRNA variants. Variation in gene expression underlies many biological processes and holds a key to unravelling mechanism of common diseases. However, the current methods for construction of co-expression networks using overall gene expression are originally designed for microarray expression data, and they overlook a large number of variations in gene expressions. To use information on exon, genomic positional level and allele-specific expressions, we develop novel component-based methods, single and bivariate canonical correlation analysis, for construction of co-expression networks with RNA-seq data. To evaluate the performance of our methods for co-expression network inference with RNA-seq data, they are applied to lung squamous cell cancer expression data from TCGA database and our bipolar disorder and schizophrenia RNA-seq study. The preliminary results demonstrate that the co-expression networks constructed by canonical correlation analysis and RNA-seq data provide rich genetic and molecular information to gain insight into biological processes and disease mechanism. Our new methods substantially outperform the current statistical methods for co-expression network construction with microarray expression data or RNA-seq data based on overall gene expression levels. PMID:23460206

  8. Airway Epithelial miRNA Expression Is Altered in Asthma

    PubMed Central

    Solberg, Owen D.; Ostrin, Edwin J.; Love, Michael I.; Peng, Jeffrey C.; Bhakta, Nirav R.; Nguyen, Christine; Solon, Margaret; Nguyen, Cindy; Barczak, Andrea J.; Zlock, Lorna T.; Blagev, Denitza P.; Finkbeiner, Walter E.; Ansel, K. Mark; Arron, Joseph R.; Erle, David J.

    2012-01-01

    Rationale: Changes in airway epithelial cell differentiation, driven in part by IL-13, are important in asthma. Micro-RNAs (miRNAs) regulate cell differentiation in many systems and could contribute to epithelial abnormalities in asthma. Objectives: To determine whether airway epithelial miRNA expression is altered in asthma and identify IL-13–regulated miRNAs. Methods: We used miRNA microarrays to analyze bronchial epithelial brushings from 16 steroid-naive subjects with asthma before and after inhaled corticosteroids, 19 steroid-using subjects with asthma, and 12 healthy control subjects, and the effects of IL-13 and corticosteroids on cultured bronchial epithelial cells. We used quantitative polymerase chain reaction to confirm selected microarray results. Measurements and Main Results: Most (12 of 16) steroid-naive subjects with asthma had a markedly abnormal pattern of bronchial epithelial miRNA expression by microarray analysis. Compared with control subjects, 217 miRNAs were differentially expressed in steroid-naive subjects with asthma and 200 in steroid-using subjects with asthma (false discovery rate < 0.05). Treatment with inhaled corticosteroids had modest effects on miRNA expression in steroid-naive asthma, inducing a statistically significant (false discovery rate < 0.05) change for only nine miRNAs. qPCR analysis confirmed differential expression of 22 miRNAs that were highly differentially expressed by microarrays. IL-13 stimulation recapitulated changes in many differentially expressed miRNAs, including four members of the miR-34/449 family, and these changes in miR-34/449 family members were resistant to corticosteroids. Conclusions: Dramatic alterations of airway epithelial cell miRNA levels are a common feature of asthma. These alterations are only modestly corrected by inhaled corticosteroids. IL-13 effects may account for some of these alterations, including repression of miR-34/449 family members that have established roles in airway

  9. The mRNA and Proteins Expression Levels Analysis of TC-1 Cells Immune Response to H9N2 Avian Influenza Virus

    PubMed Central

    Liu, Jiyuan; Li, Ning; Meng, Dan; Hao, Mengchan; Wei, Liangmeng; Chai, Tongjie

    2016-01-01

    Since 1994, the H9N2 avian influenza virus (AIV) has spread widely in mainland China, causing great economic losses to the poultry industry there. Subsequently, it was found that the H9N2 AIV had the ability to infect mammals, which gave rise to great panic. In order to investigate the immune response of a host infected with H9N2 AIV, TC-1 cells were set as a model in this research. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay methods were used to study the expression changes of pattern recognition receptors (PRRs), inflammatory cytokines, and chemokines in AIV-infected TC-1 cells. Our research found that TC-1 cells had similar susceptibility to both CK/SD/w3 (A/Chicken/Shandong/W3/2012) and CK/SD/w4 (A/Chicken/Shandong/W4/2012) H9N2 isolates, while the CK/SD/w3 isolate had a stronger capability of replication in the TC-1 cells. At the same time, the expression of PRRs (melanoma differentiation-associated gene 5, MDA-5), cytokines [interleukin (IL)-1β and IL-6], and chemokines [regulated on activation, normal T cell expressed and secreted (RANTES) and interferon-γ-induced protein-10 kDa (IP-10)] were significantly up-regulated. These results indicated that MDA-5, IL-1β, IL-6, RANTES, and IP-10 might play important roles in the host immune response to H9N2 AIV infection. This study provided useful information for further understanding the interaction between H9N2 virus infection and host immunity, and had certain guiding significance for the prevention and treatment of this disease. PMID:27446066

  10. Quantifying circular RNA expression from RNA-seq data using model-based framework.

    PubMed

    Li, Musheng; Xie, Xueying; Zhou, Jing; Sheng, Mengying; Yin, Xiaofeng; Ko, Eun-A; Zhou, Tong; Gu, Wanjun

    2017-07-15

    Circular RNAs (circRNAs) are a class of non-coding RNAs that are widely expressed in various cell lines and tissues of many organisms. Although the exact function of many circRNAs is largely unknown, the cell type-and tissue-specific circRNA expression has implicated their crucial functions in many biological processes. Hence, the quantification of circRNA expression from high-throughput RNA-seq data is becoming important to ascertain. Although many model-based methods have been developed to quantify linear RNA expression from RNA-seq data, these methods are not applicable to circRNA quantification. Here, we proposed a novel strategy that transforms circular transcripts to pseudo-linear transcripts and estimates the expression values of both circular and linear transcripts using an existing model-based algorithm, Sailfish. The new strategy can accurately estimate transcript expression of both linear and circular transcripts from RNA-seq data. Several factors, such as gene length, amount of expression and the ratio of circular to linear transcripts, had impacts on quantification performance of circular transcripts. In comparison to count-based tools, the new computational framework had superior performance in estimating the amount of circRNA expression from both simulated and real ribosomal RNA-depleted (rRNA-depleted) RNA-seq datasets. On the other hand, the consideration of circular transcripts in expression quantification from rRNA-depleted RNA-seq data showed substantial increased accuracy of linear transcript expression. Our proposed strategy was implemented in a program named Sailfish-cir. Sailfish-cir is freely available at https://github.com/zerodel/Sailfish-cir . tongz@medicine.nevada.edu or wanjun.gu@gmail.com. Supplementary data are available at Bioinformatics online.

  11. Spironolactone Regulates HCN Protein Expression Through Micro-RNA-1 in Rats With Myocardial Infarction.

    PubMed

    Yu, Hua-Dong; Xia, Shuang; Zha, Cheng-Qin; Deng, Song-Bai; Du, Jian-Lin; She, Qiang

    2015-06-01

    Emerging evidence has shown that aldosterone blockers reduced the incidence of ventricular arrhythmias in patients with myocardial infarction (MI). However, the mechanism remains unknown. In this study, we investigated the mechanism by which spironolactone, a classic aldosterone blocker, regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN) protein expression in ischemic rat myocardium after MI. Eighteen rats surviving 24 hours after MI were randomly assigned into 3 groups: MI, spironolactone, and spironolactone + antagomir-1. Six sham-operated rats had a suture loosely tied around the left coronary artery, without ligation. The border zone of the myocardial infarct was collected from each rat at 1 week after MI. HCN2 and HCN4 protein and messenger RNA (mRNA) level were measured in addition to miRNA-1 levels. Spironolactone significantly increased miRNA-1 levels and downregulated HCN2 and HCN4 protein and mRNA levels. miRNA-1 suppression with antagomir-1 increased HCN2 and HCN4 protein levels; however, HCN2 and HCN4 mRNA levels were not affected. These results suggested that spironolactone could increase miRNA-1 expression in ischemic rat myocardium after MI and that the upregulation of miRNA-1 expression partially contributed to the posttranscriptional repression of HCN protein expression, which may contribute to the effect of spironolactone to reduce the incidence of MI-associated ventricular arrhythmias.

  12. Effects of polycystic ovary syndrome (PCOS), sex hormones, and obesity on circulating miRNA-21, miRNA-27b, miRNA-103, and miRNA-155 expression.

    PubMed

    Murri, Mora; Insenser, María; Fernández-Durán, Elena; San-Millán, José L; Escobar-Morreale, Héctor F

    2013-11-01

    MicroRNAs (miRNAs) are small, noncoding RNA sequences that negatively regulate gene expression at the post-transcriptional level. miRNA-21, miRNA-27b, miRNA-103, and miRNA-155 have been associated with metabolic disorders such as obesity and diabetes, which are also associated with polycystic ovary syndrome (PCOS). We aimed to evaluate the effects of sex, sex hormones, and PCOS and their interactions with obesity on the expression in the circulation of these miRNAs. This was a case-control study. The setting was an academic hospital. We included 12 control women, 12 patients with PCOS, and 12 men selected as to have similar body mass index (BMI) and age. Six subjects per group had normal weight (BMI < 25 kg/m(2)), and six subjects per group were obese (BMI ≥ 30 kg/m(2)). Blood samples were collected early in the morning after a 12-hour fast. We measured whole blood expression of miRNA-21, miRNA-27b, miRNA-103, and miRNA-155. Obesity significantly reduced the expression of miRNA-21, miRNA-27b, and miRNA-103. However, there was a significant interaction between obesity and the group of subjects in the expression of miRNA-21, miRNA-27b, miRNA-103, and miRNA-155 consisting of obesity reducing the expression of these miRNAs in control woman and men, but tending to increase their expression in women with PCOS. These differences paralleled those observed in serum T concentrations. The present results suggest that miRNAs that play an important role in metabolic and immune system processes are influenced by obesity and circulating androgen concentrations.

  13. Molecular Characterization of Aquaporin 1 and Aquaporin 3 from the Gills of the African Lungfish, Protopterus annectens, and Changes in Their Branchial mRNA Expression Levels and Protein Abundance during Three Phases of Aestivation

    PubMed Central

    Chng, You R.; Ong, Jasmine L. Y.; Ching, Biyun; Chen, Xiu L.; Hiong, Kum C.; Wong, Wai P.; Chew, Shit F.; Lam, Siew H.; Ip, Yuen K.

    2016-01-01

    African lungfishes can undergo long periods of aestivation on land during drought. During aestivation, lungfishes are confronted with desiccation and dehydration, and their gills become non-functional and covered with a thick layer of dried mucus. Aquaporins (Aqps) are a superfamily of integral membrane proteins which generally facilitate the permeation of water through plasma membranes. This study aimed to obtain the complete cDNA coding sequences of aqp1 and aqp3 from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Dendrogramic analyses of the deduced Aqp1 and Aqp3 amino acid sequences of P. annectens revealed their close relationships with those of Latimeria chalumnae and tetrapods. During the induction phase, there were significant decreases in the transcript levels of aqp1 and aqp3 in the gills of P. annectens, but the branchial Aqp1 and Aqp3 protein abundance remained unchanged. As changes in transcription might precede changes in translation, this could be regarded as an adaptive response to decrease the protein abundance of Aqp1 and Aqp3 in the subsequent maintenance phase of aestivation. As expected, the branchial transcript levels and protein abundance of aqp1/Aqp1 and aqp3/Aqp3 were significantly down-regulated during the maintenance phase, probably attributable to the shutdown of branchial functions and the cessation of volume regulation of branchial epithelial cells. Additionally, these changes could reduce the loss of water through branchial epithelial surfaces, supplementing the anti-desiccating property of the dried mucus. Upon arousal, it was essential for the lungfish to restore branchial functions. Indeed, the protein abundance of Aqp1 recovered partially, with complete recovery of mRNA expression level and protein abundance of Aqp3, in the gills of P. annectens after 3 days of arousal. These results provide insights into

  14. Molecular Characterization of Aquaporin 1 and Aquaporin 3 from the Gills of the African Lungfish, Protopterus annectens, and Changes in Their Branchial mRNA Expression Levels and Protein Abundance during Three Phases of Aestivation.

    PubMed

    Chng, You R; Ong, Jasmine L Y; Ching, Biyun; Chen, Xiu L; Hiong, Kum C; Wong, Wai P; Chew, Shit F; Lam, Siew H; Ip, Yuen K

    2016-01-01

    African lungfishes can undergo long periods of aestivation on land during drought. During aestivation, lungfishes are confronted with desiccation and dehydration, and their gills become non-functional and covered with a thick layer of dried mucus. Aquaporins (Aqps) are a superfamily of integral membrane proteins which generally facilitate the permeation of water through plasma membranes. This study aimed to obtain the complete cDNA coding sequences of aqp1 and aqp3 from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Dendrogramic analyses of the deduced Aqp1 and Aqp3 amino acid sequences of P. annectens revealed their close relationships with those of Latimeria chalumnae and tetrapods. During the induction phase, there were significant decreases in the transcript levels of aqp1 and aqp3 in the gills of P. annectens, but the branchial Aqp1 and Aqp3 protein abundance remained unchanged. As changes in transcription might precede changes in translation, this could be regarded as an adaptive response to decrease the protein abundance of Aqp1 and Aqp3 in the subsequent maintenance phase of aestivation. As expected, the branchial transcript levels and protein abundance of aqp1/Aqp1 and aqp3/Aqp3 were significantly down-regulated during the maintenance phase, probably attributable to the shutdown of branchial functions and the cessation of volume regulation of branchial epithelial cells. Additionally, these changes could reduce the loss of water through branchial epithelial surfaces, supplementing the anti-desiccating property of the dried mucus. Upon arousal, it was essential for the lungfish to restore branchial functions. Indeed, the protein abundance of Aqp1 recovered partially, with complete recovery of mRNA expression level and protein abundance of Aqp3, in the gills of P. annectens after 3 days of arousal. These results provide insights into

  15. Non-functional genes repaired at the RNA level.

    PubMed

    Burger, Gertraud

    2016-01-01

    Genomes and genes continuously evolve. Gene sequences undergo substitutions, deletions or nucleotide insertions; mobile genetic elements invade genomes and interleave in genes; chromosomes break, even within genes, and pieces reseal in reshuffled order. To maintain functional gene products and assure an organism's survival, two principal strategies are used - either repair of the gene itself or of its product. I will introduce common types of gene aberrations and how gene function is restored secondarily, and then focus on systematically fragmented genes found in a poorly studied protist group, the diplonemids. Expression of their broken genes involves restitching of pieces at the RNA-level, and substantial RNA editing, to compensate for point mutations. I will conclude with thoughts on how such a grotesquely unorthodox system may have evolved, and why this group of organisms persists and thrives since tens of millions of years.

  16. ProteoMirExpress: inferring microRNA and protein-centered regulatory networks from high-throughput proteomic and mRNA expression data.

    PubMed

    Qin, Jing; Li, Mulin Jun; Wang, Panwen; Wong, Nai Sum; Wong, Maria P; Xia, Zhengyuan; Tsao, George S W; Zhang, Michael Q; Wang, Junwen

    2013-11-01

    MicroRNAs (miRNAs) regulate gene expression through translational repression and RNA degradation. Recently developed high-throughput proteomic methods measure gene expression changes at protein level and therefore can reveal the direct effects of miRNAs' translational repression. Here, we present a web server, ProteoMirExpress, that integrates proteomic and mRNA expression data together to infer miRNA-centered regulatory networks. With both types of high-throughput data from the users, ProteoMirExpress is able to discover not only miRNA targets that have decreased mRNA, but also subgroups of targets with suppressed proteins whose mRNAs are not significantly changed or with decreased mRNA whose proteins are not significantly changed, which are usually ignored by most current methods. Furthermore, both direct and indirect targets of miRNAs can be detected. Therefore, ProteoMirExpress provides more comprehensive miRNA-centered regulatory networks. We used several published data to assess the quality of our inferred networks and prove the value of our server. ProteoMirExpress is available online, with free access to academic users.

  17. Extent, Causes, and Consequences of Small RNA Expression Variation in Human Adipose Tissue

    PubMed Central

    Knights, Andrew J.; Abreu-Goodger, Cei; van de Bunt, Martijn; Guerra-Assunção, José Afonso; Bartonicek, Nenad; van Dongen, Stijn; Mägi, Reedik; Nisbet, James; Barrett, Amy; Rantalainen, Mattias; Nica, Alexandra C.; Quail, Michael A.; Small, Kerrin S.; Glass, Daniel; Enright, Anton J.; Winn, John; Deloukas, Panos; Dermitzakis, Emmanouil T.; McCarthy, Mark I.; Spector, Timothy D.; Durbin, Richard; Lindgren, Cecilia M.

    2012-01-01

    Small RNAs are functional molecules that modulate mRNA transcripts and have been implicated in the aetiology of several common diseases. However, little is known about the extent of their variability within the human population. Here, we characterise the extent, causes, and effects of naturally occurring variation in expression and sequence of small RNAs from adipose tissue in relation to genotype, gene expression, and metabolic traits in the MuTHER reference cohort. We profiled the expression of 15 to 30 base pair RNA molecules in subcutaneous adipose tissue from 131 individuals using high-throughput sequencing, and quantified levels of 591 microRNAs and small nucleolar RNAs. We identified three genetic variants and three RNA editing events. Highly expressed small RNAs are more conserved within mammals than average, as are those with highly variable expression. We identified 14 genetic loci significantly associated with nearby small RNA expression levels, seven of which also regulate an mRNA transcript level in the same region. In addition, these loci are enriched for variants significant in genome-wide association studies for body mass index. Contrary to expectation, we found no evidence for negative correlation between expression level of a microRNA and its target mRNAs. Trunk fat mass, body mass index, and fasting insulin were associated with more than twenty small RNA expression levels each, while fasting glucose had no significant associations. This study highlights the similar genetic complexity and shared genetic control of small RNA and mRNA transcripts, and gives a quantitative picture of small RNA expression variation in the human population. PMID:22589741

  18. Expression of RXR, EcR, E75 and VtG mRNA levels in the hepatopancreas and ovary of the freshwater edible crab, Oziothelphusa senex senex (Fabricius, 1798) during different vitellogenic stages

    NASA Astrophysics Data System (ADS)

    Girish, B. P.; Swetha, CH.; Reddy, P. Sreenivasula

    2015-04-01

    The objective of the present study was to investigate the expression profile of retinoid X receptor ( RXR), ecdysone receptor ( EcR) and ecdysone inducible gene ( E75) in the hepatopancreas and ovary of Oziothelphusa senex senex during different vitellogenic stages. RXR, EcR and E75 complementary DNAs (cDNAs) were isolated from the ovaries, while vitellogenin ( VtG) cDNA was isolated from the hepatopancreas of vitellogenic female crab. Deduced amino acid sequence of the messenger RNAs (mRNAs) of RXR, EcR and E75 showed more than 80 % identity with their respective mRNAs of other brachyurans. VtG mRNA was not detected in the ovary throughout vitellogenic stages. RXR and EcR were significantly increased in the ovaries during vitellogenic stage I. The levels of EcR, E75 and VtG in the hepatopancreas elevated significantly during vitellogenic stages I and II, whereas the levels of RXR elevated only in vitellogenic stage I. During vitellogenic stage III, the levels of RXR, EcR and VtG in the hepatopancreas were significantly decreased. Immunoprecipitation analysis revealed the presence of VtG in the haemolymph, hepatopancreas and ovary extracts from the females but absent in haemolymph and hepatopancreas extract of males. It can be inferred that RXR, EcR and E75 are involved in the regulation of synthesis of VtG in hepatopancreas, whereas in ovary, it is hypothesized that they play an important role in the uptake of VtG from the haemolymph, probably by regulating the levels of vitellogenin receptor. These are the first data showing an association between the expression levels of RXR, EcR and E75 and vitellogenesis and provide an alternative molecular intervention mechanism to the traditional eyestalk ablation to induce vitellogenesis and ovarian maturation in crustaceans.

  19. Long noncoding RNA #32 contributes to antiviral responses by controlling interferon-stimulated gene expression

    PubMed Central

    Nishitsuji, Hironori; Ujino, Saneyuki; Yoshio, Sachiyo; Sugiyama, Masaya; Mizokami, Masashi; Kanto, Tatsuya; Shimotohno, Kunitada

    2016-01-01

    Despite the breadth of knowledge that exists regarding the function of long noncoding RNAs (lncRNAs) in biological phenomena, the role of lncRNAs in host antiviral responses is poorly understood. Here, we report that lncRNA#32 is associated with type I IFN signaling. The silencing of lncRNA#32 dramatically reduced the level of IFN-stimulated gene (ISG) expression, resulting in sensitivity to encephalomyocarditis virus (EMCV) infection. In contrast, the ectopic expression of lncRNA#32 significantly suppressed EMCV replication, suggesting that lncRNA#32 positively regulates the host antiviral response. We further demonstrated the suppressive function of lncRNA#32 in hepatitis B virus and hepatitis C virus infection. lncRNA#32 bound to activating transcription factor 2 (ATF2) and regulated ISG expression. Our results reveal a role for lncRNA#32 in host antiviral responses. PMID:27582466

  20. A high level of transgenic viral small RNA is associated with broad potyvirus resistance in cucurbits.

    PubMed

    Leibman, Diana; Wolf, Dalia; Saharan, Vinod; Zelcer, Aaron; Arazi, Tzahi; Yoel, Shiboleth; Gaba, Victor; Gal-On, Amit

    2011-10-01

    Gene-silencing has been used to develop resistance against many plant viruses but little is known about the transgenic small-interfering RNA (t-siRNA) that confers this resistance. Transgenic cucumber and melon lines harboring a hairpin construct of the Zucchini yellow mosaic potyvirus (ZYMV) HC-Pro gene accumulated different levels of t-siRNA (6 to 44% of total siRNA) and exhibited resistance to systemic ZYMV infection. Resistance to Watermelon mosaic potyvirus and Papaya ring spot potyvirus-W was also observed in a cucumber line that accumulated high levels of t-siRNA (44% of total siRNA) and displayed significantly increased levels of RNA-dependent RNA (RDR)1 and Argonaute 1, as compared with the other transgenic and nontransformed plants. The majority of the t-siRNA sequences were 21 to 22 nucleotides in length and sense strand biased. The t-siRNA were not uniformly distributed throughout the transgene but concentrated in "hot spots" in a pattern resembling that of the viral siRNA peaks observed in ZYMV-infected cucumber and melon. Mutations in ZYMV at the loci associated with the siRNA peaks did not break this resistance, indicating that hot spot t-siRNA may not be essential for resistance. This study shows that resistance based on gene-silencing can be effective against related viruses and is probably correlated with t-siRNA accumulation and increased expression of RDR1.

  1. Increased expression of the long noncoding RNA CRNDE-h indicates a poor prognosis in colorectal cancer, and is positively correlated with IRX5 mRNA expression

    PubMed Central

    Liu, Tong; Zhang, Xin; Yang, Yong-mei; Du, Lu-tao; Wang, Chuan-xin

    2016-01-01

    Background The long noncoding RNA (lncRNA) colorectal neoplasia differentially expressed – h (CRNDE-h) plays important roles in the early stages of human development and cancer progression. We investigated the expression and clinical significance of lncRNA CRNDE-h in colorectal cancer (CRC). Methods The expression level of lncRNA CRNDE-h was analyzed in 142 CRC tissues and 142 paired adjacent nontumorous tissues, along with 21 inflammatory bowel diseases, 69 hyperplastic polyp, and 73 colorectal adenoma samples, using quantitative real-time polymerase chain reaction. The association between lncRNA CRNDE-h, and Iroquois homeobox protein 5 (IRX5) mRNA was examined in the same 142 CRC tissues. Results We found that lncRNA CRNDE-h level was elevated in the CRC and adenoma groups compared with the other groups (all at P<0.001). In CRC, upregulation of lncRNA CRNDE-h was significantly correlated with large tumor size, positive regional lymph node metastasis, and distant metastasis (all at P<0.05). Area under the curve for lncRNA CRNDE-h showed diagnostic capability for distinguishing CRC from other groups. Patients with CRC with high lncRNA CRNDE-h expression level had poorer overall survival than those with low lncRNA CRNDE-h expression (log-rank test, P<0.001). Further, multivariable Cox regression analysis suggested that increased expression of lncRNA CRNDE-h was an independent prognostic indicator for CRC (hazard ratio [HR]=2.173; 95% confidence interval [CI], 1.282–3.684, P=0.004). Furthermore, lncRNA CRNDE-h expression was positively correlated with IRX5 mRNA in CRC tissues. Conclusions Our data offers convincing evidence for the first time that lncRNA CRNDE-h is associated with adverse clinical characteristics and poor prognosis, which suggests that it might play an important role in CRC development and progression and might have clinical potential as a useful prognostic predictor. PMID:27042112

  2. Characterizing exogenous mRNA delivery, trafficking, cytoplasmic release and RNA-protein correlations at the level of single cells.

    PubMed

    Kirschman, Jonathan L; Bhosle, Sushma; Vanover, Daryll; Blanchard, Emmeline L; Loomis, Kristin H; Zurla, Chiara; Murray, Kathryn; Lam, Blaine C; Santangelo, Philip J

    2017-07-07

    The use of synthetic messenger ribonucleic acid (mRNA) to express specific proteins is a highly promising therapeutic and vaccine approach that avoids many safety issues associated with viral or DNA-based systems. However, in order to optimize mRNA designs and delivery, technology advancements are required to study fundamental mechanisms of mRNA uptake and localization at the single-cell and tissue level. Here, we present a single RNA sensitive fluorescent labeling method which allows us to label and visualize synthetic mRNA without significantly affecting function. This approach enabled single cell characterization of mRNA uptake and release kinetics from endocytic compartments, the measurement of mRNA/protein correlations, and motivated the investigation of mRNA induced cellular stress, all important mechanisms influencing protein production. In addition, we demonstrated this approach can facilitate near-infrared imaging of mRNA localization in vivo and in ex-vivo tissue sections, which will facilitate mRNA trafficking studies in pre-clinical models. Overall, we demonstrate the ability to study fundamental mechanisms necessary to optimize delivery and therapeutic strategies, in order to design the next generation of novel mRNA therapeutics and vaccines. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Expression and regulatory effects of microRNA-182 in osteosarcoma cells: A pilot study

    PubMed Central

    BIAN, DONG-LIN; WANG, XUE-MEI; HUANG, KUN; ZHAI, QI-XI; YU, GUI-BO; WU, CHENG-HUA

    2016-01-01

    The aim of the present study was to evaluate the expression level of microRNA-182 (miRNA-182) in human osteosarcoma (OS) MG-63 cells and OS tissues, and to elucidate the effect of miRNA-182 on the biological activity of tumors. In the present study, the expression of miRNA-182 in human OS MG-63 cells, OS tissues and normal osteoblast hFOB1.19 cells was determined using quantitative polymerase chain reaction. Subsequently, a miRNA-182 mimic and inhibitor were utilized to regulate the expression level of this miRNA in MG-63 cells. Cell viability and proliferation were examined using cell counting kit-8 assays, and cell apoptosis was detected by flow cytometry. Cell invasion and migration assays were performed using Transwell chambers to analyze the biological functions of miRNA-182 in vitro. The present study demonstrated that the expression level of miRNA-182 in MG-63 cells and OS tissues was significantly increased compared with the hFOB1.19 cell line (P<0.05). The present study successfully performed cell transfections of miRNA-182 inhibitor and miRNA-182 mimic into MG-63 cells and achieved the desired transfection efficiency. The present study confirmed that upregulation of miRNA-182 promotes cell apoptosis and inhibits cell viability, proliferation, invasion and migration. The present findings additionally demonstrated that miRNA-182 is a tumor suppressor gene in OS. Therefore, regulating the expression of miRNA-182 may affect the biological behavior of OS cells, which suggests a potential role for miRNA-182 in molecular therapy for malignant tumors. PMID:27123060

  4. [Expression and significance of ERalpha mRNA of residents exposed to arsenic via drinking water].

    PubMed

    Han, Xiaohong; Guo, Zhiwei; Yang, Weihong; Wu, Kegong; Li, Yanhong; Xia, Yajuan

    2014-05-01

    To detect ERbeta mRNA expression of subjects exposed to different arsenic drinking water, and to analyze the potential relationship between their abnormal expression and heart injury caused by arsenic in order to study the endocrine disturbing effect of arsenic. Molecular epidemiological method was used. The study subjects included a total of 273 residents exposed to arsenic via drinking water,and they were divided into four groups according to arsenic concentration, and their blood ERbeta mRNA expression was detected by real-time RT-PCR. The level of ERbeta mRNA expression rose with increasing of water As and urine As (r = 0.159, 0.21, P < 0.05). The prevalence of Q-Tc interval prolongation aggravated with increasing of water As(chi2 = 4.35, P = 0.037), while according with the variation of ERbeta mRNA expression. Tp-Te interval prolonged with increasing of water As (r = 0.199, P = 0.023), as well prolonged with increasing of ERbeta mRNA expression (r = 0.205, P = 0.019). The prevalence of arrhythmia was almost according with the variation of ERbeta mRNA expression. chronic arsenic exposure can potentially disturb ERbeta mRNA expression, as well as there are possible relationship between ERbeta mRNA abnormal expression and Q-Tc interval prolongation and Tp-Te interval prolonged caused by arsenic.

  5. Deregulated messenger RNA expression during T cell apoptosis.

    PubMed Central

    Kerkhoff, E; Ziff, E B

    1995-01-01

    The IL-2 dependent murine cytotoxic T cell line CTLL-2 undergoes programmed cell death when deprived of its specific cytokine. We analyzed the expression of cell cycle related genes after IL-2 deprivation. Here we show that a generalized decrease and re elevation of the levels of mRNA takes place as part of the apoptotic program. The levels of several mRNAs encoding cell cycle functions, including cyclin D2, cyclin D3, cyclin B1, c-myc and max all declined at 1.5-3 h following IL-2 deprivation. Notably, the maxmRNA, which was shown to be expressed in proliferating, growth arrested and differentiated cells, is down regulated with the same kinetics as the other mRNAs. Surprisingly, the mRNAs whose levels declined at 1.5-3 h rose again at 10-14 h, a time which closely followed the time of the first detection of apoptotic DNA degradation, at 8 h, but which precedes actual loss of viability, at 14 h, as measured by trypan blue exclusion. Of all analyzed genes only the expression of the S-phase specific histone H4 gene resists the initial decrease and declines gradually over the course of cell death. Measurement of c-Myc protein synthesis at a late stage of the apoptotic program revealed that the accumulated reinduced mRNA is not translated into protein. Because transcriptional regulation has been shown to be dependent on the chromatin structure, the reinduction may be triggered by relaxation of the chromatin caused by alterations in the chromatin structure of apoptotic cells. Images PMID:8532529

  6. SNP Regulation of microRNA Expression and Subsequent Colon Cancer Risk

    PubMed Central

    Mullany, Lila E.; Wolff, Roger K.; Herrick, Jennifer S.; Buas, Matthew F.; Slattery, Martha L.

    2015-01-01

    Introduction MicroRNAs (miRNAs) regulate messenger RNAs (mRNAs) and as such have been implicated in a variety of diseases, including cancer. MiRNAs regulate mRNAs through binding of the miRNA 5’ seed sequence (~7–8 nucleotides) to the mRNA 3’ UTRs; polymorphisms in these regions have the potential to alter miRNA-mRNA target associations. SNPs in miRNA genes as well as miRNA-target genes have been proposed to influence cancer risk through altered miRNA expression levels. Methods MiRNA-SNPs and miRNA-target gene-SNPs were identified through the literature. We used SNPs from Genome-Wide Association Study (GWAS) data that were matched to individuals with miRNA expression data generated from an Agilent platform for colon tumor and non-tumor paired tissues. These samples were used to evaluate 327 miRNA-SNP pairs for associations between SNPs and miRNA expression levels as well as for SNP associations with colon cancer. Results Twenty-two miRNAs expressed in non-tumor tissue were significantly different by genotype and 21 SNPs were associated with altered tumor/non-tumor differential miRNA expression across genotypes. Two miRNAs were associated with SNP genotype for both non-tumor and tumor/non-tumor differential expression. Of the 41 miRNAs significantly associated with SNPs all but seven were significantly differentially expressed in colon tumor tissue. Two of the 41 SNPs significantly associated with miRNA expression levels were associated with colon cancer risk: rs8176318 (BRCA1), ORAA 1.31 95% CI 1.01, 1.78, and rs8905 (PRKAR1A), ORGG 2.31 95% CI 1.11, 4.77. Conclusion Of the 327 SNPs identified in the literature as being important because of their potential regulation of miRNA expression levels, 12.5% had statistically significantly associations with miRNA expression. However, only two of these SNPs were significantly associated with colon cancer. PMID:26630397

  7. Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue

    PubMed Central

    Sutherland, Lindsey N; Bomhof, Marc R; Capozzi, Lauren C; Basaraba, Susan A U; Wright, David C

    2009-01-01

    The purpose of the present investigation was to explore the effects of exercise and adrenaline on the mRNA expression of PGC-1α, a master regulator of mitochondrial biogenesis, in rat abdominal adipose tissue. We hypothesized that (1) exercise training would increase PGC-1α mRNA expression in association with increases in mitochondrial marker enzymes, (2) adrenaline would increase PGC-1α mRNA expression and (3) the effect of exercise on PGC-1α mRNA expression in white adipose tissue would be attenuated by a β-blocker. Two hours of daily swim training for 4 weeks led to increases in mitochondrial marker proteins and PGC-1α mRNA expression in epididymal and retroperitoneal fat depots. Additionally, a single 2 h bout of exercise led to increases in PGC-1α mRNA expression immediately following exercise cessation. Adrenaline treatment of adipose tissue organ cultures led to dose-dependent increases in PGC-1α mRNA expression. A supra-physiological concentration of adrenaline increased PGC-1α mRNA expression in epididymal but not retroperitoneal adipose tissue. β-Blockade attenuated the effects of an acute bout of exercise on PGC-1α mRNA expression in epididymal but not retroperitoneal fat pads. In summary, this is the first investigation to demonstrate that exercise training, an acute bout of exercise and adrenaline all increase PGC-1α mRNA expression in rat white adipose tissue. Furthermore it would appear that increases in circulating catecholamine levels may be one potential mechanism mediating exercise induced increases in PGC-1α mRNA expression in rat abdominal adipose tissue. PMID:19221126

  8. The effects of dietary betaine supplementation on fatty liver performance, serum parameters, histological changes, methylation status and the mRNA expression level of Spot14alpha in Landes goose fatty liver.

    PubMed

    Su, S Y; Dodson, M V; Li, X B; Li, Q F; Wang, H W; Xie, Z

    2009-11-01

    We evaluated the effects of betaine supplementation on liver weight, liver/body weight, serum parameters and morphological changes. Compared with the control and overfed groups, the geese that were fed the betaine diet showed increased liver weight and decreased abdominal adipose tissue weight compared with the overfeeding groups. Betaine treatment also significantly increased ChE, HDL, LDH and ALT levels (P<0.01 or P<0.05). Decreased macrovesicular steatosis and increased microvesicular steatosis were observed in the betaine-treated group, and the lipid was well-distributed in the betaine supplement group. The expression of S14alpha mRNA in the livers of the betaine-treated geese was higher than that in the control or the overfed geese. We performed sodium bisulfite sequencing of the individual alleles of this region (between +374 and -8 base pairs relative to the transcription start site), containing 33 CpG dinucleotides. In the overfed group expressing higher S14alpha transcripts, the average methylation at the 33 CpGs sites was 87.9%. This contrasted with 69.6% in the control group that showed lower expression of the S14alpha gene (P<0.01). However, no significant change in methylation in the transcription start site was found between the betaine-treated geese (82.6%) and the overfed geese (87.9%). These results indicate that the DNA methylation pattern in the S14alpha gene transcription start site may not be related to the expression of S14alpha transcript in response to betaine supplementation.

  9. Expression of Long Non-Coding RNA (lncRNA) Small Nucleolar RNA Host Gene 1 (SNHG1) Exacerbates Hepatocellular Carcinoma Through Suppressing miR-195

    PubMed Central

    Zhang, Hui; Zhou, Dong; Ying, Mingang; Chen, Minyong; Chen, Peng; Chen, Zhaoshuo; Zhang, Fan

    2016-01-01

    Background Aberrant expression of lncRNA has been suggested to have an association with tumorigenesis. Our study was designed to reveal the underlying connection between lncRNA SNHG1 and hepatocellular carcinoma (HCC) pathogenesis. Material/Methods A total of 122 pairs of HCC tissues (case group) and matched adjacent non-tumor liver tissues (control group) were collected for this study. RT-PCR and in situ hybridization were conducted to investigate differences in lncRNA SNHG1 expression between the case and control group. The expression levels of lncRNA SNHG1 and miR-195 in HepG2 cells transfected with SNHG1-mimic and SNHG1-inhibitor were measured by RT-PCR. The proliferation, invasion, and migration status of HepG2 cells after transfection were assessed through MTT assay, wound healing assay, and Transwell assay, respectively. Whether miR-195 is a direct downstream target of lncRNA SNHG1 was verified by both bioinformatics target gene prediction and dual-luciferase report assay. Results The expression level of lncRNA SNHG1 was remarkably upregulated in HCC tissues and cell lines compared with normal tissues and cell lines. High expression of lncRNA SNHG1 contributed to the downregulation of miR-195 in HepG2 cells. Also, lncRNA SNHG1 exacerbated HCC cell proliferation, invasion, and migration in vitro through the inhibition of miR-195. This suggests that miR-195 is a direct downstream target of lncRNA SNHG1. Conclusions lncRNA SNHG1 may contribute to the aggravation of HCC through the inhibition of miR-195. PMID:27932778

  10. MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary.

    PubMed

    Mishima, Takuya; Takizawa, Takami; Luo, Shan-Shun; Ishibashi, Osamu; Kawahigashi, Yutaka; Mizuguchi, Yoshiaki; Ishikawa, Tomoko; Mori, Miki; Kanda, Tomohiro; Goto, Tadashi; Takizawa, Toshihiro

    2008-12-01

    MicroRNAs (miRNAs) are endogenous non-coding small RNAs that can regulate the expression of complementary mRNA targets. Identifying tissue-specific miRNAs is the first step toward understanding the biological functions of miRNAs, which include the regulation of tissue differentiation and the maintenance of tissue identity. In this study, we performed small RNA library sequencing in adult mouse testis and ovary to reveal their characteristic organ- and gender-specific profiles and to elucidate the characteristics of the miRNAs expressed in the reproductive system. We obtained 10,852 and 11 744 small RNA clones from mouse testis and ovary respectively (greater than 10,000 clones per organ), which included 6630 (159 genes) and 10,192 (154 genes) known miRNAs. A high level of efficiency of miRNA library sequencing was achieved: 61% (6630 miRNA clones/10,852 small RNA clones) and 87% (10,192/11,744) for adult mouse testis and ovary respectively. We obtained characteristic miRNA signatures in testis and ovary; 55 miRNAs were detected highly, exclusively, or predominantly in adult mouse testis and ovary, and discovered two novel miRNAs. Male-biased expression of miRNAs occurred on the X-chromosome. Our data provide important information on sex differences in miRNA expression that should facilitate studies of the reproductive organ-specific roles of miRNAs.

  11. Diet and lifestyle factors associated with miRNA expression in colorectal tissue

    PubMed Central

    Slattery, Martha L; Herrick, Jennifer S; Mullany, Lila E; Stevens, John R; Wolff, Roger K

    2017-01-01

    MicroRNAs (miRNAs) are small non-protein-coding RNA molecules that regulate gene expression. Diet and lifestyle factors have been hypothesized to be involved in the regulation of miRNA expression. In this study it was hypothesized that diet and lifestyle factors are associated with miRNA expression. Data from 1,447 cases of colorectal cancer to evaluate 34 diet and lifestyle variables using miRNA expression in normal colorectal mucosa as well as for differential expression between paired carcinoma and normal tissue were used. miRNA data were obtained using an Agilent platform. Multiple comparisons were adjusted for using the false discovery rate q-value. There were 250 miRNAs differentially expressed between carcinoma and normal colonic tissue by level of carbohydrate intake and 198 miRNAs differentially expressed by the level of sucrose intake. Of these miRNAs, 166 miRNAs were differentially expressed for both carbohydrate intake and sucrose intake. Ninety-nine miRNAs were differentially expressed by the level of whole grain intake in normal colonic mucosa. Level of oxidative balance score was associated with 137 differentially expressed miRNAs between carcinoma and paired normal rectal mucosa. Additionally, 135 miRNAs were differentially expressed in colon tissue based on recent NSAID use. Other dietary factors, body mass index, waist and hip circumference, and long-term physical activity levels did not alter miRNA expression after adjustment for multiple comparisons. These results suggest that diet and lifestyle factors regulate miRNA level. They provide additional support for the influence of carbohydrate, sucrose, whole grains, NSAIDs, and oxidative balance score on colorectal cancer risk. PMID:28053552

  12. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans

    PubMed Central

    Cenik, Can; Cenik, Elif Sarinay; Byeon, Gun W.; Grubert, Fabian; Candille, Sophie I.; Spacek, Damek; Alsallakh, Bilal; Tilgner, Hagen; Araya, Carlos L.; Tang, Hua; Ricci, Emiliano; Snyder, Michael P.

    2015-01-01

    Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy—many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation. PMID:26297486

  13. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro

    PubMed Central

    Leung, Ada W. Y.; Hung, Stacy S.; Backstrom, Ian; Ricaurte, Daniel; Kwok, Brian; Poon, Steven; McKinney, Steven; Segovia, Romulo; Rawji, Jenna; Qadir, Mohammed A.; Aparicio, Samuel; Stirling, Peter C.; Steidl, Christian; Bally, Marcel B.

    2016-01-01

    Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell’s ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both

  14. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro.

    PubMed

    Leung, Ada W Y; Hung, Stacy S; Backstrom, Ian; Ricaurte, Daniel; Kwok, Brian; Poon, Steven; McKinney, Steven; Segovia, Romulo; Rawji, Jenna; Qadir, Mohammed A; Aparicio, Samuel; Stirling, Peter C; Steidl, Christian; Bally, Marcel B

    2016-01-01

    Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell's ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both

  15. Differences in microRNA detection levels are technology and sequence dependent.

    PubMed

    Leshkowitz, Dena; Horn-Saban, Shirley; Parmet, Yisrael; Feldmesser, Ester

    2013-04-01

    Identification and quantification of small RNAs are challenging because of their short length, high sequence similarities within microRNA (miRNA) families, and the existence of miRNA isoforms and O-methyl 3' modifications. In this study, the detection performance of three high-throughput commercial platforms, Agilent and Affymetrix microarrays and Illumina next-generation sequencing, was systematically and comprehensively compared. The ability to detect miRNAs was shown to depend strongly on the platform and on miRNA modifications and sequence. Using synthetic transcripts, including mature, precursor, and O-methyl-modified miRNAs spiked into human RNA, a large intensity variation in all spiked-in miRNAs and a reduced capacity in detecting O-methyl-modified miRNAs were observed between the tested platforms. In addition, endogenous human miRNA expression levels were assessed across the platforms. Detected miRNA expression levels were not consistent between platforms. Although biases in miRNA detection were previously described, here the end-point result, i.e., detection intensity, of these biases was investigated on multiple platforms in a controlled fashion. A detailed exploration of a large number of attributes, including base composition, sequence structure, and isoform miRNA attributes, suggests their impact on miRNA expression detection level. This study provides a basis for understanding the attributes that should be considered to adjust platform-dependent detection biases.

  16. Neonatal paternal deprivation impairs social recognition and alters levels of oxytocin and estrogen receptor α mRNA expression in the MeA and NAcc, and serum oxytocin in mandarin voles.

    PubMed

    Cao, Yan; Wu, Ruiyong; Tai, Fadao; Zhang, Xia; Yu, Peng; An, Xiaolei; Qiao, Xufeng; Hao, Ping

    2014-01-01

    Paternal care is necessary for the healthy development of social behavior in monogamous rodents and social recognition underpins social behavior in these animals. The effects of paternal care on the development of social recognition and underlying neuroendocrine mechanisms, especially the involvement of oxytocin and estrogen pathways, remain poorly understood. We investigated the effects of paternal deprivation (PD: father was removed from neonatal pups and mother alone raised the offspring) on social recognition in mandarin voles (Microtus mandarinus), a socially monogamous rodent. Paternal deprivation was found to inhibit the development of social recognition in female and male offspring according to a habituation-dishabituation paradigm. Paternal deprivation resulted in increased inactivity and reduced investigation during new encounters with other animals. Paternal deprivation reduced oxytocin receptor (OTR) and estrogen receptor α (ERα) mRNA expression in the medial amygdala and nucleus accumbens. Paternal deprivation reduced serum oxytocin (OT) concentration in females, but had no effect on males. Our results provide substantial evidence that paternal deprivation inhibits the development of social recognition in female and male mandarin voles and alters social behavior later in life. This is possibly the result of altered expression of central OTR and ERα and serum OT levels caused by paternal deprivation.

  17. Effect of long-term fasting and a subsequent meal on mRNA abundances of hypothalamic appetite regulators, central and peripheral leptin expression and plasma leptin levels in rainbow trout.

    PubMed

    Jørgensen, Even H; Bernier, Nicholas J; Maule, Alec G; Vijayan, Mathilakath M

    2016-12-01

    Knowledge about neuroendocrine mechanisms regulating appetite in fish, including the role of leptin, is inconclusive. We investigated leptin mRNA abundance in various tissues, plasma leptin levels and the hypothalamic gene expression of putative orexigenic (neuropeptide Y and agouti-regulated peptide) and anorexigenic (melanocortin receptor, proopiomelanocortins (POMCs), cocaine- and amphetamine-regulated transcript and corticotropin-releasing factor) neuropeptides in relation to feeding status in rainbow trout (Oncorhynchus mykiss). Blood and tissues were first (Day 1) sampled from trout that had been fed or fasted for 4 months and the day after (Day 2) from fasted fish after they had been given a large meal, and their continuously fed counterparts. The fasted fish ate vigorously when they were presented a meal. There were no differences between fed, fasted and re-fed fish in hypothalamic neuropeptide transcript levels, except for pomca1 and pomcb, which were higher in fasted fish than in fed fish at Day 1, and which, for pomcb, decreased to the level in fed fish after the meal at Day 2. Plasma leptin levels did not differ between fasted, re-fed and fed fish. A higher leptina1 transcript level was seen in the belly flap of fasted fish than in fed fish, even after re-feeding on Day 2. The data do not reveal causative roles of the investigated brain neuropeptides, or leptin, in appetite regulation. It is suggested that the elevated pomc transcript levels provide a satiety signal that reduces energy expenditure during prolonged fasting. The increase in belly flap leptin transcript with fasting, which did not decrease upon re-feeding, indicates a tissue-specific role of leptin in long-term regulation of energy homeostasis.

  18. Power analysis for RNA-Seq differential expression studies.

    PubMed

    Yu, Lianbo; Fernandez, Soledad; Brock, Guy

    2017-05-03

    Sample size calculation and power estimation are essential components of experimental designs in biomedical research. It is very challenging to estimate power for RNA-Seq differential expression under complex experimental designs. Moreover, the dependency among genes should be taken into account in order to obtain accurate results. In this paper, we propose a simulation based procedure for power estimation using the negative binomial distribution and assuming a generalized linear model (at the gene level) that considers the dependence between gene expression level and its variance (dispersion) and also allows equal or unequal dispersion across conditions. We compared the performance of both Wald test and likelihood ratio test under different scenarios. The null distribution of the test statistics was simulated for the desired false positive control to avoid excess false positives with the usage of an asymptotic chi-square distribution. We applied this method to the TCGA breast cancer data set. We provide a framework for power estimation of RNA-Seq data. The proposed procedure is able to properly control the false positive error rate at the nominal level.

  19. Diversities in hepatic HIF-1, IGF-I/IGFBP-1, LDH/ICD, and their mRNA expressions induced by CoCl(2) in Qinghai-Tibetan plateau mammals and sea level mice.

    PubMed

    Chen, Xue-Qun; Wang, Shi-Jun; Du, Ji-Zeng; Chen, Xiao-Cheng

    2007-01-01

    Ochotona curzoniae and Microtus oeconomus are the native mammals living on the Qinghai-Tibetan-Plateau of China. The molecular mechanisms of their acclimatization to the Plateau-hypoxia remain unclear. Expressions of hepatic hypoxia-inducible factor (HIF)-1alpha, insulin-like growth factor-I (IGF-I)/IGF binding protein (BP)-1(IGFBP-1; including genes), and key metabolic enzymatic genes [lactate dehydrogenase (LDH)-A/isocitrate dehydrogenase (ICD)] are compared in Qinghai-Tibetan-Plateau mammals and sea-level mice after injection of CoCl(2) (20, 40, or 60 mg/kg) and normobaric hypoxia (16.0% O(2), 10.8% O(2), and 8.0% O(2)) for 6 h, tested by histochemistry, Western blot analysis, ELISA, and RT-PCR. Major results are CoCl(2) markedly increased 1) HIF-1alpha only in mice, 2) hepatic and circulatory IGF-I in M. oeconomus, 3) hepatic IGFBP-1 in mice and O. curzoniae, and 4) LDH-A but reduced ICD mRNA in mice (CoCl(2) 20 mg/kg) but were unchanged in the Tibetan mammals. Normobaric hypoxia markedly 1) increased HIF-1alpha and LDH-A mRNA in mice and M. oeconomus (8.0% O(2)) not in O. curzoniae, and 2) reduced ICD mRNA in mice and M. oeconomus (8.0% O(2)) not in O. curzoniae. Results suggest that 1) HIF-1alpha responsiveness to hypoxia is distinct in lowland mice and plateau mammals, reflecting a diverse tolerance of the three species to hypoxia; 2) CoCl(2) induces diversities in HIF-1, IGF-I/IGFBP-1 protein or genes in mice, M. oeconomus, and O. curzoniae. In contrast, HIF-1 mediates IGFBP-1 transcription only in mice and in M. oeconomus (subjected to severe hypoxia); 3) differences in IGF-I/IGFBP-1 expressions induced by CoCl(2) reflect significant diversities in hormone regulation and cell protection from damage; and 4) activation of anaerobic glycolysis and reduction of Krebs cycle represents strategies of lowland-animals vs. the stable metabolic homeostasis of plateau-acclimatized mammals.

  20. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    SciTech Connect

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-08-15

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export.

  1. Right ventricular long noncoding RNA expression in human heart failure

    PubMed Central

    Guo, Yan; Su, Yan Ru; Clark, Travis; Brittain, Evan; Absi, Tarek; Maltais, Simon; Hemnes, Anna

    2015-01-01

    Abstract The expression of long noncoding RNAs (lncRNAs) in human heart failure (HF) has not been widely studied. Using RNA sequencing (RNA-Seq), we compared lncRNA expression in 22 explanted human HF hearts with lncRNA expression in 5 unused donor human hearts. We used Cufflinks to identify isoforms and DESeq to identify differentially expressed genes. We identified the noncoding RNAs by cross-reference to Ensembl release 73 (Genome Reference Consortium human genome build 37) and explored possible functional roles using a variety of online tools. In HF hearts, RNA-Seq identified 84,793 total messenger RNA coding and noncoding different transcripts, including 13,019 protein-coding genes, 2,085 total lncRNA genes, and 1,064 pseudogenes. By Ensembl noncoding RNA categories, there were 48 lncRNAs, 27 pseudogenes, and 30 antisense RNAs for a total of 105 differentially expressed lncRNAs in HF hearts. Compared with donor hearts, HF hearts exhibited differential expression of 7.7% of protein-coding genes, 3.7% of lncRNAs (including pseudogenes), and 2.5% of pseudogenes. There were not consistent correlations between antisense lncRNAs and parent genes and between pseudogenes and parent genes, implying differential regulation of expression. Exploratory in silico functional analyses using online tools suggested a variety of possible lncRNA regulatory roles. By providing a comprehensive profile of right ventricular polyadenylated messenger RNA transcriptome in HF, RNA-Seq provides an inventory of differentially expressed lncRNAs, including antisense transcripts and pseudogenes, for future mechanistic study. PMID:25992278

  2. Thiol-linked alkylation of RNA to assess expression dynamics.

    PubMed

    Herzog, Veronika A; Reichholf, Brian; Neumann, Tobias; Rescheneder, Philipp; Bhat, Pooja; Burkard, Thomas R; Wlotzka, Wiebke; von Haeseler, Arndt; Zuber, Johannes; Ameres, Stefan L

    2017-09-25

    Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM seq), an orthogonal-chemistry-based RNA sequencing technology that detects 4-thiouridine (s(4)U) incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM seq enabled rapid access to RNA-polymerase-II-dependent gene expression dynamics in the context of total RNA. We validated the method in mouse embryonic stem cells by showing that the RNA-polymerase-II-dependent transcriptional output scaled with Oct4/Sox2/Nanog-defined enhancer activity, and we provide quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N(6)-methyladenosine. SLAM seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective and scalable manner.

  3. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    PubMed Central

    Ludwig, Nicole; Werner, Tamara V.; Backes, Christina; Trampert, Patrick; Gessler, Manfred; Keller, Andreas; Lenhof, Hans-Peter; Graf, Norbert; Meese, Eckart

    2016-01-01

    Wilms tumor (WT) is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA) processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA) differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT. PMID:27043538

  4. The expression and function of long noncoding RNA lncRNA-ATB in papillary thyroid cancer.

    PubMed

    Fu, X-M; Guo, W; Li, N; Liu, H-Z; Liu, J; Qiu, S-Q; Zhang, Q; Wang, L-C; Li, F; Li, C-L

    2017-07-01

    This study aimed to investigate the expression and clinical significances of long noncoding RNA-ATB (lncRNA-ATB) in papillary thyroid cancer (PTC), and to explore the roles of lncRNA-ATB in PTC cell proliferation and migration. The expression of lncRNA-ATB in 64 PTC tissues and paired adjacent noncancerous thyroid tissues was measured. The association between lncRNA-ATB expression and clinicopathological characteristics was analyzed by Pearson X2. The diagnostic value of lncRNA-ATB was evaluated by receiver operating characteristic curve (ROC) analyses. The effects of lncRNA-ATB on PTC cell proliferation were evaluated by Cell Counting Kit-8 assays and Ethynyl deoxyuridine incorporation assays. The effects of lncRNA-ATB on PTC cell migration were evaluated by transwell assays. LncRNA-ATB is upregulated in PTC tissues compared with noncancerous tissues. LncRNA-ATB is also increased in PTC cell lines compared with normal thyroid follicular epithelial cell line. High-expression of lncRNA-ATB is associated with large tumor size and lymph node metastasis. ROC analyses revealed that lncRNA-ATB could sensitively discriminate PTCs from noncancerous tissues, as well as discriminating PTCs with lymph node metastasis from those without lymph node metastasis. Functional experiments showed that depletion of lncRNA-ATB significantly inhibits PTC cell proliferation and migration. LncRNA-ATB is upregulated and functions as an oncogene in PTC. Furthermore, lncRNA-ATB may serve as a diagnostic biomarker and therapeutic target for PTC.

  5. Expression Profiling of Human Immune Cell Subsets Identifies miRNA-mRNA Regulatory Relationships Correlated with Cell Type Specific Expression

    PubMed Central

    Bergauer, Tobias; Ravindran, Palanikumar; Rossier, Michel F.; Ebeling, Martin; Badi, Laura; Reis, Bernhard; Bitter, Hans; D'Asaro, Matilde; Chiappe, Alberto; Sridhar, Sriram; Pacheco, Gonzalo Duran; Burczynski, Michael E.; Hochstrasser, Denis; Vonderscher, Jacky; Matthes, Thomas

    2012-01-01

    Blood consists of different cell populations with distinct functions and correspondingly, distinct gene expression profiles. In this study, global miRNA expression profiling was performed across a panel of nine human immune cell subsets (neutrophils, eosinophils, monocytes, B cells, NK cells, CD4 T cells, CD8 T cells, mDCs and pDCs) to identify cell-type specific miRNAs. mRNA expression profiling was performed on the same samples to determine if miRNAs specific to certain cell types down-regulated expression levels of their target genes. Six cell-type specific miRNAs (miR-143; neutrophil specific, miR-125; T cells and neutrophil specific, miR-500; monocyte and pDC specific, miR-150; lymphoid cell specific, miR-652 and miR-223; both myeloid cell specific) were negatively correlated with expression of their predicted target genes. These results were further validated using an independent cohort where similar immune cell subsets were isolated and profiled for both miRNA and mRNA expression. miRNAs which negatively correlated with target gene expression in both cohorts were identified as candidates for miRNA/mRNA regulatory pairs and were used to construct a cell-type specific regulatory network. miRNA/mRNA pairs formed two distinct clusters in the network corresponding to myeloid (nine miRNAs) and lymphoid lineages (two miRNAs). Several myeloid specific miRNAs targeted common genes including ABL2, EIF4A2, EPC1 and INO80D; these common targets were enriched for genes involved in the regulation of gene expression (p<9.0E-7). Those miRNA might therefore have significant further effect on gene expression by repressing the expression of genes involved in transcriptional regulation. The miRNA and mRNA expression profiles reported in this study form a comprehensive transcriptome database of various human blood cells and serve as a valuable resource for elucidating the role of miRNA mediated regulation in the establishment of immune cell identity. PMID:22276136

  6. Integrative analyses of RNA editing, alternative splicing, and expression of young genes in human brain transcriptome by deep RNA sequencing.

    PubMed

    Wu, Dong-Dong; Ye, Ling-Qun; Li, Yan; Sun, Yan-Bo; Shao, Yi; Chen, Chunyan; Zhu, Zhu; Zhong, Li; Wang, Lu; Irwin, David M; Zhang, Yong E; Zhang, Ya-Ping

    2015-08-01

    Next-generation RNA sequencing has been successfully used for identification of transcript assembly, evaluation of gene expression levels, and detection of post-transcriptional modifications. Despite these large-scale studies, additional comprehensive RNA-seq data from different subregions of the human brain are required to fully evaluate the evolutionary patterns experienced by the human brain transcriptome. Here, we provide a total of 6.5 billion RNA-seq reads from different subregions of the human brain. A significant correlation was observed between the levels of alternative splicing and RNA editing, which might be explained by a competition between the molecular machineries responsible for the splicing and editing of RNA. Young human protein-coding genes demonstrate biased expression to the neocortical and non-neocortical regions during evolution on the lineage leading to humans. We also found that a significantly greater number of young human protein-coding genes are expressed in the putamen, a tissue that was also observed to have the highest level of RNA-editing activity. The putamen, which previously received little attention, plays an important role in cognitive ability, and our data suggest a potential contribution of the putamen to human evolution. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  7. Adaptive capability as indicated by behavioral and physiological responses, plasma HSP70 level, and PBMC HSP70 mRNA expression in Osmanabadi goats subjected to combined (heat and nutritional) stressors.

    PubMed

    Shilja, Shaji; Sejian, V; Bagath, M; Mech, A; David, C G; Kurien, E K; Varma, Girish; Bhatta, Raghavendra

    2016-09-01

    A study was conducted to assess the impact of heat and nutritional stress simultaneously on the adaptive capability as indicated by behavioral and physiological responses, plasma heat shock protein 70 (HSP70) level, and peripheral blood mononuclear cells (PBMC) HSP70 gene expression in goats. Twenty-four adult Osmanabadi bucks (average body weight (BW) 16.0 kg) were used in the present study. The bucks were divided into four groups viz., C (n = 6; control), HS (n = 6; heat stress), NS (n = 6; nutritional stress), and CS (n = 6; combined stress). The study was conducted for a period of 45 days. C and HS bucks had ad libitum access to their feed while NS and CS bucks were under restricted feed (30 % intake of C bucks) to induce nutritional stress. The HS and CS bucks were exposed to solar radiation for 6 h a day between 10:00 a.m. and 4:00 p.m. to induce heat stress. The data was analyzed using repeated measures analysis of variance. The standing time differed significantly (P < 0.01) between ad libitum fed groups (C and HS) and restricted feeding groups (NS and CS). The highest (P < 0.01) lying time was recorded in the CS group while the lowest in the C and HS groups. The highest (P < 0.01) drinking frequency was also recorded in the CS group. Water intake recorded was significantly (P < 0.01) higher in both the HS and CS groups. The highest respiration rate (RR), pulse rate (PR), and rectal temperature (RT) during the afternoon were also recorded in the CS group. Further, skin temperature of the head, flank, and scrotum during the afternoon was also higher (P < 0.01) in the CS group. In addition, both plasma HSP70 concentration and PBMC HSP70 messenger RNA (mRNA) transcript expression were also significantly (P < 0.01) higher in the CS group. It can be concluded from this study that when two stressors occur simultaneously, they may have severe impact on adaptive capabilities of Osmanabadi bucks as compared to that would occur individually

  8. Adaptive capability as indicated by behavioral and physiological responses, plasma HSP70 level, and PBMC HSP70 mRNA expression in Osmanabadi goats subjected to combined (heat and nutritional) stressors

    NASA Astrophysics Data System (ADS)

    Shilja, Shaji; Sejian, V.; Bagath, M.; Mech, A.; David, C. G.; Kurien, E. K.; Varma, Girish; Bhatta, Raghavendra

    2016-09-01

    A study was conducted to assess the impact of heat and nutritional stress simultaneously on the adaptive capability as indicated by behavioral and physiological responses, plasma heat shock protein 70 (HSP70) level, and peripheral blood mononuclear cells (PBMC) HSP70 gene expression in goats. Twenty-four adult Osmanabadi bucks (average body weight (BW) 16.0 kg) were used in the present study. The bucks were divided into four groups viz., C ( n = 6; control), HS ( n = 6; heat stress), NS ( n = 6; nutritional stress), and CS ( n = 6; combined stress). The study was conducted for a period of 45 days. C and HS bucks had ad libitum access to their feed while NS and CS bucks were under restricted feed (30 % intake of C bucks) to induce nutritional stress. The HS and CS bucks were exposed to solar radiation for 6 h a day between 10:00 a.m. and 4:00 p.m. to induce heat stress. The data was analyzed using repeated measures analysis of variance. The standing time differed significantly ( P < 0.01) between ad libitum fed groups (C and HS) and restricted feeding groups (NS and CS). The highest ( P < 0.01) lying time was recorded in the CS group while the lowest in the C and HS groups. The highest ( P < 0.01) drinking frequency was also recorded in the CS group. Water intake recorded was significantly ( P < 0.01) higher in both the HS and CS groups. The highest respiration rate (RR), pulse rate (PR), and rectal temperature (RT) during the afternoon were also recorded in the CS group. Further, skin temperature of the head, flank, and scrotum during the afternoon was also higher ( P < 0.01) in the CS group. In addition, both plasma HSP70 concentration and PBMC HSP70 messenger RNA (mRNA) transcript expression were also significantly ( P < 0.01) higher in the CS group. It can be concluded from this study that when two stressors occur simultaneously, they may have severe impact on adaptive capabilities of Osmanabadi bucks as compared to that would occur individually. Further, the

  9. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression.

    PubMed

    Shen, Shensi; Rodrigo, Guillermo; Prakash, Satya; Majer, Eszter; Landrain, Thomas E; Kirov, Boris; Daròs, José-Antonio; Jaramillo, Alfonso

    2015-05-26

    Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA-RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits.

  10. RNA Expression Profiling of Human iPSC-Derived Cardiomyocytes in a Cardiac Hypertrophy Model

    PubMed Central

    Aggarwal, Praful; Turner, Amy; Matter, Andrea; Kattman, Steven J.; Stoddard, Alexander; Lorier, Rachel; Swanson, Bradley J.; Arnett, Donna K.; Broeckel, Ulrich

    2014-01-01

    Cardiac hypertrophy is an independent risk factor for cardiovascular disease and heart failure. There is increasing evidence that microRNAs (miRNAs) play an important role in the regulation of messenger RNA (mRNA) and the pathogenesis of various cardiovascular diseases. However, the ability to comprehensively study cardiac hypertrophy on a gene regulatory level is impacted by the limited availability of human cardiomyocytes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer the opportunity for disease modeling. Here we utilize a previously established in vitro model of cardiac hypertrophy to interrogate the regulatory mechanism associated with the cardiac disease process. We perform miRNA sequencing and mRNA expression analysis on endothelin 1 (ET-1) stimulated hiPSC-CMs to describe associated RNA expression profiles. MicroRNA sequencing revealed over 250 known and 34 predicted novel miRNAs to be differentially expressed between ET-1 stimulated and unstimulated control hiPSC-CMs. Messenger RNA expression analysis identified 731 probe sets with significant differential expression. Computational target prediction on significant differentially expressed miRNAs and mRNAs identified nearly 2000 target pairs. A principal component analysis approach comparing the in vitro data with human myocardial biopsies detected overlapping expression changes between the in vitro samples and myocardial biopsies with Left Ventricular Hypertrophy. These results provide further insights into the complex RNA regulatory mechanism associated with cardiac hypertrophy. PMID:25255322

  11. Enhanced Transgene Expression in Sugarcane by Co-Expression of Virus-Encoded RNA Silencing Suppressors

    PubMed Central

    Park, Jong-Won; Beyene, Getu; Buenrostro-Nava, Marco T.; Molina, Joe; Wang, Xiaofeng; Ciomperlik, Jessica J.; Manabayeva, Shuga A.; Alvarado, Veria Y.; Rathore, Keerti S.; Scholthof, Herman B.; Mirkov, T. Erik

    2013-01-01

    Post-transcriptional gene silencing is commonly observed in polyploid species and often poses a major limitation to plant improvement via biotechnology. Five plant viral suppressors of RNA silencing were evaluated for their ability to counteract gene silencing and enhance the expression of the Enhanced Yellow Fluorescent Protein (EYFP) or the β-glucuronidase (GUS) reporter gene in sugarcane, a major sugar and biomass producing polyploid. Functionality of these suppressors was first verified in Nicotiana benthamiana and onion epidermal cells, and later tested by transient expression in sugarcane young leaf segments and protoplasts. In young leaf segments co-expressing a suppressor, EYFP reached its maximum expression at 48–96 h post-DNA introduction and maintained its peak expression for a longer time compared with that in the absence of a suppressor. Among the five suppressors, Tomato bushy stunt virus-encoded P19 and Barley stripe mosaic virus-encoded γb were the most efficient. Co-expression with P19 and γb enhanced EYFP expression 4.6-fold and 3.6-fold in young leaf segments, and GUS activity 2.3-fold and 2.4-fold in protoplasts compared with those in the absence of a suppressor, respectively. In transgenic sugarcane, co-expression of GUS and P19 suppressor showed the highest accumulation of GUS levels with an average of 2.7-fold more than when GUS was expressed alone, with no detrimental phenotypic effects. The two established transient expression assays, based on young leaf segments and protoplasts, and confirmed by stable transgene expression, offer a rapid versatile system to verify the efficiency of RNA silencing suppressors that proved to be valuable in enhancing and stabilizing transgene expression in sugarcane. PMID:23799071

  12. Integrated mRNA and lncRNA expression profiling for exploring metastatic biomarkers of human intrahepatic cholangiocarcinoma

    PubMed Central

    Lv, Lisheng; Wei, Miaoyan; Lin, Peiyi; Chen, Zhisheng; Gong, Peng; Quan, Zhiwei; Tang, Zhaohui

    2017-01-01

    Long noncoding RNAs (lncRNAs) is crucial for various human cancers, but the function and mechanism of lncRNAs is largely unknown in human intrahepatic cholangiocarcinoma (ICC), the second most common liver cancer. In this study, we performed transcriptomic profiling of ICC and normal tissues, and found 2148 lncRNAs and 474 mRNAs were significantly upregulated, whereas 568 lncRNAs and 409 mRNAs were downregulated in ICC tissues. Enrichment analysis suggests these differentially expressed genes mainly focus on response to stimulus, development, and cell proliferation. Further, potential lncRNAs involved in five signaling pathways (ERBB, JAK/STAT, MAPK, VEGF and WNT) were constructed by highly co-expressed with mRNAs in these signaling pathways. The differentially expressed lncRNA-mRNA co-regulated signaling pathways in ICC were further confirmed by lncRNA target prediction. Finally, the differentially expressed lncRNAs were confirmed by quantitative real-time PCR in 32 paired ICC and adjacent tissues. The correlation analysis between the expression levels of lncRNAs and clinicopathologic characteristics showed that EMP1-008, ATF3-008, and RCOR3-013 were observed significantly downregulated in ICC with tumor metastasis. These findings suggested that lncRNA expression profiling in ICC is profoundly different from that in noncancerous tissues, and lncRNA may be used as a potential diagnostic and prognostic biomarker for ICC metastasis.

  13. Impact of microRNA regulation on variation in human gene expression

    PubMed Central

    Lu, Jian; Clark, Andrew G.

    2012-01-01

    MicroRNAs (miRNAs) are endogenously expressed small RNAs that regulate expression of mRNAs at the post-transcriptional level. The consequence of miRNA regulation is hypothesized to reduce the expression variation of target genes. However, it is possible that mutations in miRNAs and target sites cause rewiring of the miRNA regulatory networks resulting in increased variation in gene expression. By examining variation in gene expression patterns in human populations and between human and other primate species, we find that miRNAs have stabilized expression of a small number of target genes during primate evolution. Compared with genes not regulated by miRNAs, however, genes regulated by miRNAs overall have higher expression variation at the population level, and they display greater variation in expression among human ethnic groups or between human and other primate species. By integrating expression data with genotypes determined in the HapMap 3 and the 1000 Genomes Projects, we found that expression variation in miRNAs, genetic variants in miRNA loci, and mutations in miRNA target sites are important sources of elevated expression variation of miRNA target genes. A reasonable case can be made that natural selection is driving this pattern of variation. PMID:22456605

  14. Integrative genomics analysis of genes with biallelic loss and its relation to the expression of mRNA and micro-RNA in esophageal squamous cell carcinoma.

    PubMed

    Hu, Nan; Wang, Chaoyu; Clifford, Robert J; Yang, Howard H; Su, Hua; Wang, Lemin; Wang, Yuan; Xu, Yi; Tang, Ze-Zhong; Ding, Ti; Zhang, Tongwu; Goldstein, Alisa M; Giffen, Carol; Lee, Maxwell P; Taylor, Philip R

    2015-09-26

    Genomic instability plays an important role in human cancers. We previously characterized genomic instability in esophageal squamous cell carcinomas (ESCC) in terms of loss of heterozygosity (LOH) and copy number (CN) changes in tumors. In the current study we focus on biallelic loss and its relation to expression of mRNA and miRNA in ESCC using results from 500 K SNP, mRNA, and miRNA arrays in 30 cases from a high-risk region of China. (i) Biallelic loss was uncommon but when it occurred it exhibited a consistent pattern: only 77 genes (<0.5%) showed biallelic loss in at least 10% of ESCC samples, but nearly all of these genes were concentrated on just four chromosomal arms (i.e., 42 genes on 3p, 14 genes on 9p, 10 genes on 5q, and seven genes on 4p). (ii) Biallelic loss was associated with lower mRNA expression: 52 of the 77 genes also had RNA expression data, and 41 (79%) showed lower expression levels in cases with biallelic loss compared to those without. (iii) The relation of biallelic loss to miRNA expression was less clear but appeared to favor higher miRNA levels: of 60 miRNA-target gene pairs, 34 pairs (57%) had higher miRNA expression with biallelic loss than without, while 26 pairs (43%) had lower miRNA expression. (iv) Finally, the effect of biallelic loss on the relation between miRNA and mRNA expression was complex. Biallelic loss was most commonly associated with a pattern of elevated miRNA and reduced mRNA (43%), but a pattern of both reduced miRNA and mRNA was also common (35%). Our results indicate that biallelic loss in ESCC is uncommon, but when it occurs it is localized to a few specific chromosome regions and is associated with reduced mRNA expression of affected genes. The effect of biallelic loss on miRNA expression and on the relation between miRNA and mRNA expressions was complex.

  15. Intratumoral Heterogeneity of MicroRNA Expression in Rectal Cancer

    PubMed Central

    Andersen, Rikke Fredslund; Nielsen, Boye Schnack; Sørensen, Flemming Brandt; Appelt, Ane Lindegaard; Jakobsen, Anders; Hansen, Torben Frøstrup

    2016-01-01

    Introduction An increasing number of studies have investigated microRNAs (miRNAs) as potential markers of diagnosis, treatment and prognosis. So far, agreement between studies has been minimal, which may in part be explained by intratumoral heterogeneity of miRNA expression. The aim of the present study was to assess the heterogeneity of a panel of selected miRNAs in rectal cancer, using two different technical approaches. Materials and Methods The expression of the investigated miRNAs was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH) in tumour specimens from 27 patients with T3-4 rectal cancer. From each tumour, tissue from three different luminal localisations was examined. Inter- and intra-patient variability was assessed by calculating intraclass correlation coefficients (ICCs). Correlations between RT-qPCR and ISH were evaluated using Spearman’s correlation. Results ICCsingle (one sample from each patient) was higher than 50% for miRNA-21 and miRNA-31. For miRNA-125b, miRNA-145, and miRNA-630, ICCsingle was lower than 50%. The ICCmean (mean of three samples from each patient) was higher than 50% for miRNA-21(RT-qPCR and ISH), miRNA-125b (RT-qPCR and ISH), miRNA-145 (ISH), miRNA-630 (RT-qPCR), and miRNA-31 (RT-qPCR). For miRNA-145 (RT-qPCR) and miRNA-630 (ISH), ICCmean was lower than 50%. Spearman correlation coefficients, comparing results obtained by RT-qPCR and ISH, respectively, ranged from 0.084 to 0.325 for the mean value from each patient, and from -0.085 to 0.515 in the section including the deepest part of the tumour. Conclusion Intratumoral heterogeneity may influence the measurement of miRNA expression and consequently the number of samples needed for representative estimates. Our findings with two different methods suggest that one sample is sufficient for adequate assessment of miRNA-21 and miRNA-31, whereas more samples would improve the assessment of miRNA-125b, miRNA-145, and miRNA-630

  16. Targeted suppression of Has2 mRNA in mouse cumulus cell-oocyte complexes by adenovirus-mediated short-hairpin RNA expression

    PubMed Central

    Sugiura, Koji; Su, You-Qiang; Eppig, John J.

    2008-01-01

    RNA interference (RNAi) is an effective tool for studying gene function in oocytes, but no studies have targeted somatic cells of primary cultured cumulus cell-oocyte complexes (COCs). This is probably due to difficulty in introducing RNAi-inducing molecules, such as a short-hairpin RNA (shRNA) gene, into COCs by commonly used transfection reagents. We therefore tested whether a developmental process of intact COCs could be suppressed by adenovirus-mediated shRNA expression. Has2, encoding hyaluronan synthase 2, was selected as the target transcript, because the process of cumulus expansion depends upon expression of Has2 mRNA and this process is easily evaluated in vitro. Intact COCs were infected with replication-incompetent adenoviruses containing an expression sequence of shRNA targeting either Has2 (Has2 shRNA) or a control transcript not expressed in cumulus cells, and the effects on epidermal growth factor (EGF)-stimulated cumulus expansion were determined. Has2 shRNA expression suppressed Has2 mRNA levels in COCs by more than 70%, without affecting expression levels of Ptgs2, Ptx3, Tnfaip6 mRNAs, which are also required for cumulus expansion, or other transcripts not related to expansion. Interestingly, levels of Areg and Ereg mRNAs were decreased in COCs expressing Has2 shRNA when compared with those in controls, while Btc mRNA levels remained unaffected. Furthermore, the degree of cumulus expansion by Has2 shRNA-expressing COCs was significantly less than that of controls. Thus adenovirus-mediated introduction of shRNA produces specific gene silencing and a phenotype in intact COCs, providing proof of principle that this method will be a helpful tool for understanding mechanisms of COC development. PMID:18951380

  17. Heterophils isolated from chickens resistant to extra-intestinal Salmonella enteritidis infection express higher levels of pro-inflammatory cytokine mRNA following infection than heterophils from susceptible chickens.

    PubMed Central

    Ferro, Pamela J.; Swaggerty, Christina L.; Kaiser, Pete; Pevzner, Igal Y.; Kogut, Michael H.

    2004-01-01

    Previous studies showed differences in in vitro heterophil function between parental (A > B) broilers and F1 reciprocal crosses (D > C). Our objectives were to (1) determine if in vitro variations translate to differences in resistance to Salmonella enteritidis (SE) and (2) quantitate cytokine mRNA in heterophils from SE-infected chicks. One-day-old chicks were challenged and organs were cultured for SE. Chicks with efficient heterophils (A and D) were less susceptible to SE compared to chicks with inefficient heterophils (B and C). Heterophils were isolated from SE-infected chicks and cytokine mRNA expression was evaluated using quantitative real-time RT-PCR. Pro-inflammatory cytokine mRNA was up-regulated in heterophils from SE-resistant chicks compared to susceptible chicks. This is the first report to quantitate cytokine mRNA in heterophils from SE-infected chicks. These data show a relationship between in vitro heterophil function, increased pro-inflammatory cytokine mRNA expression, and increased resistance to SE in 1-day-old chicks. PMID:15635959

  18. Integration of MicroRNA, mRNA, and Protein Expression Data for the Identification of Cancer-Related MicroRNAs

    PubMed Central

    Seo, Jiyoun; Jin, Daeyong; Choi, Chan-Hun; Lee, Hyunju

    2017-01-01

    MicroRNAs (miRNAs) are responsible for the regulation of target genes involved in various biological processes, and may play oncogenic or tumor suppressive roles. Many studies have investigated the relationships between miRNAs and their target genes, using mRNA and miRNA expression data. However, mRNA expression levels do not necessarily represent the exact gene expression profiles, since protein translation may be regulated in several different ways. Despite this, large-scale protein expression data have been integrated rarely when predicting gene-miRNA relationships. This study explores two approaches for the investigation of gene-miRNA relationships by integrating mRNA expression and protein expression data. First, miRNAs were ranked according to their effects on cancer development. We calculated influence scores for each miRNA, based on the number of significant mRNA-miRNA and protein-miRNA correlations. Furthermore, we constructed modules containing mRNAs, proteins, and miRNAs, in which these three molecular types are highly correlated. The regulatory interactions between miRNA and genes in these modules have been validated based on the direct regulations, indirect regulations, and co-regulations through transcription factors. We applied our approaches to glioblastomas (GBMs), ranked miRNAs depending on their effects on GBM, and obtained 52 GBM-related modules. Compared with the miRNA rankings and modules constructed using only mRNA expression data, the rankings and modules constructed using mRNA and protein expression data were shown to have better performance. Additionally, we experimentally verified that miR-504, highly ranked and included in the identified modules, plays a suppressive role in GBM development. We demonstrated that the integration of both expression profiles allows a more precise analysis of gene-miRNA interactions and the identification of a higher number of cancer-related miRNAs and regulatory mechanisms. PMID:28056026

  19. Integration of microRNA and mRNA expression profiles in the skin of systemic sclerosis patients

    PubMed Central

    Zhou, Bin; Zuo, Xiao Xia; Li, Yi Sha; Gao, Si Ming; Dai, Xiao Dan; Zhu, Hong Lin; Luo, Hui

    2017-01-01

    MicroRNAs (miRNAs) play important roles in the fibrosis of systemic sclerosis (SSc). However, the underlying miRNA-mRNA regulatory network is not fully understood. A systemic investigation of the role of miRNAs would be very valuable for increasing our knowledge of the pathogenesis of SSc. Here, we combined miRNA and mRNA expression profiles and bioinformatics analyses and then performed validation experiments. we identified 21 miRNAs and 2698 mRNAs that were differentially expressed in SSc. Among these, 17 miRNAs and their 33 target mRNAs (55 miRNA-mRNA pairs) were involved in Toll-like receptor, transforming growth factor β and Wnt signalling pathways. Validation experiments revealed that miR-146b, miR-130b, miR-21, miR-31 and miR-34a levels were higher whereas miR-145 levels were lower in SSc skin tissues and fibroblasts, normal fibroblasts and endothelial cells that were stimulated with SSc serum. ACVR2B, FZD2, FZD5 and SOX2 levels were increased in SSc skin fibroblasts, normal fibroblasts and endothelial cells that were stimulated with SSc serum. We did not identify any negative correlations among these miRNA-mRNA pairs. miR-21 was specifically expressed at higher levels in SSc serum. Six miRNAs and 4 mRNAs appear to play important roles in the pathogenesis of SSc are worth investigating in future functional studies. PMID:28211533

  20. Expression of microRNA-146 in osteoarthritis cartilage

    PubMed Central

    Yamasaki, Keiichiro; Nakasa, Tomoyuki; Miyaki, Shigeru; Ishikawa, Masakazu; Deie, Masataka; Adachi, Nobuo; Yasunaga, Yuji; Asahara, Hiroshi; Ochi, Mitsuo

    2009-01-01

    Objective A role of microRNAs, which are ∼22- nucleotide non coding RNAs, has recently been recognized in human diseases. The objective of this study was to identify the expression pattern of microRNA-146 (miR-146) in cartilage from patients with osteoarthritis (OA). Methods The expression of miR-146 in cartilage from 15 patients with OA was analyzed by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and by in situ hybridization. Induction of the expression of miR-146 by cultures of normal human articular chondrocytes following stimulation with interleukin-1β (IL-1β) was examined by quantitative RT-PCR. Results All cartilage samples were divided into three groups according to a modified Mankin scale; grade I: 0 - 5, grade II: 6 - 10, grade III: 11 - 14. In OA cartilage samples of grade I, the expression of miR-146a and Col2a1 was significantly higher than that of other groups (p<0.05). In OA cartilage of grades II and III, the expression of miR-146a and Col2a1 decreased while the expression of MMP13 was elevated in grade II. These data show that miR-146a is expressed intensely in cartilage with a low Mankin grade, and that miR-146a expression decreases in accordance with level of MMP13 expression. Section in situ hybridization of pri-miR-146a revealed that pri-miR-146a is expressed in chondrocytes in all layers, especially in the superficial layer where it is intensely expressed. The expression of miR-146 was markedly elevated by IL-1β stimulation in human chondrocytes in vitro. Conclusion This study shows that miR-146 is intensely expressed in low grade OA cartilage, and that its expression is induced by stimulation of IL-1β. MiR-146 might play a role in OA cartilage pathogenesis. PMID:19333945

  1. Dynamic RNA Modifications in Gene Expression Regulation.

    PubMed

    Roundtree, Ian A; Evans, Molly E; Pan, Tao; He, Chuan

    2017-06-15

    Over 100 types of chemical modifications have been identified in cellular RNAs. While the 5' cap modification and the poly(A) tail of eukaryotic mRNA play key roles in regulation, internal modifications are gaining attention for their roles in mRNA metabolism. The most abundant internal mRNA modification is N(6)-methyladenosine (m(6)A), and identification of proteins that install, recognize, and remove this and other marks have revealed roles for mRNA modification in nearly every aspect of the mRNA life cycle, as well as in various cellular, developmental, and disease processes. Abundant noncoding RNAs such as tRNAs, rRNAs, and spliceosomal RNAs are also heavily modified and depend on the modifications for their biogenesis and function. Our understanding of the biological contributions of these different chemical modifications is beginning to take shape, but it's clear that in both coding and noncoding RNAs, dynamic modifications represent a new layer of control of genetic information. Published by Elsevier Inc.

  2. Improving miRNA Delivery by Optimizing miRNA Expression Cassettes in Diverse Virus Vectors

    PubMed Central

    Herrera-Carrillo, Elena; Liu, Ying Poi; Berkhout, Ben

    2017-01-01

    The RNA interference pathway is an evolutionary conserved post-transcriptional gene regulation mechanism that is exclusively triggered by double-stranded RNA inducers. RNAi-based methods and technologies have facilitated the discovery of many basic science findings and spurred the development of novel RNA therapeutics. Transient induction of RNAi via transfection of synthetic small interfering RNAs can trigger the selective knockdown of a target mRNA. For durable silencing of gene expression, either artificial short hairpin RNA or microRNA encoding transgene constructs were developed. These miRNAs are based on the molecules that induce the natural RNAi pathway in mammals and humans: the endogenously expressed miRNAs. Significant efforts focused on the construction and delivery of miRNA cassettes in order to solve basic biology questions or to design new therapy strategies. Several viral vectors have been developed, which are particularly useful for the delivery of miRNA expression cassettes to specific target cells. Each vector system has its own unique set of distinct properties. Thus, depending on the specific application, a particular vector may be most suitable. This field was previously reviewed for different viral vector systems, and now the recent progress in the field of miRNA-based gene-silencing approaches using lentiviral vectors is reported. The focus is on the unique properties and respective limitations of the available vector systems for miRNA delivery. PMID:28712309

  3. Long noncoding RNA expression patterns in lymph node metastasis in colorectal cancer by microarray.

    PubMed

    Rui, Qiang; Xu, Zipeng; Yang, Peng; He, Zhenyu

    2015-10-01

    To profile the long noncoding RNA (lncRNA) expression patterns in normal lymph node (NLN) of colorectal cancer compared with paired metastatic lymph node (MLN). MLN, NLN lncRNA and messenger RNA (mRNA) expression levels were determined by microarray in three patients; quantitative reverse transcription-polymerase chain reaction validation of 3 differentially expressed lncRNAs was conducted in another 26 patients. The lncRNAs' functions were predicted through coexpressed mRNA annotations. A total of 1133 lncRNA transcripts transcripts were dysregulated in metastatic lymph node, compared with normal lymph node. The expressions of the 3 chosen lncRNAs were validated by quantitative reverse transcription-polymerase chain reaction. Functional analysis suggests that several groups of lncRNAs may participate in biological pathways related to colorectal cancer by cis- and/or trans-regulation of protein-coding genes. This study constitutes the first report of lncRNA expression patterns in human MLN, NLN of colorectal cancer. More than 1000 dysregulated lncRNA transcripts are found by microarray. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Sequence and expression of ferredoxin mRNA in barley

    SciTech Connect

    Zielinski, R.; Funder, P.M.; Ling, V. )

    1990-05-01

    We have isolated and structurally characterized a full-length cDNA clone encoding ferredoxin from a {lambda}gt10 cDNA library prepared from barley leaf mRNA. The ferredoxin clone (pBFD-1) was fused head-to-head with a partial-length cDNA clone encoding calmodulin, and was fortuitously isolated by screening the library with a calmodulin-specific oligonucleotide probe. The mRNA sequence from which pBFD-1 was derived is expressed exclusively in the leaf tissues of 7-d old barley seedlings. Barley pre-ferredoxin has a predicted size of 15.3 kDal, of which 4.6 kDal are accounted for by the transit peptide. The polypeptide encoded by pBFD-1 is identical to wheat ferredoxin, and shares slightly more amino acid sequence similarity with spinach ferredoxin I than with ferredoxin II. Ferredoxin mRNA levels are rapidly increased 10-fold by white light in etiolated barley leaves.

  5. A Comprehensive Analysis of miRNA/isomiR Expression with Gender Difference

    PubMed Central

    Guo, Li; Liang, Tingming; Yu, Jiafeng; Zou, Quan

    2016-01-01

    Although microRNAs (miRNAs) have been widely studied as epigenetic regulation molecules, fewer studies focus on the gender difference at the miRNA and isomiR expression levels. In this study, we aim to understand the potential relationships between gender difference and miRNA/isomiR expression through a comprehensive analysis of small RNA-sequencing datasets based on different human diseases and tissues. Based on specific samples from males and females, we determined that some miRNAs may be diversely expressed between different tissues and genders. Thus, these miRNAs may exhibit inconsistent and even opposite expression between males and females. According to deregulated miRNA expression profiles, some dominantly expressed miRNA loci were selected to analyze isomiR expression patterns using rates of dominant isomiRs. In some miRNA loci, isomiRs showed statistical significance between tumor and normal samples and between males and females samples, suggesting that isomiR expression patterns are not always invariable but may vary between males and females, as well as among different tissues, tumors, and normal samples. The divergence implicates the fluctuation in the expression of miRNA and its detailed expression at the isomiR levels. The divergence also indicates that gender difference may be an important factor that affects the screening of disease-associated miRNAs and isomiRs. This study suggests that miRNA/isomiR expression and gender difference may be more complex than previously assumed and should be further studied according to specific samples from males or females. PMID:27167065

  6. Deciphering Poxvirus Gene Expression by RNA Sequencing and Ribosome Profiling

    PubMed Central

    Cao, Shuai; Martens, Craig A.; Porcella, Stephen F.; Xie, Zhi; Ma, Ming; Shen, Ben

    2015-01-01

    ABSTRACT The more than 200 closely spaced annotated open reading frames, extensive transcriptional read-through, and numerous unpredicted RNA start sites have made the analysis of vaccinia virus gene expression challenging. Genome-wide ribosome profiling provided an unprecedented assessment of poxvirus gene expression. By 4 h after infection, approximately 80% of the ribosome-associated mRNA was viral. Ribosome-associated mRNAs were detected for most annotated early genes at 2 h and for most intermediate and late genes at 4 and 8 h. Cluster analysis identified a subset of early mRNAs that continued to be translated at the later times. At 2 h, there was excellent correlation between the abundance of individual mRNAs and the numbers of associated ribosomes, indicating that expression was primarily transcriptionally regulated. However, extensive transcriptional read-through invalidated similar correlations at later times. The mRNAs with the highest density of ribosomes had host response, DNA replication, and transcription roles at early times and were virion components at late times. Translation inhibitors were used to map initiation sites at single-nucleotide resolution at the start of most annotated open reading frames although in some cases a downstream methionine was used instead. Additional putative translational initiation sites with AUG or alternative codons occurred mostly within open reading frames, and fewer occurred in untranslated leader sequences, antisense strands, and intergenic regions. However, most open reading frames associated with these additional translation initiation sites were short, raising questions regarding their biological roles. The data were used to construct a high-resolution genome-wide map of the vaccinia virus translatome. IMPORTANCE This report contains the first genome-wide, high-resolution analysis of poxvirus gene expression at both transcriptional and translational levels. The study was made possible by recent methodological

  7. The integrative analysis of microRNA and mRNA expression in Apis mellifera following maze-based visual pattern learning.

    PubMed

    Qin, Qiu-Hong; Wang, Zi-Long; Tian, Liu-Qing; Gan, Hai-Yan; Zhang, Shao-Wu; Zeng, Zhi-Jiang

    2014-10-01

    The honeybee (Apis mellifera) is a social insect with strong sensory capacity and diverse behavioral repertoire and is recognized as a good model organism for studying the neurobiological basis of learning and memory. In this study, we analyzed the changes in microRNA (miRNA) and messenger RNA (mRNA) following maze-based visual learning using next-generation small RNA sequencing and Solexa/lllumina Digital Gene Expression tag profiling (DGE). For small RNA sequencing, we obtained 13 367 770 and 13 132 655 clean tags from the maze and control groups, respectively. A total of 40 differentially expressed known miRNAs were detected between these two samples, and all of them were up-regulated in the maze group compared to the control group. For DGE, 5 681 320 and 5 939 855 clean tags were detected from the maze and control groups, respectively. There were a total of 388 differentially expressed genes between these two samples, with 45 genes up-regulated and 343 genes down-regulated in the maze group, compared to the control group. Additionally, the expression levels of 10 differentially expressed genes were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the expression trends of eight of them were consistent with the DGE result, although the degree of change was lower in amplitude. The integrative analysis of miRNA and mRNA expression showed that, among the 40 differentially expressed known miRNAs and 388 differentially expressed genes, 60 pairs of miRNA/mRNA were identified as co-expressed in our present study. These results suggest that both miRNA and mRNA may play a pivotal role in the process of learning and memory in honeybees. Our sequencing data provide comprehensive miRNA and gene expression information for maze-based visual learning, which will facilitate understanding of the molecular mechanisms of honeybee learning and memory.

  8. Down-regulation of survivin expression by small interfering RNA induces pancreatic cancer cell apoptosis and enhances its radiosensitivity

    PubMed Central

    Guan, Hai-Tao; Xue, Xing-Huan; Dai, Zhi-Jun; Wang, Xi-Jing; Li, Ang; Qin, Zhao-Yin

    2006-01-01

    AIM: To investigate the inhibitory effect of small interfering RNA (siRNA) on the expression of survivin in pancreatic cancer cell line PC-2 and the role of siRNA in inducing PC-2 cell apoptosis and enhancing its radiosensitivity. METHODS: A siRNA plasmid expression vector against survivin was constructed and transfected into PC-2 cells with LipofectamineTM 2000. The down regulation of survivin expression was detected by semi-quantitive RT-PCR and immunohistochemical SP method and the role of siRNA in inducing PC-2 cell apoptosis and enhancing its radiosensitivity was detected by flow cytometry. RESULTS: The sequence-specific siRNA efficiently and specifically down-regulated the expression of survivin at both mRNA and protein levels. The expression inhibition ratio was 81.25% at mRNA level detected by semi-quantitive RT-PCR and 74.24% at protein level detected by immunohistochemical method. Forty-eight hours after transfection,apoptosis was induced in 7.03% cells by siRNA and in 14.58% cells by siRNA combined with radiation. CONCLUSION: The siRNA plasmid expression vector against survivin can inhibit the expression of survivin in PC-2 cells efficiently and specifically. Inhibiting the expression of survivin can induce apoptosis of PC-2 cells and enhance its radiosensitivity significantly. RNAi against survivin is of potential value in gene therapy of pancreatic cancer. PMID:16718816

  9. microRNA Expression Profiling: Technologies, Insights, and Prospects.

    PubMed

    Roden, Christine; Mastriano, Stephen; Wang, Nayi; Lu, Jun

    2015-01-01

    Since the early days of microRNA (miRNA) research, miRNA expression profiling technologies have provided important tools toward both better understanding of the biological functions of miRNAs and using miRNA expression as potential diagnostics. Multiple technologies, such as microarrays, next-generation sequencing, bead-based detection system, single-molecule measurements, and quantitative RT-PCR, have enabled accurate quantification of miRNAs and the subsequent derivation of key insights into diverse biological processes. As a class of ~22 nt long small noncoding RNAs, miRNAs present unique challenges in expression profiling that require careful experimental design and data analyses. We will particularly discuss how normalization and the presence of miRNA isoforms can impact data interpretation. We will present one example in which the consideration in data normalization has provided insights that helped to establish the global miRNA expression as a tumor suppressor. Finally, we discuss two future prospects of using miRNA profiling technologies to understand single cell variability and derive new rules for the functions of miRNA isoforms.

  10. Impact of RNA degradation on gene expression profiling

    PubMed Central

    2010-01-01

    Background Gene expression profiling is a highly sensitive technique which is used for profiling tumor samples for medical prognosis. RNA quality and degradation influence the analysis results of gene expression profiles. The impact of this influence on the profiles and its medical impact is not fully understood. As patient samples are very valuable for clinical studies, it is necessary to establish criteria for the RNA quality to be able to use these samples in later analysis. Methods To investigate the effects of RNA integrity on gene expression profiling, whole genome expression arrays were used. We used tumor biopsies from patients diagnosed with locally advanced rectal cancer. To simulate degradation, the isolated total RNA of all patients was subjected to heat-induced degradation in a time-dependent manner. Expression profiling was then performed and data were analyzed bioinformatically to assess the differences. Results The differences introduced by RNA degradation were largely outweighed by the biological differences between the patients. Only a relatively small number of probes (275 out of 41,000) show a significant effect due to degradation. The genes that show the strongest effect due to RNA degradation were, especially, those with short mRNAs and probe positions near the 5' end. Conclusions Degraded RNA from tumor samples (RIN > 5) can still be used to perform gene expression analysis. A much higher biological variance between patients is observed compared to the effect that is imposed by degradation of RNA. Nevertheless there are genes, very short ones and those with the probe binding side close to the 5' end that should be excluded from gene expression analysis when working with degraded RNA. These results are limited to the Agilent 44 k microarray platform and should be carefully interpreted when transferring to other settings. PMID:20696062

  11. High Throughput Quantitative PCR Using Low-input Samples for mRNA and MicroRNA Gene Expression Analyses

    PubMed Central

    Jang, Jinsung; Kolbert, Christopher; Jen, Jin; Simon, Vernadette

    2013-01-01

    Technical advancements in quantitative PCR (qPCR) instrumentation have made it possible to perform gene expression measurements using small sample input to support both basic and clinical research studies. As part of the strategic goals to assess new technologies and identify protocols that best fit the needs of the Mayo Clinic, we compared the Fluidigm BioMark system with standard Applied Biosystems (AB) instrumentation for mRNA and miRNA gene expression measurements. We also examined the performance of the BioMark system when using very low-input RNA. We evaluated a set of control samples using the same TaqMan assays with both systems. We observed that the BioMark-generated data routinely yields Ct values approximately 10 cycles lower than those obtained with AB instrumentation. The correlations between the two platforms were high (r = 0.96) for both mRNA and miRNA expression experiments. For miRNA expression, a similarly high correlation was observed between fresh frozen and formalin-fixed paraffin embedded (FFPE) samples. In an effort to accommodate our customer needs, we also evaluated the performance of the BioMark for evaluating gene expression in very low-input samples. Using six standard TaqMan control assays (having high, medium and low expression levels), we observed that high quality RNA samples as low as 10pg achieved linear amplification across four different pre-amplification cycles (10, 14, 18 and 22). At 10pg total RNA input, low-expression control assay IPO8 demonstrated a correlation of r = .999 among the four pre-amplification cycles. This linearity was also observed at higher RNA input levels, up to 10ng. The only control assay that did not perform in a linear fashion across all input amounts and all pre-amplification cycles was 18S ribosomal RNA. The highest correlation observed for 18S was r = 0.801, and this supports the vendor suggestion that 18S is not the best control assay option.

  12. Dissecting miRNA gene repression on single cell level with an advanced fluorescent reporter system

    PubMed Central

    Lemus-Diaz, Nicolas; Böker, Kai O.; Rodriguez-Polo, Ignacio; Mitter, Michael; Preis, Jasmin; Arlt, Maximilian; Gruber, Jens

    2017-01-01

    Despite major advances on miRNA profiling and target predictions, functional readouts for endogenous miRNAs are limited and frequently lead to contradicting conclusions. Numerous approaches including functional high-throughput and miRISC complex evaluations suggest that the functional miRNAome differs from the predictions based on quantitative sRNA profiling. To resolve the apparent contradiction of expression versus function, we generated and applied a fluorescence reporter gene assay enabling single cell analysis. This approach integrates and adapts a mathematical model for miRNA-driven gene repression. This model predicts three distinct miRNA-groups with unique repression activities (low, mid and high) governed not just by expression levels but also by miRNA/target-binding capability. Here, we demonstrate the feasibility of the system by applying controlled concentrations of synthetic siRNAs and in parallel, altering target-binding capability on corresponding reporter-constructs. Furthermore, we compared miRNA-profiles with the modeled predictions of 29 individual candidates. We demonstrate that expression levels only partially reflect the miRNA function, fitting to the model-projected groups of different activities. Furthermore, we demonstrate that subcellular localization of miRNAs impacts functionality. Our results imply that miRNA profiling alone cannot define their repression activity. The gene regulatory function is a dynamic and complex process beyond a minimalistic conception of “highly expressed equals high repression”. PMID:28338079

  13. [microRNA expression in breast development and breast cancer].

    PubMed

    Avril, S

    2013-11-01

    Profiling studies have identified specific miRNA signatures in hematological and solid malignancies, including breast cancer. This article reviews miRNA expression patterns in breast development and breast cancer focusing on two own previous studies. The first study characterized miRNA expression during postnatal mouse mammary gland development and the second study assessed intratumoral heterogeneity of miRNA expression in breast cancer.In mouse mammary glands the expression of 318 murine miRNAs was analyzed by bead-based flow-cytometric profiling throughout a 16-point developmental time course to derive a comprehensive tissue-specific miRNA expression profile. During breast development 102 miRNAs were expressed in 7 temporally coregulated clusters, which were significantly enriched for miRNA family members and breast cancer-associated miRNAs. None of the investigated single miRNAs or miRNA clusters were exclusively associated with a particular developmental stage.In human breast cancer the expression of 4 candidate miRNAs (miR-10b, miR-210, miR-31 and miR-335) was assessed by quantitative RT-PCR in 132 paraffin-embedded samples of 16 large primary invasive breast cancers including different tumor zones (peripheral, intermediate and central) as well as several axillary lymph node metastases from the same patient. The expression of all four miRNAs showed considerable intratumoral heterogeneity with a mean coefficient of variation of 40 % within the primary tumor and 40 % between different lymph node metastases from the same patient. In comparison, the variation among different patients showed a mean coefficient of variation of 80 % for primary tumors and 103 % for lymph node metastases. Intratumoral heterogeneity can lead to significant sampling bias and multiple areas of the primary tumor or several tumor-involved lymph nodes should be sampled when assessing miRNA profiles as prognostic or predictive biomarkers.

  14. Comparison of alternative approaches for analysing multi-level RNA-seq data

    PubMed Central

    Mohorianu, Irina; Bretman, Amanda; Smith, Damian T.; Fowler, Emily K.; Dalmay, Tamas

    2017-01-01

    RNA sequencing (RNA-seq) is widely used for RNA quantification in the environmental, biological and medical sciences. It enables the description of genome-wide patterns of expression and the identification of regulatory interactions and networks. The aim of RNA-seq data analyses is to achieve rigorous quantification of genes/transcripts to allow a reliable prediction of differential expression (DE), despite variation in levels of noise and inherent biases in sequencing data. This can be especially challenging for datasets in which gene expression differences are subtle, as in the behavioural transcriptomics test dataset from D. melanogaster that we used here. We investigated the power of existing approaches for quality checking mRNA-seq data and explored additional, quantitative quality checks. To accommodate nested, multi-level experimental designs, we incorporated sample layout into our analyses. We employed a subsampling without replacement-based normalization and an identification of DE that accounted for the hierarchy and amplitude of effect sizes within samples, then evaluated the resulting differential expression call in comparison to existing approaches. In a final step to test for broader applicability, we applied our approaches to a published set of H. sapiens mRNA-seq samples, The dataset-tailored methods improved sample comparability and delivered a robust prediction of subtle gene expression changes. The proposed approaches have the potential to improve key steps in the analysis of RNA-seq data by incorporating the structure and characteristics of biological experiments. PMID:28792517

  15. Testosterone Regulates NUCB2 mRNA Expression in Male Mouse Hypothalamus and Pituitary Gland.

    PubMed

    Seon, Sojeong; Jeon, Daun; Kim, Heejeong; Chung, Yiwa; Choi, Narae; Yang, Hyunwon

    2017-03-01

    Nesfatin-1/NUCB2 is known to take part in the control of the appetite and energy metabolism. Recently, many reports have shown nesfatin-1/NUCB2 expression and function in various organs. We previously demonstrated that nesfatin-1/NUCB2 expression level is higher in the pituitary gland compared to other organs and its expression is regulated by 17β-estradiol and progesterone secreted from the ovary. However, currently no data exist on the expression of nesfatin-1/NUCB2 and its regulation mechanism in the pituitary of male mouse. Therefore, we examined whether nesfatin-1/NUCB2 is expressed in the male mouse pituitary and if its expression is regulated by testosterone. As a result of PCR and western blotting, we found that a large amount of nesfatin-1/NUCB2 was expressed in the pituitary and hypothalamus. The NUCB2 mRNA expression level in the pituitary was decreased after castration, but not in the hypothalamus. In addition, its mRNA expression level in the pituitary was increased after testosterone treatment in the castrated mice, whereas, the expression level in the hypothalamus was significantly decreased after the treatment with testosterone. The in vitro experiment to elucidate the direct effect of testosterone on NUCB2 mRNA expression showed that NUCB2 mRNA expression was significantly decreased with testosterone in cultured hypothalamus tissue, but increased with testosterone in cultured pituitary gland. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the male mouse pituitary and was regulated by testosterone. This data suggests that reproductive-endocrine regulation through hypothalamus-pituitary-testis axis may contribute to NUCB2 mRNA expression in the mouse hypothalamus and pituitary gland.

  16. Testosterone Regulates NUCB2 mRNA Expression in Male Mouse Hypothalamus and Pituitary Gland

    PubMed Central

    Seon, Sojeong; Jeon, Daun; Kim, Heejeong; Chung, Yiwa; Choi, Narae; Yang, Hyunwon

    2017-01-01

    ABSTRACT Nesfatin-1/NUCB2 is known to take part in the control of the appetite and energy metabolism. Recently, many reports have shown nesfatin-1/NUCB2 expression and function in various organs. We previously demonstrated that nesfatin-1/NUCB2 expression level is higher in the pituitary gland compared to other organs and its expression is regulated by 17β-estradiol and progesterone secreted from the ovary. However, currently no data exist on the expression of nesfatin-1/NUCB2 and its regulation mechanism in the pituitary of male mouse. Therefore, we examined whether nesfatin-1/NUCB2 is expressed in the male mouse pituitary and if its expression is regulated by testosterone. As a result of PCR and western blotting, we found that a large amount of nesfatin-1/NUCB2 was expressed in the pituitary and hypothalamus. The NUCB2 mRNA expression level in the pituitary was decreased after castration, but not in the hypothalamus. In addition, its mRNA expression level in the pituitary was increased after testosterone treatment in the castrated mice, whereas, the expression level in the hypothalamus was significantly decreased after the treatment with testosterone. The in vitro experiment to elucidate the direct effect of testosterone on NUCB2 mRNA expression showed that NUCB2 mRNA expression was significantly decreased with testosterone in cultured hypothalamus tissue, but increased with testosterone in cultured pituitary gland. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the male mouse pituitary and was regulated by testosterone. This data suggests that reproductive-endocrine regulation through hypothalamus-pituitary-testis axis may contribute to NUCB2 mRNA expression in the mouse hypothalamus and pituitary gland. PMID:28484746

  17. RNA Polymerase III Regulates Cytosolic RNA:DNA Hybrids and Intracellular MicroRNA Expression*

    PubMed Central

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J.; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J.

    2015-01-01

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells. PMID:25623070

  18. MicroRNA Expression Profile in Penile Cancer Revealed by Next-Generation Small RNA Sequencing

    PubMed Central

    Zhang, Yuanwei; Xu, Bo; Zhou, Jun; Fan, Song; Hao, Zongyao; Shi, Haoqiang; Zhang, Xiansheng; Kong, Rui; Xu, Lingfan; Gao, Jingjing; Zou, Duohong; Liang, Chaozhao

    2015-01-01

    Penile cancer (PeCa) is a relatively rare tumor entity but possesses higher morbidity and mortality rates especially in developing countries. To date, the concrete pathogenic signaling pathways and core machineries involved in tumorigenesis and progression of PeCa remain to be elucidated. Several studies suggested miRNAs, which modulate gene expression at posttranscriptional level, were frequently mis-regulated and aberrantly expressed in human cancers. However, the miRNA profile in human PeCa has not been reported before. In this present study, the miRNA profile was obtained from 10 fresh penile cancerous tissues and matched adjacent non-cancerous tissues via next-generation sequencing. As a result, a total of 751 and 806 annotated miRNAs were identified in normal and cancerous penile tissues, respectively. Among which, 56 miRNAs with significantly different expression levels between paired tissues were identified. Subsequently, several annotated miRNAs were selected randomly and validated using quantitative real-time PCR. Compared with the previous publications regarding to the altered miRNAs expression in various cancers and especially genitourinary (prostate, bladder, kidney, testis) cancers, the most majority of deregulated miRNAs showed the similar expression pattern in penile cancer. Moreover, the bioinformatics analyses suggested that the putative target genes of differentially expressed miRNAs between cancerous and matched normal penile tissues were tightly associated with cell junction, proliferation, growth as well as genomic instability and so on, by modulating Wnt, MAPK, p53, PI3K-Akt, Notch and TGF-β signaling pathways, which were all well-established to participate in cancer initiation and progression. Our work presents a global view of the differentially expressed miRNAs and potentially regulatory networks of their target genes for clarifying the pathogenic transformation of normal penis to PeCa, which research resource also provides new insights

  19. MicroRNA Expression Profile in Penile Cancer Revealed by Next-Generation Small RNA Sequencing.

    PubMed

    Zhang, Li; Wei, Pengfei; Shen, Xudong; Zhang, Yuanwei; Xu, Bo; Zhou, Jun; Fan, Song; Hao, Zongyao; Shi, Haoqiang; Zhang, Xiansheng; Kong, Rui; Xu, Lingfan; Gao, Jingjing; Zou, Duohong; Liang, Chaozhao

    2015-01-01

    Penile cancer (PeCa) is a relatively rare tumor entity but possesses higher morbidity and mortality rates especially in developing countries. To date, the concrete pathogenic signaling pathways and core machineries involved in tumorigenesis and progression of PeCa remain to be elucidated. Several studies suggested miRNAs, which modulate gene expression at posttranscriptional level, were frequently mis-regulated and aberrantly expressed in human cancers. However, the miRNA profile in human PeCa has not been reported before. In this present study, the miRNA profile was obtained from 10 fresh penile cancerous tissues and matched adjacent non-cancerous tissues via next-generation sequencing. As a result, a total of 751 and 806 annotated miRNAs were identified in normal and cancerous penile tissues, respectively. Among which, 56 miRNAs with significantly different expression levels between paired tissues were identified. Subsequently, several annotated miRNAs were selected randomly and validated using quantitative real-time PCR. Compared with the previous publications regarding to the altered miRNAs expression in various cancers and especially genitourinary (prostate, bladder, kidney, testis) cancers, the most majority of deregulated miRNAs showed the similar expression pattern in penile cancer. Moreover, the bioinformatics analyses suggested that the putative target genes of differentially expressed miRNAs between cancerous and matched normal penile tissues were tightly associated with cell junction, proliferation, growth as well as genomic instability and so on, by modulating Wnt, MAPK, p53, PI3K-Akt, Notch and TGF-β signaling pathways, which were all well-established to participate in cancer initiation and progression. Our work presents a global view of the differentially expressed miRNAs and potentially regulatory networks of their target genes for clarifying the pathogenic transformation of normal penis to PeCa, which research resource also provides new insights

  20. MicroRNA expression profiles differentiate chronic pain condition subtypes

    PubMed Central

    Ciszek, Brittney P.; Khan, Asma A.; Dang, Hong; Slade, Gary D.; Smith, Shad; Bair, Eric; Maixner, William; Zolnoun, Denniz; Nackley, Andrea G.

    2015-01-01

    Chronic pain is a significant healthcare problem, ineffectively treated due to its unclear etiology and heterogeneous clinical presentation. Emerging evidence demonstrates that microRNAs regulate the expression of pain-relevant genes, yet little is known about their role in chronic pain. Here, we evaluate the relationship between pain, psychological characteristics, plasma cytokines and whole blood microRNAs in 22 healthy controls (HC); 33 subjects with chronic pelvic pain (vestibulodynia: VBD); and 23 subjects with VBD and irritable bowel syndrome (VBD+IBS). VBD subjects were similar to HCs in self-reported pain, psychological profiles and remote bodily pain. VBD+IBS subjects reported decreased health and function; and an increase in headaches, somatization and remote bodily pain. Furthermore, VBD subjects exhibited a balance in pro- and anti-inflammatory cytokines, while VBD+IBS subjects failed to exhibit a compensatory increase in anti-inflammatory cytokines. VBD subjects differed from controls in expression of 10 microRNAs of predicted importance for pain and estrogen signaling. VBD+IBS subjects differed from controls in expression of 11 microRNAs of predicted importance for pain, cell physiology and insulin signaling. MicroRNA expression was correlated with pain-relevant phenotypes and cytokine levels. These results suggest microRNAs represent a valuable tool for differentiating VBD subtypes (localized pain with apparent peripheral neurosensory disruption versus widespread pain with a central sensory contribution) that may require different treatment approaches. PMID:26166255

  1. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression

    PubMed Central

    Shen, Shensi; Rodrigo, Guillermo; Prakash, Satya; Majer, Eszter; Landrain, Thomas E.; Kirov, Boris; Daròs, José-Antonio; Jaramillo, Alfonso

    2015-01-01

    Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA–RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits. PMID:25916845

  2. High BIM mRNA levels are associated with longer survival in advanced gastric cancer

    PubMed Central

    Wu, Nandie; Huang, Ying; Zou, Zhengyun; Gimenez-Capitan, Ana; Yu, Lixia; Hu, Wenjing; Zhu, Lijing; Sun, Xia; Sanchez, Jose Javier; Guan, Wenxian; Liu, Baorui; Rosell, Rafael; Wei, Jia

    2017-01-01

    Chemotherapy drugs, including 5-fluorouracil (5-FU), oxaliplatin and docetaxel, are commonly used in the treatment of gastric cancer (GC). Apoptosis-relevant genes may be associated with drug resistance. In the present study, the messenger RNA (mRNA) expression levels of B-cell lymphoma 2 interacting mediator of cell death (BIM), astrocyte elevated gene-1 (AEG-1) and AXL receptor tyrosine kinase (AXL) were investigated in 131 advanced GC samples, and the expression levels of these genes were correlated with patients' overall survival (OS). All 131 patients received first-line FOLFOX combination chemotherapy with folinic acid and 5-FU, in which 56 patients were further treated with second-line docetaxel-based chemotherapy. A correlation between the mRNA expression levels of BIM and AEG-1 was observed (rs=0.30; P=0.002). There was no association between the mRNA expression levels of any of the individual genes analyzed and OS in patients only receiving first-line FOLFOX chemotherapy. In a subgroup of patients receiving docetaxel-based second-line chemotherapy, those with high or intermediate levels of BIM exhibited a median OS of 18.2 months [95% confidence interval (CI), 12.8–23.6], compared with 9.6 months (95% CI, 8.9–10.3) in patients with low BIM levels (P=0.008). However, there was no correlation between the mRNA expression levels of AEG-1 or AXL and OS. The risk of mortality was higher in patients with low BIM mRNA levels than in those with high or intermediate BIM mRNA levels (hazard ratio, 2.61; 95% CI, 1.21–5.62; P=0.010). Therefore, BIM may be considered as a biomarker to identify whether patients could benefit from docetaxel-based second-line chemotherapy in GC. PMID:28454330

  3. High BIM mRNA levels are associated with longer survival in advanced gastric cancer.

    PubMed

    Wu, Nandie; Huang, Ying; Zou, Zhengyun; Gimenez-Capitan, Ana; Yu, Lixia; Hu, Wenjing; Zhu, Lijing; Sun, Xia; Sanchez, Jose Javier; Guan, Wenxian; Liu, Baorui; Rosell, Rafael; Wei, Jia

    2017-03-01

    Chemotherapy drugs, including 5-fluorouracil (5-FU), oxaliplatin and docetaxel, are commonly used in the treatment of gastric cancer (GC). Apoptosis-relevant genes may be associated with drug resistance. In the present study, the messenger RNA (mRNA) expression levels of B-cell lymphoma 2 interacting mediator of cell death (BIM), astrocyte elevated gene-1 (AEG-1) and AXL receptor tyrosine kinase (AXL) were investigated in 131 advanced GC samples, and the expression levels of these genes were correlated with patients' overall survival (OS). All 131 patients received first-line FOLFOX combination chemotherapy with folinic acid and 5-FU, in which 56 patients were further treated with second-line docetaxel-based chemotherapy. A correlation between the mRNA expression levels of BIM and AEG-1 was observed (rs=0.30; P=0.002). There was no association between the mRNA expression levels of any of the individual genes analyzed and OS in patients only receiving first-line FOLFOX chemotherapy. In a subgroup of patients receiving docetaxel-based second-line chemotherapy, those with high or intermediate levels of BIM exhibited a median OS of 18.2 months [95% confidence interval (CI), 12.8-23.6], compared with 9.6 months (95% CI, 8.9-10.3) in patients with low BIM levels (P=0.008). However, there was no correlation between the mRNA expression levels of AEG-1 or AXL and OS. The risk of mortality was higher in patients with low BIM mRNA levels than in those with high or intermediate BIM mRNA levels (hazard ratio, 2.61; 95% CI, 1.21-5.62; P=0.010). Therefore, BIM may be considered as a biomarker to identify whether patients could benefit from docetaxel-based second-line chemotherapy in GC.

  4. A nucleotide-level coarse-grained model of RNA

    SciTech Connect

    Šulc, Petr; Ouldridge, Thomas E.; Louis, Ard A.; Romano, Flavio; Doye, Jonathan P. K.

    2014-06-21

    We present a new, nucleotide-level model for RNA, oxRNA, based on the coarse-graining methodology recently developed for the oxDNA model of DNA. The model is designed to reproduce structural, mechanical, and thermodynamic properties of RNA, and the coarse-graining level aims to retain the relevant physics for RNA hybridization and the structure of single- and double-stranded RNA. In order to explore its strengths and weaknesses, we test the model in a range of nanotechnological and biological settings. Applications explored include the folding thermodynamics of a pseudoknot, the formation of a kissing loop complex, the structure of a hexagonal RNA nanoring, and the unzipping of a hairpin motif. We argue that the model can be used for efficient simulations of the structure of systems with thousands of base pairs, and for the assembly of systems of up to hundreds of base pairs. The source code implementing the model is released for public use.

  5. Nonsense-mediated RNA decay – a switch and dial for regulating gene expression

    PubMed Central

    Smith, Jenna E.; Baker, Kristian E.

    2015-01-01

    Nonsense-mediated RNA decay (NMD) represents an established quality control checkpoint for gene expression that protects cells from consequences of gene mutations and errors during RNA biogenesis that lead to premature termination during translation. Characterization of NMD-sensitive transcriptomes has revealed, however, that NMD targets not only aberrant transcripts but also a broad array of mRNA isoforms expressed from many endogenous genes. NMD is thus emerging as a master regulator that drives both fine and coarse adjustments in steady-state RNA levels in the cell. Importantly, while NMD activity is subject to autoregulation as a means to maintain homeostasis, modulation of the pathway by external cues providesa means to reprogram gene expression and drive important biological processes. Finally, the unanticipated observation that transcripts predicted to lack protein-coding capacity are also sensitive to this translation-dependent surveillance mechanism implicates NMD in regulating RNA function in new and diverse ways. PMID:25820233

  6. [Selection of microRNA for providing tumor specificity of transgene expression in cancer gene therapy].

    PubMed

    Shepelev, M V; Kalinichenko, S V; Vikhreva, P N; Korobko, I V

    2016-01-01

    The use of tumor-specific microRNA loss to inhibit transgene expression in normal cells is considered as a way to increase the specificity of gene-therapeutic antitumor drugs. This method assumes the introduction of recognition sites of suppressed in tumor cells microRNAs into transgene transcipt. In the presented work, the efficiency of the strategy for providing the tumor specificity of transgene expression depending on parameters of microRNA expression in normal and tumor cells was studied. It was established that microRNA suppression in tumor cells and the determination of absolute microRNA levels in tumor and normal cells are not sufficient for the adequate estimation of the possibility of specific microRNA usage in the scheme of cancer gene therapy, and particularly do not allow to exclude a significant decrease in the efficiency of the gene-therapeutic drug upon the introduction of microRNA recognition sites. These parameters are only suitable for the preliminary selection of microRNA. The effect of introduction of microRNA recognition sites on transgene expression level in target tumor cells should be validated experimentally. It is suggested that this should be done directly in the cancer gene therapy scheme with monitoring of the therapeutic transgene activity.

  7. Histone gene expression and histone mRNA 3' end structure in Caenorhabditis elegans.

    PubMed

    Keall, Rebecca; Whitelaw, Sandra; Pettitt, Jonathan; Müller, Berndt

    2007-06-14

    Histone protein synthesis is essential for cell proliferation and required for the packaging of DNA into chromatin. In animals, histone proteins are provided by the expression of multicopy replication-dependent histone genes. Histone mRNAs that are processed by a histone-specific mechanism to end after a highly conserved RNA hairpin element, and lack a poly(A) tail. In vertebrates and Drosophila, their expression is dependent on HBP/SLBP that binds to the RNA hairpin element. We showed previously that these cis and trans acting regulators of histone gene expression are conserved in C. elegans. Here we report the results of an investigation of the histone mRNA 3' end structure and of histone gene expression during C. elegans development. Sequence analysis of replication-dependent histone genes revealed the presence of several highly conserved sequence elements in the 3' untranslated region of histone pre-mRNAs, including an RNA hairpin element and a polyadenylation signal. To determine whether in C. elegans histone mRNA 3' end formation occurs at this polyadenylation signal and results in polyadenylated histone mRNA, we investigated the mRNA 3' end structure of histone mRNA. Using poly(A) selection, RNAse protection and sequencing of histone mRNA ends, we determined that a majority of C. elegans histone mRNAs lack a poly(A) tail and end three to six nucleotides after the hairpin structure, after an A or a U, and have a 3' OH group. RNAi knock down of CDL-1, the C. elegans HBP/SLBP, does not significantly affect histone mRNA levels but severely depletes histone protein levels. Histone gene expression varies during development and is reduced in L3 animals compared to L1 animals and adults. In adults, histone gene expression is restricted to the germ line, where cell division occurs. Our findings indicate that the expression of C. elegans histone genes is subject to control mechanisms similar to the ones in other animals: the structure of C. elegans histone mRNA 3

  8. Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression.

    PubMed

    Zhang, Jingcheng; Gao, Yang; Yu, Mengying; Wu, Haibo; Ai, Zhiying; Wu, Yongyan; Liu, Hongliang; Du, Juan; Guo, Zekun; Zhang, Yong

    2015-01-01

    Retinoic acid (RA) is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs). Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs.

  9. Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system.

    PubMed

    Lee, Young Je; Hoynes-O'Connor, Allison; Leong, Matthew C; Moon, Tae Seok

    2016-03-18

    A central goal of synthetic biology is to implement diverse cellular functions by predictably controlling gene expression. Though research has focused more on protein regulators than RNA regulators, recent advances in our understanding of RNA folding and functions have motivated the use of RNA regulators. RNA regulators provide an advantage because they are easier to design and engineer than protein regulators, potentially have a lower burden on the cell and are highly orthogonal. Here, we combine the CRISPR system from Streptococcus pyogenes and synthetic antisense RNAs (asRNAs) in Escherichia coli strains to repress or derepress a target gene in a programmable manner. Specifically, we demonstrate for the first time that the gene target repressed by the CRISPR system can be derepressed by expressing an asRNA that sequesters a small guide RNA (sgRNA). Furthermore, we demonstrate that tunable levels of derepression can be achieved (up to 95%) by designing asRNAs that target different regions of a sgRNA and by altering the hybridization free energy of the sgRNA-asRNA complex. This new system, which we call the combined CRISPR and asRNA system, can be used to reversibly repress or derepress multiple target genes simultaneously, allowing for rational reprogramming of cellular functions.

  10. The peculiarities of piRNA expression upon heat shock exposure in Drosophila melanogaster

    PubMed Central

    Funikov, S Yu; Ryazansky, SS; Zelentsova, ES; Popenko, VI; Leonova, OG; Garbuz, DG; Evgen'ev, MB; Zatsepina, OG

    2015-01-01

    Different types of stress including heat shock may induce genomic instability, due to the derepression and amplification of mobile elements (MEs). It remains unclear, however, whether piRNA-machinery regulating ME expression functions normally under stressful conditions. The aim of this study was to explore the features of piRNA expression after heat shock (HS) exposure in Drosophila melanogaster. We also evaluated functioning of piRNA-machinery in the absence of major stress protein Hsp70 in this species. We analyzed the deep sequence data of piRNA expression after HS treatment and demonstrated that it modulates the expression of certain double-stranded germinal piRNA-clusters. Notable, we demonstrated significant changes in piRNA levels targeting a group of MEs after HS only in the strain containing normal set of hsp70 genes. Surprisingly, we failed to detect any correlation between the levels of piRNAs and the transcription of complementary MEs in the studied strains. We propose that modulation of certain piRNA-clusters expression upon HS exposure in D. melanogaster occurs due to HS-induced altering of chromatin state at certain chromosome regions. PMID:26904377

  11. Genome-wide analysis of long noncoding RNA (lncRNA) expression in hepatoblastoma tissues.

    PubMed

    Dong, Rui; Jia, Deshui; Xue, Ping; Cui, Ximao; Li, Kai; Zheng, Shan; He, Xianghuo; Dong, Kuiran

    2014-01-01

    Long noncoding RNAs (lncRNAs) have crucial roles in cancer biology. We performed a genome-wide analysis of lncRNA expression in hepatoblastoma tissues to identify novel targets for further study of hepatoblastoma. Hepatoblastoma and normal liver tissue samples were obtained from hepatoblastoma patients. The genome-wide analysis of lncRNA expression in these tissues was performed using a 4×180 K lncRNA microarray and Sureprint G3 Human lncRNA Chips. Quantitative RT-PCR (qRT-PCR) was performed to confirm these results. The differential expressions of lncRNAs and mRNAs were identified through fold-change filtering. Gene Ontology (GO) and pathway analyses were performed using the standard enrichment computation method. Associations between lncRNAs and adjacent protein-coding genes were determined through complex transcriptional loci analysis. We found that 2736 lncRNAs were differentially expressed in hepatoblastoma tissues. Among these, 1757 lncRNAs were upregulated more than two-fold relative to normal tissues and 979 lncRNAs were downregulated. Moreover, in hepatoblastoma there were 420 matched lncRNA-mRNA pairs for 120 differentially expressed lncRNAs, and 167 differentially expressed mRNAs. The co-expression network analysis predicted 252 network nodes and 420 connections between 120 lncRNAs and 132 coding genes. Within this co-expression network, 369 pairs were positive, and 51 pairs were negative. Lastly, qRT-PCR data verified six upregulated and downregulated lncRNAs in hepatoblastoma, plus endothelial cell-specific molecule 1 (ESM1) mRNA. Our results demonstrated that expression of these aberrant lncRNAs could respond to hepatoblastoma development. Further study of these lncRNAs could provide useful insight into hepatoblastoma biology.

  12. Expression profiling of microRNA using oligo DNA arrays

    PubMed Central

    Liu, Chang-Gong; Spizzo, Riccardo; Calin, George Adrian; Croce, Carlo Maria

    2012-01-01

    After 12 years from its first application, microarray technology has become the reference technique to monitor gene expression of thousands of genes in the same experiment. In the past few years an increasing amount of evidence showed the importance of non coding RNA (ncRNA) in different human diseases. The microRNAs (miRNAs) are one of the groups of ncRNA. They are small RNA fragments, 19–25 nucleotides long, with a main regulatory function on both protein coding genes and non-coding RNAs. The application of microarray platforms applied to miRNA profiling determined their deregulation in virtually all human diseases that have been studied. We previously developed a custom miRNA microarray platform, and here we describe the protocol we used to work with it including the oligo design strategy, the microaray printing protocol, the target-probe hybridization and the signal detection. PMID:18158129

  13. An Integrated mRNA and microRNA Expression Signature for Glioblastoma Multiforme Prognosis

    PubMed Central

    Xiong, Jie; Bing, Zhitong; Su, Yanlin; Deng, Defeng; Peng, Xiaoning

    2014-01-01

    Although patients with Glioblastoma multiforme (GBM) have grave prognosis, significant variability in patient outcome is observed. The objective of this study is to identify a molecular signature for GBM prognosis. We subjected 355 mRNA and microRNA expression profiles to elastic net-regulated Cox regression for identification of an integrated RNA signature for GBM prognosis. A prognostic index (PI) was generated for patient stratification. Survival comparison was conducted by Kaplan-Meier method and a general multivariate Cox regression procedure was applied to evaluate the independence of the PI. The abilities and efficiencies of signatures to predict GBM patient outcome was assessed and compared by the area under the curve (AUC) of the receiver-operator characteristic (ROC). An integrated RNA prognostic signature consisted by 4 protective mRNAs, 12 risky mRNAs, and 1 risky microRNA was identified. Decreased survival was associated with being in the high-risk group (hazard ratio = 2.864, P<0.0001). The prognostic value of the integrated signature was validated in five independent GBM expression datasets (n = 201, hazard ratio = 2.453, P<0.0001). The PI outperformed the known clinical factors, mRNA-only, and miRNA-only prognostic signatures for GBM prognosis (area under the ROC curve for the integrated RNA, mRNA-only, and miRNA-only signatures were 0.828, 0.742, and 0.757 at 3 years of overall survival, respectively, P<0.0001 by permutation test). We describe the first, to our knowledge, robust transcriptome-based integrated RNA signature that improves the current GBM prognosis based on clinical variables, mRNA-only, and miRNA-only signatures. PMID:24871302

  14. RNA around the clock - regulation at the RNA level in biological timing.

    PubMed

    Nolte, Christine; Staiger, Dorothee

    2015-01-01

    The circadian timing system in plants synchronizes their physiological functions with the environment. This is achieved by a global control of gene expression programs with a considerable part of the transcriptome undergoing 24-h oscillations in steady-state abundance. These circadian oscillations are driven by a set of core clock proteins that generate their own 24-h rhythm through periodic feedback on their own transcription. Additionally, post-transcriptional events are instrumental for oscillations of core clock genes and genes in clock output. Here we provide an update on molecular events at the RNA level that contribute to the 24-h rhythm of the core clock proteins and shape the circadian transcriptome. We focus on the circadian system of the model plant Arabidopsis thaliana but also discuss selected regulatory principles in other organisms.

  15. RNA around the clock – regulation at the RNA level in biological timing

    PubMed Central

    Nolte, Christine; Staiger, Dorothee

    2015-01-01

    The circadian timing system in plants synchronizes their physiological functions with the environment. This is achieved by a global control of gene expression programs with a considerable part of the transcriptome undergoing 24-h oscillations in steady-state abundance. These circadian oscillations are driven by a set of core clock proteins that generate their own 24-h rhythm through periodic feedback on their own transcription. Additionally, post-transcriptional events are instrumental for oscillations of core clock genes and genes in clock output. Here we provide an update on molecular events at the RNA level that contribute to the 24-h rhythm of the core clock proteins and shape the circadian transcriptome. We focus on the circadian system of the model plant Arabidopsis thaliana but also discuss selected regulatory principles in other organisms. PMID:25999975

  16. ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins

    PubMed Central

    Martirosyan, Araks; De Martino, Andrea; Pagnani, Andrea; Marinari, Enzo

    2017-01-01

    Gene expression is a noisy process and several mechanisms, both transcriptional and post-transcriptional, can stabilize protein levels in cells. Much work has focused on the role of miRNAs, showing in particular that miRNA-mediated regulation can buffer expression noise for lowly expressed genes. Here, using in silico simulations and mathematical modeling, we demonstrate that miRNAs can exert a much broader influence on protein levels by orchestrating competition-induced crosstalk between mRNAs. Most notably, we find that miRNA-mediated cross-talk (i) can stabilize protein levels across the full range of gene expression rates, and (ii) modifies the correlation pattern of co-regulated interacting proteins, changing the sign of correlations from negative to positive. The latter feature may constitute a potentially robust signature of the existence of RNA crosstalk induced by endogenous competition for miRNAs in standard cellular conditions. PMID:28266541

  17. ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins.

    PubMed

    Martirosyan, Araks; De Martino, Andrea; Pagnani, Andrea; Marinari, Enzo

    2017-03-07

    Gene expression is a noisy process and several mechanisms, both transcriptional and post-transcriptional, can stabilize protein levels in cells. Much work has focused on the role of miRNAs, showing in particular that miRNA-mediated regulation can buffer expression noise for lowly expressed genes. Here, using in silico simulations and mathematical modeling, we demonstrate that miRNAs can exert a much broader influence on protein levels by orchestrating competition-induced crosstalk between mRNAs. Most notably, we find that miRNA-mediated cross-talk (i) can stabilize protein levels across the full range of gene expression rates, and (ii) modifies the correlation pattern of co-regulated interacting proteins, changing the sign of correlations from negative to positive. The latter feature may constitute a potentially robust signature of the existence of RNA crosstalk induced by endogenous competition for miRNAs in standard cellular conditions.

  18. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound

    PubMed Central

    McTiernan, Charles F.; Chen, Xucai; Klein, Edwin C.; Villanueva, Flordeliza S.

    2016-01-01

    RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease. PMID:27471848

  19. Robust changes in expression of brain-derived neurotrophic factor (BDNF) mRNA and protein across the brain do not translate to detectable changes in BDNF levels in CSF or plasma.

    PubMed

    Lanz, Thomas A; Bove, Susan E; Pilsmaker, Catherine D; Mariga, Abigail; Drummond, Elena M; Cadelina, Gregory W; Adamowicz, Wendy O; Swetter, Brentt J; Carmel, Sharon; Dumin, Jo Ann; Kleiman, Robin J

    2012-09-01

    Adult rats were treated acutely with peripheral kainic acid (KA), and changes in brain-derived neurotrophic factor (BDNF) mRNA and protein were tracked over time across multiple brain regions. Despite robust elevation in both mRNA and protein in multiple brain regions, plasma BDNF was unchanged and cerebrospinal fluid (CSF) BDNF levels remained undetectable. Primary neurons were then treated with KA. BDNF was similarly elevated within neurons, but was undetectable in neuronal media. Thus, while deficits in BDNF signaling have been implicated in a number of diseases, these data suggest that extracellular concentrations of BDNF may not be a facile biomarker for changes in neurons.

  20. Brain Gene Expression Signatures From Cerebrospinal Fluid Exosome RNA Profiling

    NASA Technical Reports Server (NTRS)

    Zanello, S. B.; Stevens, B.; Calvillo, E.; Tang, R.; Gutierrez Flores, B.; Hu, L.; Skog, J.; Bershad, E.

    2016-01-01

    While the Visual Impairment and Intracranial Pressure (VIIP) syndrome observations have focused on ocular symptoms, spaceflight has been also associated with a number of other performance and neurologic signs, such as headaches, cognitive changes, vertigo, nausea, sl