Science.gov

Sample records for rna expression vector

  1. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155

    PubMed Central

    Chung, Kwan-Ho; Hart, Christopher C.; Al-Bassam, Sarmad; Avery, Adam; Taylor, Jennifer; Patel, Paresh D.; Vojtek, Anne B.; Turner, David L.

    2006-01-01

    Vector-based RNA interference (RNAi) has emerged as a valuable tool for analysis of gene function. We have developed new RNA polymerase II expression vectors for RNAi, designated SIBR vectors, based upon the non-coding RNA BIC. BIC contains the miR-155 microRNA (miRNA) precursor, and we find that expression of a short region of the third exon of mouse BIC is sufficient to produce miR-155 in mammalian cells. The SIBR vectors use a modified miR-155 precursor stem–loop and flanking BIC sequences to express synthetic miRNAs complementary to target RNAs. Like RNA polymerase III driven short hairpin RNA vectors, the SIBR vectors efficiently reduce target mRNA and protein expression. The synthetic miRNAs can be expressed from an intron, allowing coexpression of a marker or other protein with the miRNAs. In addition, intronic expression of a synthetic miRNA from a two intron vector enhances RNAi. A SIBR vector can express two different miRNAs from a single transcript for effective inhibition of two different target mRNAs. Furthermore, at least eight tandem copies of a synthetic miRNA can be expressed in a polycistronic transcript to increase the inhibition of a target RNA. The SIBR vectors are flexible tools for a variety of RNAi applications. PMID:16614444

  2. Noncytopathic Sindbis virus RNA vectors for heterologous gene expression

    PubMed Central

    Agapov, Eugene V.; Frolov, Ilya; Lindenbach, Brett D.; Prágai, Béla M.; Schlesinger, Sondra; Rice, Charles M.

    1998-01-01

    Infection of vertebrate cells with alphaviruses normally leads to prodigious expression of virus-encoded genes and a dramatic inhibition of host protein synthesis. Recombinant Sindbis viruses and replicons have been useful as vectors for high level foreign gene expression, but the cytopathic effects of viral replication have limited their use to transient studies. We recently selected Sindbis replicons capable of persistent, noncytopathic growth in BHK cells and describe here a new generation of Sindbis vectors useful for long-term foreign gene expression based on such replicons. Foreign genes of interest as well as the dominant selectable marker puromycin N-acteyltransferase, which confers resistance to the drug puromycin, were expressed as subgenomic transcripts of noncytopathic replicons or defective-interfering genomes complemented in trans by a replicon. Based on these strategies, we developed vectors that can be initiated via either RNA or DNA transfection and analyzed them for their level and stability of foreign gene expression. Noncytopathic Sindbis vectors express reasonably high levels of protein in nearly every cell. These vectors should prove to be flexible tools for the rapid expression of heterologous genes under conditions in which cellular metabolism is not perturbed, and we illustrate their utility with a number of foreign proteins. PMID:9789028

  3. Lentivirus-expressed siRNA vectors against Alzheimer disease.

    PubMed

    Peng, Kevin A; Masliah, Eliezer

    2010-01-01

    Amyloid precursor protein (APP) has been implicated in the pathogenesis of Alzheimer disease, and the accumulation of APP products ultimately leads to the familiar histopathological and clinical manifestations associated with this most common form of dementia. A protein that has been shown to promote APP accumulation is beta-secretase (beta-site APP cleaving enzyme 1, or BACE1), which is increased in the cerebrospinal fluid in those affected with Alzheimer disease. Through in vivo studies using APP transgenic mice, we demonstrated that decreasing the expression of BACE1 via lentiviral vector delivery of BACE1 siRNA has the potential for significantly reducing the cleavage of APP, accumulation of these products, and consequent neurodegeneration. As such, lentiviral-expressed siRNA against BACE1 is a therapeutic possibility in the treatment of Alzheimer disease. We detail the use of lentivirus-expressed siRNA as a method to ameliorate Alzheimer disease neuropathology in APP transgenic mice.

  4. Multiple shRNA expressions in a single plasmid vector improve RNAi against the XPA gene

    SciTech Connect

    Nagao, Akihiro; Zhao, Xia; Takegami, Tsutomu; Nakagawa, Hideaki; Matsui, Shinobu; Matsunaga, Tsukasa; Ishigaki, Yasuhito

    2008-05-30

    To improve the efficiency of stable knockdown with short hairpin RNA (shRNA), we inserted multiple shRNA expression sequences into a single plasmid vector. In this study, the DNA repair factor XPA was selected as a target gene since it is not essential for cell viability and it is easy to check the functional knockdown of this gene. The efficiency of knockdown was compared among single and triple expression vectors. The single shRNA-expressing vector caused limited knockdown of the target protein in stable transfectants, however, the multiple expression vectors apparently increased the frequency of knockdown transfectants. There were correlations between the knockdown level and marker expression in multiple-expressing transfectants, whereas poorer correlations were observed in single vector transfectants. Multiple-transfectants exhibited reduced efficiency of repair of UV-induced DNA damage and an increased sensitivity to ultraviolet light-irradiation. We propose that multiple shRNA expression vectors might be a useful strategy for establishing knockdown cells.

  5. MicroRNA-150-regulated vectors allow lymphocyte-sparing transgene expression in hematopoietic gene therapy.

    PubMed

    Lachmann, N; Jagielska, J; Heckl, D; Brennig, S; Pfaff, N; Maetzig, T; Modlich, U; Cantz, T; Gentner, B; Schambach, A; Moritz, T

    2012-09-01

    Endogenous microRNA (miRNA) expression can be exploited for cell type-specific transgene expression as the addition of miRNA target sequences to transgenic cDNA allows for transgene downregulation specifically in cells expressing the respective miRNAs. Here, we have investigated the potential of miRNA-150 target sequences to specifically suppress gene expression in lymphocytes and thereby prevent transgene-induced lymphotoxicity. Abundance of miRNA-150 expression specifically in differentiated B and T cells was confirmed by quantitative reverse transcriptase PCR. Mono- and bicistronic lentiviral vectors were used to investigate the effect of miRNA-150 target sequences on transgene expression in the lymphohematopoietic system. After in vitro studies demonstrated effective downregulation of transgene expression in murine B220(+) B and CD3(+) T cells, the concept was further verified in a murine transplant model. Again, marked suppression of transgene activity was observed in B220(+) B and CD4(+) or CD8(+) T cells whereas expression in CD11b(+) myeloid cells, lin(-) and lin(-)/Sca1(+) progenitors, or lin(-)/Sca1(+)/c-kit(+) stem cells remained almost unaffected. No toxicity of miRNA-150 targeting in transduced lymphohematopoietic cells was noted. Thus, our results demonstrate the suitability of miRNA-150 targeting to specifically suppress transgene expression in lymphocytes and further support the concept of miRNA targeting for cell type-specific transgene expression in gene therapy approaches.

  6. A Cytoplasmic RNA Vector Derived from Nontransmissible Sendai Virus with Efficient Gene Transfer and Expression

    PubMed Central

    Li, Hai-Ou; Zhu, Ya-Feng; Asakawa, Makoto; Kuma, Hidekazu; Hirata, Takahiro; Ueda, Yasuji; Lee, Yun-Sik; Fukumura, Masayuki; Iida, Akihiro; Kato, Atsushi; Nagai, Yoshiyuki; Hasegawa, Mamoru

    2000-01-01

    We have recovered a virion from defective cDNA of Sendai virus (SeV) that is capable of self-replication but incapable of transmissible-virion production. This virion delivers and expresses foreign genes in infected cells, and this is the first report of a gene expression vector derived from a defective viral genome of the Paramyxoviridae. First, functional ribonucleoprotein complexes (RNPs) were recovered from SeV cloned cDNA defective in the F (envelope fusion protein) gene, in the presence of plasmids expressing nucleocapsid protein and viral RNA polymerase. Then the RNPs were transfected to the cells inducibly expressing F protein. Virion-like particles thus obtained had a titer of 0.5 × 108 to 1.0 × 108 cell infectious units/ml and contained F-defective RNA genome. This defective vector amplified specifically in an F-expressing packaging cell line in a trypsin-dependent manner but did not spread to F-nonexpressing cells. This vector infected and expressed an enhanced green fluorescent protein reporter gene in various types of animal and human cells, including nondividing cells, with high efficiency. These results suggest that this vector has great potential for use in human gene therapy and vaccine delivery systems. PMID:10864670

  7. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    NASA Astrophysics Data System (ADS)

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  8. Long-term expression of miRNA for RNA interference using a novel vector system based on a negative-strand RNA virus

    PubMed Central

    Honda, Tomoyuki; Yamamoto, Yusuke; Daito, Takuji; Matsumoto, Yusuke; Makino, Akiko; Tomonaga, Keizo

    2016-01-01

    RNA interference (RNAi) has emerged as a promising technique for gene therapy. However, the safe and long-term expression of small RNA molecules is a major concern for the application of RNAi therapies in vivo. Borna disease virus (BDV), a non-segmented, negative-strand RNA virus, establishes a persistent infection without obvious cytopathic effects. Unique among animal non-retroviral RNA viruses, BDV persistently establishes a long-lasting persistent infection in the nucleus. These features make BDV ideal for RNA virus vector persistently expressing small RNAs. Here, we demonstrated that the recombinant BDV (rBDV) containing the miR-155 precursor, rBDV-miR-155, persistently expressed miR-155 and efficiently silenced its target gene. The stem region of the miR-155 precursor in rBDV-miR-155 was replaceable by any miRNA sequences of interest and that such rBDVs efficiently silence the expression of target genes. Collectively, BDV vector would be a novel RNA virus vector enabling the long-term expression of miRNAs for RNAi therapies. PMID:27189575

  9. Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based antiangiogenic factors

    PubMed Central

    Askou, Anne Louise; Aagaard, Lars; Kostic, Corinne; Arsenijevic, Yvan; Hollensen, Anne Kruse; Bek, Toke; Jensen, Thomas Gryesten; Mikkelsen, Jacob Giehm; Corydon, Thomas Juhl

    2015-01-01

    Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA) clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF) expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF). Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration. PMID:26052532

  10. Engineering and Validation of a Vector for Concomitant Expression of Rare Transfer RNA (tRNA) and HIV-1 nef Genes in Escherichia coli.

    PubMed

    Mualif, Siti Aisyah; Teow, Sin-Yeang; Omar, Tasyriq Che; Chew, Yik Wei; Yusoff, Narazah Mohd; Ali, Syed A

    2015-01-01

    Relative ease in handling and manipulation of Escherichia coli strains make them primary candidate to express proteins heterologously. Overexpression of heterologous genes that contain codons infrequently used by E. coli is related with difficulties such as mRNA instability, early termination of transcription and/or translation, deletions and/or misincorporation, and cell growth inhibition. These codon bias -associated problems are addressed by co-expressing ColE1-compatible, rare tRNA expressing helper plasmids. However, this approach has inadequacies, which we have addressed by engineering an expression vector that concomitantly expresses the heterologous protein of interest, and rare tRNA genes in E. coli. The expression vector contains three (argU, ileY, leuW) rare tRNA genes and a useful multiple cloning site for easy in-frame cloning. To maintain the overall size of the parental plasmid vector, the rare tRNA genes replaced the non-essential DNA segments in the vector. The cloned gene is expressed under the control of T7 promoter and resulting recombinant protein has a C-terminal 6His tag for IMAC-mediated purification. We have evaluated the usefulness of this expression vector by expressing three HIV-1 genes namely HIV-1 p27 (nef), HIV-1 p24 (ca), and HIV-1 vif in NiCo21(DE3) E.coli and demonstrated the advantages of using expression vector that concomitantly expresses rare tRNA and heterologous genes.

  11. Efficient production of superior dumbbell-shaped DNA minimal vectors for small hairpin RNA expression.

    PubMed

    Yu, Han; Jiang, Xiaoou; Tan, Kar Tong; Hang, Liting; Patzel, Volker

    2015-10-15

    Genetic therapy holds great promise for the treatment of inherited or acquired genetic diseases; however, its breakthrough is hampered by the lack of suitable gene delivery systems. Dumbbell-shaped DNA minimal vectors represent an attractive, safe alternative to the commonly used viral vectors which are fraught with risk, but dumbbell generation appears to be costly and time-consuming. We developed a new PCR-based method for dumbbell production which comprises only two steps. First, PCR amplification of the therapeutic expression cassette using chemically modified primers to form a ready-to-ligate DNA structure; and second, a highly efficient intramolecular ligation reaction. Compared with conventional strategies, the new method produces dumbbell vectors more rapidly, with higher yields and purity, and at lower costs. In addition, such produced small hairpin RNA expressing dumbbells triggered superior target gene knockdown compared with conventionally produced dumbbells or plasmids. Our novel method is suitable for large-scale dumbbell production and can facilitate clinical applications of this vector system.

  12. Expression of IMP1 enhances production of murine leukemia virus vector by facilitating viral genomic RNA packaging.

    PubMed

    Mai, Yun; Gao, Guangxia

    2010-12-29

    Murine leukemia virus (MLV)-based retroviral vector is widely used for gene transfer. Efficient packaging of the genomic RNA is critical for production of high-titer virus. Here, we report that expression of the insulin-like growth factor II mRNA binding protein 1 (IMP1) enhanced the production of infectious MLV vector. Overexpression of IMP1 increased the stability of viral genomic RNA in virus producer cells and packaging of the RNA into progeny virus in a dose-dependent manner. Downregulation of IMP1 in virus producer cells resulted in reduced production of the retroviral vector. These results indicate that IMP1 plays a role in regulating the packaging of MLV genomic RNA and can be used for improving production of retroviral vectors.

  13. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System.

    PubMed

    Bhagwat, Basdeo; Chi, Ming; Han, Dianwei; Tang, Haifeng; Tang, Guiliang; Xiang, Yu

    2016-01-01

    Artificial microRNA (amiRNA) technology utilizes microRNA (miRNA) biogenesis pathway to produce artificially selected small RNAs using miRNA gene backbone. It provides a feasible strategy for inducing loss of gene function, and has been applied in functional genomics study, improvement of crop quality and plant virus disease resistance. A big challenge in amiRNA applications is the unpredictability of silencing efficacy of the designed amiRNAs and not all constructed amiRNA candidates would be expressed effectively in plant cells. We and others found that high efficiency and specificity in RNA silencing can be achieved by designing amiRNAs with perfect or almost perfect sequence complementarity to their targets. In addition, we recently demonstrated that Agrobacterium-mediated transient expression system can be used to validate amiRNA constructs, which provides a simple, rapid and effective method to select highly expressible amiRNA candidates for stable genetic transformation. Here, we describe the methods for design of amiRNA candidates with perfect or almost perfect base-pairing to the target gene or gene groups, incorporation of amiRNA candidates in miR168a gene backbone by one step inverse PCR amplification, construction of plant amiRNA expression vectors, and assay of transient expression of amiRNAs in Nicotiana benthamiana through agro-infiltration, small RNA extraction, and amiRNA Northern blot.

  14. Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver.

    PubMed

    Qiao, C; Yuan, Z; Li, J; He, B; Zheng, H; Mayer, C; Li, J; Xiao, X

    2011-04-01

    Vectors based on adeno-associated virus (AAV) are effective in gene delivery in vivo. Tissue-specific gene expression is often needed to minimize ectopic expression in unintended cells and undesirable consequences. Here, we investigated whether incorporation of target sequences of tissue-specific microRNA (miRNA) into AAV vectors could inhibit ectopic expression in tissues such as the liver and hematopoietic cells. First we inserted liver-specific miR-122 target sequences (miR-122T) into the 3'-untranslated region (UTR) of a number of AAV vectors. After intravenous delivery in mice, we found that five copies of the 20mer miR-122T reduced liver expression of luciferase by 50-fold and β-galactosidase (LacZ) by 70-fold. Five copies of miR-122T also reduced mRNA levels of a secretable protein (myostatin propeptide) from the AAV vector plasmid by 23-fold in the liver. However, gene expression in other tissues, including the heart was not inhibited. Similarly, we inserted four copies of miR-142-3pT or miR-142-5pT, both hematopoietic lineage-specific, into the 3'-UTR of the AAV-luciferase vector. We wished to see whether they could prolong transgene expression by inhibiting expression in antigen-presenting cells. However, in vivo luciferase gene expression in major tissues declined with time, regardless of the miR-142 target sequences used. Quantitative analysis of the vector DNA in various tissues revealed that the decline of transgene expression in vivo was mainly because of promoter shut-off other than loss of AAV-transduced cells by immune destruction. Moreover, transgene expression was not detected in circulating mononuclear cells after delivering AAV9 vector with or without miR142T. These results demonstrate that liver-specific miR-122 target sequence in AAV vectors was highly efficient in reducing liver expression, whereas hematopoietic miR-142 target sequences were ineffective in preventing decline of AAV vector gene expression in nonhematopoietic tissues

  15. Incorporation of beta-globin untranslated regions into a Sindbis virus vector for augmentation of heterologous mRNA expression.

    PubMed

    Strong, T V; Hampton, T A; Louro, I; Bilbao, G; Conry, R M; Curiel, D T

    1997-06-01

    Polynucleotide immunization has been employed as a means of inducing immune responses through the introduction of antigen-encoding DNA. While immunization against specific tumor antigens may be achieved through this strategy, various candidate tumor antigens may not be approached via DNA-based vaccines as they represent transforming oncogenes. As an alternative approach, we have explored the utility of mRNA vectors for polynucleotide immunization. The transient expression achieved by mRNA may provide an efficient and safe system for stimulating immune responses to tumor-specific antigens. Our previous work demonstrated that a self-replicating RNA enhances the magnitude and duration of transgene expression for this application. Here we further modify the vector for optimal use in gene therapy through the incorporation of untranslated regions flanking the encoded transgene. The beta-globin 5' and 3' untranslated regions (UTRs) were inserted directly flanking the luciferase gene in both nonreplicative and replicative RNA constructs. In both cases, elevated and prolonged levels of luciferase expression were detected from the beta-globin UTR-flanked luciferase as compared to luciferase without these sequences. These modifications improve the ability of replicative RNA vectors to produce high, yet transient transgene expression for cancer immunotherapy strategies.

  16. Engineering exon-skipping vectors expressing U7 snRNA constructs for Duchenne muscular dystrophy gene therapy.

    PubMed

    Goyenvalle, Aurélie; Davies, Kay E

    2011-01-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. In most cases, the open-reading frame is disrupted which results in the absence of a functional protein. Antisense-mediated exon skipping is one of the most promising approaches for the treatment of DMD and has recently been shown to correct the reading frame and restore dystrophin expression in vitro and in vivo. Specific exon skipping can be achieved using synthetic oligonucleotides or viral -vectors encoding modified snRNAs, by masking important splicing sites. We have recently demonstrated that enhanced exon skipping can be induced by a U7 snRNA carrying binding sites for the heterogeneous ribonucleoprotein A1. In DMD patient cells, bifunctional U7 snRNAs harboring silencer motifs induce complete skipping of exon 51 and thus restore dystrophin expression to near wild-type levels. Furthermore, we have confirmed the efficacy of these constructs in vivo in transgenic mice carrying the entire human DMD locus after intramuscular injection of AAV vectors encoding the bifunctional U7 snRNA. These new constructs are very promising for the optimization of therapeutic exon skipping for DMD, but also offer powerful and versatile tools to modulate pre-mRNA splicing in a wide range of applications. Here, we outline the design of these U7 snRNA constructs to achieve efficient exon skipping of the dystrophin gene. We also describe methods to evaluate the efficiency of such U7 snRNA constructs in vitro in DMD patient cells and in vivo in the transgenic hDMD mouse model, using lentiviral and recombinant adeno-associated viral vectors, respectively.

  17. Modular protein expression by RNA trans-splicing enables flexible expression of antibody formats in mammalian cells from a dual-host phage display vector.

    PubMed

    Shang, Yonglei; Tesar, Devin; Hötzel, Isidro

    2015-10-01

    A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting.

  18. Replicon RNA Viral Vectors as Vaccines

    PubMed Central

    Lundstrom, Kenneth

    2016-01-01

    Single-stranded RNA viruses of both positive and negative polarity have been used as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus and rhabdoviruses have been engineered for expression of surface protein genes and antigens. Administration of replicon RNA vectors has resulted in strong immune responses and generation of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided protection against challenges with lethal doses of infectious agents and administered tumor cells. Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover, recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization with self-replicating RNA viruses provides high transient expression levels of antigens resulting in generation of neutralizing antibody responses and protection against lethal challenges under safe conditions. PMID:27827980

  19. A PCR-Based Method to Construct Lentiviral Vector Expressing Double Tough Decoy for miRNA Inhibition

    PubMed Central

    Luo, Lan; Liu, Nian; Kang, Kang; Qu, Junle; Peng, Wenda; Gou, Deming

    2015-01-01

    DNA vector-encoded Tough Decoy (TuD) miRNA inhibitor is attracting increased attention due to its high efficiency in miRNA suppression. The current methods used to construct TuD vectors are based on synthesizing long oligonucleotides (~90 mer), which have been costly and problematic because of mutations during synthesis. In this study, we report a PCR-based method for the generation of double Tough Decoy (dTuD) vector in which only two sets of shorter oligonucleotides (< 60 mer) were used. Different approaches were employed to test the inhibitory potency of dTuDs. We demonstrated that dTuD is the most efficient method in miRNA inhibition in vitro and in vivo. Using this method, a mini dTuD library against 88 human miRNAs was constructed and used for a high-throughput screening (HTS) of AP-1 pathway-related miRNAs. Seven miRNAs (miR-18b-5p, -101-3p, -148b-3p, -130b-3p, -186-3p, -187-3p and -1324) were identified as candidates involved in AP-1 pathway regulation. This novel method allows for an accurate and cost-effective generation of dTuD miRNA inhibitor, providing a powerful tool for efficient miRNA suppression in vitro and in vivo. PMID:26624995

  20. Targeted therapy via oral administration of attenuated Salmonella expression plasmid-vectored Stat3-shRNA cures orthotopically transplanted mouse HCC

    PubMed Central

    Tian, Y; Guo, B; Jia, H; Ji, K; Sun, Y; Li, Y; Zhao, T; Gao, L; Meng, Y; Kalvakolanu, DV; Kopecko, DJ; Zhao, X; Zhang, L; Xu, D

    2013-01-01

    The development of RNA interference-based cancer gene therapies has been delayed due to the lack of effective tumor-targeting delivery systems. Attenuated Salmonella enterica serovar Typhimurium (S. Typhimurium) has a natural tropism for solid tumors. We report here the use of attenuated S. Typhimurium as a vector to deliver shRNA directly into tumor cells. Constitutively activated signal transducer and activator of transcription 3 (Stat3) is a key transcription factor involved in both hepatocellular carcinoma (HCC) growth and metastasis. In this study, attenuated S. Typhimurium was capable of delivering shRNA-expressing vectors to the targeted cancer cells and inducing RNA interference in vivo. More importantly, a single oral dose of attenuated S. Typhimurium carrying shRNA-expressing vectors targeting Stat3 induced remarkably delayed and reduced HCC (in 70% of mice). Cancer in these cured mice did not recur over 2 years following treatment. These data demonstrated that RNA interference combined with Salmonella as a delivery system may offer a novel clinical approach for cancer gene therapy. PMID:22555509

  1. Efficient genome replication of hepatitis B virus using adenovirus vector: a compact pregenomic RNA-expression unit

    PubMed Central

    Suzuki, Mariko; Kondo, Saki; Yamasaki, Manabu; Matsuda, Norie; Nomoto, Akio; Suzuki, Tetsuro; Saito, Izumu; Kanegae, Yumi

    2017-01-01

    The complicated replication mechanisms of hepatitis B virus (HBV) have impeded HBV studies and anti-HBV therapy development as well. Herein we report efficient genome replication of HBV applying adenovirus vectors (AdVs) showing high transduction efficiency. Even in primary hepatocytes derived from humanized mice the transduction efficiencies using AdVs were 450-fold higher compared than those using plasmids. By using an expression unit consisting of the CMV promoter, 1.03-copy HBV genome and foreign poly(A) signal, we successfully generated an improved AdV (HBV103-AdV) that efficiently provided 58 times more pregenomic RNA than previously reported AdVs. The HBV103-AdV-mediated HBV replication was easily and precisely detected using quantitative real-time PCR in primary hepatocytes as well as in HepG2 cells. Notably, when the AdV containing replication-defective HBV genome of 1.14 copy was transduced, we observed that HBV DNA-containing circular molecules (pseudo-ccc DNA) were produced, which were probably generated through homologous recombination. However, the replication-defective HBV103-AdV hardly yielded the pseudo-ccc, probably because the repeated sequences are vey short. Additionally, the efficacies of entecavir and lamivudine were quantitatively evaluated using this system at only 4 days postinfection with HBV103-AdVs. Therefore, this system offers high production of HBV genome replication and thus could become used widely. PMID:28157182

  2. The recombinant adeno-associated virus vector (rAAV2)-mediated apolipoprotein B mRNA-specific hammerhead ribozyme: a self-complementary AAV2 vector improves the gene expression

    PubMed Central

    Zhong, Shumei; Sun, Shihua; Teng, Ba-Bie

    2004-01-01

    Background In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA6679 (RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. Methods We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. Results The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene

  3. Striatal modulation of BDNF expression using microRNA124a-expressing lentiviral vectors impairs ethanol-induced conditioned-place preference and voluntary alcohol consumption.

    PubMed

    Bahi, Amine; Dreyer, Jean-Luc

    2013-07-01

    Alcohol abuse is a major health, economic and social concern in modern societies, but the exact molecular mechanisms underlying ethanol addiction remain elusive. Recent findings show that small non-coding microRNA (miRNA) signaling contributes to complex behavioral disorders including drug addiction. However, the role of miRNAs in ethanol-induced conditioned-place preference (CPP) and voluntary alcohol consumption has not yet been directly addressed. Here, we assessed the expression profile of miR124a in the dorsal striatum of rats upon ethanol intake. The results show that miR124a was downregulated in the dorso-lateral striatum (DLS) following alcohol drinking. Then, we identified brain-derived neurotrophic factor (BDNF) as a direct target of miR124a. In fact, BDNF mRNA was upregulated following ethanol drinking. We used lentiviral vector (LV) gene transfer technology to further address the role of miR124a and its direct target BDNF in ethanol-induced CPP and alcohol consumption. Results reveal that stereotaxic injection of LV-miR124a in the DLS enhances ethanol-induced CPP as well as voluntary alcohol consumption in a two-bottle choice drinking paradigm. Moreover, miR124a-silencer (LV-siR124a) as well as LV-BDNF infusion in the DLS attenuates ethanol-induced CPP as well as voluntary alcohol consumption. Importantly, LV-miR124a, LV-siR124a and LV-BDNF have no effect on saccharin and quinine intake. Our findings indicate that striatal miR124a and BDNF signaling have crucial roles in alcohol consumption and ethanol conditioned reward.

  4. Restoration of Full-Length SMN Promoted by Adenoviral Vectors Expressing RNA Antisense Oligonucleotides Embedded in U7 snRNAs

    PubMed Central

    Geib, Till; Hertel, Klemens J.

    2009-01-01

    Background Spinal Muscular Atrophy (SMA) is an autosomal recessive disease that leads to specific loss of motor neurons. It is caused by deletions or mutations of the survival of motor neuron 1 gene (SMN1). The remaining copy of the gene, SMN2, generates only low levels of the SMN protein due to a mutation in SMN2 exon 7 that leads to exon skipping. Methodology/Principal Findings To correct SMN2 splicing, we use Adenovirus type 5–derived vectors to express SMN2-antisense U7 snRNA oligonucleotides targeting the SMN intron 7/exon 8 junction. Infection of SMA type I–derived patient fibroblasts with these vectors resulted in increased levels of exon 7 inclusion, upregulating the expression of SMN to similar levels as in non–SMA control cells. Conclusions/Significance These results show that Adenovirus type 5–derived vectors delivering U7 antisense oligonucleotides can efficiently restore full-length SMN protein and suggest that the viral vector-mediated oligonucleotide application may be a suitable therapeutic approach to counteract SMA. PMID:19997596

  5. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection.

    PubMed

    Wang, Weiming; Ye, Chaobaihui; Liu, Jingjing; Zhang, Di; Kimata, Jason T; Zhou, Paul

    2014-01-01

    CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1.

  6. Long-term Expression of Apolipoprotein B mRNA-specific Hammerhead Ribozyme via scAAV8.2 Vector Inhibits Atherosclerosis in Mice

    PubMed Central

    Nischal, Hersharan; Sun, Hua; Wang, Yuchun; Ford, David A; Cao, Ying; Wei, Peng; Teng, Ba-Bie

    2013-01-01

    Target substrate-specific hammerhead ribozyme cleaves the specific mRNA efficiently and results in the inhibition of gene expression. In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. The goal of this study is to demonstrate that long-term reduction of apoB gene expression using hammerhead ribozyme would result in inhibition of atherosclerosis development. We designed two hammerhead ribozymes targeted at the nucleotides of apoB mRNA GUC2326 (designated RB1) and GUA6679 (designated RB15), and we used self-complementary adeno-associated virus 8.2 (scAAV8.2) vector to deliver these active ribozymes of RB1, RB15, combination of RB1/RB15, and an inactive hammerhead ribozyme RB15 mutant to atherosclerosis-prone LDb mice (Ldlr−/−Apobec1−/−). LDb mice lack both low density lipoproteins (LDL) receptor (Ldlr−/−) and apoB mRNA editing enzyme (Apobec1−/−) genes and develop atherosclerosis spontaneously. After the RB1, RB15, or combination of RB1/RB15 ribozymes treatment, the LDb mice had significantly decreased plasma triglyceride and apoB levels, resulting in markedly decreased of atherosclerotic lesions, Furthermore, the active ribozymes treatment decreased the levels of diacylglycerol acyltransferase 1 (Dgat1) mRNA and the levels of multiple diacylglycerol (DAG) molecular species. These results provide the first evidence that decreased apoB levels results to reduction of Dgat1 expression and triglyceride levels (TAG), which had a significant impact on the development of atherosclerosis. PMID:24084845

  7. A stable RNA virus-based vector for citrus trees

    SciTech Connect

    Folimonov, Alexey S.; Folimonova, Svetlana Y.; Bar-Joseph, Moshe; Dawson, William O.

    2007-11-10

    Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter. These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees.

  8. Sustained expression from DNA vectors.

    PubMed

    Wong, Suet Ping; Argyros, Orestis; Harbottle, Richard P

    2015-01-01

    DNA vectors have the potential to become powerful medical tools for treatment of human disease. The human body has, however, developed a range of defensive strategies to detect and silence foreign or misplaced DNA, which is more typically encountered during infection or chromosomal damage. A clinically relevant human gene therapy vector must overcome or avoid these protections whilst delivering sustained levels of therapeutic gene product without compromising the vitality of the recipient host. Many non-viral DNA vectors trigger these defense mechanisms and are subsequently destroyed or rendered silent. Thus, without modification or considered design, the clinical utility of a typical DNA vector is fundamentally limited due to the transient nature of its transgene expression. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for its successful clinical application and subsequently remains, therefore, one of the main strategic tasks of non-viral gene therapy research. In this chapter we will describe our current understanding of the mechanisms that can destroy or silence DNA vectors and discuss strategies, which have been utilized to improve their sustenance and the level and duration of their transgene expression.

  9. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    SciTech Connect

    Zhou Hongsheng; Zhang Donghua . E-mail: hanson2008@gmail.com; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-08-18

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs.

  10. Modeling rotavirus-like particles production in a baculovirus expression vector system: Infection kinetics, baculovirus DNA replication, mRNA synthesis and protein production.

    PubMed

    Roldão, António; Vieira, Helena L A; Charpilienne, Annie; Poncet, Didier; Roy, Polly; Carrondo, Manuel J T; Alves, Paula M; Oliveira, R

    2007-03-10

    Rotavirus is the most common cause of severe diarrhoea in children worldwide, responsible for more than half a million deaths in children per year. Rotavirus-like particles (Rota VLPs) are excellent vaccine candidates against rotavirus infection, since they are non-infectious, highly immunogenic, amenable to large-scale production and safer to produce than those based on attenuated viruses. This work focuses on the analysis and modeling of the major events taking place inside Spodoptera frugiperda (Sf-9) cells infected by recombinant baculovirus that may be critical for the expression of rotavirus viral proteins (VPs). For model validation, experiments were performed adopting either a co-infection strategy, using three monocistronic recombinant baculovirus each one coding for viral proteins VP(2), VP(6) and VP(7), or single-infection strategies using a multigene baculovirus coding for the three proteins of interest. A characteristic viral DNA (vDNA) replication rate of 0.19+/-0.01 h(-1) was obtained irrespective of the monocistronic or multigene vector employed, and synthesis of progeny virus was found to be negligible in comparison to intracellular vDNA concentrations. The timeframe for vDNA, mRNA and VP synthesis tends to decrease with increasing multiplicity of infection (MOI) due to the metabolic burden effect. The protein synthesis rates could be ranked according to the gene size in the multigene experiments but not in the co-infection experiments. The model exhibits acceptable prediction power of the dynamics of intracellular vDNA replication, mRNA synthesis and VP production for the three proteins involved. This model is intended to be the basis for future Rota VLPs process optimisation and also a means to evaluating different baculovirus constructs for Rota VLPs production.

  11. Antigenic structures stably expressed by recombinant TGEV-derived vectors.

    PubMed

    Becares, Martina; Sanchez, Carlos M; Sola, Isabel; Enjuanes, Luis; Zuñiga, Sonia

    2014-09-01

    Coronaviruses (CoVs) are positive-stranded RNA viruses with potential as immunization vectors, expressing high levels of heterologous genes and eliciting both secretory and systemic immune responses. Nevertheless, its high recombination rate may result in the loss of the full-length foreign gene, limiting their use as vectors. Transmissible gastroenteritis virus (TGEV) was engineered to express porcine reproductive and respiratory syndrome virus (PRRSV) small protein domains, as a strategy to improve heterologous gene stability. After serial passage in tissue cultures, stable expression of small PRRSV protein antigenic domains was achieved. Therefore, size reduction of the heterologous genes inserted in CoV-derived vectors led to the stable expression of antigenic domains. Immunization of piglets with these TGEV vectors led to partial protection against a challenge with a virulent PRRSV strain, as immunized animals showed reduced clinical signs and lung damage. Further improvement of TGEV-derived vectors will require the engineering of vectors with decreased recombination rate.

  12. PolI-driven integrative expression vectors for yeast.

    PubMed

    Blancafort, P; Ferbeyre, G; Sariol, C; Cedergren, R

    1997-07-23

    A novel expression vector for yeast has been constructed from the regulatory elements present in the polI promoter and the enhancer/termination region (E/T) of rDNA. Under some conditions, this promoter/vector combination produces small RNAs such as the hammerhead RNA sequence at levels comparable to polII- and polIII-dependent systems. No stable transcription product can be demonstrated with this vector when the enhancer/termination sequence is less than 100 nucleotides downstream from the promoter. On the other hand, high expression of a stable, hammerhead RNA molecule can be obtained from this vector by inserting a 400-bp fragment containing the ADH1 transcription termination region upstream of the E/T. RNAs produced by this vector are polyadenylated and multiple copies of this plasmid can be stably integrated into the yeast chromosome.

  13. A microRNA embedded AAV alpha-synuclein gene silencing vector for dopaminergic neurons

    PubMed Central

    Han, Ye; Khodr, Christina E.; Sapru, Mohan K.; Pedapati, Jyothi; Bohn, Martha C.

    2011-01-01

    Alpha-synuclein (SNCA), an abundantly expressed presynaptic protein, is implicated in Parkinson disease (PD). Since over-expression of human SNCA (hSNCA) leads to death of dopaminergic (DA) neurons in human, rodent and fly brain, hSNCA gene silencing may reduce levels of toxic forms of SNCA and ameliorate degeneration of DA neurons in PD. To begin to develop a gene therapy for PD based on hSNCA gene silencing, two AAV gene silencing vectors were designed, and tested for efficiency and specificity of silencing, as well as toxicity in vitro. The same hSNCA silencing sequence (shRNA) was used in both vectors, but in one vector, the shRNA was embedded in a microRNA backbone and driven by a pol II promoter, and in the other the shRNA was not embedded in a microRNA and was driven by a pol III promoter. Both vectors silenced hSNCA to the same extent in 293T cells transfected with hSNCA. In DA PC12 cells, neither vector decreased expression of rat SNCA, tyrosine hydroxylase (TH), dopamine transporter (DAT) or the vesicular monoamine transporter (VMAT). However, the mir30 embedded vector was significantly less toxic to both PC12 and SH-SY5Y cells. Our in vitro data suggest that this miRNA-embedded silencing vector may be ideal for chronic in vivo SNCA gene silencing in DA neurons. PMID:21338582

  14. Alphavirus vectors: applications for DNA vaccine production and gene expression.

    PubMed

    Lundstrom, K

    2000-01-01

    Replication-deficient alphavirus vectors have been developed for efficient high-level transgene expression. The broad host range of alphaviruses has allowed infection of a wide variety of mammalian cell lines and primary cultures. Particularly, G protein-coupled receptors have been expressed at high levels and subjected to binding and functional studies. Expression in suspension cultures has greatly facilitated production of large quantities of recombinant proteins for structural studies. Injection of recombinant alphavirus vectors into rodent brain resulted in local reporter gene expression. Highly neuron-specific expression was obtained in hippocampal slice cultures in vivo. Additionally, preliminary studies in animal models suggest that alphavirus vectors can be attractive candidates for gene therapy applications. Traditionally alphavirus vectors, either attenuated strains or replication-deficient particles, have been used to elicit efficient immune responses in animals. Recently, the application of alphaviruses has been extended to naked nucleic acids. Injection of DNA as well as RNA vectors has demonstrated efficient antigen production. In many cases, protection against lethal challenges has been obtained after immunization with alphavirus particles or nucleic acid vectors. Alphavirus vectors can therefore be considered as potentially promising vectors for vaccine production.

  15. RNA interference in mosquito: understanding immune responses, double-stranded RNA delivery systems and potential applications in vector control.

    PubMed

    Balakrishna Pillai, A; Nagarajan, U; Mitra, A; Krishnan, U; Rajendran, S; Hoti, S L; Mishra, R K

    2017-04-01

    RNA interference (RNAi) refers to the process of post-transcriptional silencing of cellular mRNA by the application of double-stranded RNA (dsRNA). RNAi strategies have been widely employed to regulate gene expression in plants and animals including insects. With the availability of the full genome sequences of major vector mosquitoes, RNAi has been increasingly used to conduct genetic studies of human pathogens in mosquito vectors and to study the evolution of insecticide resistance in mosquitoes. This review summarizes the recent progress in our understanding of mosquito-pathogen interactions using RNAi and various methods of dsRNA delivery in mosquitoes at different stages. We also discuss potential applications of this technology to develop novel tools for vector control.

  16. Recent patents on alphavirus protein expression and vector production.

    PubMed

    Aranda, Alejandro; Ruiz-Guillen, Marta; Quetglas, Jose I; Bezunartea, Jaione; Casales, Erkuden; Smerdou, Cristian

    2011-12-01

    Alphaviruses contain a single-strand RNA genome that can be modified to express heterologous genes at high levels. Alphavirus vectors can be packaged within viral particles (VPs) or used as DNA/RNA layered systems. The broad tropism and high expression levels of alphavirus vectors have made them very attractive for applications like recombinant protein expression, vaccination or gene therapy. Expression mediated by alphavirus vectors is generally transient due to induction of apoptosis. However, during the last years several non-cytopathic mutations have been identified within the replicase sequence of different alphaviruses, allowing prolonged protein expression in culture cells. Some of these mutants, which have been patented, have allowed the generation of stable cell lines able to express recombinant proteins for extended periods of time in a constitutive or inducible manner. Production of alphavirus VPs usually requires cotransfection of cells with vector and helper RNAs providing viral structural proteins in trans. During this process full-length wild type (wt) genomes can be generated through recombination between different RNAs. Several new strategies to reduce wt virus generation during packaging, optimize VP production, increase packaging capacity, and provide VPs with specific targeting have been recently patented. Finally, hybrid vectors between alphavirus and other types of viruses have led to a number of patents with applications in vaccination, cancer therapy or retrovirus production.

  17. Antisense RNA suppression of peroxidase gene expression

    SciTech Connect

    Lagrimini, L.M.; Bradford, S.; De Leon, F.D. )

    1989-04-01

    The 5{prime} half the anionic peroxidase cDNA of tobacco was inserted into a CaMV 35S promoter/terminator expression cassette in the antisense configuration. This was inserted into the Agrobacterium-mediated plant transformation vector pCIBIO which includes kanamycin selection, transformed into two species of tobacco (N. tabacum and M. sylvestris), and plants were subsequently regenerated on kanamycin. Transgenic plants were analyzed for peroxidase expression and found to have 3-5 fold lower levels of peroxidase than wild-type plants. Isoelectric focusing demonstrated that the antisense RNA only suppressed the anionic peroxidase. Wound-induced peroxidase expression was found not to be affected by the antisense RNA. Northern blots show a greater than 5 fold suppression of anionic peroxidase mRNA in leaf tissue, and the antisense RNA was expressed at a level 2 fold over the endogenous mRNA. Plants were self-pollinated and F1 plants showed normal segregation. N. sylvestris transgenic plants with the lowest level of peroxidase are epinastic, and preliminary results indicate elevated auxin levels. Excised pith tissue from both species of transgenic plants rapidly collapse when exposed to air, while pith tissue from wild-type plants showed little change when exposed to air. Further characterization of these phenotypes is currently being made.

  18. Development of non-defective recombinant densovirus vectors for microRNA delivery in the invasive vector mosquito, Aedes albopictus

    PubMed Central

    Liu, Peiwen; Li, Xiaocong; Gu, Jinbao; Dong, Yunqiao; Liu, Yan; Santhosh, Puthiyakunnon; Chen, Xiaoguang

    2016-01-01

    We previously reported that mosquito densoviruses (MDVs) are potential vectors for delivering foreign nucleic acids into mosquito cells. However, considering existing expression strategies, recombinant viruses would inevitably become replication-defective viruses and lose their ability for secondary transmission. The packaging limitations of the virion represent a barrier for the development of MDVs for viral paratransgenesis or as high-efficiency bioinsecticides. Herein, we report the development of a non-defective recombinant Aedes aegypti densovirus (AaeDV) miRNA expression system, mediated by an artificial intron, using an intronic miRNA expression strategy. We demonstrated that this recombinant vector could be used to overexpress endogenous miRNAs or to decrease endogenous miRNAs by generating antisense sponges to explore the biological functions of miRNAs. In addition, the vector could express antisense-miRNAs to induce efficient gene silencing in vivo and in vitro. The recombinant virus effectively self-replicated and retained its secondary transmission ability, similar to the wild-type virus. The recombinant virus was also genetically stable. This study demonstrated the first construction of a non-defective recombinant MDV miRNA expression system, which represents a tool for the functional analysis of mosquito genes and lays the foundation for the application of viral paratransgenesis for dengue virus control. PMID:26879823

  19. Development of non-defective recombinant densovirus vectors for microRNA delivery in the invasive vector mosquito, Aedes albopictus.

    PubMed

    Liu, Peiwen; Li, Xiaocong; Gu, Jinbao; Dong, Yunqiao; Liu, Yan; Santhosh, Puthiyakunnon; Chen, Xiaoguang

    2016-02-16

    We previously reported that mosquito densoviruses (MDVs) are potential vectors for delivering foreign nucleic acids into mosquito cells. However, considering existing expression strategies, recombinant viruses would inevitably become replication-defective viruses and lose their ability for secondary transmission. The packaging limitations of the virion represent a barrier for the development of MDVs for viral paratransgenesis or as high-efficiency bioinsecticides. Herein, we report the development of a non-defective recombinant Aedes aegypti densovirus (AaeDV) miRNA expression system, mediated by an artificial intron, using an intronic miRNA expression strategy. We demonstrated that this recombinant vector could be used to overexpress endogenous miRNAs or to decrease endogenous miRNAs by generating antisense sponges to explore the biological functions of miRNAs. In addition, the vector could express antisense-miRNAs to induce efficient gene silencing in vivo and in vitro. The recombinant virus effectively self-replicated and retained its secondary transmission ability, similar to the wild-type virus. The recombinant virus was also genetically stable. This study demonstrated the first construction of a non-defective recombinant MDV miRNA expression system, which represents a tool for the functional analysis of mosquito genes and lays the foundation for the application of viral paratransgenesis for dengue virus control.

  20. Development of novel types of plastid transformation vectors and evaluation of factors controlling expression.

    PubMed

    Herz, Stefan; Füssl, Monika; Steiger, Sandra; Koop, Hans-Ulrich

    2005-12-01

    Two new vector types for plastid transformation were developed and uidA reporter gene expression was compared to standard transformation vectors. The first vector type does not contain any plastid promoter, instead it relies on extension of existing plastid operons and was therefore named "operon-extension" vector. When a strongly expressed plastid operon like psbA was extended by the reporter gene with this vector type, the expression level was superior to that of a standard vector under control of the 16S rRNA promoter. Different insertion sites, promoters and 5'-UTRs were analysed for their effect on reporter gene expression with standard and operon-extension vectors. The 5'-UTR of phage 7 gene 10 in combination with a modified N-terminus was found to yield the highest expression levels. Expression levels were also strongly dependent on external factors like plant or leaf age or light intensity. In the second vector type, named "split" plastid transformation vector, modules of the expression cassette were distributed on two separate vectors. Upon co-transformation of plastids with these vectors, the complete expression cassette became inserted into the plastome. This result can be explained by successive co-integration of the split vectors and final loop-out recombination of the duplicated sequences. The split vector concept was validated with different vector pairs.

  1. Molecular interactions and immune responses between maize fine streak virus and the leafhopper vector G. nigrifrons through differential expression and RNA interference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize fine streak virus (MFSV) is an emerging virus of maize that is transmitted by an insect vector, the leafhopper called Graminella nigrifrons. Virus transmission by the leafhopper requires that the virus enter into and multiply in insect cells, tissues and organs before being transmitted to a ne...

  2. Small interfering RNA pathway modulates persistent infection of a plant virus in its insect vector.

    PubMed

    Lan, Hanhong; Wang, Haitao; Chen, Qian; Chen, Hongyan; Jia, Dongsheng; Mao, Qianzhuo; Wei, Taiyun

    2016-02-11

    Plant reoviruses, rhabdoviruses, tospoviruses, and tenuiviruses are transmitted by insect vectors in a persistent-propagative manner. How such persistent infection of plant viruses in insect vectors is established and maintained remains poorly understood. In this study, we used rice gall dwarf virus (RGDV), a plant reovirus, and its main vector leafhopper Recilia dorsalis as a virus-insect system to determine how the small interference (siRNA) pathway modulates persistent infection of a plant virus in its insect vector. We showed that a conserved siRNA antiviral response was triggered by the persistent replication of RGDV in cultured leafhopper cells and in intact insects, by appearance of virus-specific siRNAs, primarily 21-nt long, and the increased expression of siRNA pathway core components Dicer-2 and Argonaute-2. Silencing of Dicer-2 using RNA interference strongly suppressed production of virus-specific siRNAs, promoted viral accumulation, and caused cytopathological changes in vitro and in vivo. When the viral accumulation level rose above a certain threshold of viral genome copy (1.32 × 10(14) copies/μg insect RNA), the infection of the leafhopper by RGDV was lethal rather than persistent. Taken together, our results revealed a new finding that the siRNA pathway in insect vector can modulate persistent infection of plant viruses.

  3. Expression of microRNA-30c via lentivirus vector inhibits the proliferation and enhances the sensitivity of highly aggressive ccRCC Caki-1 cells to anticancer agents

    PubMed Central

    Yang, Honglin; Song, Erlin; Shen, Guorong; Zhu, Tonghua; Jiang, Tingwang; Shen, Hao; Niu, Liping; Wang, Biao; Lu, Zhaoyang; Qian, Jianping

    2017-01-01

    The clear cell renal cell carcinoma (ccRCC) is one of the most fatal urologic tumors, and the prognosis remains very poor for advanced or metastatic ccRCC. This study reveals the roles of microRNA (miR)-30c in regulating a highly aggressive ccRCC cell line proliferation by targeting MTA-1, which is a key mediator for human cancer metastasis. Results from quantitative real-time polymerase chain reaction showed that the expression of MTA-1, the target of miR-30c, was significantly higher in metastatic ccRCC specimens than in nonmetastatic ccRCC or nontumor specimens. Accordingly, endogenous miR-30c is at a much lower level in highly aggressive ccRCC Caki-1 cells than nontumor or ccRCC cell lines. Expression of miR-30c via lentivirus vector inhibits the proliferation, anchorage-independent growth, in vitro invasion or migration, or in vivo growth of Caki-1 cells by repressing MTA-1 protein expression. miR-30c also enhances the sensitivity of Caki-1 cells to anticancer agents, including sorafenib and paclitaxel. These data reveal the potential application of miR-30c and that its targeting gene, MTA-1, would be a potential target in metastatic ccRCC treatment. PMID:28203091

  4. Expression of microRNA-30c via lentivirus vector inhibits the proliferation and enhances the sensitivity of highly aggressive ccRCC Caki-1 cells to anticancer agents.

    PubMed

    Yang, Honglin; Song, Erlin; Shen, Guorong; Zhu, Tonghua; Jiang, Tingwang; Shen, Hao; Niu, Liping; Wang, Biao; Lu, Zhaoyang; Qian, Jianping

    2017-01-01

    The clear cell renal cell carcinoma (ccRCC) is one of the most fatal urologic tumors, and the prognosis remains very poor for advanced or metastatic ccRCC. This study reveals the roles of microRNA (miR)-30c in regulating a highly aggressive ccRCC cell line proliferation by targeting MTA-1, which is a key mediator for human cancer metastasis. Results from quantitative real-time polymerase chain reaction showed that the expression of MTA-1, the target of miR-30c, was significantly higher in metastatic ccRCC specimens than in nonmetastatic ccRCC or nontumor specimens. Accordingly, endogenous miR-30c is at a much lower level in highly aggressive ccRCC Caki-1 cells than nontumor or ccRCC cell lines. Expression of miR-30c via lentivirus vector inhibits the proliferation, anchorage-independent growth, in vitro invasion or migration, or in vivo growth of Caki-1 cells by repressing MTA-1 protein expression. miR-30c also enhances the sensitivity of Caki-1 cells to anticancer agents, including sorafenib and paclitaxel. These data reveal the potential application of miR-30c and that its targeting gene, MTA-1, would be a potential target in metastatic ccRCC treatment.

  5. Inducing RNA interference in the arbovirus vector, Culicoides sonorensis

    PubMed Central

    Mills, Mary K.; Nayduch, D.; Michel, K.

    2014-01-01

    Biting midges in the genus Culicoides are important vectors of arboviral diseases, including epizootic hemorrhagic disease, bluetongue, and likely Schmallenberg, which cause significant economic burden worldwide. Research on these vectors has been hindered by the lack of a sequenced genome, the difficulty of consistent culturing of certain species, and the absence of molecular techniques such as RNA interference (RNAi). Here, we report the establishment of RNAi as a research tool for the adult midge, Culicoides sonorensis. Based on previous research and transcriptome analysis, which revealed putative siRNA pathway member orthologs, we hypothesized that adult C. sonorensis midges have the molecular machinery needed to preform RNA silencing. Injection of control dsRNA, dsGFP, into the hemocoel 2–3 day old adult female midges resulted in survival curves that support virus transmission. DsRNA injection targeting the newly identified C. sonorensis inhibitor of apoptosis protein 1 (CsIAP1) ortholog, resulted in a 40% decrease of transcript levels and 73% shortened median survivals as compared to dsGFP-injected controls. These results reveal the conserved function of IAP1. Importantly, they also demonstrate the feasibility of RNAi by dsRNA injection in adult midges, which will greatly facilitate studies of the underlying mechanisms of vector competence in C. sonorensis. PMID:25293805

  6. Lipid-based vectors for siRNA delivery

    PubMed Central

    Zhang, Shubiao; Zhi, Defu; Huang, Leaf

    2016-01-01

    siRNA therapeutics has developed rapidly and already there are clinical trials ongoing or planned; however, the delivery of siRNA into cells, tissues or organs remains to be a major obstacle. Lipid-based vectors hold the most promising position among non-viral vectors, as they have a similar structure to cell or organelle membranes. But when used in the form of liposomes, these vectors have shown some problems. Therefore, either the nature of lipids themselves or forms used should be improved. As a novel class of lipid like materials, lipidoids have the advantages of easy synthesis and the ability for delivering siRNA to obtain excellent silencing activity. However, the toxicities of lipidoids have not been thoroughly studied. pH responsive lipids have also gained great attention recently, though some of the amine-based lipids are not novel in terms of chemical structures. More complex self-assembly structures, such as LPD (LPH) and LCP, may provide a good solution to siRNA delivery. They have demonstrated controlled particle morphology and size and siRNA delivery activity for both in vitro and in vivo. PMID:22994300

  7. Visualization and genetic modification of resident brain microglia using lentiviral vectors regulated by microRNA-9.

    PubMed

    Åkerblom, Malin; Sachdeva, Rohit; Quintino, Luis; Wettergren, Erika Elgstrand; Chapman, Katie Z; Manfre, Giuseppe; Lindvall, Olle; Lundberg, Cecilia; Jakobsson, Johan

    2013-01-01

    Functional studies of resident microglia require molecular tools for their genetic manipulation. Here we show that microRNA-9-regulated lentiviral vectors can be used for the targeted genetic modification of resident microglia in the rodent brain. Using transgenic reporter mice, we demonstrate that murine microglia lack microRNA-9 activity, whereas most other cells in the brain express microRNA-9. Injection of microRNA-9-regulated vectors into the adult rat brain induces transgene expression specifically in cells with morphological features typical of ramified microglia. The majority of transgene-expressing cells colabels with the microglia marker Iba1. We use this approach to visualize and isolate activated resident microglia without affecting circulating and infiltrating monocytes or macrophages in an excitotoxic lesion model in rat striatum. The microRNA-9-regulated vectors described here are a straightforward and powerful tool that facilitates functional studies of resident microglia.

  8. RNA interference mediated in human primary cells via recombinant baculoviral vectors.

    PubMed

    Nicholson, Linda J; Philippe, Marie; Paine, Alan J; Mann, Derek A; Dolphin, Colin T

    2005-04-01

    The success of RNA interference (RNAi) in mammalian cells, mediated by siRNAs or shRNA-generating plasmids, is dependent, to an extent, upon transfection efficiency. This is a particular problem with primary cells, which are often difficult to transfect using cationic lipid vehicles. Effective RNAi in primary cells is thus best achieved with viral vectors, and retro-, adeno-, and lentivirus RNAi systems have been described. However, the use of such human viral vectors is inherently problematic, e.g., Class 2 status and requirement of secondary helper functions. Although insect cells are their natural host, baculoviruses also transduce a range of vertebrate cell lines and primary cells with high efficiency. The inability of baculoviral vectors to replicate in mammalian cells, their Class 1 status, and the simplicity of their construction make baculovirus an attractive alternative gene delivery vector. We have developed a baculoviral-based RNAi system designed to express shRNAs and GFP from U6 and CMV promoters, respectively. Transduction of Saos2, HepG2, Huh7, and primary human hepatic stellate cells with a baculoviral construct expressing shRNAs targeting lamin A/C resulted in effective knockdown of the corresponding mRNA and protein. Development of this baculoviral-based system provides an additional shRNA delivery option for RNAi-based investigations in mammalian cells.

  9. Inhibition of simian immunodeficiency virus by foamy virus vectors expressing siRNAs

    SciTech Connect

    Park, Jeonghae; Nadeau, Peter; Zucali, James R.; Johnson, Calvin M.; Mergia, Ayalew . E-mail: mergiaa@mail.vetmed.ufl.edu

    2005-12-20

    Viral vectors available for gene therapy are either inefficient or suffer from safety concerns for human applications. Foamy viruses are non-pathogenic retroviruses that offer several unique opportunities for gene transfer in various cell types from different species. In this report, we describe the use of simian foamy virus type 1 (SFV-1) vector to examine the efficacy of therapeutic genes. Hairpin short-interfering RNA (siRNA) that targets the simian immunodeficiency virus (SIV) rev/env was placed under the control of the PolIII U6 snRNA promoter for expression and screened for silencing target genes using cognate target-reporter fusions. We have identified an effective siRNA (designated R2) which reduces the rev and env gene expression by 89% and 95%, respectively. Using the simian foamy virus type 1 (SFV-1) based vector, we delivered the PolIII expressed R2 siRNA into cultured cells and challenged with SIV. The results show that the R2 siRNA is a potent inhibitor of SIV replication as determined by p27 expression and reverse transcriptase assays. Vectors based on a non-pathogenic SFV-1 vector may provide a safe and efficient alternative to currently available vectors, and the SIV model will help devise protocols for effective anti-HIV gene therapy.

  10. RNA Interference in Insect Vectors for Plant Viruses

    PubMed Central

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-01-01

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists. PMID:27973446

  11. RNA Interference in Insect Vectors for Plant Viruses.

    PubMed

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-12-12

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.

  12. Integrating ribosomal promoter vectors that offer a choice of constitutive expression profiles in Leishmania donovani.

    PubMed

    Soysa, Radika; Tran, Khoa D; Ullman, Buddy; Yates, Phillip A

    2015-12-01

    We have designed a novel series of integrating ribosomal RNA promoter vectors with five incrementally different constitutive expression profiles, covering a 250-fold range. Differential expression was achieved by placing different combinations of synthetic or leishmanial DNA sequences upstream and downstream of the transgene coding sequence in order to modulate pre-mRNA processing efficiency and mRNA stability, respectively. All of the vectors have extensive multiple cloning sites, and versions are available for producing N- or C- terminal GFP fusions at each of the possible relative expression levels. In addition, the modular configuration of the vectors allows drug resistance cassettes and other components to be readily exchanged. In toto, these vectors should be useful additions to the toolkit available for molecular and genetic studies of Leishmania donovani.

  13. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems.

    PubMed

    Guan, S; Rosenecker, J

    2017-02-02

    Because of its safe and effective protein expression profile, in vitro transcribed messenger RNA (IVT-mRNA) represents a promising candidate in the development of novel therapeutics for genetic diseases, vaccines or gene editing strategies, especially when its inherent shortcomings (for example, instability and immunogenicity) have been partially addressed via structural modifications. However, numerous unsolved technical difficulties in successful in vivo delivery of IVT-mRNA have greatly hindered the applications of IVT-mRNA in clinical development. Recent advances in nanotechnology and material science have yielded many promising nonviral delivery systems, some of which were able to efficiently facilitate targeted in vivo delivery of IVT-mRNA in safe and noninvasive manners. The diversity and flexibility of these delivery systems highlight the recent progress of IVT-mRNA-based therapy using nonviral vectors. In this review, we summarize recent advances of existing and emerging nonviral vector-based nanotechnologies for IVT-mRNA delivery and briefly summarize the interesting but rarely discussed applications on simultaneous delivery of IVT-mRNA with DNA.Gene Therapy advance online publication, 2 February 2017; doi:10.1038/gt.2017.5.

  14. Vector-Mediated In Vivo Antibody Expression.

    PubMed

    Schnepp, Bruce C; Johnson, Philip R

    2014-08-01

    This article focuses on a novel vaccine strategy known as vector-mediated antibody gene transfer, with a particular focus on human immunodeficiency virus (HIV). This strategy provides a solution to the problem of current vaccines that fail to generate neutralizing antibodies to prevent HIV-1 infection and AIDS. Antibody gene transfer allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein. This approach uses recombinant adeno-associated viral (rAAV) vectors, which have been shown to transduce muscle with high efficiency and direct the long-term expression of a variety of transgenes, to deliver the gene encoding a broadly neutralizing antibody into the muscle. Following rAAV vector gene delivery, the broadly neutralizing antibodies are endogenously synthesized in myofibers and passively distributed to the circulatory system. This is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. Vector-mediated gene transfer studies in mice and monkeys with anti-HIV and simian immunodeficiency virus (SIV)-neutralizing antibodies demonstrated long-lasting neutralizing activity in serum with complete protection against intravenous challenge with virulent HIV and SIV. These results indicate that existing potent anti-HIV antibodies can be rapidly moved into the clinic. However, this methodology need not be confined to HIV. The general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets such as hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis.

  15. Efficient expression of a protein coding gene under the control of an RNA polymerase I promoter.

    PubMed

    Palmer, T D; Miller, A D; Reeder, R H; McStay, B

    1993-07-25

    In mammalian cells, RNA polymerase I transcripts are uncapped and retain a polyphosphate 5' terminus. It is probably for this reason that they are poorly translated as messenger RNA. We show in this report that insertion of an Internal Ribosome Entry Site (IRES) into the 5' leader of an RNA polymerase I transcript overcomes the block to translation, presumably by substituting for the 5' trimethyl G cap. Addition of an SV40 polyA addition signal also enhances protein production from the RNA polymerase I transcript. RNA Polymerase I driven expression vectors containing both elements produce protein at levels comparable to that produced from RNA polymerase II driven expression vectors which utilize a retroviral LTR. RNA Polymerase I driven expression vectors may have a variety of uses both for basic research and for practical expression of recombinant proteins.

  16. Nonreplicating vaccinia vector efficiently expresses recombinant genes.

    PubMed

    Sutter, G; Moss, B

    1992-11-15

    Modified vaccinia Ankara (MVA), a highly attenuated vaccinia virus strain that has been safety tested in humans, was evaluated for use as an expression vector. MVA has multiple genomic deletions and is severely host cell restricted: it grows well in avian cells but is unable to multiply in human and most other mammalian cells tested. Nevertheless, we found that replication of viral DNA appeared normal and that both early and late viral proteins were synthesized in human cells. Proteolytic processing of viral structural proteins was inhibited, however, and only immature virus particles were detected by electron microscopy. We constructed an insertion plasmid with the Escherichia coli lacZ gene under the control of the vaccinia virus late promoter P11, flanked by sequences of MVA DNA, to allow homologous recombination at the site of a naturally occurring 3500-base-pair deletion within the MVA genome. MVA recombinants were isolated and propagated in permissive avian cells and shown to express the enzyme beta-galactosidase upon infection of nonpermissive human cells. The amount of enzyme made was similar to that produced by a recombinant of vaccinia virus strain Western Reserve, which also had the lacZ gene under control of the P11 promoter, but multiplied to high titers. Since recombinant gene expression is unimpaired in nonpermissive human cells, MVA may serve as a highly efficient and exceptionally safe vector.

  17. Packaging of HCV-RNA into lentiviral vector

    SciTech Connect

    Caval, Vincent; Piver, Eric; Ivanyi-Nagy, Roland; Darlix, Jean-Luc; Pages, Jean-Christophe

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Description of HCV-RNA Core-D1 interactions. Black-Right-Pointing-Pointer In vivo evaluation of the packaging of HCV genome. Black-Right-Pointing-Pointer Determination of the role of the three basic sub-domains of D1. Black-Right-Pointing-Pointer Heterologous system involving HIV-1 vector particles to mobilise HCV genome. Black-Right-Pointing-Pointer Full length mobilisation of HCV genome and HCV-receptor-independent entry. -- Abstract: The advent of infectious molecular clones of Hepatitis C virus (HCV) has unlocked the understanding of HCV life cycle. However, packaging of the genomic RNA, which is crucial to generate infectious viral particles, remains poorly understood. Molecular interactions of the domain 1 (D1) of HCV Core protein and HCV RNA have been described in vitro. Since compaction of genetic information within HCV genome has hampered conventional mutational approach to study packaging in vivo, we developed a novel heterologous system to evaluate the interactions between HCV RNA and Core D1. For this, we took advantage of the recruitment of Vpr fusion-proteins into HIV-1 particles. By fusing HCV Core D1 to Vpr we were able to package and transfer a HCV subgenomic replicon into a HIV-1 based lentiviral vector. We next examined how deletion mutants of basic sub-domains of Core D1 influenced HCV RNA recruitment. The results emphasized the crucial role of the first and third basic regions of D1 in packaging. Interestingly, the system described here allowed us to mobilise full-length JFH1 genome in CD81 defective cells, which are normally refractory to HCV infection. This finding paves the way to an evaluation of the replication capability of HCV in various cell types.

  18. Construction of glucose-repressible yeast expression vectors.

    PubMed

    Yao, B; Marmur, J; Sollitti, P

    1993-12-31

    A set of two episomal yeast expression vectors, pYME1 and pYME2, were constructed. These Saccharomyces cerevisiae-Escherichia coli shuttle vectors each contain a modified yeast MAL6S (encoding maltase) promoter that is expressed constitutively, but is subject to carbon catabolite repression by glucose. Expression from this promoter is still dependent upon the presence of active MALR (regulatory) protein. These expression vectors are particularly useful because most S. cerevisiae strains are MAL+, thereby exhibiting a wider host range than GAL-based vector systems. These pYME1 and pYME2 vectors are capable of expression to levels comparable to GAL-based expression plasmids and much higher than a variety of other repressible promoter vectors. The vectors are identical, except that their multiple cloning sites (MCS) are in opposite orientations, making them convenient for inserting heterologous genes.

  19. Development of an insect vector cell culture and RNA interference system to investigate the functional role of fijivirus replication protein.

    PubMed

    Jia, Dongsheng; Chen, Hongyan; Zheng, Ailing; Chen, Qian; Liu, Qifei; Xie, Lianhui; Wu, Zujian; Wei, Taiyun

    2012-05-01

    An in vitro culture system of primary cells from white-backed planthopper, an insect vector of Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus, was established to study replication of the virus. Viroplasms, putative sites of viral replication, contained the nonstructural viral protein P9-1, viral RNA, outer-capsid proteins, and viral particles in virus-infected cultured insect vector cells, as revealed by transmission electron and confocal microscopy. Formation of viroplasm-like structures in non-host insect cells upon expression of P9-1 suggested that the matrix of viroplasms observed in virus-infected cells was composed basically of P9-1. In cultured insect vector cells, knockdown of P9-1 expression due to RNA interference (RNAi) induced by synthesized double-stranded RNA (dsRNA) from the P9-1 gene strongly inhibited viroplasm formation and viral infection. RNAi induced by ingestion of dsRNA strongly abolished viroplasm formation, preventing efficient viral spread in the body of intact vector insects. All these results demonstrated that P9-1 was essential for viroplasm formation and viral replication. This system, combining insect vector cell culture and RNA interference, can further advance our understanding of the biological activities of fijivirus replication proteins.

  20. Virus-based transient expression vectors for woody crops: a new frontier for vector design and use.

    PubMed

    Dawson, William O; Folimonova, Svetlana Y

    2013-01-01

    Virus-based expression vectors are commonplace tools for the production of proteins or the induction of RNA silencing in herbaceous plants. This review considers a completely different set of uses for viral vectors in perennial fruit and nut crops, which can be productive for periods of up to 100 years. Viral vectors could be used in the field to modify existing plants. Furthermore, with continually emerging pathogens and pests, viral vectors could express genes to protect the plants or even to treat plants after they become infected. As technologies develop during the life span of these crops, viral vectors can be used for adding new genes as an alternative to pushing up the crop and replanting with transgenic plants. Another value of virus-based vectors is that they add nothing permanently to the environment. This requires that effective and stable viral vectors be developed for specific crops from endemic viruses. Studies using viruses from perennial hosts suggest that these objectives could be accomplished.

  1. Double-stranded RNA transcribed from vector-based oligodeoxynucleotide acts as transcription factor decoy

    SciTech Connect

    Xiao, Xiao; Gang, Yi; Wang, Honghong; Wang, Jiayin; Zhao, Lina; Xu, Li; Liu, Zhiguo

    2015-02-06

    Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself. The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity.

  2. A single-plasmid vector for transgene amplification using short hairpin RNA targeting the 3'-UTR of amplifiable dhfr.

    PubMed

    Kang, Shin-Young; Kim, Yeon-Gu; Lee, Hong Weon; Lee, Eun Gyo

    2015-12-01

    Gene amplification using dihydrofolate reductase gene (dhfr) and methotrexate (MTX) is widely used for recombinant protein production in mammalian cells and is typically conducted in DHFR-deficient Chinese hamster ovary (CHO) cell lines. Generation of DHFR-deficient cells can be achieved by an expression vector incorporating short hairpin RNA (shRNA) that targets the 3'-untranslated region (UTR) of endogenous dhfr. Thus, shRNAs were designed to target the 3'-UTR of endogenous dhfr, and shRNA-2 efficiently down-regulated dhfr expression in CHO-K1 cells. A single gene copy of shRNA-2 also decreased the translational level of DHFR by 80% in Flp-In CHO cells. shRNA-2 was then incorporated into a plasmid vector expressing human erythropoietin (EPO) and an exogenous DHFR to develop EPO-producing cells in the Flp-In system. The specific EPO productivity (q EPO) was enhanced by stepwise increments of MTX concentration, and differences in the amplification rate were observed in Flp-In CHO cells that expressed shRNA-2. In addition, the q EPO increased by more than 2.5-fold in the presence of 500 nM MTX. The mRNA expression level and gene copy numbers of dhfr were correlated with increased productivity in the cells, which is influenced by inhibition of endogenous dhfr. This study reveals that an expression vector including shRNA that targets the 3'-UTR of endogenous dhfr can enhance the transgene amplification rate and productivity by generating DHFR-deficient cells. This approach may be applied for amplifying the foreign gene in wild-type cell lines as a versatile single-plasmid vector.

  3. Use of Nascent RNA Microarrays to Study Inducible Gene Expression in Breast Cancer Cells

    DTIC Science & Technology

    2005-09-01

    detect inducible gene expression following activation of a transcription factor we used the p53 mutant lung cancer cell line H1299 /tsp53 expressing a...temperature-sensitive p53 gene and a control cell line H1299 /neo expressing a neo control vector. To activate the transcription factor p53 we lowered...expression in H1299 +tsp53 cells nascent RNA gene expression in H1299 +neo cells. Nascent RNA was collected 3 hours after switching to the permissive

  4. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model.

    PubMed

    Lee, Tae Jin; Haque, Farzin; Shu, Dan; Yoo, Ji Young; Li, Hui; Yokel, Robert A; Horbinski, Craig; Kim, Tae Hyong; Kim, Sung-Hak; Kwon, Chang-Hyuk; Nakano, Ichiro; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M

    2015-06-20

    Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues.

  5. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model

    PubMed Central

    Lee, Tae Jin; Haque, Farzin; Shu, Dan; Yoo, Ji Young; Li, Hui; Yokel, Robert A.; Horbinski, Craig; Kim, Tae Hyong; Kim, Sung-Hak; Kwon, Chang-Hyuk; Nakano, Ichiro; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M.

    2015-01-01

    Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues. PMID:25885522

  6. Determinants of effective lentivirus-driven microRNA expression in vivo

    PubMed Central

    Mishima, Takuya; Sadovsky, Elena; Gegick, Margaret E.; Sadovsky, Yoel

    2016-01-01

    Manipulation of microRNA (miRNA) levels, including overexpression of mature species, has become an important biological tool, even motivating miRNA-based therapeutics. To assess key determinants of miRNA overexpression in a mammalian system in vivo, we sought to bypass the laborious generation of a transgenic animal by exploiting placental trophoblast-specific gene manipulation using lentiviral vectors, which has been instrumental in elucidating trophoblast biology. We examined the impact of several key components of miRNA stem loops and their flanking sequences on the efficiency of mature miRNA expression in vivo. By combining established and novel approaches for miRNA expression, we engineered lentivirus-driven miRNA expression plasmids, which we tested in the mouse placenta. We found that reverse sense inserts minimized single-strand splicing and degradation, and that maintaining longer, poly-A-containing arms flanking the miRNA stem-loop markedly enhanced transgenic miRNA expression. Additionally, we accomplished overexpression of diverse mammalian, drosophila, or C. elegans miRNAs, either based on native context or using a “cassette” replacement of the mature miRNA sequence. Together, we have identified primary miRNA sequences that are paramount for effective expression of mature miRNAs, and validated their role in mice. Principles established by our findings may guide the design of efficient miRNA vectors for in vivo use. PMID:27627961

  7. An epitope tagged mammalian/prokaryotic expression vector with positive selection of cloned inserts.

    PubMed

    Schneider, S; Georgiev, O; Buchert, M; Adams, M T; Moelling, K; Hovens, C M

    1997-09-15

    A dual eukaryotic/prokaryotic expression vector has been developed which combines the features of positive selection for cloned inserts along with the production of an epitope-tagged cDNA insert by transient transfection in mammalian cells as well as high level induced expression in E. coli cells harbouring T7 RNA polymerase. This vector, pZilch, has two MCSs flanking a mutant E. coli phenylalanyl-tRNA synthetase gene, pheS, which when expressed in combination with the phenylalanine analog p-CI-Phe, results in termination of host cell protein synthesis. Cloning of inserts using unique sites in the flanking MCS regions results in loss of the pZilch pheS allele and hence permits growth of colonies harbouring recombinants on p-Cl-Phe plates. Additional features of the vector include an optimal Kozak consensus sequence for high level eukaryotic cell expression and an efficient prokaryotic translation initiation site in frame and downstream from the eukaryotic initiation site. Recombinant proteins can be produced with an N-terminal FLAG epitope which can be removed via a specific protease cleavage site. Flanking T7 and SP6 RNA polymerase promoter sites permit in vitro transcription and translation of cloned inserts. A derivative of the vector has also been constructed enabling nuclear accumulation of the tagged proteins via an SV40 nuclear localisation signal upstream of the 5' MCS.

  8. Viral vectors: from virology to transgene expression

    PubMed Central

    Bouard, D; Alazard-Dany, N; Cosset, F-L

    2009-01-01

    In the late 1970s, it was predicted that gene therapy would be applied to humans within a decade. However, despite some success, gene therapy has still not become a routine practise in medicine. In this review, we will examine the problems, both experimental and clinical, associated with the use of viral material for transgenic insertion. We shall also discuss the development of viral vectors involving the most important vector types derived from retroviruses, adenoviruses, herpes simplex viruses and adeno-associated viruses. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:18776913

  9. A simple method for construction of artificial microRNA vector in plant.

    PubMed

    Li, Yang; Li, Yang; Zhao, Sunping; Zhong, Sheng; Wang, Zhaohai; Ding, Bo; Li, Yangsheng

    2014-10-01

    Artificial microRNA (amiRNA) is a powerful tool for silencing genes in many plant species. Here we provide an easy method to construct amiRNA vectors that reinvents the Golden Gate cloning approach and features a novel system called top speed amiRNA construction (TAC). This speedy approach accomplishes one restriction-ligation step in only 5 min, allowing easy and high-throughput vector construction. Three primers were annealed to be a specific adaptor, then digested and ligated on our novel vector pTAC. Importantly, this method allows the recombined amiRNA constructs to maintain the precursor of osa-miR528 with exception of the desired amiRNA/amiRNA* sequences. Using this method, our results showed the expected decrease of targeted genes in Nicotiana benthamiana and Oryza sativa.

  10. Serum-dependent and cell cycle-dependent expression from a cytomegalovirus-based mammalian expression vector.

    PubMed

    Brightwell, G; Poirier, V; Cole, E; Ivins, S; Brown, K W

    1997-07-18

    Cytomegalovirus-based mammalian expression vectors are widely used to drive the expression of transfected genes in cultured cells. Immunofluorescent staining of the WT1 protein in 3T3 and 293 cell clones, stably transfected with a cyomegalovirus (CMV) expression vector carrying a cDNA coding for the tumour suppressor protein WT1, showed extreme cell to cell variation in the amount of recombinant protein expressed, indicative of cell cycle dependence. This was investigated further by Western blot and FACS analysis which showed that WT1 protein expression was highest in S phase and almost absent in G0/G1. Northern blot analysis of cell clones expressing sense or antisense WT1 cDNAs regulated by the CMV promoter/enhancer showed that RNA expression was also cell cycle-dependent. Western blotting of cells expressing a luciferase reporter gene driven by the CMV promoter/enhancer also showed apparent cell cycle-dependent expression. We further demonstrated that the expression of these gene constructs was serum responsive with a 10-fold increase in expression occurring 2 h after the addition of serum. These results show that the CMV promoter/enhancer system varied in its response to serum and the cell cycle state. Therefore, care must be taken when interpreting any phenotypic alterations (or lack of them) produced in cells transfected with CMV-based expression vectors.

  11. [Development of transgenic maize with anti-rough dwarf virus artificial miRNA vector and their disease resistance].

    PubMed

    Xuan, Ning; Zhao, Chuanzhi; Peng, Zhenying; Chen, Gao; Bian, Fei; Lian, Mingzheng; Liu, Guoxia; Wang, Xingjun; Bi, Yuping

    2015-09-01

    Maize is one of the most important food crops. Rice black-streaked dwarf virus is a maize rough dwarf disease pathogen. The occurrence and transmission of maize rough dwarf disease brings great damage to maize production. The technology of using artificial miRNA to build antiviral plant has been proven effective in a variety of plants. However, such trials in maize have not been reported. We designed primers based on the sequence of maize zea-miR159a precursor and sequence of function protein genes and silencing RBSDV coding genes in RBSDV genome. We constructed amiRNA (artificial miRNA) gene for silencing RBSDV coding gene and gene silencing suppressor. We constructed pCAMBIA3301-121-amiRNA plant expression vector for transforming maize inbred lines Z31 by using agrobacterium mediated method. After molecular analysis of transgenic maize, homozygous lines with high miRNA expression were selected by molecular detection for a subsequent natural infection experiment. We studied the severity of maize rough dwarf disease according to a grading standard (grade 0 to 4). The experiment results showed that the disease resistance of transgenic homozygous maize with the anti-rough dwarf virus amiRNA vector was better than that of wild type. Among the transgenic maize, S6-miR159 transgenic maize had high disease resistance. It is feasible to create new maize variety by the use of artificial miRNA.

  12. Modeling Equilibrium of microRNA Expression

    PubMed Central

    Chan, Lawrence W. C.

    2011-01-01

    MicroRNAs are a class of non-coding RNAs and the dysregulated expression of these short RNA molecules was frequently observed in cancer cells. The steady state level of microRNA concentration may differentiate the biological function of the cells between normal and impaired. To understand the steady state or equilibrium of microRNAs, their interactions with transcription factors and target genes need to be explored and visualized through prediction and network analysis algorithms. This article discusses the application of mathematical model for simulating the dynamics of network feedback loop so as to decipher the mechanism of microRNA regulation. PMID:22303331

  13. CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis

    PubMed Central

    Jin, Xi; Feng, Chun-yan; Xiang, Zun; Chen, Yi-peng; Li, You-ming

    2016-01-01

    The pathogenesis of nonalcoholic steatohepatitis (NASH) is still unclear, where involvement of circRNA is considered for its active role as “miRNA sponge”. Therefore, we aimed to investigate the circRNA expression pattern in NASH and further construct the circRNA-miRNA-mRNA network for in-depth mechanism exploration. Briefly, NASH mice model was established by Methionine and choline deficiency (MCD) diet feeding. Liver circRNA and mRNA profile was initially screened by microarray and ensuing qRT-PCR verification was carried out. The overlapped predicted miRNAs as downstream targets of circRNAs and upstream regulators of mRNAs were verified by qRT-PCR and final circRNA-miRNA-mRNA network was constructed. Gene Ontology (GO) and KEGG pathway analysis were further applied to enrich the huge mRNA microarray data. To sum up, there were 69 up and 63 down regulated circRNAs as well as 2760 up and 2465 down regulated mRNAs in NASH group, comparing with control group. Randomly selected 13 of 14 mRNAs and 2 of 8 circRNAs were successfully verified by qRT-PCR. Through predicted overlapped miRNA verification, four circRNA-miRNA-mRNA pathways were constructed, including circRNA_002581-miR-122-Slc1a5, circRNA_002581- miR-122-Plp2, circRNA_002581-miR-122-Cpeb1 and circRNA_007585-miR-326- UCP2. GO and KEGG pathway analysis also enriched specific mRNAs. Therefore, circRNA profile may serve as candidate for NASH diagnosis and circRNA-miRNA -mRNA pathway may provide novel mechanism for NASH. PMID:27677588

  14. Development of expression vectors based on pepino mosaic virus

    PubMed Central

    2011-01-01

    Background Plant viruses are useful expression vectors because they can mount systemic infections allowing large amounts of recombinant protein to be produced rapidly in differentiated plant tissues. Pepino mosaic virus (PepMV) (genus Potexvirus, family Flexiviridae), a widespread plant virus, is a promising candidate expression vector for plants because of its high level of accumulation in its hosts and the absence of severe infection symptoms. We report here the construction of a stable and efficient expression vector for plants based on PepMV. Results Agroinfectious clones were produced from two different PepMV genotypes (European and Chilean), and these were able to initiate typical PepMV infections. We explored several strategies for vector development including coat protein (CP) replacement, duplication of the CP subgenomic promoter (SGP) and the creation of a fusion protein using the foot-and-mouth disease virus (FMDV) 2A catalytic peptide. We found that CP replacement vectors were unable to move systemically and that vectors with duplicated SGPs (even heterologous SGPs) suffered from significant transgene instability. The fusion protein incorporating the FMDV 2A catalytic peptide gave by far the best results, maintaining stability through serial passages and allowing the accumulation of GFP to 0.2-0.4 g per kg of leaf tissue. The possible use of PepMV as a virus-induced gene silencing vector to study gene function was also demonstrated. Protocols for the use of this vector are described. Conclusions A stable PepMV vector was generated by expressing the transgene as a CP fusion using the sequence encoding the foot-and-mouth disease virus (FMDV) 2A catalytic peptide to separate them. We have generated a novel tool for the expression of recombinant proteins in plants and for the functional analysis of virus and plant genes. Our experiments have also highlighted virus requirements for replication in single cells as well as intercellular and long

  15. miRNA and mRNA expression analysis reveals potential sex-biased miRNA expression

    PubMed Central

    Guo, Li; Zhang, Qiang; Ma, Xiao; Wang, Jun; Liang, Tingming

    2017-01-01

    Recent studies suggest that mRNAs may be differentially expressed between males and females. This study aimed to perform expression analysis of mRNA and its main regulatory molecule, microRNA (miRNA), to discuss the potential sex-specific expression patterns using abnormal expression profiles from The Cancer Genome Atlas database. Generally, deregulated miRNAs and mRNAs had consistent expression between males and females, but some miRNAs may be oppositely expressed in specific diseases: up-regulated in one group and down-regulated in another. Studies of miRNA gene families and clusters further confirmed that these sequence or location related miRNAs might have opposing expression between sexes. The specific miRNA might have greater expression divergence across different groups, suggesting flexible expression across different individuals, especially in tumor samples. The typical analysis regardless of the sex will ignore or balance these sex-specific deregulated miRNAs. Compared with flexible miRNAs, their targets of mRNAs showed relative stable expression between males and females. These relevant results provide new insights into miRNA-mRNA interaction and sex difference. PMID:28045090

  16. Inducing RNA interference in the arbovirus vector, Culicoides sonorensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biting midges in the genus Culicoides are important vectors of arboviral diseases, including Epizootic Hemorrhagic Disease, Bluetongue, and likely Schmallenberg, which cause significant economic burden worldwide. Research on these vectors has been hindered by the lack of a sequenced genome, the diff...

  17. Effects of G-gene Deletion and Replacement on Rabies Virus Vector Gene Expression

    PubMed Central

    Sato, Sho; Ohara, Shinya; Tsutsui, Ken-Ichiro; Iijima, Toshio

    2015-01-01

    The glycoprotein-gene (G gene) -deleted rabies virus (RV) vector is a powerful tool to examine the function and structure of neural circuits. We previously reported that the deletion of the G gene enhances the transgene expression level of the RV vector. However, the mechanism of this enhancement remains to be clarified. We presume that there are two possible factors for this enhancement. The first factor is the glycoprotein of RV, which shows cytotoxicity; thus, may cause a dysfunction in the translation process of infected cells. The second possible factor is the enhanced expression of the L gene, which encodes viral RNA polymerase. In the RV, it is known that the gene expression level is altered depending on the position of the gene. Since G-gene deletion displaces the L gene in the genome, the expression of the L gene and viral transcription may be enhanced. In this study, we compared the transgene expression level and viral transcription of three recombinant RV vectors. The effect of glycoprotein was examined by comparing the viral gene expression of G-gene-intact RV and G-gene-replaced RV. Despite the fact that the L-gene transcription level of these two RV vectors was similar, the G-gene-replaced RV vector showed higher viral transcription and transgene expression level than the G-gene-intact RV vector. To examine the effect of the position of the L gene, we compared the viral gene expression of the G-gene-deleted RV and G-gene-replaced RV. The G-gene-deleted RV vector showed higher L-gene transcription, viral transcription, and transgene expression level than the G-gene-replaced RV vector. These results indicate that G-gene deletion enhances the transgene expression level through at least two factors, the absence of glycoprotein and enhancement of L-gene expression. These findings enable investigators to design a useful viral vector that shows a controlled desirable transgene expression level in applications. PMID:26023771

  18. miRNA genes of an invasive vector mosquito, Aedes albopictus.

    PubMed

    Gu, Jinbao; Hu, Wanqi; Wu, Jinya; Zheng, Peiming; Chen, Maoshan; James, Anthony A; Chen, Xiaoguang; Tu, Zhijian

    2013-01-01

    Aedes albopictus, a vector of Dengue and Chikungunya viruses, is a robust invasive species in both tropical and temperate environments. MicroRNAs (miRNAs) regulate gene expression and biological processes including embryonic development, innate immunity and infection. While a number of miRNAs have been discovered in some mosquitoes, no comprehensive effort has been made to characterize them from different developmental stages from a single species. Systematic analysis of miRNAs in Ae. albopictus will improve our understanding of its basic biology and inform novel strategies to prevent virus transmission. Between 10-14 million Illumina sequencing reads per sample were obtained from embryos, larvae, pupae, adult males, sugar-fed and blood-fed adult females. A total of 119 miRNA genes represented by 215 miRNA or miRNA star (miRNA*) sequences were identified, 15 of which are novel. Eleven, two, and two of the newly-discovered miRNA genes appear specific to Aedes, Culicinae, and Culicidae, respectively. A number of miRNAs accumulate predominantly in one or two developmental stages and the large number that showed differences in abundance following a blood meal likely are important in blood-induced mosquito biology. Gene Ontology (GO) analysis of the targets of all Ae. albopictus miRNAs provides a useful starting point for the study of their functions in mosquitoes. This study is the first systematic analysis of miRNAs based on deep-sequencing of small RNA samples of all developmental stages of a mosquito species. A number of miRNAs are related to specific physiological states, most notably, pre- and post-blood feeding. The distribution of lineage-specific miRNAs is consistent with mosquito phylogeny and the presence of a number of Aedes-specific miRNAs likely reflects the divergence between the Aedes and Culex genera.

  19. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors

    PubMed Central

    Falcicchia, Chiara; Trempat, Pascal; Binaschi, Anna; Perrier-Biollay, Coline; Roncon, Paolo; Soukupova, Marie; Berthommé, Hervé; Simonato, Michele

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies. PMID:26954758

  20. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors.

    PubMed

    Falcicchia, Chiara; Trempat, Pascal; Binaschi, Anna; Perrier-Biollay, Coline; Roncon, Paolo; Soukupova, Marie; Berthommé, Hervé; Simonato, Michele

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies.

  1. Development of a set of expression vectors in Hansenula polymorpha.

    PubMed

    Song, Houhui; Li, Yong; Fang, Weihuan; Geng, Yunfeng; Wang, Xu; Wang, Min; Qiu, Bingsheng

    2003-12-01

    Four expression vectors based on formate dehydrogenase promoter (FMDp) and methanol oxidase promoter (MOXp) from Hansenula polymorpha were developed to express heterologous genes in Hansenula polymorpha. A secretion signal sequence of the mating factor-alpha from Saccharomyces cerevisiae was inserted in the secretory expression plasmids for efficient secretion. A modified green fluorescent protein (mGFP5) was used as the marker of expression for the first time in H. polymorpha NCYC495 (leu 1.1) to determine the expression ability of these plasmids. The mGFP5 thus expressed retained its biochemical and physiological properties, such as accumulation inside cells and efficient secretion into the culture media. These results indicated that the four integrative vectors are useful expression systems which could be directly applied for production of heterologous proteins of interests in H. polymorpha.

  2. MicroRNA expression analysis using the Affymetrix Platform.

    PubMed

    Dee, Suzanne; Getts, Robert C

    2012-01-01

    Microarrays have been used extensively for messenger RNA expression monitoring. Recently, microarrays have been designed to interrogate expression levels of noncoding RNAs. Here, we describe methods for RNA labeling and the use of a miRNA array to identify and measure microRNA present in RNA samples.

  3. Gamma-retroviral vector design for the co-expression of artificial microRNAs and therapeutic proteins.

    PubMed

    Park, Tristen S; Abate-Daga, Daniel; Zhang, Ling; Zheng, Zhili; Morgan, Richard A

    2014-10-01

    To generate γ-retroviral vectors for stable conjoint expression of artificial microRNAs (amiR) and therapeutic genes in primary human lymphocytes, and to identify the design parameters that are key for successful vector generation. Gamma-retroviral vectors were designed to co-express both amiRs and a linked reporter gene, truncated CD34 (tCD34). Artificial miRs based on microRNAs miR-16, miR-142, miR-146b, miR-150, miR155, and miR-223 were inserted into sites within the intron of the vector and tested for tCD34 expression by flow cytometry (FACS). Different constructs were assembled with amiRs targeted to knockdown expression of suppressor of cytokine signaling 1 (SOCS1) or programmed cell death 1 (PDCD1, PD-1). Three of the six amiRs maintained tCD34 expression. Expansion of primary human T cells transduced with these amiR vectors, as well as transgene expression, were equivalent to control engineered T cells over a 40-day period. Knockdown of SOCS1 RNA and PD-1 expression by FACS was shown to vary between constructs, dependent on either the specific short interfering RNA sequence used in the amiR, or the microRNA backbone and location in the vector intron. Gamma-retroviral vectors that both efficiently knockdown endogenous gene expression and maintain linked transgene production can be produced, but empirical vector evaluations were best suited for optimal construct analysis.

  4. RNA interference-based therapeutics for human immunodeficiency virus HIV-1 treatment: synthetic siRNA or vector-based shRNA?

    PubMed Central

    Subramanya, Sandesh; Kim, Sang-Soo; Manjunath, N; Shankar, Premlata

    2013-01-01

    Importance of the field Despite the extraordinary clinical benefits of HAART, the prospect of life-long antiretroviral regimen poses significant practical problems, which has spurred an interest in developing new drugs and strategies to treat HIV infection and to eliminate persistent viral reservoirs. RNAi is a highly potent natural gene silencing mechanism that has emerged as a novel therapeutic possibility for HIV. Areas covered in this review Our aim is to discuss the recent progress in overcoming the hurdles for translating transient and stable RNAi enabling technologies towards clinical applications in HIV infection and the review covers literature from the past 2–3 years. What the reader will gain HIV inhibition can be achieved by transfection of chemically or enzymatically synthesized siRNAs or by DNA-based vector systems to express short hairpin RNAs (shRNAs) that are processed intracellularly into siRNA. This review compares the merits and shortcomings of the two approaches, focusing on technical and safety issues that will guide the choice of the appropriate strategy for clinical use. Take home message Introduction of synthetic siRNA into cells or its stable endogenous production using vector-driven shRNA have both been shown to effectively suppress HIV replication in vitro and in some instances in vivo. Each method has its own advantages and limitations in terms of ease of delivery, duration of silencing, emergence of escape mutants and potential toxicity. Thus, both methods appear to have potential as future therapeutics for HIV, once the technical and safety issues unique to each of the approaches are overcome. PMID:20088715

  5. Co-transduction of lentiviral and adenoviral vectors for co-delivery of growth factor and shRNA genes in mesenchymal stem cells-based chondrogenic system.

    PubMed

    Zhang, Feng; Yao, Yongchang; Su, Kai; Fang, Yu; Citra, Fudiman; Wang, Dong-An

    2015-09-01

    Gene delivery takes advantage of cellular mechanisms to express gene products and is an efficient way to deliver them into cells, influencing cellular behaviours and expression patterns. Among the delivery methods, viral vectors are applied due to their high efficiency. Two typical viral vectors for gene delivery include lentiviral vector for integrative transduction and adenoviral vector for transient episomal transduction, respectively. The selection and formulation of proper viral vectors applied to cells can modulate gene expression profiles and further impact the downstream pathways. In this study, recombinant lentiviral and adenoviral vectors were co-transduced in a synovial mesenchymal stem cells (SMSCs)-based articular chondrogenic system by which two transgenes were co-delivered - the gene for transforming growth factor (TGF)β3, to facilitate SMSC chondrogenesis, and the gene for small hairpin RNA (shRNA), targeting the mRNA of type I collagen (Col I) α1 chain to silence Col I expression and minimize fibrocartilage formation. Delivery of either gene could be achieved with either lentiviral or adenoviral vectors. Therefore, co-delivery of the two transgenes via the two types of vectors was performed to determine which combination was optimal for three-dimensional (3D) articular chondrogenesis to construct articular hyaline cartilage tissue. Suppression of Col I and expression of cartilage markers, including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP), were assessed at both the transcriptome and protein phenotypic levels. It was concluded that the combination of lentiviral-mediated TGFβ3 release and adenoviral-mediated shRNA expression (LV-T + Ad-sh) generally demonstrated optimal efficacy in engineered articular cartilage with SMSCs.

  6. A Vector-Based Short Hairpin RNA Targeting Aurora B Suppresses Human Prostatic Carcinoma Growth.

    PubMed

    Cao, Mei; Qi, Panpan; Chen, Chong; Song, Liju; Wang, Xuege; Li, Ningzhe; Wu, Daoyan; Hu, Guoku; Zhao, Jian

    2017-02-01

    Aurora kinase B, playing a vital, important role in mitosis, is frequently detected to be overexpressed in many cancer cell lines and various tumor tissues, including prostatic carcinoma. Given the essential function of Aurora kinase B in mitosis and its association with tumorigenesis, it might be a drug target for prostatic carcinoma treatment. In our study, short hairpin RNA targeting Aurora kinase B was cloned into a pGPU6 plasmid vector and then transfected into human prostatic carcinoma cells. The expression level of Aurora kinase B was verified by reverse transcription-polymerase chain reaction and Western blot. At the same time, cell apoptosis was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, fluorescent staining, and flow cytometric analysis. Furthermore, prostate carcinoma cells were injected into mice to establish a tumor xenograft model. Previous studies have shown the effect of pGPU6-shAURKB plasmid on tumor growth in a prostate carcinoma xenogenic implantation model. From the study, we knew that the Aurora kinase B was significantly downregulated in prostate carcinoma cells, and cell apoptosis was also detected higher in treated groups than that in control groups. Moreover, in the prostate carcinoma xenogenic implantation model, compared with the control groups, the tumor growth was inhibited about 78.7% in the pGPU6-shAURKB plasmid-treated group, and cell apoptosis in the experimental group was notably higher than that in control groups. The average duration of tumor-bearing mice was prolonged to about 35 days. The results of experiment indicated that specific knockdown of Aurora kinase B led to prostate carcinoma cells apoptosis and inhibited tumor growth. Our data clearly confirmed that specific knockdown of Aurora kinase B expression by vector-based short hairpin RNA/liposome may be a potential new approach to treat human prostatic carcinoma.

  7. Alleviation of off-target effects from vector-encoded shRNAs via codelivered RNA decoys.

    PubMed

    Mockenhaupt, Stefan; Grosse, Stefanie; Rupp, Daniel; Bartenschlager, Ralf; Grimm, Dirk

    2015-07-28

    Exogenous RNAi triggers such as shRNAs ideally exert their activities exclusively via the antisense strand that binds and silences designated target mRNAs. However, in principle, the sense strand also possesses silencing capacity that may contribute to adverse RNAi side effects including off-target gene regulation. Here, we address this concern with a novel strategy that reduces sense strand activity of vector-encoded shRNAs via codelivery of inhibitory tough decoy (TuD) RNAs. Using various shRNAs for proof of concept, we validate that coexpression of TuDs can sequester and inactivate shRNA sense strands in human cells selectively without affecting desired antisense activities from the same shRNAs. Moreover, we show how coexpressed TuDs can alleviate shRNA-mediated perturbation of global gene expression by specifically de-repressing off-target transcripts carrying seed matches to the shRNA sense strand. Our combination of shRNA and TuD in a single bicistronic gene transfer vector derived from Adeno-associated virus (AAV) enables a wide range of applications, including gene therapies. To this end, we engineered our constructs in a modular fashion and identified simple hairpin design rules permitting adaptation to preexisting or new shRNAs. Finally, we demonstrate the power of our vectors for combinatorial RNAi strategies by showing robust suppression of hepatitis C virus (HCV) with an AAV expressing a bifunctional TuD against an anti-HCV shRNA sense strand and an HCV-related cellular miRNA. The data and tools reported here represent an important step toward the next generation of RNAi triggers with increased specificity and thus ultimately safety in humans.

  8. Producing a Mammalian GFP Expression Vector Containing Neomycin Resistance Gene.

    PubMed

    Izadi, Manizheh; Abiri, Maryam; Keramatipour, Mohammad

    2009-04-01

    The green fluorescent protein (GFP) was originally isolated from the Jellyfish Aequorea Victoria that fluoresces green when exposed to blue light. GFP protein is composed of 238 amino acids with the molecular mass of 26.9 kD. The GFP gene is frequently used in cellular and molecular biology as a reporter gene. To date, many bacterial, yeast, fungal, plants, fly and mammalian cells, including human, have been created which express GFP. Martin Chalfie, Osamu Shimomura, and Roger Tsien were awarded the 2008 noble prize in chemistry for their discovery and development of GFP. In many studies on mammalian cells, GFP gene is introduced into cells using vector-based systems or a recombinant virus to track the location of a target protein or to study the expression level of the gene of interest, but in these studies there is no selection marker to normalize transfection. According to the importance of neomycin gene as a selection marker in mammalian cells, we aimed to produce a GFP expression vector that contains neomycin gene. GFP gene was separated from pEGFP-N1 vector and was inserted in the back-bone of pCDNA3.1/His/LacZ vector that contained the neomycin gene. The resulted vector contained GFP beside neomycin gene.

  9. Down-regulation of survivin expression by small interfering RNA induces pancreatic cancer cell apoptosis and enhances its radiosensitivity

    PubMed Central

    Guan, Hai-Tao; Xue, Xing-Huan; Dai, Zhi-Jun; Wang, Xi-Jing; Li, Ang; Qin, Zhao-Yin

    2006-01-01

    AIM: To investigate the inhibitory effect of small interfering RNA (siRNA) on the expression of survivin in pancreatic cancer cell line PC-2 and the role of siRNA in inducing PC-2 cell apoptosis and enhancing its radiosensitivity. METHODS: A siRNA plasmid expression vector against survivin was constructed and transfected into PC-2 cells with LipofectamineTM 2000. The down regulation of survivin expression was detected by semi-quantitive RT-PCR and immunohistochemical SP method and the role of siRNA in inducing PC-2 cell apoptosis and enhancing its radiosensitivity was detected by flow cytometry. RESULTS: The sequence-specific siRNA efficiently and specifically down-regulated the expression of survivin at both mRNA and protein levels. The expression inhibition ratio was 81.25% at mRNA level detected by semi-quantitive RT-PCR and 74.24% at protein level detected by immunohistochemical method. Forty-eight hours after transfection,apoptosis was induced in 7.03% cells by siRNA and in 14.58% cells by siRNA combined with radiation. CONCLUSION: The siRNA plasmid expression vector against survivin can inhibit the expression of survivin in PC-2 cells efficiently and specifically. Inhibiting the expression of survivin can induce apoptosis of PC-2 cells and enhance its radiosensitivity significantly. RNAi against survivin is of potential value in gene therapy of pancreatic cancer. PMID:16718816

  10. A universal expression/silencing vector in plants.

    PubMed

    Peretz, Yuval; Mozes-Koch, Rita; Akad, Fuad; Tanne, Edna; Czosnek, Henryk; Sela, Ilan

    2007-12-01

    A universal vector (IL-60 and auxiliary constructs), expressing or silencing genes in every plant tested to date, is described. Plants that have been successfully manipulated by the IL-60 system include hard-to-manipulate species such as wheat (Triticum duram), pepper (Capsicum annuum), grapevine (Vitis vinifera), citrus, and olive (Olea europaea). Expression or silencing develops within a few days in tomato (Solanum lycopersicum), wheat, and most herbaceous plants and in up to 3 weeks in woody trees. Expression, as tested in tomato, is durable and persists throughout the life span of the plant. The vector is, in fact, a disarmed form of Tomato yellow leaf curl virus, which is applied as a double-stranded DNA and replicates as such. However, the disarmed virus does not support rolling-circle replication, and therefore viral progeny single-stranded DNA is not produced. IL-60 does not integrate into the plant's genome, and the construct, including the expressed gene, is not heritable. IL-60 is not transmitted by the Tomato yellow leaf curl virus's natural insect vector. In addition, artificial satellites were constructed that require a helper virus for replication, movement, and expression. With IL-60 as the disarmed helper "virus," transactivation occurs, resulting in an inducible expressing/silencing system. The system's potential is demonstrated by IL-60-derived suppression of a viral-silencing suppressor of Grapevine virus A, resulting in Grapevine virus A-resistant/tolerant plants.

  11. High-Throughput Construction of Intron-Containing Hairpin RNA Vectors for RNAi in Plants

    PubMed Central

    Yan, Pu; Shen, Wentao; Gao, XinZheng; Li, Xiaoying; Zhou, Peng; Duan, Jun

    2012-01-01

    With the wide use of double-stranded RNA interference (RNAi) for the analysis of gene function in plants, a high-throughput system for making hairpin RNA (hpRNA) constructs is in great demand. Here, we describe a novel restriction-ligation approach that provides a simple but efficient construction of intron-containing hpRNA (ihpRNA) vectors. The system takes advantage of the type IIs restriction enzyme BsaI and our new plant RNAi vector pRNAi-GG based on the Golden Gate (GG) cloning. This method requires only a single PCR product of the gene of interest flanked with BsaI recognition sequence, which can then be cloned into pRNAi-GG at both sense and antisense orientations simultaneously to form ihpRNA construct. The process, completed in one tube with one restriction-ligation step, produced a recombinant ihpRNA with high efficiency and zero background. We demonstrate the utility of the ihpRNA constructs generated with pRNAi-GG vector for the effective silencing of various individual endogenous and exogenous marker genes as well as two genes simultaneously. This method provides a novel and high-throughput platform for large-scale analysis of plant functional genomics. PMID:22675447

  12. A novel integrative expression vector for Sulfolobus species.

    PubMed

    Choi, Kyoung-Hwa; Hwang, Sungmin; Yoon, Naeun; Cha, Jaeho

    2014-11-28

    With the purpose of facilitating the process of stable strain generation, a shuttle vector for integration of genes via a double recombination event into two ectopic sites on the Sulfolobus acidocaldarius chromosome was constructed. The novel chromosomal integration and expression vector pINEX contains a pyrE gene from S. solfataricus P2 (pyrE(sso)) as an auxotrophic selection marker, a multiple cloning site with histidine tag, the internal sequences of malE and malG for homologous recombination, and the entire region of pGEM-T vector, except for the multiple cloning region, for propagation in E. coli. For stable expression of the target gene, an α-glucosidase-producing strain of S. acidocaldarius was generated employing this vector. The malA gene (saci_1160) encoding an α-glucosidase from S. acidocaldarius fused with the glutamate dehydrogenase (gdhA(saci)) promoter and leader sequence was ligated to pINEX to generate pINEX_malA. Using the "pop-in" and "pop-out" method, the malA gene was inserted into the genome of MR31 and correct insertion was verified by colony PCR and sequencing. This strain was grown in YT medium without uracil and purified by His-tag affinity chromatography. The α-glucosidase activity was confirmed by the hydrolysis of pNPαG. The pINEX vector should be applicable in delineating gene functions in this organism.

  13. Construction and expression of prokaryotic expression vectors fused with genes of Magnaporthe oryzae effector proteins and mCherry.

    PubMed

    Yang, Y Q; Wang, H; Liang, M L; Yan, J L; Liu, L; Li, C Y; Yang, J

    2015-09-09

    The aim of the current study was to investigate the prokaryotic expression of the Magnaporthe oryzae effector genes BAS1 and BAS4 fused to the fluorescent protein mCherry. Based on previous polymorphic analysis of BAS1 and BAS4 in rice blast strains using PCR, blast strains containing the PCR products of BAS1 and BAS4 were selected for liquid culture for total RNA extraction. For PCR analysis, cDNA was selected as a template to amplify the coding region of BAS1 and BAS4, the plasmid pXY201 was selected as template to amplify the mCherry sequence, and the three sequences were cloned into pMD®19-T vectors. Positive recombinant plasmids were digested using two restriction enzymes and the cleaved fragments of BAS1 and mCherry and BAS4 and mCherry were ligated to pGEX-4T-1 vectors and expression was induced using IPTG. The PCR results showed that the sequence sizes of BAS1, BAS4, and mCherry were 348, 309, and 711 bp, respectively, and these were cloned into pMD®19-T vectors. After digestion and gel purification, the fragments of BAS1 and mCherry, BAS4 and mCherry were ligated into pGEX-4T-1 vectors and expressed in Escherichia coli BL21 competent cells. The expressed proteins were approximately 60 kDa, corresponding to their theoretical size. Prokaryotic expression products of BAS1 and BAS4 fused to mCherry were presented in this study, providing a base for constructing prokaryotic expression vectors of pathogen effector genes fused to mCherry, which will contribute to further study of the subcellular localization, function, and protein interactions of these effectors.

  14. Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus vector.

    PubMed Central

    Cone, R D; Weber-Benarous, A; Baorto, D; Mulligan, R C

    1987-01-01

    We introduced a human beta-globin gene into murine erythroleukemia (MEL) cells by infection with recombinant retroviruses containing the complete genomic globin sequence. The beta-globin gene was correctly regulated during differentiation, steady-state mRNA levels being induced 5- to 30-fold after treatment of the cells with the chemical inducer dimethyl sulfoxide. Studies using vectors which yield integrated proviruses lacking transcriptional enhancer sequences indicated that neither retroviral transcription nor the retroviral enhancer sequences themselves had any obvious effect on expression of the globin gene. Viral RNA expression also appeared inducible, being considerably depressed in uninduced MEL cells but approaching normal wild-type levels after dimethyl sulfoxide treatment. We provide data which suggest that the control point for both repression and subsequent activation of virus expression in MEL cells lies in the viral enhancer element. Images PMID:3029570

  15. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    PubMed

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  16. A tobamovirus expression vector for agroinfection of legumes and Nicotiana.

    PubMed

    Liu, Zun; Kearney, Christopher M

    2010-06-01

    The highest recombinant protein expression levels in plants have been achieved using tobacco mosaic virus (TMV) vectors via agroinoculation of the tobacco, Nicotiana benthamiana. These vectors have been utilized for pharmaceutical protein production and also can serve as rapid gene expression screens for proteonomics. We have constructed a similar vector based on the legume-infecting tobamovirus, sunn hemp mosaic virus (SHMV), by deleting the coat protein gene (SHMV eliminate coat protein gene or SHEC). SHEC/GFP co-agroinoculated with a 35S/p19 binary yielded 600 microg GFP/gfw (25% TSP) in N. benthamiana. In the absence of p19, SHEC/GFP expression was nearly eliminated. SHEC also yielded strong GUS production in agroinoculated Medicago trunculata, Pinto bean, cowpea, pea and lentil even without the aid of systemic infection. A full-length version (SHAC, SHMV alternate coat protein) was created by adding to SHEC the coat protein subgenomic promoter and ORF from the tobamovirus, tobacco mild green mottle virus (TMGMV). SHAC induced a slowly developing, symptomless infection of N. benthamiana and may be of use as a virus induced gene silencing (VIGS) vector.

  17. Vectors for the expression of tagged proteins in Drosophila.

    PubMed

    Parker, L; Gross, S; Alphey, L

    2001-12-01

    Regulated expression systems have been extremely useful in developmental studies, allowing the expression of specific proteins in defined spatial and temporal patterns. If these proteins are fused to an appropriate molecular tag, then they can be purified or visualized without the need to raise specific antibodies. If the tag is inherently fluorescent, then the proteins can even be visualized directly, in living tissue. We have constructed a series of P element-based transformation vectors for the most widely used expression system in Drosophila, GAL4/UAS. These vectors provide a series of useful tags for antibody detection, protein purification, and/or direct visualization, together with a convenient multiple cloning site into which the cDNA of interest can be inserted.

  18. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p <0.05) differentially expressed after cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  19. Using a viral vector to reveal the role of microRNA159 in disease symptom induction by a severe strain of Cucumber mosaic virus.

    PubMed

    Du, Zhiyou; Chen, Aizhong; Chen, Wenhu; Westwood, Jack H; Baulcombe, David C; Carr, John P

    2014-03-01

    In transgenic Arabidopsis (Arabidopsis thaliana), expression of the Cucumber mosaic virus (CMV) 2b silencing suppressor protein from the severe subgroup IA strain Fny disrupted microRNA (miRNA)-regulated development but orthologs from mild subgroup II strains (Q and LS) did not, explaining strain-specific differences in symptom severity. However, it is unknown which miRNAs affected by Fny2b critically affect viral symptoms. Observations that Fny2b-transgenic plants phenocopy microRNA159ab (mir159ab) mutant plants and that Fny2b altered miR159ab-regulated transcript levels suggested a role for miR159ab in elicitation of severe symptoms by Fny-CMV. Using restoration of the normal phenotype in transgenic plants expressing an artificial miRNA as a proof of concept, we developed a LS-CMV-based vector to express sequences mimicking miRNA targets. Expressing a miR159 target mimic sequence using LS-CMV depleted miR159 and induced symptoms resembling those of Fny-CMV. Suppression of Fny-CMV-induced symptoms in plants harboring mutant alleles for the miR159ab targets MYB domain protein33 (MYB33) and MYB65 confirmed the importance of this miRNA in pathogenesis. This study demonstrates the utility of a viral vector to express miRNA target mimics to facilitate functional studies of miRNAs in plants.

  20. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae

    PubMed Central

    Zhang, Xin; Mysore, Keshava; Flannery, Ellen; Michel, Kristin; Severson, David W.; Zhu, Kun Yan

    2015-01-01

    SHORT ABSTRACT Here we describe a procedure for inhibiting gene function in disease vector mosquitoes through the use of chitosan/interfering RNA nanoparticles that are ingested by larvae. LONG ABSTRACT Vector mosquitoes inflict more human suffering than any other organism—and kill more than one million people each year. The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the primary African malaria vector Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti. RNA interference- (RNAi-) mediated gene silencing has been used to target genes of interest in both of these disease vector mosquito species. Here, we describe a procedure for preparation of chitosan/interfering RNA nanoparticles that are combined with food and ingested by larvae. This technically straightforward, high-throughput, and relatively inexpensive methodology, which is compatible with long double stranded RNA (dsRNA) or small interfering RNA (siRNA) molecules, has been used for the successful knockdown of a number of different genes in A. gambiae and A. aegypti larvae. Following larval feedings, knockdown, which is verified through qRT-PCR or in situ hybridization, can persist at least through the late pupal stage. This methodology may be applicable to a wide variety of mosquito and other insect species, including agricultural pests, as well as other non-model organisms. In addition to its utility in the research laboratory, in the future, chitosan, an inexpensive, non-toxic and biodegradable polymer, could potentially be utilized in the field. PMID:25867635

  1. [Construction of directional T vector for gene cloning and expression].

    PubMed

    Zhong, Xing; Zhai, Chao; Chen, Liang; Yu, Xiaolan; Jiang, Sijing; Yan, Hong; Yang, Dengxiang; Ma, Lixin

    2013-04-01

    Traditional T vector cloning method requires onerous procedures for identifying recombinant, and directional cloning was impossible. In order to overcome these problems, we have devised a directional T vector pETG based on pET-23a(+). For gene cloning, 7 bp partial LacO sequence was introduced into DNA fragment to reconstitute a full length LacO with Bfu I digested T vector. After transformation, blue colonies were selected on LB plate supplemented with X-gal. Restriction enzyme digestion and PCR identification showed that all blue colonies contained the directionally inserted recombinants and the recombinant efficiency was nearly 100%. We have successfully cloned 103 genes from human liver cDNA; in the study complicated procedures for screening of recombinant were not required. Eight pETG clones were picked for protein expression, and all the clones successfully produced corresponding proteins. We demonstrated that the directional T vector was successfully constructed, and it was very suitable for gene cloning and expression.

  2. Overcoming expression and purification problems of RhoGDI using a family of "parallel" expression vectors.

    PubMed

    Sheffield, P; Garrard, S; Derewenda, Z

    1999-02-01

    We describe the construction of expression vectors based on three of the most frequently used gene fusion affinity tags [glutathione S-transferase (GST), maltose binding protein (MBP), and the His6 peptide]. The polylinkers of pGEX4T1, pMal-c2, and a pET vector were replaced with the polylinker isolated from the baculovirus expression plasmid pFastBac. Once appropriate restriction sites have been introduced into a gene, it can be fused to all three affinity tags with little effort, allowing expression-screening experiments to be performed efficiently. We discuss the development and use of these vectors with respect to overcoming purification problems encountered for the RhoA GDP/GTP nucleotide dissociation inhibitor (RhoGDI) and their advantages over commercially available expression vectors.

  3. Design, synthesis and evaluation of VEGF-siRNA/CRS as a novel vector for gene delivery

    PubMed Central

    Zhao, Wen; Zhang, Yifan; Jiang, Xueyun; Cui, Chunying

    2016-01-01

    Small interfering RNA (siRNA) delivery is a prospective method in gene therapy, but it has application limitations such as negative charge, water solubility and high molecular weight. In this study, a safe and efficient nano-vector, CRS, was designed and synthesized to facilitate siRNA delivery. Physical and chemical properties of VEGF-siRNA/CRS were characterized by methods including scanning electron microscopy (SEM), transmission electron microscopy, zeta potential (ζ) measurement, drug-releasing rate measurement, gel electrophoresis and confocal microscopy. The biological activities were evaluated using cell viability assay, gene-silencing efficacy assay in vitro, real-time polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA) and antitumor tests in vivo. The mean nanoparticle size of VEGF-siRNA/CRS was 121.4±0.3 nm with positive ζ potential of 7.69±4.47 mV. The release rate of VEGF-siRNA from VEGF-siRNA/CRS was 82.50% sustained for 48 h in Tris-ethylenediaminetetraacetic acid buffer (pH 8.0). Real-time polymerase chain reaction was used to analyze the efficiency of the transfection, and the result showed that VEGF mRNA expression had been knocked down by 82.36%. The expression of VEGF protein was also recorded to be downregulated to 14.83% using ELISA. The results of cytotoxicity measured by Cell Counting Kit-8 assay showed that VEGF-siRNA/CRS had significant inhibitory effect on HeLa cells. The results of antitumor assays indicated that VEGF-siRNA/CRS exhibited tumor cell growth inhibition in vivo. The results demonstrated that VEGF-siRNA could be delivered and transported by the designed carrier, while siRNA could be released constantly and led to an increasing gene-silencing effect against VEGF gene. In conclusion, VEGF-siRNA/CRS is a promising carrier for siRNA delivery, and further studies are warranted. PMID:27920500

  4. [Construction of nonsense-mutated eukaryotic expression vector of factor IX gene and its expression in COS-7 cells].

    PubMed

    Nie, Xin; Yang, Lin-Hua; Chai, Bao-Feng; Shen, Quan; Zhang, Yuan; Zhang, Yao-Fang; Chen, Jian-Fang

    2010-06-01

    The purpose of this study was to construct 4 types of nonsense-mutated eukaryotic expression plasmids of fIX gene, using pcDNA3.1 plasmid containing fIX cDNA as template, and to identify, then to perform their expression in COS-7 cells. These stop mutants constructed by site-directed mutagenesis based on PCR, and further confirmed by DNA sequencing. COS-7 cells were transfected with either the wild-type or mutated fIX expression constructs, then the relative expression levels of fIX mRNA were detected by real time fluorescent quantitative PCR. The result showed that except the designed sites, there were no other nucleotide mutation in the sequences of four nonsense mutants. The results of real time PCR proved that the nonsense-mutated vectors can be effectively expressed in COS-7 cells. It is concluded that the nonsense-mutated eukaryotic expression vectors of fIX gene have been successfully constructed and can express in COS-7 cells, which provides the material basis for further researches on mechanism and treatment of FIX deficiency and the function defects caused by nonsense mutation.

  5. EASE vectors for rapid stable expression of recombinant antibodies.

    PubMed

    Aldrich, Teri L; Viaje, Aurora; Morris, Arvia E

    2003-01-01

    Over the past 10 years, monoclonal antibodies and antibody fragments have become an increasingly important source of therapeutic molecules in the biotechnology industry. Drug development strategies rely on screening large numbers of candidate molecules in search of an optimized drug candidate. This strategy requires efficient production of ten to a few hundred milligrams of candidate molecules for screening in bioassays and animal models. Typically, this amount of recombinant protein expression involves large numbers of transient transfections or cloning of a recombinant cell line. Both of these approaches are time-consuming and labor-intensive. In this report, we describe the application of an EASE vector system that is capable of generating stable pools of transfected Chinese hamster ovary cells. These pooled populations of cells produce high quantities of antibody candidates without labor-intensive cloning in a 3-5 week time frame. When an optimal drug candidate has been selected, pools generated with EASE-containing vectors can also be used in subsequent cloning steps to make cell lines with improved expression levels. We demonstrate that EASE increases expression in nonamplified pools in addition to increasing amplification and viability of clonal cell lines generated with the EASE-containing vectors compared with pools and cell lines generated without EASE.

  6. Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries

    PubMed Central

    Terrón-González, L.; Medina, C.; Limón-Mortés, M. C.; Santero, E.

    2013-01-01

    The extraordinary potential of metagenomic functional analyses to identify activities of interest present in uncultured microorganisms has been limited by reduced gene expression in surrogate hosts. We have developed vectors and specialized E. coli strains as improved metagenomic DNA heterologous expression systems, taking advantage of viral components that prevent transcription termination at metagenomic terminators. One of the systems uses the phage T7 RNA-polymerase to drive metagenomic gene expression, while the other approach uses the lambda phage transcription anti-termination protein N to limit transcription termination. A metagenomic library was constructed and functionally screened to identify genes conferring carbenicillin resistance to E. coli. The use of these enhanced expression systems resulted in a 6-fold increase in the frequency of carbenicillin resistant clones. Subcloning and sequence analysis showed that, besides β-lactamases, efflux pumps are not only able contribute to carbenicillin resistance but may in fact be sufficient by themselves to convey carbenicillin resistance. PMID:23346364

  7. Short hairpin RNA targeted to dihydrofolate reductase enhances the immunoglobulin G expression in gene-amplified stable Chinese hamster ovary cells.

    PubMed

    Wu, Suh-Chin; Hong, Willy W L; Liu, Jin-Hwang

    2008-09-08

    The dihydrofolate reductase (dhfr)/methotrexate (MTX) selection is a common method to conduct gene amplification in stable clones of Chinese hamster ovary (CHO) cells. We previously reported the use of a short hairpin RNA (shRNA) vector targeted to the dhfr gene resulted in improving the intracellular antigen expression in gene-amplified stable CHO cells [Hong, W.W., Wu, S.C., 2007. A novel RNA silencing vector to improve antigen expression and stability in Chinese hamster ovary cells. Vaccine 25 (20), 4103-4111]. Here we investigated the use of the dhfr-targeted shRNA vector for immunoglobulin G (IgG) expression in gene-amplified stable CHO cells. With the use of the dhfr-targeted shRNA vector, the gene-amplified CHO/dhFr(-) cells were found to increase IgG expression at 1.0 microM MTX by more than 100% and to improve the genomic stability of IgG expression in MTX-free cultures by approximately 30%. The use of the dhfr-targeted shRNA vector can enhance the IgG expression in the gene-amplified stable CHO cells and uphold the IgG expression in MTX-free cultures. Utilizing the dhfr-targeted shRNA vector may provide an alternative way to maneuver CHO cell factories for IgG production in cultures.

  8. A Molecular Toolbox for Rapid Generation of Viral Vectors to Up- or Down-Regulate Neuronal Gene Expression in vivo

    PubMed Central

    White, Melanie D.; Milne, Ruth V. J.; Nolan, Matthew F.

    2011-01-01

    We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins, and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV) or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1, and Kir3.2) and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miRNA). We show that AAV assembled to express HCN1 miRNA produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miRNA with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience. PMID:21772812

  9. siRNA liposome-gold nanorod vectors for multispectral optoacoustic tomography theranostics

    NASA Astrophysics Data System (ADS)

    Taruttis, Adrian; Lozano, Neus; Nunes, Antonio; Jasim, Dhifaf A.; Beziere, Nicolas; Herzog, Eva; Kostarelos, Kostas; Ntziachristos, Vasilis

    2014-10-01

    Therapeutic applications of gene silencing using siRNA have seen increasing interest over the past decade. The optimization of the delivery and biodistribution of siRNA using liposome-gold nanorod (AuNRs) nanoscale carriers can greatly benefit from adept imaging methods that can visualize the time-resolved delivery performance of such vectors. In this work, we describe the effect of AuNR length incorporated with liposomes and show their complexation with siRNA as a novel gene delivery vehicle. We demonstrate the application of multispectral optoacoustic tomography (MSOT) to longitudinally visualize the localisation of siRNA carrying liposome-AuNR hybrids within tumors. Combination of in vivo MSOT with ex vivo fluorescence cryo-slice imaging offers further insight into the siRNA transport and activity obtained.Therapeutic applications of gene silencing using siRNA have seen increasing interest over the past decade. The optimization of the delivery and biodistribution of siRNA using liposome-gold nanorod (AuNRs) nanoscale carriers can greatly benefit from adept imaging methods that can visualize the time-resolved delivery performance of such vectors. In this work, we describe the effect of AuNR length incorporated with liposomes and show their complexation with siRNA as a novel gene delivery vehicle. We demonstrate the application of multispectral optoacoustic tomography (MSOT) to longitudinally visualize the localisation of siRNA carrying liposome-AuNR hybrids within tumors. Combination of in vivo MSOT with ex vivo fluorescence cryo-slice imaging offers further insight into the siRNA transport and activity obtained. Electronic supplementary information (ESI) available: Experimental section and dark-field microscopy in both tumors 24 h after injection of the complex have been included. See DOI: 10.1039/c4nr04164j

  10. Integrated analysis of microRNA and mRNA expression profiles in HBx-expressing hepatic cells

    PubMed Central

    Chen, Ruo-Chan; Wang, Juan; Kuang, Xu-Yuan; Peng, Fang; Fu, Yong-Ming; Huang, Yan; Li, Ning; Fan, Xue-Gong

    2017-01-01

    AIM To identify the miRNA-mRNA regulatory network in hepatitis B virus X (HBx)-expressing hepatic cells. METHODS A stable HBx-expressing human liver cell line L02 was established. The mRNA and miRNA expression profiles of L02/HBx and L02/pcDNA liver cells were identified by RNA-sequencing analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed to investigate the function of candidate biomarkers, and the relationship between miRNA and mRNA was studied by network analysis. RESULTS Compared with L02/pcDNA cells, 742 unregulated genes and 501 downregulated genes were determined as differentially expressed in L02/HBx cells. Gene ontology analysis suggested that the differentially expressed genes were relevant to different biological processes. Concurrently, 22 differential miRNAs were also determined in L02/HBx cells. Furthermore, integrated analysis of miRNA and mRNA expression profiles identified a core miRNA-mRNA regulatory network that is correlated with the carcinogenic role of HBx. CONCLUSION Collectively, the miRNA-mRNA network-based analysis could be useful to elucidate the potential role of HBx in liver cell malignant transformation and shed light on the underlying molecular mechanism and novel therapy targets for hepatocellular carcinoma. PMID:28348484

  11. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors.

    PubMed

    Felberbaum, Rachael S

    2015-05-01

    The baculovirus expression vector system (BEVS) platform has become an established manufacturing platform for the production of viral vaccines and gene therapy vectors. Nine BEVS-derived products have been approved - four for human use (Cervarix(®), Provenge(®), Glybera(®) and Flublok(®)) and five for veterinary use (Porcilis(®) Pesti, BAYOVAC CSF E2(®), Circumvent(®) PCV, Ingelvac CircoFLEX(®) and Porcilis(®) PCV). The BEVS platform offers many advantages, including manufacturing speed, flexible product design, inherent safety and scalability. This combination of features and product approvals has previously attracted interest from academic researchers, and more recently from industry leaders, to utilize BEVS to develop next generation vaccines, vectors for gene therapy, and other biopharmaceutical complex proteins. In this review, we explore the BEVS platform, detailing how it works, platform features and limitations and important considerations for manufacturing and regulatory approval. To underscore the growth in opportunities for BEVS-derived products, we discuss the latest product developments in the gene therapy and influenza vaccine fields that follow in the wake of the recent product approvals of Glybera(®) and Flublok(®), respectively. We anticipate that the utility of the platform will expand even further as new BEVS-derived products attain licensure. Finally, we touch on some of the areas where new BEVS-derived products are likely to emerge.

  12. [Gene expression of AAV-ITR ssDNA mini vector in skeletal muscle of mice].

    PubMed

    Zhu, Dongqin; Zhang, Yun; Liu, Xiaomei; Zhang, Chun

    2014-11-01

    AAV-ITR single strand DNA mini vector (AAV-ITR ssDNA mini vector) is a novel gene expression vector based on AAV-ITR. We have shown efficient gene expression of AAV-ITR ssDNA mini vector in HEK 293T. Here, we studied the efficacy of gene expression of AAV-ITR ssDNA mini vector in vivo. We injected the skeletal muscle of ICR mice separately with equal molars of AAV-ITR ssDNA mini vector, ITR mutated AAV-ITR single strand DNA mini vector (AAV-ITRmm ssDNA mutant vector), AAV-ITR dsDNA and pUC57-minivector-GFP, combined with TurboFect. Florescence microscope analysis of skeletal muscle section shows that AAV-ITR ssDNA mini vector had higher expression efficiency and longer expression period. We extracted DNA from the muscle three months after injection and quantified three vectors by Real-time PCR. RT-PCR analysis shows that there were highest copy numbers of AAV-ITR ssDNA mini vector existing in muscle. Stable existing of AAV- TR ssDNA mini vector in muscle could be the molecular basis of long term gene expression of the vector. The results suggest that AAV-ITR ssDNA mini vector might be a promising vector for gene therapy.

  13. Unmasking Upstream Gene Expression Regulators with miRNA-corrected mRNA Data

    PubMed Central

    Bollmann, Stephanie; Bu, Dengpan; Wang, Jiaqi; Bionaz, Massimo

    2015-01-01

    Expressed micro-RNA (miRNA) affects messenger RNA (mRNA) abundance, hindering the accuracy of upstream regulator analysis. Our objective was to provide an algorithm to correct such bias. Large mRNA and miRNA analyses were performed on RNA extracted from bovine liver and mammary tissue. Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%). Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%) and four levels of the magnitude of miRNA effect (ME) on mRNA expression (30%, 50%, 75%, and 83% mRNA reduction), we generated 17 different datasets (including the original dataset). For each dataset, we performed upstream regulator analysis using two bioinformatics tools. We detected an increased effect on the upstream regulator analysis with larger miRNA:mRNA pair bins and higher ME. The miRNA correction allowed identification of several upstream regulators not present in the analysis of the original dataset. Thus, the proposed algorithm improved the prediction of upstream regulators. PMID:27279737

  14. Analysis of Microarray and RNA-seq Expression Profiling Data.

    PubMed

    Hung, Jui-Hung; Weng, Zhiping

    2017-03-01

    Gene expression profiling refers to the simultaneous measurement of the expression levels of a large number of genes (often all genes in a genome), typically in multiple experiments spanning a variety of cell types, treatments, or environmental conditions. Expression profiling is accomplished by assaying mRNA levels with microarrays or next-generation sequencing technologies (RNA-seq). This introduction describes normalization and analysis of data generated from microarray or RNA-seq experiments.

  15. Deciphering the impact of parameters influencing transgene expression kinetics after repeated cell transduction with integration-deficient retroviral vectors.

    PubMed

    Schott, Juliane W; Jaeschke, Nico M; Hoffmann, Dirk; Maetzig, Tobias; Ballmaier, Matthias; Godinho, Tamaryin; Cathomen, Toni; Schambach, Axel

    2015-05-01

    Lentiviral and gammaretroviral vectors are state-of-the-art tools for transgene expression within target cells. The integration of these vectors can be deliberately suppressed to derive a transient gene expression system based on extrachromosomal circular episomes with intact coding regions. These episomes can be used to deliver DNA templates and to express RNA or protein. Importantly, transient gene transfer avoids the genotoxic side effects of integrating vectors. Restricting their applicability, episomes are rapidly lost upon dilution in dividing target cells. Addressing this limitation, we could establish comparably stable percentages of transgene-positive cells over prolonged time periods in proliferating cells by repeated transductions. Flow cytometry was applied for kinetic analyses to decipher the impact of individual parameters on the kinetics of fluoroprotein expression after episomal retransduction and to visualize sequential and simultaneous transfer of heterologous fluoroproteins. Expression windows could be exactly timed by the number of transduction steps. The kinetics of signal loss was affected by the cell proliferation rate. The transfer of genes encoding fluoroproteins with different half-lives revealed a major impact of protein stability on temporal signal distribution and accumulation, determining optimal retransduction intervals. In addition, sequential transductions proved broad applicability in different cell types and using different envelope pseudotypes without receptor overload. Stable percentages of cells coexpressing multiple transgenes could be generated upon repeated coadministration of different episomal vectors. Alternatively, defined patterns of transgene expression could be recapitulated by sequential transductions. Altogether, we established a methodology to control and adjust a temporally defined window of transgene expression using retroviral episomal vectors. Combined with the highly efficient cell entry of these vectors while

  16. Combinatorial control of suicide gene expression by tissue-specific promoter and microRNA regulation for cancer therapy.

    PubMed

    Wu, Chunxiao; Lin, Jiakai; Hong, Michelle; Choudhury, Yukti; Balani, Poonam; Leung, Doreen; Dang, Lam H; Zhao, Ying; Zeng, Jieming; Wang, Shu

    2009-12-01

    Transcriptional targeting using a tissue-specific cellular promoter is proving to be a powerful means for restricting transgene expression in targeted tissues. In the context of cancer suicide gene therapy, this approach may lead to cytotoxic effects in both cancer and nontarget normal cells. Considering microRNA (miRNA) function in post-transcriptional regulation of gene expression, we have developed a viral vector platform combining cellular promoter-based transcriptional targeting with miRNA regulation for a glioma suicide gene therapy in the mouse brain. The therapy employed, in a single baculoviral vector, a glial fibrillary acidic protein (GFAP) gene promoter and the repeated target sequences of three miRNAs that are enriched in astrocytes but downregulated in glioblastoma cells to control the expression of the herpes simplex virus thymidine kinase (HSVtk) gene. This resulted in significantly improved in vivo selectivity over the use of a control vector without miRNA regulation, enabling effective elimination of human glioma xenografts while producing negligible toxic effects on normal astrocytes. Thus, incorporating miRNA regulation into a transcriptional targeting vector adds an extra layer of security to prevent off-target transgene expression and should be useful for the development of gene delivery vectors with high targeting specificity for cancer therapy.

  17. Vector-Borne Transmission Imposes a Severe Bottleneck on an RNA Virus Population

    PubMed Central

    Forrester, Naomi L.; Guerbois, Mathilde; Seymour, Robert L.; Spratt, Heidi; Weaver, Scott C.

    2012-01-01

    RNA viruses typically occur in genetically diverse populations due to their error-prone genome replication. Genetic diversity is thought to be important in allowing RNA viruses to explore sequence space, facilitating adaptation to changing environments and hosts. Some arboviruses that infect both a mosquito vector and a mammalian host are known to experience population bottlenecks in their vectors, which may constrain their genetic diversity and could potentially lead to extinction events via Muller's ratchet. To examine this potential challenge of bottlenecks for arbovirus perpetuation, we studied Venezuelan equine encephalitis virus (VEEV) enzootic subtype IE and its natural vector Culex (Melanoconion) taeniopus, as an example of a virus-vector interaction with a long evolutionary history. Using a mixture of marked VEEV clones to infect C. taeniopus and real-time RT-PCR to track these clones during mosquito infection and dissemination, we observed severe bottleneck events that resulted in a significant drop in the number of clones present. At higher initial doses, the midgut was readily infected and there was a severe bottleneck at the midgut escape. Following a lower initial dose, the major bottleneck occurred at initial midgut infection. A second, less severe bottleneck was identified at the salivary gland infection stage following intrathoracic inoculation. Our results suggest that VEEV consistently encounters bottlenecks during infection, dissemination and transmission by its natural enzootic vector. The potential impacts of these bottlenecks on viral fitness and transmission, and the viral mechanisms that prevent genetic drift leading to extinction, deserve further study. PMID:23028310

  18. Telomere Length, TERT, and miRNA Expression

    PubMed Central

    Slattery, Martha L.; Herrick, Jennifer S.; Pellatt, Andrew J.; Wolff, Roger K.; Mullany, Lila E.

    2016-01-01

    It has been proposed that miRNAs are involved in the control of telomeres. We test that hypothesis by examining the association between miRNAs and telomere length (TL). Additionally, we evaluate if genetic variation in telomerase reverse transcriptase (TERT) is associated with miRNA expression levels. We use data from a population-based study of colorectal cancer (CRC), where we have previously shown associations between TL and TERT and CRC, to test associations between TL and miRNA expression and TERT and miRNA expression. To gain insight into functions of miRNAs associated with TERT we tested linear associations between miRNAs and their targeted gene mRNAs. An Agilent platform that contained information on over 2000 miRNAs was used. TL was measured using a multiplexed quantitative PCR (qPCR). RNAseq was used to assess gene expression. Our sample consisted of 1152 individuals with SNP data and miRNA expression data; 363 individuals with both TL and miRNA; and 148 individuals with miRNA and mRNA data. Thirty-three miRNAs were directly associated with TL after adjusting for age and sex (false discovery rate (FDR) of 0.05). TERT rs2736118 was associated with differences in miRNA expression between carcinoma and normal colonic mucosa for 75 miRNAs (FDR <0.05). Genes regulated by these miRNAs, as indicated by mRNA/miRNA associations, were associated with major signaling pathways beyond their TL-related functions, including PTEN, and PI3K/AKT signaling. Our data support a direct association between miRNAs and TL; differences in miRNA expression levels by TERT genotype were observed. Based on miRNA and targeted mRNA associations our data suggest that TERT is involved in non-TL-related functions by acting through altered miRNA expression. PMID:27627813

  19. Kaposi's sarcoma-associated herpesvirus microRNA single-nucleotide polymorphisms identified in clinical samples can affect microRNA processing, level of expression, and silencing activity.

    PubMed

    Han, Soo-Jin; Marshall, Vickie; Barsov, Eugene; Quiñones, Octavio; Ray, Alex; Labo, Nazzarena; Trivett, Matthew; Ott, David; Renne, Rolf; Whitby, Denise

    2013-11-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs that can produce 25 KSHV mature microRNAs. We previously reported single-nucleotide polymorphisms (SNPs) in KSHV-encoded pre-microRNA and mature microRNA sequences from clinical samples (V. Marshall et al., J. Infect. Dis., 195:645-659, 2007). To determine whether microRNA SNPs affect pre-microRNA processing and, ultimately, mature microRNA expression levels, we performed a detailed comparative analysis of (i) mature microRNA expression levels, (ii) in vitro Drosha/Dicer processing, and (iii) RNA-induced silencing complex-dependent targeting of wild-type (wt) and variant microRNA genes. Expression of pairs of wt and variant pre-microRNAs from retroviral vectors and measurement of KSHV mature microRNA expression by real-time reverse transcription-PCR (RT-PCR) revealed differential expression levels that correlated with the presence of specific sequence polymorphisms. Measurement of KSHV mature microRNA expression in a panel of primary effusion lymphoma cell lines by real-time RT-PCR recapitulated some observed expression differences but suggested a more complex relationship between sequence differences and expression of mature microRNA. Furthermore, in vitro maturation assays demonstrated significant SNP-associated changes in Drosha/DGCR8 and/or Dicer processing. These data demonstrate that SNPs within KSHV-encoded pre-microRNAs are associated with differential microRNA expression levels. Given the multiple reports on the involvement of microRNAs in cancer, the biological significance of these phenotypic and genotypic variants merits further studies in patients with KSHV-associated malignancies.

  20. Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Single-Nucleotide Polymorphisms Identified in Clinical Samples Can Affect MicroRNA Processing, Level of Expression, and Silencing Activity

    PubMed Central

    Han, Soo-Jin; Marshall, Vickie; Barsov, Eugene; Quiñones, Octavio; Ray, Alex; Labo, Nazzarena; Trivett, Matthew; Ott, David; Renne, Rolf

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs that can produce 25 KSHV mature microRNAs. We previously reported single-nucleotide polymorphisms (SNPs) in KSHV-encoded pre-microRNA and mature microRNA sequences from clinical samples (V. Marshall et al., J. Infect. Dis., 195:645–659, 2007). To determine whether microRNA SNPs affect pre-microRNA processing and, ultimately, mature microRNA expression levels, we performed a detailed comparative analysis of (i) mature microRNA expression levels, (ii) in vitro Drosha/Dicer processing, and (iii) RNA-induced silencing complex-dependent targeting of wild-type (wt) and variant microRNA genes. Expression of pairs of wt and variant pre-microRNAs from retroviral vectors and measurement of KSHV mature microRNA expression by real-time reverse transcription-PCR (RT-PCR) revealed differential expression levels that correlated with the presence of specific sequence polymorphisms. Measurement of KSHV mature microRNA expression in a panel of primary effusion lymphoma cell lines by real-time RT-PCR recapitulated some observed expression differences but suggested a more complex relationship between sequence differences and expression of mature microRNA. Furthermore, in vitro maturation assays demonstrated significant SNP-associated changes in Drosha/DGCR8 and/or Dicer processing. These data demonstrate that SNPs within KSHV-encoded pre-microRNAs are associated with differential microRNA expression levels. Given the multiple reports on the involvement of microRNAs in cancer, the biological significance of these phenotypic and genotypic variants merits further studies in patients with KSHV-associated malignancies. PMID:24006441

  1. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    PubMed

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering.

  2. Myocardial Delivery of Lipidoid Nanoparticle Carrying modRNA Induces Rapid and Transient Expression

    PubMed Central

    Turnbull, Irene C; Eltoukhy, Ahmed A; Fish, Kenneth M; Nonnenmacher, Mathieu; Ishikawa, Kiyotake; Chen, Jiqiu; Hajjar, Roger J; Anderson, Daniel G; Costa, Kevin D

    2016-01-01

    Nanoparticle-based delivery of nucleotides offers an alternative to viral vectors for gene therapy. We report highly efficient in vivo delivery of modified mRNA (modRNA) to rat and pig myocardium using formulated lipidoid nanoparticles (FLNP). Direct myocardial injection of FLNP containing 1–10 μg eGFPmodRNA in the rat (n = 3 per group) showed dose-dependent enhanced green fluorescent protein (eGFP) mRNA levels in heart tissue 20 hours after injection, over 60-fold higher than for naked modRNA. Off-target expression, including lung, liver, and spleen, was <10% of that in heart. Expression kinetics after injecting 5 μg FLNP/eGFPmodRNA showed robust expression at 6 hours that reduced by half at 48 hours and was barely detectable at 2 weeks. Intracoronary administration of 10 μg FLNP/eGFPmodRNA also proved successful, although cardiac expression of eGFP mRNA at 20 hours was lower than direct injection, and off-target expression was correspondingly higher. Findings were confirmed in a pilot study in pigs using direct myocardial injection as well as percutaneous intracoronary delivery, in healthy and myocardial infarction models, achieving expression throughout the ventricular wall. Fluorescence microscopy revealed GFP-positive cardiomyocytes in treated hearts. This nanoparticle-enabled approach for highly efficient, rapid and short-term mRNA expression in the heart offers new opportunities to optimize gene therapies for enhancing cardiac function and regeneration. PMID:26471463

  3. Chitosan Hydrogel as siRNA vector for prolonged gene silencing

    PubMed Central

    2014-01-01

    Background The periodontitis is one of the most prevalent diseases with alveolar resorption in adult people and is the main cause of the tooth loss. To investigate the possibility for protecting the loss of alveolar bone in periodontal diseases, a RNAi-based therapeutic strategy is applied for silencing RANK signaling using thermosensitive chitosan hydrogel as siRNA reservoir and vector. Results The thermosensitive chitosan hydrogel was formed from solution (PH = 7.2, at 4°C) at 37°C within 8 minutes. The degradation rates of hydrogel were ~50% and 5% (W remaining/W beginning) in the presence and absence of lysozyme, respectively, over a period of 20 days. The concurrent cumulative in vitro release of Cy3-labeled siRNA from the hydrogel was 50% and 17% over 14 days, with or without lysozyme digestion, respectively. High cell viability (>88%) was maintained for cells treated with hydrogel loaded with RANK specific siRNA and RANK knockdown was prolonged for up to 9 days when cells were incubated with siRNA/hydrogel complex. In vivo release of siRNA was investigated in a subcutaneous delivery setup in mice. The fluorescent signal from siRNA within hydrogel was remained for up to 14 days compared to less than one day for siRNA alone. Conclusions Chitosan hydrogel can potentially serve as a suitable reservoir and vector for local sustained delivery of siRNA in potential therapy. PMID:24946934

  4. Novel redox nanomedicine improves gene expression of polyion complex vector

    NASA Astrophysics Data System (ADS)

    Toh, Kazuko; Yoshitomi, Toru; Ikeda, Yutaka; Nagasaki, Yukio

    2011-12-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  5. Microarray analysis of circular RNA expression patterns in polarized macrophages

    PubMed Central

    Zhang, Yingying; Zhang, Yao; Li, Xueqin; Zhang, Mengying; Lv, Kun

    2017-01-01

    Circular RNAs (circRNAs) are generated from diverse genomic locations and are a new player in the regulation of post-transcriptional gene expression. Recent studies have revealed that circRNAs play a crucial role in fine-tuning the level of microRNA (miRNA)-mediated regulation of gene expression by sequestering miRNAs. The interaction of circRNAs with disease-associated miRNAs suggests that circRNAs are important in the pathology of disease. However, the effects and roles of circRNAs in macrophage polarization have yet to be explored. In the present study, we performed a circRNA microarray to compare the circRNA expression profiles of bone marrow-derived macrophages (BMDMs) under two distinct polarizing conditions (M1 macrophages induced by interferon-γ and LPS stimulation, and M2 macrophages induced by interleukin-4 stimulation). Our results showed that a total of 189 circRNAs were differentially expressed between M1 and M2 macrophages. Differentially expressed circRNAs with a high fold-change were selected for validation by RT-qPCR: circRNA-003780, circRNA-010056, and circRNA-010231 were upregulated and circRNA-003424, circRNA-013630, circRNA-001489 and circRNA-018127 were downregulated (fold-change >4, P<0.05) in M1 compared to M2, which was found to correlate with the microarray data. Furthermore, the most differentially expressed circRNAs within all the comparisons were annotated in detail with circRNA/miRNA interaction information using miRNA target prediction software. In conclusion, the present study provides novel insight into the role of circRNAs in macrophage differentiation and polarization. PMID:28075448

  6. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti

    PubMed Central

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S.; Severson, David W.; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-01-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  7. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    PubMed

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S; Severson, David W; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-11-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation.

  8. TRBO: A High-Efficiency Tobacco Mosaic Virus RNA-Based Overexpression Vector1[C][OA

    PubMed Central

    Lindbo, John A.

    2007-01-01

    Transient expression is a rapid, useful approach for producing proteins of interest in plants. Tobacco mosaic virus (TMV)-based transient expression vectors can express very high levels of foreign proteins in plants. However, TMV vectors are, in general, not efficiently delivered to plant cells by agroinfection. It was determined that agroinfection was very efficient with a 35S promoter-driven TMV replicon that lacked the TMV coat protein gene sequence. This coat protein deletion vector had several useful features as a transient expression system, including improved ease of use, higher protein expression rates, and improved biocontainment. Using this TMV expression vector, some foreign proteins were expressed at levels of 3 to 5 mg/g fresh weight of plant tissue. It is proposed that this new transient expression vector will be a useful tool for expressing recombinant proteins in plants for either research or production purposes. PMID:17720752

  9. Potato virus X-based expression vectors are stabilized for long-term production of proteins and larger inserts.

    PubMed

    Dickmeis, Christina; Fischer, Rainer; Commandeur, Ulrich

    2014-11-01

    Plus-strand RNA viruses such as Potato virus X (PVX) are often used as high-yielding expression vectors in plants, because they tolerate extra transgene insertion and expression without disrupting normal virus functions. However, sequence redundancy due to promoter duplication often leads to genetic instability. Although heterologous subgenomic promoter-like sequences (SGPs) have been successfully used in Tobacco mosaic virus vectors, only homologous SGP duplications have been used in PVX vectors. We stabilized PVX-based vectors by combining heterologous SGPs from related potexviruses with an N-terminal coat protein (CP) deletion. We selected two SGPs with core sequences homologous to PVX, from Bamboo mosaic virus (BaMV) and Cassava common mosaic virus, as well as a SGP with a heterologous core sequence from Foxtail mosaic virus (FoMV). We found that only the BaMV and CsCMV SGPs were utilized by the PVX replicase. However, the transgene remained unstable, due to the presence of an additional region with strong sequence similarity at the 5' end of the cp gene. The BaMV SGP combined with an N-terminal CP deletion achieved high PVX vector stability. This new expression vector is particularly useful for long-term production of proteins and for larger inserts. The improved PVX-based vectors are suitable for the systemic expression of any gene of interest in PVX host plants. The PVX-based vector can be advantageous for the overexpression of proteins, to analyze protein functions in planta or as a system for virus-induced gene silencing.

  10. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    PubMed Central

    Ludwig, Nicole; Werner, Tamara V.; Backes, Christina; Trampert, Patrick; Gessler, Manfred; Keller, Andreas; Lenhof, Hans-Peter; Graf, Norbert; Meese, Eckart

    2016-01-01

    Wilms tumor (WT) is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA) processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA) differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT. PMID:27043538

  11. MiRNA regulation of TRAIL expression exerts selective cytotoxicity to prostate carcinoma cells.

    PubMed

    Huo, Wei; Jin, Ning; Fan, Li; Wang, Weihua

    2014-03-01

    Prostate carcinoma is the most common cancer for men and among the leading cancer-related causes. Many evidences have shown that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) potently induces apoptosis in cancer cells, and thus, is a promising biologic agent for prostate carcinoma therapy. However, TRAIL expression mediated by the current vectors lacks tumor specificity, thereby exerting cytotoxicity to normal cells. To solve this problem, we inserted miRNA response elements (MREs), miR-143 and miR-145, expression levels of which were reduced in prostate carcinoma, as well as that of miR-122, which is specifically expressed in hepatic cells, into adenoviral vectors to control TRAIL expression (Ad-TRAIL-M3). qPCR data confirmed that miR-143, miR-145, and miR-122 levels were all decreased in prostate carcinoma cell lines and prostate cancer samples from patients. Luciferase assays showed that MREs-regulated luciferase expression was potently suppressed in normal cells, but not in prostate cancer cells. Ad-TRAIL-M3, which expresses TRAIL in a MREs-regulated manner, produced high level of TRAIL and suppressed the survival of prostate cancer cells by inducing apoptosis, while Ad-TRAIL-M3 had no TRAIL expression in normal cells and thus exerted no cytotoxicity to them. The studies on PC-3 tumor xenograft in mice further confirmed that Ad-TRAIL-M3 was able to inhibit the growth of tumors and possessed high biosafety. In conclusion, we successfully generated an adenoviral vector that expresses TRAIL in miRNA-regulated mechanism. This miRNA-based gene therapy may be promising for prostate carcinoma treatment.

  12. Differential expression of microRNA (miRNA) in chordoma reveals a role for miRNA-1 in Met expression.

    PubMed

    Duan, Zhenfeng; Choy, Edwin; Nielsen, G Petur; Rosenberg, Andrew; Iafrate, John; Yang, Cao; Schwab, Joe; Mankin, Henry; Xavier, Ramnik; Hornicek, Francis J

    2010-06-01

    Emerging evidence suggests that microRNA (miRNA) expression signatures in cancer may have important diagnostic, prognostic, and therapeutic value, but there is no data on miRNA expression in chordoma. The purpose of this study was to identify the role of miRNAs in human chordoma. We analyzed miRNA expression in chordoma-derived cell lines and chordoma tissue by using miRNA microarray technology with unsupervised hierarchical clustering analysis. The relative expression levels of these miRNAs were confirmed by real-time quantitative RT-PCR and Northern blot analysis. To characterize the potential role of miRNA-1, miRNA-1 was stably transfected into a chordoma cell line, UCH1. The expression of miRNA-1 targeted gene Met in chordoma tissues was also studied. We observe that human chordoma tissues and cell lines can be distinguished from normal muscle tissue by comparing miRNA expression profiles. Several miRNAs were differentially expressed in chordoma cell lines compared to controls, and similar expression patterns were found in primary chordoma tissues. Importantly, we were able to show for the first time, to our knowledge, that expression of miRNA-1 and miRNA-206, two miRNAs implicated in a number of other cancer types, were markedly decreased in both chordoma tissues and cell lines. When chordoma cell lines were transfected with miRNA-1, downregulation of known miRNA-1 targets was observed. These targets included Met and HDAC4-two genes that were observed to be overexpressed in chordoma. Our results demonstrate that some miRNAs are differentially expressed in chordoma and, in particular, miRNA-1 may have a functional effect on chordoma tumor pathogenesis.

  13. The promotion of functional recovery and nerve regeneration after spinal cord injury by lentiviral vectors encoding Lingo-1 shRNA delivered by Pluronic F-127.

    PubMed

    Wu, Hong-Fu; Cen, Jing-Sheng; Zhong, Qian; Chen, Luming; Wang, Jue; Deng, David Y B; Wan, Yong

    2013-02-01

    Lingo-1 is selectively expressed on both oligodendrocytes and neurons in the central nervous system (CNS) and serves as a key negative regulator of nerve regeneration, implying a therapeutic target for spinal cord injury (SCI). Here we described a strategy to knock-down Lingo-1 expression in vivo using lentiviral vectors encoding Lingo-1 short harpin interfering RNA (shRNA) delivered by Pluronic F-127 (PF-127) gel, a non-cytotoxic scaffold and gene delivery carrier, after the complete transection of the T10 spinal cord in adult rats. We showed administration of PF-127 encapsulating Lingo-1 shRNA lentiviral vectors efficiently down-regulated the expression of Lingo-1, and exhibited transduction efficiency comparable to using vectors alone in oligodendrocyte culture in vitro. Furthermore, similar silencing effects and higher transfection efficiency were observed in vivo when Lingo-1 shRNA was co-delivered to the injured site by PF-127 gel with lower viral concentrations. Cografting of gel and Lingo-1 RNAi significantly promoted functional recovery and nerve regeneration, enhanced neurite outgrowth and synapses formation, preserved myelinated axons, and induced the proliferation of glial cells. In addition, the combined implantation also improved neuronal survival and inhibited cell apoptosis, which may be associated with the attenuation of endoplasmic reticulum (ER) stress after SCI. Together, our data indicated that delivering Lingo-1 shRNA by gel scaffold was a valuable treatment approach to SCI and PF-127 delivery of viral vectors to the spinal cord may provide strategy to study and develop therapies for SCI.

  14. Lentiviral vector-mediated RNA interference targeted against prohibitin inhibits apoptosis of the retinoic acid-resistant acute promyelocytic leukemia cell line NB4-R1.

    PubMed

    Liu, Yanfeng; He, Pengcheng; Zhang, Mei; Wu, Di

    2012-12-01

    To investigate the possibility of prohibitin (PHB) inhibition by lentiviral vector-mediated RNA interference (RNAi) and its influence on cell apoptosis in the retinoic acid-resistant acute promyelocytic leukemia cell line NB4-R1, a lentiviral vector encoding a short hairpin RNA (shRNA) targeted against PHB (pGCSIL-GFP-PHB) was constructed and transfected into the packaging cells 293T, and the viral supernatant was collected to transfect NB4-R1 cells. Quantitative real-time fluorescent PCR and western blotting were used to detect the expression levels of PHB. Flow cytometry and detection of enzymatic activity of caspase-3 by western blotting were employed to examine cell apoptosis. Our results provide evidence that the lentiviral vector pGCSIL-GFP-PHB was constructed successfully, and the PHB mRNA and the protein expression inhibitory rates were 90.3 and 95.8%, respectively. When compared to the control group, the activity of caspase-3 decreased significantly, which showed a 57.3% downregulation, and the apoptosis rate was reduced by 44.6% (P<0.05). In conclusion, downregulation of the PHB gene may inhibit apoptosis of NB4-R1 cells, and it is speculated that this was at least partly due to the downregulation of caspase-3, and PHB may be a novel target for gene therapy for retinoic acid-resistant acute promyelocytic leukemia.

  15. Neuronal Activity Regulates Hippocampal miRNA Expression

    PubMed Central

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control. PMID:21984899

  16. Expression from second-generation feline immunodeficiency virus vectors is impaired in human hematopoietic cells.

    PubMed

    Price, Mary A; Case, Scott S; Carbonaro, Denise A; Yu, Xiao-Jin; Petersen, Denise; Sabo, Kathleen M; Curran, Michael A; Engel, Barbara C; Margarian, Hovanes; Abkowitz, Janis L; Nolan, Garry P; Kohn, Donald B; Crooks, Gay M

    2002-11-01

    Vectors based on the feline immunodeficiency virus (FIV) have been developed as an alternative to those based on another lentivirus, human immunodeficiency virus-1 (HIV-1), because of theoretical safety advantages. We compared the efficiency of gene transfer and expression in human and feline hematopoietic progenitors using second-generation HIV-1 and FIV-based vectors. Vector pairs were tested using either human cytomegalovirus or murine phospho-glycerate kinase (PGK) internal promoters and were pseudotyped with the vesicular stomatitis virus G protein (VSV-G). Vector proviral copy numbers were similar in human and feline hematopoietic primary cells and cell lines transduced by HIV-1 or FIV vectors, demonstrating that both vectors are able to transfer genes efficiently to these cell types. HIV-1 vectors were well expressed in human primary hematopoietic cells and cell lines. However, transgene expression from FIV vectors was almost undetectable in human hematopoietic cells. In contrast, the FIV vector was expressed well in primary hematopoietic feline cells and human non-hematopoietic cells, demonstrating that low transgene expression from the FIV vector is a phenomenon specific to human hematopoietic cells. Northern blot analysis demonstrated decreased vector transcript levels in human CEM cells transduced with FIV relative to cells transduced with HIV-1, despite high vector copy numbers. No evidence of vector transcript instability was seen in studies of transduced CEM cells treated with actinomycin D. We conclude that FIV vectors can transfer genes into human hematopoietic cells as effectively as HIV-1 vectors, but that unknown elements in the current FIV backbone inhibit expression from FIV vectors in human hematopoietic cells.

  17. Development of SyneBrick Vectors As a Synthetic Biology Platform for Gene Expression in Synechococcus elongatus PCC 7942

    PubMed Central

    Kim, Wook Jin; Lee, Sun-Mi; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2017-01-01

    Cyanobacteria are oxygenic photosynthetic prokaryotes that are able to assimilate CO2 using solar energy and water. Metabolic engineering of cyanobacteria has suggested the possibility of direct CO2 conversion to value-added chemicals. However, engineering of cyanobacteria has been limited due to the lack of various genetic tools for expression and control of multiple genes to reconstruct metabolic pathways for biochemicals from CO2. Thus, we developed SyneBrick vectors as a synthetic biology platform for gene expression in Synechococcus elongatus PCC 7942 as a model cyanobacterium. The SyneBrick chromosomal integration vectors provide three inducible expression systems to control gene expression and three neutral sites for chromosomal integrations. Using a SyneBrick vector, LacI-regulated gene expression led to 24-fold induction of the eYFP reporter gene with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) inducer in S. elongatus PCC 7942 under 5% (v/v) CO2. TetR-regulated gene expression led to 19-fold induction of the GFP gene when 100 nM anhydrotetracycline (aTc) inducer was used. Gene expression decreased after 48 h due to degradation of aTc under light. T7 RNA polymerase-based gene expression resulted in efficient expression with a lower IPTG concentration than a previously developed pTrc promoter. A library of T7 promoters can be used for tunable gene expression. In summary, SyneBrick vectors were developed as a synthetic biology platform for gene expression in S. elongatus PCC 7942. These results will accelerate metabolic engineering of biosolar cell factories through expressing and controlling multiple genes of interest. PMID:28303150

  18. Development of SyneBrick Vectors As a Synthetic Biology Platform for Gene Expression in Synechococcus elongatus PCC 7942.

    PubMed

    Kim, Wook Jin; Lee, Sun-Mi; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2017-01-01

    Cyanobacteria are oxygenic photosynthetic prokaryotes that are able to assimilate CO2 using solar energy and water. Metabolic engineering of cyanobacteria has suggested the possibility of direct CO2 conversion to value-added chemicals. However, engineering of cyanobacteria has been limited due to the lack of various genetic tools for expression and control of multiple genes to reconstruct metabolic pathways for biochemicals from CO2. Thus, we developed SyneBrick vectors as a synthetic biology platform for gene expression in Synechococcus elongatus PCC 7942 as a model cyanobacterium. The SyneBrick chromosomal integration vectors provide three inducible expression systems to control gene expression and three neutral sites for chromosomal integrations. Using a SyneBrick vector, LacI-regulated gene expression led to 24-fold induction of the eYFP reporter gene with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) inducer in S. elongatus PCC 7942 under 5% (v/v) CO2. TetR-regulated gene expression led to 19-fold induction of the GFP gene when 100 nM anhydrotetracycline (aTc) inducer was used. Gene expression decreased after 48 h due to degradation of aTc under light. T7 RNA polymerase-based gene expression resulted in efficient expression with a lower IPTG concentration than a previously developed pTrc promoter. A library of T7 promoters can be used for tunable gene expression. In summary, SyneBrick vectors were developed as a synthetic biology platform for gene expression in S. elongatus PCC 7942. These results will accelerate metabolic engineering of biosolar cell factories through expressing and controlling multiple genes of interest.

  19. BC047440 antisense eukaryotic expression vectors inhibited HepG2 cell proliferation and suppressed xenograft tumorigenicity.

    PubMed

    Zheng, Lu; Liang, Ping; Zhou, JianBo; Huang, XiaoBing; Wen, Yu; Wang, Zheng; Li, Jing

    2012-02-01

    The biological functions of the BC047440 gene highly expressed by hepatocellular carcinoma (HCC) are unknown. The objective of this study was to reconstruct antisense eukaryotic expression vectors of the gene for inhibiting HepG(2) cell proliferation and suppressing their xenograft tumorigenicity. The full-length BC047440 cDNA was cloned from human primary HCC by RT-PCR. BC047440 gene fragments were ligated with pMD18-T simple vectors and subsequent pcDNA3.1(+) plasmids to construct the recombinant antisense eukaryotic vector pcDNA3.1(+)BC047440AS. The endogenous BC047440 mRNA abundance in target gene-transfected, vector-transfected and naive HepG(2) cells was semiquantitatively analyzed by RT-PCR and cell proliferation was measured by the MTT assay. Cell cycle distribution and apoptosis were profiled by flow cytometry. The in vivo xenograft experiment was performed on nude mice to examine the effects of antisense vector on tumorigenicity. BC047440 cDNA fragments were reversely inserted into pcDNA3.1(+) plasmids. The antisense vector significantly reduced the endogenous BC047440 mRNA abundance by 41% in HepG(2) cells and inhibited their proliferation in vitro (P < 0.01). More cells were arrested by the antisense vector at the G(1) phase in an apoptosis-independent manner (P = 0.014). Additionally, transfection with pcDNA3.1(+)BC047440AS significantly reduced the xenograft tumorigenicity in nude mice. As a novel cell cycle regulator associated with HCC, the BC047440 gene was involved in cell proliferation in vitro and xenograft tumorigenicity in vivo through apoptosis-independent mechanisms.

  20. Intratumoral Heterogeneity of MicroRNA Expression in Rectal Cancer

    PubMed Central

    Andersen, Rikke Fredslund; Nielsen, Boye Schnack; Sørensen, Flemming Brandt; Appelt, Ane Lindegaard; Jakobsen, Anders; Hansen, Torben Frøstrup

    2016-01-01

    Introduction An increasing number of studies have investigated microRNAs (miRNAs) as potential markers of diagnosis, treatment and prognosis. So far, agreement between studies has been minimal, which may in part be explained by intratumoral heterogeneity of miRNA expression. The aim of the present study was to assess the heterogeneity of a panel of selected miRNAs in rectal cancer, using two different technical approaches. Materials and Methods The expression of the investigated miRNAs was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH) in tumour specimens from 27 patients with T3-4 rectal cancer. From each tumour, tissue from three different luminal localisations was examined. Inter- and intra-patient variability was assessed by calculating intraclass correlation coefficients (ICCs). Correlations between RT-qPCR and ISH were evaluated using Spearman’s correlation. Results ICCsingle (one sample from each patient) was higher than 50% for miRNA-21 and miRNA-31. For miRNA-125b, miRNA-145, and miRNA-630, ICCsingle was lower than 50%. The ICCmean (mean of three samples from each patient) was higher than 50% for miRNA-21(RT-qPCR and ISH), miRNA-125b (RT-qPCR and ISH), miRNA-145 (ISH), miRNA-630 (RT-qPCR), and miRNA-31 (RT-qPCR). For miRNA-145 (RT-qPCR) and miRNA-630 (ISH), ICCmean was lower than 50%. Spearman correlation coefficients, comparing results obtained by RT-qPCR and ISH, respectively, ranged from 0.084 to 0.325 for the mean value from each patient, and from -0.085 to 0.515 in the section including the deepest part of the tumour. Conclusion Intratumoral heterogeneity may influence the measurement of miRNA expression and consequently the number of samples needed for representative estimates. Our findings with two different methods suggest that one sample is sufficient for adequate assessment of miRNA-21 and miRNA-31, whereas more samples would improve the assessment of miRNA-125b, miRNA-145, and miRNA-630

  1. Prediction of miRNA-disease associations with a vector space model

    PubMed Central

    Pasquier, Claude; Gardès, Julien

    2016-01-01

    MicroRNAs play critical roles in many physiological processes. Their dysregulations are also closely related to the development and progression of various human diseases, including cancer. Therefore, identifying new microRNAs that are associated with diseases contributes to a better understanding of pathogenicity mechanisms. MicroRNAs also represent a tremendous opportunity in biotechnology for early diagnosis. To date, several in silico methods have been developed to address the issue of microRNA-disease association prediction. However, these methods have various limitations. In this study, we investigate the hypothesis that information attached to miRNAs and diseases can be revealed by distributional semantics. Our basic approach is to represent distributional information on miRNAs and diseases in a high-dimensional vector space and to define associations between miRNAs and diseases in terms of their vector similarity. Cross validations performed on a dataset of known miRNA-disease associations demonstrate the excellent performance of our method. Moreover, the case study focused on breast cancer confirms the ability of our method to discover new disease-miRNA associations and to identify putative false associations reported in databases. PMID:27246786

  2. Detecting N6-methyladenosine sites from RNA transcriptomes using ensemble Support Vector Machines

    PubMed Central

    Chen, Wei; Xing, Pengwei; Zou, Quan

    2017-01-01

    As one of the most abundant RNA post-transcriptional modifications, N6-methyladenosine (m6A) involves in a broad spectrum of biological and physiological processes ranging from mRNA splicing and stability to cell differentiation and reprogramming. However, experimental identification of m6A sites is expensive and laborious. Therefore, it is urgent to develop computational methods for reliable prediction of m6A sites from primary RNA sequences. In the current study, a new method called RAM-ESVM was developed for detecting m6A sites from Saccharomyces cerevisiae transcriptome, which employed ensemble support vector machine classifiers and novel sequence features. The jackknife test results show that RAM-ESVM outperforms single support vector machine classifiers and other existing methods, indicating that it would be a useful computational tool for detecting m6A sites in S. cerevisiae. Furthermore, a web server named RAM-ESVM was constructed and could be freely accessible at http://server.malab.cn/RAM-ESVM/. PMID:28079126

  3. Feature extraction from terahertz pulses for classification of RNA data via support vector machines

    NASA Astrophysics Data System (ADS)

    Yin, Xiaoxia; Ng, Brian W.-H.; Fischer, Bernd; Ferguson, Bradley; Mickan, Samuel P.; Abbott, Derek

    2006-12-01

    This study investigates binary and multiple classes of classification via support vector machines (SVMs). A couple of groups of two dimensional features are extracted via frequency orientation components, which result in the effective classification of Terahertz (T-ray) pulses for discrimination of RNA data and various powder samples. For each classification task, a pair of extracted feature vectors from the terahertz signals corresponding to each class is viewed as two coordinates and plotted in the same coordinate system. The current classification method extracts specific features from the Fourier spectrum, without applying an extra feature extractor. This method shows that SVMs can employ conventional feature extraction methods for a T-ray classification task. Moreover, we discuss the challenges faced by this method. A pairwise classification method is applied for the multi-class classification of powder samples. Plots of learning vectors assist in understanding the classification task, which exhibit improved clustering, clear learning margins, and least support vectors. This paper highlights the ability to use a small number of features (2D features) for classification via analyzing the frequency spectrum, which greatly reduces the computation complexity in achieving the preferred classification performance.

  4. Detecting microRNA activity from gene expression data

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources. PMID:20482775

  5. A multiplexed miRNA and transgene expression platform for simultaneous repression and expression of protein coding sequences.

    PubMed

    Seyhan, Attila A

    2016-01-01

    Knockdown of single or multiple gene targets by RNA interference (RNAi) is necessary to overcome escape mutants or isoform redundancy. It is also necessary to use multiple RNAi reagents to knockdown multiple targets. It is also desirable to express a transgene or positive regulatory elements and inhibit a target gene in a coordinated fashion. This study reports a flexible multiplexed RNAi and transgene platform using endogenous intronic primary microRNAs (pri-miRNAs) as a scaffold located in the green fluorescent protein (GFP) as a model for any functional transgene. The multiplexed intronic miRNA - GFP transgene platform was designed to co-express multiple small RNAs within the polycistronic cluster from a Pol II promoter at more moderate levels to reduce potential vector toxicity. The native intronic miRNAs are co-transcribed with a precursor GFP mRNA as a single transcript and presumably cleaved out of the precursor-(pre) mRNA by the RNA splicing machinery, spliceosome. The spliced intron with miRNA hairpins will be further processed into mature miRNAs or small interfering RNAs (siRNAs) capable of triggering RNAi effects, while the ligated exons become a mature messenger RNA for the translation of the functional GFP protein. Data show that this approach led to robust RNAi-mediated silencing of multiple Renilla Luciferase (R-Luc)-tagged target genes and coordinated expression of functional GFP from a single transcript in transiently transfected HeLa cells. The results demonstrated that this design facilitates the coordinated expression of all mature miRNAs either as individual miRNAs or as multiple miRNAs and the associated protein. The data suggest that, it is possible to simultaneously deliver multiple negative (miRNA or shRNA) and positive (transgene) regulatory elements. Because many cellular processes require simultaneous repression and activation of downstream pathways, this approach offers a platform technology to achieve that dual manipulation efficiently

  6. Effects of chitin synthase double-stranded RNA on molting and oogenesis in the Chagas disease vector Rhodnius prolixus.

    PubMed

    Mansur, Juliana F; Alvarenga, Evelyn S L; Figueira-Mansur, Janaina; Franco, Thiago A; Ramos, Isabela B; Masuda, Hatisaburo; Melo, Ana C A; Moreira, Mônica F

    2014-08-01

    In this study, we provided the demonstration of the presence of a single CHS gene in the Rhodnius prolixus (a blood-sucking insect) genome that is expressed in adults (integument and ovary) and in the integument of nymphs during development. This CHS gene appears to be essential for epidermal integrity and egg formation in R. prolixus. Because injection of CHS dsRNA was effective in reducing CHS transcript levels, phenotypic alterations in the normal course of ecdysis occurred. In addition, two phenotypes with severe cuticle deformations were observed, which were associated with loss of mobility and lifetime. The CHS dsRNA treatment in adult females affected oogenesis, reducing the size of the ovary and presenting a greater number of atresic oocytes and a smaller number of chorionated oocytes compared with the control. The overall effect was reduced oviposition. The injection of CHS dsRNA modified the natural course of egg development, producing deformed eggs that were dark in color and unable to hatch, distinct from the viable eggs laid by control females. The ovaries, which were examined under fluorescence microscopy using a probe for chitin detection, showed a reduced deposition on pre-vitellogenic and vitellogenic oocytes compared with control. Taken together, these data suggest that the CHS gene is fundamentally important for ecdysis, oogenesis and egg hatching in R. prolixus and also demonstrated that the CHS gene is a good target for controlling Chagas disease vectors.

  7. High-level expression of a cloned HLA heavy chain gene introduced into mouse cells on a bovine papillomavirus vector.

    PubMed

    DiMaio, D; Corbin, V; Sibley, E; Maniatis, T

    1984-02-01

    A gene encoding the heavy chain of an HLA human histocompatibility antigen was isolated from a library of human DNA by recombination and selection in vivo. After insertion into a bovine papillomavirus (BPV) DNA expression vector, the gene was introduced into cultured mouse cells. Cells transformed with the HLA-BPV plasmids did not appear to contain extrachromosomal viral DNA, whereas BPV recombinants usually replicated as plasmids in transformed cell lines. Large amounts of HLA RNA were produced by the transformed cells, and the rate of synthesis of human heavy chain was several-fold higher than in the JY cell line, a well-characterized human lymphoblastoid cell line which expresses high levels of surface HLA antigen. Substantial amounts of human heavy chain accumulated in the transformed cells, and HLA antigen was present at the cell surface. These observations establish the feasibility of using BPV vectors to study the structure and function of HLA antigens and the expression of cloned HLA genes.

  8. Impact of RNA degradation on gene expression profiling

    PubMed Central

    2010-01-01

    Background Gene expression profiling is a highly sensitive technique which is used for profiling tumor samples for medical prognosis. RNA quality and degradation influence the analysis results of gene expression profiles. The impact of this influence on the profiles and its medical impact is not fully understood. As patient samples are very valuable for clinical studies, it is necessary to establish criteria for the RNA quality to be able to use these samples in later analysis. Methods To investigate the effects of RNA integrity on gene expression profiling, whole genome expression arrays were used. We used tumor biopsies from patients diagnosed with locally advanced rectal cancer. To simulate degradation, the isolated total RNA of all patients was subjected to heat-induced degradation in a time-dependent manner. Expression profiling was then performed and data were analyzed bioinformatically to assess the differences. Results The differences introduced by RNA degradation were largely outweighed by the biological differences between the patients. Only a relatively small number of probes (275 out of 41,000) show a significant effect due to degradation. The genes that show the strongest effect due to RNA degradation were, especially, those with short mRNAs and probe positions near the 5' end. Conclusions Degraded RNA from tumor samples (RIN > 5) can still be used to perform gene expression analysis. A much higher biological variance between patients is observed compared to the effect that is imposed by degradation of RNA. Nevertheless there are genes, very short ones and those with the probe binding side close to the 5' end that should be excluded from gene expression analysis when working with degraded RNA. These results are limited to the Agilent 44 k microarray platform and should be carefully interpreted when transferring to other settings. PMID:20696062

  9. [Construction of venus vector carrying IGFBP7 gene and its expression in K562 cells].

    PubMed

    Wu, Shui-Yan; Hu, Shao-Yan; Cen, Jian-Nong; Chen, Zi-Xing

    2012-02-01

    The aim of this study was to construct venus vector carrying the gene encoding insulin-like growth factor binding protein 7 (IGFBP7), which provides an effective platform for exploring the function of this gene in leukemia. After digestion by restriction endonuclease, the IGFBP7 gene was recombined with the transfer plasmid. The venus particles were packaged using 293T cells to transfect K562 cells, and identification was performed by means of flow cytometry, RT-PCR and Western blot. The results showed that the sequence of cloned IGFBP7 gene was the same as that in GenBank. The size of product restricted by BamHI was same as the predicted one. GFP expression was observed in 293T and K562 cells with the fluorescent microscopy and flow cytometry. The expression level of mRNA and protein of IGFBP7 was confirmed by RT-PCR and Western blotting in K562 cells. It is concluded that venus vector carrying IGFBP7 gene has been successfully constructed and provides basis for exploring function of IGFBP7 in K562 cells.

  10. Highly inducible expression from vectors containing multiple GRE's in CHO cells overexpressing the glucocorticoid receptor.

    PubMed Central

    Israel, D I; Kaufman, R J

    1989-01-01

    A conditional glucocorticoid-responsive expression vector system is described for highly inducible expression of heterologous genes in mammalian cells. This host-vector system requires high level expression of the glucocorticoid receptor (GR) protein in the host cell and multiple copies of the receptor binding site within the expression vector. Transfection and selection of Chinese hamster ovary cells with expression vectors encoding the rat GR yielded cell lines which express functional receptor at high levels. Insertion of multiple copies of the MMTV enhancer (glucocorticoid responsive element, GRE) into an Adenovirus major late promoter (AdMLP) based expression vector yielded greater than 1000-fold inducible expression by dexamethasone (dex) in transient DNA transfection assays. The induced expression level was 7-fold greater than that obtained with an AdMLP based vector containing an SV40 enhancer, but lacking GRE's. Vectors containing the SV40 enhancer in combination with multiple GRE's exhibited elevated basal expression in the absence of dex, but retained inducibility in both transient assays and after integration and amplification in the CHO genome. This expression system should be of general utility for studying gene regulation and for expressing heterologous genes in a regulatable fashion. Images PMID:2546123

  11. An integrated analysis of differential miRNA and mRNA expressions in human gallstones.

    PubMed

    Yang, Bin; Liu, Bin; Bi, Pinduan; Wu, Tao; Wang, Qiang; Zhang, Jie

    2015-04-01

    Gallstone disease, including cholesterol precipitation in bile, increased bile salt hydrophobicity and gallbladder inflammation. Here, we investigated miRNA and mRNA involved in the formation of gallstones, and explored the molecular mechanisms in the development of gallstones. Differentially expressed 17 miRNAs and 525 mRNA were identified based on Illumina sequencing from gallbladder mucosa of patients with or without gallstones, and were validated by randomly selected 6 miRNAs and 8 genes using quantitative RT-PCR. 114 miRNA target genes were identified, whose functions and regulating pathways were related to gallstones. The differentially expressed genes were enriched upon lipoprotein binding and some metabolic pathways, and differentially expressed miRNAs enriched upon ABC transportation and cancer related pathways. A molecular regulatory network consisting of 17 differentially expressed miRNAs, inclusive of their target genes, was constructed. miR-210 and its potential target gene ATP11A were found to be differentially expressed in both miRNA and mRNA profiles. ATP11A was a direct target of miR-210, which was predicted to regulate the ABC-transporters pathway. The expression levels of ATP11A in the gallstone showed inverse correlation with miR-210 expression, and up-regulation of miR-210 could reduce ATP11A expression in HGBEC. This is the first report that indicates the existence of differences in miRNA and mRNA expression in patients with or without gallstones. Our data shed light on further investigating the mechanisms of gallstone formation.

  12. Helper virus-mediated downregulation of transgene expression permits production of recalcitrant helper-dependent adenoviral vector

    PubMed Central

    Palmer, Donna J; Grove, Nathan C; Ng, Philip

    2016-01-01

    Helper-dependent adenoviral vectors (HDAd) that express certain transgene products are impossible to produce because the transgene product is toxic to the producer cells, especially when made in large amounts during vector production. Downregulating transgene expression from the HDAd during vector production is a way to solve this problem. In this report, we show that this can be accomplished by inserting the target sequence for the adenoviral VA RNAI into the 3’ untranslated region of the expression cassette in the HDAd. Thus during vector production, when the producer cells are coinfected with both the helper virus (HV) and the HDAd, the VA RNAI produced by the HV will target the transgene mRNA from the HDAd via the endogenous cellular RNAi pathway. Once the HDAd is produced and purified, transduction of the target cells results in unimpeded transgene expression because of the absence of HV. This simple and universal strategy permits for the robust production of otherwise recalcitrant HDAds. PMID:27331077

  13. Reduction of Target Gene Expression by a Modified U1 snRNA

    PubMed Central

    Beckley, S. A.; Liu, P.; Stover, M. L.; Gunderson, S. I.; Lichtler, A. C.; Rowe, D. W.

    2001-01-01

    Although the primary function of U1 snRNA is to define the 5′ donor site of an intron, it can also block the accumulation of a specific RNA transcript when it binds to a donor sequence within its terminal exon. This work was initiated to investigate if this property of U1 snRNA could be exploited as an effective method for inactivating any target gene. The initial 10-bp segment of U1 snRNA, which is complementary to the 5′ donor sequence, was modified to recognize various target mRNAs (chloramphenicol acetyltransferase [CAT], β-galactosidase, or green fluorescent protein [GFP]). Transient cotransfection of reporter genes and appropriate U1 antitarget vectors resulted in >90% reduction of transgene expression. Numerous sites within the CAT transcript were suitable for targeting. The inhibitory effect of the U1 antitarget vector is directly related to the hybrid formed between the U1 vector and target transcripts and is dependent on an intact 70,000-molecular-weight binding domain within the U1 gene. The effect is long lasting when the target (CAT or GFP) and U1 antitarget construct are inserted into fibroblasts by stable transfection. Clonal cell lines derived from stable transfection with a pOB4GFP target construct and subsequently stably transfected with the U1 anti-GFP construct were selected. The degree to which GFP fluorescence was inhibited by U1 anti-GFP in the various clonal cell lines was assessed by fluorescence-activated cell sorter analysis. RNA analysis demonstrated reduction of the GFP mRNA in the nuclear and cytoplasmic compartment and proper 3′ cleavage of the GFP residual transcript. An RNase protection strategy demonstrated that the transfected U1 antitarget RNA level varied between 1 to 8% of the endogenous U1 snRNA level. U1 antitarget vectors were demonstrated to have potential as effective inhibitors of gene expression in intact cells. PMID:11283260

  14. Stable Delivery of CCR5-Directed shRNA into Human Primary Peripheral Blood Mononuclear Cells and Hematopoietic Stem/Progenitor Cells via a Lentiviral Vector

    PubMed Central

    Shimizu, Saki; Yadav, Swati Seth; An, Dong Sung

    2016-01-01

    RNAi is a powerful tool to achieve suppression of a specific gene expression and therefore it has tremendous potential for gene therapy applications. A number of vector systems have been developed to express short-hairpin RNAs (shRNAs) to produce siRNAs within mammalian T-cells, primary hematopoietic stem/progenitor cells (HSPC), human peripheral blood mononuclear cells, and in animal model systems. Among these, vectors based on lentivirus backbones have significantly transformed our ability to transfer shRNAs into nondividing cells, such as HSPC, resulting in high transduction efficiencies. However, delivery and long-term expression of shRNAs should be carefully optimized for efficient knock down of target gene without causing cytotoxicity in mammalian cells. Here, we describe our protocols for the development of shRNA against a major HIV co-receptor/chemokine receptor CCR5 and the use of lentiviral vectors for stable shRNA delivery and expression in primary human PBMC and HSPC. PMID:26472455

  15. Imaging herpes simplex virus type 1 amplicon vector-mediated gene expression in human glioma spheroids.

    PubMed

    Kaestle, Christine; Winkeler, Alexandra; Richter, Raphaela; Sauer, Heinrich; Hescheler, Jürgen; Fraefel, Cornel; Wartenberg, Maria; Jacobs, Andreas H

    2011-06-01

    Vectors derived from herpes simplex virus type 1 (HSV-1) have great potential for transducing therapeutic genes into the central nervous system; however, inefficient distribution of vector particles in vivo may limit their therapeutic potential in patients with gliomas. This study was performed to investigate the extent of HSV-1 amplicon vector-mediated gene expression in a three-dimensional glioma model of multicellular spheroids by imaging highly infectious HSV-1 virions expressing green fluorescent protein (HSV-GFP). After infection or microscopy-guided vector injection of glioma spheroids at various spheroid sizes, injection pressures and injection times, the extent of HSV-1 vector-mediated gene expression was investigated via laser scanning microscopy. Infection of spheroids with HSV-GFP demonstrated a maximal depth of vector-mediated GFP expression at 70 to 80 μm. A > 80% transduction efficiency was reached only in small spheroids with a diameter of < 150 μm. Guided vector injection into the spheroids showed transduction efficiencies ranging between < 10 and > 90%. The results demonstrated that vector-mediated gene expression in glioma spheroids was strongly dependent on the mode of vector application-injection pressure and injection time being the most important parameters. The assessment of these vector application parameters in tissue models will contribute to the development of safe and efficient gene therapy protocols for clinical application.

  16. Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus.

    PubMed

    Shao, Huanhuan; Cao, Qinghua; Zhao, Hongyan; Tan, Xuemei; Feng, Hong

    2015-01-01

    A native plasmid (pSU01) was detected by genome sequencing of Bacillus subtilis strain S1-4. Two pSU01-based shuttle expression vectors pSU02-AP and pSU03-AP were constructed enabling stable replication in B. subtilis WB600. These vectors contained the reporter gene aprE, encoding an alkaline protease from Bacillus pumilus BA06. The expression vector pSU03-AP only possessed the minimal replication elements (rep, SSO, DSO) and exhibited more stability on structure, suggesting that the rest of the genes in pSU01 (ORF1, ORF2, mob, hsp) were unessential for the structural stability of plasmid in B. subtilis. In addition, recombinant production of the alkaline protease was achieved more efficiently with pSU03-AP whose copy number was estimated to be more than 100 per chromosome. Furthermore, pSU03-AP could also be used to transform and replicate in B. pumilus BA06 under selective pressure. In conclusion, pSU03-AP is expected to be a useful tool for gene expression in Bacillus subtilis and B. pumilus.

  17. Polyester: simulating RNA-seq datasets with differential transcript expression

    PubMed Central

    Frazee, Alyssa C.; Jaffe, Andrew E.; Langmead, Ben; Leek, Jeffrey T.

    2015-01-01

    Motivation: Statistical methods development for differential expression analysis of RNA sequencing (RNA-seq) requires software tools to assess accuracy and error rate control. Since true differential expression status is often unknown in experimental datasets, artificially constructed datasets must be utilized, either by generating costly spike-in experiments or by simulating RNA-seq data. Results: Polyester is an R package designed to simulate RNA-seq data, beginning with an experimental design and ending with collections of RNA-seq reads. Its main advantage is the ability to simulate reads indicating isoform-level differential expression across biological replicates for a variety of experimental designs. Data generated by Polyester is a reasonable approximation to real RNA-seq data and standard differential expression workflows can recover differential expression set in the simulation by the user. Availability and implementation: Polyester is freely available from Bioconductor (http://bioconductor.org/). Contact: jtleek@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25926345

  18. Suppression of wingless-type MMTV integration site family, member 1 expression by small interfering RNA inhibits U251 glioma cell growth in vitro

    PubMed Central

    DONG, LUN; DUAN, XIAO-CHUN; HAN, CHONG-XU; ZHANG, HENGZHU; WU, YONGKANG

    2015-01-01

    A Wingless-type MMTV integration site family, member 1 (Wnt-1) RNA interference expression vector was constructed during the present study, which was used to transfect the glioma U251 cell line and investigate its effect on glioma. Two 21-base oligonucleotides complementary to the coding sequence that was flanking the loop sequence were designed to form a DNA hairpin template for the target small interfering RNA (siRNA). The siRNA templates were cloned into the siRNA expression vector, pGPU6/green fluorescent protein (GFP)/Neo and the sequence was confirmed by DNA sequencing. The pGPU6/GFP/Neo-short hairpin RNA (shRNA)-Wnt-1 vector was subsequently transfected into U251 cells, and reverse transcription polymerase chain reaction and western blot analysis were used to evaluate the Wnt-1 gene silencing effect on U251 cell growth by MTT assay and flow cytometry. The Wnt-1 protein expression was significantly reduced following transfection with the recombinant plasmid, as determined by western blot analysis of the transfected U251 cells. This transfection exhibited a significantly higher death rate, as shown by MTT. Thus, the present study demonstrated that the pGPU6/GFP/Neo-shRNA-Wnt-1 vector inhibited Wnt-1 protein expression. However, further investigations regarding the Wnt signaling pathway in glioma pathogenesis are required. PMID:25435937

  19. Human parainfluenza virus type 2 vector induces dendritic cell maturation without viral RNA replication/transcription.

    PubMed

    Hara, Kenichiro; Fukumura, Masayuki; Ohtsuka, Junpei; Kawano, Mitsuo; Nosaka, Tetsuya

    2013-07-01

    The dendritic cell (DC), a most potent antigen-presenting cell, plays a key role in vaccine therapy against infectious diseases and malignant tumors. Although advantages of viral vectors for vaccine therapy have been reported, potential risks for adverse effects prevent them from being licensed for clinical use. Human parainfluenza virus type 2 (hPIV2), one of the members of the Paramyxoviridae family, is a nonsegmented and negative-stranded RNA virus. We have developed a reverse genetics system for the production of infectious hPIV2 lacking the F gene (hPIV2ΔF), wherein various advantages for vaccine therapy exist, such as cytoplasmic replication/transcription, nontransmissible infectivity, and extremely high transduction efficacy in various types of target cells. Here we demonstrate that hPIV2ΔF shows high transduction efficiency in human DCs, while not so high in mouse DCs. In addition, hPIV2ΔF sufficiently induces maturation of both human and murine DCs, and the maturation state of both human and murine DCs is almost equivalent to that induced by lipopolysaccharide. Moreover, alkylating agent β-propiolactone-inactivated hPIV2ΔF (BPL-hPIV2ΔF) elicits DC maturation without viral replication/transcription. These results suggest that hPIV2ΔF may be a useful tool for vaccine therapy as a novel type of paramyxoviral vector, which is single-round infectious vector and has potential adjuvant activity.

  20. A novel method for the quantification of adeno-associated virus vectors for RNA interference applications using quantitative polymerase chain reaction and purified genomic adeno-associated virus DNA as a standard.

    PubMed

    Wagner, Anke; Röhrs, Viola; Kedzierski, Radoslaw; Fechner, Henry; Kurreck, Jens

    2013-12-01

    Recombinant adeno-associated virus (rAAV) vectors are promising tools in gene therapy, but accurate quantification of the vector dose remains a critical issue for their successful application. We therefore aimed at the precise determination of the titer of self-complementary AAV (scAAV) vectors to improve the reliability of RNA interference (RNAi)-mediated knockdown approaches. Vector titers were initially determined by quantitative polymerase chain reaction (qPCR) using four primer sets targeting different regions within the AAV vector genome (VG) and either coiled or linearized plasmid standards. Despite very low variability between replicates in each assay, these quantification experiments revealed up to 20-fold variation in vector titers. Therefore, we developed a novel approach for the reproducible determination of titers of scAAV vectors based on the use of purified genomic vector DNA as a standard (scAAVStd). Consistent results were obtained in qPCR assays using the four primer sets mentioned above. RNAi-mediated silencing of human cyclophilin B (hCycB) by short hairpin RNA-expressing scAAV vectors was investigated in HeLa cells using two independent vector preparations. We found that the required vector titers for efficient knockdown differed by a factor of 3.5 between both preparations. Hence, we also investigated the number of internalized scAAV vectors, termed transduction units (TUs). TUs were determined by qPCR applying the scAAVStd. Very similar values for 80% hCycB knockdown were obtained for the two AAV vector preparations. Thus, only the determination of TUs, rather than vector concentration, allows for reproducible results in functional analyses using AAV vectors.

  1. Optimized Lentiviral Vectors for HIV Gene Therapy: Multiplexed Expression of Small RNAs and Inclusion of MGMTP140K Drug Resistance Gene

    PubMed Central

    Chung, Janet; Scherer, Lisa J; Gu, Angel; Gardner, Agnes M; Torres-Coronado, Monica; Epps, Elizabeth W; DiGiusto, David L; Rossi, John J

    2014-01-01

    Gene therapy with hematopoietic stem and progenitor cells is a promising approach to engineering immunity to human immunodeficiency virus (HIV) that may lead to a functional cure for acquired immunodeficiency syndrome (AIDS). In support of this approach, we created lentiviral vectors with an engineered polycistronic platform derived from the endogenous MCM7 gene to express a diverse set of small antiviral RNAs and a drug resistance MGMTP140K marker. Multiple strategies for simultaneous expression of up to five RNA transgenes were tested. The placement and orientation of each transgene and its promoter were important determinants for optimal gene expression. Antiviral RNA expression from the MCM7 platform with a U1 promoter was sufficient to provide protection from R5-tropic HIV in macrophages and resulted in reduced hematopoietic toxicity compared with constructs expressing RNA from independent RNA polymerase III promoters. The addition of an HIV entry inhibitor and nucleolar TAR RNA decoy did not enhance antiviral potency over constructs that targeted only viral RNA transcripts. We also demonstrated selective enrichment of gene-modified cells in vivo using a humanized mouse model. The use of these less toxic, potent anti-HIV vectors expressing a drug selection marker is likely to enhance the in vivo efficacy of our stem cell gene therapy approach in treating HIV/AIDS. PMID:24576853

  2. Optimized lentiviral vectors for HIV gene therapy: multiplexed expression of small RNAs and inclusion of MGMT(P140K) drug resistance gene.

    PubMed

    Chung, Janet; Scherer, Lisa J; Gu, Angel; Gardner, Agnes M; Torres-Coronado, Monica; Epps, Elizabeth W; Digiusto, David L; Rossi, John J

    2014-05-01

    Gene therapy with hematopoietic stem and progenitor cells is a promising approach to engineering immunity to human immunodeficiency virus (HIV) that may lead to a functional cure for acquired immunodeficiency syndrome (AIDS). In support of this approach, we created lentiviral vectors with an engineered polycistronic platform derived from the endogenous MCM7 gene to express a diverse set of small antiviral RNAs and a drug resistance MGMT(P140K) marker. Multiple strategies for simultaneous expression of up to five RNA transgenes were tested. The placement and orientation of each transgene and its promoter were important determinants for optimal gene expression. Antiviral RNA expression from the MCM7 platform with a U1 promoter was sufficient to provide protection from R5-tropic HIV in macrophages and resulted in reduced hematopoietic toxicity compared with constructs expressing RNA from independent RNA polymerase III promoters. The addition of an HIV entry inhibitor and nucleolar TAR RNA decoy did not enhance antiviral potency over constructs that targeted only viral RNA transcripts. We also demonstrated selective enrichment of gene-modified cells in vivo using a humanized mouse model. The use of these less toxic, potent anti-HIV vectors expressing a drug selection marker is likely to enhance the in vivo efficacy of our stem cell gene therapy approach in treating HIV/AIDS.

  3. Genetic variants in microRNA genes: impact on microRNA expression, function, and disease

    PubMed Central

    Cammaerts, Sophia; Strazisar, Mojca; De Rijk, Peter; Del Favero, Jurgen

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression and like any other gene, their coding sequences are subject to genetic variation. Variants in miRNA genes can have profound effects on miRNA functionality at all levels, including miRNA transcription, maturation, and target specificity, and as such they can also contribute to disease. The impact of variants in miRNA genes is the focus of the present review. To put these effects into context, we first discuss the requirements of miRNA transcripts for maturation. In the last part an overview of available databases and tools and experimental approaches to investigate miRNA variants related to human disease is presented. PMID:26052338

  4. Analysis of microRNA expression by in situ hybridization with RNA oligonucleotide probes

    PubMed Central

    Thompson, Robert C.; Deo, Monika; Turner, David L.

    2007-01-01

    In situ hybridization is an important tool for analyzing gene expression and developing hypotheses about gene functions. The discovery of hundreds of microRNA (miRNA) genes in animals has provided new challenges for analyzing gene expression and functions. The small size of the mature miRNAs (∼20-24 nucleotides in length) presents difficulties for conventional in situ hybridization methods. However, we have developed a modified in situ hybridization method for detection of mammalian miRNAs in tissue sections, based upon the use of RNA oligonucleotide probes in combination with highly specific wash conditions. Here we present detailed procedures for detection of miRNAs in tissue sections or cultured cells. The methods described can utilize either nonradioactive hapten-conjugated probes that are detected by enzyme-coupled antibodies, or radioactively labeled probes that are detected by autoradiography. The ability to visualize miRNA expression patterns in tissue sections provides an additional tool for the analyses of miRNA expression and function. In addition, the use of radioactively labeled probes should facilitate quantitative analyses of changes in miRNA gene expression. PMID:17889803

  5. A shuttle vector which facilitates the expression of transfected genes in Trypanosoma cruzi and Leishmania.

    PubMed Central

    Kelly, J M; Ward, H M; Miles, M A; Kendall, G

    1992-01-01

    A Trypanosoma cruzi expression vector has been constructed using sequences derived from the flanking regions of the glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) genes. The neomycin phosphotransferase (neor) gene was incorporated as a selectable marker. Using electroporation we have introduced this vector into both T. cruzi and Leishmania cells and conferred G418 resistance. Transformation is mediated by large extrachromosomal circular elements composed of head-to-tail tandem repeats of the vector. The transformed phenotype is stable for at least 6 months in the absence of G418 and can be maintained during passage through the T. cruzi life-cycle. Foreign genes inserted into an expression site within the vector (pTEX) can be expressed at high levels in transformed cells. To our knowledge this paper describes the first trypanosome shuttle vector and the first vector which functions in both trypanosomes and Leishmania. Images PMID:1324472

  6. Mono-allelic VSG expression by RNA polymerase I in Trypanosoma brucei: expression site control from both ends?

    PubMed

    Günzl, Arthur; Kirkham, Justin K; Nguyen, Tu N; Badjatia, Nitika; Park, Sung Hee

    2015-02-01

    Trypanosoma brucei is a vector borne, lethal protistan parasite of humans and livestock in sub-Saharan Africa. Antigenic variation of its cell surface coat enables the parasite to evade adaptive immune responses and to live freely in the blood of its mammalian hosts. The coat consists of ten million copies of variant surface glycoprotein (VSG) that is expressed from a single VSG gene, drawn from a large repertoire and located near the telomere at one of fifteen so-called bloodstream expression sites (BESs). Thus, antigenic variation is achieved by switching to the expression of a different VSG gene. A BES is a tandem array of expression site-associated genes and a terminal VSG gene. It is polycistronically transcribed by a multifunctional RNA polymerase I (RNAPI) from a short promoter that is located 45-60 kb upstream of the VSG gene. The mechanism(s) restricting VSG expression to a single BES are not well understood. There is convincing evidence that epigenetic silencing and transcription attenuation play important roles. Furthermore, recent data indicated that there is regulation at the level of transcription initiation and that, surprisingly, the VSG mRNA appears to have a role in restricting VSG expression to a single gene. Here, we review BES expression regulation and propose a model in which telomere-directed, epigenetic BES silencing is opposed by BES promoter-directed, activated RNAPI transcription.

  7. MicroRNA 142-3p Attenuates Spread of Replicating Retroviral Vector in Hematopoietic Lineage-Derived Cells While Maintaining an Antiviral Immune Response

    PubMed Central

    Lin, Amy H.; Timberlake, Nina; Logg, Christopher R.; Liu, Yanzheng; Kamijima, Shuichi; Diago, Oscar; Wong, Kenneth; Gammon, Dawn K.; Ostertag, Derek; Hacke, Katrin; Yang, Emily C.; Gruber, Harry; Kasahara, Noriyuki

    2014-01-01

    Abstract We are developing a retroviral replicating vector (RRV) encoding cytosine deaminase as an anticancer agent for gliomas. Despite its demonstrated natural selectivity for tumors, and other safety features, such a virus could potentially cause off-target effects by productively infecting healthy tissues. Here, we investigated whether incorporation of a hematopoietic lineage-specific microRNA target sequence in RRV further restricts replication in hematopoietic lineage-derived human cells in vitro and in murine lymphoid tissues in vivo. One or four copies of a sequence perfectly complementary to the guide strand of microRNA 142-3p were inserted into the 3′ untranslated region of the RRV genome expressing the transgene encoding green fluorescent protein (GFP). Viral spread and GFP expression of these vectors in hematopoietic lineage cells in vitro and in vivo were measured by qPCR, qRT-PCR, and flow cytometry. In hematopoietic lineage-derived human cell lines and primary human stimulated peripheral blood mononuclear cells, vectors carrying the 142-3pT sequence showed a remarkable decrease in GFP expression relative to the parental vector, and viral spread was not observed over time. In a syngeneic subcutaneous mouse tumor model, RRVs with and without the 142-3pT sequences spread equally well in tumor cells; were strongly repressed in blood, bone marrow, and spleen; and generated antiviral immune responses. In an immune-deficient mouse model, RRVs with 142-3pT sequences were strongly repressed in blood, bone marrow, and spleen compared with unmodified RRV. Tissue-specific microRNA-based selective attenuation of RRV replication can maintain antiviral immunity, and if needed, provide an additional safeguard to this delivery platform for gene therapy applications. PMID:24825189

  8. Polycistronic Expression of the Influenza A Virus RNA-Dependent RNA Polymerase by Using the Thosea asigna Virus 2A-Like Self-Processing Sequence

    PubMed Central

    Momose, Fumitaka; Morikawa, Yuko

    2016-01-01

    The RNA-dependent RNA polymerase (RdRp) of influenza A virus consists of three subunits, PB2, PB1, and PA, and catalyses both viral RNA genome replication and transcription. Cotransfection of four monocistronic expression vectors for these subunits and nucleoprotein with an expression vector for viral RNA reconstitutes functional viral ribonucleoprotein complex (vRNP). However, the specific activity of reconstituted RdRp is usually very low since the expression level and the ratio of the three subunits by transfection are uncontrollable at single-cell levels. For efficient reconstitution of RdRp and vRNP, their levels need to be at least comparable. We constructed polycistronic expression vectors in which the coding sequences of the three subunits were joined with the 2A-like self-processing sequence of Thosea asigna virus (TaV2A) in various orders. The level of PB1 protein, even when it was placed at the most downstream, was comparable with that expressed from the monocistronic PB1 vector. In contrast, the levels of PB2 and PA were very low, the latter of which was most likely due to proteasomal degradation caused by the TaV2A-derived sequences attached to the amino- and/or carboxyl-terminal ends in this expression system. Interestingly, two of the constructs, in which the PB1 coding sequence was placed at the most upstream, showed much higher reporter activity in a luciferase-based mini-genome assay than that observed by cotransfection of the monocistronic vectors. When the coding sequence of selective antibiotic marker was further placed at the most downstream of the PB1-PA-PB2 open reading frame, stable cells expressing RdRp were easily established, indicating that acquisition of antibiotic resistance assured the expression of upstream RdRp. The addition of an affinity tag to the carboxyl-terminal end of PB2 allowed us to isolate reconstituted vRNP. Taken together, the polycistronic expression system for influenza virus RdRp may be available for functional and

  9. Adenovirus replication-competent vectors (KD1, KD3) complement the cytotoxicity and transgene expression from replication-defective vectors (Ad-GFP, Ad-Luc).

    PubMed

    Habib, Nagy A; Mitry, Ragai; Seth, Prem; Kuppuswamy, Mohan; Doronin, Konstantin; Toth, Karoly; Krajcsi, Peter; Tollefson, Ann E; Wold, William S M

    2002-08-01

    The successful clinical application of adenovirus (Ad) in cancer control has been of limited success because of the current inability to infect the majority of cancer cells with a large amount of vector. In this study, we show that when human lung tumors growing in immunodeficient nude mice were coinfected with a replication-defective (RD) Ad vector expressing green fluorescent protein and a replication-competent (RC) Ad vector named KD3, KD3 enhanced the expression of green fluorescent protein throughout the tumor. Also, KD3 and another RC vector named KD1 complemented the expression of luciferase from a RD vector in a human liver tumor xenotransplant in nude mice. Altogether, these results suggest that the combination of a RD vector with a RC vector might be a more effective treatment for cancer than either vector alone due to more widespread dissemination of the virus.

  10. Selective MicroRNA-Offset RNA Expression in Human Embryonic Stem Cells

    PubMed Central

    Juhila, Juuso; Holm, Frida; Weltner, Jere; Trokovic, Ras; Mikkola, Milla; Toivonen, Sanna; Balboa, Diego; Lampela, Riina; Icay, Katherine; Tuuri, Timo; Otonkoski, Timo; Wong, Garry; Hovatta, Outi

    2015-01-01

    Small RNA molecules, including microRNAs (miRNAs), play critical roles in regulating pluripotency, proliferation and differentiation of embryonic stem cells. miRNA-offset RNAs (moRNAs) are similar in length to miRNAs, align to miRNA precursor (pre-miRNA) loci and are therefore believed to derive from processing of the pre-miRNA hairpin sequence. Recent next generation sequencing (NGS) studies have reported the presence of moRNAs in human neurons and cancer cells and in several tissues in mouse, including pluripotent stem cells. In order to gain additional knowledge about human moRNAs and their putative development-related expression, we applied NGS of small RNAs in human embryonic stem cells (hESCs) and fibroblasts. We found that certain moRNA isoforms are notably expressed in hESCs from loci coding for stem cell-selective or cancer-related miRNA clusters. In contrast, we observed only sparse moRNAs in fibroblasts. Consistent with earlier findings, most of the observed moRNAs derived from conserved loci and their expression did not appear to correlate with the expression of the adjacent miRNAs. We provide here the first report of moRNAs in hESCs, and their expression profile in comparison to fibroblasts. Moreover, we expand the repertoire of hESC miRNAs. These findings provide an expansion on the known repertoire of small non-coding RNA contents in hESCs. PMID:25822230

  11. Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci

    PubMed Central

    Budach, Stefan; Heinig, Matthias; Marsico, Annalisa

    2016-01-01

    Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However, the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions, and other functional annotations to determine the relationship between functional elements and microRNA regulation. We built a logistic regression model that classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy; shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers, and transcription factor binding sites; and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA eQTLs and messenger RNA eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently. Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line derived from B cells, we find genome-wide association (GWA) variants associated to blood-related traits more likely to be microRNA eQTLs than random GWA and non-GWA variants, aiding the interpretation of GWA results. PMID:27260304

  12. MicroRNA expression in the aging mouse thymus.

    PubMed

    Ye, Yaqiong; Li, Daotong; Ouyang, Dan; Deng, Li; Zhang, Yuan; Ma, Yongjiang; Li, Yugu

    2014-09-01

    MicroRNAs (miRNAs) have been implicated in the process of aging in many model organisms, such as Caenorhabditis elegans, and in many organs, such as the mouse lung and human epididymis. However, the role of miRNAs in the thymus tissues of the aging mouse remains unclear. To address this question, we investigated the miRNA expression profiles in the thymuses of 1-, 10- and 19-month-old mice using miRNA array and qRT-PCR assays. A total of 223 mouse miRNAs were screened, and the expression levels of those miRNAs exhibited gradual increases and decreases over the course of thymus aging. Fifty miRNAs in the 10-month-old thymus and 81 miRNAs in the 19-month-old thymus were defined as differentially expressed miRNAs (p<0.05) in comparison with their levels in the 1-month-old mouse, and approximately one-third of these miRNAs were grouped within 11 miRNA clusters. Each miRNA cluster contained 2 to 5 miRNA genes, and most of the cluster members displayed similar expression patterns, being either increased or decreased. In addition, Ingenuity Pathway Analysis (IPA) software and the IPA database were used to analyze the 12 miRNAs that exhibited significant expression changes, revealing that as many as 15 pathways may be involved. Thus, our current study determined the expression profiles of miRNAs in the mouse thymus during the process of aging. The results suggested that these miRNAs could become meaningful biomarkers for studying thymus aging and that the aging-related alternations in miRNA expression may be involved in the regulation of cell proliferation, apoptosis, development and carcinogenesis/tumorigenesis.

  13. Transgene expression and effective gene silencing in vagal afferent neurons in vivo using recombinant adeno-associated virus vectors

    PubMed Central

    Kollarik, M; Carr, M J; Ru, F; Ring, C J A; Hart, V J; Murdock, P; Myers, A C; Muroi, Y; Undem, B J

    2010-01-01

    Vagal afferent fibres innervating thoracic structures such as the respiratory tract and oesophagus are diverse, comprising several subtypes of functionally distinct C-fibres and A-fibres. Both morphological and functional studies of these nerve subtypes would be advanced by selective, effective and long-term transduction of vagal afferent neurons with viral vectors. Here we addressed the hypothesis that vagal sensory neurons can be transduced with adeno-associated virus (AAV) vectors in vivo, in a manner that would be useful for morphological assessment of nerve terminals, using enhanced green fluorescent protein (eGFP), as well as for the selective knock-down of specific genes of interest in a tissue-selective manner. We found that a direct microinjection of AAV vectors into the vagal nodose ganglia in vivo leads to selective, effective and long-lasting transduction of the vast majority of primary sensory vagal neurons without transduction of parasympathetic efferent neurons. The transduction of vagal neurons by pseudoserotype AAV2/8 vectors in vivo is sufficiently efficient such that it can be used to functionally silence TRPV1 gene expression using short hairpin RNA (shRNA). The eGFP encoded by AAV vectors is robustly transported to both the central and peripheral terminals of transduced vagal afferent neurons allowing for bright imaging of the nerve endings in living tissues and suitable for structure–function studies of vagal afferent nerve endings. Finally, the AAV2/8 vectors are efficiently taken up by the vagal nerve terminals in the visceral tissue and retrogradely transported to the cell body, allowing for tissue-specific transduction. PMID:20736420

  14. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides.

    PubMed

    Deo, Monika; Yu, Jenn-Yah; Chung, Kwan-Ho; Tippens, Melissa; Turner, David L

    2006-09-01

    We have developed an in situ hybridization procedure for the detection of microRNAs (miRNAs) in tissue sections from mouse embryos and adult organs. The method uses highly specific washing conditions for RNA oligonucleotide probes conjugated to a fluorescein hapten. We show that this method detects predominantly mature miRNAs rather than the miRNA precursors or primary transcripts. We have determined expression patterns for several miRNAs expressed in the developing and adult nervous system, including miR-124a, miR-9, miR-92, and miR-204. Whereas miR-124a is expressed in neurons, miR-9 is expressed in neural progenitors and some neurons, and miR-204 is expressed in the choroid plexus, retinal pigment epithelium, and ciliary body. miR-204 is located in an intron of the TRPM3 gene, and the TRPM3 mRNA is coexpressed with miR-204 in the choroid plexus. We also find that primary transcripts for miR-124a and miR-9 genes are expressed in patterns similar to their respective mature miRNAs. The ability to visualize expression of specific miRNAs in embryos and tissues should aid studies on miRNA function.

  15. Specific RNA Interference in Caenorhabditis elegans by Ingested dsRNA Expressed in Bacillus subtilis

    PubMed Central

    Lezzerini, Marco; van de Ven, Koen; Veerman, Martijn; Brul, Stanley; Budovskaya, Yelena V.

    2015-01-01

    In nematodes, genome-wide RNAi-screening has been widely used as a rapid and efficient method to identify genes involved in the aging processes. By far the easiest way of inducing RNA interference (RNAi) in Caenorhabditis elegans is by feeding Escherichia coli that expresses specific double stranded RNA (dsRNA) to knockdown translation of targeted mRNAs. However, it has been shown that E. coli is mildly pathogenic to C. elegans and this pathogenicity might influence aging and the accuracy of the RNAi-screening during aging may as well be affected. Here, we describe a novel system that utilizes the non-pathogenic bacterium Bacillus subtilis, to express dsRNA and therefore eliminates the effects of bacterial pathogenicity from the genetic analysis of aging. PMID:25928543

  16. The molecular sensory machinery of a Chagas disease vector: expression changes through imaginal moult and sexually dimorphic features

    PubMed Central

    Latorre-Estivalis, Jose Manuel; Robertson, Hugh M.; Walden, Kimberly K. O.; Ruiz, Jerônimo; Gonçalves, Leilane Oliveira; Guarneri, Alessandra A.; Lorenzo, Marcelo Gustavo

    2017-01-01

    The triatomine bug Rhodnius prolixus is a main vector of Chagas disease, which affects several million people, mostly in Latin-America. Host searching, pheromone communication, and microclimatic preferences are aspects of its behaviour that depend on multimodal sensory inputs. The molecular bases of these sensory processes are largely unknown. The expression levels of genes transcribed in antennae were compared between 5th instar larvae, and female and male adults by means of RNA-Seq. The antennae of R. prolixus showed increased expression of several chemosensory-related genes in imaginal bugs, while both sexes had similar expression patterns for most target genes. Few cases suggest involvement of target genes in sexually dimorphic functions. Most odorant and ionotropic receptor genes seemed to be expressed in all libraries. OBPs and CSPs showed very high expression levels. Other sensory-related genes such as TRPs, PPKs and mechanoreceptors had consistent levels of expression in all libraries. Our study characterises most of the sensory gene repertoire of these insects, opening an avenue for functional genetics studies. The increase in expression of chemosensory genes suggests an enhanced role in adult bugs. This knowledge allows developing new behaviour interfering strategies, increasing the options for translational research in the vector control field. PMID:28059141

  17. Boiler: lossy compression of RNA-seq alignments using coverage vectors

    PubMed Central

    Pritt, Jacob; Langmead, Ben

    2016-01-01

    We describe Boiler, a new software tool for compressing and querying large collections of RNA-seq alignments. Boiler discards most per-read data, keeping only a genomic coverage vector plus a few empirical distributions summarizing the alignments. Since most per-read data is discarded, storage footprint is often much smaller than that achieved by other compression tools. Despite this, the most relevant per-read data can be recovered; we show that Boiler compression has only a slight negative impact on results given by downstream tools for isoform assembly and quantification. Boiler also allows the user to pose fast and useful queries without decompressing the entire file. Boiler is free open source software available from github.com/jpritt/boiler. PMID:27298258

  18. Boiler: lossy compression of RNA-seq alignments using coverage vectors.

    PubMed

    Pritt, Jacob; Langmead, Ben

    2016-09-19

    We describe Boiler, a new software tool for compressing and querying large collections of RNA-seq alignments. Boiler discards most per-read data, keeping only a genomic coverage vector plus a few empirical distributions summarizing the alignments. Since most per-read data is discarded, storage footprint is often much smaller than that achieved by other compression tools. Despite this, the most relevant per-read data can be recovered; we show that Boiler compression has only a slight negative impact on results given by downstream tools for isoform assembly and quantification. Boiler also allows the user to pose fast and useful queries without decompressing the entire file. Boiler is free open source software available from github.com/jpritt/boiler.

  19. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    NASA Astrophysics Data System (ADS)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  20. Micro-RNA Expression and Function in Lymphomas

    PubMed Central

    Sandhu, Sukhinder K.; Croce, Carlo M.; Garzon, Ramiro

    2011-01-01

    The recent discovery of microRNAs (miRNAs) has introduced a new layer of complexity to the process of gene regulation. MiRNAs are essential for cellular function, and their dysregulation often results in disease. Study of miRNA expression and function in animal models and human lymphomas has improved our knowledge of the pathogenesis of this heterogeneous disease. In this paper, we attempt to describe the expression of miRNAs and their function in lymphomas and discuss potential miRNA-based therapies in the diagnosis and treatment of lymphomas. PMID:21461378

  1. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    SciTech Connect

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M.; Cleasby, Mark E.; Millard, Susan; Leong, Gary M.; Cooney, Gregory J.; Muscat, George E.O.

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  2. Expression and secretion of aequorin as a chimeric antibody by means of a mammalian expression vector.

    PubMed Central

    Casadei, J; Powell, M J; Kenten, J H

    1990-01-01

    A fusion protein has been expressed from the relevant genes in mammalian cells consisting of the photoprotein aequorin and an anti-4-hydroxy-3-nitrophenacetyl antibody gene. This chimeric antibody has allowed the development of a sensitive luminescent immunoassay. Initially the cDNA of the photoprotein aequorin from Aequorea victoria was cloned and expressed in Escherichia coli. The gene was expressed as apoaequorin and, by using luciferin isolated from Renilla reniformis, its activity was found essentially identical to native aequorin. The aequorin gene was subcloned into a mammalian expression vector to produce a fusion protein directing secretion of apoaequorin; the aequorin gene was fused to the 3' terminus of an immunoglobulin heavy-chain gene that directed expression of an anti-4-hydroxy-3-nitrophenacetyl antibody. The gene fusion contained the variable region, the constant region domain 1, and part of domain 2 for the IgG2b mouse immunoglobulin, followed by the aequorin gene. Transfection of the chimeric gene into a cell line expressing the complementary lambda 1 light chain, J558L, allowed recovery of a chimeric antibody with binding specificity for the 4-hydroxy-3-nitrophenacetyl group and the related 4-hydroxy-3-iodo-5-nitrophenacetyl hapten. The Ca2(+)-dependent bioluminescent activity of aequorin was also recovered. Images PMID:2315301

  3. Serial bone marrow transplantation reveals in vivo expression of the pCLPG retroviral vector

    PubMed Central

    2010-01-01

    Background Gene therapy in the hematopoietic system remains promising, though certain aspects of vector design, such as transcriptional control elements, continue to be studied. Our group has developed a retroviral vector where transgene expression is controlled by p53 with the intention of harnessing the dynamic and inducible nature of this tumor suppressor and transcription factor. We present here a test of in vivo expression provided by the p53-responsive vector, pCLPG. For this, we used a model of serial transplantation of transduced bone marrow cells. Results We observed, by flow cytometry, that the eGFP transgene was expressed at higher levels when the pCLPG vector was used as compared to the parental pCL retrovirus, where expression is directed by the native MoMLV LTR. Expression from the pCLPG vector was longer lasting, but did decay along with each sequential transplant. The detection of eGFP-positive cells containing either vector was successful only in the bone marrow compartment and was not observed in peripheral blood, spleen or thymus. Conclusions These findings indicate that the p53-responsive pCLPG retrovirus did offer expression in vivo and at a level that surpassed the non-modified, parental pCL vector. Our results indicate that the pCLPG platform may provide some advantages when applied in the hematopoietic system. PMID:20096105

  4. Construction and evaluation of an adenoviral vector for the liver-specific expression of the serine/arginine-rich splicing factor, SRSF3

    PubMed Central

    Suchanek, Amanda L.; Salati, Lisa M.

    2015-01-01

    Serine/arginine-rich splicing factor-3 (SRSF3), alternatively known as SRp20, is a member of the highly-conserved SR protein family of mRNA splicing factors. SRSF3 generally functions as an enhancer of mRNA splicing by binding to transcripts in a sequence-specific manner to both recruit and stabilize the binding of spliceosomal components to the mRNA. In liver, expression of SRSF3 is relatively low and its activity is increased in response to insulin and feeding a high carbohydrate diet. We sought to over-express SRSF3 in primary rat hepatocytes to identify regulatory targets. A standard adenoviral shuttle vector system containing an epitope-tagged SRSF3 under the transcriptional control of the CMV promoter could not be used to produce infectious adenoviral particles. SRSF3 over-expression in the packaging cell line prevented the production of infectious adenovirus particles by interfering with the viral splicing program. To circumvent this issue, SRSF3 expression from the shuttle vector was blocked by placing its expression under the control of the liver-specific albumin promoter. In this system, the FLAG-SRSF3 transgene is only expressed in the target cells (hepatocytes) but not in the packaging cell line. An additional benefit of the albumin promoter is that expression of the transgene does not require the addition of hormones or antibiotics to drive SRSF3 expression in the hepatocytes. Robust expression of FLAG-SRSF3 protein is detected in both HepG2 cells and primary rat hepatocytes infected with adenovirus prepared from this new shuttle vector. Furthermore, abundances of several known and suspected mRNA targets of SRSF3 action are increased in response to over-expression using this virus. This report details the construction of the albumin promoter-driven adenoviral shuttle vector, termed pmAlbAd5-FLAG.SRSF3, that can be used to generate functional adenovirus to express FLAG-SRSF3 specifically in liver. This vector would be suitable for over-expression of

  5. Tissue-specific mRNA expression profiling in grape berry tissues

    PubMed Central

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  6. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  7. Development of a plant viral-vector-based gene expression assay for the screening of yeast cytochrome p450 monooxygenases.

    PubMed

    Hanley, Kathleen; Nguyen, Long V; Khan, Faizah; Pogue, Gregory P; Vojdani, Fakhrieh; Panda, Sanjay; Pinot, Franck; Oriedo, Vincent B; Rasochova, Lada; Subramanian, Mani; Miller, Barbara; White, Earl L

    2003-02-01

    Development of a gene discovery tool for heterologously expressed cytochrome P450 monooxygenases has been inherently difficult. The activity assays are labor-intensive and not amenable to parallel screening. Additionally, biochemical confirmation requires coexpression of a homologous P450 reductase or complementary heterologous activity. Plant virus gene expression systems have been utilized for a diverse group of organisms. In this study we describe a method using an RNA vector expression system to phenotypically screen for cytochrome P450-dependent fatty acid omega-hydroxylase activity. Yarrowia lipolytica CYP52 gene family members involved in n-alkane assimilation were amplified from genomic DNA, cloned into a plant virus gene expression vector, and used as a model system for determining heterologous expression. Plants infected with virus vectors expressing the yeast CYP52 genes (YlALK1-YlALK7) showed a distinct necrotic lesion phenotype on inoculated plant leaves. No phenotype was detected on negative control constructs. YlALK3-, YlALK5-, and YlALK7-inoculated plants all catalyzed the terminal hydroxylation of lauric acid as confirmed using thin-layer and gas chromatography/mass spectrometry methods. The plant-based cytochrome P450 phenotypic screen was tested on an n-alkane-induced Yarrowia lipolytica plant virus expression library. A subset of 1,025 random library clones, including YlALK1-YlALK7 constructs, were tested on plants. All YlALK gene constructs scored positive in the randomized screen. Following nucleotide sequencing of the clones that scored positive using a phenotypic screen, approximately 5% were deemed appropriate for further biochemical analysis. This report illustrates the utility of a plant-based system for expression of heterologous cytochrome P450 monooxygenases and for the assignment of gene function.

  8. Flexible expressed region analysis for RNA-seq with derfinder

    PubMed Central

    Collado-Torres, Leonardo; Nellore, Abhinav; Frazee, Alyssa C.; Wilks, Christopher; Love, Michael I.; Langmead, Ben; Irizarry, Rafael A.; Leek, Jeffrey T.; Jaffe, Andrew E.

    2017-01-01

    Differential expression analysis of RNA sequencing (RNA-seq) data typically relies on reconstructing transcripts or counting reads that overlap known gene structures. We previously introduced an intermediate statistical approach called differentially expressed region (DER) finder that seeks to identify contiguous regions of the genome showing differential expression signal at single base resolution without relying on existing annotation or potentially inaccurate transcript assembly. We present the derfinder software that improves our annotation-agnostic approach to RNA-seq analysis by: (i) implementing a computationally efficient bump-hunting approach to identify DERs that permits genome-scale analyses in a large number of samples, (ii) introducing a flexible statistical modeling framework, including multi-group and time-course analyses and (iii) introducing a new set of data visualizations for expressed region analysis. We apply this approach to public RNA-seq data from the Genotype-Tissue Expression (GTEx) project and BrainSpan project to show that derfinder permits the analysis of hundreds of samples at base resolution in R, identifies expression outside of known gene boundaries and can be used to visualize expressed regions at base-resolution. In simulations, our base resolution approaches enable discovery in the presence of incomplete annotation and is nearly as powerful as feature-level methods when the annotation is complete. derfinder analysis using expressed region-level and single base-level approaches provides a compromise between full transcript reconstruction and feature-level analysis. The package is available from Bioconductor at www.bioconductor.org/packages/derfinder. PMID:27694310

  9. miRNA expression during prickly pear cactus fruit development.

    PubMed

    Rosas-Cárdenas, Flor de Fátima; Caballero-Pérez, Juan; Gutiérrez-Ramos, Ximena; Marsch-Martínez, Nayelli; Cruz-Hernández, Andrés; de Folter, Stefan

    2015-02-01

    miRNAs are a class of small non-coding RNAs that regulate gene expression. They are involved in the control of many developmental processes, including fruit development. The increasing amount of information on miRNAs, on their expression, abundance, and conservation between various species, provides a new opportunity to study the role of miRNAs in non-model plant species. In this work, we used a combination of Northern blot and tissue print hybridization analysis to identify conserved miRNAs expressed during prickly pear cactus (Opuntia ficus indica) fruit development. Comparative profiling detected the expression of 34 miRNAs, which were clustered in three different groups that were associated with the different phases of fruit development. Variation in the level of miRNA expression was observed. Gradual expression increase of several miRNAs was observed during fruit development, including miR164. miR164 was selected for stem-loop RT-PCR and for a detailed spatial-temporal expression analysis. At early floral stages, miR164 was mainly localized in meristematic tissues, boundaries and fusion zones, while it was more homogenously expressed in fruit tissues. Our results provide the first evidence of miRNA expression in the prickly pear cactus and provide the basis for future research on miRNAs in Opuntia. Moreover, our analyses suggest that miR164 plays different roles during prickly pear cactus fruit development.

  10. A 5' Noncoding Exon Containing Engineered Intron Enhances Transgene Expression from Recombinant AAV Vectors in vivo.

    PubMed

    Lu, Jiamiao; Williams, James A; Luke, Jeremy; Zhang, Feijie; Chu, Kirk; Kay, Mark A

    2017-01-01

    We previously developed a mini-intronic plasmid (MIP) expression system in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within a universal 5' UTR noncoding exon. Like minicircle DNA plasmids (devoid of bacterial backbone sequences), MIP plasmids overcome transcriptional silencing of the transgene. However, in addition MIP plasmids increase transgene expression by 2 and often >10 times higher than minicircle vectors in vivo and in vitro. Based on these findings, we examined the effects of the MIP intronic sequences in a recombinant adeno-associated virus (AAV) vector system. Recombinant AAV vectors containing an intron with a bacterial replication origin and bacterial selectable marker increased transgene expression by 40 to 100 times in vivo when compared with conventional AAV vectors. Therefore, inclusion of this noncoding exon/intron sequence upstream of the coding region can substantially enhance AAV-mediated gene expression in vivo.

  11. Analysis of messenger RNA expression by in situ hybridization using RNA probes synthesized via in vitro transcription

    PubMed Central

    Carter, Bradley S.; Fletcher, Jonathan S.; Thompson, Robert C.

    2010-01-01

    The analysis of the spatial patterning of mRNA expression is critically important for assigning functional and physiological significance to a given gene product. Given the tens of thousands of mRNAs in the mammalian genome, a full assessment of individual gene functions would ideally be overlaid upon knowledge of the specific cell types expressing each mRNA. In situ hybridization approaches represent a molecular biological/histological method that can reveal cellular patterns of mRNA expression. Here, we present detailed procedures for the detection of specific mRNAs using radioactive RNA probes in tissue sections followed by autoradiographic detection. These methods allow for the specific and sensitive detection of spatial patterns of mRNA expression, thereby linking mRNA expression with cell type and function. Radioactive detection methods also facilitate semi-quantitative analyses of changes in mRNA gene expression. PMID:20699122

  12. Control of Cytokine mRNA Expression by RNA-binding Proteins and microRNAs

    PubMed Central

    Palanisamy, V.; Jakymiw, A.; Van Tubergen, E.A.; D’Silva, N.J.; Kirkwood, K.L.

    2012-01-01

    Cytokines are critical mediators of inflammation and host defenses. Regulation of cytokines can occur at various stages of gene expression, including transcription, mRNA export, and post- transcriptional and translational levels. Among these modes of regulation, post-transcriptional regulation has been shown to play a vital role in controlling the expression of cytokines by modulating mRNA stability. The stability of cytokine mRNAs, including TNFα, IL-6, and IL-8, has been reported to be altered by the presence of AU-rich elements (AREs) located in the 3′-untranslated regions (3′UTRs) of the mRNAs. Numerous RNA-binding proteins and microRNAs bind to these 3′UTRs to regulate the stability and/or translation of the mRNAs. Thus, this paper describes the cooperative function between RNA-binding proteins and miRNAs and how they regulate AU-rich elements containing cytokine mRNA stability/degradation and translation. These mRNA control mechanisms can potentially influence inflammation as it relates to oral biology, including periodontal diseases and oral pharyngeal cancer progression. PMID:22302144

  13. How to analyze gene expression using RNA-sequencing data.

    PubMed

    Ramsköld, Daniel; Kavak, Ersen; Sandberg, Rickard

    2012-01-01

    RNA-Seq is arising as a powerful method for transcriptome analyses that will eventually make microarrays obsolete for gene expression analyses. Improvements in high-throughput sequencing and efficient sample barcoding are now enabling tens of samples to be run in a cost-effective manner, competing with microarrays in price, excelling in performance. Still, most studies use microarrays, partly due to the ease of data analyses using programs and modules that quickly turn raw microarray data into spreadsheets of gene expression values and significant differentially expressed genes. Instead RNA-Seq data analyses are still in its infancy and the researchers are facing new challenges and have to combine different tools to carry out an analysis. In this chapter, we provide a tutorial on RNA-Seq data analysis to enable researchers to quantify gene expression, identify splice junctions, and find novel transcripts using publicly available software. We focus on the analyses performed in organisms where a reference genome is available and discuss issues with current methodology that have to be solved before RNA-Seq data can utilize its full potential.

  14. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1.

    PubMed

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem-loop structure containing the branch site near its apical loop and the 3' splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing.

  15. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1

    PubMed Central

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem–loop structure containing the branch site near its apical loop and the 3′ splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing. PMID:26546116

  16. Correction of murine sickle cell disease using gamma-globin lentiviral vectors to mediate high-level expression of fetal hemoglobin.

    PubMed

    Pestina, Tamara I; Hargrove, Phillip W; Jay, Dennis; Gray, John T; Boyd, Kelli M; Persons, Derek A

    2009-02-01

    Increased levels of red cell fetal hemogloblin, whether due to hereditary persistence of expression or from induction with hydroxyurea therapy, effectively ameliorate sickle cell disease (SCD). Therefore, we developed erythroid-specific, gamma-globin lentiviral vectors for hematopoietic stem cell (HSC)-targeted gene therapy with the goal of permanently increasing fetal hemoglobin (HbF) production in sickle red cells. We evaluated two different gamma-globin lentiviral vectors for therapeutic efficacy in the BERK sickle cell mouse model. The first vector, V5, contained the gamma-globin gene driven by 3.1 kb of beta-globin regulatory sequences and a 130-bp beta-globin promoter. The second vector, V5m3, was identical except that the gamma-globin 3'-untranslated region (3'-UTR) was replaced with the beta-globin 3'-UTR. Adult erythroid cells have beta-globin mRNA 3'-UTR-binding proteins that enhance beta-globin mRNA stability and we postulated this design might enhance gamma-globin expression. Stem cell gene transfer was efficient and nearly all red cells in transplanted mice expressed human gamma-globin. Both vectors demonstrated efficacy in disease correction, with the V5m3 vector producing a higher level of gamma-globin mRNA which was associated with high-level correction of anemia and secondary organ pathology. These data support the rationale for a gene therapy approach to SCD by permanently enhancing HbF using a gamma-globin lentiviral vector.

  17. Construction of human BMP2-IRES-HIF1αmu adenovirus expression vector and its expression in mesenchymal stem cells.

    PubMed

    Liu, Danping; Hu, Liang; Zhang, Zheng; Li, Quan Ying; Wang, Guoxian

    2013-02-01

    The present study aimed to construct a novel recombinant adenovirus expression vector Ad-BMP2-IRES-HIF1αmu that expresses human bone morphogenetic protein (BMP2) and mutant hypoxia-inducible factor 1α, and investigated its effects in promoting neogenesis of bone and angiogenesis. The recombinant adenovirus BMP2, HIF1αmu and pIRES2-EGFP expression vectors were constructed and transfected into HEK293A cells. The groups were divided into group A, transfection with Ad-BMP2-IRES-HIF1αmu; group B, transfection with Ad-HIF1αmu-IRES-hrGFP-1; group C, transfection with Ad-BMP2-IRES-hrGFP-1; group D, transfection with Ad-IRES-hrGFP-1; group E, not transfected. Adenovirus liquid was transferred into rabbit mesenchymal stem cells (MSCs) pretreated with dexamethasone at the best multiplicity of infection (MOI). The mRNA and protein expression of BMP2 and HIF1α were detected by RT-PCR and western blot analysis. Adenovirus was successfully packaged. The expression level of HIF1α mRNA in group A and B was markedly higher than that in groups C, D and E, showing a significant difference (P<0.01). There was a significant difference in the expression level of BMP2 mRNA between group A and C (P<0.05) and this was markedly higher than that in groups B, D and E (P<0.01). The protein expression level of HIF1α in group A and B was markedly higher than that in groups C, D and E (P<0.01). The protein expression level of BMP2 in group A and C was markedly higher than that in groups B, D and E (P<0.01). The human BMP2-IRES-HIF1αmu adenovirus expression vector was successfully constructed and the experimental groups formed bone and blood vessels prior to the positive and negative control groups.

  18. AAVPG: A vigilant vector where transgene expression is induced by p53

    SciTech Connect

    Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.; Strauss, Bryan E.

    2013-12-15

    Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 fold increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.

  19. Transplantation of mesenchymal stem cells expressing TIMP-1-shRNA improves hepatic fibrosis in CCl4-treated rats

    PubMed Central

    Zhu, Yingwei; Miao, Zongning; Gong, Lei; Chen, Weichang

    2015-01-01

    This study was to investigate the therapeutic effect of intravenous transplantation of TIMP-1-silencing mesenchymal stem cells (MSCs) in a rat model of liver fibrosis. MSCs were transduced with a lentiviral vector expressing tissue inhibitor of metalloproteinase 1 (TIMP-1)-shRNA, and the liver cirrhosis model was established by injection of CCl4 (1 ml/kg body weight twice a week for 4 weeks) in Sprague Dawley rats. The survived 36 rats were randomly divided into 3 groups: control group, MSCs group, and TIMP-1-shRNA group. At 4 weeks after establishment of animal model, 3×106 MSCs were intravenously injected. In TIMP-1-shRNA group, MSCs expressing TIMP-1-shRNA were transplanted. Animals were sacrificed 4 weeks later. Blood was collected for the detection of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The livers were harvested for histological examination. At 5 days after transfection, strong fluorescence was detectable in each group. TIMP-1-shRNA group had the lowest TIMP-1 expression. Following MSCs transplantation, serum ALT and AST reduced in rats with hepatic cirrhosis, and histology showed less fibrotic areas and collagens, as compared to control group. These improvements were more obvious in the TIMP-1-shRNA group. Our study indicates that transplantation of MSCs expressing TIMP-1-shRNA is able to inhibit the progression of liver fibrosis and possibly restore the liver function in a rat model. PMID:26464632

  20. The expression of miRNA-221 and miRNA-222 in gliomas patients and their prognosis.

    PubMed

    Xue, Liang; Wang, Yi; Yue, Shuyuan; Zhang, Jianning

    2017-01-01

    The aim of this study is to explore the expression of microRNA (miRNA)-221 and miRNA-222 in human glioma cells and tissues. The expression of miRNA-221 and miRNA-222 in human glioma cell line U87, U251, A172, LN229 and surgery resected glioma tissues were measured. The survival rate of X-ray (2 Gy) irradiated glioma cells were calculated. 165 cases of glioma patients were recruited successfully; the expression of miRNA-221 and miRNA-222 in their resected tissues were measured. The expression of miRNA-221 and miRNA-222 in cancer tissues were obviously higher than control tissues (normal brain tissue) and control cell (gastric mucosal epithelial cell, GES) (p < 0.05). The highly malignant glioma tissues expressed significantly higher miRNA-221 and miRNA-222 than low malignant glioma tissues. Patients with highly expressed miRNA-221 and miRNA-222 have shorter survival time. Survival rate of glioma cells was significantly higher than GES cell after irradiation (p < 0.05); miRNA-221 in glioma cells. The expressions of miRNA-221 and miRNA-222 in irritated glioma cells were positively correlated with the survival rate of glioma cells (r = 0.629, 0.712, both p < 0.01). For the 165 glioma patients, the expressions of miRNA-221 and miRNA-222 increased with the increasing of pathological grades (χ (2) = 42.85, p < 0.01); and their survival time decreased when miRNA-221 expression elevated (χ (2) = 57.12, p < 0.01). MiRNA-221 and miRNA-222 express highly in human glioma cells and tissues. Expression of miRNA-221 and miRNA-222 are closely related to pathological grading and prognosis of glioma; they could be used as independent prognostic factor for glioma.

  1. Genome-wide analysis of microRNA and mRNA expression signatures in cancer

    PubMed Central

    Li, Ming-hui; Fu, Sheng-bo; Xiao, Hua-sheng

    2015-01-01

    Cancer is an extremely diverse and complex disease that results from various genetic and epigenetic changes such as DNA copy-number variations, mutations, and aberrant mRNA and/or protein expression caused by abnormal transcriptional regulation. The expression profiles of certain microRNAs (miRNAs) and messenger RNAs (mRNAs) are closely related to cancer progression stages. In the past few decades, DNA microarray and next-generation sequencing techniques have been widely applied to identify miRNA and mRNA signatures for cancers on a genome-wide scale and have provided meaningful insights into cancer diagnosis, prognosis and personalized medicine. In this review, we summarize the progress in genome-wide analysis of miRNAs and mRNAs as cancer biomarkers, highlighting their diagnostic and prognostic roles. PMID:26299954

  2. Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti

    PubMed Central

    Hussain, Mazhar; Frentiu, Francesca D.; Moreira, Luciano A.; O'Neill, Scott L.; Asgari, Sassan

    2011-01-01

    The obligate endosymbiont Wolbachia pipientis is found in a wide range of invertebrates where they are best known for manipulating host reproduction. Recent studies have shown that Wolbachia also can modulate the lifespan of host insects and interfere with the development of human pathogens in mosquito vectors. Despite considerable study, very little is known about the molecular interactions between Wolbachia and its hosts that might mediate these effects. Using microarrays, we show that the microRNA (miRNA) profile of the mosquito, Aedes aegypti, is significantly altered by the wMelPop-CLA strain of W. pipientis. We found that a host miRNA (aae-miR-2940) is induced after Wolbachia infection in both mosquitoes and cell lines. One target of aae-miR-2940 is the Ae. aegypti metalloprotease gene. Interestingly, expression of the target gene was induced after Wolbachia infection, ectopic expression of the miRNA independent of Wolbachia, or transfection of an artificial mimic of the miRNA into mosquito cells. We also confirmed the interaction of aae-miR-2940 with the target sequences using GFP as a reporter gene. Silencing of the metalloprotease gene in both Wolbachia-infected cells and adult mosquitoes led to a significant reduction in Wolbachia density, as did inhibition of the miRNA in cells. These results indicate that manipulation of the mosquito metalloprotease gene via aae-miR-2940 is crucial for efficient maintenance of the endosymbiont. This report shows how Wolbachia alters the host miRNA profile and provides insight into the mechanisms of host manipulation used by this widespread endosymbiont. PMID:21576469

  3. An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs

    PubMed Central

    Ibrišimović, Mirza; Kneidinger, Doris; Lion, Thomas; Klein, Reinhard

    2013-01-01

    Human adenoviruses are rarely associated with life-threatening infections in healthy individuals. However, immunocompromised patients, and particularly allogeneic hematopoietic stem cell transplant recipients, are at high risk of developing disseminated and potentially fatal disease. The efficacy of commonly used drugs to treat adenovirus infections (i.e., cidofovir in most cases) is limited, and alternative treatment options are needed. Artificial microRNAs (amiRNAs) are a class of synthetic RNAs resembling cellular miRNAs, and, similar to their natural relatives, can mediate the knockdown of endogenous gene expression. This process, termed RNA interference, can be harnessed to target and potentially silence both cellular and viral genes. In this study, we designed amiRNAs directed against adenoviral E1A, DNA polymerase, and preterminal protein (pTP) mRNAs in order to inhibit adenoviral replication in vitro. For the expression of amiRNA-encoding sequences, we utilized replication-deficient adenoviral vectors. In cells transduced with the recombinant vectors and infected with the wild-type (wt) adenovirus, one particular amiRNA that was directed against the pTP mRNA was capable of decreasing the output of infectious wt virus progeny by 2.6 orders of magnitude. This inhibition rate could be achieved by concatemerizing amiRNA-encoding sequences to allow for high intracellular amiRNA concentrations. Because superinfecting wt virus induces the replication and amplification of the recombinant adenoviral vector, amiRNA concentrations were increased in cells infected with wt adenovirus. Furthermore, a combination of amiRNA expression and treatment of infected cells with cidofovir resulted in additive effects that manifested as a total reduction of infectious virus progeny by greater than 3 orders of magnitude. PMID:23127366

  4. An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs.

    PubMed

    Ibrišimović, Mirza; Kneidinger, Doris; Lion, Thomas; Klein, Reinhard

    2013-01-01

    Human adenoviruses are rarely associated with life-threatening infections in healthy individuals. However, immunocompromised patients, and particularly allogeneic hematopoietic stem cell transplant recipients, are at high risk of developing disseminated and potentially fatal disease. The efficacy of commonly used drugs to treat adenovirus infections (i.e., cidofovir in most cases) is limited, and alternative treatment options are needed. Artificial microRNAs (amiRNAs) are a class of synthetic RNAs resembling cellular miRNAs, and, similar to their natural relatives, can mediate the knockdown of endogenous gene expression. This process, termed RNA interference, can be harnessed to target and potentially silence both cellular and viral genes. In this study, we designed amiRNAs directed against adenoviral E1A, DNA polymerase, and preterminal protein (pTP) mRNAs in order to inhibit adenoviral replication in vitro. For the expression of amiRNA-encoding sequences, we utilized replication-deficient adenoviral vectors. In cells transduced with the recombinant vectors and infected with the wild-type (wt) adenovirus, one particular amiRNA that was directed against the pTP mRNA was capable of decreasing the output of infectious wt virus progeny by 2.6 orders of magnitude. This inhibition rate could be achieved by concatemerizing amiRNA-encoding sequences to allow for high intracellular amiRNA concentrations. Because superinfecting wt virus induces the replication and amplification of the recombinant adenoviral vector, amiRNA concentrations were increased in cells infected with wt adenovirus. Furthermore, a combination of amiRNA expression and treatment of infected cells with cidofovir resulted in additive effects that manifested as a total reduction of infectious virus progeny by greater than 3 orders of magnitude.

  5. Expression, purification and characterization of heterotrimeric forms of sTRAIL using a polycistronic expression vector.

    PubMed

    Wang, Baoming; Wang, Zhen; Yan, Jingyi; Wang, Lizheng; Wang, Zixuan; Wu, Jiaxin; Zhang, Haihong; Wu, Hui; Kong, Wei; Yu, Bin; Yu, Xianghui

    2015-11-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which is capable of selectively inducing apoptosis of cancer cells, is a potential targeted drug for cancer therapy. The TRAIL protein induces apoptosis only in trimeric form. However, the recombinant soluble TRAIL (sTRAIL) trimer has low stability and a short half-life, which is a major obstacle for its advancement into clinical trials. Moreover, a percentage of engineered sTRAIL proteins are produced as dimers which may be toxic to normal human hepatocytes. In this study, we inserted three copies of the same subunit fragment of sTRAIL with a His tag into a polycistronic expression vector (pST39) to explore whether it would increase the proportion of trimers. We also constructed a heterozygous vector containing three subunit fragments of sTRAIL each with a different tag (His, HA, and Cmyc). Hybrid sTRAIL proteins (P-dTags) mainly as heterologous trimers were obtained by elution with a low concentration of imidazole based on different binding affinities of His with a nickel column. Functional analysis demonstrated that heterotrimeric forms of sTRAIL showed more stable activity compared to the P-3H at 4°C but not at 37°C without alteration in the native killing capacity. In addition, the heterologous trimers showed decreased toxicity to hepatocytes. These results suggest that the polycistronic expression system may be useful for expression of recombinant sTRAIL and improving its potential in cancer therapeutic applications.

  6. The vector-related influences of autophagic microRNA delivery by Lipofectamine 2000 and polyethylenimine 25K on mouse embryonic fibroblast cells.

    PubMed

    Lin, Chia-Wei; Jan, Ming-Shiou; Kuo, Jung-Hua Steven

    2017-04-01

    Despite the greater potential for clinical applications of autophagic microRNA (miRNA) delivery, the vector-related effects of such delivery on cells have not been fully explored. In this study, autophagic mmu-miR-494-3p (miR-494) in mouse embryonic fibroblast (MEF) cells was selected as a cargo miRNA, and two commonly used non-viral carriers (Lipofectamine 2000 (Lipo) and polyethylenimine 25K (PEI)), were used as delivery vectors to mechanistically elucidate its vector-related effects. The cellular uptake, nuclear localization, and quantitative miR-494 levels of the complexes of miR-494 with Lipo (miR-494 lipoplexes) were lower than those of the complexes of miR-494 with PEI (miR-494 polyplexes) in MEF cells. The indicator of autophagic activity (LC3 (microtubule-associated protein 1 light chain 3)-II/LC3-I ratio) in cells treated with miR-494 lipoplexes was higher than that in cells treated with miR-494 polyplexes. Lipo alone and PEI alone induced slight increases in the quantitative levels of miR-494 in cells, but Lipo resulted in higher gene and protein expressions of target Igf1, higher LC3-II/LC3-I ratios, and higher autophagosome formation than PEI. We also demonstrated that the delivery of miR-494 by Lipo was more involved in apoptotic caspase-3 pathways than such delivery by PEI. By applying knock-out atg5 gene in MEF cells, we found that autophagy played a protective role in cell survival and also affected cellular uptake, the quantitative level of miR-494, and target gene Igf1 regulation of delivery systems. Taken together, these results indicate that there are different degrees of responses in MEF cells for autophagic miR-494 delivery through the use of Lipo or PEI vectors that also induce autophagy in cells. Therefore, Lipo and PEI vectors cannot be treated as inert molecules, and their effects must be known and evaluated when they are used in autophagic miRNA delivery systems. Most importantly, understanding these vector-related effects on cells will

  7. High lib mRNA expression in breast carcinomas.

    PubMed

    Satoh, Kazuki; Hata, Mitsumi; Yokota, Hiroshi

    2004-06-30

    Lib, first identified as a novel beta-amyloid responsive gene in rat astrocytes, has an extracellular domain of 15 leucine-rich repeats (LRRs) followed by a transmembrane domain and a short cytoplasmic region. It is a distinctly inducible gene and is thought to play a key role in inflammatory states via the LRR extracellular motif, an ideal structural framework for protein-protein and protein-matrix interactions. To evaluate potential roles of Lib, we screened various tumors for Lib expression. Lib mRNA expression was high and uniquely expressed in breast tumor tissues, compared to paired normal breast tissues. Lib mRNA was localized in the ductal carcinoma cells and Lib protein displayed a homophilic association on the surface of cultured cells. These data suggest that Lib may play a role in the progression of breast carcinomas and may be a diagnostic marker for breast tumors.

  8. Cationized gelatin delivery of a plasmid DNA expressing small interference RNA for VEGF inhibits murine squamous cell carcinoma.

    PubMed

    Matsumoto, Goichi; Kushibiki, Toshihiro; Kinoshita, Yukihiko; Lee, Ushaku; Omi, Yasushi; Kubota, Eiro; Tabata, Yasuhiko

    2006-04-01

    Double-stranded RNA (dsRNA) plays a major role in RNA interference (RNAi), a process in which segments of dsRNA are initially cleaved by the Dicer into shorter segments (21-23 nt) called small interfering RNA (siRNA). These siRNA then specifically target homologous mRNA molecules causing them to be degraded by cellular ribonucleases. RNAi down regulates endogenous gene expression in mammalian cells. Vascular endothelial growth factor (VEGF) is a key molecule in vasculogenesis as well as in angiogenesis. Tumor growth is an angiogenesis-dependent process, and therapeutic strategies aimed at inhibiting angiogenesis are theoretically attractive. To investigate the feasibility of using siRNA for VEGF in the specific knockdown of VEGF mRNA, thereby inhibiting angiogenesis, we have performed experiments with a DNA vector based on a siRNA system that targets VEGF (siVEGF). It almost completely inhibited the expression of three different isoforms (VEGF120, VEGF164 and VEGF188) of VEGF mRNA and the secretion of VEGF protein in mouse squamous cell carcinoma NRS-1 cells. The siVEGF released from cationized gelatin microspheres suppressed tumor growth in vivo. A marked reduction in vascularity accompanied the inhibition of a siVEGF-transfected tumor. Fluorescent microscopic study showed that the complex of siVEGF with cationized gelatin microspheres was still present around the tumor 10 days after injection, while free siVEGF had vanished by that time. siVEGF gene therapy increased the fraction of vessels covered by pericytes and induced expression of angiopoietin-1 by pericytes. These data suggest that cationized-gelatin microspheres containing siVEGF can be used to normalize tumor vasculature and inhibit tumor growth in a NRS-1 squamous cell carcinoma xenograft model.

  9. The mirror RNA expression pattern in human tissues

    PubMed Central

    Bythwood, Tameka N.; Xu, Wei; Li, Wenzhi; Rao, Weinian; Li, Qiling; Xue, Xue; Richards, Jendai; Ma, Li; Song, Qing

    2017-01-01

    It has been realized in recent years that non-coding RNAs are playing important roles in genome functions and human diseases. Here we developed a new technology and observed a new pattern of gene expression. We observed that over 72% of RNAs in human genome are expressed in forward-reverse pairs, just like mirror images of each other between forward expression and reverse expression; the overview showed that it cannot be simply described as transcript overlapping, so we designated it as mirror expression. Furthermore, we found that the mirror expression is gene-specific and tissue-specific, and less common in the proximal promoter regions. The size of the shadows varies between different genes, different tissues and different classes. The shadow expression is most significant in the Alu element, it was also observed among L1, Simple Repeats and LTR elements, but rare in other repeats such as low-complexity, LINE/L2, DNA and MIRs. Although there is no evidence yet about the relationship of this mirror pattern and double-strand RNA (dsRNA), this new striking pattern provides a new clue and a new direction to unveil the role of RNAs in the genome functions and diseases.

  10. Identify signature regulatory network for glioblastoma prognosis by integrative mRNA and miRNA co-expression analysis.

    PubMed

    Bing, Zhi-Tong; Yang, Guang-Hui; Xiong, Jie; Guo, Ling; Yang, Lei

    2016-12-01

    Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults. Patients with this disease have a poor prognosis. The objective of this study is to identify survival-related individual genes (or miRNAs) and miRNA -mRNA pairs in GBM using a multi-step approach. First, the weighted gene co-expression network analysis and survival analysis are applied to identify survival-related modules from mRNA and miRNA expression profiles, respectively. Subsequently, the role of individual genes (or miRNAs) within these modules in GBM prognosis are highlighted using survival analysis. Finally, the integration analysis of miRNA and mRNA expression as well as miRNA target prediction is used to identify survival-related miRNA -mRNA regulatory network. In this study, five genes and two miRNA modules that significantly correlated to patient's survival. In addition, many individual genes (or miRNAs) assigned to these modules were found to be closely linked with survival. For instance, increased expression of neuropilin-1 gene (a member of module turquoise) indicated poor prognosis for patients and a group of miRNA -mRNA regulatory networks that comprised 38 survival-related miRNA -mRNA pairs. These findings provide a new insight into the underlying molecular regulatory mechanisms of GBM.

  11. An efficient plasmid vector for constitutive high-level expression of foreign genes in Escherichia coli.

    PubMed

    Seo, Jeong-Woo; Hong, Won-kyung; Rairakhwada, Dina; Seo, Pil-Soo; Choi, Min Ho; Song, Ki-Bang; Rhee, Sang-Ki; Kim, Chul Ho

    2009-06-01

    The levansucrase gene (lsrA) from Rahnella aquatilis was strongly expressed in a constitutive manner in Escherichia coli when cloned into a pBluescript KS-based pRL1CP plasmid vector. The native promoter upstream of lsrA and the lacZ promoter cooperatively enhanced the expression of lsrA to a level that was comparable to that of the T7 promoter, which is used in commercial pET expression vector system. A putative rho-independent transcription termination signal downstream of lsrA was crucial for gene expression. This plasmid vector also proved to be applicable for efficient expression of other foreign genes in E. coli.

  12. Construction of a shuttle expression vector with a promoter functioning in both halophilic Archaea and Bacteria.

    PubMed

    Lv, Jie; Wang, Shuai; Zeng, Chi; Huang, Yuping; Chen, Xiangdong

    2013-12-01

    A shuttle expression vector, designated as pAJ, was constructed based on the Haloferax volcanii-Escherichia coli shuttle vector pSY1. This new construct contains the amyH promoter from Haloarcula hispanica and was able to confer the promoter activity in both Hfx. volcanii and E. coli. pAJ successfully expressed proteins in Hfx. volcanii or E. coli, rendering it feasible to express target proteins in corresponding domains. In addition, pAJ contains a multiple cloning site with 11 restriction sites and a 6×His tag sequence, and the vector size was decreased to 8903 bp. To the best of our knowledge, pAJ is the first reported shuttle expression vector that can express proteins in both Bacteria and Archaea. Importantly, pAJ can even express the haloarchaeal heat shock protein DnaK in both domains. In conclusion, this novel vector only provides researchers with a new means to manipulate genes or express proteins in Haloarchaea but also serves as a convenient tool for the comparative study of the function of some highly conserved genes in Haloarchaea and in Bacteria.

  13. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    PubMed

    López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.

  14. RNA expression profile of calcified bicuspid, tricuspid, and normal human aortic valves by RNA sequencing.

    PubMed

    Guauque-Olarte, Sandra; Droit, Arnaud; Tremblay-Marchand, Joël; Gaudreault, Nathalie; Kalavrouziotis, Dimitri; Dagenais, Francois; Seidman, Jonathan G; Body, Simon C; Pibarot, Philippe; Mathieu, Patrick; Bossé, Yohan

    2016-10-01

    The molecular mechanisms leading to premature development of aortic valve stenosis (AS) in individuals with a bicuspid aortic valve are unknown. The objective of this study was to identify genes differentially expressed between calcified bicuspid aortic valves (BAVc) and tricuspid valves with (TAVc) and without (TAVn) AS using RNA sequencing (RNA-Seq). We collected 10 human BAVc and nine TAVc from men who underwent primary aortic valve replacement. Eight TAVn were obtained from men who underwent heart transplantation. mRNA levels were measured by RNA-Seq and compared between valve groups. Two genes were upregulated, and none were downregulated in BAVc compared with TAVc, suggesting a similar gene expression response to AS in individuals with bicuspid and tricuspid valves. There were 462 genes upregulated and 282 downregulated in BAVc compared with TAVn. In TAVc compared with TAVn, 329 genes were up- and 170 were downregulated. A total of 273 upregulated and 147 downregulated genes were concordantly altered between BAVc vs. TAVn and TAVc vs. TAVn, which represent 56 and 84% of significant genes in the first and second comparisons, respectively. This indicates that extra genes and pathways were altered in BAVc. Shared pathways between calcified (BAVc and TAVc) and normal (TAVn) aortic valves were also more extensively altered in BAVc. The top pathway enriched for genes differentially expressed in calcified compared with normal valves was fibrosis, which support the remodeling process as a therapeutic target. These findings are relevant to understand the molecular basis of AS in patients with bicuspid and tricuspid valves.

  15. On a stochastic gene expression with pre-mRNA, mRNA and protein contribution.

    PubMed

    Rudnicki, Ryszard; Tomski, Andrzej

    2015-12-21

    In this paper we develop a model of stochastic gene expression, which is an extension of the model investigated in the paper [T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.R. Brasier, M. Kimmel, Transcriptional stochasticity in gene expression, J. Theor. Biol. 238 (2006) 348-367]. In our model, stochastic effects still originate from random fluctuations in gene activity status, but we precede mRNA production by the formation of pre-mRNA, which enriches classical transcription phase. We obtain a stochastically regulated system of ordinary differential equations (ODEs) describing evolution of pre-mRNA, mRNA and protein levels. We perform mathematical analysis of a long-time behavior of this stochastic process, identified as a piece-wise deterministic Markov process (PDMP). We check exact results using numerical simulations for the distributions of all three types of particles. Moreover, we investigate the deterministic (adiabatic) limit state of the process, when depending on parameters it can exhibit two specific types of behavior: bistability and the existence of the limit cycle. The latter one is not present when only two kinds of gene expression products are considered.

  16. Prolyl carboxypeptidase mRNA expression in the mouse brain.

    PubMed

    Jeong, Jin Kwon; Diano, Sabrina

    2014-01-13

    Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain.

  17. MicroRNA expression profiling of cat and dog kidneys.

    PubMed

    Ichii, Osamu; Otsuka, Saori; Ohta, Hiroshi; Yabuki, Akira; Horino, Taro; Kon, Yasuhiro

    2014-04-01

    MicroRNAs (miRNAs) play a role in the pathogenesis of certain diseases and may serve as biomarkers. Here, we present the first analysis of miRNA expression in the kidneys of healthy cats and dogs. Kidneys were divided into renal cortex (CO) and medulla (MD), and RNA sequence analysis was performed using the mouse genome as a reference. A total of 277, 276, 295, and 297 miRNAs were detected in cat CO, cat MD, dog CO, and dog MD, respectively. By comparing the expression ratio of CO to MD, we identified highly expressed miRNAs in each tissue as follows: 41 miRNAs including miR-192-5p in cat CO; 45 miRNAs including miR-323-3p in dog CO; 78 miRNAs including miR-20a-5p in cat MD; and 11 miRNAs including miR-132-5p in dog MD. Further, the target mRNAs of these miRNAs were identified. These data provide veterinary medicine critical information regarding renal miRNA expression.

  18. RNA-FISH to analyze allele-specific expression.

    PubMed

    Braidotti, G

    2001-01-01

    One of the difficulties associated with the analysis of imprinted gene expression is the need to distinguish RNA synthesis occurring at the maternal vs the paternally inherited copy of the gene. Most of the techniques used to examine allele-specific expression exploit naturally occurring polymorphisms and measure steady-state levels of RNA isolated from a pool of cells. Hence, a restriction fragment length polymorphism (RFLP) an be exploited in a heterozygote, by a reverse transcriptase polymerase chain reaction (RT-PCR)- based procedure, to analyze maternal vs paternal gene expression. The human IGF2R gene was analyzed in this way. Smrzka et al. (1) were thus able to show that the IGF2R gene possesses a hemimethylated, intronic CpG island analogous to the mouse imprinting box. However, IGF2R mRNA was detected that possessed the RFLP from both the maternal and paternal alleles in all but one of the 70 lymphoblastoid samples. (The one monoallelic sample reactivated its paternal allele with continued cell culturing.) It was concluded that monoallelic expression of the human gene is a polymorphic trait occurring in a small minority of all tested samples (reviewed in refs. 2,3). Although this is a sound conclusion, the question remains: Is the human IGF2R gene imprinted?

  19. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  20. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG

    PubMed Central

    Fuchs, Sebastian P.; Martinez-Navio, José M.; Gao, Guangping; Desrosiers, Ronald C.

    2016-01-01

    Adeno-associated virus (AAV) has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG) molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV) vector (one vector approach) was compared to expression from two self-complementary AAV (scAAV) vectors, one for heavy chain and one for light chain (two vector approach). Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A) increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE) further increased IgG expression 1.5–2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG. PMID:27332822

  1. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG.

    PubMed

    Fuchs, Sebastian P; Martinez-Navio, José M; Gao, Guangping; Desrosiers, Ronald C

    2016-01-01

    Adeno-associated virus (AAV) has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG) molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV) vector (one vector approach) was compared to expression from two self-complementary AAV (scAAV) vectors, one for heavy chain and one for light chain (two vector approach). Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A) increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE) further increased IgG expression 1.5-2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG.

  2. Airway Epithelial miRNA Expression Is Altered in Asthma

    PubMed Central

    Solberg, Owen D.; Ostrin, Edwin J.; Love, Michael I.; Peng, Jeffrey C.; Bhakta, Nirav R.; Nguyen, Christine; Solon, Margaret; Nguyen, Cindy; Barczak, Andrea J.; Zlock, Lorna T.; Blagev, Denitza P.; Finkbeiner, Walter E.; Ansel, K. Mark; Arron, Joseph R.; Erle, David J.

    2012-01-01

    Rationale: Changes in airway epithelial cell differentiation, driven in part by IL-13, are important in asthma. Micro-RNAs (miRNAs) regulate cell differentiation in many systems and could contribute to epithelial abnormalities in asthma. Objectives: To determine whether airway epithelial miRNA expression is altered in asthma and identify IL-13–regulated miRNAs. Methods: We used miRNA microarrays to analyze bronchial epithelial brushings from 16 steroid-naive subjects with asthma before and after inhaled corticosteroids, 19 steroid-using subjects with asthma, and 12 healthy control subjects, and the effects of IL-13 and corticosteroids on cultured bronchial epithelial cells. We used quantitative polymerase chain reaction to confirm selected microarray results. Measurements and Main Results: Most (12 of 16) steroid-naive subjects with asthma had a markedly abnormal pattern of bronchial epithelial miRNA expression by microarray analysis. Compared with control subjects, 217 miRNAs were differentially expressed in steroid-naive subjects with asthma and 200 in steroid-using subjects with asthma (false discovery rate < 0.05). Treatment with inhaled corticosteroids had modest effects on miRNA expression in steroid-naive asthma, inducing a statistically significant (false discovery rate < 0.05) change for only nine miRNAs. qPCR analysis confirmed differential expression of 22 miRNAs that were highly differentially expressed by microarrays. IL-13 stimulation recapitulated changes in many differentially expressed miRNAs, including four members of the miR-34/449 family, and these changes in miR-34/449 family members were resistant to corticosteroids. Conclusions: Dramatic alterations of airway epithelial cell miRNA levels are a common feature of asthma. These alterations are only modestly corrected by inhaled corticosteroids. IL-13 effects may account for some of these alterations, including repression of miR-34/449 family members that have established roles in airway

  3. Differential adenoassociated virus vector-driven expression of a neuropeptide Y gene in primary rat brain astroglial cultures after transfection with Sendai virosomes versus Lipofectin.

    PubMed

    de Fiebre, C M; Wu, P; Notabartolo, D; Millard, W J; Meyer, E M

    1994-06-01

    The ability of Sendai virosomes or Lipofectin to introduce an AAV vector into primary rat brain astroglial cultures was characterized. The pJDT95npy vector was constructed by inserting rat NPY cDNA downstream from the indigenous AAV p5, p19 and p40 promoters in pJDT95. Lipofectin-mediated transfection with pJDT95npy (10 micrograms) resulted in pronounced expression of several NPY mRNA species: p5-driven (3.3 kb), p19-driven (2.7 kb) and p40-driven (0.6, 0.8, 1.1, and 1.8 kb). Exposure to virosomally encapsulated pJDT95npy (50 or 100 ng) resulted in transient expression of some p40-driven mRNA species (0.8 and 1.8 kb). Neither method produced astroglia cells which synthesized mature NPY immunoreactivity. This demonstrates that an AAV-derived vector can drive gene expression in astroglia, that Sendai virosomes can infuse vectors into astroglia, but that the amount of DNA infused in this manner may limit long term expression.

  4. Analysis of microRNA expression in the prepubertal testis.

    PubMed

    Buchold, Gregory M; Coarfa, Cristian; Kim, Jong; Milosavljevic, Aleksandar; Gunaratne, Preethi H; Matzuk, Martin M

    2010-12-29

    Only thirteen microRNAs are conserved between D. melanogaster and the mouse; however, conditional loss of miRNA function through mutation of Dicer causes defects in proliferation of premeiotic germ cells in both species. This highlights the potentially important, but uncharacterized, role of miRNAs during early spermatogenesis. The goal of this study was to characterize on postnatal day 7, 10, and 14 the content and editing of murine testicular miRNAs, which predominantly arise from spermatogonia and spermatocytes, in contrast to prior descriptions of miRNAs in the adult mouse testis which largely reflects the content of spermatids. Previous studies have shown miRNAs to be abundant in the mouse testis by postnatal day 14; however, through Next Generation Sequencing of testes from a B6;129 background we found abundant earlier expression of miRNAs and describe shifts in the miRNA signature during this period. We detected robust expression of miRNAs encoded on the X chromosome in postnatal day 14 testes, consistent with prior studies showing their resistance to meiotic sex chromosome inactivation. Unexpectedly, we also found a similar positional enrichment for most miRNAs on chromosome 2 at postnatal day 14 and for those on chromosome 12 at postnatal day 7. We quantified in vivo developmental changes in three types of miRNA variation including 5' heterogeneity, editing, and 3' nucleotide addition. We identified eleven putative novel pubertal testis miRNAs whose developmental expression suggests a possible role in early male germ cell development. These studies provide a foundation for interpretation of miRNA changes associated with testicular pathology and identification of novel components of the miRNA editing machinery in the testis.

  5. Silencing of hepatitis C virus replication by a non-viral vector based on solid lipid nanoparticles containing a shRNA targeted to the internal ribosome entry site (IRES).

    PubMed

    Torrecilla, Josune; Del Pozo-Rodríguez, Ana; Solinís, María Ángeles; Apaolaza, Paola S; Berzal-Herranz, Beatriz; Romero-López, Cristina; Berzal-Herranz, Alfredo; Rodríguez-Gascón, Alicia

    2016-10-01

    Gene silencing mediated by RNAi has gained increasing interest as an alternative for the treatment of infectious diseases such as refractory hepatitis C virus (HCV) infection. In this work we have designed and evaluated a non-viral vector based on solid lipid nanoparticles (SLN) bearing hyaluronic acid, protamine and a short hairpin RNA (shRNA74) targeted to the Internal Ribosome Entry Site (IRES) of the HCV. The vector was able to inhibit the expression of the HCV IRES in Huh-7 cells, with the inhibition level dependent on the shRNA74 to SLN ratio and on the shRNA74 dose added to the culture cells. The nanocarrier was also able to inhibit the replication in human hepatoma cells supporting a subgenomic HCV replicon (Huh-7 NS3-3'). The vector was quickly and efficiently internalized by the cells, and endocytosis was the most productive uptake mechanism for silencing. Clathrin-mediated endocytosis and to a lesser extent caveolae/lipid raft-mediated endocytosis were identified as endocytic mechanisms involved in the cell uptake. Internalization via the CD44 receptor was also involved, although this entry route seems to be less productive for silencing than endocytosis. The vector did not induce either hemolysis or agglutination of red cells in vitro, which was indicative of good biocompatibility. In summary, we have shown for the first time the ability of a non-viral SLN-based vector to silence a HCV replicon.

  6. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus

    PubMed Central

    Park, Sang-Ho; Choi, Hoseong; Kim, Semin; Cho, Won Kyong; Kim, Kook-Hyung

    2016-01-01

    Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH) gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana. PMID:27493613

  7. Comprehensive set of integrative plasmid vectors for copper-inducible gene expression in Myxococcus xanthus.

    PubMed

    Gómez-Santos, Nuria; Treuner-Lange, Anke; Moraleda-Muñoz, Aurelio; García-Bravo, Elena; García-Hernández, Raquel; Martínez-Cayuela, Marina; Pérez, Juana; Søgaard-Andersen, Lotte; Muñoz-Dorado, José

    2012-04-01

    Myxococcus xanthus is widely used as a model system for studying gliding motility, multicellular development, and cellular differentiation. Moreover, M. xanthus is a rich source of novel secondary metabolites. The analysis of these processes has been hampered by the limited set of tools for inducible gene expression. Here we report the construction of a set of plasmid vectors to allow copper-inducible gene expression in M. xanthus. Analysis of the effect of copper on strain DK1622 revealed that copper concentrations of up to 500 μM during growth and 60 μM during development do not affect physiological processes such as cell viability, motility, or aggregation into fruiting bodies. Of the copper-responsive promoters in M. xanthus reported so far, the multicopper oxidase cuoA promoter was used to construct expression vectors, because no basal expression is observed in the absence of copper and induction linearly depends on the copper concentration in the culture medium. Four different plasmid vectors have been constructed, with different marker selection genes and sites of integration in the M. xanthus chromosome. The vectors have been tested and gene expression quantified using the lacZ gene. Moreover, we demonstrate the functional complementation of the motility defect caused by lack of PilB by the copper-induced expression of the pilB gene. These versatile vectors are likely to deepen our understanding of the biology of M. xanthus and may also have biotechnological applications.

  8. Complex Effects of Deletions in the 5′ Untranslated Region of Primate Foamy Virus on Viral Gene Expression and RNA Packaging

    PubMed Central

    Heinkelein, Martin; Thurow, Jana; Dressler, Marco; Imrich, Horst; Neumann-Haefelin, Dieter; McClure, Myra O.; Rethwilm, Axel

    2000-01-01

    Due to various advantageous features there is current interest in retroviral vectors derived from primate foamy viruses (PFVs). Two PFV cis-acting sequences have been mapped in the 5′ region of the RNA (pre-)genome and in the 3′ pol genomic region. In order to genetically separate PFV packaging constructs from vector constructs, we investigated the effect of deletions in the 5′ untranslated region (UTR) of PFV packaging constructs and vectors on gene expression and RNA incorporation into viral particles. Our results indicate that the 5′ UTR serves different previously unknown functions. First, the R region of the long terminal repeat was found to be required for PFV gag gene expression. This regulation of gene expression appeared to be mainly posttranscriptional. Second, constructs with sequence deletions between the R region and the gag gene start codon packaged as much viral mRNA into particles as the undeleted construct, and RNA from such a 5′-UTR-deleted packaging construct was copackaged into vector-virus particles, together with vector RNA which was preferentialy packaged. Finally, in the U5 region a sequence was identified that was required to allow cleavage of the Gag precursor protein by the pol gene-encoded protease, suggesting a role of RNA in PFV particle formation. Taken together, the results indicate that complex interactions of the viral RNA, capsid, and polymerase proteins take place during PFV particle formation and that a clear separation of PFV vector and packaging construct sequences may be difficult to achieve. PMID:10708430

  9. Induction of humoral responses to BHV-1 glycoprotein D expressed by HSV-1 amplicon vectors

    PubMed Central

    Blanc, Andrea Maria; Berois, Mabel Beatriz; Tomé, Lorena Magalí; Epstein, Alberto L.

    2012-01-01

    Herpes simplex virus type-1 (HSV-1) amplicon vectors are versatile and useful tools for transferring genes into cells that are capable of stimulating a specific immune response to their expressed antigens. In this work, two HSV-1-derived amplicon vectors were generated. One of these expressed the full-length glycoprotein D (gD) of bovine herpesvirus 1 while the second expressed the truncated form of gD (gDtr) which lacked the trans-membrane region. After evaluating gD expression in the infected cells, the ability of both vectors to induce a specific gD immune response was tested in BALB/c mice that were intramuscularly immunized. Specific serum antibody responses were detected in mice inoculated with both vectors, and the response against truncated gD was higher than the response against full-length gD. These results reinforce previous findings that HSV-1 amplicon vectors can potentially deliver antigens to animals and highlight the prospective use of these vectors for treating infectious bovine rhinotracheitis disease. PMID:22437537

  10. Induction of protein expression within Escherichia coli vector for entry into mammalian cells.

    PubMed

    Chen, Qingwen; Lee, Choon-Weng; Sim, Edmund Ui-Hang; Narayanan, Kumaran

    2014-02-01

    Direct protein delivery into the cytosol of mammalian cells by invasive Escherichia coli (E. coli) bacterial vector will bypass the need to achieve nuclear entry and transcription of DNA, a major hurdle that is known to seriously limit gene transfer. The bacterial vector is induced to express the protein during its growth phase, before presentation for entry into mammalian cells and release of its content into the cellular environment. For this class of vector, crossing the plasma membrane becomes the primary step that determines the success of protein delivery. Yet, how the mechanics of protein expression within the vector affect its entry into the host is poorly understood. We found the vector's effectiveness to enter HeLa cells diminished together with its viability when phage N15 protelomerase (TelN) expression was induced continuously in the invasive E. coli despite producing an abundant amount of functional protein. By comparison, shorter induction, even as little as 3 hr, produced sufficient amounts of functional TelN and showed more effective invasion of HeLa cells, comparable to that of uninduced invasive E. coli. These results demonstrate that brief induction of protein expression during vector growth is essential for optimal entry into mammalian cells, an important step for achieving bacteria-mediated protein delivery.

  11. Insights into psychosis risk from leukocyte microRNA expression

    PubMed Central

    Jeffries, C D; Perkins, D O; Chandler, S D; Stark, T; Yeo, E; Addington, J; Bearden, C E; Cadenhead, K S; Cannon, T D; Cornblatt, B A; Mathalon, D H; McGlashan, T H; Seidman, L J; Walker, E F; Woods, S W; Glatt, S J; Tsuang, M

    2016-01-01

    Dysregulation of immune system functions has been implicated in schizophrenia, suggesting that immune cells may be involved in the development of the disorder. With the goal of a biomarker assay for psychosis risk, we performed small RNA sequencing on RNA isolated from circulating immune cells. We compared baseline microRNA (miRNA) expression for persons who were unaffected (n=27) or who, over a subsequent 2-year period, were at clinical high risk but did not progress to psychosis (n=37), or were at high risk and did progress to psychosis (n=30). A greedy algorithm process led to selection of five miRNAs that when summed with +1 weights distinguished progressed from nonprogressed subjects with an area under the receiver operating characteristic curve of 0.86. Of the five, miR-941 is human-specific with incompletely understood functions, but the other four are prominent in multiple immune system pathways. Three of those four are downregulated in progressed vs. nonprogressed subjects (with weight -1 in a classifier function that increases with risk); all three have also been independently reported as downregulated in monocytes from schizophrenia patients vs. unaffected subjects. Importantly, these findings passed stringent randomization tests that minimized the risk of conclusions arising by chance. Regarding miRNA–miRNA correlations over the three groups, progressed subjects were found to have much weaker miRNA orchestration than nonprogressed or unaffected subjects. If independently verified, the leukocytic miRNA biomarker assay might improve accuracy of psychosis high-risk assessments and eventually help rationalize preventative intervention decisions. PMID:27959328

  12. Scaffolds for Artificial miRNA Expression in Animal Cells.

    PubMed

    Calloni, Raquel; Bonatto, Diego

    2015-10-01

    Artificial miRNAs (amiRNAs) are molecules that have been developed to promote gene silencing in a similar manner to naturally occurring miRNAs. amiRNAs are generally constructed by replacing the mature miRNA sequence in the pre-miRNA stem-loop with a sequence targeting a gene of interest. These molecules offer an interesting alternative to silencing approaches that are based on shRNAs and siRNAs because they present the same efficiency as these options and are less cytotoxic. amiRNAs have mostly been applied to gene knockdown in plants; they have been examined to a lesser extent in animal cells. Therefore, this article reviews the amiRNAs that have been developed for animal cells and focuses on the miRNA scaffolds that can already be applied to construct the artificial counterparts, as well as on the different approaches that have been described to promote amiRNA expression and silencing efficiency. Furthermore, the availability of amiRNA libraries and other tools that can be used to design and construct these molecules is briefly discussed, along with an overview of the therapeutic applications for which amiRNAs have already been evaluated.

  13. Transfection of infectious RNA and DNA/RNA layered vectors of semliki forest virus by the cell-penetrating peptide based reagent PepFect6.

    PubMed

    Pärn, Kalle; Viru, Liane; Lehto, Taavi; Oskolkov, Nikita; Langel, Ülo; Merits, Andres

    2013-01-01

    Viral vectors have a wide variety of applications ranging from fundamental studies of viruses to therapeutics. Recombinant viral vectors are usually constructed using methods of reverse genetics to obtain the genetic material of the viral vector. The physicochemical properties of DNA and RNA make them unable to access cells by themselves, and they require assistance to achieve intracellular delivery. Non-viral delivery vectors can be used for this purpose if they enable efficient intracellular delivery without interfering with the viral life cycle. In this report, we utilize Semliki Forest virus (genus alphavirus) based RNA and DNA vectors to study the transfection efficiency of the non-viral cell-penetrating peptide-based delivery vector PepFect6 in comparison with that of the cationic liposome-based Lipofectamine 2000, and assess their impact on viral replication. The optimal conditions for transfection were determined for both reagents. These results demonstrate, for the first time, the ability of PepFect6 to transport large (13-19 kbp) constructs across the cell membrane. Curiously, DNA molecules delivered using the PepFect6 reagent were found to be transported to the cell nucleus approximately 1.5 hours later than DNA molecules delivered using the Lipofectamine 2000 reagent. Finally, although both PepFect6 and Lipofectamine 2000 reagents can be used for alphavirus research, PepFect6 is preferred because it does not induce changes in the normal cellular phenotype and it does not affect the normal replication-infection cycle of viruses in previously transfected cells.

  14. Classification of Dengue Fever Patients Based on Gene Expression Data Using Support Vector Machines

    PubMed Central

    Khan, Asif M.; Gil, Laura H. V. G.; Marques, Ernesto T. A.; Calzavara-Silva, Carlos E.; Tan, Tin Wee

    2010-01-01

    Background Symptomatic infection by dengue virus (DENV) can range from dengue fever (DF) to dengue haemorrhagic fever (DHF), however, the determinants of DF or DHF progression are not completely understood. It is hypothesised that host innate immune response factors are involved in modulating the disease outcome and the expression levels of genes involved in this response could be used as early prognostic markers for disease severity. Methodology/Principal Findings mRNA expression levels of genes involved in DENV innate immune responses were measured using quantitative real time PCR (qPCR). Here, we present a novel application of the support vector machines (SVM) algorithm to analyze the expression pattern of 12 genes in peripheral blood mononuclear cells (PBMCs) of 28 dengue patients (13 DHF and 15 DF) during acute viral infection. The SVM model was trained using gene expression data of these genes and achieved the highest accuracy of ∼85% with leave-one-out cross-validation. Through selective removal of gene expression data from the SVM model, we have identified seven genes (MYD88, TLR7, TLR3, MDA5, IRF3, IFN-α and CLEC5A) that may be central in differentiating DF patients from DHF, with MYD88 and TLR7 observed to be the most important. Though the individual removal of expression data of five other genes had no impact on the overall accuracy, a significant combined role was observed when the SVM model of the two main genes (MYD88 and TLR7) was re-trained to include the five genes, increasing the overall accuracy to ∼96%. Conclusions/Significance Here, we present a novel use of the SVM algorithm to classify DF and DHF patients, as well as to elucidate the significance of the various genes involved. It was observed that seven genes are critical in classifying DF and DHF patients: TLR3, MDA5, IRF3, IFN-α, CLEC5A, and the two most important MYD88 and TLR7. While these preliminary results are promising, further experimental investigation is necessary to validate

  15. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression.

    PubMed

    Diederichs, Sven; Haber, Daniel A

    2007-12-14

    MicroRNAs are small endogenous noncoding RNAs involved in posttranscriptional gene regulation. During microRNA biogenesis, Drosha and Dicer process the primary transcript (pri-miRNA) through a precursor hairpin (pre-miRNA) to the mature miRNA. The miRNA is incorporated into the RNA-Induced Silencing Complex (RISC) with Argonaute proteins, the effector molecules in RNA interference (RNAi). Here, we show that all Argonautes elevate mature miRNA expression posttranscriptionally, independent of RNase activity. Also, we identify a role for the RISC slicer Argonaute2 (Ago2) in cleaving the pre-miRNA to an additional processing intermediate, termed Ago2-cleaved precursor miRNA or ac-pre-miRNA. This endogenous, on-pathway intermediate results from cleavage of the pre-miRNA hairpin 12 nucleotides from its 3'-end. By analogy to siRNA processing, Ago2 cleavage may facilitate removal of the nicked passenger strand from RISC after maturation. The multiple roles of Argonautes in the RNAi effector phase and miRNA biogenesis and maturation suggest coordinate regulation of microRNA expression and function.

  16. Construction and characterization of regulated L-arabinose-inducible broad host range expression vectors in Xanthomonas.

    PubMed

    Sukchawalit, R; Vattanaviboon, P; Sallabhan, R; Mongkolsuk, S

    1999-12-15

    Several versions of broad host range (BHR), L-arabinose-inducible expression vectors were constructed. These expression vectors were based on a high copy number BHR pBBR1MCS-4 replicon that could replicate in both enteric and non-enteric Gram-negative bacteria. Two versions of expression cassettes containing multiple cloning sites either with or without a ribosome binding site were placed under transcriptional control of the Escherichia coli BAD promoter and araC gene. Three versions of vectors containing ampicillin or kanamycin or tetracycline resistance genes as selectable markers were constructed. In all six new L-arabinose-inducible BHR expression vectors containing many unique cloning sites, selectable markers were made to facilitate cloning and expression of genes in various Gram-negative bacteria. A Tn9 chloramphenicol acetyl transferase (cat) gene was cloned into an expression vector, resulting in pBBad18Acat that was used to establish optimal expression conditions (addition of 0.02% L-arabinose to mid-exponential phase cells for at least 1 h) in a Xanthomonas campestris pv. phaseoli. Comparison of the Cat enzyme activities between uninduced and a 180-min L-arabinose-induced culture showed a greater than 150-fold increased Cat specific activity. In addition, L-arabinose induction of exponential phase cells harboring pBBad18Acat gave a higher amount of Cat than similarly treated stationary phase cells. The usefulness of the expression vector was also demonstrated in both enteric and non-enteric Gram-negative bacteria.

  17. Retroviral vectors for homologous recombination provide efficient cloning and expression in mammalian cells.

    PubMed

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Horii, Masae; Hamana, Hiroshi; Nagai, Terumi; Muraguchi, Atsushi

    2014-02-14

    Homologous recombination technologies enable high-throughput cloning and the seamless insertion of any DNA fragment into expression vectors. Additionally, retroviral vectors offer a fast and efficient method for transducing and expressing genes in mammalian cells, including lymphocytes. However, homologous recombination cannot be used to insert DNA fragments into retroviral vectors; retroviral vectors contain two homologous regions, the 5'- and 3'-long terminal repeats, between which homologous recombination occurs preferentially. In this study, we have modified a retroviral vector to enable the cloning of DNA fragments through homologous recombination. To this end, we inserted a bacterial selection marker in a region adjacent to the gene insertion site. We used the modified retroviral vector and homologous recombination to clone T-cell receptors (TCRs) from single Epstein Barr virus-specific human T cells in a high-throughput and comprehensive manner and to efficiently evaluate their function by transducing the TCRs into a murine T-cell line through retroviral infection. In conclusion, the modified retroviral vectors, in combination with the homologous recombination method, are powerful tools for the high-throughput cloning of cDNAs and their efficient functional analysis.

  18. An Integrated Analysis of MicroRNA and mRNA Expression Profiles to Identify RNA Expression Signatures in Lambskin Hair Follicles in Hu Sheep

    PubMed Central

    Lv, Xiaoyang; Sun, Wei; Yin, Jinfeng; Ni, Rong; Su, Rui; Wang, Qingzeng; Gao, Wen; Bao, Jianjun; Yu, Jiarui; Wang, Lihong; Chen, Ling

    2016-01-01

    Wave patterns in lambskin hair follicles are an important factor determining the quality of sheep’s wool. Hair follicles in lambskin from Hu sheep, a breed unique to China, have 3 types of waves, designated as large, medium, and small. The quality of wool from small wave follicles is excellent, while the quality of large waves is considered poor. Because no molecular and biological studies on hair follicles of these sheep have been conducted to date, the molecular mechanisms underlying the formation of different wave patterns is currently unknown. The aim of this article was to screen the candidate microRNAs (miRNA) and genes for the development of hair follicles in Hu sheep. Two-day-old Hu lambs were selected from full-sib individuals that showed large, medium, and small waves. Integrated analysis of microRNA and mRNA expression profiles employed high-throughout sequencing technology. Approximately 13, 24, and 18 differentially expressed miRNAs were found between small and large waves, small and medium waves, and medium and large waves, respectively. A total of 54, 190, and 81 differentially expressed genes were found between small and large waves, small and medium waves, and medium and large waves, respectively, by RNA sequencing (RNA-seq) analysis. Differentially expressed genes were classified using gene ontology and pathway analyses. They were found to be mainly involved in cell differentiation, proliferation, apoptosis, growth, immune response, and ion transport, and were associated with MAPK and the Notch signaling pathway. Reverse transcription-polymerase chain reaction (RT-PCR) analyses of differentially-expressed miRNA and genes were consistent with sequencing results. Integrated analysis of miRNA and mRNA expression indicated that, compared to small waves, large waves included 4 downregulated miRNAs that had regulatory effects on 8 upregulated genes and 3 upregulated miRNAs, which in turn influenced 13 downregulated genes. Compared to small waves

  19. Alphavirus vectors for cancer gene therapy (review).

    PubMed

    Yamanaka, Ryuya

    2004-04-01

    Alphaviruses have several characteristics that make them attractive as gene therapy vectors such as transient and high-level expression of a heterologous gene. Alphavirus vectors, Semliki Forest virus (SFV), Sindbis virus (SIN) and Venezuelan equine encephalitis virus (VEE) have been developed as gene expression vectors. Alphaviruses are positive-strand RNA viruses that can mediate efficient cytoplasmic gene expression in mammalian cells. The alphavirus RNA replication machinery has been engineered for high level heterologous gene expression. Since an RNA virus vector cannot integrate into chromosomal DNA, concerns about cell transformation are reduced. Alphavirus vectors demonstrate promise for the safe tumor-killing and tumor-specific immune responses. Recombinant alphavirus RNA replicons may facilitate gene therapy of cancer.

  20. Heterologous protein production using euchromatin-containing expression vectors in mammalian cells

    PubMed Central

    Zboray, Katalin; Sommeregger, Wolfgang; Bogner, Edith; Gili, Andreas; Sterovsky, Thomas; Fauland, Katharina; Grabner, Beatrice; Stiedl, Patricia; Moll, Herwig P.; Bauer, Anton; Kunert, Renate; Casanova, Emilio

    2015-01-01

    Upon stable cell line generation, chromosomal integration site of the vector DNA has a major impact on transgene expression. Here we apply an active gene environment, rather than specified genetic elements, in expression vectors used for random integration. We generated a set of Bacterial Artificial Chromosome (BAC) vectors with different open chromatin regions, promoters and gene regulatory elements and tested their impact on recombinant protein expression in CHO cells. We identified the Rosa26 BAC as the most efficient vector backbone showing a nine-fold increase in both polyclonal and clonal production of the human IgG-Fc. Clonal protein production was directly proportional to integrated vector copy numbers and remained stable during 10 weeks without selection pressure. Finally, we demonstrated the advantages of BAC-based vectors by producing two additional proteins, HIV-1 glycoprotein CN54gp140 and HIV-1 neutralizing PG9 antibody, in bioreactors and shake flasks reaching a production yield of 1 g/l. PMID:25977298

  1. Parvovirus Expresses a Small Noncoding RNA That Plays an Essential Role in Virus Replication.

    PubMed

    Wang, Zekun; Shen, Weiran; Cheng, Fang; Deng, Xuefeng; Engelhardt, John F; Yan, Ziying; Qiu, Jianming

    2017-04-15

    Human bocavirus 1 (HBoV1) belongs to the species Primate bocaparvovirus of the genus Bocaparvovirus of the Parvoviridae family. HBoV1 causes acute respiratory tract infections in young children and has a selective tropism for the apical surface of well-differentiated human airway epithelia (HAE). In this study, we identified an additional HBoV1 gene, bocavirus-transcribed small noncoding RNA (BocaSR), within the 3' noncoding region (nucleotides [nt] 5199 to 5338) of the viral genome of positive sense. BocaSR is transcribed by RNA polymerase III (Pol III) from an intragenic promoter at levels similar to that of the capsid protein-coding mRNA and is essential for replication of the viral DNA in both transfected HEK293 and infected HAE cells. Mechanistically, we showed that BocaSR regulates the expression of HBoV1-encoded nonstructural proteins NS1, NS2, NS3, and NP1 but not NS4. BocaSR is similar to the adenovirus-associated type I (VAI) RNA in terms of both nucleotide sequence and secondary structure but differs from it in that its regulation of viral protein expression is independent of RNA-activated protein kinase (PKR) regulation. Notably, BocaSR accumulates in the viral DNA replication centers within the nucleus and likely plays a direct role in replication of the viral DNA. Our findings reveal BocaSR to be a novel viral noncoding RNA that coordinates the expression of viral proteins and regulates replication of viral DNA within the nucleus. Thus, BocaSR may be a target for antiviral therapies for HBoV and may also have utility in the production of recombinant HBoV vectors.IMPORTANCE Human bocavirus 1 (HBoV1) is pathogenic to humans, causing acute respiratory tract infections in young children. In this study, we identified a novel HBoV1 gene that lies in the 3' noncoding region of the viral positive-sense genome and is transcribed by RNA polymerase III into a noncoding RNA of 140 nt. This bocavirus-transcribed small RNA (BocaSR) diverges from both adenovirus

  2. Globally increased ultraconserved noncoding RNA expression in pancreatic adenocarcinoma

    PubMed Central

    Lee, Eun Joo; Gusev, Yuriy; Allard, David; Sutaria, Dhruvitkumar S.; Badawi, Mohamed; Elgamal, Ola A.; Lerner, Megan R.; Brackett, Daniel J.; Calin, George A.; Schmittgen, Thomas D.

    2016-01-01

    Transcribed ultraconserved regions (T-UCRs) are a class of non-coding RNAs with 100% sequence conservation among human, rat and mouse genomes. T-UCRs are differentially expressed in several cancers, however their expression in pancreatic adenocarcinoma (PDAC) has not been studied. We used a qPCR array to profile all 481 T-UCRs in pancreatic cancer specimens, pancreatic cancer cell lines, during experimental pancreatic desmoplasia and in the pancreases of P48Cre/wt; KrasLSL-G12D/wt mice. Fourteen, 57 and 29% of the detectable T-UCRs were differentially expressed in the cell lines, human tumors and transgenic mouse pancreases, respectively. The vast majority of the differentially expressed T-UCRs had increased expression in the cancer. T-UCRs were monitored using an in vitro model of the desmoplastic reaction. Twenty-five % of the expressed T-UCRs were increased in the HPDE cells cultured on PANC-1 cellular matrix. UC.190, UC.233 and UC.270 were increased in all three human data sets. siRNA knockdown of each of these three T-UCRs reduced the proliferation of MIA PaCa-2 cells up to 60%. The expression pattern among many T-UCRs in the human and mouse pancreases closely correlated with one another, suggesting that groups of T-UCRs are co-activated in PDAC. Successful knockout of the transcription factor EGR1 in PANC-1 cells caused a reduction in the expression of a subset of T-UCRs suggesting that EGR1 may control T-UCR expression in PDAC. We report a global increase in expression of T-UCRs in both human and mouse PDAC. Commonalties in their expression pattern suggest a similar mechanism of transcriptional upregulation for T-UCRs in PDAC. PMID:27363020

  3. Production of Transgenic Calves Expressing an shRNA Targeting Myostatin

    PubMed Central

    Tessanne, K; Golding, MC; Long, CR; Peoples, MD; Hannon, G; Westhusin, ME

    2012-01-01

    Myostatin (MSTN) is a well-known negative regulator of muscle growth. Animals that possess mutations within this gene display an enhanced muscling phenotype, a desirable agricultural trait. Increased neonatal morbidity is common, however, resulting from complications arising from the birth of offspring with increased fetal muscle mass. The objective of the current research was to generate an attenuated MSTN-null phenotype in a large-animal model using RNA interference to enhance muscle development without the detrimental consequences of an inactivating mutation. To this end, we identified a series of short interfering RNAs that demonstrated effective suppression of MSTN mRNA and protein levels. To produce transgenic offspring capable of stable MSTN suppression in vivo, a recombinant lentiviral vector expressing a short hairpin RNA (shRNA) targeting MSTN for silencing was introduced into bovine fetal fibroblasts. These cells were used as nucleus donors for somatic cell nuclear transfer (SCNT). Twenty blastocysts were transferred into seven recipient cows resulting in five pregnancies. One transgenic calf developed to term, but died following delivery by Caesarean-section. As an alternative strategy, microinjection of recombinant lentiviral particles into the perivitelline space of in vitro-produced bovine zygotes was utilized to produce 40 transgenic blastocysts that were transferred into 14 recipient cows, resulting in 7 pregnancies. Five transgenic calves were produced, of which three expressed the transgene. This is the first report of transgenic livestock produced by direct injection of a recombinant lentivirus, and expressing transgenes encoding shRNAs targeting an endogenous gene (myostatin) for silencing. PMID:22139943

  4. Construction of non-invasively constitutive expression vectors using a metagenome-derived promoter for soluble expression of proteins.

    PubMed

    Cheong, Dea-Eun; Choi, Jong Hyun; Song, Jae Jun; Kim, Geun-Joong

    2013-06-01

    Expression of soluble and functional proteins has been one of the critical challenges to many aspects of synthetic biology, metabolic and protein engineering. Among the current methods for expression of target proteins, constitutive expression systems offer several advantages over inducible systems, which require a chemical or physical inducer. In a previous study, a G196 DNA fragment containing constitutive promoters was mined from the soil metagenome and evaluated for the expression of target proteins in the functional and soluble state. In this study, we further improved this system by constructing a series of constitutive expression vectors, pCEM (using the CEM promoter trimmed from G196), pCEMT (incorporating rrnB T1 and T2 terminator into the downstream region of MCS in pCEM) and pRCEMT (grafting the cis-acting region of pCEMT into a low-copy-number plasmid). Subsequently, genes encoding GFPuv, esterase 1767 and β-glucosidase were subcloned into the resulting vectors, and their expression level and solubility were compared with those of IPTG-inducible vector systems pQE30 and pTrc99A. The extent of homogeneity and the ratio of the soluble fraction in the pRCEMT vector were relatively higher, without any delay of growth rate, than that of the pQE30 or pTrc99A. These results indicate that new expression vectors with moderate constitutive function could more easily lead to a homogenous population of cells expressing target proteins than those with conventionally inducible promoters.

  5. MicroRNA Expression Signature in Degenerative Aortic Stenosis

    PubMed Central

    2016-01-01

    Degenerative aortic stenosis, characterized by narrowing of the exit of the left ventricle of the heart, has become the most common valvular heart disease in the elderly. The aim of this study was to investigate the microRNA (miRNA) signature in degenerative AS. Through microarray analysis, we identified the miRNA expression signature in the tissue samples from healthy individuals (n = 4) and patients with degenerative AS (n = 4). Six miRNAs (hsa-miR-193a-3p, hsa-miR-29b-1-5p, hsa-miR-505-5p, hsa-miR-194-5p, hsa-miR-99b-3p, and hsa-miR-200b-3p) were overexpressed and 14 (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-5p, hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p, hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-636, hsa-miR-34a-3p, hsa-miR-21-3p, and hsa-miR-516a-5p) were downregulated in aortic tissue from AS patients. GeneSpring 13.1 was used to identify potential human miRNA target genes by comparing a 3-way comparison of predictions from TargetScan, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to identify potential pathways and functional annotations associated with AS. Twenty miRNAs were significantly differentially expressed between patients with AS samples and normal controls and identified potential miRNA targets and molecular pathways associated with this morbidity. This study describes the miRNA expression signature in degenerative AS and provides an improved understanding of the molecular pathobiology of this disease. PMID:27579316

  6. MicroRNA Expression Signature in Degenerative Aortic Stenosis.

    PubMed

    Shi, Jing; Liu, Hui; Wang, Hui; Kong, Xiangqing

    2016-01-01

    Degenerative aortic stenosis, characterized by narrowing of the exit of the left ventricle of the heart, has become the most common valvular heart disease in the elderly. The aim of this study was to investigate the microRNA (miRNA) signature in degenerative AS. Through microarray analysis, we identified the miRNA expression signature in the tissue samples from healthy individuals (n = 4) and patients with degenerative AS (n = 4). Six miRNAs (hsa-miR-193a-3p, hsa-miR-29b-1-5p, hsa-miR-505-5p, hsa-miR-194-5p, hsa-miR-99b-3p, and hsa-miR-200b-3p) were overexpressed and 14 (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-5p, hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p, hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-636, hsa-miR-34a-3p, hsa-miR-21-3p, and hsa-miR-516a-5p) were downregulated in aortic tissue from AS patients. GeneSpring 13.1 was used to identify potential human miRNA target genes by comparing a 3-way comparison of predictions from TargetScan, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to identify potential pathways and functional annotations associated with AS. Twenty miRNAs were significantly differentially expressed between patients with AS samples and normal controls and identified potential miRNA targets and molecular pathways associated with this morbidity. This study describes the miRNA expression signature in degenerative AS and provides an improved understanding of the molecular pathobiology of this disease.

  7. Cytokine mRNA expression in postischemic/reperfused myocardium.

    PubMed Central

    Herskowitz, A.; Choi, S.; Ansari, A. A.; Wesselingh, S.

    1995-01-01

    While the role of cytokines in mediating injury during hind limb skeletal muscle ischemia followed by reperfusion has recently been described, the role of cytokines in myocardial infarction and ischemia/reperfusion have remained relatively unexplored. We hypothesize that cytokines play an important role in the regulation of postischemic myocardial inflammation. This study reports the temporal sequence of proinflammatory cytokine gene expression in postischemic/reperfused myocardium and localizes interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha)-protein by immunostaining. Rats were subjected to either permanent left anterior descending (LAD) occlusion or to 35 minutes of LAD occlusion followed by reperfusion and sacrificed up to 7 days later. Rat-specific oligonucleotide probes were used to semiquantitatively assess the relative expression of mRNA for TNF-alpha, IL-1 beta, IL-2, IL-6, interferon-gamma (IFN-gamma), and transforming growth factor-beta 1 (TGF-beta 1) utilizing the reverse transcriptase-polymerase chain reaction amplification technique. Increased cardiac mRNA levels for all cytokines except IL-6 and IFN-gamma were measurable within 15 to 30 minutes of LAD occlusion and increased levels were generally sustained for 3 hours. During early reperfusion, mRNA levels for IL-6 and TGF-beta 1 were significantly reduced compared with permanent LAD occlusion. In both groups, cytokine mRNA levels all returned to baseline levels at 24 hours, while IL-1 beta, TNF-alpha, and TGF-beta 1 mRNA levels again rose significantly at 7 days only in animals with permanent LAD occlusion. Immunostaining for IL-1 beta and TNF-alpha protein revealed two patterns of reactivity: 1) microvascular staining for both IL-1 beta and TNF-alpha protein only in postischemic reperfused myocardium in early post-reperfusion time points; and 2) staining of infiltrating macrophages in healing infarct zones which was most prominent at 7 days after permanent LAD occlusion

  8. Brevibacillus expression system: host-vector system for efficient production of secretory proteins.

    PubMed

    Mizukami, Makoto; Hanagata, Hiroshi; Miyauchi, Akira

    2010-04-01

    Brevibacillus expression system is an effective bacterial expression system for secretory proteins. The host bacterium, Brevibacillus choshinensis, a gram-positive bacterium, has strong capacity to secrete a large amount of proteins (approximately 30 g/L), which mostly consist of cell wall protein. A host-vector system that utilizes such high expression capacity has been constructed for the production of secretory proteins and tested for various heterologous proteins, including cytokines, enzymes, antigens, and adjuvants.

  9. Transient expression of Human papillomavirus type 16 L1 protein in Nicotiana benthamiana using an infectious tobamovirus vector.

    PubMed

    Varsani, Arvind; Williamson, Anna-Lise; Stewart, Debbie; Rybicki, Edward P

    2006-09-01

    A Tobacco mosaic virus (TMV)-derived vector was used to express a native Human papillomavirus type 16 (HPV-16) L1 gene in Nicotiana benthamiana by means of infectious in vitro RNA transcripts inoculated onto N. benthamiana plants. HPV-16 L1 protein expression was quantitated by enzyme-linked immunosorbent assays (ELISA) after concentration of the plant extract. We estimated that the L1 product yield was 20-37 microg/kg of fresh leaf material. The L1 protein in the concentrated extract was antigenically characterised using the neutralising and conformation-specific Mabs H16:V5 and H16:E70, which bound to the plant-produced protein. Particles observed by transmission electron microscopy were mainly capsomers but virus-like particles (VLPs) similar to those produced in other systems were also present. Immunisation of rabbits with the concentrated plant extract induced a weak immune response. This is the first report of the successful expression of an HPV L1 gene in plants using a plant virus vector.

  10. Developing adenoviral vectors encoding therapeutic genes toxic to host cells: comparing binary and single-inducible vectors expressing truncated E2F-1.

    PubMed

    Gomez-Gutierrez, Jorge G; Rao, Xiao-Mei; Garcia-Garcia, Aracely; Hao, Hongying; McMasters, Kelly M; Zhou, H Sam

    2010-02-20

    Adenoviral vectors are highly efficient at transferring genes into cells and are broadly used in cancer gene therapy. However, many therapeutic genes are toxic to vector host cells and thus inhibit vector production. The truncated form of E2F-1 (E2Ftr), which lacks the transactivation domain, can significantly induce cancer cell apoptosis, but is also toxic to HEK-293 cells and inhibits adenovirus replication. To overcome this, we have developed binary- and single-vector systems with a modified tetracycline-off inducible promoter to control E2Ftr expression. We compared several vectors and found that the structure of expression cassettes in vectors significantly affects E2Ftr expression. One construct expresses high levels of inducible E2Ftr and efficiently causes apoptotic cancer cell death by activation of caspase-3. The approach developed in this study may be applied in other viral vectors for encoding therapeutic genes that are toxic to their host cells and/or inhibit vector propagation.

  11. Construction of a directional T vector for cloning PCR products and expression in Escherichia coli.

    PubMed

    Liang, Xiu-Yi; Liang, Zhi-Cheng; Zhang, Zhi; Zhou, Jiao-Jiao; Liu, Shi-Yu; Tian, Sheng-Li

    2015-05-01

    In order to clone PCR products and express them effectively in Escherichia coli, a directional cloning system was constructed by generating a T vector based on pQE-30Xa. The vector was prepared by inserting an XcmI cassette containing an endonuclease XcmI site, a kanamycin selective marker, a multiple-cloning-site (MCS) region and an opposite endonuclease XcmI site into the vector pQE-30Xa. The T vector pQE-T with single overhanging dT residues at both 3' ends was obtained by digesting with the restriction enzyme XcmI. For directional cloning, a BamHI site was introduced to the ends of the PCR products. A BamHI site was also located on the multiple cloning site of pQE-T. The PCR products were ligated with pQE-T. The directionally inserted recombinants were distinguished by using BamHI to digest the recombinants because there are two BamHI sites located on the both sides of PCR fragment. In order to identify the T-vector functions, the 14-3-3-ZsGreen and hRBP genes were amplified and a BamHI site was added to the ends of the genes to confirm this vector by ligation with pQE-T. Results showed that the 14-3-3-ZsGreen and hRBP were cloned to the vector pQE-T directly and corresponding proteins were successfully produced. It was here demonstrated that this directional vector is capable of gene cloning and is used to manipulate gene expression very easily. The methodology proposed here involves easy incorporation of the construct into other vectors in various hosts.

  12. A novel Bacillus subtilis expression vector based on bacteriophage phi 105.

    PubMed

    Gibson, R M; Errington, J

    1992-11-02

    We have developed a novel expression vector based on the bacteriophage phi 105, and employed it for the production of mutant beta-lactamases in Bacillus subtilis. Expression of the beta-lactamase-encoding gene was low when cloned into the prophage under the control of its own promoter. However, expression was considerably elevated when the gene was inserted into the phage genome in the same orientation as phage transcription. A defective phi 105 vector was constructed with a deletion removing a region needed for cell lysis, and with a mutation in the immunity repressor, rendering it temperature sensitive. Production of beta-lactamase could then be induced by a shift in temperature and without concomitant cell lysis, facilitating purification of the protein from the culture supernatant. This phage has considerable potential for development as a vector for controllable production of heterologous proteins in B. subtilis.

  13. Rule-Based Design of Plant Expression Vectors Using GenoCAD.

    PubMed

    Coll, Anna; Wilson, Mandy L; Gruden, Kristina; Peccoud, Jean

    2015-01-01

    Plant synthetic biology requires software tools to assist on the design of complex multi-genic expression plasmids. Here a vector design strategy to express genes in plants is formalized and implemented as a grammar in GenoCAD, a Computer-Aided Design software for synthetic biology. It includes a library of plant biological parts organized in structural categories and a set of rules describing how to assemble these parts into large constructs. Rules developed here are organized and divided into three main subsections according to the aim of the final construct: protein localization studies, promoter analysis and protein-protein interaction experiments. The GenoCAD plant grammar guides the user through the design while allowing users to customize vectors according to their needs. Therefore the plant grammar implemented in GenoCAD will help plant biologists take advantage of methods from synthetic biology to design expression vectors supporting their research projects.

  14. Plant virus expression vectors set the stage as production platforms for biopharmaceutical proteins.

    PubMed

    Hefferon, Kathleen Laura

    2012-11-10

    Transgenic plants present enormous potential as a cost-effective and safe platform for large-scale production of vaccines and other therapeutic proteins. A number of different technologies are under development for the production of pharmaceutical proteins from plant tissues. One method used to express high levels of protein in plants involves the employment of plant virus expression vectors. Plant virus vectors have been designed to carry vaccine epitopes as well as full therapeutic proteins such as monoclonal antibodies in plant tissue both safely and effectively. Biopharmaceuticals such as these offer enormous potential on many levels, from providing relief to those who have little access to modern medicine, to playing an active role in the battle against cancer. This review describes the current design and status of plant virus expression vectors used as production platforms for biopharmaceutical proteins.

  15. Production of human beta interferon in insect cells infected with a Baculovirus expression vector

    SciTech Connect

    Smith, G.E.; Summers, M.D.; Fraser, M.J.

    1983-12-01

    Autographa californica nuclear polyhedrosis virus (AcNPV) was used as an expression vector for human beta interferon. By using specially constructed plasmids, the protein-coding sequences for interferon were linked to the AcNPV promoter for the gene encoding for polyhedrin, the major occlusion protein. The interferon gene was inserted at various locations relative to the AcNPV polyhedrin transcriptional and translational signals, and the interferon-polyhedrin hybrid genes were transferred to infectious AcNPV expression vectors. Biologically active interferon was produced, and greater than 95% was secreted from infected insect cells. A maximum of ca. 5 x 10/sup 6/ U of interferon activity was produced by 10/sup 6/ infected cells. These results demonstrate that AcNPV should be suitable for use as a eucaryotic expression vector for the production of products from cloned genes.

  16. Gene Therapy for Neuropathic Pain by Silencing of TNF-α Expression with Lentiviral Vectors Targeting the Dorsal Root Ganglion in Mice

    PubMed Central

    Ogawa, Nobuhiro; Kawai, Hiromichi; Terashima, Tomoya; Kojima, Hideto; Oka, Kazuhiro; Chan, Lawrence; Maegawa, Hiroshi

    2014-01-01

    Neuropathic pain can be a debilitating condition. Many types of drugs that have been used to treat neuropathic pain have only limited efficacy. Recent studies indicate that pro-inflammatory mediators including tumor necrosis factor α (TNF-α) are involved in the pathogenesis of neuropathic pain. In the present study, we engineered a gene therapy strategy to relieve neuropathic pain by silencing TNF-α expression in the dorsal root ganglion (DRG) using lentiviral vectors expressing TNF short hairpin RNA1-4 (LV-TNF-shRNA1-4) in mice. First, based on its efficacy in silencing TNF-α in vitro, we selected shRNA3 to construct LV-TNF-shRNA3 for in vivo study. We used L5 spinal nerve transection (SNT) mice as a neuropathic pain model. These animals were found to display up-regulated mRNA expression of activating transcription factor 3 (ATF3) and neuropeptide Y (NPY), injury markers, and interleukin (IL)-6, an inflammatory cytokine in the ipsilateral L5 DRG. Injection of LV-TNF-shRNA3 onto the proximal transected site suppressed significantly the mRNA levels of ATF3, NPY and IL-6, reduced mechanical allodynia and neuronal cell death of DRG neurons. These results suggest that lentiviral-mediated silencing of TNF-α in DRG relieves neuropathic pain and reduces neuronal cell death, and may constitute a novel therapeutic option for neuropathic pain. PMID:24642694

  17. Design of a Retrovirus-Derived Vector for Expression and Transduction of Exogenous Genes in Mammalian Cells

    PubMed Central

    Perkins, Archibald S.; Kirschmeier, Paul T.; Gattoni-Celli, Sebastiano; Weinstein, I. Bernard

    1983-01-01

    We have developed a transfection vector for animal cells that contains long terminal repeat (LTR) sequences to promote expression. Plasmid p101/101, a derivative of plasmid pBR322 containing the complete Moloney murine sarcoma virus genome, was cut with restriction enzymes and religated so that both the 5′ and 3′ LTRs were retained and all but about 700 base pairs of the intervening viral sequences were removed. To test this vector, the Escherichia coli gene gpt was cloned into a unique PstI site, between the two LTRs, with guanine and cytosine tailing, a method that can be generalized for insertion of any DNA segment into this vector. When DNA from recombinant plasmids in which the gpt gene was inserted in the same transcriptional polarity as the LTR sequences was transfected onto murine or rat fibroblast cultures, we obtained a high yield of Gpt+ colonies. However, plasmid constructs with the gpt gene in the opposite polarity were virtually devoid of activity. With gpt in the proper orientation, restriction enzyme cuts within the LTRs or between the 5′ LTR and the gpt gene reduced transfection by more than 98%, whereas a cut between the gpt gene and the 3′ LTR gave an 80% reduction in activity. Thus, both 5′ and 3′ LTR sequences are essential for optimal gpt expression, although the 5′ LTR appears to play a more important role. When the LTR-gpt plasmid was transfected onto murine leukemia virus-infected mouse fibroblasts, we obtained evidence that RNA copies became pseudotyped into viral particles which could transfer the Gpt+ phenotype into rodent cells with extremely high efficiency. This vector should prove useful for high-efficiency transduction of a variety of genes in mammalian cells. Images PMID:6308426

  18. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.

    PubMed

    Guzman, L M; Belin, D; Carson, M J; Beckwith, J

    1995-07-01

    We have constructed a series of plasmid vectors (pBAD vectors) containing the PBAD promoter of the araBAD (arabinose) operon and the gene encoding the positive and negative regulator of this promoter, araC. Using the phoA gene and phoA fusions to monitor expression in these vectors, we show that the ratio of induction/repression can be 1,200-fold, compared with 50-fold for PTAC-based vectors. phoA expression can be modulated over a wide range of inducer (arabinose) concentrations and reduced to extremely low levels by the presence of glucose, which represses expression. Also, the kinetics of induction and repression are very rapid and significantly affected by the ara allele in the host strain. Thus, the use of this system which can be efficiently and rapidly turned on and off allows the study of important aspects of bacterial physiology in a very simple manner and without changes of temperature. We have exploited the tight regulation of the PBAD promoter to study the phenotypes of null mutations of essential genes and explored the use of pBAD vectors as an expression system.

  19. A suite of Gateway® compatible ternary expression vectors for functional analysis in Zymoseptoria tritici.

    PubMed

    Sidhu, Y S; Chaudhari, Y K; Usher, J; Cairns, T C; Csukai, M; Haynes, K

    2015-06-01

    Gene overexpression is a widely used functional genomics approach in fungal biology. However, to date it has not been established in Zymoseptoria tritici which is an important pathogen of wheat (Triticum species). Here we report a suite of Gateway® recombination compatible ternary expression vectors for Agrobacterium tumefaciens mediated transformation of Z. tritici. The suite of 32 vectors is based on a combination of four resistance markers for positive selection against glufosinate ammonium, geneticin, hygromycin and sulfonylurea; three constitutive Z. tritici promoters (pZtATUB, pZtGAPDH and pZtTEF) and a nitrogen responsive promoter (pZtNIA1) for controlled expression of the open reading frames. Half of the vectors facilitate expression of proteins tagged with C-terminal EGFP. All 32 vectors allow high frequency targeting of the overexpression cassette into the Ku70 locus and complement the Ku70 gene when transformed into a Z. tritici ku70 null strain, thus circumventing additional phenotypes that can arise from random integration. This suite of ternary expression vectors will be a useful tool for functional analysis through gene overexpression in Z. tritici.

  20. PmiRExAt: plant miRNA expression atlas database and web applications.

    PubMed

    Gurjar, Anoop Kishor Singh; Panwar, Abhijeet Singh; Gupta, Rajinder; Mantri, Shrikant S

    2016-01-01

    High-throughput small RNA (sRNA) sequencing technology enables an entirely new perspective for plant microRNA (miRNA) research and has immense potential to unravel regulatory networks. Novel insights gained through data mining in publically available rich resource of sRNA data will help in designing biotechnology-based approaches for crop improvement to enhance plant yield and nutritional value. Bioinformatics resources enabling meta-analysis of miRNA expression across multiple plant species are still evolving. Here, we report PmiRExAt, a new online database resource that caters plant miRNA expression atlas. The web-based repository comprises of miRNA expression profile and query tool for 1859 wheat, 2330 rice and 283 maize miRNA. The database interface offers open and easy access to miRNA expression profile and helps in identifying tissue preferential, differential and constitutively expressing miRNAs. A feature enabling expression study of conserved miRNA across multiple species is also implemented. Custom expression analysis feature enables expression analysis of novel miRNA in total 117 datasets. New sRNA dataset can also be uploaded for analysing miRNA expression profiles for 73 plant species. PmiRExAt application program interface, a simple object access protocol web service allows other programmers to remotely invoke the methods written for doing programmatic search operations on PmiRExAt database.Database URL:http://pmirexat.nabi.res.in.

  1. PmiRExAt: plant miRNA expression atlas database and web applications

    PubMed Central

    Gurjar, Anoop Kishor Singh; Panwar, Abhijeet Singh; Gupta, Rajinder; Mantri, Shrikant S.

    2016-01-01

    High-throughput small RNA (sRNA) sequencing technology enables an entirely new perspective for plant microRNA (miRNA) research and has immense potential to unravel regulatory networks. Novel insights gained through data mining in publically available rich resource of sRNA data will help in designing biotechnology-based approaches for crop improvement to enhance plant yield and nutritional value. Bioinformatics resources enabling meta-analysis of miRNA expression across multiple plant species are still evolving. Here, we report PmiRExAt, a new online database resource that caters plant miRNA expression atlas. The web-based repository comprises of miRNA expression profile and query tool for 1859 wheat, 2330 rice and 283 maize miRNA. The database interface offers open and easy access to miRNA expression profile and helps in identifying tissue preferential, differential and constitutively expressing miRNAs. A feature enabling expression study of conserved miRNA across multiple species is also implemented. Custom expression analysis feature enables expression analysis of novel miRNA in total 117 datasets. New sRNA dataset can also be uploaded for analysing miRNA expression profiles for 73 plant species. PmiRExAt application program interface, a simple object access protocol web service allows other programmers to remotely invoke the methods written for doing programmatic search operations on PmiRExAt database. Database URL: http://pmirexat.nabi.res.in. PMID:27081157

  2. RNAi-mediated Mortality of the Whitefly through Transgenic Expression of Double-stranded RNA Homologous to Acetylcholinesterase and Ecdysone Receptor in Tobacco Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The whitefly Bemisia tabaci (Genn.) is a pest and vector of plant viruses affecting plants worldwide. Using RNA interference (RNAi) to downregulate whitefly genes by expressing their homologous double stranded RNAs in plants has great potential for management of whiteflies to reduce plant virus dise...

  3. Therapeutic and prophylactic applications of alphavirus vectors.

    PubMed

    Atkins, Gregory J; Fleeton, Marina N; Sheahan, Brian J

    2008-11-11

    Alphavirus vectors are high-level, transient expression vectors for therapeutic and prophylactic use. These positive-stranded RNA vectors, derived from Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus, multiply and are expressed in the cytoplasm of most vertebrate cells, including human cells. Part of the genome encoding the structural protein genes, which is amplified during a normal infection, is replaced by a transgene. Three types of vector have been developed: virus-like particles, layered DNA-RNA vectors and replication-competent vectors. Virus-like particles contain replicon RNA that is defective since it contains a cloned gene in place of the structural protein genes, and thus are able to undergo only one cycle of expression. They are produced by transfection of vector RNA, and helper RNAs encoding the structural proteins. Layered DNA-RNA vectors express the Semliki Forest virus replicon from a cDNA copy via a cytomegalovirus promoter. Replication-competent vectors contain a transgene in addition to the structural protein genes. Alphavirus vectors are used for three main applications: vaccine construction, therapy of central nervous system disease, and cancer therapy.

  4. RNA Interference Is Responsible for Reduction of Transgene Expression after Sleeping Beauty Transposase Mediated Somatic Integration

    PubMed Central

    Rauschhuber, Christina; Ehrhardt, Anja

    2012-01-01

    Background Integrating non-viral vectors based on transposable elements are widely used for genetically engineering mammalian cells in functional genomics and therapeutic gene transfer. For the Sleeping Beauty (SB) transposase system it was demonstrated that convergent transcription driven by the SB transposase inverted repeats (IRs) in eukaryotic cells occurs after somatic integration. This could lead to formation of double-stranded RNAs potentially presenting targets for the RNA interference (RNAi) machinery and subsequently resulting into silencing of the transgene. Therefore, we aimed at investigating transgene expression upon transposition under RNA interference knockdown conditions. Principal Findings To establish RNAi knockdown cell lines we took advantage of the P19 protein, which is derived from the tomato bushy stunt virus. P19 binds and inhibits 21 nucleotides long, small-interfering RNAs and was shown to sufficiently suppress RNAi. We found that transgene expression upon SB mediated transposition was enhanced, resulting into a 3.2-fold increased amount of colony forming units (CFU) after transposition. In contrast, if the transgene cassette is insulated from the influence of chromosomal position effects by the chicken-derived cHS4 insulating sequences or when applying the Forg Prince transposon system, that displays only negligible transcriptional activity, similar numbers of CFUs were obtained. Conclusion In summary, we provide evidence for the first time that after somatic integration transposon derived transgene expression is regulated by the endogenous RNAi machinery. In the future this finding will help to further improve the molecular design of the SB transposase vector system. PMID:22570690

  5. Regulation of adeno-associated virus gene expression in 293 cells: control of mRNA abundance and translation

    SciTech Connect

    Trempe, J.P.; Carter, B.J.

    1988-01-01

    The authors studied the effects of the adeno-associated virus (AAV) rep gene on the control of gene expression from the AAV p/sub 40/ promoter in 293 cells in the absence of an adenovirus coinfection. AAV vectors containing the chloramphenicol acetyltransferase (cat) gene were used to measure the levels of cat expression and steady-state mRNA from p/sub 40/. When the rep gene was present in cis or in trans, cat expression from p/sub 40/ was decreased 3- to 10-fold, but there was a 2- to 10-fold increase in the level of p/sub 40/ mRNA. Conversely, cat expression increased and the p/sub 40/ mRNA level decreased in the absence of the rep gene. Both wild-type and carboxyl-terminal truncated Rep proteins were capable of eliciting both effects. These data suggest two roles for the pleiotropic AAV rep gene: as a translational inhibitor and as a positive regulator of p/sub 40/ mRNA levels. They also provide additional evidence for a cis-acting negative regulatory region which decreases RNA from the AAV p/sub 5/ promoter in a fashion independent of rep.

  6. RNA1-Independent Replication and GFP Expression from Tomato marchitez virus Isolate M Cloned cDNA.

    PubMed

    Ferriol, I; Turina, M; Zamora-Macorra, E J; Falk, B W

    2016-05-01

    Tomato marchitez virus (ToMarV; synonymous with Tomato apex necrosis virus) is a positive-strand RNA virus in the genus Torradovirus within the family Secoviridae. ToMarV is an emergent whitefly-transmitted virus that causes important diseases in tomato (Solanum lycopersicum) in Mexico. Here, the genome sequence of the ToMarV isolate M (ToMarV-M) was determined. We engineered full-length cDNA clones of the ToMarV-M genomic RNA (RNA1 and RNA2), separately, into a binary vector. Coinfiltration of both triggered systemic infections in Nicotiana benthamiana, tomato, and tomatillo (Physalis philadelphica) plants and recapitulated the biological activity of the wild-type virus. The viral progeny generated from tomato and tomatillo plants were transmissible by the whitefly Bemisia tabaci biotype B. Also, we assessed whether these infectious clones could be used for screening tomato cultivars for resistance to ToMarV and our results allowed us to differentiate resistant and susceptible tomato lines. We demonstrated that RNA1 of ToMarV-M is required for the replication of RNA2, and it can replicate independently of RNA2. From this, ToMarV-M RNA2 was used to express the green fluorescent protein in N. benthamiana plants, which allowed us to track cell-to-cell movement. The construction of full-length infectious cDNA clones of ToMarV-M provides an excellent tool to investigate virus-host-vector interactions and elucidate the functions of torradovirus-encoded proteins or the mechanisms of replication of torradovirus genomic RNA.

  7. Engineered Expression Vectors Significantly Enhanced the Production of 2-Keto-D-gluconic Acid by Gluconobacter oxidans.

    PubMed

    Shi, Yuan-yuan; Li, Ke-fei; Lin, Jin-ping; Yang, Sheng-li; Wei, Dong-zhi

    2015-06-10

    2-Keto-D-gluconic acid (2KGA), a precursor of the important food antioxidant erythorbic acid, can be produced by Gluconobacter oxidans. To genetically engineer G. oxidans for improved 2KGA production, six new expression vectors with increased copy numbers based on pBBR1MCS-5 were constructed via rational mutagenesis. The utility of the mutant vectors was demonstrated by the increased ga2dh mRNA abundance, enzyme activity, and 2KGA production when the ga2dh gene was overexpressed using these vectors. Among the obtained constructs, G. oxidans/pBBR-3510-ga2dh displayed the highest oxidative activity toward gluconic acid (GA). In a batch biotransformation process, the G. oxidans/pBBR-3510-ga2dh strain exhibited 2KGA productivity (0.63 g/g CWW/h) higher than that obtained using strain G. oxidans/pBBR-ga2dh (0.40 g/g CWW/h). When sufficient oxygen was supplied during the biotransformation, up to 480 g/L GA was exhausted in 45 h by the G. oxidans/pBBR-3510-ga2dh strain and approximately 486 g/L 2KGA was produced, generating the productivity of 0.54 g/g CWW/h.

  8. Expression of lacZ from the promoter of the Escherichia coli spc operon cloned into vectors carrying the W205 trp-lac fusion.

    PubMed

    Liang, S T; Dennis, P P; Bremer, H

    1998-12-01

    The expression of lacZ has been analyzed and compared in a series of promoter cloning vectors by measuring the amount of lacZ mRNA by hybridization and the amount of beta-galactosidase by standard enzymatic assay. Expression was driven by the promoter, Pspc, of the spc ribosomal protein operon. The vectors contained either the standard W205 trp-lac fusion with the trp operon transcription terminator, trpt, located in the lacZ leader sequence, or a deletion derivative that functionally inactivates trpt. In the presence of trpt, lacZ expression was temperature dependent so that increasing the growth temperature reduced the accumulation of lacZ mRNA and beta-galactosidase activity. The frequency of transcript termination at trpt was estimated to be near zero at 20 degreesC and at about 45% at 37 degreesC. The amount of Pspc-derived lacZ mRNA and the amount of beta-galactosidase produced per lacZ mRNA varied, depending on the mRNA 5' leader sequence between Pspc and lacZ. These results demonstrate that the quantitative assessment of promoter activities with promoter cloning vectors requires careful analysis and interpretation. One particular construct without trpt did not seem to contain fortuitous transcription or translation signals generated at the fusion junction. In this strain, lacZ expression from Pspc was compared at the enzyme activity and mRNA levels with a previously constructed strain in which lacZ was linked to the tandem P1 and P2 promoters of the rrnB operon. At any given growth rate, the different activities of beta-galactosidase in these two strains were found to reflect the same differences in their amounts of lacZ mRNA. Assuming that the promoter-lacZ fusions in these strains reflect the properties of the promoters in their normal chromosomal setting, it was possible to estimate the absolute transcription activity of Pspc and the relative translation efficiency of Pspc-lacZ mRNA at different growth rates. Transcription from the spc promoter was found

  9. The Impact of MicroRNA-223-3p on IL-17 Receptor D Expression in Synovial Cells

    PubMed Central

    Moriya, Nozomu; Shibasaki, Seiji; Karasaki, Miki; Iwasaki, Tsuyoshi

    2017-01-01

    Objective Rheumatoid arthritis (RA) is an autoimmune inflammatory disease affecting joints. Elevated plasma levels of microRNA-223-3p (miR-223-3p) in patients with RA are implicated in the pathogenesis of the disease. This study aimed to analyze the functional role of miR-223-3p in the pathogenesis of RA by overexpressing miR-223-3p in synovial cell lines. Methods Arthritis was induced in the RA model of SKG mice by injection of ß-glucan. The histopathologic features of joints were examined using hematoxylin and eosin and immunohistochemical staining. Plasma levels of miRNA were determined by panel real-time PCR analysis. Target genes of the differentially expressed miRNAs in SKG mice were analyzed using miRNA target prediction algorithms. The dual-luciferase reporter system was used to evaluate the relationship between miR-223-3p and IL-17 receptor D (IL-17RD). The activity of miR-223-3p was analyzed by transfection of plasmid vectors overexpressing miR-223-3p into IL-17RD-expressing NIH3T3 and MH7A cell lines. Il6 and Il17rd mRNA expression was analyzed by quantitative real-time PCR. IL-17RD protein expression was analyzed by western blot analysis. Results We identified 17 upregulated miRNAs (fold change > 2.0) in plasma of SKG mice injected with ß-glucan relative to untreated SKG mice. Il17rd was identified as the candidate target gene of miR-223-3p using five miRNA target prediction algorithms. The transfection of plasmid vectors overexpressing miR-223-3p into NIH3T3 and MH7A cells resulted in the downregulation of Il17rd expression and upregulation of Il6 expression. Expression of miR-223-3p and Il6 mRNA in MH7A cells was upregulated; however, that of Il17rd mRNA was downregulated following TNF-α stimulation. IL-17RD expression in synovial tissues from SKG mice and RA patients was inversely correlated with the severity of arthritis. Conclusion This study is the first to demonstrate that miR-223-3p downregulates IL-17RD in both mouse and human cells; miR-223

  10. LncRNA ontology: inferring lncRNA functions based on chromatin states and expression patterns

    PubMed Central

    Li, Yongsheng; Chen, Hong; Pan, Tao; Jiang, Chunjie; Zhao, Zheng; Wang, Zishan; Zhang, Jinwen; Xu, Juan; Li, Xia

    2015-01-01

    Accumulating evidences suggest that long non-coding RNAs (lncRNAs) perform important functions. Genome-wide chromatin-states area rich source of information about cellular state, yielding insights beyond what is typically obtained by transcriptome profiling. We propose an integrative method for genome-wide functional predictions of lncRNAs by combining chromatin states data with gene expression patterns. We first validated the method using protein-coding genes with known function annotations. Our validation results indicated that our integrative method performs better than co-expression analysis, and is accurate across different conditions. Next, by applying the integrative model genome-wide, we predicted the probable functions for more than 97% of human lncRNAs. The putative functions inferred by our method match with previously annotated by the targets of lncRNAs. Moreover, the linkage from the cellular processes influenced by cancer-associated lncRNAs to the cancer hallmarks provided a “lncRNA point-of-view” on tumor biology. Our approach provides a functional annotation of the lncRNAs, which we developed into a web-based application, LncRNA Ontology, to provide visualization, analysis, and downloading of lncRNA putative functions. PMID:26485761

  11. An episomal expression vector for screening mutant gene libraries in Pichia pastoris.

    PubMed

    Lee, Charles C; Williams, Tina G; Wong, Dominic W S; Robertson, George H

    2005-07-01

    Screening mutant gene libraries for isolating improved enzyme variants is a powerful technique that benefits from effective and reliable biological expression systems. Pichia pastoris is a very useful organism to express proteins that are inactive in other hosts such as Escherichia coli and Saccharomyces cerevisiae. However, most P. pastoris expression plasmids are designed to integrate into the host chromosome and hence are not as amenable to high-throughput screening projects. We have designed a P. pastoris expression vector, pBGP1, incorporating an autonomous replication sequence that allows the plasmid to exist as an episomal element. This vector contains the alpha-factor signal sequence to direct secretion of the mutant enzymes. Expression of the genes is driven by the constitutive GAP promoter, thus eliminating the need for timed or cell density-specific inductions. The pBGP1 plasmid was used to screen a xylanase gene library to isolate higher activity mutants.

  12. Gram negative shuttle BAC vector for heterologous expression of metagenomic libraries.

    PubMed

    Kakirde, Kavita S; Wild, Jadwiga; Godiska, Ronald; Mead, David A; Wiggins, Andrew G; Goodman, Robert M; Szybalski, Waclaw; Liles, Mark R

    2011-04-15

    Bacterial artificial chromosome (BAC) vectors enable stable cloning of large DNA fragments from single genomes or microbial assemblages. A novel shuttle BAC vector was constructed that permits replication of BAC clones in diverse Gram-negative species. The "Gram-negative shuttle BAC" vector (pGNS-BAC) uses the F replicon for stable single-copy replication in E. coli and the broad-host-range RK2 mini-replicon for high-copy replication in diverse Gram-negative bacteria. As with other BAC vectors containing the oriV origin, this vector is capable of an arabinose-inducible increase in plasmid copy number. Resistance to both gentamicin and chloramphenicol is encoded on pGNS-BAC, permitting selection for the plasmid in diverse bacterial species. The oriT from an IncP plasmid was cloned into pGNS-BAC to enable conjugal transfer, thereby allowing both electroporation and conjugation of pGNS-BAC DNA into bacterial hosts. A soil metagenomic library was constructed in pGNS-BAC-1 (the first version of the vector, lacking gentamicin resistance and oriT), and recombinant clones were demonstrated to replicate in diverse Gram-negative hosts, including Escherichia coli, Pseudomonas spp., Salmonella enterica, Serratia marcescens, Vibrio vulnificus and Enterobacter nimipressuralis. This shuttle BAC vector can be utilized to clone genomic DNA from diverse sources, and then transfer it into diverse Gram-negative bacterial species to facilitate heterologous expression of recombinant pathways.

  13. Expression of microRNA-146 in osteoarthritis cartilage

    PubMed Central

    Yamasaki, Keiichiro; Nakasa, Tomoyuki; Miyaki, Shigeru; Ishikawa, Masakazu; Deie, Masataka; Adachi, Nobuo; Yasunaga, Yuji; Asahara, Hiroshi; Ochi, Mitsuo

    2009-01-01

    Objective A role of microRNAs, which are ∼22- nucleotide non coding RNAs, has recently been recognized in human diseases. The objective of this study was to identify the expression pattern of microRNA-146 (miR-146) in cartilage from patients with osteoarthritis (OA). Methods The expression of miR-146 in cartilage from 15 patients with OA was analyzed by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and by in situ hybridization. Induction of the expression of miR-146 by cultures of normal human articular chondrocytes following stimulation with interleukin-1β (IL-1β) was examined by quantitative RT-PCR. Results All cartilage samples were divided into three groups according to a modified Mankin scale; grade I: 0 - 5, grade II: 6 - 10, grade III: 11 - 14. In OA cartilage samples of grade I, the expression of miR-146a and Col2a1 was significantly higher than that of other groups (p<0.05). In OA cartilage of grades II and III, the expression of miR-146a and Col2a1 decreased while the expression of MMP13 was elevated in grade II. These data show that miR-146a is expressed intensely in cartilage with a low Mankin grade, and that miR-146a expression decreases in accordance with level of MMP13 expression. Section in situ hybridization of pri-miR-146a revealed that pri-miR-146a is expressed in chondrocytes in all layers, especially in the superficial layer where it is intensely expressed. The expression of miR-146 was markedly elevated by IL-1β stimulation in human chondrocytes in vitro. Conclusion This study shows that miR-146 is intensely expressed in low grade OA cartilage, and that its expression is induced by stimulation of IL-1β. MiR-146 might play a role in OA cartilage pathogenesis. PMID:19333945

  14. Classification of e-government documents based on cooperative expression of word vectors

    NASA Astrophysics Data System (ADS)

    Fu, Qianqian; Liu, Hao; Wei, Zhiqiang

    2017-03-01

    The effective document classification is a powerful technique to deal with the huge amount of e-government documents automatically instead of accomplishing them manually. The word-to-vector (word2vec) model, which converts semantic word into low-dimensional vectors, could be successfully employed to classify the e-government documents. In this paper, we propose the cooperative expressions of word vector (Co-word-vector), whose multi-granularity of integration explores the possibility of modeling documents in the semantic space. Meanwhile, we also aim to improve the weighted continuous bag of words model based on word2vec model and distributed representation of topic-words based on LDA model. Furthermore, combining the two levels of word representation, performance result shows that our proposed method on the e-government document classification outperform than the traditional method.

  15. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System

    PubMed Central

    Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M.

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health. PMID:26458221

  16. Deregulated messenger RNA expression during T cell apoptosis.

    PubMed Central

    Kerkhoff, E; Ziff, E B

    1995-01-01

    The IL-2 dependent murine cytotoxic T cell line CTLL-2 undergoes programmed cell death when deprived of its specific cytokine. We analyzed the expression of cell cycle related genes after IL-2 deprivation. Here we show that a generalized decrease and re elevation of the levels of mRNA takes place as part of the apoptotic program. The levels of several mRNAs encoding cell cycle functions, including cyclin D2, cyclin D3, cyclin B1, c-myc and max all declined at 1.5-3 h following IL-2 deprivation. Notably, the maxmRNA, which was shown to be expressed in proliferating, growth arrested and differentiated cells, is down regulated with the same kinetics as the other mRNAs. Surprisingly, the mRNAs whose levels declined at 1.5-3 h rose again at 10-14 h, a time which closely followed the time of the first detection of apoptotic DNA degradation, at 8 h, but which precedes actual loss of viability, at 14 h, as measured by trypan blue exclusion. Of all analyzed genes only the expression of the S-phase specific histone H4 gene resists the initial decrease and declines gradually over the course of cell death. Measurement of c-Myc protein synthesis at a late stage of the apoptotic program revealed that the accumulated reinduced mRNA is not translated into protein. Because transcriptional regulation has been shown to be dependent on the chromatin structure, the reinduction may be triggered by relaxation of the chromatin caused by alterations in the chromatin structure of apoptotic cells. Images PMID:8532529

  17. Exploration of BAC versus plasmid expression vectors in recombinant CHO cells.

    PubMed

    Mader, Alexander; Prewein, Bernhard; Zboray, Katalin; Casanova, Emilio; Kunert, Renate

    2013-05-01

    Vector engineering approaches are commonly used to increase recombinant protein production in mammalian cells, and among various concepts, bacterial artificial chromosomes (BAC) have been proposed to serve as open chromatin regions to omit chromosome positional effects. For proof of concept, we developed stable recombinant Chinese hamster ovary (CHO) cell lines using different expression vector systems: the plasmid vectors contained the identical expression cassette as the BAC constructs. Two anti-HIV1 antibody derivates served as model proteins (3D6scFc and 2F5scFc) for generation of four stable recombinant CHO cell lines. The BAC-derived clones showed three to four times higher specific productivity, and therefore, gene copy numbers and transcript level were quantified. The active chromatin region provided with the BAC environment significantly improved transcription evidenced with both model proteins. Specific transcription was approximately six times higher from BAC-based vectors compared to the corresponding plasmid vectors for both single-chain fragment crystallizable (scFc) proteins. Our accurate investigations elucidated also differences between translational activities related to the protein of choice. 3D6scFc expressed specifically three to four times more product than 2F5scFc indicating that the product by itself also contributes to enhanced productivity. This study indicated comparable increase of transcription level for both scFc proteins when using the BAC system, but translation, maturation, and secretion of individual proteins seem to be protein specific.

  18. Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells.

    PubMed

    Arrighi, Jean-François; Pion, Marjorie; Wiznerowicz, Maciej; Geijtenbeek, Teunis B; Garcia, Eduardo; Abraham, Shahnaz; Leuba, Florence; Dutoit, Valérie; Ducrey-Rundquist, Odile; van Kooyk, Yvette; Trono, Didier; Piguet, Vincent

    2004-10-01

    In the early events of human immunodeficiency virus type 1 (HIV-1) infection, immature dendritic cells (DCs) expressing the DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) receptor capture small amounts of HIV-1 on mucosal surfaces and spread viral infection to CD4(+) T cells in lymph nodes (22, 34, 45). RNA interference has emerged as a powerful tool to gain insight into gene function. For this purpose, lentiviral vectors that express short hairpin RNA (shRNA) for the delivery of small interfering RNA (siRNA) into mammalian cells represent a powerful tool to achieve stable gene silencing. In order to interfere with DC-SIGN function, we developed shRNA-expressing lentiviral vectors capable of conditionally suppressing DC-SIGN expression. Selectivity of inhibition of human DC-SIGN and L-SIGN and chimpanzee and rhesus macaque DC-SIGN was obtained by using distinct siRNAs. Suppression of DC-SIGN expression inhibited the attachment of the gp120 envelope glycoprotein of HIV-1 to DC-SIGN transfectants, as well as transfer of HIV-1 to target cells in trans. Furthermore, shRNA-expressing lentiviral vectors were capable of efficiently suppressing DC-SIGN expression in primary human DCs. DC-SIGN-negative DCs were unable to enhance transfer of HIV-1 infectivity to T cells in trans, demonstrating an essential role for the DC-SIGN receptor in transferring infectious viral particles from DCs to T cells. The present system should have broad applications for studying the function of DC-SIGN in the pathogenesis of HIV as well as other pathogens also recognized by this receptor.

  19. Therapeutic potentialities of EWS-Fli-1 mRNA-targeted vectorized antisense oligonucleotides.

    PubMed

    Maksimenko, A; Lambert, G; Bertrand, J R; Fattal, E; Couvreur, P; Malvy, C

    2003-12-01

    We have used structured antisense oligonucleotides (AON), which are protected against extra and intracellular degradation by their internal structure. We have shown that if correctly designed this structure does not prevent them from hybridizing to the mRNA target. This concept allows reducing the number of thioate groups in the oligonucleotide and therefore the potential toxicity. Junction oncogenes are found in cancers such as certain leukemias, Ewing sarcoma, and thyroid papillary carcinomas. Ewing sarcoma is a cancer of children and young adults with bone metastasis. It is caused by a chromosomic translocation t(11;22) (q24;q12) creating a fusion gene between the genes EWS and Fli-1 giving rise to a chimeric protein which is an unnatural transcription factor. Immortalized NIH/3T3 cells transfected by the EWS-Fli-1 cDNA under the control of the LTR retroviral promoter--which do not undergo apoptosis and which became tumoral--were used for this study. As a model of Ewing sarcoma in nude mice, we have used permanently expressing human EWS-Fli-1 cells grafted to nude mice. The nanospheres or nanocapsules have been used to deliver two different AON: a phosphorothioate, and a structured chimeric AON, both targeted toward the junction area of EWS-Fli-1. Both types of AON-loaded nanoparticles inhibited the growth of the xenografted tumor after intratumoral injections into nude mice, whereas similar nanoparticles with control oligonucleotides had no effect. With AON in nanospheres, we have shown after 24 hours that the mRNA of EWS-Fli-1 was specifically down-regulated, confirming the antisense activity of the targeted AON.

  20. Deciphering Poxvirus Gene Expression by RNA Sequencing and Ribosome Profiling

    PubMed Central

    Cao, Shuai; Martens, Craig A.; Porcella, Stephen F.; Xie, Zhi; Ma, Ming; Shen, Ben

    2015-01-01

    ABSTRACT The more than 200 closely spaced annotated open reading frames, extensive transcriptional read-through, and numerous unpredicted RNA start sites have made the analysis of vaccinia virus gene expression challenging. Genome-wide ribosome profiling provided an unprecedented assessment of poxvirus gene expression. By 4 h after infection, approximately 80% of the ribosome-associated mRNA was viral. Ribosome-associated mRNAs were detected for most annotated early genes at 2 h and for most intermediate and late genes at 4 and 8 h. Cluster analysis identified a subset of early mRNAs that continued to be translated at the later times. At 2 h, there was excellent correlation between the abundance of individual mRNAs and the numbers of associated ribosomes, indicating that expression was primarily transcriptionally regulated. However, extensive transcriptional read-through invalidated similar correlations at later times. The mRNAs with the highest density of ribosomes had host response, DNA replication, and transcription roles at early times and were virion components at late times. Translation inhibitors were used to map initiation sites at single-nucleotide resolution at the start of most annotated open reading frames although in some cases a downstream methionine was used instead. Additional putative translational initiation sites with AUG or alternative codons occurred mostly within open reading frames, and fewer occurred in untranslated leader sequences, antisense strands, and intergenic regions. However, most open reading frames associated with these additional translation initiation sites were short, raising questions regarding their biological roles. The data were used to construct a high-resolution genome-wide map of the vaccinia virus translatome. IMPORTANCE This report contains the first genome-wide, high-resolution analysis of poxvirus gene expression at both transcriptional and translational levels. The study was made possible by recent methodological

  1. AAV Vectors Expressing LDLR Gain-of-Function Variants Demonstrate Increased Efficacy in Mouse Models of Familial Hypercholesterolemia

    PubMed Central

    Somanathan, Suryanarayan; Jacobs, Frank; Wang, Qiang; Hanlon, Alexandra L; Wilson, James M; Rader, Daniel J

    2014-01-01

    Rationale Familial hypercholesterolemia (FH) is a genetic disorder that arises due to loss-of-function mutations in the low-density lipoprotein receptor (LDLR) and homozygous FH (hoFH) is a candidate for gene therapy using adeno-associated viral (AAV) vectors. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and inducible degrader of LDLR (IDOL) negatively regulate LDLR protein and could dampen AAV encoded LDLR expression. Objective We sought to create vectors expressing gain-of-function human LDLR variants that are resistant to degradation by human PCSK9 and IDOL and thereby enhance hepatic LDLR protein abundance and plasma LDL cholesterol reduction. Methods and Results Amino acid substitutions were introduced into the coding sequence of human LDLR cDNA to reduce interaction with hPCSK9 and hIDOL. A panel of mutant hLDLRs was initially screened in vitro for escape from PCSK9. The variant hLDLR-L318D was further evaluated using a mouse model of hoFH lacking endogenous LDLR and apolipoprotein B mRNA editing enzyme, APOBEC-1 (DKO). Administration of wild type hLDLR to DKO mice, expressing hPCSK9, led to diminished LDLR activity. However, LDLR-L318D was resistant to hPCSK9 mediated degradation and effectively reduced cholesterol levels. Similarly, the LDLR-K809R\\C818A construct avoided hIDOL regulation and achieved stable reductions in serum cholesterol. An AAV8.LDLR-L318D\\K809R\\C818A vector that carried all three amino acid substitutions conferred partial resistance to both hPCSK9 and hIDOL mediated degradation. Conclusion Amino acid substitutions in the human LDLR confer partial resistance to PCSK9 and IDOL regulatory pathways with improved reduction in cholesterol levels and improve upon a potential gene therapeutic approach to treat homozygous FH subjects. PMID:25023731

  2. MicroRNA function in mast cell biology: protocols to characterize and modulate microRNA expression.

    PubMed

    Maltby, Steven; Plank, Maximilian; Ptaschinski, Catherine; Mattes, Joerg; Foster, Paul S

    2015-01-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules that can modulate mRNA levels through RNA-induced silencing complex (RISC)-mediated degradation. Recognition of target mRNAs occurs through imperfect base pairing between an miRNA and its target, meaning that each miRNA can target a number of different mRNAs to modulate gene expression. miRNAs have been proposed as novel therapeutic targets and many studies are aimed at characterizing miRNA expression patterns and functions within a range of cell types. To date, limited research has focused on the function of miRNAs specifically in mast cells; however, this is an emerging field. In this chapter, we will briefly overview miRNA synthesis and function and the current understanding of miRNAs in hematopoietic development and immune function, emphasizing studies related to mast cell biology. The chapter will conclude with fundamental techniques used in miRNA studies, including RNA isolation, real-time PCR and microarray approaches for quantification of miRNA expression levels, and antagomir design to interfere with miRNA function.

  3. Integrated Analysis of Long Noncoding RNA and mRNA Expression Profile in Advanced Laryngeal Squamous Cell Carcinoma

    PubMed Central

    Lian, Meng; Ma, Hongzhi; He, Ning; Liu, Honggang; Wang, Haizhou; Fang, Jugao

    2016-01-01

    Long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the expression pattern and function of lncRNAs in laryngeal squamous cell carcinoma (LSCC) are still unclear. To investigate the aberrantly expressed lncRNAs and mRNAs in advanced LSCC, we screened lncRNA and mRNA expression profiles in 9 pairs of primary Stage IVA LSCC tissues and adjacent non-neoplastic tissues by lncRNA and mRNA integrated microarrays. Gene Ontology and pathway analysis were performed to find out the significant function and pathway of the differentially expressed mRNAs, gene-gene functional interaction network and ceRNA network were constructed to select core mRNAs, and lncRNA-mRNA expression correlation network was built to identify the interactions between lncRNA and mRNA. qRT-PCR was performed to further validate the expressions of selected lncRNAs and mRNAs in advanced LSCC. We found 1459 differentially expressed lncRNAs and 2381 differentially expressed mRNAs, including 846 up-regulated lncRNAs and 613 down-regulated lncRNAs, 1542 up-regulated mRNAs and 839 down-regulated mRNAs. The mRNAs ITGB1, HIF1A, and DDIT4 were selected as core mRNAs, which are mainly involved in biological processes, such as matrix organization, cell cycle, adhesion, and metabolic pathway. LncRNA-mRNA expression correlation network showed LncRNA NR_027340, MIR31HG were positively correlated with ITGB1, HIF1A respectively. LncRNA SOX2-OT was negatively correlated with DDIT4. qRT-PCR further validated the expression of these lncRNAs and mRNAs. The work provides convincing evidence that the identified lncRNAs and mRNAs are potential biomarkers in advanced LSCC for further future studies. PMID:28033431

  4. pHg/pSILBAγ vector system for efficient gene silencing in homobasidiomycetes: optimization of ihpRNA – triggering in the mycorrhizal fungus Laccaria bicolor

    PubMed Central

    Kemppainen, Minna J.; Pardo, Alejandro G.

    2010-01-01

    Summary pSILBAγ silencing vector was constructed for efficient RNA silencing triggering in the model mycorrhizal fungus Laccaria bicolor. This cloning vector carries the Agaricus bisporus gpdII promoter, two multiple cloning sites separated by a L. bicolor nitrate reductase intron and the Aspergillus nidulans trpC terminator. pSILBAγ allows an easy oriented two‐step PCR cloning of hairpin sequences to be expressed in basidiomycetes. With one further cloning step into pHg, a pCAMBIA1300‐based binary vector carrying a hygromycin resistance cassette, the pHg/pSILBAγ plasmid is used for Agrobacterium‐mediated transformation. The pHg/pSILBAγ system results in predominantly single integrations of RNA silencing triggering T‐DNAs in the fungal genome and the integration sites of the transgenes can be resolved by plasmid rescue. pSILBAγ construct and two other pSILBA plasmid variants (pSILBA and pSILBAα) were evaluated for their capacity to silence Laccaria nitrate reductase gene. While all pSILBA variants tested resulted in up to 65–76% of transformants with reduced growth on nitrate, pSILBAγ produced the highest number (65%) of strongly affected fungal strains. The strongly silenced phenotype was shown to correlate with T‐DNA integration in transcriptionally active genomic sites. pHg/pSILBAγ was shown to produce T‐DNAs with minimum CpG methylation in transgene promoter regions which assures the maximum silencing trigger production in Laccaria. Methylation of the target endogene was only slight in RNA silencing triggered with constructs carrying an intronic spacer hairpin sequence. The silencing capacity of the pHg/pSILBAγ was further tested with Laccaria inositol‐1,4,5‐triphosphate 5‐phosphatase gene. Besides its use in silencing triggering, the herein described plasmid system can also be used for transgene expression in Laccaria. pHg/pSILBAγ silencing system is optimized for L. bicolor but it should be highly useful also for other

  5. A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing

    PubMed Central

    Landgraf, Pablo; Rusu, Mirabela; Sheridan, Robert; Sewer, Alain; Iovino, Nicola; Aravin, Alexei; Pfeffer, Sébastien; Rice, Amanda; Kamphorst, Alice O.; Landthaler, Markus; Lin, Carolina; Socci, Nicholas D.; Hermida, Leandro; Fulci, Valerio; Chiaretti, Sabina; Foà, Robin; Schliwka, Julia; Fuchs, Uta; Novosel, Astrid; Müller, Roman-Ulrich; Schermer, Bernhard; Bissels, Ute; Inman, Jason; Phan, Quang; Chien, Minchen; Weir, David B.; Choksi, Ruchi; De Vita, Gabriella; Frezzetti, Daniela; Trompeter, Hans-Ingo; Hornung, Veit; Teng, Grace; Hartmann, Gunther; Palkovits, Miklos; Di Lauro, Roberto; Wernet, Peter; Macino, Giuseppe; Rogler, Charles E.; Nagle, James W.; Ju, Jingyue; Papavasiliou, F. Nina; Benzing, Thomas; Lichter, Peter; Tam, Wayne; Brownstein, Michael J.; Bosio, Andreas; Borkhardt, Arndt; Russo, James J.; Sander, Chris; Zavolan, Mihaela; Tuschl, Thomas

    2007-01-01

    Summary MicroRNAs (miRNAs) are small non-coding regulatory RNAs that reduce stability and/or translation of fully or partially sequence-complementary target mRNAs. In order to identify miRNAs and to assess their expression patterns, we sequenced over 250 small RNA libraries from 26 different organ systems and cell types of human and rodents, enriched in neuronal as well as normal and malignant hematopoietic cells and tissues. We present expression profiles derived from clone count data and provide novel computational tools for their analysis. Unexpectedly, a relatively small set of miRNAs, many of which are ubiquitously expressed, account for most of the difference in miRNA profiles between cell lineages and tissues. This broad survey also provides detailed and accurate information about mature sequences, precursors, genome locations, maturation processes, inferred transcriptional units and conservation patterns. We also propose a subclassification scheme for miRNAs for assisting future experimental and computational functional analyses. PMID:17604727

  6. Analysis of the miRNA expression profile in an Aedes albopictus cell line in response to bluetongue virus infection.

    PubMed

    Xing, Shanshan; Du, Junzheng; Gao, Shandian; Tian, Zhancheng; Zheng, Yadong; Liu, Guangyuan; Luo, Jianxun; Yin, Hong

    2016-04-01

    Cellular microRNAs (miRNAs) have been reported to be key regulators of virus-host interactions. Bluetongue virus (BTV) is an insect-borne virus that causes huge economic losses in the livestock industry worldwide. Aedes albopictus cell lines have become powerful and convenient tools for studying BTV-vector interactions. However, the role of miRNAs in A. albopictus cells during BTV infection is not well understood. In this study, we performed a deep sequencing analysis of small RNA libraries of BTV-infected and mock-infected A. albopictus cells, and a total of 11,206,854 and 12,125,274 clean reads were identified, respectively. A differential expression analysis showed that 140 miRNAs, including 15 known and 125 novel miRNAs, were significantly dysregulated after infection, and a total of 414 and 2307 target genes were annotated, respectively. Real-time quantitative reverse transcription-polymerase chain reaction validated the expression patterns of 11 selected miRNAs and their mRNA targets. Functional annotation of the target genes suggested that these target genes were mainly involved in metabolic pathways, oxidative phosphorylation, endocytosis, RNA transport, as well as the FoxO, Hippo, Jak-STAT, and MAPK signaling pathways. This is the first systematic study on the effect of BTV infection on miRNA expression in A. albopictus cells. This investigation provides information concerning the cellular miRNA expression profile in response to BTV infection, and it offers clues for identifying potential candidates for vector-based antiviral strategies.

  7. RNA polymerase errors cause splicing defects and can be regulated by differential expression of RNA polymerase subunits

    PubMed Central

    Carey, Lucas B

    2015-01-01

    Errors during transcription may play an important role in determining cellular phenotypes: the RNA polymerase error rate is >4 orders of magnitude higher than that of DNA polymerase and errors are amplified >1000-fold due to translation. However, current methods to measure RNA polymerase fidelity are low-throughout, technically challenging, and organism specific. Here I show that changes in RNA polymerase fidelity can be measured using standard RNA sequencing protocols. I find that RNA polymerase is error-prone, and these errors can result in splicing defects. Furthermore, I find that differential expression of RNA polymerase subunits causes changes in RNA polymerase fidelity, and that coding sequences may have evolved to minimize the effect of these errors. These results suggest that errors caused by RNA polymerase may be a major source of stochastic variability at the level of single cells. DOI: http://dx.doi.org/10.7554/eLife.09945.001 PMID:26652005

  8. Sequence and expression of ferredoxin mRNA in barley

    SciTech Connect

    Zielinski, R.; Funder, P.M.; Ling, V. )

    1990-05-01

    We have isolated and structurally characterized a full-length cDNA clone encoding ferredoxin from a {lambda}gt10 cDNA library prepared from barley leaf mRNA. The ferredoxin clone (pBFD-1) was fused head-to-head with a partial-length cDNA clone encoding calmodulin, and was fortuitously isolated by screening the library with a calmodulin-specific oligonucleotide probe. The mRNA sequence from which pBFD-1 was derived is expressed exclusively in the leaf tissues of 7-d old barley seedlings. Barley pre-ferredoxin has a predicted size of 15.3 kDal, of which 4.6 kDal are accounted for by the transit peptide. The polypeptide encoded by pBFD-1 is identical to wheat ferredoxin, and shares slightly more amino acid sequence similarity with spinach ferredoxin I than with ferredoxin II. Ferredoxin mRNA levels are rapidly increased 10-fold by white light in etiolated barley leaves.

  9. Modified-Chitosan/siRNA Nanoparticles Downregulate Cellular CDX2 Expression and Cross the Gastric Mucus Barrier

    PubMed Central

    Sadio, Ana; Gustafsson, Jenny K.; Pereira, Bruno; Gomes, Carla Pereira; Hansson, Gunnar C.; David, Leonor; Pêgo, Ana Paula; Almeida, Raquel

    2014-01-01

    Development of effective non-viral vectors is of crucial importance in the implementation of RNA interference in clinical routine. The localized delivery of siRNAs to the gastrointestinal mucosa is highly desired but faces specific problems such as the stability in gastric acidity conditions and the presence of the mucus barrier. CDX2 is a transcription factor critical for intestinal differentiation being involved in the initiation and maintenance of gastrointestinal diseases. Specifically, it is the trigger of gastric intestinal metaplasia which is a precursor lesion of gastric cancer. Its expression is also altered in colorectal cancer, where it may constitute a lineage-survival oncogene. Our main objective was to develop a nanoparticle-delivery system of siRNA targeting CDX2 using modified chitosan as a vector. CDX2 expression was assessed in gastric carcinoma cell lines and nanoparticles behaviour in gastrointestinal mucus was tested in mouse explants. We show that imidazole-modified chitosan and trimethylchitosan/siRNA nanoparticles are able to downregulate CDX2 expression and overpass the gastric mucus layer but not colonic mucus. This system might constitute a potential therapeutic approach to treat CDX2-dependent gastric lesions. PMID:24925340

  10. Inhibition of hepatitis B virus expression and replication by RNA interference in HepG2.2.15

    PubMed Central

    Zhao, Zhong-Fu; Yang, Hui; Han, De-Wu; Zhao, Long-Feng; Zhang, Guo-Ying; Zhang, Yun; Liu, Ming-She

    2006-01-01

    AIM: To observe the inhibition of hepatitis B virus replication and expression by transfecting vector-based small interference RNA (siRNA) pGenesil-HBV X targeting HBV X gene region into HepG2.2.15 cells. METHODS: pGenesil-HBV X was constructed and transfected into HepG2.2.15 cells via lipofection. HBV antigen secretion was determined 24, 48, and 72 h after transfection by time-resolved immunofluorometric assays (TRFIA). HBV replication was examined by fluorescence quantitative PCR, and the expression of cytoplasmic viral proteins was determined by immunohistochemistry. RESULTS: The secretion of HBsAg and HBeAg into the supernatant was found to be inhibited by 28.5% and 32.2% (P < 0.01), and by 38.67% (P < 0.05) and 42.86% (P < 0.01) at 48 h and 72 h after pGenesil-HBV X transfection, respectively. Immunohistochemical staining for cytoplasmic HBsAg showed a similar decline in HepG2.2.15 cells 48 h after transfection. The number of HBV genomes within culture supernatants was also significantly decreased 48 h and 72 h post-transfection as quantified by fluorescence PCR (P < 0.05). CONCLUSION: In HepG2.2.15 cells, HBV replication and expression is inhibited by vector-based siRNA pGenesil-HBV X targeting the HBV X coding region. PMID:17009407

  11. The TGV transgenic vectors for single-copy gene expression from the Escherichia coli chromosome.

    PubMed

    Gumbiner-Russo, L M; Lombardo, M J; Ponder, R G; Rosenberg, S M

    2001-07-25

    Plasmid-based cloning and expression of genes in Escherichia coli can have several problems: plasmid destabilization; toxicity of gene products; inability to achieve complete repression of gene expression; non-physiological overexpression of the cloned gene; titration of regulatory proteins; and the requirement for antibiotic selection. We describe a simple system for cloning and expression of genes in single copy in the E. coli chromosome, using a non-antibiotic selection for transgene insertion. The transgene is inserted into a vector containing homology to the chromosomal region flanking the attachment site for phage lambda. This vector is then linearized and introduced into a recombination-proficient E. coli strain carrying a temperature-sensitive lambda prophage. Selection for replacement of the prophage with the transgene is performed at high temperature. Once in the chromosome, transgenes can be moved into other lysogenic E. coli strains using standard phage-mediated transduction techniques, selecting against a resident prophage. Additional vector constructs provide an arabinose-inducible promoter (P(BAD)), P(BAD) plus a translation-initiation sequence, and optional chloramphenicol-, tetracycline-, or kanamycin-resistance cassettes. These Transgenic E. coli Vectors (TGV) allow drug-free, single-copy expression of genes from the E. coli chromosome, and are useful for genetic studies of gene function.

  12. Development of an adenoviral vector with robust expression driven by p53

    SciTech Connect

    Bajgelman, Marcio C.; Strauss, Bryan E.

    2008-02-05

    Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG served as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.

  13. Research Area 14.3 Microbiology and Biodegradation: Development of RNA-based Vectors for in vivo Delivery of siRNAs

    DTIC Science & Technology

    2014-09-08

    Research Area 14.3 Microbiology and Biodegradation The purpose of this grant was to develop RNA vectors capable of delivering functional RNAi. The views...6574 2 ABSTRACT Final Report: Research Area 14.3 Microbiology and Biodegradation Report Title The purpose of this grant was to develop RNA vectors...risk of gain-of-function influenza studies, Nature Biotechnology , (08 2013): 0. doi: 10.1038/nbt.2666 Jillian S. Shapiro, Simone Backes, Leah R

  14. MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression

    PubMed Central

    Lu, Zhan-Jun; Wu, Jian-Jiong; Jiang, Wei-Liang; Xiao, Jun-Hua; Tao, Kai-Zhong; Ma, Lei; Zheng, Ping; Wan, Rong; Wang, Xing-Peng

    2017-01-01

    AIM To explore the mechanism by which microRNA-155 (miR-155) regulates the pathogenesis of experimental colitis. METHODS A luciferase assay was performed to confirm the binding of miR-155 to the SHIP-1 3’-UTR. MiR-155 mimics, negative controls and SHIP-1 expression/knockdown vectors were established and then utilized in gain- and loss-of-function studies performed in raw264.7 cells and primary bone marrow-derived macrophages (BMDMs). Thereafter, dextran sulfate sodium (DSS)-induced colitis mouse model with or without antagomiR-155 treatment was established, and the levels of miR-155 and SHIP-1, as well as the pro-inflammatory capabilities, were measured by western blot, quantitative polymerase chain reaction, and immunohistochemistry. RESULTS MiR-155 directly bound to the 3’-UTR of SHIP-1 mRNA and induced a significant decrease in SHIP-1 expression in both raw264.7 cells and primary BMDMs. MiR-155 markedly promoted cell proliferation and pro-inflammatory secretions including IL-6, TNF-α, IL-1β, and IFN-γ, whereas these effects could be reversed by the restoration of SHIP-1 expression. In vivo studies showed that antagomiR-155 administration could alleviate DSS-induced intestinal inflammation in Balb/c mice. Moreover, significantly increased SHIP-1 expression, as well as decreased Akt activation and inflammatory response, were observed in the antagomiR-155-treated mice. CONCLUSION MiR-155 promotes experimental colitis by repressing SHIP-1 expression. Thus, the inhibition of miR-155 might be a promising strategy for therapy. PMID:28246471

  15. Distribution of miRNA expression across human tissues.

    PubMed

    Ludwig, Nicole; Leidinger, Petra; Becker, Kurt; Backes, Christina; Fehlmann, Tobias; Pallasch, Christian; Rheinheimer, Steffi; Meder, Benjamin; Stähler, Cord; Meese, Eckart; Keller, Andreas

    2016-05-05

    We present a human miRNA tissue atlas by determining the abundance of 1997 miRNAs in 61 tissue biopsies of different organs from two individuals collected post-mortem. One thousand three hundred sixty-four miRNAs were discovered in at least one tissue, 143 were present in each tissue. To define the distribution of miRNAs, we utilized a tissue specificity index (TSI). The majority of miRNAs (82.9%) fell in a middle TSI range i.e. were neither specific for single tissues (TSI > 0.85) nor housekeeping miRNAs (TSI < 0.5). Nonetheless, we observed many different miRNAs and miRNA families that were predominantly expressed in certain tissues. Clustering of miRNA abundances revealed that tissues like several areas of the brain clustered together. Considering -3p and -5p mature forms we observed miR-150 with different tissue specificity. Analysis of additional lung and prostate biopsies indicated that inter-organism variability was significantly lower than inter-organ variability. Tissue-specific differences between the miRNA patterns appeared not to be significantly altered by storage as shown for heart and lung tissue. MiRNAs TSI values of human tissues were significantly (P = 10(-8)) correlated with those of rats; miRNAs that were highly abundant in certain human tissues were likewise abundant in according rat tissues. We implemented a web-based repository enabling scientists to access and browse the data (https://ccb-web.cs.uni-saarland.de/tissueatlas).

  16. Cloning and expression profiling of testis-expressed piRNA-like RNAs

    PubMed Central

    Ro, Seungil; Park, Chanjae; Song, Rui; Nguyen, Dan; Jin, Jingling; Sanders, Kenton M.; McCarrey, John R.; Yan, Wei

    2007-01-01

    Using a novel small RNA cloning method, we identified 630 piRNA-like RNAs (pilRNAs) from the mouse testis, and 498 of them are novel. These pilRNA genes were mapped to all chromosomes as 71 clusters, and the majority of them (∼84%) are derived from intergenic, intronic, and exonic sequences. One of the structural characteristics for pilRNAs is that a single locus can encode numerous homologous pilRNAs with overlapping sequences. Hundreds or even thousands of pilRNAs from a single pilRNA gene cluster are all produced from a single long transcript. Expression profiling for 64 pilRNAs revealed that ∼14% of all the pilRNAs analyzed displayed a ubiquitous expression pattern, although the majority of (∼86%) pilRNAs were preferentially or exclusively expressed in meiotic and haploid male germ cells of the testis. Our semiquantitative analyses also suggest that the testis is the organ with the highest expression of pilRNAs both in number and in abundance. The large number, high abundance, unique genomic locations, and biogenesis all suggest that pilRNAs have important regulatory roles not only in spermatogenesis but also in other biological processes. PMID:17698640

  17. Genetic Architecture of MicroRNA Expression: Implications for the Transcriptome and Complex Traits

    PubMed Central

    Gamazon, Eric R.; Ziliak, Dana; Im, Hae Kyung; LaCroix, Bonnie; Park, Danny S.; Cox, Nancy J.; Huang, R. Stephanie

    2012-01-01

    We sought to comprehensively and systematically characterize the relationship between genetic variation, miRNA expression, and mRNA expression. Genome-wide expression profiling of samples of European and African ancestry identified in each population hundreds of miRNAs whose increased expression is correlated with correspondingly reduced expression of target mRNAs. We scanned 3′ UTR SNPs with a potential functional effect on miRNA binding for cis-acting expression quantitative trait loci (eQTLs) for the corresponding proximal target genes. To extend sequence-based, localized analyses of SNP effect on miRNA binding, we proceeded to dissect the genetic basis of miRNA expression variation; we mapped miRNA expression levels—as quantitative traits—to loci in the genome as miRNA eQTLs, demonstrating that miRNA expression is under significant genetic control. We found that SNPs associated with miRNA expression are significantly enriched with those SNPs already shown to be associated with mRNA. Moreover, we discovered that many of the miRNA-associated genetic variations identified in our study are associated with a broad spectrum of human complex traits from the National Human Genome Research Institute catalog of published genome-wide association studies. Experimentally, we replicated miRNA-induced mRNA expression inhibition and the cis-eQTL relationship to the target gene for several identified relationships among SNPs, miRNAs, and mRNAs in an independent set of samples; furthermore, we conducted miRNA overexpression and inhibition experiments to functionally validate the miRNA-mRNA relationships. This study extends our understanding of the genetic regulation of the transcriptome and suggests that genetic variation might underlie observed relationships between miRNAs and mRNAs more commonly than has previously been appreciated. PMID:22658545

  18. A fragmented adeno-associated viral dual vector strategy for treatment of diseases caused by mutations in large genes leads to expression of hybrid transcripts

    PubMed Central

    McClements, Michelle E.; Charbel Issa, Peter; Blouin, Véronique; MacLaren, Robert E.

    2017-01-01

    Objective Dual vector AAV systems are being utilised to enable gene therapy for disorders in which the disease gene is too large to fit into a single capsid. Fragmented adeno-associated viral (fAAV) vectors containing single inverted terminal repeat truncated transgenes have been considered as one such gene replacement strategy. Here we aim to add to the current understanding of the molecular mechanisms employed by fAAV dual vector systems. Methods Oversized (>8kb) transgene constructs containing ABCA4 coding sequence were packaged as truncated fragments <5kb in size into various AAV serotypes. In vitro transductions with these fAAV vector preparations were conducted with mRNA and protein expression products assessed by way of RT-PCR, qPCR and western blot techniques. Results Transductions with fAAV vector preparations yielded ABCA4 mRNA, but did not generate detectable levels of protein. Sequencing of the transcript population revealed the presence of full length ABCA4 CDS with additional hybrid ABCA4 variants, indicating truncated transgenes without regions of overlap were joining and forming stable hybrid transgenes. In contrast, an ABCA4 overlapping dual vector system (OV) with a defined complementary region generated only full length mRNA transcripts plus detectable ABCA4 protein. Conclusion Despite previous success shown with the fAAV approach, the lack of repeatability and identification of stable hybrid transcripts capable of protein production suggests there is more refinement required before considering this approach in a clinical setting. PMID:28239514

  19. Novel methods for expression of foreign antigens in live vector vaccines

    PubMed Central

    Wang, Jin Yuan; Harley, Regina H.; Galen, James E.

    2013-01-01

    Bacterial live vector vaccines represent a vaccine development strategy that offers exceptional flexibility. In this approach, genes encoding protective antigens of unrelated bacterial, viral or parasitic pathogens are expressed in an attenuated bacterial vaccine strain that delivers these foreign antigens to the immune system, thereby eliciting relevant immune responses. Rather than expressing these antigens using low copy expression plasmids, here we pursue expression of foreign proteins from the live vector chromosome. Our strategy is designed to compensate for the inherent disadvantage of loss of gene dosage (vs. plasmid-based expression) by integrating antigen-encoding gene cassettes into multiple chromosomal sites already inactivated in an attenuated Salmonella enterica serovar Typhi vaccine candidate. We tested expression of a cassette encoding the green fluorescent protein (GFPuv) integrated separately into native guaBA, htrA or clyA chromosomal loci. Using single integrations, we show that expression levels of GFPuv are significantly affected by the site of integration, regardless of the inclusion of additional strong promoters within the incoming cassette. Using cassettes integrated into both guaBA and htrA, we observe cumulative synthesis levels from two integration sites superior to single integrations. Most importantly, we observe that GFPuv expression increases in a growth phase-dependent manner, suggesting that foreign antigen synthesis may be “tuned” to the physiology of the live vaccine. We expect this novel platform expression technology to prove invaluable in the development of a wide variety of multivalent live vector vaccines, capable of expressing multiple antigens from both chromosomal and plasmid-based expression systems within a single strain. PMID:23406777

  20. RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using beta-lactam genes expression.

    PubMed

    Ullán, Ricardo V; Godio, Ramiro P; Teijeira, Fernando; Vaca, Inmaculada; García-Estrada, Carlos; Feltrer, Raúl; Kosalkova, Katarina; Martín, Juan F

    2008-10-01

    In this work we report the development and validation of a new RNA interference vector (pJL43-RNAi) containing a double-stranded RNA expression cassette for gene silencing in the filamentous fungi Penicillium chrysogenum and Acremonium chrysogenum. Classical targeted gene disruption in these fungi is very laborious and inefficient due to the low frequency of homologous recombination. The RNAi vector has been validated by testing the attenuation of two different genes of the beta-lactam pathway; pcbC in P. chrysogenum and cefEF in A. chrysogenum. Quantification of mRNA transcript levels and antibiotic production showed knockdown of pcbC and cefEF genes in randomly isolated transformants of P. chrysogenum and A. chrysogenum, respectively. The process is efficient; 15 to 20% of the selected transformants were found to be knockdown mutants showing reduced penicillin or cephalosporin production. This new RNAi vector opens the way for exploring gene function in the genomes of P. chrysogenum and A. chrysogenum.

  1. Gene structure and expression of nanos (nos) and oskar (osk) orthologues of the vector mosquito, Culex quinquefasciatus

    PubMed Central

    Juhn, J.; Marinotti, O.; Calvo, E.; James, A. A.

    2013-01-01

    The products of the maternal-effect genes, nanos (nos) and oskar (osk), are important for the development of germ cells in insects. Furthermore, these genes have been proposed as candidates for donating functional DNA regulatory sequences for use in gene drive systems to control transmission of mosquito-borne pathogens. The nos and osk genes of the cosmopolitan vector mosquito, Culex quinquefasciatus, encode proteins with domains common to orthologues found in other mosquitoes. Expression analyses support the conclusion that the role of these genes is conserved generally among members of the nematocera. Hybridization in situ analyses reveal differences in mRNA distribution in early embryos in comparison with the cyclorraphan, Drosophila melanogaster, highlighting a possible feature in the divergence of the clades each insect represents. PMID:18828840

  2. Eukaryotic expression vectors bearing genes encoding cytotoxic proteins for cancer gene therapy.

    PubMed

    Glinka, Elena M

    2012-09-01

    Cancer gene therapy is a promising direction for the treatment of cancer patients. A primary goal of all cancer therapies is to selectively target and kill tumour cells. Such therapies are administered via different approaches, including both viral and non-viral delivery; however, both methods have advantages and disadvantages. Transcriptional targeting enables genes encoding toxic proteins to be expressed directly in cancer cells. Numerous vectors have been created with the purpose of killing cancer cells, and some have successfully suppressed malignant tumours. Data concerning the function of vectors bearing genes that encode cytotoxic proteins under the control of different promoters, including tissue/tumour specific and constitutive promoters, is summarised here. This review focuses on vectors that bear genes encoding diphtheria toxin, Pseudomonas exotoxin A, caspases, gef, streptolysin, and melittin. Data describing the efficacy of such vectors have been summarised. Notably, there are vectors that killed cancer cell lines originating from the same type of cancer with differential efficiency. Thus, there is differential inhibition of cancer cell growth dependent on the cell line. In this review, the constructs employing genes whose expression induces cell death and the efficiency with which they suppress cancer cell growth will be summarised.

  3. miRNA Expression in Pediatric Failing Human Heart

    PubMed Central

    Stauffer, Brian L.; Russell, Gloria; Nunley, Karin; Miyamoto, Shelley D.; Sucharov, Carmen C.

    2013-01-01

    miRNAs are short regulatory RNAs that can regulate gene expression through interacting with the 3'UTR of target mRNAs. Although the role of miRNAs has been extensively studied in adult human and animal models of heart disease, nothing is known about their expression in pediatric heart failure patients. Different than adults with heart failure, pediatric patients respond well to phosphodiesterase inhibitor (PDEi) treatment, which is safe in the outpatient setting, results in fewer heart failure emergency department visits, fewer cardiac hospital admissions and improved NYHA classification. We have recently shown that the pediatric heart failure patients display a unique molecular profile that is different from adults with heart failure. In this study we show for the first time that pediatric heart failure patients display a unique miRNA profile, and that expression of some miRNAs correlate with response to PDEi treatment. Moreover, we show that expression of Smad4, a potential target for PDEi-regulated miRNAs, is normalized in PDEi-treated patients. Since miRNAs may be used as therapy for human heart failure, our results underscore the importance of defining the molecular characteristics of pediatric heart failure patients, so age-appropriate therapy can be designed for this population. PMID:23333438

  4. MicroRNA expression profiles differentiate chronic pain condition subtypes

    PubMed Central

    Ciszek, Brittney P.; Khan, Asma A.; Dang, Hong; Slade, Gary D.; Smith, Shad; Bair, Eric; Maixner, William; Zolnoun, Denniz; Nackley, Andrea G.

    2015-01-01

    Chronic pain is a significant healthcare problem, ineffectively treated due to its unclear etiology and heterogeneous clinical presentation. Emerging evidence demonstrates that microRNAs regulate the expression of pain-relevant genes, yet little is known about their role in chronic pain. Here, we evaluate the relationship between pain, psychological characteristics, plasma cytokines and whole blood microRNAs in 22 healthy controls (HC); 33 subjects with chronic pelvic pain (vestibulodynia: VBD); and 23 subjects with VBD and irritable bowel syndrome (VBD+IBS). VBD subjects were similar to HCs in self-reported pain, psychological profiles and remote bodily pain. VBD+IBS subjects reported decreased health and function; and an increase in headaches, somatization and remote bodily pain. Furthermore, VBD subjects exhibited a balance in pro- and anti-inflammatory cytokines, while VBD+IBS subjects failed to exhibit a compensatory increase in anti-inflammatory cytokines. VBD subjects differed from controls in expression of 10 microRNAs of predicted importance for pain and estrogen signaling. VBD+IBS subjects differed from controls in expression of 11 microRNAs of predicted importance for pain, cell physiology and insulin signaling. MicroRNA expression was correlated with pain-relevant phenotypes and cytokine levels. These results suggest microRNAs represent a valuable tool for differentiating VBD subtypes (localized pain with apparent peripheral neurosensory disruption versus widespread pain with a central sensory contribution) that may require different treatment approaches. PMID:26166255

  5. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology.

    PubMed

    Sui, Weiguo; Shi, Zhoufang; Xue, Wen; Ou, Minglin; Zhu, Ying; Chen, Jiejing; Lin, Hua; Liu, Fuhua; Dai, Yong

    2017-03-01

    The aim of the present study was to screen gastric cancer (GC) tissue and adjacent tissue for differences in mRNA and circular (circRNA) expression, to analyze the differences in circRNA and mRNA expression, and to investigate the circRNA expression in gastric carcinoma and its mechanism. circRNA and mRNA differential expression profiles generated using Agilent microarray technology were analyzed in the GC tissues and adjacent tissues. qRT-PCR was used to verify the differential expression of circRNAs and mRNAs according to the interactions between circRNAs and miRNAs as well as the possible existence of miRNA and mRNA interactions. We found that: i) the circRNA expression profile revealed 1,285 significant differences in circRNA expression, with circRNA expression downregulated in 594 samples and upregulated in 691 samples via interactions with miRNAs. The qRT-PCR validation experiments showed that hsa_circRNA_400071, hsa_circRNA_000543 and hsa_circRNA_001959 expression was consistent with the microarray analysis results. ii) 29,112 genes were found in the GC tissues and adjacent tissues, including 5,460 differentially expressed genes. Among them, 2,390 differentially expressed genes were upregulated and 3,070 genes were downregulated. Gene Ontology (GO) analysis of the differentially expressed genes revealed these genes involved in biological process classification, cellular component classification and molecular function classification. Pathway analysis of the differentially expressed genes identified 83 significantly enriched genes, including 28 upregulated genes and 55 downregulated genes. iii) 69 differentially expressed circRNAs were found that might adsorb specific miRNAs to regulate the expression of their target gene mRNAs. The conclusions are: i) differentially expressed circRNAs had corresponding miRNA binding sites. These circRNAs regulated the expression of target genes through interactions with miRNAs and might become new molecular biomarkers for GC

  6. Virus-derived transgenes expressing hairpin RNA give immunity to Tobacco mosaic virus and Cucumber mosaic virus

    PubMed Central

    2011-01-01

    Background An effective method for obtaining resistant transgenic plants is to induce RNA silencing by expressing virus-derived dsRNA in plants and this method has been successfully implemented for the generation of different plant lines resistant to many plant viruses. Results Inverted repeats of the partial Tobacco mosaic virus (TMV) movement protein (MP) gene and the partial Cucumber mosaic virus (CMV) replication protein (Rep) gene were introduced into the plant expression vector and the recombinant plasmids were transformed into Agrobacterium tumefaciens. Agrobacterium-mediated transformation was carried out and three transgenic tobacco lines (MP16-17-3, MP16-17-29 and MP16-17-58) immune to TMV infection and three transgenic tobacco lines (Rep15-1-1, Rep15-1-7 and Rep15-1-32) immune to CMV infection were obtained. Virus inoculation assays showed that the resistance of these transgenic plants could inherit and keep stable in T4 progeny. The low temperature (15℃) did not influence the resistance of transgenic plants. There was no significant correlation between the resistance and the copy number of the transgene. CMV infection could not break the resistance to TMV in the transgenic tobacco plants expressing TMV hairpin MP RNA. Conclusions We have demonstrated that transgenic tobacco plants expressed partial TMV movement gene and partial CMV replicase gene in the form of an intermolecular intron-hairpin RNA exhibited complete resistance to TMV or CMV infection. PMID:21269519

  7. MicroRNA Expression Profile in Penile Cancer Revealed by Next-Generation Small RNA Sequencing

    PubMed Central

    Zhang, Yuanwei; Xu, Bo; Zhou, Jun; Fan, Song; Hao, Zongyao; Shi, Haoqiang; Zhang, Xiansheng; Kong, Rui; Xu, Lingfan; Gao, Jingjing; Zou, Duohong; Liang, Chaozhao

    2015-01-01

    Penile cancer (PeCa) is a relatively rare tumor entity but possesses higher morbidity and mortality rates especially in developing countries. To date, the concrete pathogenic signaling pathways and core machineries involved in tumorigenesis and progression of PeCa remain to be elucidated. Several studies suggested miRNAs, which modulate gene expression at posttranscriptional level, were frequently mis-regulated and aberrantly expressed in human cancers. However, the miRNA profile in human PeCa has not been reported before. In this present study, the miRNA profile was obtained from 10 fresh penile cancerous tissues and matched adjacent non-cancerous tissues via next-generation sequencing. As a result, a total of 751 and 806 annotated miRNAs were identified in normal and cancerous penile tissues, respectively. Among which, 56 miRNAs with significantly different expression levels between paired tissues were identified. Subsequently, several annotated miRNAs were selected randomly and validated using quantitative real-time PCR. Compared with the previous publications regarding to the altered miRNAs expression in various cancers and especially genitourinary (prostate, bladder, kidney, testis) cancers, the most majority of deregulated miRNAs showed the similar expression pattern in penile cancer. Moreover, the bioinformatics analyses suggested that the putative target genes of differentially expressed miRNAs between cancerous and matched normal penile tissues were tightly associated with cell junction, proliferation, growth as well as genomic instability and so on, by modulating Wnt, MAPK, p53, PI3K-Akt, Notch and TGF-β signaling pathways, which were all well-established to participate in cancer initiation and progression. Our work presents a global view of the differentially expressed miRNAs and potentially regulatory networks of their target genes for clarifying the pathogenic transformation of normal penis to PeCa, which research resource also provides new insights

  8. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector

    PubMed Central

    Condreay, J. Patrick; Witherspoon, Sam M.; Clay, William C.; Kost, Thomas A.

    1999-01-01

    Recombinant baculoviruses can serve as gene-transfer vehicles for transient expression of recombinant proteins in a wide range of mammalian cell types. Furthermore, by inclusion of a dominant selectable marker in the viral vector, cell lines can be derived that stably express recombinant genes. A virus was constructed containing two expression cassettes controlled by constitutive mammalian promoters: the cytomegalovirus immediate early promoter/enhancer directing expression of green fluorescent protein and the simian virus 40 (SV40) early promoter controlling neomycin phosphotransferase II. Using this virus, efficient gene delivery and expression was observed and measured in numerous cell types of human, primate, and rodent origin. In addition to commonly used transformed cell lines such as HeLa, CHO, Cos-7, and 293, this list includes primary human keratinocytes and bone marrow fibroblasts. In all cases, addition of butyrate or trichostatin A (a selective histone deacetylase inhibitor) to transduced cells markedly enhanced the levels of reporter protein expression observed. When transduced cells are put under selection with the antibiotic G418, cell lines can be obtained at high frequency that stably maintain the expression cassettes of the vector DNA and exhibit stable, high-level expression of the reporter gene. Stably transduced derivatives have been selected from a substantial number of different cell types, suggesting that stable lines can be derived from any cell type that exhibits transient expression. PMID:9874783

  9. Integrated bioinformatics analysis of chromatin regulator EZH2 in regulating mRNA and lncRNA expression by ChIP sequencing and RNA sequencing

    PubMed Central

    Li, Yuan; Luo, Mei; Shi, Xuejiao; Lu, Zhiliang; Sun, Shouguo; Huang, Jianbing; Chen, Zhaoli; He, Jie

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2), a dynamic chromatin regulator in cancer, represents a potential therapeutic target showing early signs of promise in clinical trials. EZH2 ChIP sequencing data in 19 cell lines and RNA sequencing data in ten cancer types were downloaded from GEO and TCGA, respectively. Integrated ChIP sequencing analysis and co-expressing analysis were conducted and both mRNA and long noncoding RNA (lncRNA) targets were detected. We detected a median of 4,672 mRNA targets and 4,024 lncRNA targets regulated by EZH2 in 19 cell lines. 20 mRNA targets and 27 lncRNA targets were found in all 19 cell lines. These mRNA targets were enriched in pathways in cancer, Hippo, Wnt, MAPK and PI3K-Akt pathways. Co-expression analysis confirmed numerous targets, mRNA genes (RRAS, TGFBR2, NUF2 and PRC1) and lncRNA genes (lncRNA LINC00261, DIO3OS, RP11-307C12.11 and RP11-98D18.9) were potential targets and were significantly correlated with EZH2. We predicted genome-wide potential targets and the role of EZH2 in regulating as a transcriptional suppressor or activator which could pave the way for mechanism studies and the targeted therapy of EZH2 in cancer. PMID:27835578

  10. Improvement of a Sulfolobus-E. coli shuttle vector for heterologous gene expression in Sulfolobus acidocaldarius.

    PubMed

    Hwang, Sungmin; Choi, Kyoung-Hwa; Yoon, Naeun; Cha, Jaeho

    2015-02-01

    A Sulfolobus-E. coli shuttle vector for an efficient expression of the target gene in S. acidocaldarius strain was constructed. The plasmid-based vector pSM21 and its derivative pSM21N were generated based on the pUC18 and Sulfolobus cryptic plasmid pRN1. They carried the S. solfataricus P2 pyrEF gene for the selection marker, a multiple cloning site (MCS) with C-terminal histidine tag, and a constitutive promoter of the S. acidocaldarius gdhA gene for strong expression of the target gene, as well as the pBR322 origin and ampicillin-resistant gene for E. coli propagation. The advantage of pSM21 over other Sulfolobus shuttle vectors is that it contains a MCS and a histidine tag for the simple and easy cloning of a target gene as well as one-step purification by histidine affinity chromatography. For successful expression of the foreign genes, two genes from archaeal origins (PH0193 and Ta0298) were cloned into pSM21N and the functional expression was examined by enzyme activity assay. The recombinant PH0193 was successfully expressed under the control of the gdhA promoter and purified from the cultures by His-tag affinity chromatography. The yield was approximately 1 mg of protein per liter of cultures. The enzyme activity measurements of PH0913 and Ta0298 revealed that both proteins were expressed as an active form in S. acidocaldarius. These results indicate that the pSM21N shuttle vector can be used for the functional expression of foreign archaeal genes that form insoluble aggregates in the E. coli system.

  11. Use of Adeno-Associated and Herpes Simplex Viral Vectors for In Vivo Neuronal Expression in Mice

    PubMed Central

    Penrod, Rachel D.; Wells, Audrey M.; Carlezon, William A.; Cowan, Christopher W.

    2015-01-01

    Adeno-associated viruses and the herpes simplex virus are the two most widely used vectors for the in vivo expression of exogenous genes. Advances in the development of these vectors have enabled remarkable temporal and spatial control of gene expression. This unit provides methods for storing, delivering, and verifying expression of adeno-associated and herpes simplex viruses in the adult mouse brain. It also describes important considerations for experiments using in vivo expression of these viral vectors, including serotype and promoter selection, as well as timing of expression. Additional protocols are provided that describe methods for preliminary experiments to determine the appropriate conditions for in vivo delivery. PMID:26426386

  12. Brain Gene Expression Signatures From Cerebrospinal Fluid Exosome RNA Profiling

    NASA Technical Reports Server (NTRS)

    Zanello, S. B.; Stevens, B.; Calvillo, E.; Tang, R.; Gutierrez Flores, B.; Hu, L.; Skog, J.; Bershad, E.

    2016-01-01

    While the Visual Impairment and Intracranial Pressure (VIIP) syndrome observations have focused on ocular symptoms, spaceflight has been also associated with a number of other performance and neurologic signs, such as headaches, cognitive changes, vertigo, nausea, sleep/circadian disruption and mood alterations, which, albeit likely multifactorial, can also result from elevation of intracranial pressure (ICP). We therefore hypothesize that these various symptoms are caused by disturbances in the neurophysiology of the brain structures and are correlated with molecular markers in the cerebrospinal fluid (CSF) as indicators of neurophysiological changes. Exosomes are 30-200 nm microvesicles shed into all biofluids, including blood, urine, and CSF, carrying a highly rich source of intact protein and RNA cargo. Exosomes have been identified in human CSF, and their proteome and RNA pool is a potential new reservoir for biomarker discovery in neurological disorders. The purpose of this study is to investigate changes in brain gene expression via exosome analysis in patients suffering from ICP elevation of varied severity (idiopathic intracranial hypertension -IIH), a condition which shares some of the neuroophthalmological features of VIIP, as a first step toward obtaining evidence suggesting that cognitive function and ICP levels can be correlated with biomarkers in the CSF. Our preliminary work, reported last year, validated the exosomal technology applicable to CSF analysis and demonstrated that it was possible to obtain gene expression evidence of inflammation processes in traumatic brain injury patients. We are now recruiting patients with suspected IIH requiring lumbar puncture at Baylor College of Medicine. Both CSF (5 ml) and human plasma (10 ml) are being collected in order to compare the pattern of differentially expressed genes observed in CSF and in blood. Since blood is much more accessible than CSF, we would like to determine whether plasma biomarkers for

  13. Virus promoters determine interference by defective RNAs: selective amplification of mini-RNA vectors and rescue from cDNA by a 3' copy-back ambisense rabies virus.

    PubMed

    Finke, S; Conzelmann, K K

    1999-05-01

    Typical defective interfering (DI) RNAs are more successful in the competition for viral polymerase than the parental (helper) virus, which is mostly due to an altered DI promoter composition. Rabies virus (RV) internal deletion RNAs which possess the authentic RV terminal promoters, and which therefore are transcriptionally active and can be used as vectors for foreign gene expression, are poorly propagated in RV-infected cells and do not interfere with RV replication. To allow DI-like amplification and high-level gene expression from such mini-RNA vectors, we have used an engineered 3' copy-back (ambisense) helper RV in which the strong replication promoter of the antigenome was replaced with the 50-fold-weaker genome promoter. In cells coinfected with ambisense helper virus and mini-RNAs encoding chloramphenicol acetyltransferase (CAT) and luciferase, mini-RNAs were amplified to high levels. This was correlated with interference with helper virus replication, finally resulting in a clear predominance of mini-RNAs over helper virus. However, efficient successive passaging of mini-RNAs and high-level reporter gene activity could be achieved without adding exogenous helper virus, revealing a rather moderate degree of interference not precluding substantial HV propagation. Compared to infections with recombinant RV vectors expressing CAT, the availability of abundant mini-RNA templates led to increased levels of CAT mRNA such that CAT activities were augmented up to 250-fold, while virus gene transcription was kept to a minimum. We have also exploited the finding that internal deletion model RNAs behave like DI RNAs and are selectively amplified in the presence of ambisense helper virus to demonstrate for the first time RV-supported rescue of cDNA after transfection of mini-RNA cDNAs in ambisense RV-infected cells expressing T7 RNA polymerase.

  14. Regulation of Gene Expression in Plants through miRNA Inactivation

    PubMed Central

    Zhang, Yuanji; Ziegler, Todd E.; Roberts, James K.; Heck, Gregory R.

    2011-01-01

    Eukaryotic organisms possess a complex RNA-directed gene expression regulatory network allowing the production of unique gene expression patterns. A recent addition to the repertoire of RNA-based gene regulation is miRNA target decoys, endogenous RNA that can negatively regulate miRNA activity. miRNA decoys have been shown to be a valuable tool for understanding the function of several miRNA families in plants and invertebrates. Engineering and precise manipulation of an endogenous RNA regulatory network through modification of miRNA activity also affords a significant opportunity to achieve a desired outcome of enhanced plant development or response to environmental stresses. Here we report that expression of miRNA decoys as single or heteromeric non-cleavable microRNA (miRNA) sites embedded in either non-protein-coding or within the 3′ untranslated region of protein-coding transcripts can regulate the expression of one or more miRNA targets. By altering the sequence of the miRNA decoy sites, we were able to attenuate miRNA inactivation, which allowed for fine regulation of native miRNA targets and the production of a desirable range of plant phenotypes. Thus, our results demonstrate miRNA decoys are a flexible and robust tool, not only for studying miRNA function, but also for targeted engineering of gene expression in plants. Computational analysis of the Arabidopsis transcriptome revealed a number of potential miRNA decoys, suggesting that endogenous decoys may have an important role in natural modulation of expression in plants. PMID:21731706

  15. Decreased RNA-binding motif 5 expression is associated with tumor progression in gastric cancer.

    PubMed

    Kobayashi, Takahiko; Ishida, Junich; Shimizu, Yuichi; Kawakami, Hiroshi; Suda, Goki; Muranaka, Tetsuhito; Komatsu, Yoshito; Asaka, Masahiro; Sakamoto, Naoya

    2017-03-01

    RNA-binding motif 5 is a putative tumor suppressor gene that modulates cell cycle arrest and apoptosis. We recently demonstrated that RNA-binding motif 5 inhibits cell growth through the p53 pathway. This study evaluated the clinical significance of RNA-binding motif 5 expression in gastric cancer and the effects of altered RNA-binding motif 5 expression on cancer biology in gastric cancer cells. RNA-binding motif 5 protein expression was evaluated by immunohistochemistry using the surgical specimens of 106 patients with gastric cancer. We analyzed the relationships of RNA-binding motif 5 expression with clinicopathological parameters and patient prognosis. We further explored the effects of RNA-binding motif 5 downregulation with short hairpin RNA on cell growth and p53 signaling in MKN45 gastric cancer cells. Immunohistochemistry revealed that RNA-binding motif 5 expression was decreased in 29 of 106 (27.4%) gastric cancer specimens. Decreased RNA-binding motif 5 expression was correlated with histological differentiation, depth of tumor infiltration, nodal metastasis, tumor-node-metastasis stage, and prognosis. RNA-binding motif 5 silencing enhanced gastric cancer cell proliferation and decreased p53 transcriptional activity in reporter gene assays. Conversely, restoration of RNA-binding motif 5 expression suppressed cell growth and recovered p53 transactivation in RNA-binding motif 5-silenced cells. Furthermore, RNA-binding motif 5 silencing reduced the messenger RNA and protein expression of the p53 target gene p21. Our results suggest that RNA-binding motif 5 downregulation is involved in gastric cancer progression and that RNA-binding motif 5 behaves as a tumor suppressor gene in gastric cancer.

  16. Comprehensive expression analysis of miRNA in breast cancer at the miRNA and isomiR levels.

    PubMed

    Wu, Xianjin; Zeng, Rong; Wu, Shaoke; Zhong, Jixin; Yang, Lawei; Xu, Junfa

    2015-02-25

    Breast cancer (BC) is the main factor that leads cause of cancer death in women worldwide. A class of small non-coding RNAs, microRNAs (miRNAs), has been widely studied in human cancers as crucial regulatory molecule. Recent studies indicate that a series of isomiRs can be yielded from a miRNA locus, and these physiological miRNA isoforms have versatile roles in miRNA biogenesis. Herein, we performed a comprehensive analysis of miRNAs at the miRNA and isomiR levels in BC using next-generation sequencing data from The Cancer Genome Atlas (TCGA). Abnormally expressed miRNA (miR-21, miR-221, miR-155, miR-30e and miR-25) and isomiR profiles could be obtained at the miRNA and isomiR levels, and similar biological roles could be detected. IsomiR expression profiles should be further concerned, and especially isomiRs are actual regulatory molecules in the miRNA-mRNA regulatory networks. The study provides a comprehensive expression analysis at the miRNA and isomiR levels in BC, which indicates biological roles of isomiRs.

  17. Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag.

    PubMed

    Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L

    2015-03-01

    Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert.

  18. Novel N Gene-Associated, Temperature-Independent Resistance to the Movement of Tobacco Mosaic Virus Vectors Neutralized by a Cucumber Mosaic Virus RNA1 Transgene

    PubMed Central

    Canto, Tomas; Palukaitis, Peter

    2002-01-01

    The N gene conditions for resistance to Tobacco mosaic virus (TMV) but only below 28°C. However, a TMV-based vector expressing green fluorescent protein (TMV-GFP) showed only limited movement at 33°C in tobacco plants harboring the N gene and other genes cointrogressed from Nicotiana glutinosa. TMV-GFP moved efficiently in tobacco plants that either lacked these genes or that contained the N gene but were transgenic for RNA1 of Cucumber mosaic virus. These findings identified novel temperature-independent resistance to the movement of TMV-GFP which could be neutralized by a different viral transgene. Using the N gene and nahG gene-transgenic tobacco, we show that this novel resistance is manifested specifically by the N gene itself and operates via a pathway independent of salicylic acid. PMID:12438616

  19. Biological analysis of chronic lymphocytic leukemia: integration of mRNA and microRNA expression profiles.

    PubMed

    Dong, L; Bi, K H; Huang, N; Chen, C Y

    2016-01-08

    Chronic lymphocytic leukemia (CLL) is a disease that involves progressive accumulation of nonfunctioning lymphocytes and has a low cure rate. There is an urgent requirement to determine the molecular mechanism underlying this disease in order to improve the early diagnosis and treatment of CLL. In this study, genes differentially expressed between CLL samples and age-matched controls were identified using microRNA (miRNA) and mRNA expression profiles. Differentially expressed (DE) miRNA targets were predicted by combining five algorithms. Common genes were obtained on overlapping the DE mRNA and DE miRNA targets. Then, network and module analyses were performed. A total of 239 miRNA targets were predicted and 357 DE mRNAs were obtained. On intersecting miRNA targets and DE mRNAs, 33 common genes were obtained. The protein-protein interaction network and module analysis identified several crucial genes and modules that might be associated with the development of CLL. These DE mRNAs were significantly enriched in the hematopoietic cell lineage (P = 2.58E-4), mitogen-activated protein kinase signaling pathway (P = 0.0025), and leukocyte transendothelial migration pathway (P = 0.0026). Thus, we conducted biological analysis on integration of DE mRNAs and DE miRNAs in CLL, determined gene expression patterns, and screened out several important genes that might be related to CLL.

  20. Photoluminescent and biodegradable polycitrate-polyethylene glycol-polyethyleneimine polymers as highly biocompatible and efficient vectors for bioimaging-guided siRNA and miRNA delivery.

    PubMed

    Wang, Min; Guo, Yi; Yu, Meng; Ma, Peter X; Mao, Cong; Lei, Bo

    2017-02-20

    Development of biodegradable and biocompatible non-viral vectors with intrinsical multifunctional properties such as bioimaging ability for highly efficient nucleic acids delivery still remains a challenge. Here, a biodegradable poly (1,8-octanedio-citric acid)-co-polyethylene glycol grafted with polyethyleneimine (PEI) (POCG-PEI) polymers with the photoluminescent capacity were synthesized for nucleic acids delivery (siRNA and miRNA). POCG-PEI polymers can efficiently bind various nucleic acids, protect them against enzymatic degradation and release the genes in the presence of polyanionic heparin. POCG-PEI also showed a significantly low cytotoxicity, enhanced cellular uptake and high transfection efficiency of nucleic acids, as compared to commercial transfection agents, lipofectamine 2000 (Lipo) and polyethylenimine (PEI 25K). POCG-PEI polymers demonstrate an excellent photostability, which allows for imaging the cells and real-time tracking the nucleic acids delivery. The photoluminescent property, low cytotoxicity, biodegradation, good gene binding and protection ability and high genes delivery efficiency make POCG-PEI highly competitive as a non-virus vector for genes delivery and real-time bioimaging applications. Our results may be also an important step for designing biodegradable biomaterials with multifunctional properties towards bioimaging-guided genes therapeutic applications.

  1. MicroRNA buffering and altered variance of gene expression in response to Salmonella infection.

    PubMed

    Bao, Hua; Kommadath, Arun; Plastow, Graham S; Tuggle, Christopher K; Guan, Le Luo; Stothard, Paul

    2014-01-01

    One potential role of miRNAs is to buffer variation in gene expression, although conflicting results have been reported. To investigate the buffering role of miRNAs in response to Salmonella infection in pigs, we sequenced miRNA and mRNA in whole blood from 15 pig samples before and after Salmonella challenge. By analyzing inter-individual variation in gene expression patterns, we found that for moderately and lowly expressed genes, putative miRNA targets showed significantly lower expression variance compared with non-miRNA-targets. Expression variance between highly expressed miRNA targets and non-miRNA-targets was not significantly different. Further, miRNA targets demonstrated significantly reduced variance after challenge whereas non-miRNA-targets did not. RNA binding proteins (RBPs) are significantly enriched among the miRNA targets with dramatically reduced variance of expression after Salmonella challenge. Moreover, we found evidence that targets of young (less-conserved) miRNAs showed lower expression variance compared with targets of old (evolutionarily conserved) miRNAs. These findings point to the importance of a buffering effect of miRNAs for relatively lowly expressed genes, and suggest that the reduced expression variation of RBPs may play an important role in response to Salmonella infection.

  2. Expression vectors for C-terminal fusions with fluorescent proteins and epitope tags in Candida glabrata.

    PubMed

    Yáñez-Carrillo, Patricia; Orta-Zavalza, Emmanuel; Gutiérrez-Escobedo, Guadalupe; Patrón-Soberano, Araceli; De Las Peñas, Alejandro; Castaño, Irene

    2015-07-01

    Candida glabrata is a haploid yeast considered the second most common of the Candida species found in nosocomial infections, accounting for approximately 18% of candidemias worldwide. Even though molecular biology methods are easily adapted to study this organism, there are not enough vectors that will allow probing the transcriptional and translational activity of any gene of interest in C. glabrata. In this work we have generated a set of expression vectors to systematically tag any gene of interest at the carboxy-terminus with three different fluorophores (CFP, YFP and mCherry) or three epitopes (HA, FLAG or cMyc) independently. This system offers the possibility to generate translational fusions in three versions: under the gene's own promoter integrated in its native locus in genome, on a replicative plasmid under its own promoter, or on a replicative plasmid under a strong promoter to overexpress the fusions. The expression of these translational fusions will allow determining the transcriptional and translational activity of the gene of interest as well as the intracellular localization of the protein. We have tested these expression vectors with two biosynthetic genes, HIS3 and TRP1. We detected fluorescence under the microscope and we were able to immunodetect the fusions using the three different versions of the system. These vectors permit coexpression of several different fusions simultaneously in the same cell, which will allow determining protein-protein and protein-DNA interactions. This set of vectors adds a new toolbox to study expression and protein interactions in the fungal pathogen C. glabrata.

  3. MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma.

    PubMed

    Sandoval, Juan; Díaz-Lagares, Angel; Salgado, Rocío; Servitje, Octavio; Climent, Fina; Ortiz-Romero, Pablo L; Pérez-Ferriols, Amparo; Garcia-Muret, Maria P; Estrach, Teresa; Garcia, Mar; Nonell, Lara; Esteller, Manel; Pujol, Ramon M; Espinet, Blanca; Gallardo, Fernando

    2015-04-01

    MicroRNAs usually regulate gene expression negatively, and aberrant expression has been involved in the development of several types of cancers. Microarray profiling of microRNA expression was performed to define a microRNA signature in a series of mycosis fungoides tumor stage (MFt, n=21) and CD30+ primary cutaneous anaplastic large cell lymphoma (CD30+ cALCL, n=11) samples in comparison with inflammatory dermatoses (ID, n=5). Supervised clustering confirmed a distinctive microRNA profile for cutaneous T-cell lymphoma (CTCL) with respect to ID. A 40 microRNA signature was found in MFt including upregulated onco-microRNAs (miR-146a, miR-142-3p/5p, miR-21, miR-181a/b, and miR-155) and downregulated tumor-suppressor microRNAs (miR-200ab/429 cluster, miR-10b, miR-193b, miR-141/200c, and miR-23b/27b). Regarding CD30+ cALCL, 39 differentially expressed microRNAs were identified. Particularly, overexpression of miR-155, miR-21, or miR-142-3p/5p and downregulation of the miR-141/200c clusters were observed. DNA methylation in microRNA gene promoters, as expression regulatory mechanism for deregulated microRNAs, was analyzed using Infinium 450K array and approximately one-third of the differentially expressed microRNAs showed significant DNA methylation differences. Two different microRNA methylation signatures for MFt and CD30+ cALCL were found. Correlation analysis showed an inverse relationship for microRNA promoter methylation and microRNA expression. These results reveal a subgroup-specific epigenetically regulated microRNA signatures for MFt and CD30+ cALCL patients.

  4. Lentiviral vector system for coordinated constitutive and drug controlled tetracycline-regulated gene co-expression.

    PubMed

    Stahlhut, Maike; Schwarzer, Adrian; Eder, Matthias; Yang, Min; Li, Zhixiong; Morgan, Michael; Schambach, Axel; Kustikova, Olga S

    2015-09-01

    Constitutive co-expression of cooperating transgenes using retroviral integrating vectors is frequently used for genetic modification of different cell types to establish therapeutic or cancer models. However, such approaches are unable to dissect the influence of dose, order and reversibility of transgene expression on the fate of newly developed therapeutic/malignant phenotypes. We present a modular lentiviral vector system, which provides expression of constitutive and inducible components. To demonstrate its functionality, we constitutively expressed the well-described transcription factor Meis1 followed by inducible co-expression of collaborating partner Hoxa9 under the control of tetracycline responsive promoters in murine fibroblasts and primary hematopoietic progenitor cells (HPCs). Fluorescent markers to track transgene co-expression revealed tightly controlled, efficiently inducible and reversible but cell type dependent gene transfer over time. We demonstrated dose-dependent blockade of myeloid differentiation when both Meis1/Hoxa9 were concomitantly overexpressed in primary HPCs in vitro, but the absence of the transformed phenotype in non-induced samples or when Hoxa9 expression was down-regulated. This system combines the advantages of lentiviral gene transfer and the opportunity for drug-controlled co-expression of multiple transgenes to dissect, among others, gene networks governing complex cell behavior, such as proto-oncogene dose-dependent leukemogenic pathways or collaborating mechanisms of genes enhancing competitive fitness of hematopoietic cells.

  5. Suppression of hLRH-1 mediated by a DNA vector-based RNA interference results in cell cycle arrest and induction of apoptosis in hepatocellular carcinoma cell BEL-7402

    SciTech Connect

    Wang Shuiliang; Lan Fenghua; Huang Lianghu; Dong Lihong; Zhu Zhongyong; Li Zonghai; Xie Youhua; Fu Jiliang . E-mail: fu825@mail.tongji.edu.cn

    2005-08-05

    RNA interference (RNAi) is the process by which double-stranded RNA directs sequence-specific degradation of mRNA. A DNA vector-based approach has been shown to be able to trigger RNA interference in mammalian cells successfully. LRH-1 is an orphan nuclear receptor predominantly expressed in tissues of endodermal origin, where it controls development and cholesterol homeostasis. In the present study, we demonstrated that the expression of hLRH-1 and cyclin E1 in BEL-7402 cells could be suppressed by up to {approx}80% via DNA vector-based RNA interference. The suppression of hLRH-1 resulted in cell cycle arrest mediated by the down-regulation of cyclin E1. Induction of apoptosis and down-regulation of Gadd45{beta} were also shown in hLRH-1 knock down BEL-7402 cells. These results, together with the findings that Gadd45{beta} remained unchanged in cyclin E1 RNAi cells, suggested that the induction of apoptosis by knock down of hLRH-1 was closely related to the down-regulation of Gadd45{beta}.

  6. Long Noncoding RNA Expression during Human B-Cell Development

    PubMed Central

    Petri, Andreas; Dybkær, Karen; Bøgsted, Martin; Thrue, Charlotte Albæk; Hagedorn, Peter H.; Schmitz, Alexander; Bødker, Julie Støve; Johnsen, Hans Erik; Kauppinen, Sakari

    2015-01-01

    Long noncoding RNAs (lncRNAs) have emerged as important regulators of diverse cellular processes, but their roles in the developing immune system are poorly understood. In this study, we analysed lncRNA expression during human B-cell development by array-based expression profiling of eleven distinct flow-sorted B-cell subsets, comprising pre-B1, pre-B2, immature, naive, memory, and plasma cells from bone marrow biopsies (n = 7), and naive, centroblast, centrocyte, memory, and plasmablast cells from tonsil tissue samples (n = 6), respectively. A remapping strategy was used to assign the array probes to 37630 gene-level probe sets, reflecting recent updates in genomic and transcriptomic databases, which enabled expression profiling of 19579 long noncoding RNAs, comprising 3947 antisense RNAs, 5277 lincRNAs, 7625 pseudogenes, and 2730 additional lncRNAs. As a first step towards inferring the functions of the identified lncRNAs in developing B-cells, we analysed their co-expression with well-characterized protein-coding genes, a method known as “guilt by association”. By using weighted gene co-expression network analysis, we identified 272 lincRNAs, 471 antisense RNAs, 376 pseudogene RNAs, and 64 lncRNAs within seven sub-networks associated with distinct stages of B-cell development, such as early B-cell development, B-cell proliferation, affinity maturation of antibody, and terminal differentiation. These data provide an important resource for future studies on the functions of lncRNAs in development of the adaptive immune response, and the pathogenesis of B-cell malignancies that originate from distinct B-cell subpopulations. PMID:26394393

  7. Expression and functional studies on the noncoding RNA, PRINS.

    PubMed

    Szegedi, Krisztina; Göblös, Anikó; Bacsa, Sarolta; Antal, Mária; Németh, István Balázs; Bata-Csörgő, Zsuzsanna; Kemény, Lajos; Dobozy, Attila; Széll, Márta

    2012-12-21

    PRINS, a noncoding RNA identified earlier by our research group, contributes to psoriasis susceptibility and cellular stress response. We have now studied the cellular and histological distribution of PRINS by using in situ hybridization and demonstrated variable expressions in different human tissues and a consistent staining pattern in epidermal keratinocytes and in vitro cultured keratinocytes. To identify the cellular function(s) of PRINS, we searched for a direct interacting partner(s) of this stress-induced molecule. In HaCaT and NHEK cell lysates, the protein proved to be nucleophosmin (NPM) protein as a potential physical interactor with PRINS. Immunohistochemical experiments revealed an elevated expression of NPM in the dividing cells of the basal layers of psoriatic involved skin samples as compared with healthy and psoriatic uninvolved samples. Others have previously shown that NPM is a ubiquitously expressed nucleolar phosphoprotein which shuttles to the nucleoplasm after UV-B irradiation in fibroblasts and cancer cells. We detected a similar translocation of NPM in UV-B-irradiated cultured keratinocytes. The gene-specific silencing of PRINS resulted in the retention of NPM in the nucleolus of UV-B-irradiated keratinocytes; suggesting that PRINS may play a role in the NPM-mediated cellular stress response in the skin.

  8. Linearization of baculovirus DNA enhances the recovery of recombinant virus expression vectors.

    PubMed Central

    Kitts, P A; Ayres, M D; Possee, R D

    1990-01-01

    Engineered derivatives of Autographa californica multiple nucleocapsid nuclear polyhedrosis virus (AcMNPV) possessing a unique restriction site provide a source of viral DNA that can be linearized by digestion with a specific endonuclease. Circular or linearized DNA from two such viruses were compared in terms of their infectivity and recombinogenic activities. The linear forms were 15- to 150-fold less infectious than the corresponding circular forms, when transfected into Spodoptera frugiperda cells using the calcium phosphate method. Linear viral DNA was, however, proficient at recombination on co-transfection with an appropriate transfer vector. Up to 30% of the progeny viruses were recombinant, a 10-fold higher fraction of recombinants than was obtained from co-transfections with circular AcMNPV DNA. The isolation of a recombinant baculovirus expression vector from any of the AcMNPV transfer vectors currently in use can thus be facilitated by linearization of the viral DNA at the appropriate location. Images PMID:2216760

  9. Two versatile eukaryotic vectors permitting epitope tagging, radiolabelling and nuclear localisation of expressed proteins.

    PubMed

    Georgiev, O; Bourquin, J P; Gstaiger, M; Knoepfel, L; Schaffner, W; Hovens, C

    1996-02-12

    Two versatile eukaryotic expression vectors have been developed which permit the production of an epitope-tagged cDNA insert by transient transfection in mammalian cells or by in vitro transcription-translation. The first vector, pCATCH, can be used to clone cDNA inserts in three different frames via eight unique restriction sites in a multiple cloning site (MCS) located downstream from both the FLAG epitope and the specific heart muscle kinase phosphorylation site, conferring the possibility of in vitro radiolabelling. A specific protease cleavage site enables the removal of the FLAG epitope, simplifying affinity purification of recombinant CATCH proteins. pCATCH possesses stop codons in all three reading frames at the 3' terminal end of the MCS. A derivate of this vector, pCATCH-NLS, was constructed by incorporating an SV40 nuclear localisation signal upstream from the MCS, for directed localisation of the tagged proteins.

  10. High-throughput recombinant gene expression systems in Pichia pastoris using newly developed plasmid vectors.

    PubMed

    Sasagawa, Takahiro; Matsui, Makoto; Kobayashi, Yuki; Otagiri, Masato; Moriya, Shigeharu; Sakamoto, Yasuharu; Ito, Yukishige; Lee, Charles C; Kitamoto, Katsuhiko; Arioka, Manabu

    2011-01-01

    We describe here the construction of Gateway-compatible vectors, pBGP1-DEST and pPICZα-DEST, for rapid and convenient preparation of expression plasmids for production of secretory proteins in Pichia pastoris. Both vectors direct the synthesis of fusion proteins consisting of the N-terminal signal and pro-sequences of Saccharomyces cerevisiae α-factor, the recognition sites for Kex2 and Ste13 processing proteases, the mature region of a foreign protein flanked by attB1- and attB2-derived sequences at N- and C-termini, respectively, and myc plus hexahistidine tags added at the extreme C-terminus. To test the usefulness of these vectors, production of endo-glucanases and xylanases from termite symbionts, as well as a fungal glucuronoyl esterase, was performed. Enzyme activities were detected in the culture supernatants, indicating that the chimeric proteins were synthesized and secreted as designed.

  11. Large-Scale microRNA Expression Profiling Identifies Putative Retinal miRNA-mRNA Signaling Pathways Underlying Form-Deprivation Myopia in Mice

    PubMed Central

    Vaz, Candida; Tanavde, Vivek M.; Maurer-Stroh, Sebastian; Zauscher, Stefan; Gonzalez, Pedro; Young, Terri L.

    2016-01-01

    Development of myopia is associated with large-scale changes in ocular tissue gene expression. Although differential expression of coding genes underlying development of myopia has been a subject of intense investigation, the role of non-coding genes such as microRNAs in the development of myopia is largely unknown. In this study, we explored myopia-associated miRNA expression profiles in the retina and sclera of C57Bl/6J mice with experimentally induced myopia using microarray technology. We found a total of 53 differentially expressed miRNAs in the retina and no differences in miRNA expression in the sclera of C57BL/6J mice after 10 days of visual form deprivation, which induced -6.93 ± 2.44 D (p < 0.000001, n = 12) of myopia. We also identified their putative mRNA targets among mRNAs found to be differentially expressed in myopic retina and potential signaling pathways involved in the development of form-deprivation myopia using miRNA-mRNA interaction network analysis. Analysis of myopia-associated signaling pathways revealed that myopic response to visual form deprivation in the retina is regulated by a small number of highly integrated signaling pathways. Our findings highlighted that changes in microRNA expression are involved in the regulation of refractive eye development and predicted how they may be involved in the development of myopia by regulating retinal gene expression. PMID:27622715

  12. Successful disabling of the 5' UTR of HCV using adeno-associated viral vectors to deliver modular multimeric primary microRNA mimics.

    PubMed

    Bourhill, Tarryn; Arbuthnot, Patrick; Ely, Abdullah

    2016-09-01

    Chronic hepatitis C virus (HCV) infection is a major health concern and is strongly associated with cirrhosis, hepatocellular carcinoma and liver-related mortality. The HCV genome is the template for both protein translation and viral replication and, being RNA, is amenable to direct genetic silencing by RNA interference (RNAi). HCV is a highly mutable virus and is capable of escaping RNAi-mediated silencing. This has highlighted the importance of developing RNAi-based therapy that simultaneously targets multiple regions of the HCV genome. To develop a multi-targeting RNAi activator, a novel approach for the generation of anti-HCV gene therapy was investigated. Five artificial primary miRNA (pri-miR) were each designed to mimic the naturally occurring monomeric pri-miR-31. Potent knockdown of an HCV reporter was seen with four of the five constructs and were processed according to the intended design. The design of the individual pri-miR mimics enabled the modular assembly into multimeric mimics of any possible conformation. Consequently the four potent pri-miR mimics were used to generate polycistronic cassettes, which showed impressive silencing of an HCV target. To further their application as a gene therapy, recombinant adeno-associated viral (rAAV) vectors that express the polycistronic pri-miR mimics were generated. All AAV-delivered anti-HCV pri-miR mimics significantly knocked down the expression of an HCV target and showed inhibition of HCV replicon replication. Here we describe a protocol for the generation of therapeutic rAAVs that express modular polycistronic pri-miR cassettes allowing for rapid alteration and generation of tailored therapeutic constructs against HCV.

  13. MGMT enrichment and second gene co-expression in hematopoietic progenitor cells using separate or dual-gene lentiviral vectors.

    PubMed

    Roth, Justin C; Alberti, Michael O; Ismail, Mourad; Lingas, Karen T; Reese, Jane S; Gerson, Stanton L

    2015-01-22

    The DNA repair gene O(6)-methylguanine-DNA methyltransferase (MGMT) allows efficient in vivo enrichment of transduced hematopoietic stem cells (HSC). Thus, linking this selection strategy to therapeutic gene expression offers the potential to reconstitute diseased hematopoietic tissue with gene-corrected cells. However, different dual-gene expression vector strategies are limited by poor expression of one or both transgenes. To evaluate different co-expression strategies in the context of MGMT-mediated HSC enrichment, we compared selection and expression efficacies in cells cotransduced with separate single-gene MGMT and GFP lentivectors to those obtained with dual-gene vectors employing either encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) or foot and mouth disease virus (FMDV) 2A elements for co-expression strategies. Each strategy was evaluated in vitro and in vivo using equivalent multiplicities of infection (MOI) to transduce 5-fluorouracil (5-FU) or Lin(-)Sca-1(+)c-kit(+) (LSK)-enriched murine bone marrow cells (BMCs). The highest dual-gene expression (MGMT(+)GFP(+)) percentages were obtained with the FMDV-2A dual-gene vector, but half of the resulting gene products existed as fusion proteins. Following selection, dual-gene expression percentages in single-gene vector cotransduced and dual-gene vector transduced populations were similar. Equivalent MGMT expression levels were obtained with each strategy, but GFP expression levels derived from the IRES dual-gene vector were significantly lower. In mice, vector-insertion averages were similar among cells enriched after dual-gene vectors and those cotransduced with single-gene vectors. These data demonstrate the limitations and advantages of each strategy in the context of MGMT-mediated selection, and may provide insights into vector design with respect to a particular therapeutic gene or hematologic defect.

  14. Inhibition of clinical human immunodeficiency virus (HIV) type 1 isolates in primary CD4+ T lymphocytes by retroviral vectors expressing anti-HIV genes.

    PubMed Central

    Vandendriessche, T; Chuah, M K; Chiang, L; Chang, H K; Ensoli, B; Morgan, R A

    1995-01-01

    Gene therapy may be of benefit in human immunodeficiency virus type 1 (HIV-1)-infected individuals by virtue of its ability to inhibit virus replication and prevent viral gene expression. It is not known whether anti-HIV-1 gene therapy strategies based on antisense or transdominant HIV-1 mutant proteins can inhibit the replication and expression of clinical HIV-1 isolates in primary CD4+ T lymphocytes. We therefore transduced CD4+ T lymphocytes from uninfected individuals with retroviral vectors expressing either HIV-1-specific antisense-TAR or antisense-Tat/Rev RNA, transdominant HIV-1 Rev protein, and a combination of antisense-TAR and transdominant Rev. The engineered CD4+ T lymphocytes were then infected with four different clinical HIV-1 isolates. We found that replication of all HIV-1 isolates was inhibited by all the anti-HIV vectors tested. Greater inhibition of HIV-1 was observed with transdominant Rev than with antisense RNA. We hereby demonstrated effective protection by antisense RNA or transdominant mutant proteins against HIV-1 infection in primary CD4+ T lymphocytes using clinical HIV-1 isolates, and this represents an essential step toward clinical anti-HIV-1 gene therapy. PMID:7769662

  15. Hierarchical Generative Biclustering for MicroRNA Expression Analysis

    NASA Astrophysics Data System (ADS)

    Caldas, José; Kaski, Samuel

    Clustering methods are a useful and common first step in gene expression studies, but the results may be hard to interpret. We bring in explicitly an indicator of which genes tie each cluster, changing the setup to biclustering. Furthermore, we make the indicators hierarchical, resulting in a hierarchy of progressively more specific biclusters. A non-parametric Bayesian formulation makes the model rigorous and yet flexible, and computations feasible. The formulation additionally offers a natural information retrieval relevance measure that allows relating samples in a principled manner. We show that the model outperforms other four biclustering procedures in a large miRNA data set. We also demonstrate the model's added interpretability and information retrieval capability in a case study that highlights the potential and novel role of miR-224 in the association between melanoma and non-Hodgkin lymphoma. Software is publicly available.

  16. Highest trkB mRNA expression in the entorhinal cortex among hippocampal subregions in the adult rat: contrasting pattern with BDNF mRNA expression.

    PubMed

    Tokuyama, W; Hashimoto, T; Li, Y X; Okuno, H; Miyashita, Y

    1998-11-20

    Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, regulate synaptic functions in the hippocampus of the adult rodent. In previous studies, in situ hybridization methods have been used to evaluate regional differences in BDNF and trkB mRNA expression levels in hippocampal subregions. However, these studies have failed to reach consensus regarding the regional differences in the mRNA expression levels. In the present study, we quantitated mRNA expression levels using two different methods, ribonuclease protection assays and a quantitative reverse-transcription polymerase chain reaction technique, in four hippocampal subregions: the entorhinal cortex, dentate gyrus (DG), CA3 and CA1. These two methods yielded the same results. We found that BDNF and trkB mRNA expression levels did not covary in the four subregions. BDNF and full length trkB (trkB FL) mRNA in the entorhinal cortex and the DG show contrasting expression patterns. The expression level of BDNF mRNA was highest in the DG among the hippocampal subregions and low in the entorhinal cortex and the CA1, whereas the trkB FL mRNA expression level was highest in the entorhinal cortex, low in the DG and lowest in the CA3. These results suggest regional differences in BDNF/TrkB signaling for maintenance and modifiability of neuronal connections in the hippocampal formation.

  17. Expression of mammalian membrane proteins in mammalian cells using Semliki Forest virus vectors.

    PubMed

    Lundstrom, Kenneth

    2010-01-01

    One of the major bottlenecks in drug screening and structural biology on membrane proteins has for a long time been the expression of recombinant protein in sufficient quality and quantity. The expression has been evaluated in all existing expression systems, from cell-free translation and bacterial systems to expression in animal cells. In contrast to soluble proteins, the expression levels have been relatively low due to the following reasons: The topology of membrane proteins requires special, posttranslational processing, folding, and insertion into membranes, which often are mammalian cell specific. Despite these strict demands, functional membrane proteins (G protein-coupled receptors, ion channels, and transporters) have been successfully expressed in bacterial, yeast, and insect cells. A general drawback observed in prokaryotic cells is that accumulation of foreign protein in membranes is toxic and results in growth arrest and therefore low yields of recombinant protein.In this chapter, the focus is on expression of recombinant mammalian membrane proteins in mammalian host cells, particularly applying Semliki Forest virus (SFV) vectors. Replication-deficient SFV vectors are rapidly generated at high titers in BHK-21 (Baby Hamster Kidney) cells, which then are applied for a broad range of mammalian and nonmammalian cells. The SFV system has provided high expression levels of topologically different proteins, especially for membrane proteins. Robust ligand-binding assays and functional coupling to G proteins and electrophysiological recordings have made the SFV system an attractive tool in drug discovery. Furthermore, the high susceptibility of SFV vectors to primary neurons has allowed various applications in neuroscience. Establishment of large-scale production in mammalian adherent and suspension cultures has allowed production of hundreds of milligrams of membrane proteins that has allowed their submission to serious structural biology approaches. In this

  18. Prolonged expansion of human nucleus pulposus cells expressing human telomerase reverse transcriptase mediated by lentiviral vector.

    PubMed

    Wu, Jianhong; Wang, Deli; Ruan, Dike; He, Qing; Zhang, Yan; Wang, Chaofeng; Xin, Hongkui; Xu, Cheng; Liu, Yue

    2014-01-01

    Human degenerative disc disease (DDD) is characterized by progressive loss of human nucleus pulposus (HNP) cells and extracellular matrix, in which the massive deposition are secreted by HNP cells. Cell therapy to supplement HNP cells to degenerated discs has been thought to be a promising strategy to treat DDD. However, obtaining a large quality of fully functional HNP cells has been severely hampered by limited proliferation capacity of HNP cells in vitro. Previous studies have used lipofectamine or recombinant adeno-associated viral (rAAV) vectors to deliver human telomerase reverse transcriptase (hTERT) into ovine or HNP cells to prolong the activity of nucleus pulposus cells with limited success. Here we developed a lentiviral vector bearing both hTERT and a gene encoding green fluorescence protein (L-hTERT/EGFP). This vector efficiently mediated both hTERT and EGFP into freshly isolated HNP cells. The expressions of both transgenes in L-hTERT/EGFP transduced HNP cells were detected up to day 210 post viral infection, which was twice as long as rAAV vector did. Furthermore, we observed restored telomerase activity, maintained telomere length, delayed cell senescence, and increased cell proliferation rate in those L-hTERT/EGFP transduced HNP cells. Our study suggests that lentiviral vector might be a useful gene delivery vehicle for HNP cell therapy to treat DDD.

  19. Transgene expression in Penaeus monodon cells: evaluation of recombinant baculoviral vectors with shrimp specific hybrid promoters.

    PubMed

    Puthumana, Jayesh; Philip, Rosamma; Bright Singh, I S

    2016-08-01

    It has been realized that shrimp cell immortalization may not be accomplished without in vitro transformation by expressing immortalizing gene in cells. In this process, efficiency of transgene expression is confined to the ability of vectors to transmit gene of interests to the genome. Over the years, unavailability of such vectors has been hampering application of such a strategy in shrimp cells. We report the use of recombinant baculovirus mediated transduction using hybrid promoter system for transgene expression in lymphoid cells of Penaeus monodon. Two recombinant baculovirus vectors with shrimp viral promoters (WSSV-Ie1 and IHHNV-P2) were constructed (BacIe1-GFP and BacP2-GFP) and green fluorescent protein (GFP) used as the transgene. The GFP expression in cells under the control of hybrid promoters, PH-Ie1 or PH-P2, were analyzed and confirmed in shrimp cells. The results indicate that the recombinant baculovirus with shrimp specific viral promoters (hybrid) can be employed for delivery of foreign genes to shrimp cells for in vitro transformation.

  20. MicroRNA Seed Region Length Impact on Target Messenger RNA Expression and Survival in Colorectal Cancer.

    PubMed

    Mullany, Lila E; Herrick, Jennifer S; Wolff, Roger K; Slattery, Martha L

    2016-01-01

    microRNAs (miRNA) repress messenger RNAs post-transcriptionally through binding to the 3' UTR of the mRNA with the miRNA seed region. It has been purported that longer seed regions have a greater efficacy on mRNA repression. We tested this hypothesis by evaluating differential expression of miRNAs involved in regulating the immune response, an important mechanism in colorectal cancer (CRC), by seed length category. We subsequently evaluated differential expression of these miRNAs' targets in colonic tissue and the impact of these miRNAs on CRC survival. We determined sequence complementarity between each miRNA seed region and the 3' UTR of each experimentally verified mRNA target gene. We classified miRNAs into groups based on seed regions matching perfectly to a mRNA UTR with six bases beginning at position two, seven bases beginning at position one, seven bases beginning at position two, or eight bases beginning at position one. We analyzed these groups in terms of miRNA differential expression between carcinoma and normal colorectal mucosa, differential colonic target mRNA expression, and risk of dying from CRC. After correction for multiple comparisons, the proportion of the miRNAs that were associated with differential mRNA expression was 0% for the 6-mer, 13.64% for the 7α-mer group, 12.82% for the 7β-mer group, and 8.70% for the 8-mer group. The proportion of miRNAs associated with survival was 20% for the 6-mer group, 27.27% for the 7α-mer group, 10.23% for the 7β-mer group, and 21.74% for the 8-mer group. We did not see a linear relationship between seed length and miRNA expression dysregulation, mRNA expression, or survival. Our findings do not support the hypothesis the seed region length alone influences mRNA repression.

  1. T box RNA decodes both the information content and geometry of tRNA to affect gene expression.

    PubMed

    Grigg, Jason C; Chen, Yujie; Grundy, Frank J; Henkin, Tina M; Pollack, Lois; Ke, Ailong

    2013-04-30

    The T box leader sequence is an RNA element that controls gene expression by binding directly to a specific tRNA and sensing its aminoacylation state. This interaction controls expression of amino acid-related genes in a negative feedback loop. The T box RNA structure is highly conserved, but its tRNA binding mechanism is only partially understood. Known sequence elements are the specifier sequence, which recognizes the tRNA anticodon, and the antiterminator bulge, which base pairs with the tRNA acceptor end. Here, we reveal the crucial function of the highly conserved stem I distal region in tRNA recognition and report its 2.65-Å crystal structure. The apex of this region contains an intricately woven loop-loop interaction between two conserved motifs, the Adenine-guanine (AG) bulge and the distal loop. This loop-loop structure presents a base triple on its surface that is optimally positioned for base-stacking interactions. Mutagenesis, cross-linking, and small-angle X-ray scattering data demonstrate that the apical base triple serves as a binding platform to dock the tRNA D- and T-loops. Strikingly, the binding platform strongly resembles the D- and T-loop binding elements from RNase P and the ribosome exit site, suggesting that this loop-loop structure may represent a widespread tRNA recognition platform. We propose a two-checkpoint molecular ruler model for tRNA decoding in which the information content of tRNA is first examined through specifier sequence-anticodon interaction, and the length of the tRNA anticodon arm is then measured by the distal loop-loop platform. When both conditions are met, tRNA is secured, and its aminoacylation state is sensed.

  2. Expression of chicken parvovirus VP2 in chicken embryo fibroblasts requires codon optimization for production of naked DNA and vectored meleagrid herpesvirus type 1 vaccines.

    PubMed

    Spatz, Stephen J; Volkening, Jeremy D; Mullis, Robert; Li, Fenglan; Mercado, John; Zsak, Laszlo

    2013-10-01

    Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspected in causing Runting Stunting Syndrome (RSS) in chickens. Initial attempts to express the wild-type gene encoding the capsid protein VP2 of ChPV by insertion into the thymidine kinase gene of MeHV-1 were unsuccessful. However, transient expression of a codon-optimized synthetic VP2 gene cloned into the bicistronic vector pIRES2-Ds-Red2, could be demonstrated by immunocytochemical staining of transfected chicken embryo fibroblasts (CEFs). Red fluorescence could also be detected in these transfected cells since the red fluorescent protein gene is downstream from the internal ribosome entry site (IRES). Strikingly, fluorescence could not be demonstrated in cells transiently transfected with the bicistronic vector containing the wild-type or non-codon-optimized VP2 gene. Immunocytochemical staining of these cells also failed to demonstrate expression of wild-type VP2, indicating that the lack of expression was at the RNA level and the VP2 protein was not toxic to CEFs. Chickens vaccinated with a DNA vaccine consisting of the bicistronic vector containing the codon-optimized VP2 elicited a humoral immune response as measured by a VP2-specific ELISA. This VP2 codon-optimized bicistronic cassette was rescued into the MeHV-1 genome generating a vectored vaccine against ChPV disease.

  3. Potential for cellular stress response to hepatic factor VIII expression from AAV vector

    PubMed Central

    Zolotukhin, Irene; Markusic, David M; Palaschak, Brett; Hoffman, Brad E; Srikanthan, Meera A; Herzog, Roland W

    2016-01-01

    Hemophilia A and B are coagulation disorders resulting from the loss of functional coagulation factor VIII (FVIII) or factor IX proteins, respectively. Gene therapy for hemophilia with adeno-associated virus vectors has shown efficacy in hemophilia B patients. Although hemophilia A patients are more prevalent, the development of therapeutic adeno-associated virus vectors has been impeded by the size of the F8 cDNA and impaired secretion of FVIII protein. Further, it has been reported that over-expression of the FVIII protein induces endoplasmic reticulum stress and activates the unfolded protein response pathway both in vitro and in hepatocytes in vivo, presumably due to retention of misfolded FVIII protein within the endoplasmic reticulum. Engineering of the F8 transgene, including removal of the B domain (BDD-FVIII) and codon optimization, now allows for the generation of adeno-associated virus vectors capable of expressing therapeutic levels of FVIII. Here we sought to determine if the risks of inducing the unfolded protein response in murine hepatocytes extend to adeno-associated virus gene transfer. Although our data show a mild activation of unfolded protein response markers following F8 gene delivery at a certain vector dose in C57BL/6 mice, it was not augmented upon further elevated dosing, did not induce liver pathology or apoptosis, and did not impact FVIII immunogenicity. PMID:27738644

  4. Murine Cytomegalovirus Abortively Infects Human Dendritic Cells, Leading to Expression and Presentation of Virally Vectored Genes

    PubMed Central

    Wang, Xiuqing; Messerle, Martin; Sapinoro, Ramil; Santos, Kathlyn; Hocknell, Peter K.; Jin, Xia; Dewhurst, Stephen

    2003-01-01

    Dendritic cells (DC) are potent antigen-presenting cells that play a crucial role in antigen-specific immune responses. Thus, the targeting of exogenous antigens to DC has become a popular approach for cancer immunotherapy and vaccine development. In this report, we studied the interplay between murine cytomegalovirus (MCMV) and human monocyte-derived DC. The results showed that an enhanced green fluorescent protein (EGFP)-encoding, replication-competent MCMV vector underwent abortive infection in human DC; this was accompanied by the efficient expression of EGFP. Infection of human DC by this vector resulted in a modest increase in the expression of cell surface proteins associated with DC maturation and has no significant effect on the immunostimulatory function of the cells, as reflected by their ability to support T-cell proliferation in a mixed-lymphocyte reaction. Finally, an MCMV vector encoding the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein was constructed and used to infect cultured human DC. The infected DC were shown to be capable of stimulating the expansion of autologous, gp120-specific, class I-restricted T lymphocytes from an HIV-1-negative donor, as determined by tetramer staining and enzyme-linked immunospot analysis. Taken together, these results suggest that MCMV may have potential utility as a vector for human vaccine development. PMID:12805417

  5. Differential expression of miRNA between the monolayer and three dimensional cells after ionizing radiation

    NASA Astrophysics Data System (ADS)

    Pan, Dong; Ren, Zhenxin; Hu, Burong

    2014-04-01

    We detect the expression of miRNA in 2D and 3D human lung epithelial cells (3KT). And our primary experimental results showed that more miRNA in 3D 3KT down regulated than in 2D 3KT cells after not only X-ray but also C-beam irradiation using the miRNA chip assay. Meanwhile, X-ray induced more significantly differential expression of miRNA when the relative expression value of miRNA in 3D cells were compared to 2D cells after irradiation.

  6. [MicroRNA Target Prediction Based on Support Vector Machine Ensemble Classification Algorithm of Under-sampling Technique].

    PubMed

    Chen, Zhiru; Hong, Wenxue

    2016-02-01

    Considering the low accuracy of prediction in the positive samples and poor overall classification effects caused by unbalanced sample data of MicroRNA (miRNA) target, we proposes a support vector machine (SVM)-integration of under-sampling and weight (IUSM) algorithm in this paper, an under-sampling based on the ensemble learning algorithm. The algorithm adopts SVM as learning algorithm and AdaBoost as integration framework, and embeds clustering-based under-sampling into the iterative process, aiming at reducing the degree of unbalanced distribution of positive and negative samples. Meanwhile, in the process of adaptive weight adjustment of the samples, the SVM-IUSM algorithm eliminates the abnormal ones in negative samples with robust sample weights smoothing mechanism so as to avoid over-learning. Finally, the prediction of miRNA target integrated classifier is achieved with the combination of multiple weak classifiers through the voting mechanism. The experiment revealed that the SVM-IUSW, compared with other algorithms on unbalanced dataset collection, could not only improve the accuracy of positive targets and the overall effect of classification, but also enhance the generalization ability of miRNA target classifier.

  7. MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary.

    PubMed

    Mishima, Takuya; Takizawa, Takami; Luo, Shan-Shun; Ishibashi, Osamu; Kawahigashi, Yutaka; Mizuguchi, Yoshiaki; Ishikawa, Tomoko; Mori, Miki; Kanda, Tomohiro; Goto, Tadashi; Takizawa, Toshihiro

    2008-12-01

    MicroRNAs (miRNAs) are endogenous non-coding small RNAs that can regulate the expression of complementary mRNA targets. Identifying tissue-specific miRNAs is the first step toward understanding the biological functions of miRNAs, which include the regulation of tissue differentiation and the maintenance of tissue identity. In this study, we performed small RNA library sequencing in adult mouse testis and ovary to reveal their characteristic organ- and gender-specific profiles and to elucidate the characteristics of the miRNAs expressed in the reproductive system. We obtained 10,852 and 11 744 small RNA clones from mouse testis and ovary respectively (greater than 10,000 clones per organ), which included 6630 (159 genes) and 10,192 (154 genes) known miRNAs. A high level of efficiency of miRNA library sequencing was achieved: 61% (6630 miRNA clones/10,852 small RNA clones) and 87% (10,192/11,744) for adult mouse testis and ovary respectively. We obtained characteristic miRNA signatures in testis and ovary; 55 miRNAs were detected highly, exclusively, or predominantly in adult mouse testis and ovary, and discovered two novel miRNAs. Male-biased expression of miRNAs occurred on the X-chromosome. Our data provide important information on sex differences in miRNA expression that should facilitate studies of the reproductive organ-specific roles of miRNAs.

  8. [Construction of eukaryotic expressing vector of multiple myeloma mucin-1 and its expression in COS-7 cells in vitro].

    PubMed

    Liu, Kun; Luo, Yun-Jiao; Liu, Yue-Bo; Yao, Jin; Yang, Hong; Mou, Hong; Huang, Gui-Yun; Zhang, You

    2009-08-01

    In order to construct an eukaryotic expression vector for gene of multiple myeloma mucin1 (muc1-2vntr) gene and to express it in COS-7 cells in vitro, so to provide the basic material for further research of multiple myeloma DNA vaccine. muc1-2vntr coding gene was used as a research gene and a KOZAK sequence was inserted before the gene Hind III and XbaI restriction sites were inserted before and after the coding gene. Then the whole sequence was synthesized and inserted into pcDNA3.1/myc-his B vector, and the resulted recombinant vector was transformed into E.coil competent cells to get an engineering strain, the recombinant plasmid pcDNA3.1-2vntr/myc-his B identified by restriction analysis and DNA sequencing were transfected into COS-7 cells by liposome-mediated gene transfer method. Finally, fluorescent microscopy was used to assess GFP expression and Western blot analysis using muc1 monoclonal antibody was used to recognize vntr, confirming the expression of vntr. The results showed that the full length of synthesized muc1-2vntr gene, as expected, was 140 bp. Both restriction analysis and DNA sequencing demonstrated that pcDNA3.1-2vntr/myc-his B included the whole translation frame region and muc1-2vntr gene. Furthermore, the fluorescence microscopy proved that the recombinant plasmid had been successfully transfected into COS-7 cells. The expression of mucin-1 protein was observed both in the transfected cell and the cell supernatant by Western blot. It is concluded that the pcDNA3.1-2vntr/myc-his B has been successfully constructed and expressed in COS-7 cells in vitro, which provides the basic material for further researches of mucin-1 function and possible multiple myloma DNA vaccine.

  9. RNAi-mediated knockdown of mouse melanocortin-4 receptor in vitro and in vivo, using an siRNA expression construct based on the mir-187 precursor

    PubMed Central

    Kato, Minoru; Huang, Yi-Ying; Matsuo, Mina; Takashina, Yoko; Sasaki, Kazuyo; Horai, Yasushi; Juni, Aya; Kamijo, Shin-Ichi; Saigo, Kaoru; Ui-Tei, Kumiko; Tei, Hajime

    2016-01-01

    RNA interference (RNAi) is a powerful tool for the study of gene function in mammalian systems, including transgenic mice. Here, we report a gene knockdown system based on the human mir-187 precursor. We introduced small interfering RNA (siRNA) sequences against the mouse melanocortin-4 receptor (mMc4r) to alter the targeting of miR-187. The siRNA-expressing cassette was placed under the control of the cytomegalovirus (CMV) early enhancer/chicken β-actin promoter. In vitro, the construct efficiently knocked down the gene expression of a co-transfected mMc4r-expression vector in cultured mammalian cells. Using this construct, we generated a transgenic mouse line which exhibited partial but significant knockdown of mMc4r mRNA in various brain regions. Northern blot analysis detected transgenic expression of mMc4r siRNA in these regions. Furthermore, the transgenic mice fed a normal diet ate 9% more and were 30% heavier than wild-type sibs. They also developed hyperinsulinemia and fatty liver as do mMc4r knockout mice. We determined that this siRNA expression construct based on mir-187 is a practical and useful tool for gene functional studies in vitro as well as in vivo. PMID:27725374

  10. Integrated Analysis of LncRNA-mRNA Co-Expression Profiles in Patients with Moyamoya Disease

    PubMed Central

    Wang, Wen; Gao, Faliang; Zhao, Zheng; Wang, Haoyuan; Zhang, Lu; Zhang, Dong; Zhang, Yan; Lan, Qing; Wang, Jiangfei; Zhao, Jizong

    2017-01-01

    Moyamoya disease (MMD) is an idiopathic disease associated with recurrent stroke. However, the pathogenesis of MMD remains unknown. Therefore, we performed long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in blood samples from MMD patients (N = 15) and healthy controls (N = 10). A total of 880 differentially expressed lncRNAs (3649 probes) and 2624 differentially expressed mRNAs (2880 probes) were obtained from the microarrays of MMD patients and healthy controls (P < 0.05; Fold Change >2.0). Gene ontology (GO) and pathway analyses showed that upregulated mRNAs were enriched for inflammatory response, Toll-like receptor signaling pathway, chemokine signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway among others, while the downregulated mRNAs were enriched for neurological system process, digestion, drug metabolism, retinol metabolism and others. Our results showed that the integrated analysis of lncRNA-mRNA co-expression networks were linked to inflammatory response, Toll-like signaling pathway, cytokine-cytokine receptor interaction and MAPK signaling pathway. These findings may elucidate the pathogenesis of MMD, and the differentially expressed genes could provide clues to find key components in the MMD pathway. PMID:28176861

  11. Non-integrating lentiviral vectors based on the minimal S/MAR sequence retain transgene expression in dividing cells.

    PubMed

    Xu, Zhen; Chen, Feng; Zhang, Lingling; Lu, Jing; Xu, Peng; Liu, Guang; Xie, Xuemin; Mu, Wenli; Wang, Yajun; Liu, Depei

    2016-10-01

    Safe and efficient gene transfer systems are the basis of gene therapy applications. Non-integrating lentiviral (NIL) vectors are among the most promising candidates for gene transfer tools, because they exhibit high transfer efficiency in both dividing and non-dividing cells and do not present a risk of insertional mutagenesis. However, non-integrating lentiviral vectors cannot introduce stable exogenous gene expression to dividing cells, thereby limiting their application. Here, we report the design of a non-integrating lentiviral vector that contains the minimal scaffold/matrix attachment region (S/MAR) sequence (SNIL), and this SNIL vector is able to retain episomal transgene expression in dividing cells. Using SNIL vectors, we detected the expression of the eGFP gene for 61 days in SNIL-transduced stable CHO cells, either with selection or not. In the NIL group without the S/MAR sequence, however, the transduced cells died under selection for the transient expression of NIL vectors. Furthermore, Southern blot assays demonstrated that the SNIL vectors were retained extrachromosomally in the CHO cells. In conclusion, the minimal S/MAR sequence retained the non-integrating lentiviral vectors in dividing cells, which indicates that SNIL vectors have the potential for use as a gene transfer tool.

  12. New Recombinant Mycobacterium bovis BCG Expression Vectors: Improving Genetic Control over Mycobacterial Promoters

    PubMed Central

    Kanno, Alex I.; Goulart, Cibelly; Rofatto, Henrique K.; Oliveira, Sergio C.; Leite, Luciana C. C.

    2016-01-01

    The expression of many antigens, stimulatory molecules, or even metabolic pathways in mycobacteria such as Mycobacterium bovis BCG or M. smegmatis was made possible through the development of shuttle vectors, and several recombinant vaccines have been constructed. However, gene expression in any of these systems relied mostly on the selection of natural promoters expected to provide the required level of expression by trial and error. To establish a systematic selection of promoters with a range of strengths, we generated a library of mutagenized promoters through error-prone PCR of the strong PL5 promoter, originally from mycobacteriophage L5. These promoters were cloned upstream of the enhanced green fluorescent protein reporter gene, and recombinant M. smegmatis bacteria exhibiting a wide range of fluorescence levels were identified. A set of promoters was selected and identified as having high (pJK-F8), intermediate (pJK-B7, pJK-E6, pJK-D6), or low (pJK-C1) promoter strengths in both M. smegmatis and M. bovis BCG. The sequencing of the promoter region demonstrated that it was extensively modified (6 to 11%) in all of the plasmids selected. To test the functionality of the system, two different expression vectors were demonstrated to allow corresponding expression levels of the Schistosoma mansoni antigen Sm29 in BCG. The approach used here can be used to adjust expression levels for synthetic and/or systems biology studies or for vaccine development to maximize the immune response. PMID:26850295

  13. The infectious BAC genomic DNA expression library: a high capacity vector system for functional genomics

    PubMed Central

    Lufino, Michele M. P.; Edser, Pauline A. H.; Quail, Michael A.; Rice, Stephen; Adams, David J.; Wade-Martins, Richard

    2016-01-01

    Gene dosage plays a critical role in a range of cellular phenotypes, yet most cellular expression systems use heterologous cDNA-based vectors which express proteins well above physiological levels. In contrast, genomic DNA expression vectors generate physiologically-relevant levels of gene expression by carrying the whole genomic DNA locus of a gene including its regulatory elements. Here we describe the first genomic DNA expression library generated using the high-capacity herpes simplex virus-1 amplicon technology to deliver bacterial artificial chromosomes (BACs) into cells by viral transduction. The infectious BAC (iBAC) library contains 184,320 clones with an average insert size of 134.5 kb. We show in a Chinese hamster ovary (CHO) disease model cell line and mouse embryonic stem (ES) cells that this library can be used for genetic rescue studies in a range of contexts including the physiological restoration of Ldlr deficiency, and viral receptor expression. The iBAC library represents an important new genetic analysis tool openly available to the research community. PMID:27353647

  14. New Recombinant Mycobacterium bovis BCG Expression Vectors: Improving Genetic Control over Mycobacterial Promoters.

    PubMed

    Kanno, Alex I; Goulart, Cibelly; Rofatto, Henrique K; Oliveira, Sergio C; Leite, Luciana C C; McFadden, Johnjoe

    2016-04-01

    The expression of many antigens, stimulatory molecules, or even metabolic pathways in mycobacteria such as Mycobacterium bovis BCG or M. smegmatis was made possible through the development of shuttle vectors, and several recombinant vaccines have been constructed. However, gene expression in any of these systems relied mostly on the selection of natural promoters expected to provide the required level of expression by trial and error. To establish a systematic selection of promoters with a range of strengths, we generated a library of mutagenized promoters through error-prone PCR of the strong PL5 promoter, originally from mycobacteriophage L5. These promoters were cloned upstream of the enhanced green fluorescent protein reporter gene, and recombinant M. smegmatis bacteria exhibiting a wide range of fluorescence levels were identified. A set of promoters was selected and identified as having high (pJK-F8), intermediate (pJK-B7, pJK-E6, pJK-D6), or low (pJK-C1) promoter strengths in both M. smegmatis and M. bovisBCG. The sequencing of the promoter region demonstrated that it was extensively modified (6 to 11%) in all of the plasmids selected. To test the functionality of the system, two different expression vectors were demonstrated to allow corresponding expression levels of the Schistosoma mansoni antigen Sm29 in BCG. The approach used here can be used to adjust expression levels for synthetic and/or systems biology studies or for vaccine development to maximize the immune response.

  15. Expression of Long Non-Coding RNA (lncRNA) Small Nucleolar RNA Host Gene 1 (SNHG1) Exacerbates Hepatocellular Carcinoma Through Suppressing miR-195

    PubMed Central

    Zhang, Hui; Zhou, Dong; Ying, Mingang; Chen, Minyong; Chen, Peng; Chen, Zhaoshuo; Zhang, Fan

    2016-01-01

    Background Aberrant expression of lncRNA has been suggested to have an association with tumorigenesis. Our study was designed to reveal the underlying connection between lncRNA SNHG1 and hepatocellular carcinoma (HCC) pathogenesis. Material/Methods A total of 122 pairs of HCC tissues (case group) and matched adjacent non-tumor liver tissues (control group) were collected for this study. RT-PCR and in situ hybridization were conducted to investigate differences in lncRNA SNHG1 expression between the case and control group. The expression levels of lncRNA SNHG1 and miR-195 in HepG2 cells transfected with SNHG1-mimic and SNHG1-inhibitor were measured by RT-PCR. The proliferation, invasion, and migration status of HepG2 cells after transfection were assessed through MTT assay, wound healing assay, and Transwell assay, respectively. Whether miR-195 is a direct downstream target of lncRNA SNHG1 was verified by both bioinformatics target gene prediction and dual-luciferase report assay. Results The expression level of lncRNA SNHG1 was remarkably upregulated in HCC tissues and cell lines compared with normal tissues and cell lines. High expression of lncRNA SNHG1 contributed to the downregulation of miR-195 in HepG2 cells. Also, lncRNA SNHG1 exacerbated HCC cell proliferation, invasion, and migration in vitro through the inhibition of miR-195. This suggests that miR-195 is a direct downstream target of lncRNA SNHG1. Conclusions lncRNA SNHG1 may contribute to the aggravation of HCC through the inhibition of miR-195. PMID:27932778

  16. A new set of useful cloning and expression vectors derived from pBlueScript.

    PubMed

    Mayer, M P

    1995-09-22

    A new set of cloning vectors derived from pBlueScript (Stratagene, La Jolla, CA, USA) is presented. The ampicillin-resistance-encoding gene (ApR) of pBlueScript has been replaced by genes encoding resistance to either kanamycin (KmR) or tetracycline (TcR). The origin of DNA replication (ori), conferring to pBlueScript a very high-copy-number (500-700 copies/chromosome), has been replaced by the pBR322 ori (15-20 copies/chromosome) or the P15A ori (10-12 copies/chromosome) [Sambrook et al.: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989]. Therefore, eight new vectors with different drug selection markers and low, medium or high plasmid copy-number were created which are compatible with each other (ColE1 ori and P15A ori) and can be selected to replace one another. These vectors were further modified by the insertion of an expression cassette based on the promoter and AraC repressor/activator of the ara operon, which allows high-level expression, extremely tight regulation and very inexpensive induction. High-level expression of one or two genes within the same cell is demonstrated.

  17. A new Ebola virus nonstructural glycoprotein expressed through RNA editing.

    PubMed

    Mehedi, Masfique; Falzarano, Darryl; Seebach, Jochen; Hu, Xiaojie; Carpenter, Michael S; Schnittler, Hans-Joachim; Feldmann, Heinz

    2011-06-01

    Ebola virus (EBOV), an enveloped, single-stranded, negative-sense RNA virus, causes severe hemorrhagic fever in humans and nonhuman primates. The EBOV glycoprotein (GP) gene encodes the nonstructural soluble glycoprotein (sGP) but also produces the transmembrane glycoprotein (GP₁,₂) through transcriptional editing. A third GP gene product, a small soluble glycoprotein (ssGP), has long been postulated to be produced also as a result of transcriptional editing. To identify and characterize the expression of this new EBOV protein, we first analyzed the relative ratio of GP gene-derived transcripts produced during infection in vitro (in Vero E6 cells or Huh7 cells) and in vivo (in mice). The average percentages of transcripts encoding sGP, GP₁,₂, and ssGP were approximately 70, 25, and 5%, respectively, indicating that ssGP transcripts are indeed produced via transcriptional editing. N-terminal sequence similarity with sGP, the absence of distinguishing antibodies, and the abundance of sGP made it difficult to identify ssGP through conventional methodology. Optimized 2-dimensional (2D) gel electrophoresis analyses finally verified the expression and secretion of ssGP in tissue culture during EBOV infection. Biochemical analysis of recombinant ssGP characterized this protein as a disulfide-linked homodimer that was exclusively N glycosylated. In conclusion, we have identified and characterized a new EBOV nonstructural glycoprotein, which is expressed as a result of transcriptional editing of the GP gene. While ssGP appears to share similar structural properties with sGP, it does not appear to have the same anti-inflammatory function on endothelial cells as sGP.

  18. Tolerance and responsive gene expression of Sogatella furcifera under extreme temperature stresses are altered by its vectored plant virus

    PubMed Central

    Xu, Donglin; Zhong, Ting; Feng, Wendi; Zhou, Guohui

    2016-01-01

    Southern rice black-streaked dwarf virus (SRBSDV), a newly emerged fijivirus causing great loss to rice production in eastern and southeastern Asian countries in recent years, is efficiently transmitted by a rice pest, white-backed planthopper (WBPH, Sogatella furcifera) in a persistent, circulative propagative manner and can be considered as an insect virus. In this study, SRBSDV infection in WBPH was found to increase the vector’s death rate under extreme cold stress but improve its survival rate under extreme heat stress. Digital gene expression profiling based on RNA-Seq revealed different gene regulation patterns in WBPH under viral and/or temperature stress. Under cold stress, the virus infection upregulated 1540 genes and downregulated 131 genes in the insect, most of which were related to membrane properties and biological processes of actin and cytoskeleton; whereas under heat stress, it upregulated 363 genes and downregulated 548 genes, most of which were associated to metabolism and intracellular organelles. Several types of stress-responsive genes involving intestinal mucin, cuticle protein, ubiquitin protease, immune response, RNA interference and heat shock response, were largely upregulated under cold stress, but largely downregulated under heat stress, by SRBSDV infection. Our results suggest two distinct mechanisms of virus-altered vector insect tolerance to temperature stress. PMID:27531640

  19. Integrated mRNA and lncRNA expression profiling for exploring metastatic biomarkers of human intrahepatic cholangiocarcinoma

    PubMed Central

    Lv, Lisheng; Wei, Miaoyan; Lin, Peiyi; Chen, Zhisheng; Gong, Peng; Quan, Zhiwei; Tang, Zhaohui

    2017-01-01

    Long noncoding RNAs (lncRNAs) is crucial for various human cancers, but the function and mechanism of lncRNAs is largely unknown in human intrahepatic cholangiocarcinoma (ICC), the second most common liver cancer. In this study, we performed transcriptomic profiling of ICC and normal tissues, and found 2148 lncRNAs and 474 mRNAs were significantly upregulated, whereas 568 lncRNAs and 409 mRNAs were downregulated in ICC tissues. Enrichment analysis suggests these differentially expressed genes mainly focus on response to stimulus, development, and cell proliferation. Further, potential lncRNAs involved in five signaling pathways (ERBB, JAK/STAT, MAPK, VEGF and WNT) were constructed by highly co-expressed with mRNAs in these signaling pathways. The differentially expressed lncRNA-mRNA co-regulated signaling pathways in ICC were further confirmed by lncRNA target prediction. Finally, the differentially expressed lncRNAs were confirmed by quantitative real-time PCR in 32 paired ICC and adjacent tissues. The correlation analysis between the expression levels of lncRNAs and clinicopathologic characteristics showed that EMP1-008, ATF3-008, and RCOR3-013 were observed significantly downregulated in ICC with tumor metastasis. These findings suggested that lncRNA expression profiling in ICC is profoundly different from that in noncancerous tissues, and lncRNA may be used as a potential diagnostic and prognostic biomarker for ICC metastasis.

  20. Improved hepatic transduction, reduced systemic vector dissemination, and long-term transgene expression by delivering helper-dependent adenoviral vectors into the surgically isolated liver of nonhuman primates.

    PubMed

    Brunetti-Pierri, Nicola; Ng, Thomas; Iannitti, David A; Palmer, Donna J; Beaudet, Arthur L; Finegold, Milton J; Carey, K Dee; Cioffi, William G; Ng, Philip

    2006-04-01

    Helper-dependent adenoviral vectors (HDAds) are attractive vectors for liver-directed gene therapy because they can mediate sustained, high-level transgene expression without chronic toxicity. However, high vector doses are required to achieve efficient hepatic transduction by systemic delivery because of a nonlinear dose response. Unfortunately, such high doses result in systemic vector dissemination and dose-dependent acute toxicity with potentially severe and lethal consequences. We hypothesize that the threshold to efficient hepatic transduction may be circumvented by delivering the vector into the surgically isolated liver via the portal vein. Total hepatic isolation was achieved by occluding hepatic inflow from the portal vein and hepatic artery and by occluding hepatic venous outflow at the inferior vena cava. We demonstrate in nonhuman primates that this approach resulted in significantly higher efficiency hepatic transduction with reduced systemic vector dissemination compared with systemic intravascular delivery. This method of delivery was associated with transient acute toxicity, the severity of which was variable. Importantly, stable, high levels of transgene expression were obtained for at least 665 days for one baboon and for at least 560 days for two baboons with no evidence of long-term toxicity.

  1. A Novel and Simple Method for Rapid Generation of Recombinant Porcine Adenoviral Vectors for Transgene Expression

    PubMed Central

    Ma, Jing; Wang, Wenbin; Zhang, Lu; Tikoo, Suresh K.; Yang, Zengqi

    2015-01-01

    Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620±49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes. PMID:26011074

  2. An amphotropic retroviral vector expressing a mutant gsp oncogene: effects on human thyroid cells in vitro.

    PubMed

    Ivan, M; Ludgate, M; Gire, V; Bond, J A; Wynford-Thomas, D

    1997-08-01

    Point mutations of the gsp protooncogene (encoding the alpha-subunit of the Gs protein) that constitutively activate the cAMP signaling pathway are a common feature of and a plausible causative mechanism for thyroid hyperfunctioning adenomas (hot nodules). To investigate the extent to which mutant gsp acting alone can induce proliferation of thyroid follicular cells, we generated an amphotropic retroviral vector (based on the pBABE-neo plasmid and psi-CRIP packaging line) to permit stable introduction of a hemagglutinin-tagged Gln227-->Leu mutant gsp gene into normal human thyrocytes in vitro. The biological activity of the vector was confirmed by detection of HA-tagged Gsp protein expression and induction of cAMP synthesis in selected target cells. Normal human thyroid follicular cells in primary monolayer culture were infected with the gsp retroviral vector or with corresponding vectors expressing mutant H-ras or neo only as positive and negative controls, respectively. Although, as before, mutant ras generated 10-20 well differentiated epithelial colonies/dish of 10(5) infected cells, with an average lifespan of 15-20 population doublings, only small groups of no more than 15-50 differentiated thyrocytes were observed with the gsp vector. In addition to standard conditions (10% FCS), infections were performed in reduced serum (1% FCS, TSH, and insulin), in the presence of isobutylylmethylxanthine, or in the presence of agents capable of closing gap junctions, with no significant difference in outcome. Although little or no proliferative response was observed regardless of the conditions, there was clear evidence of morphological response (rearrangement of the actin cytoskeleton and increased cell size). The results suggest that gsp mutation may not be a sufficient proliferogenic stimulus by itself to account for hot nodule formation.

  3. Comparison of microRNA expression levels between initial and recurrent glioblastoma specimens.

    PubMed

    Ilhan-Mutlu, Aysegül; Wöhrer, Adelheid; Berghoff, Anna Sophie; Widhalm, Georg; Marosi, Christine; Wagner, Ludwig; Preusser, Matthias

    2013-05-01

    Glioblastoma is the most frequent primary brain tumour in adults. Recent therapeutic advances increased patient's survival, but tumour recurrence inevitably occurs. The pathobiological mechanisms involved in glioblastoma recurrence are still unclear. MicroRNAs are small RNAs proposed o have important roles for cancer including proliferation, aggressiveness and metastases development. There exist only few data on the involvement of microRNAs in glioblastoma recurrence. We selected the following 7 microRNAs with potential relevance for glioblastoma pathobiology by means of a comprehensive literature search: microRNA-10b, microRNA-21, microRNA-181b, microRNA-181c, microRNA-195, microRNA-221 and microRNA-222. We further selected 15 primary glioblastoma patients, of whom formalin fixed and paraffin embedded tissue (FFPE) of the initial and recurrence surgery were available. All patients had received first line treatment consisting of postoperative combined radiochemotherapy with temozolomide (n = 15). Non-neoplastic brain tissue samples from 3 patients with temporal lobe epilepsy served as control. The expression of the microRNAs were analysed by RT-qPCR. These were correlated with each other and with clinical parameters. All microRNAs showed detectable levels of expressions in glioblastoma group, whereas microRNA-10b was not detectable in epilepsy patients. MicroRNAs except microRNA-21 showed significantly higher levels in epilepsy patients when compared to the levels of first resection of glioblastoma. Comparison of microRNA levels between first and second resections revealed no significant change. Cox regression analyses showed no significant association of microRNA expression levels in the tumor tissue with progression free survival times. Expression levels of microRNA-10b, microRNA-21, microRNA-181b, microRNA-181c, microRNA-195, microRNA-221 and microRNA-222 do not differ significantly between initial and recurrent glioblastoma.

  4. Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks.

    PubMed

    Sokolenko, Stanislav; George, Steve; Wagner, Andreas; Tuladhar, Anup; Andrich, Jonas M S; Aucoin, Marc G

    2012-01-01

    The baculovirus expression vector system (BEVS) is a versatile and powerful platform for protein expression in insect cells. With the ability to approach similar post-translational modifications as in mammalian cells, the BEVS offers a number of advantages including high levels of expression as well as an inherent safety during manufacture and of the final product. Many BEVS products include proteins and protein complexes that require expression from more than one gene. This review examines the expression strategies that have been used to this end and focuses on the distinguishing features between those that make use of single polycistronic baculovirus (co-expression) and those that use multiple monocistronic baculoviruses (co-infection). Three major areas in which researchers have been able to take advantage of co-expression/co-infection are addressed, including compound structure-function studies, insect cell functionality augmentation, and VLP production. The core of the review discusses the parameters of interest for co-infection and co-expression with time of infection (TOI) and multiplicity of infection (MOI) highlighted for the former and the choice of promoter for the latter. In addition, an overview of modeling approaches is presented, with a suggested trajectory for future exploration. The review concludes with an examination of the gaps that still remain in co-expression/co-infection knowledge and practice.

  5. Killing of cancer cells through the use of eukaryotic expression vectors harbouring genes encoding nucleases and ribonuclease inhibitor.

    PubMed

    Glinka, Elena M

    2015-05-01

    Cancer gene therapy vectors are promising tools for killing cancer cells with the purpose of eradicating malignant tumours entirely. Different delivery methods of vectors into the cancer cells, including both non-viral and viral, as well as promoters for the targeted expression of genes encoding anticancer proteins were developed for effective and selective killing of cancer cells without harming healthy cells. Many vectors have been created to kill cancer cells, and some vectors suppress malignant tumours with high efficiency. This review is focused on vectors bearing genes for nucleases such as deoxyribonucleases (caspase-activated DNase, deoxyribonuclease I-like 3, endonuclease G) and ribonucleases (human polynucleotide phosphorylase, ribonuclease L, α-sarcin, barnase), as well as vectors harbouring gene encoding ribonuclease inhibitor. The data concerning the functionality and the efficacy of such vectors are presented.

  6. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles

    PubMed Central

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may

  7. Improving model predictions for RNA interference activities that use support vector machine regression by combining and filtering features

    PubMed Central

    Peek, Andrew S

    2007-01-01

    Background RNA interference (RNAi) is a naturally occurring phenomenon that results in the suppression of a target RNA sequence utilizing a variety of possible methods and pathways. To dissect the factors that result in effective siRNA sequences a regression kernel Support Vector Machine (SVM) approach was used to quantitatively model RNA interference activities. Results Eight overall feature mapping methods were compared in their abilities to build SVM regression models that predict published siRNA activities. The primary factors in predictive SVM models are position specific nucleotide compositions. The secondary factors are position independent sequence motifs (N-grams) and guide strand to passenger strand sequence thermodynamics. Finally, the factors that are least contributory but are still predictive of efficacy are measures of intramolecular guide strand secondary structure and target strand secondary structure. Of these, the site of the 5' most base of the guide strand is the most informative. Conclusion The capacity of specific feature mapping methods and their ability to build predictive models of RNAi activity suggests a relative biological importance of these features. Some feature mapping methods are more informative in building predictive models and overall t-test filtering provides a method to remove some noisy features or make comparisons among datasets. Together, these features can yield predictive SVM regression models with increased predictive accuracy between predicted and observed activities both within datasets by cross validation, and between independently collected RNAi activity datasets. Feature filtering to remove features should be approached carefully in that it is possible to reduce feature set size without substantially reducing predictive models, but the features retained in the candidate models become increasingly distinct. Software to perform feature prediction and SVM training and testing on nucleic acid sequences can be found at

  8. Expression of APOBEC3B mRNA in Primary Breast Cancer of Japanese Women

    PubMed Central

    Tokunaga, Eriko; Yamashita, Nami; Tanaka, Kimihiro; Inoue, Yuka; Akiyoshi, Sayuri; Saeki, Hiroshi; Oki, Eiji; Kitao, Hiroyuki; Maehara, Yoshihiko

    2016-01-01

    Recent studies have identified the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3B (APOBEC3B) as a source of mutations in various malignancies. APOBEC3B is overexpressed in several human cancer types, including breast cancer. In this study, we analyzed APOBEC3B mRNA expression in 305 primary breast cancers of Japanese women using quantitative reverse transcription-PCR, and investigated the relationships between the APOBEC3B mRNA expression and clinicopathological characteristics, prognosis, and TP53 mutations. The expression of APOBEC3B mRNA was detected in 277 tumors and not detected in 28 tumors. High APOBEC3B mRNA expression was significantly correlated with ER- and PR-negativity, high grade and high Ki67 index. The APOBEC3B mRNA expression was highest in the triple-negative and lowest in the hormone receptor-positive/HER2-negative subtypes. The TP53 gene was more frequently mutated in the tumors with high APOBEC3B mRNA expression. High APOBEC3B mRNA expression was significantly associated with poor recurrence-free survival in all cases and the ER-positive cases. These findings were almost consistent with the previous reports from the Western countries. In conclusion, high APOBEC3B mRNA expression was related to the aggressive phenotypes of breast cancer, high frequency of TP53 mutation and poor prognosis, especially in ER-positive tumors. PMID:27977754

  9. Screening of promoters from metagenomic DNA and their use for the construction of expression vectors.

    PubMed

    Han, Sang-Soo; Lee, Jin-Young; Kim, Won-Ho; Shin, Hyun-Jae; Kim, Geun-Joong

    2008-10-01

    This study was focused on the screening of valuable genetic resources, such as promoters from metagenome, and describes a promoter trapping system with a bidirectional probe concept, which can select promoters or operons from various biological resources including metagenomic DNA. A pair of reporters, GFP and DsRed, facing the opposite direction without promoters, is an effective system that can function regardless of the direction of inserted promoters. The feasibility of this system was tested for the isolation of constitutively expressed promoters in E. coli from a soil metagenome, resulting in a potential pool of various promoters for practical application. The analyses of structural organization of the trapped genes demonstrated that constitutively expressible promoters in E. coli were broadly distributed within the metagenome, and suggested that some promoters were useful for the construction of expression vectors. Based on these observations, three constitutive promoters were employed in the expression vector system and their potentials for practical application were evaluated in terms of expression level, protein solubility, and effects on host growth.

  10. Development of bovine herpesvirus 4 as an expression vector using bacterial artificial chromosome cloning.

    PubMed

    Gillet, L; Daix, V; Donofrio, G; Wagner, M; Koszinowski, U H; China, B; Ackermann, M; Markine-Goriaynoff, N; Vanderplasschen, A

    2005-04-01

    Several features make bovine herpesvirus 4 (BoHV-4) attractive as a backbone for use as a viral expression vector and/or as a model to study gammaherpesvirus biology. However, these developments have been impeded by the difficulty in manipulating its large genome using classical homologous recombination in eukaryotic cells. In the present study, the feasibility of exploiting bacterial artificial chromosome (BAC) cloning and prokaryotic recombination technology for production of BoHV-4 recombinants was explored. Firstly, the BoHV-4 genome was BAC cloned using two potential insertion sites. Both sites of insertion gave rise to BoHV-4 BAC clones stably maintained in bacteria and able to regenerate virions when transfected into permissive cells. Reconstituted virus replicated comparably to wild-type parental virus and the loxP-flanked BAC cassette was excised by growing them on permissive cells stably expressing Cre recombinase. Secondly, BoHV-4 recombinants expressing Ixodes ricinus anti-complement protein I or II (IRAC I/II) were produced using a two-step mutagenesis procedure in Escherichia coli. Both recombinants induced expression of high levels of functional IRAC molecules in the supernatant of infected cells. This study demonstrates that BAC cloning and prokaryotic recombination technology are powerful tools for the development of BoHV-4 as an expression vector and for further fundamental studies of this gammaherpesvirus.

  11. [Preparation of a novel AAV-ITR gene expression mini vector in Sf9 insect cells via baculovirus].

    PubMed

    Li, Taiming; Pan, Junjie; Qi, Jing; Zhang, Chun

    2015-08-01

    AAV-ITR gene expression mini vector is a double-strand or single-strand DNA that only contains inverted terminal repeats of adeno-associated virus, cis-elements and gene of interest and does not contain any other foreign DNA sequences. We prepared Bac-ITR-EGFP and Bac-inrep. Spodoptera frugiperda cells were infected with Bac-ITR-EGFP (P3) and Bac-inrep (P3). Up to 100 μg of AAV-ITR-EGFP gene expression mini vectors were extracted from 2 x 10(7) cells of Sf9 72 h after infection. The gel electrophoresis analysis shows that most forms of AAV-ITR-EGFP gene expression mini vector were monomer and dimer. The mini vector expression efficacy was examined in vitro with HEK 293T cells. The EGFP expression was observed at 24 h after transfection, and the positive ratio reached 65% at 48 h after transfection.

  12. Under-Expression of Chemosensory Genes in Domiciliary Bugs of the Chagas Disease Vector Triatoma brasiliensis

    PubMed Central

    Marchant, Axelle; Mougel, Florence; Jacquin-Joly, Emmanuelle; Costa, Jane; Almeida, Carlos Eduardo; Harry, Myriam

    2016-01-01

    Background In Latin America, the bloodsucking bugs Triatominae are vectors of Trypanosoma cruzi, the parasite that causes Chagas disease. Chemical elimination programs have been launched to control Chagas disease vectors. However, the disease persists because native vectors from sylvatic habitats are able to (re)colonize houses—a process called domiciliation. Triatoma brasiliensis is one example. Because the chemosensory system allows insects to interact with their environment and plays a key role in insect adaption, we conducted a descriptive and comparative study of the chemosensory transcriptome of T. brasiliensis samples from different ecotopes. Methodology/Principal Finding In a reference transcriptome built using de novo assembly, we found transcripts encoding 27 odorant-binding proteins (OBPs), 17 chemosensory proteins (CSPs), 3 odorant receptors (ORs), 5 transient receptor potential channel (TRPs), 1 sensory neuron membrane protein (SNMPs), 25 takeout proteins, 72 cytochrome P450s, 5 gluthatione S-transferases, and 49 cuticular proteins. Using protein phylogenies, we showed that most of the OBPs and CSPs for T. brasiliensis had well supported orthologs in the kissing bug Rhodnius prolixus. We also showed a higher number of these genes within the bloodsucking bugs and more generally within all Hemipterans compared to the other species in the super-order Paraneoptera. Using both DESeq2 and EdgeR software, we performed differential expression analyses between samples of T. brasiliensis, taking into account their environment (sylvatic, peridomiciliary and domiciliary) and sex. We also searched clusters of co-expressed contigs using HTSCluster. Among differentially expressed (DE) contigs, most were under-expressed in the chemosensory organs of the domiciliary bugs compared to the other samples and in females compared to males. We clearly identified DE genes that play a role in the chemosensory system. Conclusion/Significance Chemosensory genes could be good

  13. PEGylated helper-dependent adenoviral vector expressing human Apo A-I for gene therapy in LDLR-deficient mice.

    PubMed

    Leggiero, E; Astone, D; Cerullo, V; Lombardo, B; Mazzaccara, C; Labruna, G; Sacchetti, L; Salvatore, F; Croyle, M; Pastore, L

    2013-12-01

    Helper-dependent adenoviral (HD-Ad) vectors have great potential for gene therapy applications; however, their administration induces acute toxicity that impairs safe clinical applications. We previously observed that PEGylation of HD-Ad vectors strongly reduces the acute response in murine and primate models. To evaluate whether PEGylated HD-Ad vectors combine reduced toxicity with the correction of pathological phenotypes, we administered an HD-Ad vector expressing the human apolipoprotein A-I (hApoA-I) to low-density lipoprotein (LDL)-receptor-deficient mice (a model for familial hypercholesterolemia) fed a high-cholesterol diet. Mice were treated with high doses of HD-Ad-expressing apo A-I or its PEGylated version. Twelve weeks later, LDL levels were lower and high-density lipoprotein (HDL) levels higher in mice treated with either of the vectors than in untreated mice. After terminal killing, the areas of atherosclerotic plaques were much smaller in the vector-treated mice than in the control animals. Moreover, the increase in pro-inflammatory cytokines was lower and consequently the toxicity profile better in mice treated with PEGylated vector than in mice treated with the unmodified vector. This finding indicates that the reduction in toxicity resulting from PEGylation of HD-Ad vectors does not impair the correction of pathological phenotypes. It also supports the clinical potential of these vectors for the correction of genetic diseases.

  14. Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format.

    PubMed

    Phua, Kyle K L; Leong, Kam W; Nair, Smita K

    2013-03-28

    Transfection efficiencies and transgene expression kinetics of messenger RNA (mRNA), an emerging class of nucleic acid-based therapeutics, have been poorly characterized. In this study, we evaluated transfection efficiencies of mRNA delivered in naked and nanoparticle format in vitro and in vivo using GFP and luciferase as reporters. While mRNA nanoparticles transfect primary human and mouse dendritic cells (DCs) efficiently in vitro, naked mRNA could not produce any detectable gene product. The protein expression of nanoparticle-mediated transfection in vitro peaks rapidly within 5-7h and decays in a biphasic manner. In vivo, naked mRNA is more efficient than mRNA nanoparticles when administered subcutaneously. In contrast, mRNA nanoparticle performs better when administered intranasally and intravenously. Gene expression is most transient when delivered intravenously in nanoparticle format with an apparent half-life of 1.4h and lasts less than 24h, and most sustained when delivered in the naked format subcutaneously at the base of tail with an apparent half-life of 18h and persists for at least 6days. Notably, exponential decreases in protein expression are consistently observed post-delivery of mRNA in vivo regardless of the mode of delivery (naked or nanoparticle) or the site of administration. This study elucidates the performance of mRNA transfection and suggests a niche for mRNA therapeutics when predictable in vivo transgene expression kinetics is imperative.

  15. Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue

    PubMed Central

    Sutherland, Lindsey N; Bomhof, Marc R; Capozzi, Lauren C; Basaraba, Susan A U; Wright, David C

    2009-01-01

    The purpose of the present investigation was to explore the effects of exercise and adrenaline on the mRNA expression of PGC-1α, a master regulator of mitochondrial biogenesis, in rat abdominal adipose tissue. We hypothesized that (1) exercise training would increase PGC-1α mRNA expression in association with increases in mitochondrial marker enzymes, (2) adrenaline would increase PGC-1α mRNA expression and (3) the effect of exercise on PGC-1α mRNA expression in white adipose tissue would be attenuated by a β-blocker. Two hours of daily swim training for 4 weeks led to increases in mitochondrial marker proteins and PGC-1α mRNA expression in epididymal and retroperitoneal fat depots. Additionally, a single 2 h bout of exercise led to increases in PGC-1α mRNA expression immediately following exercise cessation. Adrenaline treatment of adipose tissue organ cultures led to dose-dependent increases in PGC-1α mRNA expression. A supra-physiological concentration of adrenaline increased PGC-1α mRNA expression in epididymal but not retroperitoneal adipose tissue. β-Blockade attenuated the effects of an acute bout of exercise on PGC-1α mRNA expression in epididymal but not retroperitoneal fat pads. In summary, this is the first investigation to demonstrate that exercise training, an acute bout of exercise and adrenaline all increase PGC-1α mRNA expression in rat white adipose tissue. Furthermore it would appear that increases in circulating catecholamine levels may be one potential mechanism mediating exercise induced increases in PGC-1α mRNA expression in rat abdominal adipose tissue. PMID:19221126

  16. MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains

    PubMed Central

    Xi, Jiang; Yan, Zheng; Fu, Ning; Zhang, Xiaoyu; Menzel, Corinna; Liang, Hongyu; Yang, Hongyi; Zhao, Min; Zeng, Rong; Chen, Wei; Pääbo, Svante; Khaitovich, Philipp

    2011-01-01

    Among other factors, changes in gene expression on the human evolutionary lineage have been suggested to play an important role in the establishment of human-specific phenotypes. However, the molecular mechanisms underlying these expression changes are largely unknown. Here, we have explored the role of microRNA (miRNA) in the regulation of gene expression divergence among adult humans, chimpanzees, and rhesus macaques, in two brain regions: prefrontal cortex and cerebellum. Using a combination of high-throughput sequencing, miRNA microarrays, and Q-PCR, we have shown that up to 11% of the 325 expressed miRNA diverged significantly between humans and chimpanzees and up to 31% between humans and macaques. Measuring mRNA and protein expression in human and chimpanzee brains, we found a significant inverse relationship between the miRNA and the target genes expression divergence, explaining 2%–4% of mRNA and 4%–6% of protein expression differences. Notably, miRNA showing human-specific expression localize in neurons and target genes that are involved in neural functions. Enrichment in neural functions, as well as miRNA–driven regulation on the human evolutionary lineage, was further confirmed by experimental validation of predicted miRNA targets in two neuroblastoma cell lines. Finally, we identified a signature of positive selection in the upstream region of one of the five miRNA with human-specific expression, miR-34c-5p. This suggests that miR-34c-5p expression change took place after the split of the human and the Neanderthal lineages and had adaptive significance. Taken together these results indicate that changes in miRNA expression might have contributed to evolution of human cognitive functions. PMID:22022286

  17. Vector Development for the Expression of Foreign Proteins in the Vaccine Strain Brucella abortus S19

    PubMed Central

    Comerci, Diego J.; Pollevick, Guido D.; Vigliocco, Ana M.; Frasch, Alberto C. C.; Ugalde, Rodolfo A.

    1998-01-01

    A vector for the expression of foreign antigens in the vaccine strain Brucella abortus S19 was developed by using a DNA fragment containing the regulatory sequences and the signal peptide of the Brucella bcsp31 gene. This fragment was cloned in broad-host-range plasmid pBBR4MCS, resulting in plasmid pBEV. As a reporter protein, a repetitive antigen of Trypanosoma cruzi was used. The recombinant fusion protein is stably expressed and secreted into the Brucella periplasmic space, inducing a good antibody response against the T. cruzi antigen. The expression of the repetitive antigen in Brucella neither altered its growth pattern nor generated a toxic or lethal effect during experimental infection. The application of this strategy for the generation of live recombinant vaccines and the tagging of B. abortus S19 vaccine is discussed. This is the first time that a recombinant protein has been expressed in the periplasm of brucellae. PMID:9673273

  18. Development of Plant Gene Vectors for Tissue-Specific Expression Using GFP as a Reporter Gene

    NASA Technical Reports Server (NTRS)

    Jackson, Jacquelyn; Egnin, Marceline; Xue, Qi-Han; Prakash, C. S.

    1997-01-01

    Reporter genes are widely employed in plant molecular biology research to analyze gene expression and to identify promoters. Gus (UidA) is currently the most popular reporter gene but its detection requires a destructive assay. The use of jellyfish green fluorescent protein (GFP) gene from Aequorea Victoria holds promise for noninvasive detection of in vivo gene expression. To study how various plant promoters are expressed in sweet potato (Ipomoea batatas), we are transcriptionally fusing the intron-modified (mGFP) or synthetic (modified for codon-usage) GFP coding regions to these promoters: double cauliflower mosaic virus 35S (CaMV 35S) with AMV translational enhancer, ubiquitin7-intron-ubiquitin coding region (ubi7-intron-UQ) and sporaminA. A few of these vectors have been constructed and introduced into E. coli DH5a and Agrobacterium tumefaciens EHA105. Transient expression studies are underway using protoplast-electroporation and particle bombardment of leaf tissues.

  19. A new series of vectors for constitutive, inducible or repressible gene expression in Candida guilliermondii.

    PubMed

    Defosse, Tatiana A; Melin, Céline; Obando Montoya, Erika J; Lanoue, Arnaud; Foureau, Emilien; Glévarec, Gaëlle; Oudin, Audrey; Simkin, Andrew J; Crèche, Joël; Atehortùa, Lucia; Giglioli-Guivarc'h, Nathalie; Clastre, Marc; Courdavault, Vincent; Papon, Nicolas

    2014-06-20

    The biotechnological potential of C. guilliermondii is now well established. This yeast species currently benefits from the availability of a convenient molecular toolbox including recipient strains, selectable markers and optimized transformation protocols. However, the number of expression systems for biotechnological applications in C. guilliermondii remains limited. We have therefore developed and characterized a new series of versatile controllable expression vectors for this yeast. While previous studies firmly demonstrated that knock-out systems represent efficient genetic strategies to interrupt yeast biochemical pathways at a specific step in C. guilliermondii, the set of expression plasmids described in this study will provide new powerful opportunities to boost homologous or heterologous biosynthetic routes by fine controlled over-expression approaches.

  20. Correlation analysis of the mRNA and miRNA expression profiles in the nascent synthetic allotetraploid Raphanobrassica

    PubMed Central

    Ye, Bingyuan; Wang, Ruihua; Wang, Jianbo

    2016-01-01

    Raphanobrassica is an allopolyploid species derived from inter-generic hybridization that combines the R genome from R. sativus and the C genome from B. oleracea var. alboglabra. In the present study, we used a high-throughput sequencing method to identify the mRNA and miRNA profiles in Raphanobrassica and its parents. A total of 33,561 mRNAs and 283 miRNAs were detected, 9,209 mRNAs and 134 miRNAs were differentially expressed respectively, 7,633 mRNAs and 39 miRNAs showed ELD expression, 5,219 mRNAs and 57 miRNAs were non-additively expressed in Raphanobrassica. Remarkably, differentially expressed genes (DEGs) were up-regulated and maternal bias was detected in Raphanobrassica. In addition, a miRNA-mRNA interaction network was constructed based on reverse regulated miRNA-mRNAs, which included 75 miRNAs and 178 mRNAs, 31 miRNAs were non-additively expressed target by 13 miRNAs. The related target genes were significantly enriched in the GO term ‘metabolic processes’. Non-additive related target genes regulation is involved in a range of biological pathways, like providing a driving force for variation and adaption in this allopolyploid. The integrative analysis of mRNA and miRNA profiling provides more information to elucidate gene expression mechanism and may supply a comprehensive and corresponding method to study genetic and transcription variation of allopolyploid. PMID:27874043

  1. Alterations of microRNA and microRNA-regulated messenger RNA expression in germinal center B-cell lymphomas determined by integrative sequencing analysis.

    PubMed

    Hezaveh, Kebria; Kloetgen, Andreas; Bernhart, Stephan H; Mahapatra, Kunal Das; Lenze, Dido; Richter, Julia; Haake, Andrea; Bergmann, Anke K; Brors, Benedikt; Burkhardt, Birgit; Claviez, Alexander; Drexler, Hans G; Eils, Roland; Haas, Siegfried; Hoffmann, Steve; Karsch, Dennis; Klapper, Wolfram; Kleinheinz, Kortine; Korbel, Jan; Kretzmer, Helene; Kreuz, Markus; Küppers, Ralf; Lawerenz, Chris; Leich, Ellen; Loeffler, Markus; Mantovani-Loeffler, Luisa; López, Cristina; McHardy, Alice C; Möller, Peter; Rohde, Marius; Rosenstiel, Philip; Rosenwald, Andreas; Schilhabel, Markus; Schlesner, Matthias; Scholz, Ingrid; Stadler, Peter F; Stilgenbauer, Stephan; Sungalee, Stéphanie; Szczepanowski, Monika; Trümper, Lorenz; Weniger, Marc A; Siebert, Reiner; Borkhardt, Arndt; Hummel, Michael; Hoell, Jessica I

    2016-11-01

    MicroRNA are well-established players in post-transcriptional gene regulation. However, information on the effects of microRNA deregulation mainly relies on bioinformatic prediction of potential targets, whereas proof of the direct physical microRNA/target messenger RNA interaction is mostly lacking. Within the International Cancer Genome Consortium Project "Determining Molecular Mechanisms in Malignant Lymphoma by Sequencing", we performed miRnome sequencing from 16 Burkitt lymphomas, 19 diffuse large B-cell lymphomas, and 21 follicular lymphomas. Twenty-two miRNA separated Burkitt lymphomas from diffuse large B-cell lymphomas/follicular lymphomas, of which 13 have shown regulation by MYC. Moreover, we found expression of three hitherto unreported microRNA. Additionally, we detected recurrent mutations of hsa-miR-142 in diffuse large B-cell lymphomas and follicular lymphomas, and editing of the hsa-miR-376 cluster, providing evidence for microRNA editing in lymphomagenesis. To interrogate the direct physical interactions of microRNA with messenger RNA, we performed Argonaute-2 photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation experiments. MicroRNA directly targeted 208 messsenger RNA in the Burkitt lymphomas and 328 messenger RNA in the non-Burkitt lymphoma models. This integrative analysis discovered several regulatory pathways of relevance in lymphomagenesis including Ras, PI3K-Akt and MAPK signaling pathways, also recurrently deregulated in lymphomas by mutations. Our dataset reveals that messenger RNA deregulation through microRNA is a highly relevant mechanism in lymphomagenesis.

  2. Canonical correlation analysis for RNA-seq co-expression networks

    PubMed Central

    Hong, Shengjun; Chen, Xiangning; Jin, Li; Xiong, Momiao

    2013-01-01

    Digital transcriptome analysis by next-generation sequencing discovers substantial mRNA variants. Variation in gene expression underlies many biological processes and holds a key to unravelling mechanism of common diseases. However, the current methods for construction of co-expression networks using overall gene expression are originally designed for microarray expression data, and they overlook a large number of variations in gene expressions. To use information on exon, genomic positional level and allele-specific expressions, we develop novel component-based methods, single and bivariate canonical correlation analysis, for construction of co-expression networks with RNA-seq data. To evaluate the performance of our methods for co-expression network inference with RNA-seq data, they are applied to lung squamous cell cancer expression data from TCGA database and our bipolar disorder and schizophrenia RNA-seq study. The preliminary results demonstrate that the co-expression networks constructed by canonical correlation analysis and RNA-seq data provide rich genetic and molecular information to gain insight into biological processes and disease mechanism. Our new methods substantially outperform the current statistical methods for co-expression network construction with microarray expression data or RNA-seq data based on overall gene expression levels. PMID:23460206

  3. MicroRNA-33 suppresses CCL2 expression in chondrocytes

    PubMed Central

    Wei, Meng; Xie, Qingyun; Zhu, Jun; Wang, Tao; Zhang, Fan; Cheng, Yue; Guo, Dongyang; Wang, Ying; Mo, Liweng; Wang, Shuai

    2016-01-01

    CCL2-mediated macrophage infiltration in articular tissues plays a pivotal role in the development of the osteoarthritis (OA). miRNAs regulate the onset and progression of diseases via controlling the expression of a series of genes. How the CCL2 gene was regulated by miRNAs was still not fully elucidated. In the present study, we demonstrated that the binding sites of miR-33 in the 3′UTR of CCL2 gene were conserved in human, mouse and rat species. By performing gain- or loss-of-function studies, we verified that miR-33 suppressed CCL2 expression in the mRNA and protein levels. We also found that miR-33 suppressed the CCL2 levels in the supernatant of cultured primary mouse chondrocytes. With reporter gene assay, we demonstrated that miR-33 targeted at AAUGCA in the 3′UTR of CCL2 gene. In transwell migration assays, we demonstrated that the conditional medium (CM) from miR-33 deficient chondrocytes potentiated the monocyte chemotaxis in a CCL2 dependent manner. Finally, we demonstrated that the level of miR-33 was decreased, whereas the CCL2 level was increased in the articular cartilage from the OA patients compared with the control group. In summary, we identified miR-33 as a novel suppressor of CCL2 in chondrocytes. The miR-33/CCL2 axis in chondrocytes regulates monocyte chemotaxis, providing a potential mechanism of macrophage infiltration in OA. PMID:27129293

  4. Enhanced gemcitabine-mediated cell killing of human lung adenocarcinoma by vector-based RNA interference against PLK1.

    PubMed

    Zhao, Xin-Yu; Nie, Chun-Lai; Liang, Shu-Fang; Yuan, Zhu; Deng, Hong-Xin; Wei, Yu-Quan

    2012-12-01

    Specific PLK1 silencing may be an effective gene therapy modality of treating PLK1-overexpressed cancers. In this study, we first explored the anticancer efficacy of three different short hairpin-expressing plasmids targeting PLK1 in animal model, and then determined the combination therapy effect of gemcitabine with PLK1-shRNA as an adjuvant. Transfection of the PLK1-shRNAs to A549 lung cancer cells induced significant PLK1 depletion, growth inhibition and apoptosis. In vivo administration of PLK1-shRNA constructs to tumor-bearing mice resulted in xenograft regression. Moreover, the combination of PLK1-shRNA plus low-dose gemcitabine (GEM) produced an additive antitumor activity on the lung tumors owing to an inhibition of cancer cell survival and augmented apoptosis. These results indicated a feasible bio-chemotherapeutic strategy for cancer.

  5. Systemic spread of an RNA insect virus in plants expressing plant viral movement protein genes

    PubMed Central

    Dasgupta, Ranjit; Garcia, Bradley H.; Goodman, Robert M.

    2001-01-01

    Flock house virus (FHV), a single-stranded RNA insect virus, has previously been reported to cross the kingdom barrier and replicate in barley protoplasts and in inoculated leaves of several plant species [Selling, B. H., Allison, R. F. & Kaesberg, P. (1990) Proc. Natl. Acad. Sci. USA 87, 434–438]. There was no systemic movement of FHV in plants. We tested the ability of movement proteins (MPs) of plant viruses to provide movement functions and cause systemic spread of FHV in plants. We compared the growth of FHV in leaves of nontransgenic and transgenic plants expressing the MP of tobacco mosaic virus or red clover necrotic mosaic virus (RCNMV). Both MPs mobilized cell-to-cell and systemic movement of FHV in Nicotiana benthamiana plants. The yield of FHV was more than 100-fold higher in the inoculated leaves of transgenic plants than in the inoculated leaves of nontransgenic plants. In addition, FHV accumulated in the noninoculated upper leaves of both MP-transgenic plants. RCNMV MP was more efficient in mobilizing FHV to noninoculated upper leaves. We also report here that FHV replicates in inoculated leaves of six additional plant species: alfalfa, Arabidopsis, Brassica, cucumber, maize, and rice. Our results demonstrate that plant viral MPs cause cell-to-cell and long-distance movement of an animal virus in plants and offer approaches to the study of the evolution of viruses and mechanisms governing mRNA trafficking in plants as well as to the development of promising vectors for transient expression of foreign genes in plants. PMID:11296259

  6. Regulation of Epithelial Differentiation in Rat Intestine by Intraluminal Delivery of an Adenoviral Vector or Silencing RNA Coding for Schlafen 3

    PubMed Central

    Kovalenko, Pavlo L.; Yuan, Lisi; Sun, Kelian; Kunovska, Lyudmyla; Seregin, Sergey; Amalfitano, Andrea; Basson, Marc D.

    2013-01-01

    Although we stimulate enterocytic proliferation to ameliorate short gut syndrome or mucosal atrophy, less effort has been directed at enterocytic differentiation. Schlafen 3 (Slfn3) is a poorly understood protein induced during IEC-6 enterocytic differentiation. We hypothesized that exogenous manipulation of Slfn3 would regulate enterocytic differentiation in vivo. Adenoviral vector coding for Slfn3 cDNA (Ad-GFP-Slfn3) or silencing RNA for Slfn3 (siSlfn3) was introduced intraluminally into rat intestine. We assessed Slfn3, villin, sucrase-isomaltase (SI), Dpp4, and Glut2 by qRT-PCR, Western blot, and immunohistochemistry. We also studied Slfn3 and these differentiation markers in atrophic defunctionalized jejunal mucosa and the crypt-villus axis of normal jejunum. Ad-GFP-Slfn3 but not Ad-GFP increased Slfn3, villin and Dpp4 expression in human Caco-2 intestinal epithelial cells. Injecting Ad-GFP-Slfn3 into rat jejunum in vivo increased mucosal Slfn3 mRNA three days later vs. intraluminal Ad-GFP. This Slfn3 overexpression was associated with increases in all four differentiation markers. Injecting siSlfn3 into rat jejunum in vivo substantially reduced Slfn3 and all four intestinal mucosal differentiation markers three days later, as well as Dpp4 specific activity. Endogenous Slfn3 was reduced in atrophic mucosa from a blind-end Roux-en-Y anastomosis in parallel with differentiation marker expression together with AKT and p38 signaling. Slfn3 was more highly expressed in the villi than the crypts, paralleling Glut2, SI and Dpp4. Slfn3 is a key intracellular regulator of rat enterocytic differentiation. Understanding how Slfn3 works may identify targets to promote enterocytic differentiation and maintain mucosal function in vivo, facilitating enteral nutrition and improving survival in patients with mucosal atrophy or short gut syndrome. PMID:24244554

  7. PCA3 long noncoding RNA modulates the expression of key cancer-related genes in LNCaP prostate cancer cells.

    PubMed

    Lemos, Ana Emília Goulart; Ferreira, Luciana Bueno; Batoreu, Nadia Maria; de Freitas, Paula Priscilla; Bonamino, Martin Hernan; Gimba, Etel Rodrigues Pereira

    2016-08-01

    Prostate cancer antigen 3 (PCA3) is a prostate-specific long noncoding RNA (lncRNA) involved in the control of prostate cancer (PCa) cell survival, through modulating androgen receptor (AR) signaling. To further comprehend the mechanisms by which PCA3 modulates LNCaP cell survival, we characterized the expression patterns of several cancer-related genes, including those involved in epithelial-mesenchymal transition (EMT) and AR cofactors in response to PCA3 silencing. We also aimed to develop a strategy to stably silence PCA3. Small interfering RNA (siRNA) or short hairpin RNA (shRNA) was used to knock down PCA3 in LNCaP cells. The expression of 84 cancer-related genes, as well as those coding for AR cofactors and EMT markers, was analyzed by quantitative real-time PCR (qRT-PCR). LNCaP-PCA3 silenced cells differentially expressed 16 of the 84 cancer genes tested, mainly those involved in gene expression control and cell signaling. PCA3 knockdown also induced the upregulation of several transcripts coding for AR cofactors and modulated the expression of EMT markers. LNCaP cells transduced with lentivirus vectors carrying an shRNA sequence targeting PCA3 stably downregulated PCA3 expression, causing a significant drop (60 %) in the proportion of LNCaP cells expressing the transgene. In conclusion, our data provide evidence that PCA3 silencing modulates the expression of key cancer-related genes, including those coding for AR cofactors and EMT markers. Transducing LNCaP cells with an shRNA sequence targeting PCA3 led to loss of viability of the cells, supporting the proposal of PCA3 knockdown as a putative therapeutic approach to inhibit PCa growth.

  8. Retargeting of Gene Expression Using Endothelium Specific Hexon Modified Adenoviral Vector

    PubMed Central

    Kaliberov, Sergey A.; Kaliberova, Lyudmila N.; Lu, Zhi Hong; Preuss, Meredith A.; Barnes, Justin A.; Stockard, Cecil R.; Grizzle, William E.; Arbeit, Jeffrey M.; Curiel, David T.

    2013-01-01

    Adenovirus serotype 5 (Ad5) vectors are well suited for gene therapy. However, tissue-selective transduction by systemically administered Ad5-based vectors is confounded by viral particle sequestration in the liver. Hexon-modified Ad5 expressing reporter gene under transcriptional control by the immediate/early cytomegalovirus (CMV) or the Roundabout 4 receptor (Robo4) enhancer/promoter were characterized by growth in cell culture, stability in vitro, gene transfer in the presence of human coagulation factor X, and biodistribution in mice. The obtained data demonstrate the utility of the Robo4 promoter in an Ad5 vector context. Substitution of the hypervariable region 7 (HVR7) of the Ad5 hexon with HVR7 from Ad serotype 3 resulted in decreased liver tropism and dramatically altered biodistribution of gene expression. The results of these studies suggest that the combination of liver detargeting using a genetic modification of hexon with an endothelium-specific transcriptional control element produces an additive effect in the improvement of Ad5 biodistribution. PMID:24210128

  9. High-level expression of canine parvovirus VP2 using Bombyx mori nucleopolyhedrovirus vector.

    PubMed

    Choi, J Y; Woo, S D; Lee, H K; Hong, H K; Je, Y H; Park, J H; Song, J Y; An, S H; Kang, S K

    2000-01-01

    For the potential use as recombinant vaccine, canine parvovirus (CPV) major capsid protein VP2 was expressed using Bombyx mori nucleopolyhedrovirus (BmNPV) vector. CPV VP2 gene was introduced into polyhedrin-based BmNPV transfer vector pBmKSK3, and recombinant virus BmK1-Parvo was prepared. When anti-CPV.VP2 monoclonal antibody was employed in immunofluorescence staining, an intense signal was observed within BmK1-Parvo-infected Bm5 cells but not within uninfected cells or cells infected with a wild-type BmNPV-K1. In hemagglutination assay, the expression level of VP2 were 3.2 x 10(3) HA units/ml from infected Bm5 cells, 2.1x 10(5) HA units/larvae from infected larval fat body, and 1.6x 10(6) HA units/ml from infected larval hemolymph. These results suggested that BmNPV vector system using B. mori larva as host could be applied to efficient mass-production of recombinant vaccines.

  10. Retargeting of gene expression using endothelium specific hexon modified adenoviral vector.

    PubMed

    Kaliberov, Sergey A; Kaliberova, Lyudmila N; Hong Lu, Zhi; Preuss, Meredith A; Barnes, Justin A; Stockard, Cecil R; Grizzle, William E; Arbeit, Jeffrey M; Curiel, David T

    2013-12-01

    Adenovirus serotype 5 (Ad5) vectors are well suited for gene therapy. However, tissue-selective transduction by systemically administered Ad5-based vectors is confounded by viral particle sequestration in the liver. Hexon-modified Ad5 expressing reporter gene under transcriptional control by the immediate/early cytomegalovirus (CMV) or the Roundabout 4 receptor (Robo4) enhancer/promoter was characterized by growth in cell culture, stability in vitro, gene transfer in the presence of human coagulation factor X, and biodistribution in mice. The obtained data demonstrate the utility of the Robo4 promoter in an Ad5 vector context. Substitution of the hypervariable region 7 (HVR7) of the Ad5 hexon with HVR7 from Ad serotype 3 resulted in decreased liver tropism and dramatically altered biodistribution of gene expression. The results of these studies suggest that the combination of liver detargeting using a genetic modification of hexon with an endothelium-specific transcriptional control element produces an additive effect in the improvement of Ad5 biodistribution.

  11. The establishment of Saccharomyces boulardii surface display system using a single expression vector.

    PubMed

    Wang, Tiantian; Sun, Hui; Zhang, Jie; Liu, Qing; Wang, Longjiang; Chen, Peipei; Wang, Fangkun; Li, Hongmei; Xiao, Yihong; Zhao, Xiaomin

    2014-03-01

    In the present study, an a-agglutinin-based Saccharomyces boulardii surface display system was successfully established using a single expression vector. Based on the two protein co-expression vector pSP-G1 built by Partow et al., a S. boulardii surface display vector-pSDSb containing all the display elements was constructed. The display results of heterologous proteins were confirmed by successfully displaying enhanced green fluorescent protein (EGFP) and chicken Eimeria tenella Microneme-2 proteins (EtMic2) on the S. boulardii cell surface. The DNA sequence of AGA1 gene from S. boulardii (SbAGA1) was determined and used as the cell wall anchor partner. This is the first time heterologous proteins have been displayed on the cell surface of S. boulardii. Because S. boulardii is probiotic and eukaryotic, its surface display system would be very valuable, particularly in the development of a live vaccine against various pathogenic organisms especially eukaryotic pathogens such as protistan parasites.

  12. Development of small high-copy-number plasmid vectors for gene expression in Caulobacter crescentus.

    PubMed

    Umelo-Njaka, E; Nomellini, J F; Yim, H; Smit, J

    2001-07-01

    Caulobacter crescentus is a bacterium with a distinctive life cycle and so it is studied as a cell development model. In addition, we have adapted this bacterium for recombinant protein production and display based on the crystalline surface protein (S)-layer and its C-terminal secretion signal. We report here the development of small, high-copy-number plasmid vectors and methods for producing an obligate expression host. The vectors are based on a narrow-host-range colE1-replicon-based plasmid commonly used in Escherichia coli, to which was added the replication origin of the IncQ plasmid RSF1010. C. crescentus strains were modified to enable plasmid replication by introduction of the RSF1010 repBAC genes at the recA locus. The small (4.0-4.5 kb) plasmids were in high copy numbers in both C. crescentus and E. coli and amenable to rapid methods for plasmid isolation and DNA sequencing. The method for introducing repBAC is suitable for other C. crescentus strains or any bacterium with an adequately homologous recA gene. Application of the vector for protein expression, based on the type I secretion system of the S-layer protein, when compared to constructs in broad-host-range plasmids, resulted in reduced time and steps required from clone construction to recombinant protein recovery and increased protein yield.

  13. RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants

    PubMed Central

    Malik, Hassan Jamil; Raza, Amir; Amin, Imran; Scheffler, Jodi A.; Scheffler, Brian E.; Brown, Judith K.; Mansoor, Shahid

    2016-01-01

    The whitefly Bemisia tabaci (Genn.) is a pest and vector of plant viruses to crop and ornamental plants worldwide. Using RNA interference (RNAi) to down regulate whitefly genes by expressing their homologous double stranded RNAs in plants has great potential for management of whiteflies to reduce plant virus disease spread. Using a Tobacco rattle virus-derived plasmid for in planta transient expression of double stranded RNA (dsRNA) homologous to the acetylcholinesterase (AChE) and ecdysone receptor (EcR) genes of B. tabaci, resulted in significant adult whitefly mortality. Nicotiana tabacum L. plants expressing dsRNA homologous to B. tabaci AChE and EcR were constructed by fusing sequences derived from both genes. Mortality of adult whiteflies exposed to dsRNA by feeding on N. tabacum plants, compared to non-dsRNA expressing plants, recorded at 24-hr intervals post-ingestion for three days, was >90% and 10%, respectively. Analysis of gene expression by real time quantitative PCR indicated that whitefly mortality was attributable to the down-regulation of both target genes by RNAi. Results indicated that knock down of whitefly genes involved in neuronal transmission and transcriptional activation of developmental genes, has potential as a bio-pesticide to reduce whitefly population size and thereby decrease virus spread. PMID:27929123

  14. Lac-regulated system for generating adenovirus 5 vaccine vectors expressing cytolytic human immunodeficiency virus 1 genes.

    PubMed

    Zhao, Chunxia; Crews, Charles Jefferson; Derdeyn, Cynthia A; Blackwell, Jerry L

    2009-09-01

    Adenovirus (Ad) vectors have been developed as human immunodeficiency-1 (HIV-1) vaccine vectors because they consistently induce immune responses in preclinical animal models and human trials. Strong promoters and codon-optimization are often used to enhance vaccine-induced HIV-1 gene expression and immunogenicity. However, if the transgene is inherently cytotoxic in the cell line used to produce the vector, and is expressed at high levels, it is difficult to rescue a stable Ad HIV-1 vaccine vector. Therefore we hypothesized that generation of Ad vaccine vectors expressing cytotoxic genes, such as HIV-1 env, would be more efficient if expression of the transgene was down-regulated during Ad rescue. To test this hypothesis, a Lac repressor-operator system was applied to regulate expression of reporter luciferase and HIV-1 env transgenes during Ad rescue. The results demonstrate that during Ad rescue, constitutive expression of the Lac repressor in 293 cells reduced transgene expression levels to approximately 5% of that observed in the absence of regulation. Furthermore, Lac-regulation translated into more efficient Ad rescue compared to traditional 293 cells. Importantly, Ad vectors rescued with this system showed high levels of transgene expression when transduced into cells that lack the Lac repressor protein. The Lac-regulated system also facilitated the rescue of modified Ad vectors that have non-native receptor tropism. These tropism-modified Ad vectors infect a broader range of cell types than the unmodified Ad, which could increase their effectiveness as a vaccine vector. Overall, the Lac-regulated system described here (i) is backwards compatible with Ad vector methods that employ bacterial-mediated homologous recombination, (ii) is adaptable for the engineering of tropism-modified Ad vectors, and (iii) does not require co-expression of regulatory genes from the vector or the addition of exogenous chemicals to induce or repress transgene expression. This

  15. Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells.

    PubMed

    Benabdellah, Karim; Muñoz, Pilar; Cobo, Marién; Gutierrez-Guerrero, Alejandra; Sánchez-Hernández, Sabina; Garcia-Perez, Angélica; Anderson, Per; Carrillo-Gálvez, Ana Belén; Toscano, Miguel G; Martin, Francisco

    2016-11-17

    Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny.

  16. Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells

    PubMed Central

    Benabdellah, Karim; Muñoz, Pilar; Cobo, Marién; Gutierrez-Guerrero, Alejandra; Sánchez-Hernández, Sabina; Garcia-Perez, Angélica; Anderson, Per; Carrillo-Gálvez, Ana Belén; Toscano, Miguel G.; Martin, Francisco

    2016-01-01

    Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny. PMID:27853296

  17. Physiological levels of HBB transgene expression from S/MAR element-based replicating episomal vectors.

    PubMed

    Sgourou, Argyro; Routledge, Samantha; Spathas, Dionysios; Athanassiadou, Aglaia; Antoniou, Michael N

    2009-08-20

    Replicating episomal vectors (REV) are in principle able to provide long-term transgene expression in the absence of integration into the target cell genome. The scaffold/matrix attachment region (S/MAR) located 5' of the human beta-interferon gene (IFNB1) has been shown to confer a stable episomal replication and retention function within plasmid vectors when stably transfected and selected in mammalian cells. The minimal requirement for the IFNB1 S/MAR to function in DNA replication and episomal retention is transcription through this element. We used the erythroid beta-globin locus control region-beta-globin gene (betaLCR-HBB) microlocus cassette as a model to assess tissue-specific expression from within an IFNB1 S/MAR-based plasmid REV. The betaLCR-HBB plus S/MAR combination constructs provided either high or low levels of transcription through the S/MAR element. Our results show that the betaLCR-HBB microlocus is able to reproducibly and stably express at full physiological levels on an episome copy number basis. In addition, our data show that even low levels of transcription from betaLCR-HBB through the S/MAR element are sufficient to allow efficient episomal replication and retention. These data provide the principles upon which generic and flexible expression cassette-S/MAR-based REVs can be designed for a wide range of applications.

  18. Integrative analyses of RNA editing, alternative splicing, and expression of young genes in human brain transcriptome by deep RNA sequencing.

    PubMed

    Wu, Dong-Dong; Ye, Ling-Qun; Li, Yan; Sun, Yan-Bo; Shao, Yi; Chen, Chunyan; Zhu, Zhu; Zhong, Li; Wang, Lu; Irwin, David M; Zhang, Yong E; Zhang, Ya-Ping

    2015-08-01

    Next-generation RNA sequencing has been successfully used for identification of transcript assembly, evaluation of gene expression levels, and detection of post-transcriptional modifications. Despite these large-scale studies, additional comprehensive RNA-seq data from different subregions of the human brain are required to fully evaluate the evolutionary patterns experienced by the human brain transcriptome. Here, we provide a total of 6.5 billion RNA-seq reads from different subregions of the human brain. A significant correlation was observed between the levels of alternative splicing and RNA editing, which might be explained by a competition between the molecular machineries responsible for the splicing and editing of RNA. Young human protein-coding genes demonstrate biased expression to the neocortical and non-neocortical regions during evolution on the lineage leading to humans. We also found that a significantly greater number of young human protein-coding genes are expressed in the putamen, a tissue that was also observed to have the highest level of RNA-editing activity. The putamen, which previously received little attention, plays an important role in cognitive ability, and our data suggest a potential contribution of the putamen to human evolution.

  19. Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes

    PubMed Central

    Shvedova, Anna A.; Yanamala, Naveena; Kisin, Elena R.; Khailullin, Timur O.; Birch, M. Eileen; Fatkhutdinova, Liliya M.

    2016-01-01

    Background As the application of carbon nanotubes (CNT) in consumer products continues to rise, studies have expanded to determine the associated risks of exposure on human and environmental health. In particular, several lines of evidence indicate that exposure to multi-walled carbon nanotubes (MWCNT) could pose a carcinogenic risk similar to asbestos fibers. However, to date the potential markers of MWCNT exposure are not yet explored in humans. Methods In the present study, global mRNA and ncRNA expression profiles in the blood of exposed workers, having direct contact with MWCNT aerosol for at least 6 months (n = 8), were compared with expression profiles of non-exposed (n = 7) workers (e.g., professional and/or technical staff) from the same manufacturing facility. Results Significant changes in the ncRNA and mRNA expression profiles were observed between exposed and non-exposed worker groups. An integrative analysis of ncRNA-mRNA correlations was performed to identify target genes, functional relationships, and regulatory networks in MWCNT-exposed workers. The coordinated changes in ncRNA and mRNA expression profiles revealed a set of miRNAs and their target genes with roles in cell cycle regulation/progression/control, apoptosis and proliferation. Further, the identified pathways and signaling networks also revealed MWCNT potential to trigger pulmonary and cardiovascular effects as well as carcinogenic outcomes in humans, similar to those previously described in rodents exposed to MWCNTs. Conclusion This study is the first to investigate aberrant changes in mRNA and ncRNA expression profiles in the blood of humans exposed to MWCNT. The significant changes in several miRNAs and mRNAs expression as well as their regulatory networks are important for getting molecular insights into the MWCNT-induced toxicity and pathogenesis in humans. Further large-scale prospective studies are necessary to validate the potential applicability of such changes in mRNAs and mi

  20. Formaldehyde exposure alters miRNA expression profiles in the olfactory bulb.

    PubMed

    Li, Guifa; Yang, Jing; Ling, Shucai

    2015-01-01

    It has been reported that inhaling formaldehyde (FA) causes damage to the central nervous system. However, it is unclear whether FA can disturb the function of the olfactory bulb. Using a microarray, we found that FA inhalation altered the miRNA expression profile. Functional enrichment analysis of the predicted targets of the changed miRNA showed that the enrichment canonical pathways and networks associated with cancer and transcriptional regulation. FA exposure disrupts miRNA expression profiles within the olfactory bulb.

  1. Targeted expression of suicide gene by tissue-specific promoter and microRNA regulation for cancer gene therapy.

    PubMed

    Danda, Ravikanth; Krishnan, Gopinath; Ganapathy, Kalaivani; Krishnan, Uma Maheswari; Vikas, Khetan; Elchuri, Sailaja; Chatterjee, Nivedita; Krishnakumar, Subramanian

    2013-01-01

    In order to realise the full potential of cancer suicide gene therapy that allows the precise expression of suicide gene in cancer cells, we used a tissue specific Epithelial cell adhesion molecule (EpCAM) promoter (EGP-2) that directs transgene Herpes simplex virus-thymidine kinase (HSV-TK) expression preferentially in EpCAM over expressing cancer cells. EpCAM levels are considerably higher in retinoblastoma (RB), a childhood eye cancer with limited expression in normal cells. Use of miRNA regulation, adjacent to the use of the tissue-specific promoter, would provide the second layer of control to the transgene expression only in the tumor cells while sparing the normal cells. To test this hypothesis we cloned let-7b miRNA targets in the 3'UTR region of HSV-TK suicide gene driven by EpCAM promoter because let-7 family miRNAs, including let-7b, were found to be down regulated in the RB tumors and cell lines. We used EpCAM over expressing and let-7 down regulated RB cell lines Y79, WERI-Rb1 (EpCAM (+ve)/let-7b(down-regulated)), EpCAM down regulated, let-7 over expressing normal retinal Müller glial cell line MIO-M1(EpCAM (-ve)/let-7b(up-regulated)), and EpCAM up regulated, let-7b up-regulated normal thyroid cell line N-Thy-Ori-3.1(EpCAM (+ve)/let-7b(up-regulated)) in the study. The cell proliferation was measured by MTT assay, apoptosis was measured by probing cleaved Caspase3, EpCAM and TK expression were quantified by Western blot. Our results showed that the EGP2-promoter HSV-TK (EGP2-TK) construct with 2 or 4 copies of let-7b miRNA targets expressed TK gene only in Y79, WERI-Rb-1, while the TK gene did not express in MIO-M1. In summary, we have developed a tissue-specific, miRNA-regulated dual control vector, which selectively expresses the suicide gene in EpCAM over expressing cells.

  2. Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments

    PubMed Central

    2011-01-01

    Prior to the advent of new, deep sequencing methods, small RNA (sRNA) discovery was dependent on Sanger sequencing, which was time-consuming and limited knowledge to only the most abundant sRNA. The innovation of large-scale, next-generation sequencing has exponentially increased knowledge of the biology, diversity and abundance of sRNA populations. In this review, we discuss issues involved in the design of sRNA sequencing experiments, including choosing a sequencing platform, inherent biases that affect sRNA measurements and replication. We outline the steps involved in preprocessing sRNA sequencing data and review both the principles behind and the current options for normalization. Finally, we discuss differential expression analysis in the absence and presence of biological replicates. While our focus is on sRNA sequencing experiments, many of the principles discussed are applicable to the sequencing of other RNA populations. PMID:21356093

  3. Dietary glycerol for quail: association between productive performance and COX III mRNA expression.

    PubMed

    Silva, S C C; Gasparino, E; Batista, E; Tanamati, F; Vesco, A P D; Lala, B; de Oliveira, D P

    2016-05-25

    This study was carry out to evaluate mRNA expression of mitochondrial cytochrome c oxidase III in the Pectoralis superficialis muscle of 28-day-old quails fed diets containing 0, 8, and 12% glycerol. Total RNA was extracted (N = 10) and cDNA was amplified using specifics primers for qRT-PCR. Feed efficiency and feed intake were evaluated. COX III mRNA expression in breast muscle was higher in the group fed with 12% glycerol (0.863 AU); no differences were observed in the expression of this gene between the muscle of animals fed diets without glycerol (0.357 AU) and 8% glycerol (0.415 AU). Quails that showed greater COX III mRNA expression also showed the lowest feed efficiency. These results show that there is a difference in COX III mRNA expression in breast muscle of 28-day-old quail fed diets different concentrations of glycerol.

  4. Bioinspired Nanocomplex for Spatiotemporal Imaging of Sequential mRNA Expression in Differentiating Neural Stem Cells

    PubMed Central

    2015-01-01

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions. PMID:25494492

  5. Synthetic RNA-based switches for mammalian gene expression control.

    PubMed

    Ausländer, Simon; Fussenegger, Martin

    2017-04-04

    Synthetic ribonucleic acid (RNA)-based gene switches control RNA functions in a ligand-responsive manner. Key building blocks are aptamers that specifically bind to small molecules or protein ligands. Engineering approaches often combine rational design and high-throughput screening to identify optimal connection sites or sequences. In this report, we discuss basic principles and emerging design strategies for the engineering of RNA-based gene switches in mammalian cells. Their small size compared with those of transcriptional gene switches, together with advancements in design strategies and performance, may bring RNA-based switches to the forefront of biomedical and biotechnological applications.

  6. MicroRNA expression profiling identifies decreased expression of miR-205 in inflammatory breast cancer.

    PubMed

    Huo, Lei; Wang, Yan; Gong, Yun; Krishnamurthy, Savitri; Wang, Jing; Diao, Lixia; Liu, Chang-Gong; Liu, Xiuping; Lin, Feng; Symmans, William F; Wei, Wei; Zhang, Xinna; Sun, Li; Alvarez, Ricardo H; Ueno, Naoto T; Fouad, Tamer M; Harano, Kenichi; Debeb, Bisrat G; Wu, Yun; Reuben, James; Cristofanilli, Massimo; Zuo, Zhuang

    2016-04-01

    Inflammatory breast cancer is the most aggressive form of breast cancer. Identifying new biomarkers to be used as therapeutic targets is in urgent need. Messenger RNA expression profiling studies have indicated that inflammatory breast cancer is a transcriptionally heterogeneous disease, and specific molecular targets for inflammatory breast cancer have not been well established. We performed microRNA expression profiling in inflammatory breast cancer in comparison with locally advanced noninflammatory breast cancer in this study. Although many microRNAs were differentially expressed between normal breast tissue and tumor tissue, most of them did not show differential expression between inflammatory and noninflammatory tumor samples. However, by microarray analysis, quantitative reverse transcription PCR, and in situ hybridization, we showed that microRNA-205 expression was decreased not only in tumor compared with normal breast tissue, but also in inflammatory breast cancer compared with noninflammatory breast cancer. Lower expression of microRNA-205 correlated with worse distant metastasis-free survival and overall survival in our cohort. A small-scale immunohistochemistry analysis showed coexistence of decreased microRNA-205 expression and decreased E-cadherin expression in some ductal tumors. MicroRNA-205 may serve as a therapeutic target in advanced breast cancer including inflammatory breast cancer.

  7. Expression and regulatory effects of microRNA-182 in osteosarcoma cells: A pilot study

    PubMed Central

    BIAN, DONG-LIN; WANG, XUE-MEI; HUANG, KUN; ZHAI, QI-XI; YU, GUI-BO; WU, CHENG-HUA

    2016-01-01

    The aim of the present study was to evaluate the expression level of microRNA-182 (miRNA-182) in human osteosarcoma (OS) MG-63 cells and OS tissues, and to elucidate the effect of miRNA-182 on the biological activity of tumors. In the present study, the expression of miRNA-182 in human OS MG-63 cells, OS tissues and normal osteoblast hFOB1.19 cells was determined using quantitative polymerase chain reaction. Subsequently, a miRNA-182 mimic and inhibitor were utilized to regulate the expression level of this miRNA in MG-63 cells. Cell viability and proliferation were examined using cell counting kit-8 assays, and cell apoptosis was detected by flow cytometry. Cell invasion and migration assays were performed using Transwell chambers to analyze the biological functions of miRNA-182 in vitro. The present study demonstrated that the expression level of miRNA-182 in MG-63 cells and OS tissues was significantly increased compared with the hFOB1.19 cell line (P<0.05). The present study successfully performed cell transfections of miRNA-182 inhibitor and miRNA-182 mimic into MG-63 cells and achieved the desired transfection efficiency. The present study confirmed that upregulation of miRNA-182 promotes cell apoptosis and inhibits cell viability, proliferation, invasion and migration. The present findings additionally demonstrated that miRNA-182 is a tumor suppressor gene in OS. Therefore, regulating the expression of miRNA-182 may affect the biological behavior of OS cells, which suggests a potential role for miRNA-182 in molecular therapy for malignant tumors. PMID:27123060

  8. Integration of microRNA and mRNA expression profiles in the skin of systemic sclerosis patients

    PubMed Central

    Zhou, Bin; Zuo, Xiao Xia; Li, Yi Sha; Gao, Si Ming; Dai, Xiao Dan; Zhu, Hong Lin; Luo, Hui

    2017-01-01

    MicroRNAs (miRNAs) play important roles in the fibrosis of systemic sclerosis (SSc). However, the underlying miRNA-mRNA regulatory network is not fully understood. A systemic investigation of the role of miRNAs would be very valuable for increasing our knowledge of the pathogenesis of SSc. Here, we combined miRNA and mRNA expression profiles and bioinformatics analyses and then performed validation experiments. we identified 21 miRNAs and 2698 mRNAs that were differentially expressed in SSc. Among these, 17 miRNAs and their 33 target mRNAs (55 miRNA-mRNA pairs) were involved in Toll-like receptor, transforming growth factor β and Wnt signalling pathways. Validation experiments revealed that miR-146b, miR-130b, miR-21, miR-31 and miR-34a levels were higher whereas miR-145 levels were lower in SSc skin tissues and fibroblasts, normal fibroblasts and endothelial cells that were stimulated with SSc serum. ACVR2B, FZD2, FZD5 and SOX2 levels were increased in SSc skin fibroblasts, normal fibroblasts and endothelial cells that were stimulated with SSc serum. We did not identify any negative correlations among these miRNA-mRNA pairs. miR-21 was specifically expressed at higher levels in SSc serum. Six miRNAs and 4 mRNAs appear to play important roles in the pathogenesis of SSc are worth investigating in future functional studies. PMID:28211533

  9. SNP Regulation of microRNA Expression and Subsequent Colon Cancer Risk

    PubMed Central

    Mullany, Lila E.; Wolff, Roger K.; Herrick, Jennifer S.; Buas, Matthew F.; Slattery, Martha L.

    2015-01-01

    Introduction MicroRNAs (miRNAs) regulate messenger RNAs (mRNAs) and as such have been implicated in a variety of diseases, including cancer. MiRNAs regulate mRNAs through binding of the miRNA 5’ seed sequence (~7–8 nucleotides) to the mRNA 3’ UTRs; polymorphisms in these regions have the potential to alter miRNA-mRNA target associations. SNPs in miRNA genes as well as miRNA-target genes have been proposed to influence cancer risk through altered miRNA expression levels. Methods MiRNA-SNPs and miRNA-target gene-SNPs were identified through the literature. We used SNPs from Genome-Wide Association Study (GWAS) data that were matched to individuals with miRNA expression data generated from an Agilent platform for colon tumor and non-tumor paired tissues. These samples were used to evaluate 327 miRNA-SNP pairs for associations between SNPs and miRNA expression levels as well as for SNP associations with colon cancer. Results Twenty-two miRNAs expressed in non-tumor tissue were significantly different by genotype and 21 SNPs were associated with altered tumor/non-tumor differential miRNA expression across genotypes. Two miRNAs were associated with SNP genotype for both non-tumor and tumor/non-tumor differential expression. Of the 41 miRNAs significantly associated with SNPs all but seven were significantly differentially expressed in colon tumor tissue. Two of the 41 SNPs significantly associated with miRNA expression levels were associated with colon cancer risk: rs8176318 (BRCA1), ORAA 1.31 95% CI 1.01, 1.78, and rs8905 (PRKAR1A), ORGG 2.31 95% CI 1.11, 4.77. Conclusion Of the 327 SNPs identified in the literature as being important because of their potential regulation of miRNA expression levels, 12.5% had statistically significantly associations with miRNA expression. However, only two of these SNPs were significantly associated with colon cancer. PMID:26630397

  10. Lentiviral vector-mediated over-expression of Sox9 protected chondrocytes from IL-1β induced degeneration and apoptosis.

    PubMed

    Lu, Huading; Zeng, Chun; Chen, Mingwei; Lian, Liyi; Dai, Yuhu; Zhao, Huiqing

    2015-01-01

    To explore whether the over-expression of Sry-related HMG box (Sox9) in degenerative chondrocytes is able to improve cell regeneration and protects cells from inflammation induced apoptosis, we generated a Sox9 over-expressing vector delivery system in which the Sox9 gene was inserted into a lentiviral vector. After infecting mouse chondrocytes with the Sox9-encoding vector, we observed a high level of gene transduction efficiency and achieved a high level of Sox9 expression in the infected chondrocytes. To explore whether over-expression of Sox9 is able to induce cell regeneration and improve cell survival, we induced Sox9 over-expression by lentiviral vector infection 48 hours before IL-1β treatment. The cells were infected with the reporter gene GFP-encoded lentiviral vector as a negative control or left uninfected. 48-hours after IL-1β treatment, the chrondrocytes treated with IL-1β alone, underwent a degenerative process, with elevated expression of MMP-3, MMP-13, ADAMTS-5 and ALP, but the cell specific anabolic proteins collagen II and aggrecan were significantly suppressed. The cells infected with the GFP reporter vector had no increased regeneration after IL-1β treatment. The results indicated that Sox9 is an important chondrocyte transcription factor, promoting chondrocyte regeneration and cell survival, which were mediated through affecting multiple cell differentiation as well as anti-apoptotic signaling pathways.

  11. Differential microRNA expression is associated with androgen receptor expression in breast cancer.

    PubMed

    Shi, Yaqin; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Gu, Jun; Guan, Xiaoxiang

    2017-01-01

    The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)‑positive breast cancer compared with ER‑negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone‑dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR‑positive and ‑negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR‑positive compared with AR‑negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug‑resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer.

  12. The Development of a Viral Mediated CRISPR/Cas9 System with Doxycycline Dependent gRNA Expression for Inducible In vitro and In vivo Genome Editing

    PubMed Central

    de Solis, Christopher A.; Ho, Anthony; Holehonnur, Roopashri; Ploski, Jonathan E.

    2016-01-01

    The RNA-guided Cas9 nuclease, from the type II prokaryotic Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) adaptive immune system, has been adapted and utilized by scientists to edit the genomes of eukaryotic cells. Here, we report the development of a viral mediated CRISPR/Cas9 system that can be rendered inducible utilizing doxycycline (Dox) and can be delivered to cells in vitro and in vivo utilizing adeno-associated virus (AAV). Specifically, we developed an inducible gRNA (gRNAi) AAV vector that is designed to express the gRNA from a H1/TO promoter. This AAV vector is also designed to express the Tet repressor (TetR) to regulate the expression of the gRNAi in a Dox dependent manner. We show that H1/TO promoters of varying length and a U6/TO promoter can edit DNA with similar efficiency in vitro, in a Dox dependent manner. We also demonstrate that our inducible gRNAi vector can be used to edit the genomes of neurons in vivo within the mouse brain in a Dox dependent manner. Genome editing can be induced in vivo with this system by supplying animals Dox containing food for as little as 1 day. This system might be cross compatible with many existing S. pyogenes Cas9 systems (i.e., Cas9 mouse, CRISPRi, etc.), and therefore it likely can be used to render these systems inducible as well. PMID:27587996

  13. Concurrent micro-RNA mediated silencing of tick-borne flavivirus replication in tick vector and in the brain of vertebrate host

    PubMed Central

    Tsetsarkin, Konstantin A.; Liu, Guangping; Kenney, Heather; Hermance, Meghan; Thangamani, Saravanan; Pletnev, Alexander G.

    2016-01-01

    Tick-borne viruses include medically important zoonotic pathogens that can cause life-threatening diseases. Unlike mosquito-borne viruses, whose impact can be restrained via mosquito population control programs, for tick-borne viruses only vaccination remains the reliable means of disease prevention. For live vaccine viruses a concern exists, that spillovers from viremic vaccinees could result in introduction of genetically modified viruses into sustainable tick-vertebrate host transmission cycle in nature. To restrict tick-borne flavivirus (Langat virus, LGTV) vector tropism, we inserted target sequences for tick-specific microRNAs (mir-1, mir-275 and mir-279) individually or in combination into several distant regions of LGTV genome. This caused selective attenuation of viral replication in tick-derived cells. LGTV expressing combinations of target sequences for tick- and vertebrate CNS-specific miRNAs were developed. The resulting viruses replicated efficiently and remained stable in simian Vero cells, which do not express these miRNAs, however were severely restricted to replicate in tick-derived cells. In addition, simultaneous dual miRNA targeting led to silencing of virus replication in live Ixodes ricinus ticks and abolished virus neurotropism in highly permissive newborn mice. The concurrent restriction of adverse replication events in vertebrate and invertebrate hosts will, therefore, ensure the environmental safety of live tick-borne virus vaccine candidates. PMID:27620807

  14. microRNA expression in autonomous thyroid adenomas: Correlation with mRNA regulation.

    PubMed

    Floor, Sébastien L; Trésallet, Christophe; Hébrant, Aline; Desbuleux, Alice; Libert, Frédérick; Hoang, Catherine; Capello, Matteo; Andry, Guy; van Staveren, Wilma C G; Maenhaut, Carine

    2015-08-15

    The objective of the study was to identify the deregulated miRNA in autonomous adenoma and to correlate the data with mRNA regulation. Seven autonomous adenoma with adjacent healthy thyroid tissues were investigated. Twelve miRNAs were downregulated and one was upregulated in the tumors. Combining bioinformatic mRNA target prediction and microarray data on mRNA regulations allowed to identify mRNA targets of our deregulated miRNAs. A large enrichment in mRNA encoding proteins involved in extracellular matrix organization and different phosphodiesterases were identified among these putative targets. The direct interaction between miR-101-3p and miR-144-3p and PDE4D mRNA was experimentally validated. The global miRNA profiles were not greatly modified, confirming the definition of these tumors as minimal deviation tumors. These results support a role for miRNA in the regulation of extracellular matrix proteins and tissue remodeling occurring during tumor development, and in the important negative feedback of the cAMP pathway, which limits the consequences of its constitutive activation in these tumors.

  15. Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR

    PubMed Central

    Chambers, Carrie; Shuai, Bin

    2009-01-01

    Background MicroRNAs (miRNAs) are ~22-nt small non-coding RNAs that regulate the expression of specific target genes in many eukaryotes. In higher plants, miRNAs are involved in developmental processes and stress responses. Sexual reproduction in flowering plants relies on pollen, the male gametophyte, to deliver sperm cells to fertilize the egg cell hidden in the embryo sac. Studies indicated that post-transcriptional processes are important for regulating gene expression during pollen function. However, we still have very limited knowledge on the involved gene regulatory mechanisms. Especially, the function of miRNAs in pollen remains unknown. Results Using miRCURY LNA array technology, we have profiled the expression of 70 known miRNAs (representing 121 miRBase IDs) in Arabidopsis mature pollen, and compared the expression of these miRNAs in pollen and young inflorescence. Thirty-seven probes on the array were identified using RNAs isolated from mature pollen, 26 of which showed significant differences in expression between mature pollen and inflorescence. Real-time PCR based on TaqMan miRNA assays confirmed the expression of 22 miRNAs in mature pollen, and identified 8 additional miRNAs that were expressed at low level in mature pollen. However, the expression of 11 miRNA that were identified on the array could not be confirmed by the Taqman miRNA assays. Analyses of transcriptome data for some miRNA target genes indicated that miRNAs are functional in pollen. Conclusion In summary, our results showed that some known miRNAs were expressed in Arabidopsis mature pollen, with most of them being low abundant. The results can be utilized in future research to study post-transcriptional gene regulation in pollen function. PMID:19591667

  16. Monitoring of gene expression in bacteria during infections using an adaptable set of bioluminescent, fluorescent and colorigenic fusion vectors.

    PubMed

    Uliczka, Frank; Pisano, Fabio; Kochut, Annika; Opitz, Wiebke; Herbst, Katharina; Stolz, Tatjana; Dersch, Petra

    2011-01-01

    A family of versatile promoter-probe plasmids for gene expression analysis was developed based on a modular expression plasmid system (pZ). The vectors contain different replicons with exchangeable antibiotic cassettes to allow compatibility and expression analysis on a low-, midi- and high-copy number basis. Suicide vector variants also permit chromosomal integration of the reporter fusion and stable vector derivatives can be used for in vivo or in situ expression studies under non-selective conditions. Transcriptional and translational fusions to the reporter genes gfp(mut3.1), amCyan, dsRed2, luxCDABE, phoA or lacZ can be constructed, and presence of identical multiple cloning sites in the vector system facilitates the interchange of promoters or reporter genes between the plasmids of the series. The promoter of the constitutively expressed gapA gene of Escherichia coli was included to obtain fluorescent and bioluminescent expression constructs. A combination of the plasmids allows simultaneous detection and gene expression analysis in individual bacteria, e.g. in bacterial communities or during mouse infections. To test our vector system, we analyzed and quantified expression of Yersinia pseudotuberculosis virulence genes under laboratory conditions, in association with cells and during the infection process.

  17. A complex adenovirus vector that delivers FASL-GFP with combined prostate-specific and tetracycline-regulated expression.

    PubMed

    Rubinchik, S; Wang, D; Yu, H; Fan, F; Luo, M; Norris, J S; Dong, J Y

    2001-11-01

    Cell-type-restricted transgene expression delivered by adenovirus vectors is highly desirable for gene therapy of cancer, as it can limit cytotoxic gene expression to tumor cells. However, many tumor- and tissue-specific promoters are weaker than the constitutively active promoters and are thus less effective. To combine cell-type specificity with high-level regulated transgene expression, we have developed a complex adenoviral vector. We have placed the tetracycline transactivator gene under the control of a prostate-specific ARR2PB promoter, and a mouse Tnfsf6 (encoding FASL)-GFP fusion gene under the control of the tetracycline responsive promoter. We have incorporated both expression cassettes into a single construct. We show that FASL-GFP expression from this vector is essentially restricted to prostate cancer cells, in which it can be regulated by doxycycline. Higher levels of prostate-specific FASL-GFP expression were generated by this approach than by driving the FASL-GFP expression directly with ARR2PB. More FASL-GFP expression correlated with greater induction of apoptosis in prostate cancer LNCaP cells. Mouse studies confirmed that systemic delivery of both the prostate-specific and the prostate-specific/tet-regulated vectors was well tolerated at doses that were lethal for FASL-GFP vector with CMV promoter. This strategy should be able to improve the safety and efficacy of cancer gene therapy using other cytotoxic genes as well.

  18. Construction of a shuttle vector for protein secretory expression in Bacillus subtilis and the application of the mannanase functional heterologous expression.

    PubMed

    Guo, Su; Tang, Jia-jie; Wei, Dong-zhi; Wei, Wei

    2014-04-01

    We report the construction of two Bacillus subtilis expression vectors, pBNS1/pBNS2. Both vectors are based on the strong promoter P43 and the ampicillin resistance gene expression cassette. Additionally, a fragment with the Shine-Dalgarno sequence and a multiple cloning site (BamHI, SalI, SacI, XhoI, PstI, SphI) were inserted. The coding region for the amyQ (encoding an amylase) signal peptide was fused to the promoter P43 of pBNS1 to construct the secreted expression vector pBNS2. The applicability of vectors was tested by first generating the expression vectors pBNS1-GFP/pBNS2-GFP and then detecting for green fluorescent protein gene expression. Next, the mannanase gene from B. pumilus Nsic-2 was fused to vector pBNS2 and we measured the mannanase activity in the supernatant. The mannanase total enzyme activity was 8.65 U/ml, which was 6 times higher than that of the parent strain. Our work provides a feasible way to achieve an effective transformation system for gene expression in B. subtilis and is the first report to achieve B. pumilus mannanase secretory expression in B. subtilis.

  19. The Selenocysteine tRNA STAF-Binding Region is Essential for Adequate Selenocysteine tRNA Status, Selenoprotein Expression and Early Age Survival of Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    STAF is a transcription activating factor for a number of RNA Pol III-and RNA Pol II-dependent genes including the selenocysteine (Sec) tRNA gene. Here, the role of STAF in regulating expression of Sec tRNA and selenoproteins was examined in an invivo model. Heterozygous inactivation of the Staf gen...

  20. RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star.

    PubMed

    Kadri, Sabah; Hinman, Veronica F; Benos, Panayiotis V

    2011-01-01

    microRNAs (miRNAs) are small (20-23 nt), non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development with well-characterized tran