Science.gov

Sample records for rna expression vector

  1. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155

    PubMed Central

    Chung, Kwan-Ho; Hart, Christopher C.; Al-Bassam, Sarmad; Avery, Adam; Taylor, Jennifer; Patel, Paresh D.; Vojtek, Anne B.; Turner, David L.

    2006-01-01

    Vector-based RNA interference (RNAi) has emerged as a valuable tool for analysis of gene function. We have developed new RNA polymerase II expression vectors for RNAi, designated SIBR vectors, based upon the non-coding RNA BIC. BIC contains the miR-155 microRNA (miRNA) precursor, and we find that expression of a short region of the third exon of mouse BIC is sufficient to produce miR-155 in mammalian cells. The SIBR vectors use a modified miR-155 precursor stem–loop and flanking BIC sequences to express synthetic miRNAs complementary to target RNAs. Like RNA polymerase III driven short hairpin RNA vectors, the SIBR vectors efficiently reduce target mRNA and protein expression. The synthetic miRNAs can be expressed from an intron, allowing coexpression of a marker or other protein with the miRNAs. In addition, intronic expression of a synthetic miRNA from a two intron vector enhances RNAi. A SIBR vector can express two different miRNAs from a single transcript for effective inhibition of two different target mRNAs. Furthermore, at least eight tandem copies of a synthetic miRNA can be expressed in a polycistronic transcript to increase the inhibition of a target RNA. The SIBR vectors are flexible tools for a variety of RNAi applications. PMID:16614444

  2. Noncytopathic Sindbis virus RNA vectors for heterologous gene expression

    PubMed Central

    Agapov, Eugene V.; Frolov, Ilya; Lindenbach, Brett D.; Prágai, Béla M.; Schlesinger, Sondra; Rice, Charles M.

    1998-01-01

    Infection of vertebrate cells with alphaviruses normally leads to prodigious expression of virus-encoded genes and a dramatic inhibition of host protein synthesis. Recombinant Sindbis viruses and replicons have been useful as vectors for high level foreign gene expression, but the cytopathic effects of viral replication have limited their use to transient studies. We recently selected Sindbis replicons capable of persistent, noncytopathic growth in BHK cells and describe here a new generation of Sindbis vectors useful for long-term foreign gene expression based on such replicons. Foreign genes of interest as well as the dominant selectable marker puromycin N-acteyltransferase, which confers resistance to the drug puromycin, were expressed as subgenomic transcripts of noncytopathic replicons or defective-interfering genomes complemented in trans by a replicon. Based on these strategies, we developed vectors that can be initiated via either RNA or DNA transfection and analyzed them for their level and stability of foreign gene expression. Noncytopathic Sindbis vectors express reasonably high levels of protein in nearly every cell. These vectors should prove to be flexible tools for the rapid expression of heterologous genes under conditions in which cellular metabolism is not perturbed, and we illustrate their utility with a number of foreign proteins. PMID:9789028

  3. Lentivirus-expressed siRNA vectors against Alzheimer disease.

    PubMed

    Peng, Kevin A; Masliah, Eliezer

    2010-01-01

    Amyloid precursor protein (APP) has been implicated in the pathogenesis of Alzheimer disease, and the accumulation of APP products ultimately leads to the familiar histopathological and clinical manifestations associated with this most common form of dementia. A protein that has been shown to promote APP accumulation is beta-secretase (beta-site APP cleaving enzyme 1, or BACE1), which is increased in the cerebrospinal fluid in those affected with Alzheimer disease. Through in vivo studies using APP transgenic mice, we demonstrated that decreasing the expression of BACE1 via lentiviral vector delivery of BACE1 siRNA has the potential for significantly reducing the cleavage of APP, accumulation of these products, and consequent neurodegeneration. As such, lentiviral-expressed siRNA against BACE1 is a therapeutic possibility in the treatment of Alzheimer disease. We detail the use of lentivirus-expressed siRNA as a method to ameliorate Alzheimer disease neuropathology in APP transgenic mice.

  4. Improving miRNA Delivery by Optimizing miRNA Expression Cassettes in Diverse Virus Vectors

    PubMed Central

    Herrera-Carrillo, Elena; Liu, Ying Poi; Berkhout, Ben

    2017-01-01

    The RNA interference pathway is an evolutionary conserved post-transcriptional gene regulation mechanism that is exclusively triggered by double-stranded RNA inducers. RNAi-based methods and technologies have facilitated the discovery of many basic science findings and spurred the development of novel RNA therapeutics. Transient induction of RNAi via transfection of synthetic small interfering RNAs can trigger the selective knockdown of a target mRNA. For durable silencing of gene expression, either artificial short hairpin RNA or microRNA encoding transgene constructs were developed. These miRNAs are based on the molecules that induce the natural RNAi pathway in mammals and humans: the endogenously expressed miRNAs. Significant efforts focused on the construction and delivery of miRNA cassettes in order to solve basic biology questions or to design new therapy strategies. Several viral vectors have been developed, which are particularly useful for the delivery of miRNA expression cassettes to specific target cells. Each vector system has its own unique set of distinct properties. Thus, depending on the specific application, a particular vector may be most suitable. This field was previously reviewed for different viral vector systems, and now the recent progress in the field of miRNA-based gene-silencing approaches using lentiviral vectors is reported. The focus is on the unique properties and respective limitations of the available vector systems for miRNA delivery. PMID:28712309

  5. Multiple shRNA expressions in a single plasmid vector improve RNAi against the XPA gene

    SciTech Connect

    Nagao, Akihiro; Zhao, Xia; Takegami, Tsutomu; Nakagawa, Hideaki; Matsui, Shinobu; Matsunaga, Tsukasa; Ishigaki, Yasuhito

    2008-05-30

    To improve the efficiency of stable knockdown with short hairpin RNA (shRNA), we inserted multiple shRNA expression sequences into a single plasmid vector. In this study, the DNA repair factor XPA was selected as a target gene since it is not essential for cell viability and it is easy to check the functional knockdown of this gene. The efficiency of knockdown was compared among single and triple expression vectors. The single shRNA-expressing vector caused limited knockdown of the target protein in stable transfectants, however, the multiple expression vectors apparently increased the frequency of knockdown transfectants. There were correlations between the knockdown level and marker expression in multiple-expressing transfectants, whereas poorer correlations were observed in single vector transfectants. Multiple-transfectants exhibited reduced efficiency of repair of UV-induced DNA damage and an increased sensitivity to ultraviolet light-irradiation. We propose that multiple shRNA expression vectors might be a useful strategy for establishing knockdown cells.

  6. [Construction and identification of a multiple myeloma-specific APE1 siRNA expression vector].

    PubMed

    Yang, Zhen-zhou; Chen, Xing-hua; Wang, Dong; Wang, Ge; Xiang, De-bing

    2006-04-01

    To construct a multiple myeloma (MM)-specific APE1siRNA expression vector, and detect the specific knock-down effect of the siRNA on expression of APE1 protein. APE1siRNA cDNA sequence was designed, synthesized and inserted into pSilencer 2.0-U6 linear expression vector. pSilencer APE1siRNA was digested by enzyme EcoRI and BamHI, then linear vector and IgP fragments were conjugated by T4 DNA ligase. pSilencer IgP-APE1siRNA and pSilencer IE-IgP-APE1siRNA were digested by enzyme EcoRI or XhoI. Linear vector and IE or Kappa fragments were conjugated by T4 DNA ligase. Then a MM specific pSilencer K-IE-IgP-APE1siRNA was cloned. The recombinant products were identified by DNA sequencing and enzyme digestions at each step. pSilencer K-IE-IgP-APE1siRNA plasmid was transfected to KM3, HOS, MDA-231 cells by liposome. APE1 gene silence induced by RNAi was analysed by Western blot. APE1 protein in KM3 cells could be knocked down effectively and specifically by pSilencer K-IE-IgP-APE1siRNA vector. After 2 days, the level of APE1 protein in KM3 cells transfected with siRNA was 0.118 +/- 0.047, while that transfected with plasmid only was 0.988 +/- 0.029. The efficiency of gene silence was 90%. A MM specific APE1siRNA expression vector was successfully constructed.

  7. Virus-Derived Gene Expression and RNA Interference Vector for Grapevine

    PubMed Central

    Kurth, Elizabeth G.; Peremyslov, Valera V.; Prokhnevsky, Alexey I.; Kasschau, Kristin D.; Miller, Marilyn; Carrington, James C.

    2012-01-01

    The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests. PMID:22438553

  8. MicroRNA-150-regulated vectors allow lymphocyte-sparing transgene expression in hematopoietic gene therapy.

    PubMed

    Lachmann, N; Jagielska, J; Heckl, D; Brennig, S; Pfaff, N; Maetzig, T; Modlich, U; Cantz, T; Gentner, B; Schambach, A; Moritz, T

    2012-09-01

    Endogenous microRNA (miRNA) expression can be exploited for cell type-specific transgene expression as the addition of miRNA target sequences to transgenic cDNA allows for transgene downregulation specifically in cells expressing the respective miRNAs. Here, we have investigated the potential of miRNA-150 target sequences to specifically suppress gene expression in lymphocytes and thereby prevent transgene-induced lymphotoxicity. Abundance of miRNA-150 expression specifically in differentiated B and T cells was confirmed by quantitative reverse transcriptase PCR. Mono- and bicistronic lentiviral vectors were used to investigate the effect of miRNA-150 target sequences on transgene expression in the lymphohematopoietic system. After in vitro studies demonstrated effective downregulation of transgene expression in murine B220(+) B and CD3(+) T cells, the concept was further verified in a murine transplant model. Again, marked suppression of transgene activity was observed in B220(+) B and CD4(+) or CD8(+) T cells whereas expression in CD11b(+) myeloid cells, lin(-) and lin(-)/Sca1(+) progenitors, or lin(-)/Sca1(+)/c-kit(+) stem cells remained almost unaffected. No toxicity of miRNA-150 targeting in transduced lymphohematopoietic cells was noted. Thus, our results demonstrate the suitability of miRNA-150 targeting to specifically suppress transgene expression in lymphocytes and further support the concept of miRNA targeting for cell type-specific transgene expression in gene therapy approaches.

  9. A Cytoplasmic RNA Vector Derived from Nontransmissible Sendai Virus with Efficient Gene Transfer and Expression

    PubMed Central

    Li, Hai-Ou; Zhu, Ya-Feng; Asakawa, Makoto; Kuma, Hidekazu; Hirata, Takahiro; Ueda, Yasuji; Lee, Yun-Sik; Fukumura, Masayuki; Iida, Akihiro; Kato, Atsushi; Nagai, Yoshiyuki; Hasegawa, Mamoru

    2000-01-01

    We have recovered a virion from defective cDNA of Sendai virus (SeV) that is capable of self-replication but incapable of transmissible-virion production. This virion delivers and expresses foreign genes in infected cells, and this is the first report of a gene expression vector derived from a defective viral genome of the Paramyxoviridae. First, functional ribonucleoprotein complexes (RNPs) were recovered from SeV cloned cDNA defective in the F (envelope fusion protein) gene, in the presence of plasmids expressing nucleocapsid protein and viral RNA polymerase. Then the RNPs were transfected to the cells inducibly expressing F protein. Virion-like particles thus obtained had a titer of 0.5 × 108 to 1.0 × 108 cell infectious units/ml and contained F-defective RNA genome. This defective vector amplified specifically in an F-expressing packaging cell line in a trypsin-dependent manner but did not spread to F-nonexpressing cells. This vector infected and expressed an enhanced green fluorescent protein reporter gene in various types of animal and human cells, including nondividing cells, with high efficiency. These results suggest that this vector has great potential for use in human gene therapy and vaccine delivery systems. PMID:10864670

  10. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    NASA Astrophysics Data System (ADS)

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  11. [Construction and identification of small interfering RNA expression vector targeting ATF-2 gene].

    PubMed

    Mao, Wei-wei; Xiong, Peng; Han, Feng; Hu, Zhi-jian

    2012-09-01

    To construct an eukaryotic expression vector for RNA interference targeting activating transcription factor 2 (ATF-2) gene, and explore its effect on proliferation and apoptosis of HepG2 cells. Two complementary oligonucleotides were synthesized based on ATF-2 mRNA sequence. The annealed fragment was inserted into the vector PBA-siU6. The recombinant plasmid PBA-siATF-2 was confirmed by DNA sequencing and transfected into HepG2 cells mediated by liposome. After transfection, ATF-2 protein was detected by Western blotting. The cellular growth activity and apoptosis rate were measured by MTT assay and flow cytometry, respectively. Recombinant plasmid expressing siRNA targeting ATF-2 gene was confirmed by DNA sequencing. Plasmid transfection down-regulated the level of ATF-2 protein in HepG2 cells, which blocked cellular growth and induced cell apoptosis. The eukaryotic expression vector for RNA interference targeting ATF-2 gene was constructed successfully, which inhibits HepG2 cell proliferation and induces cell apoptosis.

  12. Long-term expression of miRNA for RNA interference using a novel vector system based on a negative-strand RNA virus

    PubMed Central

    Honda, Tomoyuki; Yamamoto, Yusuke; Daito, Takuji; Matsumoto, Yusuke; Makino, Akiko; Tomonaga, Keizo

    2016-01-01

    RNA interference (RNAi) has emerged as a promising technique for gene therapy. However, the safe and long-term expression of small RNA molecules is a major concern for the application of RNAi therapies in vivo. Borna disease virus (BDV), a non-segmented, negative-strand RNA virus, establishes a persistent infection without obvious cytopathic effects. Unique among animal non-retroviral RNA viruses, BDV persistently establishes a long-lasting persistent infection in the nucleus. These features make BDV ideal for RNA virus vector persistently expressing small RNAs. Here, we demonstrated that the recombinant BDV (rBDV) containing the miR-155 precursor, rBDV-miR-155, persistently expressed miR-155 and efficiently silenced its target gene. The stem region of the miR-155 precursor in rBDV-miR-155 was replaceable by any miRNA sequences of interest and that such rBDVs efficiently silence the expression of target genes. Collectively, BDV vector would be a novel RNA virus vector enabling the long-term expression of miRNAs for RNAi therapies. PMID:27189575

  13. Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based antiangiogenic factors

    PubMed Central

    Askou, Anne Louise; Aagaard, Lars; Kostic, Corinne; Arsenijevic, Yvan; Hollensen, Anne Kruse; Bek, Toke; Jensen, Thomas Gryesten; Mikkelsen, Jacob Giehm; Corydon, Thomas Juhl

    2015-01-01

    Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA) clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF) expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF). Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration. PMID:26052532

  14. Engineering and Validation of a Vector for Concomitant Expression of Rare Transfer RNA (tRNA) and HIV-1 nef Genes in Escherichia coli.

    PubMed

    Mualif, Siti Aisyah; Teow, Sin-Yeang; Omar, Tasyriq Che; Chew, Yik Wei; Yusoff, Narazah Mohd; Ali, Syed A

    2015-01-01

    Relative ease in handling and manipulation of Escherichia coli strains make them primary candidate to express proteins heterologously. Overexpression of heterologous genes that contain codons infrequently used by E. coli is related with difficulties such as mRNA instability, early termination of transcription and/or translation, deletions and/or misincorporation, and cell growth inhibition. These codon bias -associated problems are addressed by co-expressing ColE1-compatible, rare tRNA expressing helper plasmids. However, this approach has inadequacies, which we have addressed by engineering an expression vector that concomitantly expresses the heterologous protein of interest, and rare tRNA genes in E. coli. The expression vector contains three (argU, ileY, leuW) rare tRNA genes and a useful multiple cloning site for easy in-frame cloning. To maintain the overall size of the parental plasmid vector, the rare tRNA genes replaced the non-essential DNA segments in the vector. The cloned gene is expressed under the control of T7 promoter and resulting recombinant protein has a C-terminal 6His tag for IMAC-mediated purification. We have evaluated the usefulness of this expression vector by expressing three HIV-1 genes namely HIV-1 p27 (nef), HIV-1 p24 (ca), and HIV-1 vif in NiCo21(DE3) E.coli and demonstrated the advantages of using expression vector that concomitantly expresses rare tRNA and heterologous genes.

  15. Efficient production of superior dumbbell-shaped DNA minimal vectors for small hairpin RNA expression.

    PubMed

    Yu, Han; Jiang, Xiaoou; Tan, Kar Tong; Hang, Liting; Patzel, Volker

    2015-10-15

    Genetic therapy holds great promise for the treatment of inherited or acquired genetic diseases; however, its breakthrough is hampered by the lack of suitable gene delivery systems. Dumbbell-shaped DNA minimal vectors represent an attractive, safe alternative to the commonly used viral vectors which are fraught with risk, but dumbbell generation appears to be costly and time-consuming. We developed a new PCR-based method for dumbbell production which comprises only two steps. First, PCR amplification of the therapeutic expression cassette using chemically modified primers to form a ready-to-ligate DNA structure; and second, a highly efficient intramolecular ligation reaction. Compared with conventional strategies, the new method produces dumbbell vectors more rapidly, with higher yields and purity, and at lower costs. In addition, such produced small hairpin RNA expressing dumbbells triggered superior target gene knockdown compared with conventionally produced dumbbells or plasmids. Our novel method is suitable for large-scale dumbbell production and can facilitate clinical applications of this vector system.

  16. Expression of IMP1 enhances production of murine leukemia virus vector by facilitating viral genomic RNA packaging.

    PubMed

    Mai, Yun; Gao, Guangxia

    2010-12-29

    Murine leukemia virus (MLV)-based retroviral vector is widely used for gene transfer. Efficient packaging of the genomic RNA is critical for production of high-titer virus. Here, we report that expression of the insulin-like growth factor II mRNA binding protein 1 (IMP1) enhanced the production of infectious MLV vector. Overexpression of IMP1 increased the stability of viral genomic RNA in virus producer cells and packaging of the RNA into progeny virus in a dose-dependent manner. Downregulation of IMP1 in virus producer cells resulted in reduced production of the retroviral vector. These results indicate that IMP1 plays a role in regulating the packaging of MLV genomic RNA and can be used for improving production of retroviral vectors.

  17. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System.

    PubMed

    Bhagwat, Basdeo; Chi, Ming; Han, Dianwei; Tang, Haifeng; Tang, Guiliang; Xiang, Yu

    2016-01-01

    Artificial microRNA (amiRNA) technology utilizes microRNA (miRNA) biogenesis pathway to produce artificially selected small RNAs using miRNA gene backbone. It provides a feasible strategy for inducing loss of gene function, and has been applied in functional genomics study, improvement of crop quality and plant virus disease resistance. A big challenge in amiRNA applications is the unpredictability of silencing efficacy of the designed amiRNAs and not all constructed amiRNA candidates would be expressed effectively in plant cells. We and others found that high efficiency and specificity in RNA silencing can be achieved by designing amiRNAs with perfect or almost perfect sequence complementarity to their targets. In addition, we recently demonstrated that Agrobacterium-mediated transient expression system can be used to validate amiRNA constructs, which provides a simple, rapid and effective method to select highly expressible amiRNA candidates for stable genetic transformation. Here, we describe the methods for design of amiRNA candidates with perfect or almost perfect base-pairing to the target gene or gene groups, incorporation of amiRNA candidates in miR168a gene backbone by one step inverse PCR amplification, construction of plant amiRNA expression vectors, and assay of transient expression of amiRNAs in Nicotiana benthamiana through agro-infiltration, small RNA extraction, and amiRNA Northern blot.

  18. piRNA pathway gene expression in the malaria vector mosquito Anopheles stephensi.

    PubMed

    Macias, V; Coleman, J; Bonizzoni, M; James, A A

    2014-10-01

    The ability of transposons to mobilize to new places in a genome enables them to introgress rapidly into populations. The piRNA pathway has been characterized recently in the germ line of the fruit fly, Drosophila melanogaster, and is responsible for downregulating transposon mobility. Transposons have been used as tools in mosquitoes to genetically transform a number of species including Anopheles stephensi, a vector of human malaria. These mobile genetic elements also have been proposed as tools to drive antipathogen effector genes into wild mosquito populations to replace pathogen-susceptible insects with those engineered genetically to be resistant to or unable to transmit a pathogen. The piRNA pathway may affect the performance of such proposed genetic engineering strategies. In the present study, we identify and describe the An. stephensi orthologues of the major genes in the piRNA pathway, Ago3, Aubergine (Aub) and Piwi. Consistent with a role in protection from transposon movement, these three genes are expressed constitutively in the germ-line cells of ovaries and induced further after a blood meal. © 2014 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of The Royal Entomological Society.

  19. Stable expression of foreign proteins in herbaceous and apple plants using Apple latent spherical virus RNA2 vectors.

    PubMed

    Li, C; Sasaki, N; Isogai, M; Yoshikawa, N

    2004-08-01

    Infectious cDNA clones of Apple latent spherical virus (ALSV)-RNA1 (pEALSR1) and -RNA2 (pEALSR2) were constructed using an enhanced 35S promoter. A viral vector was constructed from pEALSR2 by creating artificial protease processing sites by duplicating the Q/G protease cleavage site between 42KP and Vp25. Eight RNA2-derived vectors expressing GFP with varied sizes of duplications around the 42KP/Vp25 junction were constructed and tested for infectivity in Chenopodium quinoa. The results indicated that greater than five aa from the C-terminus of 42KP and N-terminus of Vp25 in duplication are necessary for systemic infection. In infected C. quinoa plants, GFP fluorescence was observed in both inoculated and upper leaves. Serial passages of the viruses derived from the above vectors in C. quinoa showed that the size of duplications affected the stability of the GFP gene. The version of the RNA2-vector (pER2L5R5GFP) with the shortest duplications and its silent mutant version could stably express GFP in leaves even after at least nine serial passages. ALSV-RNA2 vector has a capacity to maintain a DNA insert as long as 1300 bp because Apple chlorotic leaf spot virus movement protein (50KP) gene could be expressed in C. quinoa. Inoculation of a virus derived from pER2L5R5GFP to apple seedlings resulted in the expression of GFP fluorescence in uninoculated upper leaves, indicating that the vector is available for the expression of foreign genes in apple trees.

  20. Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver.

    PubMed

    Qiao, C; Yuan, Z; Li, J; He, B; Zheng, H; Mayer, C; Li, J; Xiao, X

    2011-04-01

    Vectors based on adeno-associated virus (AAV) are effective in gene delivery in vivo. Tissue-specific gene expression is often needed to minimize ectopic expression in unintended cells and undesirable consequences. Here, we investigated whether incorporation of target sequences of tissue-specific microRNA (miRNA) into AAV vectors could inhibit ectopic expression in tissues such as the liver and hematopoietic cells. First we inserted liver-specific miR-122 target sequences (miR-122T) into the 3'-untranslated region (UTR) of a number of AAV vectors. After intravenous delivery in mice, we found that five copies of the 20mer miR-122T reduced liver expression of luciferase by 50-fold and β-galactosidase (LacZ) by 70-fold. Five copies of miR-122T also reduced mRNA levels of a secretable protein (myostatin propeptide) from the AAV vector plasmid by 23-fold in the liver. However, gene expression in other tissues, including the heart was not inhibited. Similarly, we inserted four copies of miR-142-3pT or miR-142-5pT, both hematopoietic lineage-specific, into the 3'-UTR of the AAV-luciferase vector. We wished to see whether they could prolong transgene expression by inhibiting expression in antigen-presenting cells. However, in vivo luciferase gene expression in major tissues declined with time, regardless of the miR-142 target sequences used. Quantitative analysis of the vector DNA in various tissues revealed that the decline of transgene expression in vivo was mainly because of promoter shut-off other than loss of AAV-transduced cells by immune destruction. Moreover, transgene expression was not detected in circulating mononuclear cells after delivering AAV9 vector with or without miR142T. These results demonstrate that liver-specific miR-122 target sequence in AAV vectors was highly efficient in reducing liver expression, whereas hematopoietic miR-142 target sequences were ineffective in preventing decline of AAV vector gene expression in nonhematopoietic tissues

  1. Incorporation of beta-globin untranslated regions into a Sindbis virus vector for augmentation of heterologous mRNA expression.

    PubMed

    Strong, T V; Hampton, T A; Louro, I; Bilbao, G; Conry, R M; Curiel, D T

    1997-06-01

    Polynucleotide immunization has been employed as a means of inducing immune responses through the introduction of antigen-encoding DNA. While immunization against specific tumor antigens may be achieved through this strategy, various candidate tumor antigens may not be approached via DNA-based vaccines as they represent transforming oncogenes. As an alternative approach, we have explored the utility of mRNA vectors for polynucleotide immunization. The transient expression achieved by mRNA may provide an efficient and safe system for stimulating immune responses to tumor-specific antigens. Our previous work demonstrated that a self-replicating RNA enhances the magnitude and duration of transgene expression for this application. Here we further modify the vector for optimal use in gene therapy through the incorporation of untranslated regions flanking the encoded transgene. The beta-globin 5' and 3' untranslated regions (UTRs) were inserted directly flanking the luciferase gene in both nonreplicative and replicative RNA constructs. In both cases, elevated and prolonged levels of luciferase expression were detected from the beta-globin UTR-flanked luciferase as compared to luciferase without these sequences. These modifications improve the ability of replicative RNA vectors to produce high, yet transient transgene expression for cancer immunotherapy strategies.

  2. Engineering exon-skipping vectors expressing U7 snRNA constructs for Duchenne muscular dystrophy gene therapy.

    PubMed

    Goyenvalle, Aurélie; Davies, Kay E

    2011-01-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. In most cases, the open-reading frame is disrupted which results in the absence of a functional protein. Antisense-mediated exon skipping is one of the most promising approaches for the treatment of DMD and has recently been shown to correct the reading frame and restore dystrophin expression in vitro and in vivo. Specific exon skipping can be achieved using synthetic oligonucleotides or viral -vectors encoding modified snRNAs, by masking important splicing sites. We have recently demonstrated that enhanced exon skipping can be induced by a U7 snRNA carrying binding sites for the heterogeneous ribonucleoprotein A1. In DMD patient cells, bifunctional U7 snRNAs harboring silencer motifs induce complete skipping of exon 51 and thus restore dystrophin expression to near wild-type levels. Furthermore, we have confirmed the efficacy of these constructs in vivo in transgenic mice carrying the entire human DMD locus after intramuscular injection of AAV vectors encoding the bifunctional U7 snRNA. These new constructs are very promising for the optimization of therapeutic exon skipping for DMD, but also offer powerful and versatile tools to modulate pre-mRNA splicing in a wide range of applications. Here, we outline the design of these U7 snRNA constructs to achieve efficient exon skipping of the dystrophin gene. We also describe methods to evaluate the efficiency of such U7 snRNA constructs in vitro in DMD patient cells and in vivo in the transgenic hDMD mouse model, using lentiviral and recombinant adeno-associated viral vectors, respectively.

  3. Modular protein expression by RNA trans-splicing enables flexible expression of antibody formats in mammalian cells from a dual-host phage display vector.

    PubMed

    Shang, Yonglei; Tesar, Devin; Hötzel, Isidro

    2015-10-01

    A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting.

  4. Replicon RNA Viral Vectors as Vaccines

    PubMed Central

    Lundstrom, Kenneth

    2016-01-01

    Single-stranded RNA viruses of both positive and negative polarity have been used as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus and rhabdoviruses have been engineered for expression of surface protein genes and antigens. Administration of replicon RNA vectors has resulted in strong immune responses and generation of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided protection against challenges with lethal doses of infectious agents and administered tumor cells. Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover, recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization with self-replicating RNA viruses provides high transient expression levels of antigens resulting in generation of neutralizing antibody responses and protection against lethal challenges under safe conditions. PMID:27827980

  5. microRNA as a Potential Vector for the Propagation of Robustness in Protein Expression and Oscillatory Dynamics within a ceRNA Network

    PubMed Central

    Gérard, Claude; Novák, Béla

    2013-01-01

    microRNAs (miRNAs) are small noncoding RNAs that are important post-transcriptional regulators of gene expression. miRNAs can induce thresholds in protein synthesis. Such thresholds in protein output can be also achieved by oligomerization of transcription factors (TF) for the control of gene expression. First, we propose a minimal model for protein expression regulated by miRNA and by oligomerization of TF. We show that miRNA and oligomerization of TF generate a buffer, which increases the robustness of protein output towards molecular noise as well as towards random variation of kinetics parameters. Next, we extend the model by considering that the same miRNA can bind to multiple messenger RNAs, which accounts for the dynamics of a minimal competing endogenous RNAs (ceRNAs) network. The model shows that, through common miRNA regulation, TF can control the expression of all proteins formed by the ceRNA network, even if it drives the expression of only one gene in the network. The model further suggests that the threshold in protein synthesis mediated by the oligomerization of TF can be propagated to the other genes, which can increase the robustness of the expression of all genes in such ceRNA network. Furthermore, we show that a miRNA could increase the time delay of a “Goodwin-like” oscillator model, which may favor the occurrence of oscillations of large amplitude. This result predicts important roles of miRNAs in the control of the molecular mechanisms leading to the emergence of biological rhythms. Moreover, a model for the latter oscillator embedded in a ceRNA network indicates that the oscillatory behavior can be propagated, via the shared miRNA, to all proteins formed by such ceRNA network. Thus, by means of computational models, we show that miRNAs could act as vectors allowing the propagation of robustness in protein synthesis as well as oscillatory behaviors within ceRNA networks. PMID:24376695

  6. RNA viral vectors for improved Agrobacterium-mediated transient expression of heterologous proteins in Nicotiana benthamiana cell suspensions and hairy roots

    PubMed Central

    2012-01-01

    Background Plant cell suspensions and hairy root cultures represent scalable protein expression platforms. Low protein product titers have thus far limited the application of transient protein expression in these hosts. The objective of this work was to overcome this limitation by harnessing A. tumefaciens to deliver replicating and non-replicating RNA viral vectors in plant tissue co-cultures. Results Replicating vectors derived from Potato virus X (PVX) and Tobacco rattle virus (TRV) were modified to contain the reporter gene β-glucuronidase (GUS) with a plant intron to prevent bacterial expression. In cell suspensions, a minimal PVX vector retaining only the viral RNA polymerase gene yielded 6.6-fold more GUS than an analogous full-length PVX vector. Transient co-expression of the minimal PVX vector with P19 of Tomato bushy stunt virus or HC-Pro of Tobacco etch virus to suppress post-transcriptional gene silencing increased GUS expression by 44 and 83%, respectively. A non-replicating vector containing a leader sequence from Cowpea mosaic virus (CPMV-HT) modified for enhanced translation led to 70% higher transient GUS expression than a control treatment. In hairy roots, a TRV vector capable of systemic movement increased GUS accumulation by 150-fold relative to the analogous PVX vector. Histochemical staining for GUS in TRV-infected hairy roots revealed the capacity for achieving even higher productivity per unit biomass. Conclusions For the first time, replicating PVX vectors and a non-replicating CPMV-HT vector were successfully applied toward transient heterologous protein expression in cell suspensions. A replicating TRV vector achieved transient GUS expression levels in hairy roots more than an order of magnitude higher than the highest level previously reported with a viral vector delivered by A. tumefaciens. PMID:22559055

  7. [Reversal of mdrl gene-dependent multidrug resistance in multidrug resistance human leukemia cell line K562/ADM using short hairpin RNA expression vectors].

    PubMed

    Gan, Hui-zhu; Zhang, Gui-zhen; Lu, Zhen-xia; Pu, Li-sha; Yang, Shao-juan; Gao, Shen; Zheng, De-ming

    2007-06-01

    To explore the role of reversal multidrug resistance (MDR) using short hairpin RNA (shRNA) expression vectors in multidrug resistance human leukemia cell line K562/ADM. The oligonucleotides with 19-mer hairpin structure were synthesized. The shRNA expression vectors were constructed and introduced into K562/ADM cells. Expression of mdr1 mRNA was assessed by RT-PCR, and P-gp expression was determined by Western blot. The apoptosis and sensitivity of the K562/ADM cells to doxorubicin were quantified by flow cytometry and methyl thiazolyl tetrazolium (MTT) assays, respectively. Cellular daunorubicin accumulation was assayed by laser confocal scanning microscope (LCSM). In positive clones of K562/ADM cells stably transfected with pSilencer 3.1-HI neo mdr1-A and mdr1-B shRNA expression vectors, RT-PCR showed that mdr1 mRNA expression was significantly reduced to 35.9% (P < 0.05), 27.5% (P < 0.01), respectively. Western blot showed that P-gp expression was significantly and specifically inhibited. Resistance against doxorubicin was decreased from 79-fold to 38-fold (P < 0.05), 30-fold (P < 0.01) respectively. Furthermore, the fluorescence intensity of K562/ADM cells was increased significantly compared with the control. shRNA vectors significantly enhanced the cellular daunorubicin accumulation. The percent of the apoptosis cell was significantly enhanced to 18.1% (P < 0.05) , 54.4% (P < 0.01) respectively. shRNA expression vectors can effectively reverse MDR, and restore the sensitivity of drug-resistance K562/ADM cells to conventional chemotherapeutic agents.

  8. The closterovirus-derived gene expression and RNA interference vectors as tools for research and plant biotechnology

    PubMed Central

    Dolja, Valerian V.; Koonin, Eugene V.

    2013-01-01

    Important progress in understanding replication, interactions with host plants, and evolution of closteroviruses enabled engineering of several vectors for gene expression and virus-induced gene silencing. Due to the broad host range of closteroviruses, these vectors expanded vector applicability to include important woody plants such as citrus and grapevine. Furthermore, large closterovirus genomes offer genetic capacity and stability unrivaled by other plant viral vectors. These features provided immense opportunities for using closterovirus vectors for the functional genomics studies and pathogen control in economically valuable crops. This review briefly summarizes advances in closterovirus research during the last decade, explores the relationships between virus biology and vector design, and outlines the most promising directions for future application of closterovirus vectors. PMID:23596441

  9. A PCR-Based Method to Construct Lentiviral Vector Expressing Double Tough Decoy for miRNA Inhibition

    PubMed Central

    Luo, Lan; Liu, Nian; Kang, Kang; Qu, Junle; Peng, Wenda; Gou, Deming

    2015-01-01

    DNA vector-encoded Tough Decoy (TuD) miRNA inhibitor is attracting increased attention due to its high efficiency in miRNA suppression. The current methods used to construct TuD vectors are based on synthesizing long oligonucleotides (~90 mer), which have been costly and problematic because of mutations during synthesis. In this study, we report a PCR-based method for the generation of double Tough Decoy (dTuD) vector in which only two sets of shorter oligonucleotides (< 60 mer) were used. Different approaches were employed to test the inhibitory potency of dTuDs. We demonstrated that dTuD is the most efficient method in miRNA inhibition in vitro and in vivo. Using this method, a mini dTuD library against 88 human miRNAs was constructed and used for a high-throughput screening (HTS) of AP-1 pathway-related miRNAs. Seven miRNAs (miR-18b-5p, -101-3p, -148b-3p, -130b-3p, -186-3p, -187-3p and -1324) were identified as candidates involved in AP-1 pathway regulation. This novel method allows for an accurate and cost-effective generation of dTuD miRNA inhibitor, providing a powerful tool for efficient miRNA suppression in vitro and in vivo. PMID:26624995

  10. The recombinant adeno-associated virus vector (rAAV2)-mediated apolipoprotein B mRNA-specific hammerhead ribozyme: a self-complementary AAV2 vector improves the gene expression

    PubMed Central

    Zhong, Shumei; Sun, Shihua; Teng, Ba-Bie

    2004-01-01

    Background In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA6679 (RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. Methods We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. Results The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene

  11. Targeted therapy via oral administration of attenuated Salmonella expression plasmid-vectored Stat3-shRNA cures orthotopically transplanted mouse HCC

    PubMed Central

    Tian, Y; Guo, B; Jia, H; Ji, K; Sun, Y; Li, Y; Zhao, T; Gao, L; Meng, Y; Kalvakolanu, DV; Kopecko, DJ; Zhao, X; Zhang, L; Xu, D

    2013-01-01

    The development of RNA interference-based cancer gene therapies has been delayed due to the lack of effective tumor-targeting delivery systems. Attenuated Salmonella enterica serovar Typhimurium (S. Typhimurium) has a natural tropism for solid tumors. We report here the use of attenuated S. Typhimurium as a vector to deliver shRNA directly into tumor cells. Constitutively activated signal transducer and activator of transcription 3 (Stat3) is a key transcription factor involved in both hepatocellular carcinoma (HCC) growth and metastasis. In this study, attenuated S. Typhimurium was capable of delivering shRNA-expressing vectors to the targeted cancer cells and inducing RNA interference in vivo. More importantly, a single oral dose of attenuated S. Typhimurium carrying shRNA-expressing vectors targeting Stat3 induced remarkably delayed and reduced HCC (in 70% of mice). Cancer in these cured mice did not recur over 2 years following treatment. These data demonstrated that RNA interference combined with Salmonella as a delivery system may offer a novel clinical approach for cancer gene therapy. PMID:22555509

  12. Targeted therapy via oral administration of attenuated Salmonella expression plasmid-vectored Stat3-shRNA cures orthotopically transplanted mouse HCC.

    PubMed

    Tian, Y; Guo, B; Jia, H; Ji, K; Sun, Y; Li, Y; Zhao, T; Gao, L; Meng, Y; Kalvakolanu, D V; Kopecko, D J; Zhao, X; Zhang, L; Xu, D

    2012-06-01

    The development of RNA interference-based cancer gene therapies has been delayed due to the lack of effective tumor-targeting delivery systems. Attenuated Salmonella enterica serovar Typhimurium (S. Typhimurium) has a natural tropism for solid tumors. We report here the use of attenuated S. Typhimurium as a vector to deliver shRNA directly into tumor cells. Constitutively activated signal transducer and activator of transcription 3 (Stat3) is a key transcription factor involved in both hepatocellular carcinoma (HCC) growth and metastasis. In this study, attenuated S. Typhimurium was capable of delivering shRNA-expressing vectors to the targeted cancer cells and inducing RNA interference in vivo. More importantly, a single oral dose of attenuated S. Typhimurium carrying shRNA-expressing vectors targeting Stat3 induced remarkably delayed and reduced HCC (in 70% of mice). Cancer in these cured mice did not recur over 2 years following treatment. These data demonstrated that RNA interference combined with Salmonella as a delivery system may offer a novel clinical approach for cancer gene therapy.

  13. Efficient genome replication of hepatitis B virus using adenovirus vector: a compact pregenomic RNA-expression unit

    PubMed Central

    Suzuki, Mariko; Kondo, Saki; Yamasaki, Manabu; Matsuda, Norie; Nomoto, Akio; Suzuki, Tetsuro; Saito, Izumu; Kanegae, Yumi

    2017-01-01

    The complicated replication mechanisms of hepatitis B virus (HBV) have impeded HBV studies and anti-HBV therapy development as well. Herein we report efficient genome replication of HBV applying adenovirus vectors (AdVs) showing high transduction efficiency. Even in primary hepatocytes derived from humanized mice the transduction efficiencies using AdVs were 450-fold higher compared than those using plasmids. By using an expression unit consisting of the CMV promoter, 1.03-copy HBV genome and foreign poly(A) signal, we successfully generated an improved AdV (HBV103-AdV) that efficiently provided 58 times more pregenomic RNA than previously reported AdVs. The HBV103-AdV-mediated HBV replication was easily and precisely detected using quantitative real-time PCR in primary hepatocytes as well as in HepG2 cells. Notably, when the AdV containing replication-defective HBV genome of 1.14 copy was transduced, we observed that HBV DNA-containing circular molecules (pseudo-ccc DNA) were produced, which were probably generated through homologous recombination. However, the replication-defective HBV103-AdV hardly yielded the pseudo-ccc, probably because the repeated sequences are vey short. Additionally, the efficacies of entecavir and lamivudine were quantitatively evaluated using this system at only 4 days postinfection with HBV103-AdVs. Therefore, this system offers high production of HBV genome replication and thus could become used widely. PMID:28157182

  14. [Construction of Eukaryotic Expression Vector of siRNA Specific for BCR/ABL Fusion Gene and Its Effects on K562 Cells].

    PubMed

    Li, Ming; Wang, Bao-Lin; Wang, Li-Na; Xi, Ya-Ming

    2016-12-01

    To construct eukaryotic expression vector of siRNA specific for BCR/ABL and to investigate the effect of recombinant plasmid on BCR/ABL and P210 protein expression in K562 cells. siRNA(small interfering RNA)was designed according to the Tuschl's principle of Ai-based medicine, and was converted into cDNA coding expression of shRNA(small hairpin RNAs)of siRNA for BCR/ABL fusion gene. The cDNA was synthesized and inserted into plasmid pTER. The pTER117 and pTER363 of recombinant plasmid being eukaryotic expression vector was controlled by the H1 promoter of RNA polymerase III, and identified by the restriction map and the sequence analysis. The recombinant plasmid did not only have the screening resisting antibiotics, its expression but also are induced by tetracycline (tet). After steadily transfection into K562 cells by Lipofectamine, their positive mono-cell clones being resistant to Zeocin were isolated. TaqMan real-time quantitative RT-PCR (RQ-PCR) and Western blot respectively detected expression of BCR/ABL mRNA and P210 protein. Trypaum blue dying was used to analyze the proliferation of K562 cells. Cell apoptosis was observed by flow cytometer. the recombinant plasmid was steadily transfected into K562 cells by Lipofectamine 2000, Their positive mono-cell clones being resistant to Zeocin were isolated. The proliferation of K562 cells were remarkably inhibited by the recombinant plasmid induced gene expression by tetracycline. Tetracycline induced its expression for 48 h and 72 h. pTER117, pTER363 decreased the mRNA level of BCR/ABL 90%, 82% and 91.5%, 84%, respectively, P210 protein were almost measured in K562 cells. FCM analysis showed that the recombinant plasmid induced apoptosis in K562 cells, the apoptosis rate were respectively 34.4%, 58.1% in K562 cells treated by pTER117 for 48 h and 72 h, apoptosis rate were 31.8%, 54.6% by pTER363, but the control groups did not show these effects on K562 cells. The siRNA eukaryotic expression vector against BCR

  15. [Selection and construction of cell line stably expressing survivin gene in lower level through eukaryotic plasmid vector of shRNA].

    PubMed

    Wang, Wen-Xia; Sun, Shan-Zhen; Song, Ying

    2008-06-01

    To construct a short hairpin RNA(shRNA) interference expression plasmid vector of survivin gene, transfect tongue squamous cell carcinoma line Tca8113 which expressed survivin gene in a high level, and choose the cells whose survivin gene were suppressed significantly. Two pairs of oligonucleotide sequences specific for survivin gene were designed and synthesized, and cloned into pSilencer-2.1U6-neo plasmid. The recombinant plasmids (named PS1 and PS2) were amplified in Ecoli. DH5alpha was identified by restriction digestion, PCR and sequencing. The vectors were transfected into Tca8113 cells with lipofectamine 2000. After selection with G418, the stable cell clones were attained. Survivn expression was assayed with real-time quantitative PCR and Western blotting. SAS8.0 software package was used for Student t test. Two vectors were constructed successfully and stable cell clones with PS1 or PS2 plasmid were obtained. As compared with those of control, survivin expression of transfected cell with PS1 or PS2 in mRNA level was significantly suppressed (P<0.05). In protein level, only those of transfected cell with PS2 was significantly suppressed (P<0.01). The shRNA interference expression plasmid vectors of survivin gene are successfully constructed, and Tca8113 cells which express survivin gene in a stable lower level are attained, which enable us to carry out further research on gene therapy of oral squamous cell carcinoma. Supported by National Natural Science Foundation of China (Grant No.30572056).

  16. Tombusvirus-based vector systems to permit over-expression of genes or that serve as sensors of antiviral RNA silencing in plants.

    PubMed

    Shamekova, Malika; Mendoza, Maria R; Hsieh, Yi-Cheng; Lindbo, John; Omarov, Rustem T; Scholthof, Herman B

    2014-03-01

    A next generation Tomato bushy stunt virus (TBSV) coat protein gene replacement vector system is described that can be applied by either RNA inoculation or through agroinfiltration. A vector expressing GFP rapidly yields high levels of transient gene expression in inoculated leaves of various plant species, as illustrated for Nicotiana benthamiana, cowpea, tomato, pepper, and lettuce. A start-codon mutation to down-regulate the dose of the P19 silencing suppressor reduces GFP accumulation, whereas mutations that result in undetectable levels of P19 trigger rapid silencing of GFP. Compared to existing virus vectors the TBSV system has a unique combination of a very broad host range, rapid and high levels of replication and gene expression, and the ability to regulate its suppressor. These features are attractive for quick transient assays in numerous plant species for over-expression of genes of interest, or as a sensor to monitor the efficacy of antiviral RNA silencing. Copyright © 2014. Published by Elsevier Inc.

  17. Striatal modulation of BDNF expression using microRNA124a-expressing lentiviral vectors impairs ethanol-induced conditioned-place preference and voluntary alcohol consumption.

    PubMed

    Bahi, Amine; Dreyer, Jean-Luc

    2013-07-01

    Alcohol abuse is a major health, economic and social concern in modern societies, but the exact molecular mechanisms underlying ethanol addiction remain elusive. Recent findings show that small non-coding microRNA (miRNA) signaling contributes to complex behavioral disorders including drug addiction. However, the role of miRNAs in ethanol-induced conditioned-place preference (CPP) and voluntary alcohol consumption has not yet been directly addressed. Here, we assessed the expression profile of miR124a in the dorsal striatum of rats upon ethanol intake. The results show that miR124a was downregulated in the dorso-lateral striatum (DLS) following alcohol drinking. Then, we identified brain-derived neurotrophic factor (BDNF) as a direct target of miR124a. In fact, BDNF mRNA was upregulated following ethanol drinking. We used lentiviral vector (LV) gene transfer technology to further address the role of miR124a and its direct target BDNF in ethanol-induced CPP and alcohol consumption. Results reveal that stereotaxic injection of LV-miR124a in the DLS enhances ethanol-induced CPP as well as voluntary alcohol consumption in a two-bottle choice drinking paradigm. Moreover, miR124a-silencer (LV-siR124a) as well as LV-BDNF infusion in the DLS attenuates ethanol-induced CPP as well as voluntary alcohol consumption. Importantly, LV-miR124a, LV-siR124a and LV-BDNF have no effect on saccharin and quinine intake. Our findings indicate that striatal miR124a and BDNF signaling have crucial roles in alcohol consumption and ethanol conditioned reward.

  18. Specific Micro RNA-Regulated TetR-KRAB Transcriptional Control of Transgene Expression in Viral Vector-Transduced Cells

    PubMed Central

    Pichard, Virginie; Aubert, Dominique; Boni, Sebastien; Battaglia, Severine; Ivacik, Dejana; Nguyen, Tuan Huy; Arbuthnot, Patrick; Ferry, Nicolas

    2012-01-01

    Precise control of transgene expression in a tissue-specific and temporally regulated manner is desirable for many basic and applied investigations gene therapy applications. This is important to regulate dose of transgene products and minimize unwanted effects. Previously described methods have employed tissue specific promoters, miRNA-based transgene silencing or tetR-KRAB-mediated suppression of transgene promoters. To improve on versatility of transgene expression control, we have developed expression systems that use combinations of a tetR-KRAB artificial transgene-repressor, endogenous miRNA silencing machinery and tissue specific promoters. Precise control of transgene expression was demonstrated in liver-, macrophage- and muscle-derived cells. Efficiency was also demonstrated in vivo in murine muscle. This multicomponent and modular regulatory system provides a robust and easily adaptable method for achieving regulated transgene expression in different tissue types. The improved precision of regulation will be useful for many gene therapy applications requiring specific spatiotemporal transgene regulation. PMID:23251659

  19. Sindbis virus vectors for expression in animal cells.

    PubMed

    Huang, H V

    1996-10-01

    Sindbis virus and other alphavirus gene expression vectors have recently been used to express and study the functions of proteins and RNA, to evaluate classical vaccine and novel antiviral approaches, and for nucleic acid immunization. The vectors will likely attract continuing, innovative applications that exploit their useful features: rapid and efficient gene expression, wide host range, and RNA genomes.

  20. Restoration of Full-Length SMN Promoted by Adenoviral Vectors Expressing RNA Antisense Oligonucleotides Embedded in U7 snRNAs

    PubMed Central

    Geib, Till; Hertel, Klemens J.

    2009-01-01

    Background Spinal Muscular Atrophy (SMA) is an autosomal recessive disease that leads to specific loss of motor neurons. It is caused by deletions or mutations of the survival of motor neuron 1 gene (SMN1). The remaining copy of the gene, SMN2, generates only low levels of the SMN protein due to a mutation in SMN2 exon 7 that leads to exon skipping. Methodology/Principal Findings To correct SMN2 splicing, we use Adenovirus type 5–derived vectors to express SMN2-antisense U7 snRNA oligonucleotides targeting the SMN intron 7/exon 8 junction. Infection of SMA type I–derived patient fibroblasts with these vectors resulted in increased levels of exon 7 inclusion, upregulating the expression of SMN to similar levels as in non–SMA control cells. Conclusions/Significance These results show that Adenovirus type 5–derived vectors delivering U7 antisense oligonucleotides can efficiently restore full-length SMN protein and suggest that the viral vector-mediated oligonucleotide application may be a suitable therapeutic approach to counteract SMA. PMID:19997596

  1. A Novel Artificial MicroRNA Expressing AAV Vector for Phospholamban Silencing in Cardiomyocytes Improves Ca2+ Uptake into the Sarcoplasmic Reticulum

    PubMed Central

    Größl, Tobias; Hammer, Elke; Bien-Möller, Sandra; Geisler, Anja; Pinkert, Sandra; Röger, Carsten; Poller, Wolfgang; Kurreck, Jens; Völker, Uwe

    2014-01-01

    In failing rat hearts, post-transcriptonal inhibition of phospholamban (PLB) expression by AAV9 vector-mediated cardiac delivery of short hairpin RNAs directed against PLB (shPLBr) improves both impaired SERCA2a controlled Ca2+ cycling and contractile dysfunction. Cardiac delivery of shPLB, however, was reported to cause cardiac toxicity in canines. Thus we developed a new AAV vector, scAAV6-amiR155-PLBr, expressing a novel engineered artificial microRNA (amiR155-PLBr) directed against PLB under control of a heart-specific hybrid promoter. Its PLB silencing efficiency and safety were compared with those of an AAV vector expressing shPLBr (scAAV6-shPLBr) from an ubiquitously active U6 promoter. Investigations were carried out in cultured neonatal rat cardiomyocytes (CM) over a period of 14 days. Compared to shPLBr, amiR155-PLBr was expressed at a significantly lower level, resulting in delayed and less pronounced PLB silencing. Despite decreased knockdown efficiency of scAAV6-amiR155-PLBr, a similar increase of the SERCA2a-catalyzed Ca2+ uptake into sarcoplasmic reticulum (SR) vesicles was observed for both the shPLBr and amiR155-PLBr vectors. Proteomic analysis confirmed PLB silencing of both therapeutic vectors and revealed that shPLBr, but not the amiR155-PLBr vector, increased the proinflammatory proteins STAT3, STAT1 and activated STAT1 phosphorylation at the key amino acid residue Tyr701. Quantitative RT-PCR analysis detected alterations in the expression of several cardiac microRNAs after treatment of CM with scAAV6-shPLBr and scAAV6-amiR155-PLBr, as well as after treatment with its related amiR155- and shRNAs-expressing control AAV vectors. The results demonstrate that scAAV6-amiR155-PLBr is capable of enhancing the Ca2+ transport function of the cardiac SR PLB/SERCA2a system as efficiently as scAAV6-shPLBr while offering a superior safety profile. PMID:24670775

  2. CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection

    PubMed Central

    Liu, Jingjing; Zhang, Di; Kimata, Jason T.; Zhou, Paul

    2014-01-01

    CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1. PMID:25541967

  3. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection.

    PubMed

    Wang, Weiming; Ye, Chaobaihui; Liu, Jingjing; Zhang, Di; Kimata, Jason T; Zhou, Paul

    2014-01-01

    CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1.

  4. Long-term Expression of Apolipoprotein B mRNA-specific Hammerhead Ribozyme via scAAV8.2 Vector Inhibits Atherosclerosis in Mice

    PubMed Central

    Nischal, Hersharan; Sun, Hua; Wang, Yuchun; Ford, David A; Cao, Ying; Wei, Peng; Teng, Ba-Bie

    2013-01-01

    Target substrate-specific hammerhead ribozyme cleaves the specific mRNA efficiently and results in the inhibition of gene expression. In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. The goal of this study is to demonstrate that long-term reduction of apoB gene expression using hammerhead ribozyme would result in inhibition of atherosclerosis development. We designed two hammerhead ribozymes targeted at the nucleotides of apoB mRNA GUC2326 (designated RB1) and GUA6679 (designated RB15), and we used self-complementary adeno-associated virus 8.2 (scAAV8.2) vector to deliver these active ribozymes of RB1, RB15, combination of RB1/RB15, and an inactive hammerhead ribozyme RB15 mutant to atherosclerosis-prone LDb mice (Ldlr−/−Apobec1−/−). LDb mice lack both low density lipoproteins (LDL) receptor (Ldlr−/−) and apoB mRNA editing enzyme (Apobec1−/−) genes and develop atherosclerosis spontaneously. After the RB1, RB15, or combination of RB1/RB15 ribozymes treatment, the LDb mice had significantly decreased plasma triglyceride and apoB levels, resulting in markedly decreased of atherosclerotic lesions, Furthermore, the active ribozymes treatment decreased the levels of diacylglycerol acyltransferase 1 (Dgat1) mRNA and the levels of multiple diacylglycerol (DAG) molecular species. These results provide the first evidence that decreased apoB levels results to reduction of Dgat1 expression and triglyceride levels (TAG), which had a significant impact on the development of atherosclerosis. PMID:24084845

  5. A stable RNA virus-based vector for citrus trees

    SciTech Connect

    Folimonov, Alexey S.; Folimonova, Svetlana Y.; Bar-Joseph, Moshe; Dawson, William O.

    2007-11-10

    Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter. These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees.

  6. Sustained expression from DNA vectors.

    PubMed

    Wong, Suet Ping; Argyros, Orestis; Harbottle, Richard P

    2015-01-01

    DNA vectors have the potential to become powerful medical tools for treatment of human disease. The human body has, however, developed a range of defensive strategies to detect and silence foreign or misplaced DNA, which is more typically encountered during infection or chromosomal damage. A clinically relevant human gene therapy vector must overcome or avoid these protections whilst delivering sustained levels of therapeutic gene product without compromising the vitality of the recipient host. Many non-viral DNA vectors trigger these defense mechanisms and are subsequently destroyed or rendered silent. Thus, without modification or considered design, the clinical utility of a typical DNA vector is fundamentally limited due to the transient nature of its transgene expression. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for its successful clinical application and subsequently remains, therefore, one of the main strategic tasks of non-viral gene therapy research. In this chapter we will describe our current understanding of the mechanisms that can destroy or silence DNA vectors and discuss strategies, which have been utilized to improve their sustenance and the level and duration of their transgene expression.

  7. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    SciTech Connect

    Zhou Hongsheng; Zhang Donghua . E-mail: hanson2008@gmail.com; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-08-18

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs.

  8. Establishment of conditional vectors for hairpin siRNA knockdowns

    PubMed Central

    Matsukura, Shiro; Jones, Peter A.; Takai, Daiya

    2003-01-01

    Small interference RNA (siRNA) is an emerging methodology in reverse genetics. Here we report the development of a new tetracycline-inducible vector-based siRNA system, which uses a tetracycline-responsive derivative of the U6 promoter and the tetracycline repressor for conditional in vivo transcription of short hairpin RNA. This method prevents potential lethality immediately after transfection of a vector when the targeted gene is indispensable, or the phenotype of the knockdown is lethal or results in a growth abnormality. We show that the controlled knockdown of DNA methyltransferase 1 (DNMT1) in human cancer resulted in growth arrest. Removal of the inducer, doxycycline, from treated cells led to re-expression of the targeted gene. Thus the method allows for a highly controlled approach to gene knockdown. PMID:12888529

  9. Modeling rotavirus-like particles production in a baculovirus expression vector system: Infection kinetics, baculovirus DNA replication, mRNA synthesis and protein production.

    PubMed

    Roldão, António; Vieira, Helena L A; Charpilienne, Annie; Poncet, Didier; Roy, Polly; Carrondo, Manuel J T; Alves, Paula M; Oliveira, R

    2007-03-10

    Rotavirus is the most common cause of severe diarrhoea in children worldwide, responsible for more than half a million deaths in children per year. Rotavirus-like particles (Rota VLPs) are excellent vaccine candidates against rotavirus infection, since they are non-infectious, highly immunogenic, amenable to large-scale production and safer to produce than those based on attenuated viruses. This work focuses on the analysis and modeling of the major events taking place inside Spodoptera frugiperda (Sf-9) cells infected by recombinant baculovirus that may be critical for the expression of rotavirus viral proteins (VPs). For model validation, experiments were performed adopting either a co-infection strategy, using three monocistronic recombinant baculovirus each one coding for viral proteins VP(2), VP(6) and VP(7), or single-infection strategies using a multigene baculovirus coding for the three proteins of interest. A characteristic viral DNA (vDNA) replication rate of 0.19+/-0.01 h(-1) was obtained irrespective of the monocistronic or multigene vector employed, and synthesis of progeny virus was found to be negligible in comparison to intracellular vDNA concentrations. The timeframe for vDNA, mRNA and VP synthesis tends to decrease with increasing multiplicity of infection (MOI) due to the metabolic burden effect. The protein synthesis rates could be ranked according to the gene size in the multigene experiments but not in the co-infection experiments. The model exhibits acceptable prediction power of the dynamics of intracellular vDNA replication, mRNA synthesis and VP production for the three proteins involved. This model is intended to be the basis for future Rota VLPs process optimisation and also a means to evaluating different baculovirus constructs for Rota VLPs production.

  10. Targeting expression of the leukemogenic PML-RARα fusion protein by lentiviral vector-mediated small interfering RNA results in leukemic cell differentiation and apoptosis.

    PubMed

    Ward, Simone V; Sternsdorf, Thomas; Woods, Niels-Bjarne

    2011-12-01

    Acute promyelocytic leukemia (APL) results from a chromosomal translocation that gives rise to the leukemogenic fusion protein PML-RARα (promyelocytic leukemia-retinoic acid α receptor). Differentiation of leukemic cells and complete remission of APL are achieved by treatment of patients with pharmacological doses of all-trans retinoic acid (ATRA), making APL a model disease for differentiation therapy. However, because patients are resistant to further treatment with ATRA on relapse, it is necessary to develop alternative treatment strategies to specifically target APL. We therefore sought to develop a treatment strategy based on lentiviral vector-mediated delivery of small interfering RNA (siRNA) that specifically targets the breakpoint region of PML-RARα. Unlike treatment with ATRA, which resulted in differentiation of leukemic NB4 cells, delivery of siRNA targeting PML-RARα into NB4 cells resulted in both differentiation and apoptosis, consistent with the specific knockdown of PML-RARα. Intraperitoneal injection of NB4 cells transduced with lentiviral vectors delivering PML-RARα-specific siRNA but not control siRNA prevented development of disease in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Taken together, these results indicate that development of PML-RARα-specific siRNA may represent a promising treatment strategy for ATRA-resistant APL.

  11. Inhibition of Marek's disease virus replication by retroviral vector-based RNA interference

    USDA-ARS?s Scientific Manuscript database

    RNA interference (RNAi) is a promising antiviral methodology. We recently demonstrated that retroviral vectors expressing short hairpin RNAs (shRNA-mirs) in the context of a modified endogenous micro-RNA (miRNA) can be effective in reducing replication of other retroviruses in chicken cells. In thi...

  12. Antigenic structures stably expressed by recombinant TGEV-derived vectors.

    PubMed

    Becares, Martina; Sanchez, Carlos M; Sola, Isabel; Enjuanes, Luis; Zuñiga, Sonia

    2014-09-01

    Coronaviruses (CoVs) are positive-stranded RNA viruses with potential as immunization vectors, expressing high levels of heterologous genes and eliciting both secretory and systemic immune responses. Nevertheless, its high recombination rate may result in the loss of the full-length foreign gene, limiting their use as vectors. Transmissible gastroenteritis virus (TGEV) was engineered to express porcine reproductive and respiratory syndrome virus (PRRSV) small protein domains, as a strategy to improve heterologous gene stability. After serial passage in tissue cultures, stable expression of small PRRSV protein antigenic domains was achieved. Therefore, size reduction of the heterologous genes inserted in CoV-derived vectors led to the stable expression of antigenic domains. Immunization of piglets with these TGEV vectors led to partial protection against a challenge with a virulent PRRSV strain, as immunized animals showed reduced clinical signs and lung damage. Further improvement of TGEV-derived vectors will require the engineering of vectors with decreased recombination rate.

  13. Lentiviral Vector-Mediated RNA Silencing in the Central Nervous System

    PubMed Central

    Foster, Edmund; Moon, Lawrence D.F.

    2014-01-01

    Abstract RNA silencing is an established method for investigating gene function and has attracted particular interest because of the potential for generating RNA-based therapeutics. Using lentiviral vectors as an efficient delivery system that offers stable, long-term expression in postmitotic cells further enhances the applicability of an RNA-based gene therapy for the CNS. In this review we provide an overview of both lentiviral vectors and RNA silencing along with design considerations for generating lentiviral vectors capable of RNA silencing. We go on to describe the current preclinical data regarding lentiviral vector-mediated RNA silencing for CNS disorders and discuss the concerns of side effects associated with lentiviral vectors and small interfering RNAs and how these might be mitigated. PMID:24090197

  14. PolI-driven integrative expression vectors for yeast.

    PubMed

    Blancafort, P; Ferbeyre, G; Sariol, C; Cedergren, R

    1997-07-23

    A novel expression vector for yeast has been constructed from the regulatory elements present in the polI promoter and the enhancer/termination region (E/T) of rDNA. Under some conditions, this promoter/vector combination produces small RNAs such as the hammerhead RNA sequence at levels comparable to polII- and polIII-dependent systems. No stable transcription product can be demonstrated with this vector when the enhancer/termination sequence is less than 100 nucleotides downstream from the promoter. On the other hand, high expression of a stable, hammerhead RNA molecule can be obtained from this vector by inserting a 400-bp fragment containing the ADH1 transcription termination region upstream of the E/T. RNAs produced by this vector are polyadenylated and multiple copies of this plasmid can be stably integrated into the yeast chromosome.

  15. Inducible and reversible suppression of Npm1 gene expression using stably integrated small interfering RNA vector in mouse embryonic stem cells

    SciTech Connect

    Wang Beibei; Lu Rui; Wang Weicheng; Jin Ying . E-mail: yjin@sibs.ac.cn

    2006-09-08

    The tetracycline (Tc)-inducible small interference RNA (siRNA) is a powerful tool for studying gene function in mammalian cells. However, the system is infrequently utilized in embryonic stem (ES) cells. Here, we present First application of the Tc-inducible, stably integrated plasmid-based siRNA system in mouse ES cells to down-regulate expression of Npm1, an essential gene for embryonic development. The physiological role of Npm1 in ES cells has not been defined. Our data show that the knock-down of Npm1 expression by this siRNA system was not only highly efficient, but also Tc- dose- and induction time-dependent. Particularly, the down-regulation of Npm1 expression was reversible. Importantly, suppression of Npm1 expression in ES cells resulted in reduced cell proliferation. Taken together, this system allows for studying gene function in a highly controlled manner, otherwise difficult to achieve in ES cells. Moreover, our results demonstrate that Npm1 is essential for ES cell proliferation.

  16. A MicroRNA-regulated and GP64-pseudotyped Lentiviral Vector Mediates Stable Expression of FVIII in a Murine Model of Hemophilia A

    PubMed Central

    Matsui, Hideto; Hegadorn, Carol; Ozelo, Margareth; Burnett, Erin; Tuttle, Angie; Labelle, Andrea; McCray, Paul B; Naldini, Luigi; Brown, Brian; Hough, Christine; Lillicrap, David

    2011-01-01

    The objective to use gene therapy to provide sustained, therapeutic levels of factor VIII (FVIII) for hemophilia A is compromised by the emergence of inhibitory antibodies that prevent FVIII from performing its essential function as a cofactor for factor IX (FIX). FVIII appears to be more immunogenic than FIX and an immune response is associated more frequently with FVIII than FIX gene therapy strategies. We have evaluated a modified lentiviral delivery strategy that facilitates liver-restricted transgene expression and prevents off-target expression in hematopoietic cells by incorporating microRNA (miRNA) target sequences. In contrast to outcomes using this strategy to deliver FIX, this modified delivery strategy was in and of itself insufficient to prevent an anti-FVIII immune response in treated hemophilia A mice. However, pseudotyping the lentivirus with the GP64 envelope glycoprotein, in conjunction with a liver-restricted promoter and a miRNA-regulated FVIII transgene resulted in sustained, therapeutic levels of FVIII. These modifications to the lentiviral delivery system effectively restricted FVIII transgene expression to the liver. Plasma levels of FVIII could be increased to around 9% that of normal levels when macrophages were depleted prior to treating the hemophilia A mice with the modified lentiviral FVIII delivery system. PMID:21285959

  17. Alphavirus vectors: applications for DNA vaccine production and gene expression.

    PubMed

    Lundstrom, K

    2000-01-01

    Replication-deficient alphavirus vectors have been developed for efficient high-level transgene expression. The broad host range of alphaviruses has allowed infection of a wide variety of mammalian cell lines and primary cultures. Particularly, G protein-coupled receptors have been expressed at high levels and subjected to binding and functional studies. Expression in suspension cultures has greatly facilitated production of large quantities of recombinant proteins for structural studies. Injection of recombinant alphavirus vectors into rodent brain resulted in local reporter gene expression. Highly neuron-specific expression was obtained in hippocampal slice cultures in vivo. Additionally, preliminary studies in animal models suggest that alphavirus vectors can be attractive candidates for gene therapy applications. Traditionally alphavirus vectors, either attenuated strains or replication-deficient particles, have been used to elicit efficient immune responses in animals. Recently, the application of alphaviruses has been extended to naked nucleic acids. Injection of DNA as well as RNA vectors has demonstrated efficient antigen production. In many cases, protection against lethal challenges has been obtained after immunization with alphavirus particles or nucleic acid vectors. Alphavirus vectors can therefore be considered as potentially promising vectors for vaccine production.

  18. A microRNA embedded AAV alpha-synuclein gene silencing vector for dopaminergic neurons

    PubMed Central

    Han, Ye; Khodr, Christina E.; Sapru, Mohan K.; Pedapati, Jyothi; Bohn, Martha C.

    2011-01-01

    Alpha-synuclein (SNCA), an abundantly expressed presynaptic protein, is implicated in Parkinson disease (PD). Since over-expression of human SNCA (hSNCA) leads to death of dopaminergic (DA) neurons in human, rodent and fly brain, hSNCA gene silencing may reduce levels of toxic forms of SNCA and ameliorate degeneration of DA neurons in PD. To begin to develop a gene therapy for PD based on hSNCA gene silencing, two AAV gene silencing vectors were designed, and tested for efficiency and specificity of silencing, as well as toxicity in vitro. The same hSNCA silencing sequence (shRNA) was used in both vectors, but in one vector, the shRNA was embedded in a microRNA backbone and driven by a pol II promoter, and in the other the shRNA was not embedded in a microRNA and was driven by a pol III promoter. Both vectors silenced hSNCA to the same extent in 293T cells transfected with hSNCA. In DA PC12 cells, neither vector decreased expression of rat SNCA, tyrosine hydroxylase (TH), dopamine transporter (DAT) or the vesicular monoamine transporter (VMAT). However, the mir30 embedded vector was significantly less toxic to both PC12 and SH-SY5Y cells. Our in vitro data suggest that this miRNA-embedded silencing vector may be ideal for chronic in vivo SNCA gene silencing in DA neurons. PMID:21338582

  19. Recent patents on alphavirus protein expression and vector production.

    PubMed

    Aranda, Alejandro; Ruiz-Guillen, Marta; Quetglas, Jose I; Bezunartea, Jaione; Casales, Erkuden; Smerdou, Cristian

    2011-12-01

    Alphaviruses contain a single-strand RNA genome that can be modified to express heterologous genes at high levels. Alphavirus vectors can be packaged within viral particles (VPs) or used as DNA/RNA layered systems. The broad tropism and high expression levels of alphavirus vectors have made them very attractive for applications like recombinant protein expression, vaccination or gene therapy. Expression mediated by alphavirus vectors is generally transient due to induction of apoptosis. However, during the last years several non-cytopathic mutations have been identified within the replicase sequence of different alphaviruses, allowing prolonged protein expression in culture cells. Some of these mutants, which have been patented, have allowed the generation of stable cell lines able to express recombinant proteins for extended periods of time in a constitutive or inducible manner. Production of alphavirus VPs usually requires cotransfection of cells with vector and helper RNAs providing viral structural proteins in trans. During this process full-length wild type (wt) genomes can be generated through recombination between different RNAs. Several new strategies to reduce wt virus generation during packaging, optimize VP production, increase packaging capacity, and provide VPs with specific targeting have been recently patented. Finally, hybrid vectors between alphavirus and other types of viruses have led to a number of patents with applications in vaccination, cancer therapy or retrovirus production.

  20. Experimental study enhancing the chemosensitivity of multiple myeloma to melphalan by using a tissue-specific APE1-silencing RNA expression vector.

    PubMed

    Yang, Zhen-Zhou; Chen, Xing-Hua; Wang, Dong

    2007-01-01

    Because of a developing resistance to chemotherapy agents, multiple myeloma (MM) has been an incurable disease until now. As a means to overcome MM tumor cell resistance and/or sensitize tumor cells to chemotherapeutic treatments currently used, we examined the role of human apurinic/apyrimidinic endonuclease 1 (APE1) in resistance and prognosis in patients with MM. Multiple myeloma cells were analyzed by using bone marrow specimens from 32 patients with MM and 10 normal volunteers. The positive rate of APE1 protein expression was 65.6% in the bone marrow specimens of patients with MM with known clinical outcome. Positive rate of APE1 expression beyond grade 2 in the relapsed/refractory group was significantly higher than that in the untreated group. No positive results of grade > 2 were detected in bone marrow specimens from patients with noncancerous disease. It was also confirmed that the amount of APE1 protein in KM3 cells was positively correlated with the dose and action time of melphalan. Because APE1 was overexpressed in refractory/relapsed MM cells, siRNA-targeted technology was used to decrease APE1 levels in KM3 cells, with protein levels deceasing to 80%-90% within 24 hours and continuing to decease for 72 hours. The best dose and time of inhibiting expression of APE1 protein were 3 mug and 2 days long. A decrease in APE1 levels in siRNA-treated KM3 cells led to enhanced cell sensitization to melphalan. The findings herein present prognostic and therapeutic implications for treating relapsed/refractory MM. The APE1-silencing RNA results demonstrate the feasibility of the therapeutic modulation of APE1 using a variety of molecules and approaches.

  1. RNA interference in mosquito: understanding immune responses, double-stranded RNA delivery systems and potential applications in vector control.

    PubMed

    Balakrishna Pillai, A; Nagarajan, U; Mitra, A; Krishnan, U; Rajendran, S; Hoti, S L; Mishra, R K

    2017-04-01

    RNA interference (RNAi) refers to the process of post-transcriptional silencing of cellular mRNA by the application of double-stranded RNA (dsRNA). RNAi strategies have been widely employed to regulate gene expression in plants and animals including insects. With the availability of the full genome sequences of major vector mosquitoes, RNAi has been increasingly used to conduct genetic studies of human pathogens in mosquito vectors and to study the evolution of insecticide resistance in mosquitoes. This review summarizes the recent progress in our understanding of mosquito-pathogen interactions using RNAi and various methods of dsRNA delivery in mosquitoes at different stages. We also discuss potential applications of this technology to develop novel tools for vector control.

  2. Construction and expression of recombined human AFP eukaryotic expression vector

    PubMed Central

    Zhang, Li-Wang; Ren, Jun; Zhang, Liang; Zhang, Hong-Mei; Jin, Bin; Pan, Bo-Rong; Si, Xiao-Ming; Zhang, Yan-Jun; Wang, Zhong-Hua; Pan, Yang-Lin; Festein, Stephen M

    2003-01-01

    AIM: To construct a recombined human AFP eukaryotic expression vector for the purpose of gene therapy and target therapy of hepatocellular carcinoma (HCC). METHODS: The full length AFP-cDNA of prokaryotic vector was digested, and subcloned to the multi-clony sites of the eukaryotic vector. The constructed vector was confirmed by enzymes digestion and electrophoresis, and the product expressed was detected by electrochemiluminescence and immunofluorescence methods. RESULTS: The full length AFP-cDNA successfully cloned to the eukaryotic vector through electrophoresis, 0.9723 IU/mL AFP antigen was detected in the supernatant of AFP-CHO by electrochemiluminescence method. Compared with the control groups, the differences were significant (P < 0.05). AFP antigen molecule was observed in the plasma of AFP-CHO by immunofluorescence staining. CONCLUSION: The recombined human AFP eukaryotic expression vector can express in CHO cell line. It provides experimental data for gene therapy and target therapy of hepatocellular carcinoma. PMID:12854142

  3. Biodegradable Multiamine Polymeric Vector for siRNA Delivery.

    PubMed

    Yuan, Yuanyuan; Gong, Faming; Cao, Yang; Chen, Weicai; Cheng, Du; Shuai, Xintao

    2015-04-01

    The gene silencing activity of small interfering RNA (siRNA) has led to their use as tools for target validation and as potential therapeutics for a variety of diseases. A major challenge is the development of vectors with high delivery efficiency and low toxicity. Although poly(ethylenimine) (PEI) has been regarded as the most promising polymeric vector for nucleic acid delivery, the nonbiodegradable structure greatly hinders its clinical application. In the present study, a diblock copolymer, PEG-PAsp(DIP-DETA), of poly(ethylene glycol) (PEG) and poly(L-aspartic acid) (PAsp) randomly grafted with pH-sensitive 2-(diisopropylamino)ethylamine (DIP) and diethylenetriamine (DETA) groups was synthesized via ring-opening polymerization and aminolysis reaction. Similar to polyethylenimine (PEI), the copolymer possesses a multiamine structure that not only allows effective siRNA complexation at neutral pH but also facilitates lysosomal release of siRNA via a proton buffering effect. Moreover, the poly(L-aspartic acid) backbone renders the vector biodegradability, which is not achievable with PEI. This novel polymeric vector can mediate effective intracellular siRNA delivery in various cancer cells. Consequently, the delivery of BCL-2 siRNA resulted in target gene silencing, inducing apoptosis and inhibiting the growth of cancer cells. These results show the potential of this non-PEI based polymeric vector with proton buffering capacity and biodegradability for siRNA delivery in cancer therapy.

  4. Antisense RNA suppression of peroxidase gene expression

    SciTech Connect

    Lagrimini, L.M.; Bradford, S.; De Leon, F.D. )

    1989-04-01

    The 5{prime} half the anionic peroxidase cDNA of tobacco was inserted into a CaMV 35S promoter/terminator expression cassette in the antisense configuration. This was inserted into the Agrobacterium-mediated plant transformation vector pCIBIO which includes kanamycin selection, transformed into two species of tobacco (N. tabacum and M. sylvestris), and plants were subsequently regenerated on kanamycin. Transgenic plants were analyzed for peroxidase expression and found to have 3-5 fold lower levels of peroxidase than wild-type plants. Isoelectric focusing demonstrated that the antisense RNA only suppressed the anionic peroxidase. Wound-induced peroxidase expression was found not to be affected by the antisense RNA. Northern blots show a greater than 5 fold suppression of anionic peroxidase mRNA in leaf tissue, and the antisense RNA was expressed at a level 2 fold over the endogenous mRNA. Plants were self-pollinated and F1 plants showed normal segregation. N. sylvestris transgenic plants with the lowest level of peroxidase are epinastic, and preliminary results indicate elevated auxin levels. Excised pith tissue from both species of transgenic plants rapidly collapse when exposed to air, while pith tissue from wild-type plants showed little change when exposed to air. Further characterization of these phenotypes is currently being made.

  5. Development of novel types of plastid transformation vectors and evaluation of factors controlling expression.

    PubMed

    Herz, Stefan; Füssl, Monika; Steiger, Sandra; Koop, Hans-Ulrich

    2005-12-01

    Two new vector types for plastid transformation were developed and uidA reporter gene expression was compared to standard transformation vectors. The first vector type does not contain any plastid promoter, instead it relies on extension of existing plastid operons and was therefore named "operon-extension" vector. When a strongly expressed plastid operon like psbA was extended by the reporter gene with this vector type, the expression level was superior to that of a standard vector under control of the 16S rRNA promoter. Different insertion sites, promoters and 5'-UTRs were analysed for their effect on reporter gene expression with standard and operon-extension vectors. The 5'-UTR of phage 7 gene 10 in combination with a modified N-terminus was found to yield the highest expression levels. Expression levels were also strongly dependent on external factors like plant or leaf age or light intensity. In the second vector type, named "split" plastid transformation vector, modules of the expression cassette were distributed on two separate vectors. Upon co-transformation of plastids with these vectors, the complete expression cassette became inserted into the plastome. This result can be explained by successive co-integration of the split vectors and final loop-out recombination of the duplicated sequences. The split vector concept was validated with different vector pairs.

  6. Development of non-defective recombinant densovirus vectors for microRNA delivery in the invasive vector mosquito, Aedes albopictus

    PubMed Central

    Liu, Peiwen; Li, Xiaocong; Gu, Jinbao; Dong, Yunqiao; Liu, Yan; Santhosh, Puthiyakunnon; Chen, Xiaoguang

    2016-01-01

    We previously reported that mosquito densoviruses (MDVs) are potential vectors for delivering foreign nucleic acids into mosquito cells. However, considering existing expression strategies, recombinant viruses would inevitably become replication-defective viruses and lose their ability for secondary transmission. The packaging limitations of the virion represent a barrier for the development of MDVs for viral paratransgenesis or as high-efficiency bioinsecticides. Herein, we report the development of a non-defective recombinant Aedes aegypti densovirus (AaeDV) miRNA expression system, mediated by an artificial intron, using an intronic miRNA expression strategy. We demonstrated that this recombinant vector could be used to overexpress endogenous miRNAs or to decrease endogenous miRNAs by generating antisense sponges to explore the biological functions of miRNAs. In addition, the vector could express antisense-miRNAs to induce efficient gene silencing in vivo and in vitro. The recombinant virus effectively self-replicated and retained its secondary transmission ability, similar to the wild-type virus. The recombinant virus was also genetically stable. This study demonstrated the first construction of a non-defective recombinant MDV miRNA expression system, which represents a tool for the functional analysis of mosquito genes and lays the foundation for the application of viral paratransgenesis for dengue virus control. PMID:26879823

  7. Development of non-defective recombinant densovirus vectors for microRNA delivery in the invasive vector mosquito, Aedes albopictus.

    PubMed

    Liu, Peiwen; Li, Xiaocong; Gu, Jinbao; Dong, Yunqiao; Liu, Yan; Santhosh, Puthiyakunnon; Chen, Xiaoguang

    2016-02-16

    We previously reported that mosquito densoviruses (MDVs) are potential vectors for delivering foreign nucleic acids into mosquito cells. However, considering existing expression strategies, recombinant viruses would inevitably become replication-defective viruses and lose their ability for secondary transmission. The packaging limitations of the virion represent a barrier for the development of MDVs for viral paratransgenesis or as high-efficiency bioinsecticides. Herein, we report the development of a non-defective recombinant Aedes aegypti densovirus (AaeDV) miRNA expression system, mediated by an artificial intron, using an intronic miRNA expression strategy. We demonstrated that this recombinant vector could be used to overexpress endogenous miRNAs or to decrease endogenous miRNAs by generating antisense sponges to explore the biological functions of miRNAs. In addition, the vector could express antisense-miRNAs to induce efficient gene silencing in vivo and in vitro. The recombinant virus effectively self-replicated and retained its secondary transmission ability, similar to the wild-type virus. The recombinant virus was also genetically stable. This study demonstrated the first construction of a non-defective recombinant MDV miRNA expression system, which represents a tool for the functional analysis of mosquito genes and lays the foundation for the application of viral paratransgenesis for dengue virus control.

  8. The Role of RNA Interference (RNAi) in Arbovirus-Vector Interactions

    PubMed Central

    Blair, Carol D.; Olson, Ken E.

    2015-01-01

    RNA interference (RNAi) was shown over 18 years ago to be a mechanism by which arbovirus replication and transmission could be controlled in arthropod vectors. During the intervening period, research on RNAi has defined many of the components and mechanisms of this antiviral pathway in arthropods, yet a number of unexplored questions remain. RNAi refers to RNA-mediated regulation of gene expression. Originally, the term described silencing of endogenous genes by introduction of exogenous double-stranded (ds)RNA with the same sequence as the gene to be silenced. Further research has shown that RNAi comprises three gene regulation pathways that are mediated by small RNAs: the small interfering (si)RNA, micro (mi)RNA, and Piwi-interacting (pi)RNA pathways. The exogenous (exo-)siRNA pathway is now recognized as a major antiviral innate immune response of arthropods. More recent studies suggest that the piRNA and miRNA pathways might also have important roles in arbovirus-vector interactions. This review will focus on current knowledge of the role of the exo-siRNA pathway as an arthropod vector antiviral response and on emerging research into vector piRNA and miRNA pathway modulation of arbovirus-vector interactions. Although it is assumed that arboviruses must evade the vector’s antiviral RNAi response in order to maintain their natural transmission cycles, the strategies by which this is accomplished are not well defined. RNAi is also an important tool for arthropod gene knock-down in functional genomics studies and in development of arbovirus-resistant mosquito populations. Possible arbovirus strategies for evasion of RNAi and applications of RNAi in functional genomics analysis and arbovirus transmission control will also be reviewed. PMID:25690800

  9. Molecular interactions and immune responses between maize fine streak virus and the leafhopper vector G. nigrifrons through differential expression and RNA interference

    USDA-ARS?s Scientific Manuscript database

    Maize fine streak virus (MFSV) is an emerging virus of maize that is transmitted by an insect vector, the leafhopper called Graminella nigrifrons. Virus transmission by the leafhopper requires that the virus enter into and multiply in insect cells, tissues and organs before being transmitted to a ne...

  10. Small interfering RNA pathway modulates persistent infection of a plant virus in its insect vector.

    PubMed

    Lan, Hanhong; Wang, Haitao; Chen, Qian; Chen, Hongyan; Jia, Dongsheng; Mao, Qianzhuo; Wei, Taiyun

    2016-02-11

    Plant reoviruses, rhabdoviruses, tospoviruses, and tenuiviruses are transmitted by insect vectors in a persistent-propagative manner. How such persistent infection of plant viruses in insect vectors is established and maintained remains poorly understood. In this study, we used rice gall dwarf virus (RGDV), a plant reovirus, and its main vector leafhopper Recilia dorsalis as a virus-insect system to determine how the small interference (siRNA) pathway modulates persistent infection of a plant virus in its insect vector. We showed that a conserved siRNA antiviral response was triggered by the persistent replication of RGDV in cultured leafhopper cells and in intact insects, by appearance of virus-specific siRNAs, primarily 21-nt long, and the increased expression of siRNA pathway core components Dicer-2 and Argonaute-2. Silencing of Dicer-2 using RNA interference strongly suppressed production of virus-specific siRNAs, promoted viral accumulation, and caused cytopathological changes in vitro and in vivo. When the viral accumulation level rose above a certain threshold of viral genome copy (1.32 × 10(14) copies/μg insect RNA), the infection of the leafhopper by RGDV was lethal rather than persistent. Taken together, our results revealed a new finding that the siRNA pathway in insect vector can modulate persistent infection of plant viruses.

  11. Expression of microRNA-30c via lentivirus vector inhibits the proliferation and enhances the sensitivity of highly aggressive ccRCC Caki-1 cells to anticancer agents

    PubMed Central

    Yang, Honglin; Song, Erlin; Shen, Guorong; Zhu, Tonghua; Jiang, Tingwang; Shen, Hao; Niu, Liping; Wang, Biao; Lu, Zhaoyang; Qian, Jianping

    2017-01-01

    The clear cell renal cell carcinoma (ccRCC) is one of the most fatal urologic tumors, and the prognosis remains very poor for advanced or metastatic ccRCC. This study reveals the roles of microRNA (miR)-30c in regulating a highly aggressive ccRCC cell line proliferation by targeting MTA-1, which is a key mediator for human cancer metastasis. Results from quantitative real-time polymerase chain reaction showed that the expression of MTA-1, the target of miR-30c, was significantly higher in metastatic ccRCC specimens than in nonmetastatic ccRCC or nontumor specimens. Accordingly, endogenous miR-30c is at a much lower level in highly aggressive ccRCC Caki-1 cells than nontumor or ccRCC cell lines. Expression of miR-30c via lentivirus vector inhibits the proliferation, anchorage-independent growth, in vitro invasion or migration, or in vivo growth of Caki-1 cells by repressing MTA-1 protein expression. miR-30c also enhances the sensitivity of Caki-1 cells to anticancer agents, including sorafenib and paclitaxel. These data reveal the potential application of miR-30c and that its targeting gene, MTA-1, would be a potential target in metastatic ccRCC treatment. PMID:28203091

  12. Expression of microRNA-30c via lentivirus vector inhibits the proliferation and enhances the sensitivity of highly aggressive ccRCC Caki-1 cells to anticancer agents.

    PubMed

    Yang, Honglin; Song, Erlin; Shen, Guorong; Zhu, Tonghua; Jiang, Tingwang; Shen, Hao; Niu, Liping; Wang, Biao; Lu, Zhaoyang; Qian, Jianping

    2017-01-01

    The clear cell renal cell carcinoma (ccRCC) is one of the most fatal urologic tumors, and the prognosis remains very poor for advanced or metastatic ccRCC. This study reveals the roles of microRNA (miR)-30c in regulating a highly aggressive ccRCC cell line proliferation by targeting MTA-1, which is a key mediator for human cancer metastasis. Results from quantitative real-time polymerase chain reaction showed that the expression of MTA-1, the target of miR-30c, was significantly higher in metastatic ccRCC specimens than in nonmetastatic ccRCC or nontumor specimens. Accordingly, endogenous miR-30c is at a much lower level in highly aggressive ccRCC Caki-1 cells than nontumor or ccRCC cell lines. Expression of miR-30c via lentivirus vector inhibits the proliferation, anchorage-independent growth, in vitro invasion or migration, or in vivo growth of Caki-1 cells by repressing MTA-1 protein expression. miR-30c also enhances the sensitivity of Caki-1 cells to anticancer agents, including sorafenib and paclitaxel. These data reveal the potential application of miR-30c and that its targeting gene, MTA-1, would be a potential target in metastatic ccRCC treatment.

  13. Inducing RNA interference in the arbovirus vector, Culicoides sonorensis

    PubMed Central

    Mills, Mary K.; Nayduch, D.; Michel, K.

    2014-01-01

    Biting midges in the genus Culicoides are important vectors of arboviral diseases, including epizootic hemorrhagic disease, bluetongue, and likely Schmallenberg, which cause significant economic burden worldwide. Research on these vectors has been hindered by the lack of a sequenced genome, the difficulty of consistent culturing of certain species, and the absence of molecular techniques such as RNA interference (RNAi). Here, we report the establishment of RNAi as a research tool for the adult midge, Culicoides sonorensis. Based on previous research and transcriptome analysis, which revealed putative siRNA pathway member orthologs, we hypothesized that adult C. sonorensis midges have the molecular machinery needed to preform RNA silencing. Injection of control dsRNA, dsGFP, into the hemocoel 2–3 day old adult female midges resulted in survival curves that support virus transmission. DsRNA injection targeting the newly identified C. sonorensis inhibitor of apoptosis protein 1 (CsIAP1) ortholog, resulted in a 40% decrease of transcript levels and 73% shortened median survivals as compared to dsGFP-injected controls. These results reveal the conserved function of IAP1. Importantly, they also demonstrate the feasibility of RNAi by dsRNA injection in adult midges, which will greatly facilitate studies of the underlying mechanisms of vector competence in C. sonorensis. PMID:25293805

  14. A novel intranuclear RNA vector system for long-term stem cell modification

    PubMed Central

    Ikeda, Yasuhiro; Makino, Akiko; Matchett, William E.; Holditch, Sara J.; Lu, Brian; Dietz, Allan B.; Tomonaga, Keizo

    2015-01-01

    Genetically modified stem and progenitor cells have emerged as a promising regenerative platform in the treatment of genetic and degenerative disorders, highlighted by their successful therapeutic use in inherent immunodeficiencies. However, biosafety concerns over insertional mutagenesis resulting from integrating recombinant viral vectors have overshadowed the widespread clinical applications of genetically modified stem cells. Here, we report an RNA-based episomal vector system, amenable for long-term transgene expression in stem cells. Specifically, we used a unique intranuclear RNA virus, Borna disease virus (BDV), as the gene transfer vehicle, capable of persistent infections in various cell types. BDV-based vectors allowed for long-term transgene expression in mesenchymal stem cells (MSCs) without affecting cellular morphology, cell surface CD105 expression, or the adipogenicity of MSCs. Similarly, replication-defective BDV vectors achieved long-term transduction of human induced pluripotent stem cells (iPSCs), while maintaining the ability to differentiate into three embryonic germ layers. Thus, the BDV-based vectors offer a genomic modification-free, episomal RNA delivery system for sustained stem cell transduction. PMID:26632671

  15. Construction of a vector generating both siRNA and a fluorescent reporter: a siRNA study in cultured neurons.

    PubMed

    Yoon, Seung Yong; Choi, Jung Eun; Hwang, Onyou; Hong, Hea Nam; Lee, Heuiran; Kim, Yoo Kyum; Cho, Sung-Woo; Kim, Hyun; Kim, DongHou

    2004-08-31

    RNA interference is an important tool for gene silencing. However, its application to primary cultured cells has been limited by low transfection efficiencies. In this work we developed a vector which encodes both siRNA and red fluorescent protein. Using this vector we could markedly suppress green fluorescent protein (GFP) and bim an endogenous gene. Primary cultured cortical neurons transfected with siRNA against doublecortin showed that doublecortin expression was significantly inhibited in nearly all the transfected neurons. This vector identifies the transfected cells and should be useful for loss-of-gene function studies in neurons.

  16. Lipid-based vectors for siRNA delivery

    PubMed Central

    Zhang, Shubiao; Zhi, Defu; Huang, Leaf

    2016-01-01

    siRNA therapeutics has developed rapidly and already there are clinical trials ongoing or planned; however, the delivery of siRNA into cells, tissues or organs remains to be a major obstacle. Lipid-based vectors hold the most promising position among non-viral vectors, as they have a similar structure to cell or organelle membranes. But when used in the form of liposomes, these vectors have shown some problems. Therefore, either the nature of lipids themselves or forms used should be improved. As a novel class of lipid like materials, lipidoids have the advantages of easy synthesis and the ability for delivering siRNA to obtain excellent silencing activity. However, the toxicities of lipidoids have not been thoroughly studied. pH responsive lipids have also gained great attention recently, though some of the amine-based lipids are not novel in terms of chemical structures. More complex self-assembly structures, such as LPD (LPH) and LCP, may provide a good solution to siRNA delivery. They have demonstrated controlled particle morphology and size and siRNA delivery activity for both in vitro and in vivo. PMID:22994300

  17. Visualization and genetic modification of resident brain microglia using lentiviral vectors regulated by microRNA-9.

    PubMed

    Åkerblom, Malin; Sachdeva, Rohit; Quintino, Luis; Wettergren, Erika Elgstrand; Chapman, Katie Z; Manfre, Giuseppe; Lindvall, Olle; Lundberg, Cecilia; Jakobsson, Johan

    2013-01-01

    Functional studies of resident microglia require molecular tools for their genetic manipulation. Here we show that microRNA-9-regulated lentiviral vectors can be used for the targeted genetic modification of resident microglia in the rodent brain. Using transgenic reporter mice, we demonstrate that murine microglia lack microRNA-9 activity, whereas most other cells in the brain express microRNA-9. Injection of microRNA-9-regulated vectors into the adult rat brain induces transgene expression specifically in cells with morphological features typical of ramified microglia. The majority of transgene-expressing cells colabels with the microglia marker Iba1. We use this approach to visualize and isolate activated resident microglia without affecting circulating and infiltrating monocytes or macrophages in an excitotoxic lesion model in rat striatum. The microRNA-9-regulated vectors described here are a straightforward and powerful tool that facilitates functional studies of resident microglia.

  18. Inhibition of simian immunodeficiency virus by foamy virus vectors expressing siRNAs

    SciTech Connect

    Park, Jeonghae; Nadeau, Peter; Zucali, James R.; Johnson, Calvin M.; Mergia, Ayalew . E-mail: mergiaa@mail.vetmed.ufl.edu

    2005-12-20

    Viral vectors available for gene therapy are either inefficient or suffer from safety concerns for human applications. Foamy viruses are non-pathogenic retroviruses that offer several unique opportunities for gene transfer in various cell types from different species. In this report, we describe the use of simian foamy virus type 1 (SFV-1) vector to examine the efficacy of therapeutic genes. Hairpin short-interfering RNA (siRNA) that targets the simian immunodeficiency virus (SIV) rev/env was placed under the control of the PolIII U6 snRNA promoter for expression and screened for silencing target genes using cognate target-reporter fusions. We have identified an effective siRNA (designated R2) which reduces the rev and env gene expression by 89% and 95%, respectively. Using the simian foamy virus type 1 (SFV-1) based vector, we delivered the PolIII expressed R2 siRNA into cultured cells and challenged with SIV. The results show that the R2 siRNA is a potent inhibitor of SIV replication as determined by p27 expression and reverse transcriptase assays. Vectors based on a non-pathogenic SFV-1 vector may provide a safe and efficient alternative to currently available vectors, and the SIV model will help devise protocols for effective anti-HIV gene therapy.

  19. RNA interference mediated in human primary cells via recombinant baculoviral vectors.

    PubMed

    Nicholson, Linda J; Philippe, Marie; Paine, Alan J; Mann, Derek A; Dolphin, Colin T

    2005-04-01

    The success of RNA interference (RNAi) in mammalian cells, mediated by siRNAs or shRNA-generating plasmids, is dependent, to an extent, upon transfection efficiency. This is a particular problem with primary cells, which are often difficult to transfect using cationic lipid vehicles. Effective RNAi in primary cells is thus best achieved with viral vectors, and retro-, adeno-, and lentivirus RNAi systems have been described. However, the use of such human viral vectors is inherently problematic, e.g., Class 2 status and requirement of secondary helper functions. Although insect cells are their natural host, baculoviruses also transduce a range of vertebrate cell lines and primary cells with high efficiency. The inability of baculoviral vectors to replicate in mammalian cells, their Class 1 status, and the simplicity of their construction make baculovirus an attractive alternative gene delivery vector. We have developed a baculoviral-based RNAi system designed to express shRNAs and GFP from U6 and CMV promoters, respectively. Transduction of Saos2, HepG2, Huh7, and primary human hepatic stellate cells with a baculoviral construct expressing shRNAs targeting lamin A/C resulted in effective knockdown of the corresponding mRNA and protein. Development of this baculoviral-based system provides an additional shRNA delivery option for RNAi-based investigations in mammalian cells.

  20. RNA Interference in Insect Vectors for Plant Viruses

    PubMed Central

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-01-01

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists. PMID:27973446

  1. RNA Interference in Insect Vectors for Plant Viruses.

    PubMed

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-12-12

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.

  2. Integrating ribosomal promoter vectors that offer a choice of constitutive expression profiles in Leishmania donovani.

    PubMed

    Soysa, Radika; Tran, Khoa D; Ullman, Buddy; Yates, Phillip A

    2015-12-01

    We have designed a novel series of integrating ribosomal RNA promoter vectors with five incrementally different constitutive expression profiles, covering a 250-fold range. Differential expression was achieved by placing different combinations of synthetic or leishmanial DNA sequences upstream and downstream of the transgene coding sequence in order to modulate pre-mRNA processing efficiency and mRNA stability, respectively. All of the vectors have extensive multiple cloning sites, and versions are available for producing N- or C- terminal GFP fusions at each of the possible relative expression levels. In addition, the modular configuration of the vectors allows drug resistance cassettes and other components to be readily exchanged. In toto, these vectors should be useful additions to the toolkit available for molecular and genetic studies of Leishmania donovani.

  3. Vector-Mediated In Vivo Antibody Expression.

    PubMed

    Schnepp, Bruce C; Johnson, Philip R

    2014-08-01

    This article focuses on a novel vaccine strategy known as vector-mediated antibody gene transfer, with a particular focus on human immunodeficiency virus (HIV). This strategy provides a solution to the problem of current vaccines that fail to generate neutralizing antibodies to prevent HIV-1 infection and AIDS. Antibody gene transfer allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein. This approach uses recombinant adeno-associated viral (rAAV) vectors, which have been shown to transduce muscle with high efficiency and direct the long-term expression of a variety of transgenes, to deliver the gene encoding a broadly neutralizing antibody into the muscle. Following rAAV vector gene delivery, the broadly neutralizing antibodies are endogenously synthesized in myofibers and passively distributed to the circulatory system. This is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. Vector-mediated gene transfer studies in mice and monkeys with anti-HIV and simian immunodeficiency virus (SIV)-neutralizing antibodies demonstrated long-lasting neutralizing activity in serum with complete protection against intravenous challenge with virulent HIV and SIV. These results indicate that existing potent anti-HIV antibodies can be rapidly moved into the clinic. However, this methodology need not be confined to HIV. The general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets such as hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis.

  4. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems.

    PubMed

    Guan, S; Rosenecker, J

    2017-02-02

    Because of its safe and effective protein expression profile, in vitro transcribed messenger RNA (IVT-mRNA) represents a promising candidate in the development of novel therapeutics for genetic diseases, vaccines or gene editing strategies, especially when its inherent shortcomings (for example, instability and immunogenicity) have been partially addressed via structural modifications. However, numerous unsolved technical difficulties in successful in vivo delivery of IVT-mRNA have greatly hindered the applications of IVT-mRNA in clinical development. Recent advances in nanotechnology and material science have yielded many promising nonviral delivery systems, some of which were able to efficiently facilitate targeted in vivo delivery of IVT-mRNA in safe and noninvasive manners. The diversity and flexibility of these delivery systems highlight the recent progress of IVT-mRNA-based therapy using nonviral vectors. In this review, we summarize recent advances of existing and emerging nonviral vector-based nanotechnologies for IVT-mRNA delivery and briefly summarize the interesting but rarely discussed applications on simultaneous delivery of IVT-mRNA with DNA.Gene Therapy advance online publication, 2 February 2017; doi:10.1038/gt.2017.5.

  5. Nonreplicating vaccinia vector efficiently expresses recombinant genes.

    PubMed

    Sutter, G; Moss, B

    1992-11-15

    Modified vaccinia Ankara (MVA), a highly attenuated vaccinia virus strain that has been safety tested in humans, was evaluated for use as an expression vector. MVA has multiple genomic deletions and is severely host cell restricted: it grows well in avian cells but is unable to multiply in human and most other mammalian cells tested. Nevertheless, we found that replication of viral DNA appeared normal and that both early and late viral proteins were synthesized in human cells. Proteolytic processing of viral structural proteins was inhibited, however, and only immature virus particles were detected by electron microscopy. We constructed an insertion plasmid with the Escherichia coli lacZ gene under the control of the vaccinia virus late promoter P11, flanked by sequences of MVA DNA, to allow homologous recombination at the site of a naturally occurring 3500-base-pair deletion within the MVA genome. MVA recombinants were isolated and propagated in permissive avian cells and shown to express the enzyme beta-galactosidase upon infection of nonpermissive human cells. The amount of enzyme made was similar to that produced by a recombinant of vaccinia virus strain Western Reserve, which also had the lacZ gene under control of the P11 promoter, but multiplied to high titers. Since recombinant gene expression is unimpaired in nonpermissive human cells, MVA may serve as a highly efficient and exceptionally safe vector.

  6. High-level expressing YAC vector for transgenic animal bioreactors.

    PubMed

    Fujiwara, Y; Miwa, M; Takahashi, R; Kodaira, K; Hirabayashi, M; Suzuki, T; Ueda, M

    1999-04-01

    The position effect is one major problem in the production of transgenic animals as mammary gland bioreactors. In the present study, we introduced the human growth hormone (hGH) gene into 210-kb human alpha-lactalbumin position-independent YAC vectors using homologous recombination and produced transgenic rats via microinjection of YAC DNA into rat embryos. The efficiency of producing transgenic rats with the YAC vector DNA was the same as that using plasmid constructs. All analyzed transgenic rats had one copy of the transgene and produced milk containing a high level of hGH (0.25-8.9 mg/ml). In transgenic rats with the YAC vector in which the human alpha-lactalbumin gene was replaced with the hGH gene, tissue specificity of hGH mRNA was the same as that of the endogenous rat alpha-lactalbumin gene. Thus, the 210-kb human alpha-lactalbumin YAC is a useful vector for high-level expression of foreign genes in the milk of transgenic animals.

  7. Efficient expression of a protein coding gene under the control of an RNA polymerase I promoter.

    PubMed

    Palmer, T D; Miller, A D; Reeder, R H; McStay, B

    1993-07-25

    In mammalian cells, RNA polymerase I transcripts are uncapped and retain a polyphosphate 5' terminus. It is probably for this reason that they are poorly translated as messenger RNA. We show in this report that insertion of an Internal Ribosome Entry Site (IRES) into the 5' leader of an RNA polymerase I transcript overcomes the block to translation, presumably by substituting for the 5' trimethyl G cap. Addition of an SV40 polyA addition signal also enhances protein production from the RNA polymerase I transcript. RNA Polymerase I driven expression vectors containing both elements produce protein at levels comparable to that produced from RNA polymerase II driven expression vectors which utilize a retroviral LTR. RNA Polymerase I driven expression vectors may have a variety of uses both for basic research and for practical expression of recombinant proteins.

  8. Construction of glucose-repressible yeast expression vectors.

    PubMed

    Yao, B; Marmur, J; Sollitti, P

    1993-12-31

    A set of two episomal yeast expression vectors, pYME1 and pYME2, were constructed. These Saccharomyces cerevisiae-Escherichia coli shuttle vectors each contain a modified yeast MAL6S (encoding maltase) promoter that is expressed constitutively, but is subject to carbon catabolite repression by glucose. Expression from this promoter is still dependent upon the presence of active MALR (regulatory) protein. These expression vectors are particularly useful because most S. cerevisiae strains are MAL+, thereby exhibiting a wider host range than GAL-based vector systems. These pYME1 and pYME2 vectors are capable of expression to levels comparable to GAL-based expression plasmids and much higher than a variety of other repressible promoter vectors. The vectors are identical, except that their multiple cloning sites (MCS) are in opposite orientations, making them convenient for inserting heterologous genes.

  9. Packaging of HCV-RNA into lentiviral vector

    SciTech Connect

    Caval, Vincent; Piver, Eric; Ivanyi-Nagy, Roland; Darlix, Jean-Luc; Pages, Jean-Christophe

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Description of HCV-RNA Core-D1 interactions. Black-Right-Pointing-Pointer In vivo evaluation of the packaging of HCV genome. Black-Right-Pointing-Pointer Determination of the role of the three basic sub-domains of D1. Black-Right-Pointing-Pointer Heterologous system involving HIV-1 vector particles to mobilise HCV genome. Black-Right-Pointing-Pointer Full length mobilisation of HCV genome and HCV-receptor-independent entry. -- Abstract: The advent of infectious molecular clones of Hepatitis C virus (HCV) has unlocked the understanding of HCV life cycle. However, packaging of the genomic RNA, which is crucial to generate infectious viral particles, remains poorly understood. Molecular interactions of the domain 1 (D1) of HCV Core protein and HCV RNA have been described in vitro. Since compaction of genetic information within HCV genome has hampered conventional mutational approach to study packaging in vivo, we developed a novel heterologous system to evaluate the interactions between HCV RNA and Core D1. For this, we took advantage of the recruitment of Vpr fusion-proteins into HIV-1 particles. By fusing HCV Core D1 to Vpr we were able to package and transfer a HCV subgenomic replicon into a HIV-1 based lentiviral vector. We next examined how deletion mutants of basic sub-domains of Core D1 influenced HCV RNA recruitment. The results emphasized the crucial role of the first and third basic regions of D1 in packaging. Interestingly, the system described here allowed us to mobilise full-length JFH1 genome in CD81 defective cells, which are normally refractory to HCV infection. This finding paves the way to an evaluation of the replication capability of HCV in various cell types.

  10. Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors.

    PubMed

    Wang, Huiyuan; Jiang, Yifan; Peng, Huige; Chen, Yingzhi; Zhu, Peizhi; Huang, Yongzhuo

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. Because of significant changes in their expression in cancer, miRNAs are believed to be key factors in cancer genetics and to have potential as anticancer drugs. However, the delivery of miRNAs is limited by many barriers, such as low cellular uptake, immunogenicity, renal clearance, degradation by nucleases, elimination by phagocytic immune cells, poor endosomal release, and untoward side effects. Nonviral delivery systems have been developed to overcome these obstacles. In this review, we provide insights into the development of non-viral synthetic miRNA vectors and the promise of miRNA-based anticancer therapies, including therapeutic applications of miRNAs, challenges of vector design to overcome the delivery obstacles, and the development of miRNA delivery systems for cancer therapy. Additionally, we highlight some representative examples that give a glimpse into the current trends into the design and application of efficient synthetic systems for miRNA delivery. Overall, a better understanding of the rational design of miRNA delivery systems will promote their translation into effective clinical treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Virus-based transient expression vectors for woody crops: a new frontier for vector design and use.

    PubMed

    Dawson, William O; Folimonova, Svetlana Y

    2013-01-01

    Virus-based expression vectors are commonplace tools for the production of proteins or the induction of RNA silencing in herbaceous plants. This review considers a completely different set of uses for viral vectors in perennial fruit and nut crops, which can be productive for periods of up to 100 years. Viral vectors could be used in the field to modify existing plants. Furthermore, with continually emerging pathogens and pests, viral vectors could express genes to protect the plants or even to treat plants after they become infected. As technologies develop during the life span of these crops, viral vectors can be used for adding new genes as an alternative to pushing up the crop and replanting with transgenic plants. Another value of virus-based vectors is that they add nothing permanently to the environment. This requires that effective and stable viral vectors be developed for specific crops from endemic viruses. Studies using viruses from perennial hosts suggest that these objectives could be accomplished.

  12. Development of an insect vector cell culture and RNA interference system to investigate the functional role of fijivirus replication protein.

    PubMed

    Jia, Dongsheng; Chen, Hongyan; Zheng, Ailing; Chen, Qian; Liu, Qifei; Xie, Lianhui; Wu, Zujian; Wei, Taiyun

    2012-05-01

    An in vitro culture system of primary cells from white-backed planthopper, an insect vector of Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus, was established to study replication of the virus. Viroplasms, putative sites of viral replication, contained the nonstructural viral protein P9-1, viral RNA, outer-capsid proteins, and viral particles in virus-infected cultured insect vector cells, as revealed by transmission electron and confocal microscopy. Formation of viroplasm-like structures in non-host insect cells upon expression of P9-1 suggested that the matrix of viroplasms observed in virus-infected cells was composed basically of P9-1. In cultured insect vector cells, knockdown of P9-1 expression due to RNA interference (RNAi) induced by synthesized double-stranded RNA (dsRNA) from the P9-1 gene strongly inhibited viroplasm formation and viral infection. RNAi induced by ingestion of dsRNA strongly abolished viroplasm formation, preventing efficient viral spread in the body of intact vector insects. All these results demonstrated that P9-1 was essential for viroplasm formation and viral replication. This system, combining insect vector cell culture and RNA interference, can further advance our understanding of the biological activities of fijivirus replication proteins.

  13. MicroRNA expression profiling using microarrays.

    PubMed

    Love, Cassandra; Dave, Sandeep

    2013-01-01

    MicroRNAs are small noncoding RNAs which are able to regulate gene expression at both the transcriptional and translational levels. There is a growing recognition of the role of microRNAs in nearly every tissue type and cellular process. Thus there is an increasing need for accurate quantitation of microRNA expression in a variety of tissues. Microarrays provide a robust method for the examination of microRNA expression. In this chapter, we describe detailed methods for the use of microarrays to measure microRNA expression and discuss methods for the analysis of microRNA expression data.

  14. [Construction of shRNA lentivirus vector on rat DREAM gene and its analgesic effect on CCI rats].

    PubMed

    Wang, Yunjiao; Cheng, Zhigang; Yu, Peng; Li, Jingyi; Bai, Nianyue; He, Zhenghua; Yang, Shenghui; Guo, Qulian

    2009-08-01

    To construct the recombinant lentivirus vector containing short hairpin RNA (shRNA) inhibited DREAM expression and to investigate the gene therapy of neuropathic pain by inhibiting the expression of DREAM gene by RNA interference. An effective short hairpin RNA targeting to rat DREAM was cloned into the plasmids on the base of Lentivirous vectors, pKCSHR-Puro/GFP, and both of the pKCSHR-Puro/GFP-DREAM and Lentivector package plasmids mix were transferred into the 293T cells. The culture supernatant was harvested, and the virus titer was detected 48 hours after transferring. Thirty-six sheer breed pathogen free adult Sprague Dawley rats were randomly divided into 6 groups (6 in each group): normal control group (N); sham-operated group (S); CCI group (C0 group):CCI model without any intervention; Saline control group (C1 group); empty vector control group (C2 group); and LV-shRNADREAM lentiviral vector treatment group (C3 group). The rats in the last 3 groups respectively accepted injection of normal saline, blank vector, LV-shRNADREAM lentiviral vector in the subarachnoid on the 7th day after CCI, and the pain behavior was observed after 3, 7, 10, 14, 21 d after CCI. Green fluorescent protein (GFP) expression was detected by fluorescence microscope and the contents of DREAM mRNA and DREAM protein were detected by Realtime PCR and Western blot respectively in the rat lumbar spinal cord. The short hairpin RNA sequences targeting at rat DREAM were cloned into the vectors, and an entry clone and an expression clone were constructed successfully confirmed by sequence analysis. Lentiviral packaging was successful in 293 T cell line and the transfection titer of the lentivirus was 1 x 10(8) IFU/mL. LV-shRNADREAM lentivirus vector was transfected successfully in the rat spine with Intrathecal injection of LV-shRNADREAM. Compared with the other 3 groups, heat pain threshold and mechanical pain threshold in Group C3 improved significantly (P<0.01), and the expression of

  15. Prediction of RNA-binding proteins from primary sequence by a support vector machine approach

    PubMed Central

    HAN, LIAN YI; CAI, CONG ZHONG; LO, SIEW LIN; CHUNG, MAXEY C.M.; CHEN, YU ZONG

    2004-01-01

    Elucidation of the interaction of proteins with different molecules is of significance in the understanding of cellular processes. Computational methods have been developed for the prediction of protein–protein interactions. But insufficient attention has been paid to the prediction of protein–RNA interactions, which play central roles in regulating gene expression and certain RNA-mediated enzymatic processes. This work explored the use of a machine learning method, support vector machines (SVM), for the prediction of RNA-binding proteins directly from their primary sequence. Based on the knowledge of known RNA-binding and non-RNA-binding proteins, an SVM system was trained to recognize RNA-binding proteins. A total of 4011 RNA-binding and 9781 non-RNA-binding proteins was used to train and test the SVM classification system, and an independent set of 447 RNA-binding and 4881 non-RNA-binding proteins was used to evaluate the classification accuracy. Testing results using this independent evaluation set show a prediction accuracy of 94.1%, 79.3%, and 94.1% for rRNA-, mRNA-, and tRNA-binding proteins, and 98.7%, 96.5%, and 99.9% for non-rRNA-, non-mRNA-, and non-tRNA-binding proteins, respectively. The SVM classification system was further tested on a small class of snRNA-binding proteins with only 60 available sequences. The prediction accuracy is 40.0% and 99.9% for snRNA-binding and non-snRNA-binding proteins, indicating a need for a sufficient number of proteins to train SVM. The SVM classification systems trained in this work were added to our Web-based protein functional classification software SVMProt, at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi. Our study suggests the potential of SVM as a useful tool for facilitating the prediction of protein–RNA interactions. PMID:14970381

  16. Double-stranded RNA transcribed from vector-based oligodeoxynucleotide acts as transcription factor decoy

    SciTech Connect

    Xiao, Xiao; Gang, Yi; Wang, Honghong; Wang, Jiayin; Zhao, Lina; Xu, Li; Liu, Zhiguo

    2015-02-06

    Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself. The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity.

  17. Tumor-targeted efficiency of shRNA vector harboring chimera hTERT/U6 promoter.

    PubMed

    Zhang, Penghui; Chen, Yaqin; Jiang, Xixin; Tu, Zhiguang; Zou, Lin

    2010-05-01

    Telomerase is closely related to tumor, and hTERT is the rate-limiting factor for telomerase activity. The transcription and expression of hTERT is determined by hTERT promoter, which has the ability of anchoring telomerase positive cells. RNA interference (RNAi) has been potentially used in the functional genomics and gene therapy recently. However, the limitations of RNAi uncertain interference and safety hamper its wide applications. To overcome these limitations, we constructed shRNA vectors harboring either U6 promoter or chimera hTERT/U6 promoter aiming at EGFP and hTERT genes (shRNA-EGFP-U6, shRNA-EGFP-hTERT/U6, shRNA-hTERT-U6 and shRNA-hTERT-hTERT/U6), to suppress the expression of GFP and hTERT in telomerase negative human normal fibroblast HELF cells and telomerase positive human hepatocarcinoma SMMC-7721 and HepG2 cells, respectively. HELF-EGFP and SMMC-7721-EGFP cells stably expressing EGFP or hTERT were constructed. GFP expression was inhibited in both HELF-EGFP and SMMC-7721-EGFP cells expressing shRNA-EGFP-U6. Further results showed that GFP expression was suppressed only in telomerase positive SMMC-7721 cells and HepG2 cells, but not in telomerase negative HELF cells expressing shRNA-EGFP-hTERT/U6. Further results found that hTERT expression was effectively inhibited from liver cancer cells expressing shRNA-hTERT-U6 or shRNA-hTERT-hTERT/U6 both in vitro and in vivo. Our study illustrates the tumor-targeted efficiency of shRNA vectors harboring chimera hTERT/U6 promoter in telomerase positive cells, which will benefit tumor therapy.

  18. A single-plasmid vector for transgene amplification using short hairpin RNA targeting the 3'-UTR of amplifiable dhfr.

    PubMed

    Kang, Shin-Young; Kim, Yeon-Gu; Lee, Hong Weon; Lee, Eun Gyo

    2015-12-01

    Gene amplification using dihydrofolate reductase gene (dhfr) and methotrexate (MTX) is widely used for recombinant protein production in mammalian cells and is typically conducted in DHFR-deficient Chinese hamster ovary (CHO) cell lines. Generation of DHFR-deficient cells can be achieved by an expression vector incorporating short hairpin RNA (shRNA) that targets the 3'-untranslated region (UTR) of endogenous dhfr. Thus, shRNAs were designed to target the 3'-UTR of endogenous dhfr, and shRNA-2 efficiently down-regulated dhfr expression in CHO-K1 cells. A single gene copy of shRNA-2 also decreased the translational level of DHFR by 80% in Flp-In CHO cells. shRNA-2 was then incorporated into a plasmid vector expressing human erythropoietin (EPO) and an exogenous DHFR to develop EPO-producing cells in the Flp-In system. The specific EPO productivity (q EPO) was enhanced by stepwise increments of MTX concentration, and differences in the amplification rate were observed in Flp-In CHO cells that expressed shRNA-2. In addition, the q EPO increased by more than 2.5-fold in the presence of 500 nM MTX. The mRNA expression level and gene copy numbers of dhfr were correlated with increased productivity in the cells, which is influenced by inhibition of endogenous dhfr. This study reveals that an expression vector including shRNA that targets the 3'-UTR of endogenous dhfr can enhance the transgene amplification rate and productivity by generating DHFR-deficient cells. This approach may be applied for amplifying the foreign gene in wild-type cell lines as a versatile single-plasmid vector.

  19. Use of Nascent RNA Microarrays to Study Inducible Gene Expression in Breast Cancer Cells

    DTIC Science & Technology

    2005-09-01

    detect inducible gene expression following activation of a transcription factor we used the p53 mutant lung cancer cell line H1299 /tsp53 expressing a...temperature-sensitive p53 gene and a control cell line H1299 /neo expressing a neo control vector. To activate the transcription factor p53 we lowered...expression in H1299 +tsp53 cells nascent RNA gene expression in H1299 +neo cells. Nascent RNA was collected 3 hours after switching to the permissive

  20. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model

    PubMed Central

    Lee, Tae Jin; Haque, Farzin; Shu, Dan; Yoo, Ji Young; Li, Hui; Yokel, Robert A.; Horbinski, Craig; Kim, Tae Hyong; Kim, Sung-Hak; Kwon, Chang-Hyuk; Nakano, Ichiro; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M.

    2015-01-01

    Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues. PMID:25885522

  1. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model.

    PubMed

    Lee, Tae Jin; Haque, Farzin; Shu, Dan; Yoo, Ji Young; Li, Hui; Yokel, Robert A; Horbinski, Craig; Kim, Tae Hyong; Kim, Sung-Hak; Kwon, Chang-Hyuk; Nakano, Ichiro; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M

    2015-06-20

    Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues.

  2. Sensitive and long-term monitoring of intracellular microRNAs using a non-integrating cytoplasmic RNA vector.

    PubMed

    Sano, Masayuki; Ohtaka, Manami; Iijima, Minoru; Nakasu, Asako; Kato, Yoshio; Nakanishi, Mahito

    2017-10-04

    MicroRNAs (miRNAs) are small noncoding RNAs that modulate gene expression at the post-transcriptional level. Different types of cells express unique sets of miRNAs that can be exploited as potential molecular markers to identify specific cell types. Among the variety of miRNA detection methods, a fluorescence-based imaging system that utilises a fluorescent-reporter gene regulated by a target miRNA offers a major advantage for long-term tracking of the miRNA in living cells. In this study, we developed a novel fluorescence-based miRNA-monitoring system using a non-integrating cytoplasmic RNA vector based on a replication-defective and persistent Sendai virus (SeVdp). Because SeVdp vectors robustly and stably express transgenes, this system enabled sensitive monitoring of miRNAs by fluorescence microscopy. By applying this system for cellular reprogramming, we found that miR-124, but not miR-9, was significantly upregulated during direct neuronal conversion. Additionally, we were able to isolate integration-free human induced pluripotent stem cells by long-term tracking of let-7 expression. Notably, this system was easily expandable to allow detection of multiple miRNAs separately and simultaneously. Our findings provide insight into a powerful tool for evaluating miRNA expression during the cellular reprogramming process and for isolating reprogrammed cells potentially useful for medical applications.

  3. An optimized lentiviral vector system for conditional RNAi and efficient cloning of microRNA embedded short hairpin RNA libraries.

    PubMed

    Adams, Felix F; Heckl, Dirk; Hoffmann, Thomas; Talbot, Steven R; Kloos, Arnold; Thol, Felicitas; Heuser, Michael; Zuber, Johannes; Schambach, Axel; Schwarzer, Adrian

    2017-09-01

    RNA interference (RNAi) and CRISPR-Cas9-based screening systems have emerged as powerful and complementary tools to unravel genetic dependencies through systematic gain- and loss-of-function studies. In recent years, a series of technical advances helped to enhance the performance of virally delivered RNAi. For instance, the incorporation of short hairpin RNAs (shRNAs) into endogenous microRNA contexts (shRNAmiRs) allows the use of Tet-regulated promoters for synchronous onset of gene knockdown and precise interrogation of gene dosage effects. However, remaining challenges include lack of efficient cloning strategies, inconsistent knockdown potencies and leaky expression. Here, we present a simple, one-step cloning approach for rapid and efficient cloning of miR-30 shRNAmiR libraries. We combined a human miR-30 backbone retaining native flanking sequences with an optimized all-in-one lentiviral vector system for conditional RNAi to generate a versatile toolbox characterized by higher doxycycline sensitivity, reduced leakiness and enhanced titer. Furthermore, refinement of existing shRNA design rules resulted in substantially improved prediction of powerful shRNAs. Our approach was validated by accurate quantification of the knockdown potency of over 250 single shRNAmiRs. To facilitate access and use by the scientific community, an online tool was developed for the automated design of refined shRNA-coding oligonucleotides ready for cloning into our system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Determinants of effective lentivirus-driven microRNA expression in vivo

    PubMed Central

    Mishima, Takuya; Sadovsky, Elena; Gegick, Margaret E.; Sadovsky, Yoel

    2016-01-01

    Manipulation of microRNA (miRNA) levels, including overexpression of mature species, has become an important biological tool, even motivating miRNA-based therapeutics. To assess key determinants of miRNA overexpression in a mammalian system in vivo, we sought to bypass the laborious generation of a transgenic animal by exploiting placental trophoblast-specific gene manipulation using lentiviral vectors, which has been instrumental in elucidating trophoblast biology. We examined the impact of several key components of miRNA stem loops and their flanking sequences on the efficiency of mature miRNA expression in vivo. By combining established and novel approaches for miRNA expression, we engineered lentivirus-driven miRNA expression plasmids, which we tested in the mouse placenta. We found that reverse sense inserts minimized single-strand splicing and degradation, and that maintaining longer, poly-A-containing arms flanking the miRNA stem-loop markedly enhanced transgenic miRNA expression. Additionally, we accomplished overexpression of diverse mammalian, drosophila, or C. elegans miRNAs, either based on native context or using a “cassette” replacement of the mature miRNA sequence. Together, we have identified primary miRNA sequences that are paramount for effective expression of mature miRNAs, and validated their role in mice. Principles established by our findings may guide the design of efficient miRNA vectors for in vivo use. PMID:27627961

  5. Viral vectors: from virology to transgene expression

    PubMed Central

    Bouard, D; Alazard-Dany, N; Cosset, F-L

    2009-01-01

    In the late 1970s, it was predicted that gene therapy would be applied to humans within a decade. However, despite some success, gene therapy has still not become a routine practise in medicine. In this review, we will examine the problems, both experimental and clinical, associated with the use of viral material for transgenic insertion. We shall also discuss the development of viral vectors involving the most important vector types derived from retroviruses, adenoviruses, herpes simplex viruses and adeno-associated viruses. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:18776913

  6. An epitope tagged mammalian/prokaryotic expression vector with positive selection of cloned inserts.

    PubMed

    Schneider, S; Georgiev, O; Buchert, M; Adams, M T; Moelling, K; Hovens, C M

    1997-09-15

    A dual eukaryotic/prokaryotic expression vector has been developed which combines the features of positive selection for cloned inserts along with the production of an epitope-tagged cDNA insert by transient transfection in mammalian cells as well as high level induced expression in E. coli cells harbouring T7 RNA polymerase. This vector, pZilch, has two MCSs flanking a mutant E. coli phenylalanyl-tRNA synthetase gene, pheS, which when expressed in combination with the phenylalanine analog p-CI-Phe, results in termination of host cell protein synthesis. Cloning of inserts using unique sites in the flanking MCS regions results in loss of the pZilch pheS allele and hence permits growth of colonies harbouring recombinants on p-Cl-Phe plates. Additional features of the vector include an optimal Kozak consensus sequence for high level eukaryotic cell expression and an efficient prokaryotic translation initiation site in frame and downstream from the eukaryotic initiation site. Recombinant proteins can be produced with an N-terminal FLAG epitope which can be removed via a specific protease cleavage site. Flanking T7 and SP6 RNA polymerase promoter sites permit in vitro transcription and translation of cloned inserts. A derivative of the vector has also been constructed enabling nuclear accumulation of the tagged proteins via an SV40 nuclear localisation signal upstream of the 5' MCS.

  7. RNA interference-based therapeutics for human immunodeficiency virus HIV-1 treatment: synthetic siRNA or vector-based shRNA?

    PubMed

    Subramanya, Sandesh; Kim, Sang-Soo; Manjunath, N; Shankar, Premlata

    2010-02-01

    Despite the clinical benefits of highly active antiretroviral therapy (HAART), the prospect of life-long antiretroviral treatment poses significant problems, which has spurred interest in developing new drugs and strategies to treat HIV infection and eliminate persistent viral reservoirs. RNAi has emerged as a therapeutic possibility for HIV. We discuss progress in overcoming hurdles to translating transient and stable RNAi enabling technologies to clinical application for HIV; covering the past 2 - 3 years. HIV inhibition can be achieved by transfection of chemically or enzymatically synthesized siRNAs or by DNA-based vector systems expressing short hairpin RNAs (shRNAs) that are processed intracellularly into siRNA. We compare these approaches, focusing on technical and safety issues that will guide the choice of strategy for clinical use. Introduction of synthetic siRNA into cells or its stable endogenous production using vector-driven shRNA have been shown to suppress HIV replication in vitro and, in some instances, in vivo. Each method has advantages and limitations in terms of ease of delivery, duration of silencing, emergence of escape mutants and potential toxicity. Both appear to have potential as future therapeutics for HIV, once the technical and safety issues of each approach are overcome.

  8. Serum-dependent and cell cycle-dependent expression from a cytomegalovirus-based mammalian expression vector.

    PubMed

    Brightwell, G; Poirier, V; Cole, E; Ivins, S; Brown, K W

    1997-07-18

    Cytomegalovirus-based mammalian expression vectors are widely used to drive the expression of transfected genes in cultured cells. Immunofluorescent staining of the WT1 protein in 3T3 and 293 cell clones, stably transfected with a cyomegalovirus (CMV) expression vector carrying a cDNA coding for the tumour suppressor protein WT1, showed extreme cell to cell variation in the amount of recombinant protein expressed, indicative of cell cycle dependence. This was investigated further by Western blot and FACS analysis which showed that WT1 protein expression was highest in S phase and almost absent in G0/G1. Northern blot analysis of cell clones expressing sense or antisense WT1 cDNAs regulated by the CMV promoter/enhancer showed that RNA expression was also cell cycle-dependent. Western blotting of cells expressing a luciferase reporter gene driven by the CMV promoter/enhancer also showed apparent cell cycle-dependent expression. We further demonstrated that the expression of these gene constructs was serum responsive with a 10-fold increase in expression occurring 2 h after the addition of serum. These results show that the CMV promoter/enhancer system varied in its response to serum and the cell cycle state. Therefore, care must be taken when interpreting any phenotypic alterations (or lack of them) produced in cells transfected with CMV-based expression vectors.

  9. A simple method for construction of artificial microRNA vector in plant.

    PubMed

    Li, Yang; Li, Yang; Zhao, Sunping; Zhong, Sheng; Wang, Zhaohai; Ding, Bo; Li, Yangsheng

    2014-10-01

    Artificial microRNA (amiRNA) is a powerful tool for silencing genes in many plant species. Here we provide an easy method to construct amiRNA vectors that reinvents the Golden Gate cloning approach and features a novel system called top speed amiRNA construction (TAC). This speedy approach accomplishes one restriction-ligation step in only 5 min, allowing easy and high-throughput vector construction. Three primers were annealed to be a specific adaptor, then digested and ligated on our novel vector pTAC. Importantly, this method allows the recombined amiRNA constructs to maintain the precursor of osa-miR528 with exception of the desired amiRNA/amiRNA* sequences. Using this method, our results showed the expected decrease of targeted genes in Nicotiana benthamiana and Oryza sativa.

  10. Development of expression vectors based on pepino mosaic virus

    PubMed Central

    2011-01-01

    Background Plant viruses are useful expression vectors because they can mount systemic infections allowing large amounts of recombinant protein to be produced rapidly in differentiated plant tissues. Pepino mosaic virus (PepMV) (genus Potexvirus, family Flexiviridae), a widespread plant virus, is a promising candidate expression vector for plants because of its high level of accumulation in its hosts and the absence of severe infection symptoms. We report here the construction of a stable and efficient expression vector for plants based on PepMV. Results Agroinfectious clones were produced from two different PepMV genotypes (European and Chilean), and these were able to initiate typical PepMV infections. We explored several strategies for vector development including coat protein (CP) replacement, duplication of the CP subgenomic promoter (SGP) and the creation of a fusion protein using the foot-and-mouth disease virus (FMDV) 2A catalytic peptide. We found that CP replacement vectors were unable to move systemically and that vectors with duplicated SGPs (even heterologous SGPs) suffered from significant transgene instability. The fusion protein incorporating the FMDV 2A catalytic peptide gave by far the best results, maintaining stability through serial passages and allowing the accumulation of GFP to 0.2-0.4 g per kg of leaf tissue. The possible use of PepMV as a virus-induced gene silencing vector to study gene function was also demonstrated. Protocols for the use of this vector are described. Conclusions A stable PepMV vector was generated by expressing the transgene as a CP fusion using the sequence encoding the foot-and-mouth disease virus (FMDV) 2A catalytic peptide to separate them. We have generated a novel tool for the expression of recombinant proteins in plants and for the functional analysis of virus and plant genes. Our experiments have also highlighted virus requirements for replication in single cells as well as intercellular and long

  11. [Development of transgenic maize with anti-rough dwarf virus artificial miRNA vector and their disease resistance].

    PubMed

    Xuan, Ning; Zhao, Chuanzhi; Peng, Zhenying; Chen, Gao; Bian, Fei; Lian, Mingzheng; Liu, Guoxia; Wang, Xingjun; Bi, Yuping

    2015-09-01

    Maize is one of the most important food crops. Rice black-streaked dwarf virus is a maize rough dwarf disease pathogen. The occurrence and transmission of maize rough dwarf disease brings great damage to maize production. The technology of using artificial miRNA to build antiviral plant has been proven effective in a variety of plants. However, such trials in maize have not been reported. We designed primers based on the sequence of maize zea-miR159a precursor and sequence of function protein genes and silencing RBSDV coding genes in RBSDV genome. We constructed amiRNA (artificial miRNA) gene for silencing RBSDV coding gene and gene silencing suppressor. We constructed pCAMBIA3301-121-amiRNA plant expression vector for transforming maize inbred lines Z31 by using agrobacterium mediated method. After molecular analysis of transgenic maize, homozygous lines with high miRNA expression were selected by molecular detection for a subsequent natural infection experiment. We studied the severity of maize rough dwarf disease according to a grading standard (grade 0 to 4). The experiment results showed that the disease resistance of transgenic homozygous maize with the anti-rough dwarf virus amiRNA vector was better than that of wild type. Among the transgenic maize, S6-miR159 transgenic maize had high disease resistance. It is feasible to create new maize variety by the use of artificial miRNA.

  12. Refinement of lentiviral vector for improved RNA processing and reduced rates of self inactivation repair

    PubMed Central

    Koldej, Rachel M; Anson, Donald S

    2009-01-01

    Background Lentiviral gene therapy vectors are now finding clinical application. In order to fully exploit their potential it is important that vectors are made as efficient and as safe as possible. Accordingly, we have modified a previously reported vector to improve RNA processing, minimise Human Immunodeficiency Virus Type-1 (HIV-1) sequence content and reduce repair of the self inactivating (SIN) deletion. Results HIV-1 sequence in the vector was reduced by substituting the polyadenylation signal with a heterologous signal. Mutation of splice donor sites was undertaken to prevent the majority of splicing within the vector genomic RNA. In addition, a number of other sequences within the vector were deleted. The combination of these modifications was able to significantly reduce the rates of both vector mobilisation and repair of the self inactivating deletion after two rounds of marker rescue. Conclusion RNA processing can be improved by mutation of the major and minor HIV-1 splice donor sites in the vector. In addition the rate of vector mobilisation and repair of SIN vectors can be successfully reduced by careful vector design that reduces homology between the 5' and 3' long terminal repeats (LTRs) to a minimum. PMID:19811661

  13. Vector-based RNA interference of cathepsin B1 in Schistosoma mansoni.

    PubMed

    Tchoubrieva, Elissaveta B; Ong, Poh C; Pike, Robert N; Brindley, Paul J; Kalinna, Bernd H

    2010-11-01

    In helminth parasites, proteolytic enzymes have been implicated in facilitating host invasion, moulting, feeding, and evasion of the host immune response. These key functions render them potential targets for anti-parasite chemotherapy and immunotherapy. Schistosomes feed on host blood and the digested haemoglobin is their major source of amino acids. Haemoglobin digestion is essential for parasite development, growth, and reproduction. We recently reported the use of pseudotyped Moloney murine leukaemia virus to accomplish transformation of Schistosoma mansoni. Here, we report the design of a viral vector expressing a dsRNA hairpin to silence expression of the schistosome cathepsin B1 (SmCB1) gene. We observed 80% reduction in transcript level 72 h after virus exposure and complete silencing of enzyme activity in transduced worms. This is the first report using this technology in any helminth parasite. It will facilitate the evaluation of potential drug targets and biochemical pathways for novel interventions in schistosomes.

  14. Effects of G-gene Deletion and Replacement on Rabies Virus Vector Gene Expression

    PubMed Central

    Sato, Sho; Ohara, Shinya; Tsutsui, Ken-Ichiro; Iijima, Toshio

    2015-01-01

    The glycoprotein-gene (G gene) -deleted rabies virus (RV) vector is a powerful tool to examine the function and structure of neural circuits. We previously reported that the deletion of the G gene enhances the transgene expression level of the RV vector. However, the mechanism of this enhancement remains to be clarified. We presume that there are two possible factors for this enhancement. The first factor is the glycoprotein of RV, which shows cytotoxicity; thus, may cause a dysfunction in the translation process of infected cells. The second possible factor is the enhanced expression of the L gene, which encodes viral RNA polymerase. In the RV, it is known that the gene expression level is altered depending on the position of the gene. Since G-gene deletion displaces the L gene in the genome, the expression of the L gene and viral transcription may be enhanced. In this study, we compared the transgene expression level and viral transcription of three recombinant RV vectors. The effect of glycoprotein was examined by comparing the viral gene expression of G-gene-intact RV and G-gene-replaced RV. Despite the fact that the L-gene transcription level of these two RV vectors was similar, the G-gene-replaced RV vector showed higher viral transcription and transgene expression level than the G-gene-intact RV vector. To examine the effect of the position of the L gene, we compared the viral gene expression of the G-gene-deleted RV and G-gene-replaced RV. The G-gene-deleted RV vector showed higher L-gene transcription, viral transcription, and transgene expression level than the G-gene-replaced RV vector. These results indicate that G-gene deletion enhances the transgene expression level through at least two factors, the absence of glycoprotein and enhancement of L-gene expression. These findings enable investigators to design a useful viral vector that shows a controlled desirable transgene expression level in applications. PMID:26023771

  15. Inducing RNA interference in the arbovirus vector, Culicoides sonorensis

    USDA-ARS?s Scientific Manuscript database

    Biting midges in the genus Culicoides are important vectors of arboviral diseases, including Epizootic Hemorrhagic Disease, Bluetongue, and likely Schmallenberg, which cause significant economic burden worldwide. Research on these vectors has been hindered by the lack of a sequenced genome, the diff...

  16. Development of a set of expression vectors in Hansenula polymorpha.

    PubMed

    Song, Houhui; Li, Yong; Fang, Weihuan; Geng, Yunfeng; Wang, Xu; Wang, Min; Qiu, Bingsheng

    2003-12-01

    Four expression vectors based on formate dehydrogenase promoter (FMDp) and methanol oxidase promoter (MOXp) from Hansenula polymorpha were developed to express heterologous genes in Hansenula polymorpha. A secretion signal sequence of the mating factor-alpha from Saccharomyces cerevisiae was inserted in the secretory expression plasmids for efficient secretion. A modified green fluorescent protein (mGFP5) was used as the marker of expression for the first time in H. polymorpha NCYC495 (leu 1.1) to determine the expression ability of these plasmids. The mGFP5 thus expressed retained its biochemical and physiological properties, such as accumulation inside cells and efficient secretion into the culture media. These results indicated that the four integrative vectors are useful expression systems which could be directly applied for production of heterologous proteins of interests in H. polymorpha.

  17. Modeling Equilibrium of microRNA Expression

    PubMed Central

    Chan, Lawrence W. C.

    2011-01-01

    MicroRNAs are a class of non-coding RNAs and the dysregulated expression of these short RNA molecules was frequently observed in cancer cells. The steady state level of microRNA concentration may differentiate the biological function of the cells between normal and impaired. To understand the steady state or equilibrium of microRNAs, their interactions with transcription factors and target genes need to be explored and visualized through prediction and network analysis algorithms. This article discusses the application of mathematical model for simulating the dynamics of network feedback loop so as to decipher the mechanism of microRNA regulation. PMID:22303331

  18. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors

    PubMed Central

    Falcicchia, Chiara; Trempat, Pascal; Binaschi, Anna; Perrier-Biollay, Coline; Roncon, Paolo; Soukupova, Marie; Berthommé, Hervé; Simonato, Michele

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies. PMID:26954758

  19. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors.

    PubMed

    Falcicchia, Chiara; Trempat, Pascal; Binaschi, Anna; Perrier-Biollay, Coline; Roncon, Paolo; Soukupova, Marie; Berthommé, Hervé; Simonato, Michele

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies.

  20. miRNA genes of an invasive vector mosquito, Aedes albopictus.

    PubMed

    Gu, Jinbao; Hu, Wanqi; Wu, Jinya; Zheng, Peiming; Chen, Maoshan; James, Anthony A; Chen, Xiaoguang; Tu, Zhijian

    2013-01-01

    Aedes albopictus, a vector of Dengue and Chikungunya viruses, is a robust invasive species in both tropical and temperate environments. MicroRNAs (miRNAs) regulate gene expression and biological processes including embryonic development, innate immunity and infection. While a number of miRNAs have been discovered in some mosquitoes, no comprehensive effort has been made to characterize them from different developmental stages from a single species. Systematic analysis of miRNAs in Ae. albopictus will improve our understanding of its basic biology and inform novel strategies to prevent virus transmission. Between 10-14 million Illumina sequencing reads per sample were obtained from embryos, larvae, pupae, adult males, sugar-fed and blood-fed adult females. A total of 119 miRNA genes represented by 215 miRNA or miRNA star (miRNA*) sequences were identified, 15 of which are novel. Eleven, two, and two of the newly-discovered miRNA genes appear specific to Aedes, Culicinae, and Culicidae, respectively. A number of miRNAs accumulate predominantly in one or two developmental stages and the large number that showed differences in abundance following a blood meal likely are important in blood-induced mosquito biology. Gene Ontology (GO) analysis of the targets of all Ae. albopictus miRNAs provides a useful starting point for the study of their functions in mosquitoes. This study is the first systematic analysis of miRNAs based on deep-sequencing of small RNA samples of all developmental stages of a mosquito species. A number of miRNAs are related to specific physiological states, most notably, pre- and post-blood feeding. The distribution of lineage-specific miRNAs is consistent with mosquito phylogeny and the presence of a number of Aedes-specific miRNAs likely reflects the divergence between the Aedes and Culex genera.

  1. CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis

    PubMed Central

    Jin, Xi; Feng, Chun-yan; Xiang, Zun; Chen, Yi-peng; Li, You-ming

    2016-01-01

    The pathogenesis of nonalcoholic steatohepatitis (NASH) is still unclear, where involvement of circRNA is considered for its active role as “miRNA sponge”. Therefore, we aimed to investigate the circRNA expression pattern in NASH and further construct the circRNA-miRNA-mRNA network for in-depth mechanism exploration. Briefly, NASH mice model was established by Methionine and choline deficiency (MCD) diet feeding. Liver circRNA and mRNA profile was initially screened by microarray and ensuing qRT-PCR verification was carried out. The overlapped predicted miRNAs as downstream targets of circRNAs and upstream regulators of mRNAs were verified by qRT-PCR and final circRNA-miRNA-mRNA network was constructed. Gene Ontology (GO) and KEGG pathway analysis were further applied to enrich the huge mRNA microarray data. To sum up, there were 69 up and 63 down regulated circRNAs as well as 2760 up and 2465 down regulated mRNAs in NASH group, comparing with control group. Randomly selected 13 of 14 mRNAs and 2 of 8 circRNAs were successfully verified by qRT-PCR. Through predicted overlapped miRNA verification, four circRNA-miRNA-mRNA pathways were constructed, including circRNA_002581-miR-122-Slc1a5, circRNA_002581- miR-122-Plp2, circRNA_002581-miR-122-Cpeb1 and circRNA_007585-miR-326- UCP2. GO and KEGG pathway analysis also enriched specific mRNAs. Therefore, circRNA profile may serve as candidate for NASH diagnosis and circRNA-miRNA -mRNA pathway may provide novel mechanism for NASH. PMID:27677588

  2. One cell model establishment to inhibit CaMKIIγ mRNA expression in the dorsal root ganglion neuron by RNA interfere.

    PubMed

    Wen, Xianjie; Li, Xiaohong; Liang, Hua; Yang, Chenxiang; Zhong, Jiying; Wang, Hanbing; Liu, Hongzhen

    2017-09-01

    CaMKIIγ in dorsal root ganglion neurons is closely related to the neuropathic pain, neuron injury induced by local anesthetics. To get great insight into the function of CaMKIIγ in dorsal root ganglion neurons, we need one cell model to specially inhibit the CaMKIIγ mRNA expression. The present study was aimed to establish one cell model to specially inhibit the CaMKIIγ mRNA expression. We designed the CaMKIIγ shRNA sequence and connected with pYr-1.1 plasmid. The ligation product of the CaMKIIγshRNA and pYr-1.1 plasmid was recombined with pAd/PL-DEST vector into pAD-CaMKIIγ-shRNA. adenovirus vector. pAD-CaMKIIγ-shRNA. adenovirus vector infected the dorsal root ganglion neuron to inhibit the CaMKIIγ mRNA expression in vitro. The pAD-CaMKIIγ-shRNA adenovirus vector was verified to be correct by the digestion, sequence. And pAD-CaMKIIγ-shRNA. adenovirus vector can infect the DRG cells to inhibit the CaMKIIγ mRNA or protein expression by the real-time polymerase chain reaction (PCR) or western blotting. Those results showed that we successfully constructed one adenovirus vector that can infect the dorsal root ganglion neuron to inhibit the CaMKIIγ mRNA and protein expression. That will supply with one cell model for the CaMKIIγ function study.

  3. miRNA and mRNA expression analysis reveals potential sex-biased miRNA expression

    PubMed Central

    Guo, Li; Zhang, Qiang; Ma, Xiao; Wang, Jun; Liang, Tingming

    2017-01-01

    Recent studies suggest that mRNAs may be differentially expressed between males and females. This study aimed to perform expression analysis of mRNA and its main regulatory molecule, microRNA (miRNA), to discuss the potential sex-specific expression patterns using abnormal expression profiles from The Cancer Genome Atlas database. Generally, deregulated miRNAs and mRNAs had consistent expression between males and females, but some miRNAs may be oppositely expressed in specific diseases: up-regulated in one group and down-regulated in another. Studies of miRNA gene families and clusters further confirmed that these sequence or location related miRNAs might have opposing expression between sexes. The specific miRNA might have greater expression divergence across different groups, suggesting flexible expression across different individuals, especially in tumor samples. The typical analysis regardless of the sex will ignore or balance these sex-specific deregulated miRNAs. Compared with flexible miRNAs, their targets of mRNAs showed relative stable expression between males and females. These relevant results provide new insights into miRNA-mRNA interaction and sex difference. PMID:28045090

  4. Gamma-retroviral vector design for the co-expression of artificial microRNAs and therapeutic proteins.

    PubMed

    Park, Tristen S; Abate-Daga, Daniel; Zhang, Ling; Zheng, Zhili; Morgan, Richard A

    2014-10-01

    To generate γ-retroviral vectors for stable conjoint expression of artificial microRNAs (amiR) and therapeutic genes in primary human lymphocytes, and to identify the design parameters that are key for successful vector generation. Gamma-retroviral vectors were designed to co-express both amiRs and a linked reporter gene, truncated CD34 (tCD34). Artificial miRs based on microRNAs miR-16, miR-142, miR-146b, miR-150, miR155, and miR-223 were inserted into sites within the intron of the vector and tested for tCD34 expression by flow cytometry (FACS). Different constructs were assembled with amiRs targeted to knockdown expression of suppressor of cytokine signaling 1 (SOCS1) or programmed cell death 1 (PDCD1, PD-1). Three of the six amiRs maintained tCD34 expression. Expansion of primary human T cells transduced with these amiR vectors, as well as transgene expression, were equivalent to control engineered T cells over a 40-day period. Knockdown of SOCS1 RNA and PD-1 expression by FACS was shown to vary between constructs, dependent on either the specific short interfering RNA sequence used in the amiR, or the microRNA backbone and location in the vector intron. Gamma-retroviral vectors that both efficiently knockdown endogenous gene expression and maintain linked transgene production can be produced, but empirical vector evaluations were best suited for optimal construct analysis.

  5. Genetic reshuffling reconstitutes functional expression cassettes in retroviral vectors.

    PubMed

    Tabotta, W; Klein, D; Hohenadl, C; Salmons, B; Günzburg, W H

    2001-01-01

    A major prerequisite for the design of retroviral vectors encoding cell toxic or harmful genes is the possibility to tightly control gene expression, thus limiting activity to the relevant target cells and protecting the packaging cell used for production of recombinant viral particles. In the present study a system was developed in which genetic reshuffling during the retroviral life cycle is exploited, allowing reconstitution of functional expression cassettes from separate elements exclusively in transduced target cells. For construction of these murine leukaemia virus (MLV)-based reconstituting viral vectors (ReCon), a promoterless inverted enhanced green fluorescent protein (EGFP) reporter gene cassette was inserted in place of the U3 region of the 3' LTR. Subsequently, the human ubiquitin promoter was inserted in the inverse orientation into the R/U5 border of the 5' LTR of the vector. PA317 packaging cells stably transfected with ReCon vectors were established and EGFP expression was analysed by fluorescence-activated cell sorting (FACS). After detection of low-level background expression, an additional polyadenylation signal was introduced in antisense orientation into the 3' LTR at the R/U5 border to prevent accidental read-through transcription from neighbouring cellular promoters. Virus-containing cell culture supernatants were then used to infect NIH3T3 target cells. EGFP expression, recloning and sequencing of integrated proviruses demonstrated the correct reassembly of the transduced ubiquitin/EGFP transcription unit in these infected cells. This facile and convenient system should allow production of retroviral vectors encoding potentially toxic proteins, cell cycle inhibitors or inducers of apoptosis, all of which would interfere with vector production if expressed in the retroviral packaging cell.

  6. MicroRNA expression analysis using the Affymetrix Platform.

    PubMed

    Dee, Suzanne; Getts, Robert C

    2012-01-01

    Microarrays have been used extensively for messenger RNA expression monitoring. Recently, microarrays have been designed to interrogate expression levels of noncoding RNAs. Here, we describe methods for RNA labeling and the use of a miRNA array to identify and measure microRNA present in RNA samples.

  7. Producing a Mammalian GFP Expression Vector Containing Neomycin Resistance Gene.

    PubMed

    Izadi, Manizheh; Abiri, Maryam; Keramatipour, Mohammad

    2009-04-01

    The green fluorescent protein (GFP) was originally isolated from the Jellyfish Aequorea Victoria that fluoresces green when exposed to blue light. GFP protein is composed of 238 amino acids with the molecular mass of 26.9 kD. The GFP gene is frequently used in cellular and molecular biology as a reporter gene. To date, many bacterial, yeast, fungal, plants, fly and mammalian cells, including human, have been created which express GFP. Martin Chalfie, Osamu Shimomura, and Roger Tsien were awarded the 2008 noble prize in chemistry for their discovery and development of GFP. In many studies on mammalian cells, GFP gene is introduced into cells using vector-based systems or a recombinant virus to track the location of a target protein or to study the expression level of the gene of interest, but in these studies there is no selection marker to normalize transfection. According to the importance of neomycin gene as a selection marker in mammalian cells, we aimed to produce a GFP expression vector that contains neomycin gene. GFP gene was separated from pEGFP-N1 vector and was inserted in the back-bone of pCDNA3.1/His/LacZ vector that contained the neomycin gene. The resulted vector contained GFP beside neomycin gene.

  8. Co-transduction of lentiviral and adenoviral vectors for co-delivery of growth factor and shRNA genes in mesenchymal stem cells-based chondrogenic system.

    PubMed

    Zhang, Feng; Yao, Yongchang; Su, Kai; Fang, Yu; Citra, Fudiman; Wang, Dong-An

    2015-09-01

    Gene delivery takes advantage of cellular mechanisms to express gene products and is an efficient way to deliver them into cells, influencing cellular behaviours and expression patterns. Among the delivery methods, viral vectors are applied due to their high efficiency. Two typical viral vectors for gene delivery include lentiviral vector for integrative transduction and adenoviral vector for transient episomal transduction, respectively. The selection and formulation of proper viral vectors applied to cells can modulate gene expression profiles and further impact the downstream pathways. In this study, recombinant lentiviral and adenoviral vectors were co-transduced in a synovial mesenchymal stem cells (SMSCs)-based articular chondrogenic system by which two transgenes were co-delivered - the gene for transforming growth factor (TGF)β3, to facilitate SMSC chondrogenesis, and the gene for small hairpin RNA (shRNA), targeting the mRNA of type I collagen (Col I) α1 chain to silence Col I expression and minimize fibrocartilage formation. Delivery of either gene could be achieved with either lentiviral or adenoviral vectors. Therefore, co-delivery of the two transgenes via the two types of vectors was performed to determine which combination was optimal for three-dimensional (3D) articular chondrogenesis to construct articular hyaline cartilage tissue. Suppression of Col I and expression of cartilage markers, including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP), were assessed at both the transcriptome and protein phenotypic levels. It was concluded that the combination of lentiviral-mediated TGFβ3 release and adenoviral-mediated shRNA expression (LV-T + Ad-sh) generally demonstrated optimal efficacy in engineered articular cartilage with SMSCs.

  9. A Vector-Based Short Hairpin RNA Targeting Aurora B Suppresses Human Prostatic Carcinoma Growth.

    PubMed

    Cao, Mei; Qi, Panpan; Chen, Chong; Song, Liju; Wang, Xuege; Li, Ningzhe; Wu, Daoyan; Hu, Guoku; Zhao, Jian

    2017-02-01

    Aurora kinase B, playing a vital, important role in mitosis, is frequently detected to be overexpressed in many cancer cell lines and various tumor tissues, including prostatic carcinoma. Given the essential function of Aurora kinase B in mitosis and its association with tumorigenesis, it might be a drug target for prostatic carcinoma treatment. In our study, short hairpin RNA targeting Aurora kinase B was cloned into a pGPU6 plasmid vector and then transfected into human prostatic carcinoma cells. The expression level of Aurora kinase B was verified by reverse transcription-polymerase chain reaction and Western blot. At the same time, cell apoptosis was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, fluorescent staining, and flow cytometric analysis. Furthermore, prostate carcinoma cells were injected into mice to establish a tumor xenograft model. Previous studies have shown the effect of pGPU6-shAURKB plasmid on tumor growth in a prostate carcinoma xenogenic implantation model. From the study, we knew that the Aurora kinase B was significantly downregulated in prostate carcinoma cells, and cell apoptosis was also detected higher in treated groups than that in control groups. Moreover, in the prostate carcinoma xenogenic implantation model, compared with the control groups, the tumor growth was inhibited about 78.7% in the pGPU6-shAURKB plasmid-treated group, and cell apoptosis in the experimental group was notably higher than that in control groups. The average duration of tumor-bearing mice was prolonged to about 35 days. The results of experiment indicated that specific knockdown of Aurora kinase B led to prostate carcinoma cells apoptosis and inhibited tumor growth. Our data clearly confirmed that specific knockdown of Aurora kinase B expression by vector-based short hairpin RNA/liposome may be a potential new approach to treat human prostatic carcinoma.

  10. RNA interference-based therapeutics for human immunodeficiency virus HIV-1 treatment: synthetic siRNA or vector-based shRNA?

    PubMed Central

    Subramanya, Sandesh; Kim, Sang-Soo; Manjunath, N; Shankar, Premlata

    2013-01-01

    Importance of the field Despite the extraordinary clinical benefits of HAART, the prospect of life-long antiretroviral regimen poses significant practical problems, which has spurred an interest in developing new drugs and strategies to treat HIV infection and to eliminate persistent viral reservoirs. RNAi is a highly potent natural gene silencing mechanism that has emerged as a novel therapeutic possibility for HIV. Areas covered in this review Our aim is to discuss the recent progress in overcoming the hurdles for translating transient and stable RNAi enabling technologies towards clinical applications in HIV infection and the review covers literature from the past 2–3 years. What the reader will gain HIV inhibition can be achieved by transfection of chemically or enzymatically synthesized siRNAs or by DNA-based vector systems to express short hairpin RNAs (shRNAs) that are processed intracellularly into siRNA. This review compares the merits and shortcomings of the two approaches, focusing on technical and safety issues that will guide the choice of the appropriate strategy for clinical use. Take home message Introduction of synthetic siRNA into cells or its stable endogenous production using vector-driven shRNA have both been shown to effectively suppress HIV replication in vitro and in some instances in vivo. Each method has its own advantages and limitations in terms of ease of delivery, duration of silencing, emergence of escape mutants and potential toxicity. Thus, both methods appear to have potential as future therapeutics for HIV, once the technical and safety issues unique to each of the approaches are overcome. PMID:20088715

  11. Focus on RNA isolation: obtaining RNA for microRNA (miRNA) expression profiling analyses of neural tissue

    PubMed Central

    Wang, Wang-Xia; Rajeev, Bernard W.; Baldwin, Donald A.; Isett, R. Benjamin; Ren, Na; Stromberg, Arnold; Nelson, Peter T.

    2008-01-01

    MicroRNAs (miRNAs) are present in all known plant and animal tissues and appear to be somewhat concentrated in the mammalian nervous system. Many different miRNA expression profiling platforms have been described. However, relatively little research has been published to establish the importance of ‘upstream’ variables in RNA isolation for neural miRNA expression profiling. We tested whether apparent changes in miRNA expression profiles may be associated with tissue processing, RNA isolation techniques, or different cell types in the sample. RNA isolation was performed on a single brain sample using eight different RNA isolation methods, and results were correlated using a conventional miRNA microarray and then cross-referenced to Northern blots. Differing results were seen between samples obtained using different RNA isolation techniques and between microarray and Northern blot results. Another complication of miRNA microarrays is tissue-level heterogeneity of cellular composition. To investigate this phenomenon, miRNA expression profiles were determined and compared between highly-purified primary cerebral cortical cell preparations of rat primary E15–E18 neurons versus rat primary E15–E18 astrocytes. Finally, to assess the importance of dissecting human brain gray matter from subjacent white matter in cerebral cortical studies, miRNA expression profiles were compared between gray matter and immediately contiguous white matter. The results suggest that for microarray studies, cellular composition is important, and dissecting white matter from gray matter improves the specificity of the results. Based on these data, recommendations for miRNA expression profiling in neural tissues, and considerations worthy of further study, are discussed. PMID:18316046

  12. Alleviation of off-target effects from vector-encoded shRNAs via codelivered RNA decoys.

    PubMed

    Mockenhaupt, Stefan; Grosse, Stefanie; Rupp, Daniel; Bartenschlager, Ralf; Grimm, Dirk

    2015-07-28

    Exogenous RNAi triggers such as shRNAs ideally exert their activities exclusively via the antisense strand that binds and silences designated target mRNAs. However, in principle, the sense strand also possesses silencing capacity that may contribute to adverse RNAi side effects including off-target gene regulation. Here, we address this concern with a novel strategy that reduces sense strand activity of vector-encoded shRNAs via codelivery of inhibitory tough decoy (TuD) RNAs. Using various shRNAs for proof of concept, we validate that coexpression of TuDs can sequester and inactivate shRNA sense strands in human cells selectively without affecting desired antisense activities from the same shRNAs. Moreover, we show how coexpressed TuDs can alleviate shRNA-mediated perturbation of global gene expression by specifically de-repressing off-target transcripts carrying seed matches to the shRNA sense strand. Our combination of shRNA and TuD in a single bicistronic gene transfer vector derived from Adeno-associated virus (AAV) enables a wide range of applications, including gene therapies. To this end, we engineered our constructs in a modular fashion and identified simple hairpin design rules permitting adaptation to preexisting or new shRNAs. Finally, we demonstrate the power of our vectors for combinatorial RNAi strategies by showing robust suppression of hepatitis C virus (HCV) with an AAV expressing a bifunctional TuD against an anti-HCV shRNA sense strand and an HCV-related cellular miRNA. The data and tools reported here represent an important step toward the next generation of RNAi triggers with increased specificity and thus ultimately safety in humans.

  13. A novel integrative expression vector for Sulfolobus species.

    PubMed

    Choi, Kyoung-Hwa; Hwang, Sungmin; Yoon, Naeun; Cha, Jaeho

    2014-11-28

    With the purpose of facilitating the process of stable strain generation, a shuttle vector for integration of genes via a double recombination event into two ectopic sites on the Sulfolobus acidocaldarius chromosome was constructed. The novel chromosomal integration and expression vector pINEX contains a pyrE gene from S. solfataricus P2 (pyrE(sso)) as an auxotrophic selection marker, a multiple cloning site with histidine tag, the internal sequences of malE and malG for homologous recombination, and the entire region of pGEM-T vector, except for the multiple cloning region, for propagation in E. coli. For stable expression of the target gene, an α-glucosidase-producing strain of S. acidocaldarius was generated employing this vector. The malA gene (saci_1160) encoding an α-glucosidase from S. acidocaldarius fused with the glutamate dehydrogenase (gdhA(saci)) promoter and leader sequence was ligated to pINEX to generate pINEX_malA. Using the "pop-in" and "pop-out" method, the malA gene was inserted into the genome of MR31 and correct insertion was verified by colony PCR and sequencing. This strain was grown in YT medium without uracil and purified by His-tag affinity chromatography. The α-glucosidase activity was confirmed by the hydrolysis of pNPαG. The pINEX vector should be applicable in delineating gene functions in this organism.

  14. A universal expression/silencing vector in plants.

    PubMed

    Peretz, Yuval; Mozes-Koch, Rita; Akad, Fuad; Tanne, Edna; Czosnek, Henryk; Sela, Ilan

    2007-12-01

    A universal vector (IL-60 and auxiliary constructs), expressing or silencing genes in every plant tested to date, is described. Plants that have been successfully manipulated by the IL-60 system include hard-to-manipulate species such as wheat (Triticum duram), pepper (Capsicum annuum), grapevine (Vitis vinifera), citrus, and olive (Olea europaea). Expression or silencing develops within a few days in tomato (Solanum lycopersicum), wheat, and most herbaceous plants and in up to 3 weeks in woody trees. Expression, as tested in tomato, is durable and persists throughout the life span of the plant. The vector is, in fact, a disarmed form of Tomato yellow leaf curl virus, which is applied as a double-stranded DNA and replicates as such. However, the disarmed virus does not support rolling-circle replication, and therefore viral progeny single-stranded DNA is not produced. IL-60 does not integrate into the plant's genome, and the construct, including the expressed gene, is not heritable. IL-60 is not transmitted by the Tomato yellow leaf curl virus's natural insect vector. In addition, artificial satellites were constructed that require a helper virus for replication, movement, and expression. With IL-60 as the disarmed helper "virus," transactivation occurs, resulting in an inducible expressing/silencing system. The system's potential is demonstrated by IL-60-derived suppression of a viral-silencing suppressor of Grapevine virus A, resulting in Grapevine virus A-resistant/tolerant plants.

  15. Construction and expression of prokaryotic expression vectors fused with genes of Magnaporthe oryzae effector proteins and mCherry.

    PubMed

    Yang, Y Q; Wang, H; Liang, M L; Yan, J L; Liu, L; Li, C Y; Yang, J

    2015-09-09

    The aim of the current study was to investigate the prokaryotic expression of the Magnaporthe oryzae effector genes BAS1 and BAS4 fused to the fluorescent protein mCherry. Based on previous polymorphic analysis of BAS1 and BAS4 in rice blast strains using PCR, blast strains containing the PCR products of BAS1 and BAS4 were selected for liquid culture for total RNA extraction. For PCR analysis, cDNA was selected as a template to amplify the coding region of BAS1 and BAS4, the plasmid pXY201 was selected as template to amplify the mCherry sequence, and the three sequences were cloned into pMD®19-T vectors. Positive recombinant plasmids were digested using two restriction enzymes and the cleaved fragments of BAS1 and mCherry and BAS4 and mCherry were ligated to pGEX-4T-1 vectors and expression was induced using IPTG. The PCR results showed that the sequence sizes of BAS1, BAS4, and mCherry were 348, 309, and 711 bp, respectively, and these were cloned into pMD®19-T vectors. After digestion and gel purification, the fragments of BAS1 and mCherry, BAS4 and mCherry were ligated into pGEX-4T-1 vectors and expressed in Escherichia coli BL21 competent cells. The expressed proteins were approximately 60 kDa, corresponding to their theoretical size. Prokaryotic expression products of BAS1 and BAS4 fused to mCherry were presented in this study, providing a base for constructing prokaryotic expression vectors of pathogen effector genes fused to mCherry, which will contribute to further study of the subcellular localization, function, and protein interactions of these effectors.

  16. A tobamovirus expression vector for agroinfection of legumes and Nicotiana.

    PubMed

    Liu, Zun; Kearney, Christopher M

    2010-06-01

    The highest recombinant protein expression levels in plants have been achieved using tobacco mosaic virus (TMV) vectors via agroinoculation of the tobacco, Nicotiana benthamiana. These vectors have been utilized for pharmaceutical protein production and also can serve as rapid gene expression screens for proteonomics. We have constructed a similar vector based on the legume-infecting tobamovirus, sunn hemp mosaic virus (SHMV), by deleting the coat protein gene (SHMV eliminate coat protein gene or SHEC). SHEC/GFP co-agroinoculated with a 35S/p19 binary yielded 600 microg GFP/gfw (25% TSP) in N. benthamiana. In the absence of p19, SHEC/GFP expression was nearly eliminated. SHEC also yielded strong GUS production in agroinoculated Medicago trunculata, Pinto bean, cowpea, pea and lentil even without the aid of systemic infection. A full-length version (SHAC, SHMV alternate coat protein) was created by adding to SHEC the coat protein subgenomic promoter and ORF from the tobamovirus, tobacco mild green mottle virus (TMGMV). SHAC induced a slowly developing, symptomless infection of N. benthamiana and may be of use as a virus induced gene silencing (VIGS) vector.

  17. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    PubMed

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  18. Vectors for the expression of tagged proteins in Drosophila.

    PubMed

    Parker, L; Gross, S; Alphey, L

    2001-12-01

    Regulated expression systems have been extremely useful in developmental studies, allowing the expression of specific proteins in defined spatial and temporal patterns. If these proteins are fused to an appropriate molecular tag, then they can be purified or visualized without the need to raise specific antibodies. If the tag is inherently fluorescent, then the proteins can even be visualized directly, in living tissue. We have constructed a series of P element-based transformation vectors for the most widely used expression system in Drosophila, GAL4/UAS. These vectors provide a series of useful tags for antibody detection, protein purification, and/or direct visualization, together with a convenient multiple cloning site into which the cDNA of interest can be inserted.

  19. High-Throughput Construction of Intron-Containing Hairpin RNA Vectors for RNAi in Plants

    PubMed Central

    Yan, Pu; Shen, Wentao; Gao, XinZheng; Li, Xiaoying; Zhou, Peng; Duan, Jun

    2012-01-01

    With the wide use of double-stranded RNA interference (RNAi) for the analysis of gene function in plants, a high-throughput system for making hairpin RNA (hpRNA) constructs is in great demand. Here, we describe a novel restriction-ligation approach that provides a simple but efficient construction of intron-containing hpRNA (ihpRNA) vectors. The system takes advantage of the type IIs restriction enzyme BsaI and our new plant RNAi vector pRNAi-GG based on the Golden Gate (GG) cloning. This method requires only a single PCR product of the gene of interest flanked with BsaI recognition sequence, which can then be cloned into pRNAi-GG at both sense and antisense orientations simultaneously to form ihpRNA construct. The process, completed in one tube with one restriction-ligation step, produced a recombinant ihpRNA with high efficiency and zero background. We demonstrate the utility of the ihpRNA constructs generated with pRNAi-GG vector for the effective silencing of various individual endogenous and exogenous marker genes as well as two genes simultaneously. This method provides a novel and high-throughput platform for large-scale analysis of plant functional genomics. PMID:22675447

  20. Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus vector.

    PubMed Central

    Cone, R D; Weber-Benarous, A; Baorto, D; Mulligan, R C

    1987-01-01

    We introduced a human beta-globin gene into murine erythroleukemia (MEL) cells by infection with recombinant retroviruses containing the complete genomic globin sequence. The beta-globin gene was correctly regulated during differentiation, steady-state mRNA levels being induced 5- to 30-fold after treatment of the cells with the chemical inducer dimethyl sulfoxide. Studies using vectors which yield integrated proviruses lacking transcriptional enhancer sequences indicated that neither retroviral transcription nor the retroviral enhancer sequences themselves had any obvious effect on expression of the globin gene. Viral RNA expression also appeared inducible, being considerably depressed in uninduced MEL cells but approaching normal wild-type levels after dimethyl sulfoxide treatment. We provide data which suggest that the control point for both repression and subsequent activation of virus expression in MEL cells lies in the viral enhancer element. Images PMID:3029570

  1. Hybrid cytomegalovirus-U6 promoter-based plasmid vectors improve efficiency of RNA interference in zebrafish.

    PubMed

    Su, Jianguo; Zhu, Zuoyan; Xiong, Feng; Wang, Yaping

    2008-01-01

    Short hairpin RNA (shRNA) directed by RNA polymerase III (Pol III) or Pol II promoter was shown to be capable of silencing gene expression, which should permit analyses of gene functions or as a potential therapeutic tool. However, the inhibitory effect of shRNA remains problematic in fish. We demonstrated that silencing efficiency by shRNA produced from the hybrid construct composed of the CMV enhancer or entire CMV promoter placed immediately upstream of a U6 promoter. When tested the exogenous gene, silencing of an enhanced green fluorescent protein (EGFP) target gene was 89.18 +/- 5.06% for CMVE-U6 promoter group and 88.26 +/- 6.46% for CMV-U6 promoter group. To test the hybrid promoters driving shRNA efficiency against an endogenous gene, we used shRNA against no tail (NTL) gene. When vectorized in the zebrafish, the hybrid constructs strongly repressed NTL gene expression. The NTL phenotype occupied 52.09 +/- 3.06% and 51.56 +/- 3.68% for CMVE-U6 promoter and CMV-U6 promoter groups, respectively. The NTL gene expression reduced 82.17 +/- 2.96% for CMVE-U6 promoter group and 83.06 +/- 2.38% for CMV-U6 promoter group. We concluded that the CMV enhancer or entire CMV promoter locating upstream of the U6-promoter could significantly improve inhibitory effect induced by the shRNA for both exogenous and endogenous genes compared with the CMV promoter or U6 promoter alone. In contrast, the two hybrid promoter constructs had similar effects on driving shRNA.

  2. Down-regulation of survivin expression by small interfering RNA induces pancreatic cancer cell apoptosis and enhances its radiosensitivity

    PubMed Central

    Guan, Hai-Tao; Xue, Xing-Huan; Dai, Zhi-Jun; Wang, Xi-Jing; Li, Ang; Qin, Zhao-Yin

    2006-01-01

    AIM: To investigate the inhibitory effect of small interfering RNA (siRNA) on the expression of survivin in pancreatic cancer cell line PC-2 and the role of siRNA in inducing PC-2 cell apoptosis and enhancing its radiosensitivity. METHODS: A siRNA plasmid expression vector against survivin was constructed and transfected into PC-2 cells with LipofectamineTM 2000. The down regulation of survivin expression was detected by semi-quantitive RT-PCR and immunohistochemical SP method and the role of siRNA in inducing PC-2 cell apoptosis and enhancing its radiosensitivity was detected by flow cytometry. RESULTS: The sequence-specific siRNA efficiently and specifically down-regulated the expression of survivin at both mRNA and protein levels. The expression inhibition ratio was 81.25% at mRNA level detected by semi-quantitive RT-PCR and 74.24% at protein level detected by immunohistochemical method. Forty-eight hours after transfection,apoptosis was induced in 7.03% cells by siRNA and in 14.58% cells by siRNA combined with radiation. CONCLUSION: The siRNA plasmid expression vector against survivin can inhibit the expression of survivin in PC-2 cells efficiently and specifically. Inhibiting the expression of survivin can induce apoptosis of PC-2 cells and enhance its radiosensitivity significantly. RNAi against survivin is of potential value in gene therapy of pancreatic cancer. PMID:16718816

  3. [Construction of directional T vector for gene cloning and expression].

    PubMed

    Zhong, Xing; Zhai, Chao; Chen, Liang; Yu, Xiaolan; Jiang, Sijing; Yan, Hong; Yang, Dengxiang; Ma, Lixin

    2013-04-01

    Traditional T vector cloning method requires onerous procedures for identifying recombinant, and directional cloning was impossible. In order to overcome these problems, we have devised a directional T vector pETG based on pET-23a(+). For gene cloning, 7 bp partial LacO sequence was introduced into DNA fragment to reconstitute a full length LacO with Bfu I digested T vector. After transformation, blue colonies were selected on LB plate supplemented with X-gal. Restriction enzyme digestion and PCR identification showed that all blue colonies contained the directionally inserted recombinants and the recombinant efficiency was nearly 100%. We have successfully cloned 103 genes from human liver cDNA; in the study complicated procedures for screening of recombinant were not required. Eight pETG clones were picked for protein expression, and all the clones successfully produced corresponding proteins. We demonstrated that the directional T vector was successfully constructed, and it was very suitable for gene cloning and expression.

  4. Gene silencing and gene expression in phytopathogenic fungi using a plant virus vector

    PubMed Central

    Mascia, Tiziana; Nigro, Franco; Abdallah, Alì; Ferrara, Massimo; De Stradis, Angelo; Faedda, Roberto; Palukaitis, Peter; Gallitelli, Donato

    2014-01-01

    RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including phytopathogenic fungi. In such fungi, RNAi has been induced by expressing hairpin RNAs delivered through plasmids, sequences integrated in fungal or plant genomes, or by RNAi generated in planta by a plant virus infection. All these approaches have some drawbacks ranging from instability of hairpin constructs in fungal cells to difficulties in preparing and handling transgenic plants to silence homologous sequences in fungi grown on these plants. Here we show that RNAi can be expressed in the phytopathogenic fungus Colletotrichum acutatum (strain C71) by virus-induced gene silencing (VIGS) without a plant intermediate, but by using the direct infection of a recombinant virus vector based on the plant virus, tobacco mosaic virus (TMV). We provide evidence that a wild-type isolate of TMV is able to enter C71 cells grown in liquid medium, replicate, and persist therein. With a similar approach, a recombinant TMV vector carrying a gene for the ectopic expression of the green fluorescent protein (GFP) induced the stable silencing of the GFP in the C. acutatum transformant line 10 expressing GFP derived from C71. The TMV-based vector also enabled C. acutatum to transiently express exogenous GFP up to six subcultures and for at least 2 mo after infection, without the need to develop transformation technology. With these characteristics, we anticipate this approach will find wider application as a tool in functional genomics of filamentous fungi. PMID:24594602

  5. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae

    PubMed Central

    Zhang, Xin; Mysore, Keshava; Flannery, Ellen; Michel, Kristin; Severson, David W.; Zhu, Kun Yan

    2015-01-01

    SHORT ABSTRACT Here we describe a procedure for inhibiting gene function in disease vector mosquitoes through the use of chitosan/interfering RNA nanoparticles that are ingested by larvae. LONG ABSTRACT Vector mosquitoes inflict more human suffering than any other organism—and kill more than one million people each year. The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the primary African malaria vector Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti. RNA interference- (RNAi-) mediated gene silencing has been used to target genes of interest in both of these disease vector mosquito species. Here, we describe a procedure for preparation of chitosan/interfering RNA nanoparticles that are combined with food and ingested by larvae. This technically straightforward, high-throughput, and relatively inexpensive methodology, which is compatible with long double stranded RNA (dsRNA) or small interfering RNA (siRNA) molecules, has been used for the successful knockdown of a number of different genes in A. gambiae and A. aegypti larvae. Following larval feedings, knockdown, which is verified through qRT-PCR or in situ hybridization, can persist at least through the late pupal stage. This methodology may be applicable to a wide variety of mosquito and other insect species, including agricultural pests, as well as other non-model organisms. In addition to its utility in the research laboratory, in the future, chitosan, an inexpensive, non-toxic and biodegradable polymer, could potentially be utilized in the field. PMID:25867635

  6. Overcoming expression and purification problems of RhoGDI using a family of "parallel" expression vectors.

    PubMed

    Sheffield, P; Garrard, S; Derewenda, Z

    1999-02-01

    We describe the construction of expression vectors based on three of the most frequently used gene fusion affinity tags [glutathione S-transferase (GST), maltose binding protein (MBP), and the His6 peptide]. The polylinkers of pGEX4T1, pMal-c2, and a pET vector were replaced with the polylinker isolated from the baculovirus expression plasmid pFastBac. Once appropriate restriction sites have been introduced into a gene, it can be fused to all three affinity tags with little effort, allowing expression-screening experiments to be performed efficiently. We discuss the development and use of these vectors with respect to overcoming purification problems encountered for the RhoA GDP/GTP nucleotide dissociation inhibitor (RhoGDI) and their advantages over commercially available expression vectors.

  7. Using a viral vector to reveal the role of microRNA159 in disease symptom induction by a severe strain of Cucumber mosaic virus.

    PubMed

    Du, Zhiyou; Chen, Aizhong; Chen, Wenhu; Westwood, Jack H; Baulcombe, David C; Carr, John P

    2014-03-01

    In transgenic Arabidopsis (Arabidopsis thaliana), expression of the Cucumber mosaic virus (CMV) 2b silencing suppressor protein from the severe subgroup IA strain Fny disrupted microRNA (miRNA)-regulated development but orthologs from mild subgroup II strains (Q and LS) did not, explaining strain-specific differences in symptom severity. However, it is unknown which miRNAs affected by Fny2b critically affect viral symptoms. Observations that Fny2b-transgenic plants phenocopy microRNA159ab (mir159ab) mutant plants and that Fny2b altered miR159ab-regulated transcript levels suggested a role for miR159ab in elicitation of severe symptoms by Fny-CMV. Using restoration of the normal phenotype in transgenic plants expressing an artificial miRNA as a proof of concept, we developed a LS-CMV-based vector to express sequences mimicking miRNA targets. Expressing a miR159 target mimic sequence using LS-CMV depleted miR159 and induced symptoms resembling those of Fny-CMV. Suppression of Fny-CMV-induced symptoms in plants harboring mutant alleles for the miR159ab targets MYB domain protein33 (MYB33) and MYB65 confirmed the importance of this miRNA in pathogenesis. This study demonstrates the utility of a viral vector to express miRNA target mimics to facilitate functional studies of miRNAs in plants.

  8. EASE vectors for rapid stable expression of recombinant antibodies.

    PubMed

    Aldrich, Teri L; Viaje, Aurora; Morris, Arvia E

    2003-01-01

    Over the past 10 years, monoclonal antibodies and antibody fragments have become an increasingly important source of therapeutic molecules in the biotechnology industry. Drug development strategies rely on screening large numbers of candidate molecules in search of an optimized drug candidate. This strategy requires efficient production of ten to a few hundred milligrams of candidate molecules for screening in bioassays and animal models. Typically, this amount of recombinant protein expression involves large numbers of transient transfections or cloning of a recombinant cell line. Both of these approaches are time-consuming and labor-intensive. In this report, we describe the application of an EASE vector system that is capable of generating stable pools of transfected Chinese hamster ovary cells. These pooled populations of cells produce high quantities of antibody candidates without labor-intensive cloning in a 3-5 week time frame. When an optimal drug candidate has been selected, pools generated with EASE-containing vectors can also be used in subsequent cloning steps to make cell lines with improved expression levels. We demonstrate that EASE increases expression in nonamplified pools in addition to increasing amplification and viability of clonal cell lines generated with the EASE-containing vectors compared with pools and cell lines generated without EASE.

  9. Comparative genomics of small RNA regulatory pathway components in vector mosquitoes

    PubMed Central

    Campbell, Corey L; Black, William C; Hess, Ann M; Foy, Brian D

    2008-01-01

    Background Small RNA regulatory pathways (SRRPs) control key aspects of development and anti-viral defense in metazoans. Members of the Argonaute family of catalytic enzymes degrade target RNAs in each of these pathways. SRRPs include the microRNA, small interfering RNA (siRNA) and PIWI-type gene silencing pathways. Mosquitoes generate viral siRNAs when infected with RNA arboviruses. However, in some mosquitoes, arboviruses survive antiviral RNA interference (RNAi) and are transmitted via mosquito bite to a subsequent host. Increased knowledge of these pathways and functional components should increase understanding of the limitations of anti-viral defense in vector mosquitoes. To do this, we compared the genomic structure of SRRP components across three mosquito species and three major small RNA pathways. Results The Ae. aegypti, An. gambiae and Cx. pipiens genomes encode putative orthologs for all major components of the miRNA, siRNA, and piRNA pathways. Ae. aegypti and Cx. pipiens have undergone expansion of Argonaute and PIWI subfamily genes. Phylogenetic analyses were performed for these protein families. In addition, sequence pattern recognition algorithms MEME, MDScan and Weeder were used to identify upstream regulatory motifs for all SRRP components. Statistical analyses confirmed enrichment of species-specific and pathway-specific cis-elements over the rest of the genome. Conclusion Analysis of Argonaute and PIWI subfamily genes suggests that the small regulatory RNA pathways of the major arbovirus vectors, Ae. aegypti and Cx. pipiens, are evolving faster than those of the malaria vector An. gambiae and D. melanogaster. Further, protein and genomic features suggest functional differences between subclasses of PIWI proteins and provide a basis for future analyses. Common UCR elements among SRRP components indicate that 1) key components from the miRNA, siRNA, and piRNA pathways contain NF-kappaB-related and Broad complex transcription factor binding sites

  10. [Construction of nonsense-mutated eukaryotic expression vector of factor IX gene and its expression in COS-7 cells].

    PubMed

    Nie, Xin; Yang, Lin-Hua; Chai, Bao-Feng; Shen, Quan; Zhang, Yuan; Zhang, Yao-Fang; Chen, Jian-Fang

    2010-06-01

    The purpose of this study was to construct 4 types of nonsense-mutated eukaryotic expression plasmids of fIX gene, using pcDNA3.1 plasmid containing fIX cDNA as template, and to identify, then to perform their expression in COS-7 cells. These stop mutants constructed by site-directed mutagenesis based on PCR, and further confirmed by DNA sequencing. COS-7 cells were transfected with either the wild-type or mutated fIX expression constructs, then the relative expression levels of fIX mRNA were detected by real time fluorescent quantitative PCR. The result showed that except the designed sites, there were no other nucleotide mutation in the sequences of four nonsense mutants. The results of real time PCR proved that the nonsense-mutated vectors can be effectively expressed in COS-7 cells. It is concluded that the nonsense-mutated eukaryotic expression vectors of fIX gene have been successfully constructed and can express in COS-7 cells, which provides the material basis for further researches on mechanism and treatment of FIX deficiency and the function defects caused by nonsense mutation.

  11. TMV-Gate vectors: Gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins

    PubMed Central

    Kagale, Sateesh; Uzuhashi, Shihomi; Wigness, Merek; Bender, Tricia; Yang, Wen; Borhan, M. Hossein; Rozwadowski, Kevin

    2012-01-01

    Plant viral expression vectors are advantageous for high-throughput functional characterization studies of genes due to their capability for rapid, high-level transient expression of proteins. We have constructed a series of tobacco mosaic virus (TMV) based vectors that are compatible with Gateway technology to enable rapid assembly of expression constructs and exploitation of ORFeome collections. In addition to the potential of producing recombinant protein at grams per kilogram FW of leaf tissue, these vectors facilitate either N- or C-terminal fusions to a broad series of epitope tag(s) and fluorescent proteins. We demonstrate the utility of these vectors in affinity purification, immunodetection and subcellular localisation studies. We also apply the vectors to characterize protein-protein interactions and demonstrate their utility in screening plant pathogen effectors. Given its broad utility in defining protein properties, this vector series will serve as a useful resource to expedite gene characterization efforts. PMID:23166857

  12. TMV-Gate vectors: gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins.

    PubMed

    Kagale, Sateesh; Uzuhashi, Shihomi; Wigness, Merek; Bender, Tricia; Yang, Wen; Borhan, M Hossein; Rozwadowski, Kevin

    2012-01-01

    Plant viral expression vectors are advantageous for high-throughput functional characterization studies of genes due to their capability for rapid, high-level transient expression of proteins. We have constructed a series of tobacco mosaic virus (TMV) based vectors that are compatible with Gateway technology to enable rapid assembly of expression constructs and exploitation of ORFeome collections. In addition to the potential of producing recombinant protein at grams per kilogram FW of leaf tissue, these vectors facilitate either N- or C-terminal fusions to a broad series of epitope tag(s) and fluorescent proteins. We demonstrate the utility of these vectors in affinity purification, immunodetection and subcellular localisation studies. We also apply the vectors to characterize protein-protein interactions and demonstrate their utility in screening plant pathogen effectors. Given its broad utility in defining protein properties, this vector series will serve as a useful resource to expedite gene characterization efforts.

  13. Design, synthesis and evaluation of VEGF-siRNA/CRS as a novel vector for gene delivery

    PubMed Central

    Zhao, Wen; Zhang, Yifan; Jiang, Xueyun; Cui, Chunying

    2016-01-01

    Small interfering RNA (siRNA) delivery is a prospective method in gene therapy, but it has application limitations such as negative charge, water solubility and high molecular weight. In this study, a safe and efficient nano-vector, CRS, was designed and synthesized to facilitate siRNA delivery. Physical and chemical properties of VEGF-siRNA/CRS were characterized by methods including scanning electron microscopy (SEM), transmission electron microscopy, zeta potential (ζ) measurement, drug-releasing rate measurement, gel electrophoresis and confocal microscopy. The biological activities were evaluated using cell viability assay, gene-silencing efficacy assay in vitro, real-time polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA) and antitumor tests in vivo. The mean nanoparticle size of VEGF-siRNA/CRS was 121.4±0.3 nm with positive ζ potential of 7.69±4.47 mV. The release rate of VEGF-siRNA from VEGF-siRNA/CRS was 82.50% sustained for 48 h in Tris-ethylenediaminetetraacetic acid buffer (pH 8.0). Real-time polymerase chain reaction was used to analyze the efficiency of the transfection, and the result showed that VEGF mRNA expression had been knocked down by 82.36%. The expression of VEGF protein was also recorded to be downregulated to 14.83% using ELISA. The results of cytotoxicity measured by Cell Counting Kit-8 assay showed that VEGF-siRNA/CRS had significant inhibitory effect on HeLa cells. The results of antitumor assays indicated that VEGF-siRNA/CRS exhibited tumor cell growth inhibition in vivo. The results demonstrated that VEGF-siRNA could be delivered and transported by the designed carrier, while siRNA could be released constantly and led to an increasing gene-silencing effect against VEGF gene. In conclusion, VEGF-siRNA/CRS is a promising carrier for siRNA delivery, and further studies are warranted. PMID:27920500

  14. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    USDA-ARS?s Scientific Manuscript database

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p <0.05) differentially expressed after cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  15. Lentivirus vectors construction of SiRNA targeting interference GPC3 gene and its biological effects on liver cancer cell lines Huh-7.

    PubMed

    Lei, Chang-Jiang; Yao, Chun; Pan, Qing-Yun; Long, Hao-Cheng; Li, Lei; Zheng, Shu-Ping; Zeng, Cheng; Huang, Jian-Bin

    2014-10-01

    To build GPC3 gene short hairpin interference RNA (shRNA) slow virus vector, observe expression of Huh-7 GPC3 gene in human liver cell line proliferation apoptosis and the effect of GPC3 gene influencing on liver cancer cell growth, and provide theoretical basis for gene therapy of liver cancer. Hepatocellular carcinoma cell line Huh-7 was transfected by a RNA interference technique. GPC3 gene expression in a variety of liver cancer cell lines was detected by fluorescence quantitative PCR. Targeted GPC3 gene sequences of small interfering RNA (siRNA) PGC-shRNA-GPC3 were restructured. Stable expression cell lines of siRNA were screened and established with the help of liposomes (lipofectamine(TM2000)) as carrier transfection of human liver cell lines. In order to validate siRNA interference efficiency, GPC3 siRNA mRNA expression was detected after transfection by using RT-PCR and Western blot. The absorbance value of the cells of blank group, untransfection group and transfection group, the cell cycle and cell apoptosis were calculated, and effects of GPC3 gene on Huh-7 cell proliferation and apoptosis were observed. In the liver cancer cell lines Huh-7, GPC3 gene showed high expression. PGC-shRNA-GPC3 recombinant plasmid was constructed successfully via sequencing validation. Stable recombinant plasmid transfected into liver cancer cell lines Huh-7 can obviously inhibit GPC3 mRNA expression level. The targeted GPC3 siRNA can effectively inhibit the expression of GPC3. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  16. Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries

    PubMed Central

    Terrón-González, L.; Medina, C.; Limón-Mortés, M. C.; Santero, E.

    2013-01-01

    The extraordinary potential of metagenomic functional analyses to identify activities of interest present in uncultured microorganisms has been limited by reduced gene expression in surrogate hosts. We have developed vectors and specialized E. coli strains as improved metagenomic DNA heterologous expression systems, taking advantage of viral components that prevent transcription termination at metagenomic terminators. One of the systems uses the phage T7 RNA-polymerase to drive metagenomic gene expression, while the other approach uses the lambda phage transcription anti-termination protein N to limit transcription termination. A metagenomic library was constructed and functionally screened to identify genes conferring carbenicillin resistance to E. coli. The use of these enhanced expression systems resulted in a 6-fold increase in the frequency of carbenicillin resistant clones. Subcloning and sequence analysis showed that, besides β-lactamases, efflux pumps are not only able contribute to carbenicillin resistance but may in fact be sufficient by themselves to convey carbenicillin resistance. PMID:23346364

  17. Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression in a variety of organisms, including insects, vertebrates, and plants. miRNAs play important roles in cell development and differentiation as well as in the cellular response to stress and infection. To date, there are limited reports of miRNA identification in mosquitoes, insects that act as essential vectors for the transmission of many human pathogens, including flaviviruses. West Nile virus (WNV) and dengue virus, members of the Flaviviridae family, are primarily transmitted by Aedes and Culex mosquitoes. Using high-throughput deep sequencing, we examined the miRNA repertoire in Ae. albopictus cells and Cx. quinquefasciatus mosquitoes. Results We identified a total of 65 miRNAs in the Ae. albopictus C7/10 cell line and 77 miRNAs in Cx. quinquefasciatus mosquitoes, the majority of which are conserved in other insects such as Drosophila melanogaster and Anopheles gambiae. The most highly expressed miRNA in both mosquito species was miR-184, a miRNA conserved from insects to vertebrates. Several previously reported Anopheles miRNAs, including miR-1890 and miR-1891, were also found in Culex and Aedes, and appear to be restricted to mosquitoes. We identified seven novel miRNAs, arising from nine different precursors, in C7/10 cells and Cx. quinquefasciatus mosquitoes, two of which have predicted orthologs in An. gambiae. Several of these novel miRNAs reside within a ~350 nt long cluster present in both Aedes and Culex. miRNA expression was confirmed by primer extension analysis. To determine whether flavivirus infection affects miRNA expression, we infected female Culex mosquitoes with WNV. Two miRNAs, miR-92 and miR-989, showed significant changes in expression levels following WNV infection. Conclusions Aedes and Culex mosquitoes are important flavivirus vectors. Recent advances in both mosquito genomics and high-throughput sequencing technologies enabled

  18. Algevir: An Expression System for Microalgae Based on Viral Vectors.

    PubMed

    Bañuelos-Hernández, Bernardo; Monreal-Escalante, Elizabeth; González-Ortega, Omar; Angulo, Carlos; Rosales-Mendoza, Sergio

    2017-01-01

    The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus) and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin), which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture), which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins.

  19. The specificity of long noncoding RNA expression.

    PubMed

    Gloss, Brian S; Dinger, Marcel E

    2016-01-01

    Over the last decade, long noncoding RNAs (lncRNAs) have emerged as a fundamental molecular class whose members play pivotal roles in the regulation of the genome. The observation of pervasive transcription of mammalian genomes in the early 2000s sparked a revolution in the understanding of information flow in eukaryotic cells and the incredible flexibility and dynamic nature of the transcriptome. As a molecular class, distinct loci yielding lncRNAs are set to outnumber those yielding mRNAs. However, like many important discoveries, the road leading to uncovering this diverse class of molecules that act through a remarkable repertoire of mechanisms, was not a straight one. The same characteristic that most distinguishes lncRNAs from mRNAs, i.e. their developmental-stage, tissue-, and cell-specific expression, was one of the major impediments to their discovery and recognition as potentially functional regulatory molecules. With growing numbers of lncRNAs being assigned to biological functions, the specificity of lncRNA expression is now increasingly recognized as a characteristic that imbues lncRNAs with great potential as biomarkers and for the development of highly targeted therapeutics. Here we review the history of lncRNA research and how technological advances and insight into biological complexity have gone hand-in-hand in shaping this revolution. We anticipate that as increasing numbers of these molecules, often described as the dark matter of the genome, are characterized and the structure-function relationship of lncRNAs becomes better understood, it may ultimately be feasible to decipher what these non-(protein)-coding genes encode. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors.

    PubMed

    Felberbaum, Rachael S

    2015-05-01

    The baculovirus expression vector system (BEVS) platform has become an established manufacturing platform for the production of viral vaccines and gene therapy vectors. Nine BEVS-derived products have been approved - four for human use (Cervarix(®), Provenge(®), Glybera(®) and Flublok(®)) and five for veterinary use (Porcilis(®) Pesti, BAYOVAC CSF E2(®), Circumvent(®) PCV, Ingelvac CircoFLEX(®) and Porcilis(®) PCV). The BEVS platform offers many advantages, including manufacturing speed, flexible product design, inherent safety and scalability. This combination of features and product approvals has previously attracted interest from academic researchers, and more recently from industry leaders, to utilize BEVS to develop next generation vaccines, vectors for gene therapy, and other biopharmaceutical complex proteins. In this review, we explore the BEVS platform, detailing how it works, platform features and limitations and important considerations for manufacturing and regulatory approval. To underscore the growth in opportunities for BEVS-derived products, we discuss the latest product developments in the gene therapy and influenza vaccine fields that follow in the wake of the recent product approvals of Glybera(®) and Flublok(®), respectively. We anticipate that the utility of the platform will expand even further as new BEVS-derived products attain licensure. Finally, we touch on some of the areas where new BEVS-derived products are likely to emerge.

  1. [Gene expression of AAV-ITR ssDNA mini vector in skeletal muscle of mice].

    PubMed

    Zhu, Dongqin; Zhang, Yun; Liu, Xiaomei; Zhang, Chun

    2014-11-01

    AAV-ITR single strand DNA mini vector (AAV-ITR ssDNA mini vector) is a novel gene expression vector based on AAV-ITR. We have shown efficient gene expression of AAV-ITR ssDNA mini vector in HEK 293T. Here, we studied the efficacy of gene expression of AAV-ITR ssDNA mini vector in vivo. We injected the skeletal muscle of ICR mice separately with equal molars of AAV-ITR ssDNA mini vector, ITR mutated AAV-ITR single strand DNA mini vector (AAV-ITRmm ssDNA mutant vector), AAV-ITR dsDNA and pUC57-minivector-GFP, combined with TurboFect. Florescence microscope analysis of skeletal muscle section shows that AAV-ITR ssDNA mini vector had higher expression efficiency and longer expression period. We extracted DNA from the muscle three months after injection and quantified three vectors by Real-time PCR. RT-PCR analysis shows that there were highest copy numbers of AAV-ITR ssDNA mini vector existing in muscle. Stable existing of AAV- TR ssDNA mini vector in muscle could be the molecular basis of long term gene expression of the vector. The results suggest that AAV-ITR ssDNA mini vector might be a promising vector for gene therapy.

  2. A Molecular Toolbox for Rapid Generation of Viral Vectors to Up- or Down-Regulate Neuronal Gene Expression in vivo

    PubMed Central

    White, Melanie D.; Milne, Ruth V. J.; Nolan, Matthew F.

    2011-01-01

    We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins, and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV) or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1, and Kir3.2) and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miRNA). We show that AAV assembled to express HCN1 miRNA produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miRNA with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience. PMID:21772812

  3. Silencing effect of lentiviral vectors encod-ing shRNA of Herp on endoplasmic reticulum stress and inflammatory responses in RAW 264.7 macrophages.

    PubMed

    Chen, F L; Li, Q; Zhang, J Y; Lei, L J; Zhang, Z; Mahmoud, T N; Wang, X G; Lin, P F; Jin, Y P; Wang, A H

    2015-12-21

    Herp, a mammalian protein with a ubiquitin-like domain, can be strongly upregulated by endoplasmic reticulum (ER) stress during ER-associated protein degradation. However, the other cellular functions of Herp remain unclear. We explored the effect of Herp on ER stress and inflammatory responses in RAW 264.7 macrophages that had been exposed to tunicamycin or thapsigargin. We successfully constructed recombinant lentiviral vectors for Herp short-hairpin RNA (shRNA) expression to better understand the contribution made by Herp to other signaling pathways. Western blotting revealed that the recombinant Herp lentiviral shRNA vector significantly inhibited the expression of the Herp protein in the thapsigargin-treated RAW 264.7 macrophages. The reverse transcription quantitative polymerase chain reaction results showed that knockdown Herp inhibited the expression of ER stress-related genes during exposure to tunicamycin or thapsigargin. In RAW 264.7 macrophages, knockdown Herp markedly attenuated the expression of inflammatory cytokines when exposed to tunicamycin; however, it strongly enhanced the expression of inflammatory cytokines when exposed to thapsigargin. We concluded that Herp lentiviral shRNA vectors had been successfully constructed; knockdown Herp inhibited ER stress and had a different effect on inflammatory responses in RAW 264.7 macrophages depending on whether they were exposed to tunicamycin or thapsigargin.

  4. [Construction of eukaryotic expression vector encoding ACRBP and its expression in hepatocarcinoma cells].

    PubMed

    Luo, Bin; Yun, Xiang; Lin, Yong-da; Xiao, Shao-wen; Yan, Guang-hua; He, Shao-jian; He, Shu-jia; Chen, Fang; Xie, Xiao-xun

    2011-10-01

    To construct the eukaryotic expression vector pEGFP-N1/ACRBP and stably express ACRBP in human hepatocarcinoma cells, providing functional clues for ACRBP. A recombinant plasmid pMAL-C2/ACRBP was used as a template to amplify ACRBP cDNA. The PCR product was ligated into an eukaryotic expression vector pEGFP-N1 to construct a recombinant plasmid pEGFP-N1/ACRBP. Then the pEGFP-N1/ACRBP was transfected by Fugene HD into ACRBP-negative HepG2 cells. The stably transfected clones were selected by G418. RT-PCR and immunohistochemistry were used to detect the expression of ACRBP in HepG2 cells. The eukaryotic expression vector pEGFP-N1/ACRBP was constructed and confirmed by sequencing. The stably transfected HepG2 cells expressed ACRBP. The eukaryotic expression vector pEGFP-N1/ACRBP has been successfully constructed and transfected into HepG2 cells, resulting in stable expression of ACRBP.

  5. siRNA liposome-gold nanorod vectors for multispectral optoacoustic tomography theranostics

    NASA Astrophysics Data System (ADS)

    Taruttis, Adrian; Lozano, Neus; Nunes, Antonio; Jasim, Dhifaf A.; Beziere, Nicolas; Herzog, Eva; Kostarelos, Kostas; Ntziachristos, Vasilis

    2014-10-01

    Therapeutic applications of gene silencing using siRNA have seen increasing interest over the past decade. The optimization of the delivery and biodistribution of siRNA using liposome-gold nanorod (AuNRs) nanoscale carriers can greatly benefit from adept imaging methods that can visualize the time-resolved delivery performance of such vectors. In this work, we describe the effect of AuNR length incorporated with liposomes and show their complexation with siRNA as a novel gene delivery vehicle. We demonstrate the application of multispectral optoacoustic tomography (MSOT) to longitudinally visualize the localisation of siRNA carrying liposome-AuNR hybrids within tumors. Combination of in vivo MSOT with ex vivo fluorescence cryo-slice imaging offers further insight into the siRNA transport and activity obtained.Therapeutic applications of gene silencing using siRNA have seen increasing interest over the past decade. The optimization of the delivery and biodistribution of siRNA using liposome-gold nanorod (AuNRs) nanoscale carriers can greatly benefit from adept imaging methods that can visualize the time-resolved delivery performance of such vectors. In this work, we describe the effect of AuNR length incorporated with liposomes and show their complexation with siRNA as a novel gene delivery vehicle. We demonstrate the application of multispectral optoacoustic tomography (MSOT) to longitudinally visualize the localisation of siRNA carrying liposome-AuNR hybrids within tumors. Combination of in vivo MSOT with ex vivo fluorescence cryo-slice imaging offers further insight into the siRNA transport and activity obtained. Electronic supplementary information (ESI) available: Experimental section and dark-field microscopy in both tumors 24 h after injection of the complex have been included. See DOI: 10.1039/c4nr04164j

  6. Deciphering the impact of parameters influencing transgene expression kinetics after repeated cell transduction with integration-deficient retroviral vectors.

    PubMed

    Schott, Juliane W; Jaeschke, Nico M; Hoffmann, Dirk; Maetzig, Tobias; Ballmaier, Matthias; Godinho, Tamaryin; Cathomen, Toni; Schambach, Axel

    2015-05-01

    Lentiviral and gammaretroviral vectors are state-of-the-art tools for transgene expression within target cells. The integration of these vectors can be deliberately suppressed to derive a transient gene expression system based on extrachromosomal circular episomes with intact coding regions. These episomes can be used to deliver DNA templates and to express RNA or protein. Importantly, transient gene transfer avoids the genotoxic side effects of integrating vectors. Restricting their applicability, episomes are rapidly lost upon dilution in dividing target cells. Addressing this limitation, we could establish comparably stable percentages of transgene-positive cells over prolonged time periods in proliferating cells by repeated transductions. Flow cytometry was applied for kinetic analyses to decipher the impact of individual parameters on the kinetics of fluoroprotein expression after episomal retransduction and to visualize sequential and simultaneous transfer of heterologous fluoroproteins. Expression windows could be exactly timed by the number of transduction steps. The kinetics of signal loss was affected by the cell proliferation rate. The transfer of genes encoding fluoroproteins with different half-lives revealed a major impact of protein stability on temporal signal distribution and accumulation, determining optimal retransduction intervals. In addition, sequential transductions proved broad applicability in different cell types and using different envelope pseudotypes without receptor overload. Stable percentages of cells coexpressing multiple transgenes could be generated upon repeated coadministration of different episomal vectors. Alternatively, defined patterns of transgene expression could be recapitulated by sequential transductions. Altogether, we established a methodology to control and adjust a temporally defined window of transgene expression using retroviral episomal vectors. Combined with the highly efficient cell entry of these vectors while

  7. Vector-Borne Transmission Imposes a Severe Bottleneck on an RNA Virus Population

    PubMed Central

    Forrester, Naomi L.; Guerbois, Mathilde; Seymour, Robert L.; Spratt, Heidi; Weaver, Scott C.

    2012-01-01

    RNA viruses typically occur in genetically diverse populations due to their error-prone genome replication. Genetic diversity is thought to be important in allowing RNA viruses to explore sequence space, facilitating adaptation to changing environments and hosts. Some arboviruses that infect both a mosquito vector and a mammalian host are known to experience population bottlenecks in their vectors, which may constrain their genetic diversity and could potentially lead to extinction events via Muller's ratchet. To examine this potential challenge of bottlenecks for arbovirus perpetuation, we studied Venezuelan equine encephalitis virus (VEEV) enzootic subtype IE and its natural vector Culex (Melanoconion) taeniopus, as an example of a virus-vector interaction with a long evolutionary history. Using a mixture of marked VEEV clones to infect C. taeniopus and real-time RT-PCR to track these clones during mosquito infection and dissemination, we observed severe bottleneck events that resulted in a significant drop in the number of clones present. At higher initial doses, the midgut was readily infected and there was a severe bottleneck at the midgut escape. Following a lower initial dose, the major bottleneck occurred at initial midgut infection. A second, less severe bottleneck was identified at the salivary gland infection stage following intrathoracic inoculation. Our results suggest that VEEV consistently encounters bottlenecks during infection, dissemination and transmission by its natural enzootic vector. The potential impacts of these bottlenecks on viral fitness and transmission, and the viral mechanisms that prevent genetic drift leading to extinction, deserve further study. PMID:23028310

  8. Short hairpin RNA targeted to dihydrofolate reductase enhances the immunoglobulin G expression in gene-amplified stable Chinese hamster ovary cells.

    PubMed

    Wu, Suh-Chin; Hong, Willy W L; Liu, Jin-Hwang

    2008-09-08

    The dihydrofolate reductase (dhfr)/methotrexate (MTX) selection is a common method to conduct gene amplification in stable clones of Chinese hamster ovary (CHO) cells. We previously reported the use of a short hairpin RNA (shRNA) vector targeted to the dhfr gene resulted in improving the intracellular antigen expression in gene-amplified stable CHO cells [Hong, W.W., Wu, S.C., 2007. A novel RNA silencing vector to improve antigen expression and stability in Chinese hamster ovary cells. Vaccine 25 (20), 4103-4111]. Here we investigated the use of the dhfr-targeted shRNA vector for immunoglobulin G (IgG) expression in gene-amplified stable CHO cells. With the use of the dhfr-targeted shRNA vector, the gene-amplified CHO/dhFr(-) cells were found to increase IgG expression at 1.0 microM MTX by more than 100% and to improve the genomic stability of IgG expression in MTX-free cultures by approximately 30%. The use of the dhfr-targeted shRNA vector can enhance the IgG expression in the gene-amplified stable CHO cells and uphold the IgG expression in MTX-free cultures. Utilizing the dhfr-targeted shRNA vector may provide an alternative way to maneuver CHO cell factories for IgG production in cultures.

  9. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    PubMed

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering.

  10. [Effect of Intron Orientation on the Expression of Transgene Imposed by MAR Expression Vector in Stably Recombinant CHO Cells].

    PubMed

    Li, Qin; Zhao, Chun-peng; Wang, Xiao-yin; Sun, Qiu-li; Wang, Tian-yun

    2016-03-01

    To determine the effect of intron orientation on the transgene expression level imposed by matrix attachment region (MAR) expression vector. The MAR of β-globin was amplified by PCR, and then cloned into MAR expression vectors. An intron sequence was digested with restriction enzyme, ligated to the MAR expression vector in reverse orientation, and then transfected into Chinese hamster ovary (CHO) cells. The transfected stable cells were screened by G418. The level of chloramphenicol acetyltransferase (CAT) gene expression was analyzed by ELISA method. The transgene expression levels of CHO cells with the two expression vectors with a positive intron or without MAR were higher than that of CHO cells with an expression vector with reverse intron (P < 0.05). MAR did not improve transgene expression with reverse intron presence. Different orientation of intron can affect transgene expression in recombinant CHO cells. The transgene expression level can be increased using positive intron and MAR.

  11. [Effects of seven RNA silencing suppressors on heterologous expression of green fluorescence protein expression mediated by a plant virus-based system in Nicotiana benthamiana].

    PubMed

    Wang, Sheng; Dong, Jie; Cao, Min; Mu, Hongzhen; Ding, Guoping; Zhang, Hong

    2012-11-01

    To test the effects of 7 virus-encoded RNA silencing suppressors (RSSs) for enhancement of a plant virus-based vector system-mediated heterologous expression of green fluorescence protein (GFP) in Nicotiana benthamiana. Seven transient expression vectors for the 7 RSSs were constructed and co-inoculated on the leaves of Nicotiana benthamiana with PVXdt-GFP vector, a novel Potato virus X-based plant expression vector, through agroinfiltration. The protein and mRNA expression levels of the reporter gene GFP in the co-inoculated Nicotiana leaves were examined by Western blotting, ELISA and RT-qPCR to assess the effect of the RSSs for GFP expression enhancement. The 7 RSSs differed in the degree and duration of enhancement of heterologous GFP expression, and the p19 protein of Tomato bushy stunt virus (TBSV) induced the highest expression of GFP. African cassava mosaic virus AC2 protein and Rice yellow mettle virus P1 protein produced no obvious enhancement GFP expression. Transient co-expression of RSSs suppresses host silencing response to allow high-level and long-term expression of heterologous genes in plant, but the optimal RSS has to be identified for each plant virus-based expression vector system.

  12. Combinatorial control of suicide gene expression by tissue-specific promoter and microRNA regulation for cancer therapy.

    PubMed

    Wu, Chunxiao; Lin, Jiakai; Hong, Michelle; Choudhury, Yukti; Balani, Poonam; Leung, Doreen; Dang, Lam H; Zhao, Ying; Zeng, Jieming; Wang, Shu

    2009-12-01

    Transcriptional targeting using a tissue-specific cellular promoter is proving to be a powerful means for restricting transgene expression in targeted tissues. In the context of cancer suicide gene therapy, this approach may lead to cytotoxic effects in both cancer and nontarget normal cells. Considering microRNA (miRNA) function in post-transcriptional regulation of gene expression, we have developed a viral vector platform combining cellular promoter-based transcriptional targeting with miRNA regulation for a glioma suicide gene therapy in the mouse brain. The therapy employed, in a single baculoviral vector, a glial fibrillary acidic protein (GFAP) gene promoter and the repeated target sequences of three miRNAs that are enriched in astrocytes but downregulated in glioblastoma cells to control the expression of the herpes simplex virus thymidine kinase (HSVtk) gene. This resulted in significantly improved in vivo selectivity over the use of a control vector without miRNA regulation, enabling effective elimination of human glioma xenografts while producing negligible toxic effects on normal astrocytes. Thus, incorporating miRNA regulation into a transcriptional targeting vector adds an extra layer of security to prevent off-target transgene expression and should be useful for the development of gene delivery vectors with high targeting specificity for cancer therapy.

  13. Integrated analysis of microRNA and mRNA expression profiles in HBx-expressing hepatic cells

    PubMed Central

    Chen, Ruo-Chan; Wang, Juan; Kuang, Xu-Yuan; Peng, Fang; Fu, Yong-Ming; Huang, Yan; Li, Ning; Fan, Xue-Gong

    2017-01-01

    AIM To identify the miRNA-mRNA regulatory network in hepatitis B virus X (HBx)-expressing hepatic cells. METHODS A stable HBx-expressing human liver cell line L02 was established. The mRNA and miRNA expression profiles of L02/HBx and L02/pcDNA liver cells were identified by RNA-sequencing analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed to investigate the function of candidate biomarkers, and the relationship between miRNA and mRNA was studied by network analysis. RESULTS Compared with L02/pcDNA cells, 742 unregulated genes and 501 downregulated genes were determined as differentially expressed in L02/HBx cells. Gene ontology analysis suggested that the differentially expressed genes were relevant to different biological processes. Concurrently, 22 differential miRNAs were also determined in L02/HBx cells. Furthermore, integrated analysis of miRNA and mRNA expression profiles identified a core miRNA-mRNA regulatory network that is correlated with the carcinogenic role of HBx. CONCLUSION Collectively, the miRNA-mRNA network-based analysis could be useful to elucidate the potential role of HBx in liver cell malignant transformation and shed light on the underlying molecular mechanism and novel therapy targets for hepatocellular carcinoma. PMID:28348484

  14. Novel redox nanomedicine improves gene expression of polyion complex vector

    NASA Astrophysics Data System (ADS)

    Toh, Kazuko; Yoshitomi, Toru; Ikeda, Yutaka; Nagasaki, Yukio

    2011-12-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  15. Analysis of Microarray and RNA-seq Expression Profiling Data.

    PubMed

    Hung, Jui-Hung; Weng, Zhiping

    2017-03-01

    Gene expression profiling refers to the simultaneous measurement of the expression levels of a large number of genes (often all genes in a genome), typically in multiple experiments spanning a variety of cell types, treatments, or environmental conditions. Expression profiling is accomplished by assaying mRNA levels with microarrays or next-generation sequencing technologies (RNA-seq). This introduction describes normalization and analysis of data generated from microarray or RNA-seq experiments.

  16. Chitosan Hydrogel as siRNA vector for prolonged gene silencing

    PubMed Central

    2014-01-01

    Background The periodontitis is one of the most prevalent diseases with alveolar resorption in adult people and is the main cause of the tooth loss. To investigate the possibility for protecting the loss of alveolar bone in periodontal diseases, a RNAi-based therapeutic strategy is applied for silencing RANK signaling using thermosensitive chitosan hydrogel as siRNA reservoir and vector. Results The thermosensitive chitosan hydrogel was formed from solution (PH = 7.2, at 4°C) at 37°C within 8 minutes. The degradation rates of hydrogel were ~50% and 5% (W remaining/W beginning) in the presence and absence of lysozyme, respectively, over a period of 20 days. The concurrent cumulative in vitro release of Cy3-labeled siRNA from the hydrogel was 50% and 17% over 14 days, with or without lysozyme digestion, respectively. High cell viability (>88%) was maintained for cells treated with hydrogel loaded with RANK specific siRNA and RANK knockdown was prolonged for up to 9 days when cells were incubated with siRNA/hydrogel complex. In vivo release of siRNA was investigated in a subcutaneous delivery setup in mice. The fluorescent signal from siRNA within hydrogel was remained for up to 14 days compared to less than one day for siRNA alone. Conclusions Chitosan hydrogel can potentially serve as a suitable reservoir and vector for local sustained delivery of siRNA in potential therapy. PMID:24946934

  17. The centrality of RNA for engineering gene expression

    PubMed Central

    Chappell, James; Takahashi, Melissa K; Meyer, Sarai; Loughrey, David; Watters, Kyle E; Lucks, Julius

    2013-01-01

    Synthetic biology holds promise as both a framework for rationally engineering biological systems and a way to revolutionize how we fundamentally understand them. Essential to realizing this promise is the development of strategies and tools to reliably and predictably control and characterize sophisticated patterns of gene expression. Here we review the role that RNA can play towards this goal and make a case for why this versatile, designable, and increasingly characterizable molecule is one of the most powerful substrates for engineering gene expression at our disposal. We discuss current natural and synthetic RNA regulators of gene expression acting at key points of control – transcription, mRNA degradation, and translation. We also consider RNA structural probing and computational RNA structure predication tools as a way to study RNA structure and ultimately function. Finally, we discuss how next-generation sequencing methods are being applied to the study of RNA and to the characterization of RNA's many properties throughout the cell. PMID:24124015

  18. [Construction and expression of recombinant lentiviral vectors of AKT2,PDK1 and BAD].

    PubMed

    Zhu, Jing; Chen, Bo-Jiang; Huang, Na; Li, Wei-Min

    2014-03-01

    To construct human protein kinase B (ATK2), phosphoinositide-dependent kinase 1 (PDK1) and bcl-2-associated death protein (BAD) lentiviral expression vector, and to determine their expressions in 293T cells. Total RNA was extracted from lung cancer tissues. The full-length coding regions of human ATK2, BAD and PDK1 cDNA were amplified via RT-PCR using specific primers, subcloned into PGEM-Teasy and then sequenced for confirmation. The full-length coding sequence was cut out with a specific restriction enzyme digest and subclone into pCDF1-MCS2-EF1-copGFP. The plasmids were transfected into 293T cells using the calcium phosphate method. The over expression of AKT2, BAD and PDK1 were detected by Western blot. AKT2, PDK1 and BAD were subcloned into pCDF1-MCS2-EF1-copGFP, with an efficiency of transfection of 100%, 95%, and 90% respectively. The virus titers were 6.7 x 10(6) PFU/mL in the supernatant. After infection, the proteins of AKT2, PDK1 and BAD were detected by Western blot. The lentivial vector pCDF1-MCS2-EF1-copGFP containing AKT2, BAD and PDK1 were successfully constructed and expressed in 293T cells.

  19. Telomere Length, TERT, and miRNA Expression

    PubMed Central

    Slattery, Martha L.; Herrick, Jennifer S.; Pellatt, Andrew J.; Wolff, Roger K.; Mullany, Lila E.

    2016-01-01

    It has been proposed that miRNAs are involved in the control of telomeres. We test that hypothesis by examining the association between miRNAs and telomere length (TL). Additionally, we evaluate if genetic variation in telomerase reverse transcriptase (TERT) is associated with miRNA expression levels. We use data from a population-based study of colorectal cancer (CRC), where we have previously shown associations between TL and TERT and CRC, to test associations between TL and miRNA expression and TERT and miRNA expression. To gain insight into functions of miRNAs associated with TERT we tested linear associations between miRNAs and their targeted gene mRNAs. An Agilent platform that contained information on over 2000 miRNAs was used. TL was measured using a multiplexed quantitative PCR (qPCR). RNAseq was used to assess gene expression. Our sample consisted of 1152 individuals with SNP data and miRNA expression data; 363 individuals with both TL and miRNA; and 148 individuals with miRNA and mRNA data. Thirty-three miRNAs were directly associated with TL after adjusting for age and sex (false discovery rate (FDR) of 0.05). TERT rs2736118 was associated with differences in miRNA expression between carcinoma and normal colonic mucosa for 75 miRNAs (FDR <0.05). Genes regulated by these miRNAs, as indicated by mRNA/miRNA associations, were associated with major signaling pathways beyond their TL-related functions, including PTEN, and PI3K/AKT signaling. Our data support a direct association between miRNAs and TL; differences in miRNA expression levels by TERT genotype were observed. Based on miRNA and targeted mRNA associations our data suggest that TERT is involved in non-TL-related functions by acting through altered miRNA expression. PMID:27627813

  20. Kaposi's sarcoma-associated herpesvirus microRNA single-nucleotide polymorphisms identified in clinical samples can affect microRNA processing, level of expression, and silencing activity.

    PubMed

    Han, Soo-Jin; Marshall, Vickie; Barsov, Eugene; Quiñones, Octavio; Ray, Alex; Labo, Nazzarena; Trivett, Matthew; Ott, David; Renne, Rolf; Whitby, Denise

    2013-11-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs that can produce 25 KSHV mature microRNAs. We previously reported single-nucleotide polymorphisms (SNPs) in KSHV-encoded pre-microRNA and mature microRNA sequences from clinical samples (V. Marshall et al., J. Infect. Dis., 195:645-659, 2007). To determine whether microRNA SNPs affect pre-microRNA processing and, ultimately, mature microRNA expression levels, we performed a detailed comparative analysis of (i) mature microRNA expression levels, (ii) in vitro Drosha/Dicer processing, and (iii) RNA-induced silencing complex-dependent targeting of wild-type (wt) and variant microRNA genes. Expression of pairs of wt and variant pre-microRNAs from retroviral vectors and measurement of KSHV mature microRNA expression by real-time reverse transcription-PCR (RT-PCR) revealed differential expression levels that correlated with the presence of specific sequence polymorphisms. Measurement of KSHV mature microRNA expression in a panel of primary effusion lymphoma cell lines by real-time RT-PCR recapitulated some observed expression differences but suggested a more complex relationship between sequence differences and expression of mature microRNA. Furthermore, in vitro maturation assays demonstrated significant SNP-associated changes in Drosha/DGCR8 and/or Dicer processing. These data demonstrate that SNPs within KSHV-encoded pre-microRNAs are associated with differential microRNA expression levels. Given the multiple reports on the involvement of microRNAs in cancer, the biological significance of these phenotypic and genotypic variants merits further studies in patients with KSHV-associated malignancies.

  1. Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Single-Nucleotide Polymorphisms Identified in Clinical Samples Can Affect MicroRNA Processing, Level of Expression, and Silencing Activity

    PubMed Central

    Han, Soo-Jin; Marshall, Vickie; Barsov, Eugene; Quiñones, Octavio; Ray, Alex; Labo, Nazzarena; Trivett, Matthew; Ott, David; Renne, Rolf

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs that can produce 25 KSHV mature microRNAs. We previously reported single-nucleotide polymorphisms (SNPs) in KSHV-encoded pre-microRNA and mature microRNA sequences from clinical samples (V. Marshall et al., J. Infect. Dis., 195:645–659, 2007). To determine whether microRNA SNPs affect pre-microRNA processing and, ultimately, mature microRNA expression levels, we performed a detailed comparative analysis of (i) mature microRNA expression levels, (ii) in vitro Drosha/Dicer processing, and (iii) RNA-induced silencing complex-dependent targeting of wild-type (wt) and variant microRNA genes. Expression of pairs of wt and variant pre-microRNAs from retroviral vectors and measurement of KSHV mature microRNA expression by real-time reverse transcription-PCR (RT-PCR) revealed differential expression levels that correlated with the presence of specific sequence polymorphisms. Measurement of KSHV mature microRNA expression in a panel of primary effusion lymphoma cell lines by real-time RT-PCR recapitulated some observed expression differences but suggested a more complex relationship between sequence differences and expression of mature microRNA. Furthermore, in vitro maturation assays demonstrated significant SNP-associated changes in Drosha/DGCR8 and/or Dicer processing. These data demonstrate that SNPs within KSHV-encoded pre-microRNAs are associated with differential microRNA expression levels. Given the multiple reports on the involvement of microRNAs in cancer, the biological significance of these phenotypic and genotypic variants merits further studies in patients with KSHV-associated malignancies. PMID:24006441

  2. Co-expression of multiple target proteins in plants from a tobacco mosaic virus vector using a combination of homologous and heterologous subgenomic promoters.

    PubMed

    Roy, Gourgopal; Weisburg, Sangeetha; Foy, Kelly; Rabindran, Shailaja; Mett, Vadim; Yusibov, Vidadi

    2011-11-01

    To co-express multiple target proteins, we engineered a single-component chimeric tobacco mosaic virus (TMV)-based vector containing homologous and heterologous capsid protein subgenomic RNA promoters. Delivery of this vector into Nicotiana benthamiana plants via agroinfiltration resulted in co-expression of two reporter genes within a single cell. Furthermore, co-expression of a host-specific antisense RNA or a silencing suppressor protein from this vector augmented the accumulation of green fluorescent protein or a vaccine antigen, hemagglutinin from avian influenza virus A/Vietnam/1194/04. These findings suggest that this chimeric vector utilizing the homologous and heterologous subgenomic TMV promoters has a potential for high-level production of multiple therapeutic proteins including monoclonal antibodies.

  3. Quantifying circular RNA expression from RNA-seq data using model-based framework.

    PubMed

    Li, Musheng; Xie, Xueying; Zhou, Jing; Sheng, Mengying; Yin, Xiaofeng; Ko, Eun-A; Zhou, Tong; Gu, Wanjun

    2017-07-15

    Circular RNAs (circRNAs) are a class of non-coding RNAs that are widely expressed in various cell lines and tissues of many organisms. Although the exact function of many circRNAs is largely unknown, the cell type-and tissue-specific circRNA expression has implicated their crucial functions in many biological processes. Hence, the quantification of circRNA expression from high-throughput RNA-seq data is becoming important to ascertain. Although many model-based methods have been developed to quantify linear RNA expression from RNA-seq data, these methods are not applicable to circRNA quantification. Here, we proposed a novel strategy that transforms circular transcripts to pseudo-linear transcripts and estimates the expression values of both circular and linear transcripts using an existing model-based algorithm, Sailfish. The new strategy can accurately estimate transcript expression of both linear and circular transcripts from RNA-seq data. Several factors, such as gene length, amount of expression and the ratio of circular to linear transcripts, had impacts on quantification performance of circular transcripts. In comparison to count-based tools, the new computational framework had superior performance in estimating the amount of circRNA expression from both simulated and real ribosomal RNA-depleted (rRNA-depleted) RNA-seq datasets. On the other hand, the consideration of circular transcripts in expression quantification from rRNA-depleted RNA-seq data showed substantial increased accuracy of linear transcript expression. Our proposed strategy was implemented in a program named Sailfish-cir. Sailfish-cir is freely available at https://github.com/zerodel/Sailfish-cir . tongz@medicine.nevada.edu or wanjun.gu@gmail.com. Supplementary data are available at Bioinformatics online.

  4. Potato virus X-based expression vectors are stabilized for long-term production of proteins and larger inserts.

    PubMed

    Dickmeis, Christina; Fischer, Rainer; Commandeur, Ulrich

    2014-11-01

    Plus-strand RNA viruses such as Potato virus X (PVX) are often used as high-yielding expression vectors in plants, because they tolerate extra transgene insertion and expression without disrupting normal virus functions. However, sequence redundancy due to promoter duplication often leads to genetic instability. Although heterologous subgenomic promoter-like sequences (SGPs) have been successfully used in Tobacco mosaic virus vectors, only homologous SGP duplications have been used in PVX vectors. We stabilized PVX-based vectors by combining heterologous SGPs from related potexviruses with an N-terminal coat protein (CP) deletion. We selected two SGPs with core sequences homologous to PVX, from Bamboo mosaic virus (BaMV) and Cassava common mosaic virus, as well as a SGP with a heterologous core sequence from Foxtail mosaic virus (FoMV). We found that only the BaMV and CsCMV SGPs were utilized by the PVX replicase. However, the transgene remained unstable, due to the presence of an additional region with strong sequence similarity at the 5' end of the cp gene. The BaMV SGP combined with an N-terminal CP deletion achieved high PVX vector stability. This new expression vector is particularly useful for long-term production of proteins and for larger inserts. The improved PVX-based vectors are suitable for the systemic expression of any gene of interest in PVX host plants. The PVX-based vector can be advantageous for the overexpression of proteins, to analyze protein functions in planta or as a system for virus-induced gene silencing.

  5. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    PubMed

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S; Severson, David W; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-11-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation.

  6. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti

    PubMed Central

    Mysore, Keshava; Sun, Longhua; Tomchaney, Michael; Sullivan, Gwyneth; Adams, Haley; Piscoya, Andres S.; Severson, David W.; Syed, Zainulabeuddin; Duman-Scheel, Molly

    2015-01-01

    The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx), a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation. PMID:26544686

  7. Myocardial Delivery of Lipidoid Nanoparticle Carrying modRNA Induces Rapid and Transient Expression.

    PubMed

    Turnbull, Irene C; Eltoukhy, Ahmed A; Fish, Kenneth M; Nonnenmacher, Mathieu; Ishikawa, Kiyotake; Chen, Jiqiu; Hajjar, Roger J; Anderson, Daniel G; Costa, Kevin D

    2016-02-01

    Nanoparticle-based delivery of nucleotides offers an alternative to viral vectors for gene therapy. We report highly efficient in vivo delivery of modified mRNA (modRNA) to rat and pig myocardium using formulated lipidoid nanoparticles (FLNP). Direct myocardial injection of FLNP containing 1-10 μg eGFPmodRNA in the rat (n = 3 per group) showed dose-dependent enhanced green fluorescent protein (eGFP) mRNA levels in heart tissue 20 hours after injection, over 60-fold higher than for naked modRNA. Off-target expression, including lung, liver, and spleen, was <10% of that in heart. Expression kinetics after injecting 5 μg FLNP/eGFPmodRNA showed robust expression at 6 hours that reduced by half at 48 hours and was barely detectable at 2 weeks. Intracoronary administration of 10 μg FLNP/eGFPmodRNA also proved successful, although cardiac expression of eGFP mRNA at 20 hours was lower than direct injection, and off-target expression was correspondingly higher. Findings were confirmed in a pilot study in pigs using direct myocardial injection as well as percutaneous intracoronary delivery, in healthy and myocardial infarction models, achieving expression throughout the ventricular wall. Fluorescence microscopy revealed GFP-positive cardiomyocytes in treated hearts. This nanoparticle-enabled approach for highly efficient, rapid and short-term mRNA expression in the heart offers new opportunities to optimize gene therapies for enhancing cardiac function and regeneration.

  8. Myocardial Delivery of Lipidoid Nanoparticle Carrying modRNA Induces Rapid and Transient Expression

    PubMed Central

    Turnbull, Irene C; Eltoukhy, Ahmed A; Fish, Kenneth M; Nonnenmacher, Mathieu; Ishikawa, Kiyotake; Chen, Jiqiu; Hajjar, Roger J; Anderson, Daniel G; Costa, Kevin D

    2016-01-01

    Nanoparticle-based delivery of nucleotides offers an alternative to viral vectors for gene therapy. We report highly efficient in vivo delivery of modified mRNA (modRNA) to rat and pig myocardium using formulated lipidoid nanoparticles (FLNP). Direct myocardial injection of FLNP containing 1–10 μg eGFPmodRNA in the rat (n = 3 per group) showed dose-dependent enhanced green fluorescent protein (eGFP) mRNA levels in heart tissue 20 hours after injection, over 60-fold higher than for naked modRNA. Off-target expression, including lung, liver, and spleen, was <10% of that in heart. Expression kinetics after injecting 5 μg FLNP/eGFPmodRNA showed robust expression at 6 hours that reduced by half at 48 hours and was barely detectable at 2 weeks. Intracoronary administration of 10 μg FLNP/eGFPmodRNA also proved successful, although cardiac expression of eGFP mRNA at 20 hours was lower than direct injection, and off-target expression was correspondingly higher. Findings were confirmed in a pilot study in pigs using direct myocardial injection as well as percutaneous intracoronary delivery, in healthy and myocardial infarction models, achieving expression throughout the ventricular wall. Fluorescence microscopy revealed GFP-positive cardiomyocytes in treated hearts. This nanoparticle-enabled approach for highly efficient, rapid and short-term mRNA expression in the heart offers new opportunities to optimize gene therapies for enhancing cardiac function and regeneration. PMID:26471463

  9. TRBO: A High-Efficiency Tobacco Mosaic Virus RNA-Based Overexpression Vector1[C][OA

    PubMed Central

    Lindbo, John A.

    2007-01-01

    Transient expression is a rapid, useful approach for producing proteins of interest in plants. Tobacco mosaic virus (TMV)-based transient expression vectors can express very high levels of foreign proteins in plants. However, TMV vectors are, in general, not efficiently delivered to plant cells by agroinfection. It was determined that agroinfection was very efficient with a 35S promoter-driven TMV replicon that lacked the TMV coat protein gene sequence. This coat protein deletion vector had several useful features as a transient expression system, including improved ease of use, higher protein expression rates, and improved biocontainment. Using this TMV expression vector, some foreign proteins were expressed at levels of 3 to 5 mg/g fresh weight of plant tissue. It is proposed that this new transient expression vector will be a useful tool for expressing recombinant proteins in plants for either research or production purposes. PMID:17720752

  10. Biodegradable nanoparticles of mPEG-PLGA-PLL triblock copolymers as novel non-viral vectors for improving siRNA delivery and gene silencing.

    PubMed

    Du, Jing; Sun, Ying; Shi, Qiu-Sheng; Liu, Pei-Feng; Zhu, Ming-Jie; Wang, Chun-Hui; Du, Lian-Fang; Duan, You-Rong

    2012-01-01

    Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing.

  11. Biodegradable Nanoparticles of mPEG-PLGA-PLL Triblock Copolymers as Novel Non-Viral Vectors for Improving siRNA Delivery and Gene Silencing

    PubMed Central

    Du, Jing; Sun, Ying; Shi, Qiu-Sheng; Liu, Pei-Feng; Zhu, Ming-Jie; Wang, Chun-Hui; Du, Lian-Fang; Duan, You-Rong

    2012-01-01

    Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing. PMID:22312268

  12. Construction of PR domain eukaryotic expression vector and its inhibitory effect on esophageal cancer cells.

    PubMed

    Chen, Yuan; Zhang, Peng; Wang, Yuanguo; Dong, Shangwen; Liu, Yimei

    2013-10-01

    PR domain is responsible for the tumor suppressing activity of RIZ1. The study aimed to construct human PR domain eukaryotic expression vectors, transfect human esophageal cancer cells (TE13), and evaluate the anticancer activity of PR domain on human esophageal cancer TE13 cells. First, mRNA was extracted from human esophageal cancer tissue by RT-PCR, then reverse-transcribed to cDNA. After amplifying from the DNA template, PR domain was linked to T vector. Second, after extraction, PR domain was cut using enzyme and linked to pcDNA3.1(+). Then, the plasmid was transfered to Trans1-T1 phage resistant competent cells, following by extracting the ultrapure plasmid, and transfecting into TE13 cells. In the end, the protein expression of pcDNA3.1(+)/PR domain in TE13 was detected by Western blot, and the apoptosis of TE13 by technique of flow cytometry. More than 5,000 bp purposed band of pcDNA3.1(+)/PR domain plasmid was found by agarose gel electrophoresis. After transfection, the PR domain (molecular weight of about 28 Da) was found only in 3, 4 and 5 groups by Western blot. Flow cytometry assay showed apoptosis in experimental group was significantly more than that in the control group (P<0.05). The PR domain eukaryotic expression vector was constructed successfully. The protein of the PR domain could be expressed in esophageal cancer TE13 cells firmly after transfection, and a single PR domain could promote apoptosis of TE13 cells.

  13. [Silencing HSV1 gD expression in cultured cells by RNA interference].

    PubMed

    Zhu, Qin-Chang; Ren, Zhe; Zhang, Chun-Long; Zhang, Mei-Ying; Liao, Hong-Juan; Liu, Qiu-Ying; Zhang, Pei-Zhuo; Li, Jiu-Xiang; Hu, Chao-Feng; Wang, Hua-Dong; Wang, Yi-Fei

    2007-01-01

    To explore the anti-HSV-1 effect of silencing gD gene expression by RNA interference, five 21-nucleotide duplex small interfering RNAs(siRNAs) targeting the HSV1 gD sequence were designed and the gD-EGFP fusion gene expression vector was constructed, then co-transfected into Vero cell, and screened the effective siRNA through analyzing the intensity of the EGFP fluorescence. Finally, the anti-HSV1 effect was confirmed by plaque reduction assay, real-time PCR and daughter virus titration of HSV1 infected Vero cells transfected with siRNAs. The study demonstrated that siRNAs could effectively and specifically inhibit gD gene expression in HSV1-infected cells, but only had a little effect on HSV1 infection, so taking gD as the target of siRNA against HSV1 needs further study.

  14. Production of lentiviral vectors by transient expression of minimal packaging genes from recombinant adenoviruses.

    PubMed

    Kuate, Seraphin; Stefanou, Daniela; Hoffmann, Dennis; Wildner, Oliver; Uberla, Klaus

    2004-11-01

    The potential of lentiviral vectors for clinical gene therapy has not yet been evaluated. One of the reasons is the cytotoxicity of lentiviral packaging genes which makes the generation of stable producer cell lines difficult. Therefore, a novel packaging system for lentiviral vectors based on transient expression of packaging genes by recombinant adenoviruses was developed. Adenoviral vectors expressing VSV-G, codon-optimized HIV-1 gag-pol, and codon-optimized SIV gag-pol under the control of a tetracycline-regulatable promoter (adenoviral lenti-pack vectors) were constructed and the production levels of this vector system were evaluated. The generated adenoviral lenti-pack vectors could be grown to high titers when transgene expression was suppressed and no evidence for instabilities was obtained. Cells stably transfected with a SIV-based vector construct were converted into lentiviral vector producer cells by infection with the adenoviral lenti-pack vectors. Lentiviral vector titers obtained were as high as vector titers obtained by transient cotransfection experiments. A protocol was developed that allowed preparation of lentiviral vector stocks with undetectable levels of contaminating adenoviral lenti-pack vectors. The adenoviral lenti-pack vectors described should provide a convenient alternative approach to inducible packaging cell lines for large-scale lentiviral vector production. Transient expression of cytotoxic lentiviral packaging genes by the adenoviral lenti-pack vectors circumvents loss of titers during prolonged culture of packaging cell lines. The design of the adenoviral lenti-pack vectors should reduce the risk of transfer of packaging genes to target cells and at the same time provide flexibility with respect to the lentiviral vector constructs that can be packaged.

  15. Expression from second-generation feline immunodeficiency virus vectors is impaired in human hematopoietic cells.

    PubMed

    Price, Mary A; Case, Scott S; Carbonaro, Denise A; Yu, Xiao-Jin; Petersen, Denise; Sabo, Kathleen M; Curran, Michael A; Engel, Barbara C; Margarian, Hovanes; Abkowitz, Janis L; Nolan, Garry P; Kohn, Donald B; Crooks, Gay M

    2002-11-01

    Vectors based on the feline immunodeficiency virus (FIV) have been developed as an alternative to those based on another lentivirus, human immunodeficiency virus-1 (HIV-1), because of theoretical safety advantages. We compared the efficiency of gene transfer and expression in human and feline hematopoietic progenitors using second-generation HIV-1 and FIV-based vectors. Vector pairs were tested using either human cytomegalovirus or murine phospho-glycerate kinase (PGK) internal promoters and were pseudotyped with the vesicular stomatitis virus G protein (VSV-G). Vector proviral copy numbers were similar in human and feline hematopoietic primary cells and cell lines transduced by HIV-1 or FIV vectors, demonstrating that both vectors are able to transfer genes efficiently to these cell types. HIV-1 vectors were well expressed in human primary hematopoietic cells and cell lines. However, transgene expression from FIV vectors was almost undetectable in human hematopoietic cells. In contrast, the FIV vector was expressed well in primary hematopoietic feline cells and human non-hematopoietic cells, demonstrating that low transgene expression from the FIV vector is a phenomenon specific to human hematopoietic cells. Northern blot analysis demonstrated decreased vector transcript levels in human CEM cells transduced with FIV relative to cells transduced with HIV-1, despite high vector copy numbers. No evidence of vector transcript instability was seen in studies of transduced CEM cells treated with actinomycin D. We conclude that FIV vectors can transfer genes into human hematopoietic cells as effectively as HIV-1 vectors, but that unknown elements in the current FIV backbone inhibit expression from FIV vectors in human hematopoietic cells.

  16. Microarray analysis of circular RNA expression patterns in polarized macrophages

    PubMed Central

    Zhang, Yingying; Zhang, Yao; Li, Xueqin; Zhang, Mengying; Lv, Kun

    2017-01-01

    Circular RNAs (circRNAs) are generated from diverse genomic locations and are a new player in the regulation of post-transcriptional gene expression. Recent studies have revealed that circRNAs play a crucial role in fine-tuning the level of microRNA (miRNA)-mediated regulation of gene expression by sequestering miRNAs. The interaction of circRNAs with disease-associated miRNAs suggests that circRNAs are important in the pathology of disease. However, the effects and roles of circRNAs in macrophage polarization have yet to be explored. In the present study, we performed a circRNA microarray to compare the circRNA expression profiles of bone marrow-derived macrophages (BMDMs) under two distinct polarizing conditions (M1 macrophages induced by interferon-γ and LPS stimulation, and M2 macrophages induced by interleukin-4 stimulation). Our results showed that a total of 189 circRNAs were differentially expressed between M1 and M2 macrophages. Differentially expressed circRNAs with a high fold-change were selected for validation by RT-qPCR: circRNA-003780, circRNA-010056, and circRNA-010231 were upregulated and circRNA-003424, circRNA-013630, circRNA-001489 and circRNA-018127 were downregulated (fold-change >4, P<0.05) in M1 compared to M2, which was found to correlate with the microarray data. Furthermore, the most differentially expressed circRNAs within all the comparisons were annotated in detail with circRNA/miRNA interaction information using miRNA target prediction software. In conclusion, the present study provides novel insight into the role of circRNAs in macrophage differentiation and polarization. PMID:28075448

  17. Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and MicroRNA regulation.

    PubMed

    Chen, Chiu-Ling; Tseng, Yen-Wen; Wu, Jaw-Ching; Chen, Guan-Yu; Lin, Kuan-Chen; Hwang, Shiaw-Min; Hu, Yu-Chen

    2015-03-01

    Long non-coding RNAs (lncRNAs) play regulatory roles in cancers. LncRNA PTENP1 is a pseudogene of the tumor suppressor gene PTEN but its roles in hepatocellular carcinoma (HCC) have yet to be explored. Here we confirmed that PTENP1 and PTEN were downregulated in several HCC cells, thus we constructed Sleeping Beauty (SB)-based hybrid baculovirus (BV) vectors for sustained PTENP1 lncRNA expression. Co-transduction of HCC cells with the SB-BV vector expressing PTENP1 elevated the levels of PTENP1 and PTEN, which suppressed the oncogenic PI3K/AKT pathway, inhibited cell proliferation, migration/invasion as well as induced autophagy and apoptosis. The overexpressed PTENP1 decoyed oncomirs miR-17, miR-19b and miR-20a, which would otherwise target PTEN, PHLPP (a negative AKT regulator) and such autophagy genes as ULK1, ATG7 and p62, indicating that PTENP1 modulated the HCC cell behavior and gene networks by miRNA regulation. Injection of the PTENP1-expressing SB-BV vector into mice bearing HCC tumors effectively mitigated the tumor growth, suppressed intratumoral cell proliferation, elicited apoptosis, autophagy and inhibited angiogenesis. These data collectively unveiled the molecular mechanisms of how PTENP1 repressed the tumorigenic properties of HCC cells and demonstrated the potential of the SB-BV hybrid vector for PTENP1 lncRNA modulation and HCC therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Circular RNA expression profiles and features in human tissues: a study using RNA-seq data.

    PubMed

    Xu, Tianyi; Wu, Jing; Han, Ping; Zhao, Zhongming; Song, Xiaofeng

    2017-10-03

    Circular RNA (circRNA) is one type of noncoding RNA that forms a covalently closed continuous loop. Similar to long noncoding RNA (lncRNA), circRNA can act as microRNA (miRNA) 'sponges' to regulate gene expression, and its abnormal expression is related to diseases such as atherosclerosis, nervous system disorders and cancer. So far, there have been no systematic studies on circRNA abundance and expression profiles in human adult and fetal tissues. We explored circRNA expression profiles using RNA-seq data for six adult and fetal normal tissues (colon, heart, kidney, liver, lung, and stomach) and four gland normal tissues (adrenal gland, mammary gland, pancreas, and thyroid gland). A total of 8120, 25,933 and 14,433 circRNAs were detected by at least two supporting junction reads in adult, fetal and gland tissues, respectively. Among them, 3092, 14,241 and 6879 circRNAs were novel when compared to the published results. In each adult tissue type, we found at least 1000 circRNAs, among which 36.97-50.04% were tissue-specific. We reported 33 circRNAs that were ubiquitously expressed in all the adult tissues we examined. To further explore the potential "housekeeping" function of these circRNAs, we constructed a circRNA-miRNA-mRNA regulatory network containing 17 circRNAs, 22 miRNAs and 90 mRNAs. Furthermore, we found that both the abundance and the relative expression level of circRNAs were higher in fetal tissue than adult tissue. The number of circRNAs in gland tissues, especially in mammary gland (9665 circRNA candidates), was higher than that of other adult tissues (1160-3777). We systematically investigated circRNA expression in a variety of human adult and fetal tissues. Our observation of different expression level of circRNAs in adult and fetal tissues suggested that circRNAs might play their role in a tissue-specific and development-specific fashion. Analysis of circRNA-miRNA-mRNA network provided potential targets of circRNAs. High expression level of circ

  19. [Effects of expression silencing of MAGE3 by RNA interference on location and metastasis of lung carcinoma cells].

    PubMed

    Zhang, Guo-jun; Zhao, Guo-qiang; Hu, Jun; Zhang, Shi-jie

    2006-06-13

    To construct small interfering RNA (siRNA) expression vectors targeting human MAGE3 gene and to observe the effects of gene silencing of MAGE3 by RNA interference on location and metastasis of lung carcinoma cells. MAGE3 mRNA targeted hairpin siRNA was devised and the oligonucleotide strands of DNA fragments encoding the above siRNA were synthesized. After annealing of the complementary strands, the DNA fragments were cloned into pSUPERneoGFP, followed by amplification and DNA sequencing, then transfected into human lung carcinoma NCI-H446. The expression of MAGE3 gene mRNA and protein were examined by RT-PCR and Western blotting. Colony formation assay and Boyden chamber assay were performed to detect the effects of MAGE3 on colony formation and metastasis. The DNA fragments encoding MAGE3-targeted siRNA were cloned into the pSUPERneoGFP and confirmed by restrictive enzyme digestion and DNA sequencing. RT-PCR and Western blotting revealed a strongly decreased expression level of MAGE3. The lung carcinoma cells transfected by siRNA group was significantly lower than others, an effect on its colony formation and invasiveness. The colony formation of lung carcinoma cells transfected by siRNA in soft agar and the number of cells penetrating matrigel both reduced, there is significant difference compared with untransfected group and transfected empty vector. An siRNA vector targeting human MAGE3 gene has been successfully constructed. Expression silencing of MAGE3 by RNA interference could reduce location and metastasis of lung carcinoma cells effectively.

  20. The promotion of functional recovery and nerve regeneration after spinal cord injury by lentiviral vectors encoding Lingo-1 shRNA delivered by Pluronic F-127.

    PubMed

    Wu, Hong-Fu; Cen, Jing-Sheng; Zhong, Qian; Chen, Luming; Wang, Jue; Deng, David Y B; Wan, Yong

    2013-02-01

    Lingo-1 is selectively expressed on both oligodendrocytes and neurons in the central nervous system (CNS) and serves as a key negative regulator of nerve regeneration, implying a therapeutic target for spinal cord injury (SCI). Here we described a strategy to knock-down Lingo-1 expression in vivo using lentiviral vectors encoding Lingo-1 short harpin interfering RNA (shRNA) delivered by Pluronic F-127 (PF-127) gel, a non-cytotoxic scaffold and gene delivery carrier, after the complete transection of the T10 spinal cord in adult rats. We showed administration of PF-127 encapsulating Lingo-1 shRNA lentiviral vectors efficiently down-regulated the expression of Lingo-1, and exhibited transduction efficiency comparable to using vectors alone in oligodendrocyte culture in vitro. Furthermore, similar silencing effects and higher transfection efficiency were observed in vivo when Lingo-1 shRNA was co-delivered to the injured site by PF-127 gel with lower viral concentrations. Cografting of gel and Lingo-1 RNAi significantly promoted functional recovery and nerve regeneration, enhanced neurite outgrowth and synapses formation, preserved myelinated axons, and induced the proliferation of glial cells. In addition, the combined implantation also improved neuronal survival and inhibited cell apoptosis, which may be associated with the attenuation of endoplasmic reticulum (ER) stress after SCI. Together, our data indicated that delivering Lingo-1 shRNA by gel scaffold was a valuable treatment approach to SCI and PF-127 delivery of viral vectors to the spinal cord may provide strategy to study and develop therapies for SCI. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Development of SyneBrick Vectors As a Synthetic Biology Platform for Gene Expression in Synechococcus elongatus PCC 7942

    PubMed Central

    Kim, Wook Jin; Lee, Sun-Mi; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2017-01-01

    Cyanobacteria are oxygenic photosynthetic prokaryotes that are able to assimilate CO2 using solar energy and water. Metabolic engineering of cyanobacteria has suggested the possibility of direct CO2 conversion to value-added chemicals. However, engineering of cyanobacteria has been limited due to the lack of various genetic tools for expression and control of multiple genes to reconstruct metabolic pathways for biochemicals from CO2. Thus, we developed SyneBrick vectors as a synthetic biology platform for gene expression in Synechococcus elongatus PCC 7942 as a model cyanobacterium. The SyneBrick chromosomal integration vectors provide three inducible expression systems to control gene expression and three neutral sites for chromosomal integrations. Using a SyneBrick vector, LacI-regulated gene expression led to 24-fold induction of the eYFP reporter gene with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) inducer in S. elongatus PCC 7942 under 5% (v/v) CO2. TetR-regulated gene expression led to 19-fold induction of the GFP gene when 100 nM anhydrotetracycline (aTc) inducer was used. Gene expression decreased after 48 h due to degradation of aTc under light. T7 RNA polymerase-based gene expression resulted in efficient expression with a lower IPTG concentration than a previously developed pTrc promoter. A library of T7 promoters can be used for tunable gene expression. In summary, SyneBrick vectors were developed as a synthetic biology platform for gene expression in S. elongatus PCC 7942. These results will accelerate metabolic engineering of biosolar cell factories through expressing and controlling multiple genes of interest. PMID:28303150

  2. Development of SyneBrick Vectors As a Synthetic Biology Platform for Gene Expression in Synechococcus elongatus PCC 7942.

    PubMed

    Kim, Wook Jin; Lee, Sun-Mi; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2017-01-01

    Cyanobacteria are oxygenic photosynthetic prokaryotes that are able to assimilate CO2 using solar energy and water. Metabolic engineering of cyanobacteria has suggested the possibility of direct CO2 conversion to value-added chemicals. However, engineering of cyanobacteria has been limited due to the lack of various genetic tools for expression and control of multiple genes to reconstruct metabolic pathways for biochemicals from CO2. Thus, we developed SyneBrick vectors as a synthetic biology platform for gene expression in Synechococcus elongatus PCC 7942 as a model cyanobacterium. The SyneBrick chromosomal integration vectors provide three inducible expression systems to control gene expression and three neutral sites for chromosomal integrations. Using a SyneBrick vector, LacI-regulated gene expression led to 24-fold induction of the eYFP reporter gene with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) inducer in S. elongatus PCC 7942 under 5% (v/v) CO2. TetR-regulated gene expression led to 19-fold induction of the GFP gene when 100 nM anhydrotetracycline (aTc) inducer was used. Gene expression decreased after 48 h due to degradation of aTc under light. T7 RNA polymerase-based gene expression resulted in efficient expression with a lower IPTG concentration than a previously developed pTrc promoter. A library of T7 promoters can be used for tunable gene expression. In summary, SyneBrick vectors were developed as a synthetic biology platform for gene expression in S. elongatus PCC 7942. These results will accelerate metabolic engineering of biosolar cell factories through expressing and controlling multiple genes of interest.

  3. RTE and CTE mRNA export elements synergistically increase expression of unstable, Rev-dependent HIV and SIV mRNAs.

    PubMed

    Smulevitch, Sergey; Bear, Jenifer; Alicea, Candido; Rosati, Margherita; Jalah, Rashmi; Zolotukhin, Andrei S; von Gegerfelt, Agneta; Michalowski, Daniel; Moroni, Christoph; Pavlakis, George N; Felber, Barbara K

    2006-01-13

    Studies of retroviral mRNA export identified two distinct RNA export elements utilizing conserved eukaryotic mRNA export mechanism(s), namely the Constitutive Transport Element (CTE) and the RNA Transport Element (RTE). Although RTE and CTE are potent in nucleocytoplasmic mRNA transport and expression, neither element is as powerful as the Rev-RRE posttranscriptional control. Here, we found that whereas CTE and the up-regulatory mutant RTEm26 alone increase expression from a subgenomic gag and env clones, the combination of these elements led to a several hundred-fold, synergistic increase. The use of the RTEm26-CTE combination is a simple way to increase expression of poorly expressed retroviral genes to levels otherwise only achieved via more cumbersome RNA optimization. The potent RTEm26-CTE element could be useful in lentiviral gene therapy vectors, DNA-based vaccine vectors, and gene transfer studies of other poorly expressed genes.

  4. BC047440 antisense eukaryotic expression vectors inhibited HepG2 cell proliferation and suppressed xenograft tumorigenicity.

    PubMed

    Zheng, Lu; Liang, Ping; Zhou, JianBo; Huang, XiaoBing; Wen, Yu; Wang, Zheng; Li, Jing

    2012-02-01

    The biological functions of the BC047440 gene highly expressed by hepatocellular carcinoma (HCC) are unknown. The objective of this study was to reconstruct antisense eukaryotic expression vectors of the gene for inhibiting HepG(2) cell proliferation and suppressing their xenograft tumorigenicity. The full-length BC047440 cDNA was cloned from human primary HCC by RT-PCR. BC047440 gene fragments were ligated with pMD18-T simple vectors and subsequent pcDNA3.1(+) plasmids to construct the recombinant antisense eukaryotic vector pcDNA3.1(+)BC047440AS. The endogenous BC047440 mRNA abundance in target gene-transfected, vector-transfected and naive HepG(2) cells was semiquantitatively analyzed by RT-PCR and cell proliferation was measured by the MTT assay. Cell cycle distribution and apoptosis were profiled by flow cytometry. The in vivo xenograft experiment was performed on nude mice to examine the effects of antisense vector on tumorigenicity. BC047440 cDNA fragments were reversely inserted into pcDNA3.1(+) plasmids. The antisense vector significantly reduced the endogenous BC047440 mRNA abundance by 41% in HepG(2) cells and inhibited their proliferation in vitro (P < 0.01). More cells were arrested by the antisense vector at the G(1) phase in an apoptosis-independent manner (P = 0.014). Additionally, transfection with pcDNA3.1(+)BC047440AS significantly reduced the xenograft tumorigenicity in nude mice. As a novel cell cycle regulator associated with HCC, the BC047440 gene was involved in cell proliferation in vitro and xenograft tumorigenicity in vivo through apoptosis-independent mechanisms.

  5. Lentiviral vector-mediated RNA interference targeted against prohibitin inhibits apoptosis of the retinoic acid-resistant acute promyelocytic leukemia cell line NB4-R1.

    PubMed

    Liu, Yanfeng; He, Pengcheng; Zhang, Mei; Wu, Di

    2012-12-01

    To investigate the possibility of prohibitin (PHB) inhibition by lentiviral vector-mediated RNA interference (RNAi) and its influence on cell apoptosis in the retinoic acid-resistant acute promyelocytic leukemia cell line NB4-R1, a lentiviral vector encoding a short hairpin RNA (shRNA) targeted against PHB (pGCSIL-GFP-PHB) was constructed and transfected into the packaging cells 293T, and the viral supernatant was collected to transfect NB4-R1 cells. Quantitative real-time fluorescent PCR and western blotting were used to detect the expression levels of PHB. Flow cytometry and detection of enzymatic activity of caspase-3 by western blotting were employed to examine cell apoptosis. Our results provide evidence that the lentiviral vector pGCSIL-GFP-PHB was constructed successfully, and the PHB mRNA and the protein expression inhibitory rates were 90.3 and 95.8%, respectively. When compared to the control group, the activity of caspase-3 decreased significantly, which showed a 57.3% downregulation, and the apoptosis rate was reduced by 44.6% (P<0.05). In conclusion, downregulation of the PHB gene may inhibit apoptosis of NB4-R1 cells, and it is speculated that this was at least partly due to the downregulation of caspase-3, and PHB may be a novel target for gene therapy for retinoic acid-resistant acute promyelocytic leukemia.

  6. MiRNA regulation of TRAIL expression exerts selective cytotoxicity to prostate carcinoma cells.

    PubMed

    Huo, Wei; Jin, Ning; Fan, Li; Wang, Weihua

    2014-03-01

    Prostate carcinoma is the most common cancer for men and among the leading cancer-related causes. Many evidences have shown that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) potently induces apoptosis in cancer cells, and thus, is a promising biologic agent for prostate carcinoma therapy. However, TRAIL expression mediated by the current vectors lacks tumor specificity, thereby exerting cytotoxicity to normal cells. To solve this problem, we inserted miRNA response elements (MREs), miR-143 and miR-145, expression levels of which were reduced in prostate carcinoma, as well as that of miR-122, which is specifically expressed in hepatic cells, into adenoviral vectors to control TRAIL expression (Ad-TRAIL-M3). qPCR data confirmed that miR-143, miR-145, and miR-122 levels were all decreased in prostate carcinoma cell lines and prostate cancer samples from patients. Luciferase assays showed that MREs-regulated luciferase expression was potently suppressed in normal cells, but not in prostate cancer cells. Ad-TRAIL-M3, which expresses TRAIL in a MREs-regulated manner, produced high level of TRAIL and suppressed the survival of prostate cancer cells by inducing apoptosis, while Ad-TRAIL-M3 had no TRAIL expression in normal cells and thus exerted no cytotoxicity to them. The studies on PC-3 tumor xenograft in mice further confirmed that Ad-TRAIL-M3 was able to inhibit the growth of tumors and possessed high biosafety. In conclusion, we successfully generated an adenoviral vector that expresses TRAIL in miRNA-regulated mechanism. This miRNA-based gene therapy may be promising for prostate carcinoma treatment.

  7. Right ventricular long noncoding RNA expression in human heart failure

    PubMed Central

    Guo, Yan; Su, Yan Ru; Clark, Travis; Brittain, Evan; Absi, Tarek; Maltais, Simon; Hemnes, Anna

    2015-01-01

    Abstract The expression of long noncoding RNAs (lncRNAs) in human heart failure (HF) has not been widely studied. Using RNA sequencing (RNA-Seq), we compared lncRNA expression in 22 explanted human HF hearts with lncRNA expression in 5 unused donor human hearts. We used Cufflinks to identify isoforms and DESeq to identify differentially expressed genes. We identified the noncoding RNAs by cross-reference to Ensembl release 73 (Genome Reference Consortium human genome build 37) and explored possible functional roles using a variety of online tools. In HF hearts, RNA-Seq identified 84,793 total messenger RNA coding and noncoding different transcripts, including 13,019 protein-coding genes, 2,085 total lncRNA genes, and 1,064 pseudogenes. By Ensembl noncoding RNA categories, there were 48 lncRNAs, 27 pseudogenes, and 30 antisense RNAs for a total of 105 differentially expressed lncRNAs in HF hearts. Compared with donor hearts, HF hearts exhibited differential expression of 7.7% of protein-coding genes, 3.7% of lncRNAs (including pseudogenes), and 2.5% of pseudogenes. There were not consistent correlations between antisense lncRNAs and parent genes and between pseudogenes and parent genes, implying differential regulation of expression. Exploratory in silico functional analyses using online tools suggested a variety of possible lncRNA regulatory roles. By providing a comprehensive profile of right ventricular polyadenylated messenger RNA transcriptome in HF, RNA-Seq provides an inventory of differentially expressed lncRNAs, including antisense transcripts and pseudogenes, for future mechanistic study. PMID:25992278

  8. Gene gymnastics: Synthetic biology for baculovirus expression vector system engineering.

    PubMed

    Vijayachandran, Lakshmi S; Thimiri Govinda Raj, Deepak B; Edelweiss, Evelina; Gupta, Kapil; Maier, Josef; Gordeliy, Valentin; Fitzgerald, Daniel J; Berger, Imre

    2013-01-01

    Most essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach.

  9. Thiol-linked alkylation of RNA to assess expression dynamics.

    PubMed

    Herzog, Veronika A; Reichholf, Brian; Neumann, Tobias; Rescheneder, Philipp; Bhat, Pooja; Burkard, Thomas R; Wlotzka, Wiebke; von Haeseler, Arndt; Zuber, Johannes; Ameres, Stefan L

    2017-09-25

    Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM seq), an orthogonal-chemistry-based RNA sequencing technology that detects 4-thiouridine (s(4)U) incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM seq enabled rapid access to RNA-polymerase-II-dependent gene expression dynamics in the context of total RNA. We validated the method in mouse embryonic stem cells by showing that the RNA-polymerase-II-dependent transcriptional output scaled with Oct4/Sox2/Nanog-defined enhancer activity, and we provide quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N(6)-methyladenosine. SLAM seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective and scalable manner.

  10. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    PubMed Central

    Ludwig, Nicole; Werner, Tamara V.; Backes, Christina; Trampert, Patrick; Gessler, Manfred; Keller, Andreas; Lenhof, Hans-Peter; Graf, Norbert; Meese, Eckart

    2016-01-01

    Wilms tumor (WT) is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA) processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA) differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT. PMID:27043538

  11. Feature extraction from terahertz pulses for classification of RNA data via support vector machines

    NASA Astrophysics Data System (ADS)

    Yin, Xiaoxia; Ng, Brian W.-H.; Fischer, Bernd; Ferguson, Bradley; Mickan, Samuel P.; Abbott, Derek

    2006-12-01

    This study investigates binary and multiple classes of classification via support vector machines (SVMs). A couple of groups of two dimensional features are extracted via frequency orientation components, which result in the effective classification of Terahertz (T-ray) pulses for discrimination of RNA data and various powder samples. For each classification task, a pair of extracted feature vectors from the terahertz signals corresponding to each class is viewed as two coordinates and plotted in the same coordinate system. The current classification method extracts specific features from the Fourier spectrum, without applying an extra feature extractor. This method shows that SVMs can employ conventional feature extraction methods for a T-ray classification task. Moreover, we discuss the challenges faced by this method. A pairwise classification method is applied for the multi-class classification of powder samples. Plots of learning vectors assist in understanding the classification task, which exhibit improved clustering, clear learning margins, and least support vectors. This paper highlights the ability to use a small number of features (2D features) for classification via analyzing the frequency spectrum, which greatly reduces the computation complexity in achieving the preferred classification performance.

  12. Differential expression of microRNA (miRNA) in chordoma reveals a role for miRNA-1 in Met expression.

    PubMed

    Duan, Zhenfeng; Choy, Edwin; Nielsen, G Petur; Rosenberg, Andrew; Iafrate, John; Yang, Cao; Schwab, Joe; Mankin, Henry; Xavier, Ramnik; Hornicek, Francis J

    2010-06-01

    Emerging evidence suggests that microRNA (miRNA) expression signatures in cancer may have important diagnostic, prognostic, and therapeutic value, but there is no data on miRNA expression in chordoma. The purpose of this study was to identify the role of miRNAs in human chordoma. We analyzed miRNA expression in chordoma-derived cell lines and chordoma tissue by using miRNA microarray technology with unsupervised hierarchical clustering analysis. The relative expression levels of these miRNAs were confirmed by real-time quantitative RT-PCR and Northern blot analysis. To characterize the potential role of miRNA-1, miRNA-1 was stably transfected into a chordoma cell line, UCH1. The expression of miRNA-1 targeted gene Met in chordoma tissues was also studied. We observe that human chordoma tissues and cell lines can be distinguished from normal muscle tissue by comparing miRNA expression profiles. Several miRNAs were differentially expressed in chordoma cell lines compared to controls, and similar expression patterns were found in primary chordoma tissues. Importantly, we were able to show for the first time, to our knowledge, that expression of miRNA-1 and miRNA-206, two miRNAs implicated in a number of other cancer types, were markedly decreased in both chordoma tissues and cell lines. When chordoma cell lines were transfected with miRNA-1, downregulation of known miRNA-1 targets was observed. These targets included Met and HDAC4-two genes that were observed to be overexpressed in chordoma. Our results demonstrate that some miRNAs are differentially expressed in chordoma and, in particular, miRNA-1 may have a functional effect on chordoma tumor pathogenesis.

  13. The expression and function of long noncoding RNA lncRNA-ATB in papillary thyroid cancer.

    PubMed

    Fu, X-M; Guo, W; Li, N; Liu, H-Z; Liu, J; Qiu, S-Q; Zhang, Q; Wang, L-C; Li, F; Li, C-L

    2017-07-01

    This study aimed to investigate the expression and clinical significances of long noncoding RNA-ATB (lncRNA-ATB) in papillary thyroid cancer (PTC), and to explore the roles of lncRNA-ATB in PTC cell proliferation and migration. The expression of lncRNA-ATB in 64 PTC tissues and paired adjacent noncancerous thyroid tissues was measured. The association between lncRNA-ATB expression and clinicopathological characteristics was analyzed by Pearson X2. The diagnostic value of lncRNA-ATB was evaluated by receiver operating characteristic curve (ROC) analyses. The effects of lncRNA-ATB on PTC cell proliferation were evaluated by Cell Counting Kit-8 assays and Ethynyl deoxyuridine incorporation assays. The effects of lncRNA-ATB on PTC cell migration were evaluated by transwell assays. LncRNA-ATB is upregulated in PTC tissues compared with noncancerous tissues. LncRNA-ATB is also increased in PTC cell lines compared with normal thyroid follicular epithelial cell line. High-expression of lncRNA-ATB is associated with large tumor size and lymph node metastasis. ROC analyses revealed that lncRNA-ATB could sensitively discriminate PTCs from noncancerous tissues, as well as discriminating PTCs with lymph node metastasis from those without lymph node metastasis. Functional experiments showed that depletion of lncRNA-ATB significantly inhibits PTC cell proliferation and migration. LncRNA-ATB is upregulated and functions as an oncogene in PTC. Furthermore, lncRNA-ATB may serve as a diagnostic biomarker and therapeutic target for PTC.

  14. Novel viral vectors utilizing intron splice-switching to activate genome rescue, expression and replication in targeted cells

    PubMed Central

    2011-01-01

    Background The outcome of virus infection depends from the precise coordination of viral gene expression and genome replication. The ability to control and regulate these processes is therefore important for analysis of infection process. Viruses are also useful tools in bio- and gene technology; they can efficiently kill cancer cells and trigger immune responses to tumors. However, the methods for constructing tissue- or cell-type specific viruses typically suffer from low target-cell specificity and a high risk of reversion. Therefore novel and universal methods of regulation of viral infection are also important for therapeutic application of virus-based systems. Methods Aberrantly spliced introns were introduced into crucial gene-expression units of adenovirus vector and alphavirus DNA/RNA layered vectors and their effects on the viral gene expression, replication and/or the release of infectious genomes were studied in cell culture. Transfection of the cells with splice-switching oligonucleotides was used to correct the introduced functional defect(s). Results It was demonstrated that viral gene expression, replication and/or the release of infectious genomes can be blocked by the introduction of aberrantly spliced introns. The insertion of such an intron into an adenovirus vector reduced the expression of the targeted gene more than fifty-fold. A similar insertion into an alphavirus DNA/RNA layered vector had a less dramatic effect; here, only the release of the infectious transcript was suppressed but not the subsequent replication and spread of the virus. However the insertion of two aberrantly spliced introns resulted in an over one hundred-fold reduction in the infectivity of the DNA/RNA layered vector. Furthermore, in both systems the observed effects could be reverted by the delivery of splice-switching oligonucleotide(s), which corrected the splicing defects. Conclusions Splice-switch technology, originally developed for genetic disease therapy, can

  15. Detecting N6-methyladenosine sites from RNA transcriptomes using ensemble Support Vector Machines

    PubMed Central

    Chen, Wei; Xing, Pengwei; Zou, Quan

    2017-01-01

    As one of the most abundant RNA post-transcriptional modifications, N6-methyladenosine (m6A) involves in a broad spectrum of biological and physiological processes ranging from mRNA splicing and stability to cell differentiation and reprogramming. However, experimental identification of m6A sites is expensive and laborious. Therefore, it is urgent to develop computational methods for reliable prediction of m6A sites from primary RNA sequences. In the current study, a new method called RAM-ESVM was developed for detecting m6A sites from Saccharomyces cerevisiae transcriptome, which employed ensemble support vector machine classifiers and novel sequence features. The jackknife test results show that RAM-ESVM outperforms single support vector machine classifiers and other existing methods, indicating that it would be a useful computational tool for detecting m6A sites in S. cerevisiae. Furthermore, a web server named RAM-ESVM was constructed and could be freely accessible at http://server.malab.cn/RAM-ESVM/. PMID:28079126

  16. Prediction of miRNA-disease associations with a vector space model

    PubMed Central

    Pasquier, Claude; Gardès, Julien

    2016-01-01

    MicroRNAs play critical roles in many physiological processes. Their dysregulations are also closely related to the development and progression of various human diseases, including cancer. Therefore, identifying new microRNAs that are associated with diseases contributes to a better understanding of pathogenicity mechanisms. MicroRNAs also represent a tremendous opportunity in biotechnology for early diagnosis. To date, several in silico methods have been developed to address the issue of microRNA-disease association prediction. However, these methods have various limitations. In this study, we investigate the hypothesis that information attached to miRNAs and diseases can be revealed by distributional semantics. Our basic approach is to represent distributional information on miRNAs and diseases in a high-dimensional vector space and to define associations between miRNAs and diseases in terms of their vector similarity. Cross validations performed on a dataset of known miRNA-disease associations demonstrate the excellent performance of our method. Moreover, the case study focused on breast cancer confirms the ability of our method to discover new disease-miRNA associations and to identify putative false associations reported in databases. PMID:27246786

  17. New-generation multicistronic expression platform: pTRIDENT vectors containing size-optimized IRES elements enable homing endonuclease-based cistron swapping into lentiviral expression vectors.

    PubMed

    Fux, Cornelia; Langer, Dominik; Kelm, Jens M; Weber, Wilfried; Fussenegger, Martin

    2004-04-20

    Capitalizing on a proven multicistronic expression vector platform we have designed novel pTRIDENT vectors which (1). enable coordinated expression of three desired transgenes, (2). are size-optimized, (3). take advantage of small highly efficient internal ribosome entry sites of the GTX or Rbm3 type, (4). harbor various sites specific for homing endonucleases facilitating promoter/multicistronic expression unit/polyadenylation site swapping as well as (5). straightforward integration into human HIV-l-based lentiviral expression vectors tailored to contain compatible homing endonucleases. Multicistronic expression profiles of novel pTRIDENT vectors engineered for different tricistronic expression configurations encoding human low-molecular-weight urokinase-type plasminogen activator (u-PA(LMW)) or Bacillus stearothermophilus-derived alpha-amylase (SAMY), human vascular endothelial growth factor (hVEGF), and human placental secreted alkaline phosphatase (SEAP) have been quantified in Chinese hamster ovary cells (CHO-K1), mouse fibroblasts (NIH/3T3), and/or human fibrosarcoma (HT-1080) cells. In addition, a pTRIDENT-derived SAMY-VEGF-SEAP expression cassette transferred into a compatible lentiviral expression vector enabled simultaneous high-level transgene expression following transduction of transgenic lentiviral particles into primary human chondrocytes. Copyright 2004 Wiley Periodicals, Inc.

  18. High-level expression of a cloned HLA heavy chain gene introduced into mouse cells on a bovine papillomavirus vector.

    PubMed

    DiMaio, D; Corbin, V; Sibley, E; Maniatis, T

    1984-02-01

    A gene encoding the heavy chain of an HLA human histocompatibility antigen was isolated from a library of human DNA by recombination and selection in vivo. After insertion into a bovine papillomavirus (BPV) DNA expression vector, the gene was introduced into cultured mouse cells. Cells transformed with the HLA-BPV plasmids did not appear to contain extrachromosomal viral DNA, whereas BPV recombinants usually replicated as plasmids in transformed cell lines. Large amounts of HLA RNA were produced by the transformed cells, and the rate of synthesis of human heavy chain was several-fold higher than in the JY cell line, a well-characterized human lymphoblastoid cell line which expresses high levels of surface HLA antigen. Substantial amounts of human heavy chain accumulated in the transformed cells, and HLA antigen was present at the cell surface. These observations establish the feasibility of using BPV vectors to study the structure and function of HLA antigens and the expression of cloned HLA genes.

  19. [Construction of venus vector carrying IGFBP7 gene and its expression in K562 cells].

    PubMed

    Wu, Shui-Yan; Hu, Shao-Yan; Cen, Jian-Nong; Chen, Zi-Xing

    2012-02-01

    The aim of this study was to construct venus vector carrying the gene encoding insulin-like growth factor binding protein 7 (IGFBP7), which provides an effective platform for exploring the function of this gene in leukemia. After digestion by restriction endonuclease, the IGFBP7 gene was recombined with the transfer plasmid. The venus particles were packaged using 293T cells to transfect K562 cells, and identification was performed by means of flow cytometry, RT-PCR and Western blot. The results showed that the sequence of cloned IGFBP7 gene was the same as that in GenBank. The size of product restricted by BamHI was same as the predicted one. GFP expression was observed in 293T and K562 cells with the fluorescent microscopy and flow cytometry. The expression level of mRNA and protein of IGFBP7 was confirmed by RT-PCR and Western blotting in K562 cells. It is concluded that venus vector carrying IGFBP7 gene has been successfully constructed and provides basis for exploring function of IGFBP7 in K562 cells.

  20. Highly inducible expression from vectors containing multiple GRE's in CHO cells overexpressing the glucocorticoid receptor.

    PubMed Central

    Israel, D I; Kaufman, R J

    1989-01-01

    A conditional glucocorticoid-responsive expression vector system is described for highly inducible expression of heterologous genes in mammalian cells. This host-vector system requires high level expression of the glucocorticoid receptor (GR) protein in the host cell and multiple copies of the receptor binding site within the expression vector. Transfection and selection of Chinese hamster ovary cells with expression vectors encoding the rat GR yielded cell lines which express functional receptor at high levels. Insertion of multiple copies of the MMTV enhancer (glucocorticoid responsive element, GRE) into an Adenovirus major late promoter (AdMLP) based expression vector yielded greater than 1000-fold inducible expression by dexamethasone (dex) in transient DNA transfection assays. The induced expression level was 7-fold greater than that obtained with an AdMLP based vector containing an SV40 enhancer, but lacking GRE's. Vectors containing the SV40 enhancer in combination with multiple GRE's exhibited elevated basal expression in the absence of dex, but retained inducibility in both transient assays and after integration and amplification in the CHO genome. This expression system should be of general utility for studying gene regulation and for expressing heterologous genes in a regulatable fashion. Images PMID:2546123

  1. Neuronal Activity Regulates Hippocampal miRNA Expression

    PubMed Central

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control. PMID:21984899

  2. Effects of chitin synthase double-stranded RNA on molting and oogenesis in the Chagas disease vector Rhodnius prolixus.

    PubMed

    Mansur, Juliana F; Alvarenga, Evelyn S L; Figueira-Mansur, Janaina; Franco, Thiago A; Ramos, Isabela B; Masuda, Hatisaburo; Melo, Ana C A; Moreira, Mônica F

    2014-08-01

    In this study, we provided the demonstration of the presence of a single CHS gene in the Rhodnius prolixus (a blood-sucking insect) genome that is expressed in adults (integument and ovary) and in the integument of nymphs during development. This CHS gene appears to be essential for epidermal integrity and egg formation in R. prolixus. Because injection of CHS dsRNA was effective in reducing CHS transcript levels, phenotypic alterations in the normal course of ecdysis occurred. In addition, two phenotypes with severe cuticle deformations were observed, which were associated with loss of mobility and lifetime. The CHS dsRNA treatment in adult females affected oogenesis, reducing the size of the ovary and presenting a greater number of atresic oocytes and a smaller number of chorionated oocytes compared with the control. The overall effect was reduced oviposition. The injection of CHS dsRNA modified the natural course of egg development, producing deformed eggs that were dark in color and unable to hatch, distinct from the viable eggs laid by control females. The ovaries, which were examined under fluorescence microscopy using a probe for chitin detection, showed a reduced deposition on pre-vitellogenic and vitellogenic oocytes compared with control. Taken together, these data suggest that the CHS gene is fundamentally important for ecdysis, oogenesis and egg hatching in R. prolixus and also demonstrated that the CHS gene is a good target for controlling Chagas disease vectors.

  3. Suppression of hepatitis B virus antigen production and replication by wild-type HBV dependently replicating HBV shRNA vectors in vitro and in vivo.

    PubMed

    Li, Baosheng; Sun, Shuo; Li, Minran; Cheng, Xin; Li, Haijun; Kang, Fubiao; Kang, Jiwen; Dörnbrack, Katharina; Nassal, Michael; Sun, Dianxing

    2016-10-01

    Chronic infection with hepatitis B virus (HBV), a small DNA virus that replicates by reverse transcription of a pregenomic (pg) RNA precursor, greatly increases the risk for terminal liver disease. RNA interference (RNAi) based therapy approaches have shown potential to overcome the limited efficacy of current treatments. However, synthetic siRNAs as well as small hairpin (sh) RNAs expressed from non-integrating vectors require repeated applications; integrating vectors suffer from safety concerns. We pursue a new concept by which HBV itself is engineered into a conditionally replicating, wild-type HBV dependent anti-HBV shRNA vector. Beyond sharing HBV's hepatocyte tropism, such a vector would be self-renewing, but only as long as wild-type HBV is present. Here, we realized several important aspects of this concept. We identified two distinct regions in the 3.2 kb HBV genome which tolerate replacement by shRNA expression cassettes without compromising reverse transcription when complemented in vitro by HBV helper constructs or by wild-type HBV; a representative HBV shRNA vector was infectious in cell culture. The vector-encoded shRNAs were active, including on HBV as target. A dual anti-HBV shRNA vector delivered into HBV transgenic mice, which are not susceptible to HBV infection, by a chimeric adenovirus-HBV shuttle reduced serum hepatitis B surface antigen (HBsAg) up to ∼4-fold, and virus particles up to ∼20-fold. Importantly, a fraction of the circulating particles contained vector-derived DNA, indicating successful complementation in vivo. These data encourage further investigations to prove antiviral efficacy and the predicted self-limiting vector spread in a small animal HBV infection model. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Helper virus-mediated downregulation of transgene expression permits production of recalcitrant helper-dependent adenoviral vector

    PubMed Central

    Palmer, Donna J; Grove, Nathan C; Ng, Philip

    2016-01-01

    Helper-dependent adenoviral vectors (HDAd) that express certain transgene products are impossible to produce because the transgene product is toxic to the producer cells, especially when made in large amounts during vector production. Downregulating transgene expression from the HDAd during vector production is a way to solve this problem. In this report, we show that this can be accomplished by inserting the target sequence for the adenoviral VA RNAI into the 3’ untranslated region of the expression cassette in the HDAd. Thus during vector production, when the producer cells are coinfected with both the helper virus (HV) and the HDAd, the VA RNAI produced by the HV will target the transgene mRNA from the HDAd via the endogenous cellular RNAi pathway. Once the HDAd is produced and purified, transduction of the target cells results in unimpeded transgene expression because of the absence of HV. This simple and universal strategy permits for the robust production of otherwise recalcitrant HDAds. PMID:27331077

  5. Imaging herpes simplex virus type 1 amplicon vector-mediated gene expression in human glioma spheroids.

    PubMed

    Kaestle, Christine; Winkeler, Alexandra; Richter, Raphaela; Sauer, Heinrich; Hescheler, Jürgen; Fraefel, Cornel; Wartenberg, Maria; Jacobs, Andreas H

    2011-06-01

    Vectors derived from herpes simplex virus type 1 (HSV-1) have great potential for transducing therapeutic genes into the central nervous system; however, inefficient distribution of vector particles in vivo may limit their therapeutic potential in patients with gliomas. This study was performed to investigate the extent of HSV-1 amplicon vector-mediated gene expression in a three-dimensional glioma model of multicellular spheroids by imaging highly infectious HSV-1 virions expressing green fluorescent protein (HSV-GFP). After infection or microscopy-guided vector injection of glioma spheroids at various spheroid sizes, injection pressures and injection times, the extent of HSV-1 vector-mediated gene expression was investigated via laser scanning microscopy. Infection of spheroids with HSV-GFP demonstrated a maximal depth of vector-mediated GFP expression at 70 to 80 μm. A > 80% transduction efficiency was reached only in small spheroids with a diameter of < 150 μm. Guided vector injection into the spheroids showed transduction efficiencies ranging between < 10 and > 90%. The results demonstrated that vector-mediated gene expression in glioma spheroids was strongly dependent on the mode of vector application-injection pressure and injection time being the most important parameters. The assessment of these vector application parameters in tissue models will contribute to the development of safe and efficient gene therapy protocols for clinical application.

  6. Intratumoral Heterogeneity of MicroRNA Expression in Rectal Cancer

    PubMed Central

    Andersen, Rikke Fredslund; Nielsen, Boye Schnack; Sørensen, Flemming Brandt; Appelt, Ane Lindegaard; Jakobsen, Anders; Hansen, Torben Frøstrup

    2016-01-01

    Introduction An increasing number of studies have investigated microRNAs (miRNAs) as potential markers of diagnosis, treatment and prognosis. So far, agreement between studies has been minimal, which may in part be explained by intratumoral heterogeneity of miRNA expression. The aim of the present study was to assess the heterogeneity of a panel of selected miRNAs in rectal cancer, using two different technical approaches. Materials and Methods The expression of the investigated miRNAs was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH) in tumour specimens from 27 patients with T3-4 rectal cancer. From each tumour, tissue from three different luminal localisations was examined. Inter- and intra-patient variability was assessed by calculating intraclass correlation coefficients (ICCs). Correlations between RT-qPCR and ISH were evaluated using Spearman’s correlation. Results ICCsingle (one sample from each patient) was higher than 50% for miRNA-21 and miRNA-31. For miRNA-125b, miRNA-145, and miRNA-630, ICCsingle was lower than 50%. The ICCmean (mean of three samples from each patient) was higher than 50% for miRNA-21(RT-qPCR and ISH), miRNA-125b (RT-qPCR and ISH), miRNA-145 (ISH), miRNA-630 (RT-qPCR), and miRNA-31 (RT-qPCR). For miRNA-145 (RT-qPCR) and miRNA-630 (ISH), ICCmean was lower than 50%. Spearman correlation coefficients, comparing results obtained by RT-qPCR and ISH, respectively, ranged from 0.084 to 0.325 for the mean value from each patient, and from -0.085 to 0.515 in the section including the deepest part of the tumour. Conclusion Intratumoral heterogeneity may influence the measurement of miRNA expression and consequently the number of samples needed for representative estimates. Our findings with two different methods suggest that one sample is sufficient for adequate assessment of miRNA-21 and miRNA-31, whereas more samples would improve the assessment of miRNA-125b, miRNA-145, and miRNA-630

  7. Protection of Cftr knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing Cftr in airway epithelia

    PubMed Central

    Koehler, David R.; Sajjan, Umadevi; Chow, Yu-Hua; Martin, Bernard; Kent, Geraldine; Tanswell, A. Keith; McKerlie, Colin; Forstner, Janet F.; Hu, Jim

    2003-01-01

    We developed a helper-dependent adenoviral vector for cystic fibrosis lung gene therapy. The vector expresses cystic fibrosis transmembrane conductance regulator (Cftr) using control elements from cytokeratin 18. The vector expressed properly localized CFTR in cultured cells and in the airway epithelia of mice. Cftr RNA and protein were present in whole lung and bronchioles, respectively, for 28 days after a vector dose. Acute inflammation was minimal to moderate. To test the therapeutic potential of the vector, we challenged mice with a clinical strain of Burkholderia cepacia complex (Bcc). Cftr knockout mice (but not Cftr+/+ littermates) challenged with Bcc developed severe lung histopathology and had high lung bacteria counts. Cftr knockout mice receiving gene therapy 7 days before Bcc challenge had less severe histopathology, and the number of lung bacteria was reduced to the level seen in Cftr+/+ littermates. These data suggest that gene therapy could benefit cystic fibrosis patients by reducing susceptibility to opportunistic pathogens. PMID:14673110

  8. Selective and efficient retardation of cancers expressing cytoskeleton-associated protein 2 by targeted RNA replacement.

    PubMed

    Ban, Guyee; Jeong, Jin-Sook; Kim, Areum; Kim, Sung Jin; Han, Sang-Young; Kim, In-Hoo; Lee, Seong-Wook

    2011-08-15

    Human cytoskeleton-associated protein 2 (hCKAP2) is upregulated and highly expressed in various human malignances. hCKAP2 has microtubule-stabilizing characteristics and potentially regulates the dynamics and assembly of the mitotic spindle and chromosome segregation, indicating that hCKAP2 plays important functions during mitosis. In this study, we evaluated hCKAP2 as a plausible anticancer target through development and validation of a targeted cancer gene therapy strategy based on targeting and replacement of hCKAP2 RNA using a trans-splicing ribozyme. This targeted RNA replacement triggered transgene activity via accurate trans-splicing reaction selectively in human cancer cells expressing the hCKAP2 RNA and simultaneously reduced the expression level of the RNA in the cells. Adenoviral vector encoding the hCKAP2-specific trans-splicing ribozyme selectively induced cytotoxicity in tumor cells expressing hCKAP2. Moreover, intratumoral injection of the virus produced selective and efficient regression of tumor that had been subcutaneously inoculated with hCKAP2-positive colon cancer cells in mice with minimal liver toxicity. Furthermore, orthotopically multifocal hCKAP2-positive hepatocarcinoma established in mice were efficiently regressed by systemic delivery of adenoviral vector encoding the specific ribozyme under the control of a liver-selective phosphoenolpyruvate carboxykinase promoter with least hepatotoxicity. The results indicate that hCKAP2 RNA is a promising target for anticancer approach based on trans-splicing ribozyme-mediated RNA replacement. Copyright © 2011 UICC.

  9. A multiplexed miRNA and transgene expression platform for simultaneous repression and expression of protein coding sequences.

    PubMed

    Seyhan, Attila A

    2016-01-01

    Knockdown of single or multiple gene targets by RNA interference (RNAi) is necessary to overcome escape mutants or isoform redundancy. It is also necessary to use multiple RNAi reagents to knockdown multiple targets. It is also desirable to express a transgene or positive regulatory elements and inhibit a target gene in a coordinated fashion. This study reports a flexible multiplexed RNAi and transgene platform using endogenous intronic primary microRNAs (pri-miRNAs) as a scaffold located in the green fluorescent protein (GFP) as a model for any functional transgene. The multiplexed intronic miRNA - GFP transgene platform was designed to co-express multiple small RNAs within the polycistronic cluster from a Pol II promoter at more moderate levels to reduce potential vector toxicity. The native intronic miRNAs are co-transcribed with a precursor GFP mRNA as a single transcript and presumably cleaved out of the precursor-(pre) mRNA by the RNA splicing machinery, spliceosome. The spliced intron with miRNA hairpins will be further processed into mature miRNAs or small interfering RNAs (siRNAs) capable of triggering RNAi effects, while the ligated exons become a mature messenger RNA for the translation of the functional GFP protein. Data show that this approach led to robust RNAi-mediated silencing of multiple Renilla Luciferase (R-Luc)-tagged target genes and coordinated expression of functional GFP from a single transcript in transiently transfected HeLa cells. The results demonstrated that this design facilitates the coordinated expression of all mature miRNAs either as individual miRNAs or as multiple miRNAs and the associated protein. The data suggest that, it is possible to simultaneously deliver multiple negative (miRNA or shRNA) and positive (transgene) regulatory elements. Because many cellular processes require simultaneous repression and activation of downstream pathways, this approach offers a platform technology to achieve that dual manipulation efficiently

  10. Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus.

    PubMed

    Shao, Huanhuan; Cao, Qinghua; Zhao, Hongyan; Tan, Xuemei; Feng, Hong

    2015-01-01

    A native plasmid (pSU01) was detected by genome sequencing of Bacillus subtilis strain S1-4. Two pSU01-based shuttle expression vectors pSU02-AP and pSU03-AP were constructed enabling stable replication in B. subtilis WB600. These vectors contained the reporter gene aprE, encoding an alkaline protease from Bacillus pumilus BA06. The expression vector pSU03-AP only possessed the minimal replication elements (rep, SSO, DSO) and exhibited more stability on structure, suggesting that the rest of the genes in pSU01 (ORF1, ORF2, mob, hsp) were unessential for the structural stability of plasmid in B. subtilis. In addition, recombinant production of the alkaline protease was achieved more efficiently with pSU03-AP whose copy number was estimated to be more than 100 per chromosome. Furthermore, pSU03-AP could also be used to transform and replicate in B. pumilus BA06 under selective pressure. In conclusion, pSU03-AP is expected to be a useful tool for gene expression in Bacillus subtilis and B. pumilus.

  11. Detecting microRNA activity from gene expression data

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources. PMID:20482775

  12. Dynamic RNA Modifications in Gene Expression Regulation.

    PubMed

    Roundtree, Ian A; Evans, Molly E; Pan, Tao; He, Chuan

    2017-06-15

    Over 100 types of chemical modifications have been identified in cellular RNAs. While the 5' cap modification and the poly(A) tail of eukaryotic mRNA play key roles in regulation, internal modifications are gaining attention for their roles in mRNA metabolism. The most abundant internal mRNA modification is N(6)-methyladenosine (m(6)A), and identification of proteins that install, recognize, and remove this and other marks have revealed roles for mRNA modification in nearly every aspect of the mRNA life cycle, as well as in various cellular, developmental, and disease processes. Abundant noncoding RNAs such as tRNAs, rRNAs, and spliceosomal RNAs are also heavily modified and depend on the modifications for their biogenesis and function. Our understanding of the biological contributions of these different chemical modifications is beginning to take shape, but it's clear that in both coding and noncoding RNAs, dynamic modifications represent a new layer of control of genetic information. Published by Elsevier Inc.

  13. Stable Delivery of CCR5-Directed shRNA into Human Primary Peripheral Blood Mononuclear Cells and Hematopoietic Stem/Progenitor Cells via a Lentiviral Vector

    PubMed Central

    Shimizu, Saki; Yadav, Swati Seth; An, Dong Sung

    2016-01-01

    RNAi is a powerful tool to achieve suppression of a specific gene expression and therefore it has tremendous potential for gene therapy applications. A number of vector systems have been developed to express short-hairpin RNAs (shRNAs) to produce siRNAs within mammalian T-cells, primary hematopoietic stem/progenitor cells (HSPC), human peripheral blood mononuclear cells, and in animal model systems. Among these, vectors based on lentivirus backbones have significantly transformed our ability to transfer shRNAs into nondividing cells, such as HSPC, resulting in high transduction efficiencies. However, delivery and long-term expression of shRNAs should be carefully optimized for efficient knock down of target gene without causing cytotoxicity in mammalian cells. Here, we describe our protocols for the development of shRNA against a major HIV co-receptor/chemokine receptor CCR5 and the use of lentiviral vectors for stable shRNA delivery and expression in primary human PBMC and HSPC. PMID:26472455

  14. Rapid construction of multiple sgRNA vectors and knockout of the Arabidopsis IAA2 gene using the CRISPR/Cas9 genomic editing technology.

    PubMed

    Dingyuan, Liu; Ting, Qiu; Xiaohui, Ding; Miaomiao, Li; Muyuan, Zhu; Junhui, Wang

    2016-08-01

    IAA2 is a member of the Aux/IAA auxin responsive gene family in Arabidopsis thaliana. No iaa2 mutant has been reported until now, thus hindering its further mechanistic investigations. The normal genomic editing technology of CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) uses only a single guide RNA (sgRNA) to target one site in a specific gene, and the gene knockout efficiency is not high. Instead, multiple sgRNAs can target multiple sites; therefore, the efficiency may be improved. In the present investigation, we used the golden-gate cloning strategy and two rounds of PCR reactions to combine three sgRNAs in the same entry vector. The final expression vector was obtained by LR reactions with the destination vector containing the Cas9 expression cassette. Four out of the six sgRNAs were effective, and we also obtained a lot of insertion and deletion mutations. Compared with one sgRNA approach, multiple sgRNAs displayed higher gene-knockout efficiency and produced more germ-line mutants. Thus, we established a more rapid and efficient method and generated five mutants for further studies of IAA2 functions.

  15. microRNA Expression Profiling: Technologies, Insights, and Prospects.

    PubMed

    Roden, Christine; Mastriano, Stephen; Wang, Nayi; Lu, Jun

    2015-01-01

    Since the early days of microRNA (miRNA) research, miRNA expression profiling technologies have provided important tools toward both better understanding of the biological functions of miRNAs and using miRNA expression as potential diagnostics. Multiple technologies, such as microarrays, next-generation sequencing, bead-based detection system, single-molecule measurements, and quantitative RT-PCR, have enabled accurate quantification of miRNAs and the subsequent derivation of key insights into diverse biological processes. As a class of ~22 nt long small noncoding RNAs, miRNAs present unique challenges in expression profiling that require careful experimental design and data analyses. We will particularly discuss how normalization and the presence of miRNA isoforms can impact data interpretation. We will present one example in which the consideration in data normalization has provided insights that helped to establish the global miRNA expression as a tumor suppressor. Finally, we discuss two future prospects of using miRNA profiling technologies to understand single cell variability and derive new rules for the functions of miRNA isoforms.

  16. Construction of an expression vector for the fission yeast Schizosaccharomyces pombe.

    PubMed Central

    Kudla, B; Persuy, M A; Gaillardin, C; Heslot, H

    1988-01-01

    We have isolated and characterized a S. pombe promoter using a functional heterologous gene product assay. Random S. pombe genomic fragments were cloned upstream from the promoterless 'lacZ gene and tested in vivo for their efficiency to promote expression of the beta-galactosidase protein in the fission yeast. An efficient S. pombe promoter called 54/1 was isolated and shown to drive up to 5% of total protein synthesis as beta-galactosidase. The structure and nucleotide sequence of this promoter were determined, precise localization of its mRNA transcriptional start points established. Translational fusion of the Pseudomonas putida XylE gene with the 54/1 gene was shown to allow expression of catechol oxidase activity in S. pombe. An expression vector suitable for transcriptional fusions was then constructed from engineered 54/1 promoter sequences and used to drive expression of the E. coli Tn5 ble gene, thus confering resistance to the fission yeast against bleomycin and phleomycin antibiotics. PMID:2843820

  17. Impact of RNA degradation on gene expression profiling

    PubMed Central

    2010-01-01

    Background Gene expression profiling is a highly sensitive technique which is used for profiling tumor samples for medical prognosis. RNA quality and degradation influence the analysis results of gene expression profiles. The impact of this influence on the profiles and its medical impact is not fully understood. As patient samples are very valuable for clinical studies, it is necessary to establish criteria for the RNA quality to be able to use these samples in later analysis. Methods To investigate the effects of RNA integrity on gene expression profiling, whole genome expression arrays were used. We used tumor biopsies from patients diagnosed with locally advanced rectal cancer. To simulate degradation, the isolated total RNA of all patients was subjected to heat-induced degradation in a time-dependent manner. Expression profiling was then performed and data were analyzed bioinformatically to assess the differences. Results The differences introduced by RNA degradation were largely outweighed by the biological differences between the patients. Only a relatively small number of probes (275 out of 41,000) show a significant effect due to degradation. The genes that show the strongest effect due to RNA degradation were, especially, those with short mRNAs and probe positions near the 5' end. Conclusions Degraded RNA from tumor samples (RIN > 5) can still be used to perform gene expression analysis. A much higher biological variance between patients is observed compared to the effect that is imposed by degradation of RNA. Nevertheless there are genes, very short ones and those with the probe binding side close to the 5' end that should be excluded from gene expression analysis when working with degraded RNA. These results are limited to the Agilent 44 k microarray platform and should be carefully interpreted when transferring to other settings. PMID:20696062

  18. A shuttle vector which facilitates the expression of transfected genes in Trypanosoma cruzi and Leishmania.

    PubMed Central

    Kelly, J M; Ward, H M; Miles, M A; Kendall, G

    1992-01-01

    A Trypanosoma cruzi expression vector has been constructed using sequences derived from the flanking regions of the glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) genes. The neomycin phosphotransferase (neor) gene was incorporated as a selectable marker. Using electroporation we have introduced this vector into both T. cruzi and Leishmania cells and conferred G418 resistance. Transformation is mediated by large extrachromosomal circular elements composed of head-to-tail tandem repeats of the vector. The transformed phenotype is stable for at least 6 months in the absence of G418 and can be maintained during passage through the T. cruzi life-cycle. Foreign genes inserted into an expression site within the vector (pTEX) can be expressed at high levels in transformed cells. To our knowledge this paper describes the first trypanosome shuttle vector and the first vector which functions in both trypanosomes and Leishmania. Images PMID:1324472

  19. Redifferentiation of dedifferentiated chondrocytes by adenoviral vector-mediated TGF-β3 and collagen-1 silencing shRNA in 3D culture.

    PubMed

    Zhang, Feng; Yao, Yongchang; Su, Kai; Pang, Patricia Xiaotian; Zhou, Ruijie; Wang, Yingjun; Wang, Dong-An

    2011-12-01

    Autologous chondrocytes remain one of the most preferable candidates among various therapeutic cell species because of their high efficacy, despite remarkable progress in discovery and development of therapeutic cells for cartilage regenerative medicine to date. However, the essential process of cell expansion via repeated monolayer sub-cultures inevitably induces chondrocytic dedifferentiation. In this study, we aimed to achieve and enhance redifferentiation of dedifferentiated chondrocytes with dual genes of transforming growth factor (TGF)-β3 and short hairpin RNA (shRNA) that restore chondrocytic phenotype and silence fibrous collagen type I (Col I), respectively. It was hypothesized that gene delivery of the two targets would promote chondrogenesis in chondrocytes, and meanwhile inhibit the expression of the undesired Col I. Three types of recombinant adenoviruses were constructed. Two of them were of single-function vectors with the ability to express either TGF-β3 (Ad-TGFβ3) or shRNA (specific for Col I, Ad-shRNA); the third type was of double-function vectors that encode both TGF-β3 and anti-Col I shRNA (Ad-double). We infected the dedifferentiated chondrocytes with Ad-double, or co-transduced them with Ad-TGFβ3 and Ad-shRNA at the same time (designated as Ad-combination). Data from real-time RT-PCR and histological staining suggested a restoration in the expression of cartilage-specific genes including aggrecan, type II collagen, and cartilage oligomeric matrix protein (COMP); while a significant down-regulation of Col I expression was observed in groups treated with Ad-double and Ad-combination compared to other control groups. These results demonstrated that, by genetic modification, dedifferentiated chondrocytes managed to redifferentiate back to chondrocytic phenotype, which may greatly facilitate cartilage regenerative medicine by providing sufficient number of competent therapeutic cells.

  20. Tetracycline-regulated gene expression in replication-incompetent herpes simplex virus vectors.

    PubMed

    Schmeisser, Falko; Donohue, Megan; Weir, Jerry P

    2002-12-10

    Although herpes simplex virus (HSV) vectors appear to have great potential as gene delivery vectors both in vitro and in vivo, the expression of foreign genes in such vectors cannot be easily regulated. Of the known eukaryotic regulatory systems, the tetracycline-inducible gene expression system is perhaps the most widely used because of its induction characteristics and because of the well-known pharmacological properties of tetracycline (Tet) and analogs such as doxycycline. Here, we describe the adaptation of the Tet-inducible system for use in replication-incompetent HSV vectors. HSV vectors were constructed that contained several types of Tet-inducible promoters for foreign gene expression. These promoters contained a tetracycline response element (TRE) linked to either a minimal cytomegalovirus (CMV) immediate-early promoter, a minimal HSV ICP0 promoter, or a truncated HSV ICP0 promoter containing one copy of the HSV TAATGARAT cis-acting immediate-early regulatory element (where R represents a prime base). All three promoter constructs were regulated appropriately by doxycycline, as shown by the expression of the marker gene lacZ in cell lines engineered to express Tet transactivators. The ICP0 promoter constructs expressed the highest and most sustained levels of lacZ, but the CMV promoter construct had the highest relative level of induction, suggesting their use in different applications. To extend the utility of Tet-regulated HSV vectors, vectors were constructed that coexpressed an inducible Tet transactivator in addition to the inducible lacZ marker gene. This modification resulted in tetracycline-inducible gene expression that was not restricted to specific cell lines, and this vector was capable of inducible expression in irreversibly differentiated NT2 cells (NT-neurons) for several days. Finally, HSV vectors were constructed that expressed modified Tet transactivators, resulting in improved induction properties and indicating the flexibility of the

  1. Human parainfluenza virus type 2 vector induces dendritic cell maturation without viral RNA replication/transcription.

    PubMed

    Hara, Kenichiro; Fukumura, Masayuki; Ohtsuka, Junpei; Kawano, Mitsuo; Nosaka, Tetsuya

    2013-07-01

    The dendritic cell (DC), a most potent antigen-presenting cell, plays a key role in vaccine therapy against infectious diseases and malignant tumors. Although advantages of viral vectors for vaccine therapy have been reported, potential risks for adverse effects prevent them from being licensed for clinical use. Human parainfluenza virus type 2 (hPIV2), one of the members of the Paramyxoviridae family, is a nonsegmented and negative-stranded RNA virus. We have developed a reverse genetics system for the production of infectious hPIV2 lacking the F gene (hPIV2ΔF), wherein various advantages for vaccine therapy exist, such as cytoplasmic replication/transcription, nontransmissible infectivity, and extremely high transduction efficacy in various types of target cells. Here we demonstrate that hPIV2ΔF shows high transduction efficiency in human DCs, while not so high in mouse DCs. In addition, hPIV2ΔF sufficiently induces maturation of both human and murine DCs, and the maturation state of both human and murine DCs is almost equivalent to that induced by lipopolysaccharide. Moreover, alkylating agent β-propiolactone-inactivated hPIV2ΔF (BPL-hPIV2ΔF) elicits DC maturation without viral replication/transcription. These results suggest that hPIV2ΔF may be a useful tool for vaccine therapy as a novel type of paramyxoviral vector, which is single-round infectious vector and has potential adjuvant activity.

  2. A novel method for the quantification of adeno-associated virus vectors for RNA interference applications using quantitative polymerase chain reaction and purified genomic adeno-associated virus DNA as a standard.

    PubMed

    Wagner, Anke; Röhrs, Viola; Kedzierski, Radoslaw; Fechner, Henry; Kurreck, Jens

    2013-12-01

    Recombinant adeno-associated virus (rAAV) vectors are promising tools in gene therapy, but accurate quantification of the vector dose remains a critical issue for their successful application. We therefore aimed at the precise determination of the titer of self-complementary AAV (scAAV) vectors to improve the reliability of RNA interference (RNAi)-mediated knockdown approaches. Vector titers were initially determined by quantitative polymerase chain reaction (qPCR) using four primer sets targeting different regions within the AAV vector genome (VG) and either coiled or linearized plasmid standards. Despite very low variability between replicates in each assay, these quantification experiments revealed up to 20-fold variation in vector titers. Therefore, we developed a novel approach for the reproducible determination of titers of scAAV vectors based on the use of purified genomic vector DNA as a standard (scAAVStd). Consistent results were obtained in qPCR assays using the four primer sets mentioned above. RNAi-mediated silencing of human cyclophilin B (hCycB) by short hairpin RNA-expressing scAAV vectors was investigated in HeLa cells using two independent vector preparations. We found that the required vector titers for efficient knockdown differed by a factor of 3.5 between both preparations. Hence, we also investigated the number of internalized scAAV vectors, termed transduction units (TUs). TUs were determined by qPCR applying the scAAVStd. Very similar values for 80% hCycB knockdown were obtained for the two AAV vector preparations. Thus, only the determination of TUs, rather than vector concentration, allows for reproducible results in functional analyses using AAV vectors.

  3. [microRNA expression in breast development and breast cancer].

    PubMed

    Avril, S

    2013-11-01

    Profiling studies have identified specific miRNA signatures in hematological and solid malignancies, including breast cancer. This article reviews miRNA expression patterns in breast development and breast cancer focusing on two own previous studies. The first study characterized miRNA expression during postnatal mouse mammary gland development and the second study assessed intratumoral heterogeneity of miRNA expression in breast cancer.In mouse mammary glands the expression of 318 murine miRNAs was analyzed by bead-based flow-cytometric profiling throughout a 16-point developmental time course to derive a comprehensive tissue-specific miRNA expression profile. During breast development 102 miRNAs were expressed in 7 temporally coregulated clusters, which were significantly enriched for miRNA family members and breast cancer-associated miRNAs. None of the investigated single miRNAs or miRNA clusters were exclusively associated with a particular developmental stage.In human breast cancer the expression of 4 candidate miRNAs (miR-10b, miR-210, miR-31 and miR-335) was assessed by quantitative RT-PCR in 132 paraffin-embedded samples of 16 large primary invasive breast cancers including different tumor zones (peripheral, intermediate and central) as well as several axillary lymph node metastases from the same patient. The expression of all four miRNAs showed considerable intratumoral heterogeneity with a mean coefficient of variation of 40 % within the primary tumor and 40 % between different lymph node metastases from the same patient. In comparison, the variation among different patients showed a mean coefficient of variation of 80 % for primary tumors and 103 % for lymph node metastases. Intratumoral heterogeneity can lead to significant sampling bias and multiple areas of the primary tumor or several tumor-involved lymph nodes should be sampled when assessing miRNA profiles as prognostic or predictive biomarkers.

  4. An integrated analysis of differential miRNA and mRNA expressions in human gallstones.

    PubMed

    Yang, Bin; Liu, Bin; Bi, Pinduan; Wu, Tao; Wang, Qiang; Zhang, Jie

    2015-04-01

    Gallstone disease, including cholesterol precipitation in bile, increased bile salt hydrophobicity and gallbladder inflammation. Here, we investigated miRNA and mRNA involved in the formation of gallstones, and explored the molecular mechanisms in the development of gallstones. Differentially expressed 17 miRNAs and 525 mRNA were identified based on Illumina sequencing from gallbladder mucosa of patients with or without gallstones, and were validated by randomly selected 6 miRNAs and 8 genes using quantitative RT-PCR. 114 miRNA target genes were identified, whose functions and regulating pathways were related to gallstones. The differentially expressed genes were enriched upon lipoprotein binding and some metabolic pathways, and differentially expressed miRNAs enriched upon ABC transportation and cancer related pathways. A molecular regulatory network consisting of 17 differentially expressed miRNAs, inclusive of their target genes, was constructed. miR-210 and its potential target gene ATP11A were found to be differentially expressed in both miRNA and mRNA profiles. ATP11A was a direct target of miR-210, which was predicted to regulate the ABC-transporters pathway. The expression levels of ATP11A in the gallstone showed inverse correlation with miR-210 expression, and up-regulation of miR-210 could reduce ATP11A expression in HGBEC. This is the first report that indicates the existence of differences in miRNA and mRNA expression in patients with or without gallstones. Our data shed light on further investigating the mechanisms of gallstone formation.

  5. A new method to customize protein expression vectors for fast, efficient and background free parallel cloning.

    PubMed

    Scholz, Judith; Besir, Hüseyin; Strasser, Claudia; Suppmann, Sabine

    2013-02-14

    Expression and purification of correctly folded proteins typically require screening of different parameters such as protein variants, solubility enhancing tags or expression hosts. Parallel vector series that cover all variations are available, but not without compromise. We have established a fast, efficient and absolutely background free cloning approach that can be applied to any selected vector. Here we describe a method to tailor selected expression vectors for parallel Sequence and Ligation Independent Cloning. SLIC cloning enables precise and sequence independent engineering and is based on joining vector and insert with 15-25 bp homologies on both DNA ends by homologous recombination. We modified expression vectors based on pET, pFastBac and pTT backbones for parallel PCR-based cloning and screening in E.coli, insect cells and HEK293E cells, respectively. We introduced the toxic ccdB gene under control of a strong constitutive promoter for counterselection of insert less vector. In contrast to DpnI treatment commonly used to reduce vector background, ccdB used in our vector series is 100% efficient in killing parental vector carrying cells and reduces vector background to zero. In addition, the 3' end of ccdB functions as a primer binding site common to all vectors. The second shared primer binding site is provided by a HRV 3C protease cleavage site located downstream of purification and solubility enhancing tags for tag removal. We have so far generated more than 30 different parallel expression vectors, and successfully cloned and expressed more than 250 genes with this vector series. There is no size restriction for gene insertion, clone efficiency is > 95% with clone numbers up to 200. The procedure is simple, fast, efficient and cost-effective. All expression vectors showed efficient expression of eGFP and different target proteins requested to be produced and purified at our Core Facility services. This new expression vector series allows efficient

  6. Optimized Lentiviral Vectors for HIV Gene Therapy: Multiplexed Expression of Small RNAs and Inclusion of MGMTP140K Drug Resistance Gene

    PubMed Central

    Chung, Janet; Scherer, Lisa J; Gu, Angel; Gardner, Agnes M; Torres-Coronado, Monica; Epps, Elizabeth W; DiGiusto, David L; Rossi, John J

    2014-01-01

    Gene therapy with hematopoietic stem and progenitor cells is a promising approach to engineering immunity to human immunodeficiency virus (HIV) that may lead to a functional cure for acquired immunodeficiency syndrome (AIDS). In support of this approach, we created lentiviral vectors with an engineered polycistronic platform derived from the endogenous MCM7 gene to express a diverse set of small antiviral RNAs and a drug resistance MGMTP140K marker. Multiple strategies for simultaneous expression of up to five RNA transgenes were tested. The placement and orientation of each transgene and its promoter were important determinants for optimal gene expression. Antiviral RNA expression from the MCM7 platform with a U1 promoter was sufficient to provide protection from R5-tropic HIV in macrophages and resulted in reduced hematopoietic toxicity compared with constructs expressing RNA from independent RNA polymerase III promoters. The addition of an HIV entry inhibitor and nucleolar TAR RNA decoy did not enhance antiviral potency over constructs that targeted only viral RNA transcripts. We also demonstrated selective enrichment of gene-modified cells in vivo using a humanized mouse model. The use of these less toxic, potent anti-HIV vectors expressing a drug selection marker is likely to enhance the in vivo efficacy of our stem cell gene therapy approach in treating HIV/AIDS. PMID:24576853

  7. Optimized lentiviral vectors for HIV gene therapy: multiplexed expression of small RNAs and inclusion of MGMT(P140K) drug resistance gene.

    PubMed

    Chung, Janet; Scherer, Lisa J; Gu, Angel; Gardner, Agnes M; Torres-Coronado, Monica; Epps, Elizabeth W; Digiusto, David L; Rossi, John J

    2014-05-01

    Gene therapy with hematopoietic stem and progenitor cells is a promising approach to engineering immunity to human immunodeficiency virus (HIV) that may lead to a functional cure for acquired immunodeficiency syndrome (AIDS). In support of this approach, we created lentiviral vectors with an engineered polycistronic platform derived from the endogenous MCM7 gene to express a diverse set of small antiviral RNAs and a drug resistance MGMT(P140K) marker. Multiple strategies for simultaneous expression of up to five RNA transgenes were tested. The placement and orientation of each transgene and its promoter were important determinants for optimal gene expression. Antiviral RNA expression from the MCM7 platform with a U1 promoter was sufficient to provide protection from R5-tropic HIV in macrophages and resulted in reduced hematopoietic toxicity compared with constructs expressing RNA from independent RNA polymerase III promoters. The addition of an HIV entry inhibitor and nucleolar TAR RNA decoy did not enhance antiviral potency over constructs that targeted only viral RNA transcripts. We also demonstrated selective enrichment of gene-modified cells in vivo using a humanized mouse model. The use of these less toxic, potent anti-HIV vectors expressing a drug selection marker is likely to enhance the in vivo efficacy of our stem cell gene therapy approach in treating HIV/AIDS.

  8. [Changes of microRNA expression profiles in Vero cells induced by HSV-2 LAT overexpression].

    PubMed

    Wang, Ying; Fan, Jianyong; Yang, Huilan; Chen, Jianyun

    2012-10-01

    To investigate the changes in the microRNA expression profile of Vero cells induced by HSV-2 LAT overexpression. The full-length open reading frame of HSV-2 LAT was synthesized and cloned into pRetroQ- AcGFP1-C1 vector, and the recombinant retrovirus expressing HSV-2 LAT was packaged. Using a microRNA microarray, the microRNA expression profile changes in Vero cells were analyzed after infection with the recombinant retrovirus. In Vero cells infected with the recombinant retrovirus for stable HSV-2 LAT overexpression, 5 microRNAs (hsa-miR-23a*, kshv-miR-K12-3, hsa-miR-943, hsa-miR-634, and hsa-miR-1270) were up-regulated and 5 (hsa-miR-181a-2*, hsa-miR-450b-5p, hsa-miR-31, hsa-miR-24, and kshv-miR-K12-12*) were down-regulated. The expression of HSV-2 LAT can induce changes in microRNA expression profile in Vero cells.

  9. RNA Polymerase III Regulates Cytosolic RNA:DNA Hybrids and Intracellular MicroRNA Expression*

    PubMed Central

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J.; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J.

    2015-01-01

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells. PMID:25623070

  10. Adenovirus replication-competent vectors (KD1, KD3) complement the cytotoxicity and transgene expression from replication-defective vectors (Ad-GFP, Ad-Luc).

    PubMed

    Habib, Nagy A; Mitry, Ragai; Seth, Prem; Kuppuswamy, Mohan; Doronin, Konstantin; Toth, Karoly; Krajcsi, Peter; Tollefson, Ann E; Wold, William S M

    2002-08-01

    The successful clinical application of adenovirus (Ad) in cancer control has been of limited success because of the current inability to infect the majority of cancer cells with a large amount of vector. In this study, we show that when human lung tumors growing in immunodeficient nude mice were coinfected with a replication-defective (RD) Ad vector expressing green fluorescent protein and a replication-competent (RC) Ad vector named KD3, KD3 enhanced the expression of green fluorescent protein throughout the tumor. Also, KD3 and another RC vector named KD1 complemented the expression of luciferase from a RD vector in a human liver tumor xenotransplant in nude mice. Altogether, these results suggest that the combination of a RD vector with a RC vector might be a more effective treatment for cancer than either vector alone due to more widespread dissemination of the virus.

  11. The Use of Chromatin Insulators to Improve the Expression and Safety of Integrating Gene Transfer Vectors

    PubMed Central

    2011-01-01

    Abstract The therapeutic application of recombinant retroviruses and other integrating gene transfer vectors has been limited by problems of vector expression and vector-mediated genotoxicity. These problems arise in large part from the interactions between vector sequences and the genomic environment surrounding sites of integration. Strides have been made in overcoming both of these problems through the modification of deleterious vector sequences, the inclusion of better enhancers and promoters, and the use of alternative virus systems. However, these modifications often add other restrictions on vector design, which in turn can further limit therapeutic applications. As an alternative, several groups have been investigating a class of DNA regulatory elements known as chromatin insulators. These elements provide a means of blocking the interaction between an integrating vector and the target cell genome in a manner that is independent of the vector transgene, regulatory elements, or virus of origin. This review outlines the background, rationale, and evidence for using chromatin insulators to improve the expression and safety of gene transfer vectors. Also reviewed are topological factors that constrain the use of insulators in integrating gene transfer vectors, alternative sources of insulators, and the role of chromatin insulators as one of several components for optimal vector design. PMID:21247248

  12. Suppression of wingless-type MMTV integration site family, member 1 expression by small interfering RNA inhibits U251 glioma cell growth in vitro

    PubMed Central

    DONG, LUN; DUAN, XIAO-CHUN; HAN, CHONG-XU; ZHANG, HENGZHU; WU, YONGKANG

    2015-01-01

    A Wingless-type MMTV integration site family, member 1 (Wnt-1) RNA interference expression vector was constructed during the present study, which was used to transfect the glioma U251 cell line and investigate its effect on glioma. Two 21-base oligonucleotides complementary to the coding sequence that was flanking the loop sequence were designed to form a DNA hairpin template for the target small interfering RNA (siRNA). The siRNA templates were cloned into the siRNA expression vector, pGPU6/green fluorescent protein (GFP)/Neo and the sequence was confirmed by DNA sequencing. The pGPU6/GFP/Neo-short hairpin RNA (shRNA)-Wnt-1 vector was subsequently transfected into U251 cells, and reverse transcription polymerase chain reaction and western blot analysis were used to evaluate the Wnt-1 gene silencing effect on U251 cell growth by MTT assay and flow cytometry. The Wnt-1 protein expression was significantly reduced following transfection with the recombinant plasmid, as determined by western blot analysis of the transfected U251 cells. This transfection exhibited a significantly higher death rate, as shown by MTT. Thus, the present study demonstrated that the pGPU6/GFP/Neo-shRNA-Wnt-1 vector inhibited Wnt-1 protein expression. However, further investigations regarding the Wnt signaling pathway in glioma pathogenesis are required. PMID:25435937

  13. A high-throughput microRNA expression profiling system.

    PubMed

    Guo, Yanwen; Mastriano, Stephen; Lu, Jun

    2014-01-01

    As small noncoding RNAs, microRNAs (miRNAs) regulate diverse biological functions, including physiological and pathological processes. The expression and deregulation of miRNA levels contain rich information with diagnostic and prognostic relevance and can reflect pharmacological responses. The increasing interest in miRNA-related research demands global miRNA expression profiling on large numbers of samples. We describe here a robust protocol that supports high-throughput sample labeling and detection on hundreds of samples simultaneously. This method employs 96-well-based miRNA capturing from total RNA samples and on-site biochemical reactions, coupled with bead-based detection in 96-well format for hundreds of miRNAs per sample. With low-cost, high-throughput, high detection specificity, and flexibility to profile both small and large numbers of samples, this protocol can be adapted in a wide range of laboratory settings.

  14. A versatile system for USER cloning-based assembly of expression vectors for mammalian cell engineering.

    PubMed

    Lund, Anne Mathilde; Kildegaard, Helene Faustrup; Petersen, Maja Borup Kjær; Rank, Julie; Hansen, Bjarne Gram; Andersen, Mikael Rørdam; Mortensen, Uffe Hasbro

    2014-01-01

    A new versatile mammalian vector system for protein production, cell biology analyses, and cell factory engineering was developed. The vector system applies the ligation-free uracil-excision based technique--USER cloning--to rapidly construct mammalian expression vectors of multiple DNA fragments and with maximum flexibility, both for choice of vector backbone and cargo. The vector system includes a set of basic vectors and a toolbox containing a multitude of DNA building blocks including promoters, terminators, selectable marker- and reporter genes, and sequences encoding an internal ribosome entry site, cellular localization signals and epitope- and purification tags. Building blocks in the toolbox can be easily combined as they contain defined and tested Flexible Assembly Sequence Tags, FASTs. USER cloning with FASTs allows rapid swaps of gene, promoter or selection marker in existing plasmids and simple construction of vectors encoding proteins, which are fused to fluorescence-, purification-, localization-, or epitope tags. The mammalian expression vector assembly platform currently allows for the assembly of up to seven fragments in a single cloning step with correct directionality and with a cloning efficiency above 90%. The functionality of basic vectors for FAST assembly was tested and validated by transient expression of fluorescent model proteins in CHO, U-2-OS and HEK293 cell lines. In this test, we included many of the most common vector elements for heterologous gene expression in mammalian cells, in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors.

  15. MicroRNA 142-3p Attenuates Spread of Replicating Retroviral Vector in Hematopoietic Lineage-Derived Cells While Maintaining an Antiviral Immune Response

    PubMed Central

    Lin, Amy H.; Timberlake, Nina; Logg, Christopher R.; Liu, Yanzheng; Kamijima, Shuichi; Diago, Oscar; Wong, Kenneth; Gammon, Dawn K.; Ostertag, Derek; Hacke, Katrin; Yang, Emily C.; Gruber, Harry; Kasahara, Noriyuki

    2014-01-01

    Abstract We are developing a retroviral replicating vector (RRV) encoding cytosine deaminase as an anticancer agent for gliomas. Despite its demonstrated natural selectivity for tumors, and other safety features, such a virus could potentially cause off-target effects by productively infecting healthy tissues. Here, we investigated whether incorporation of a hematopoietic lineage-specific microRNA target sequence in RRV further restricts replication in hematopoietic lineage-derived human cells in vitro and in murine lymphoid tissues in vivo. One or four copies of a sequence perfectly complementary to the guide strand of microRNA 142-3p were inserted into the 3′ untranslated region of the RRV genome expressing the transgene encoding green fluorescent protein (GFP). Viral spread and GFP expression of these vectors in hematopoietic lineage cells in vitro and in vivo were measured by qPCR, qRT-PCR, and flow cytometry. In hematopoietic lineage-derived human cell lines and primary human stimulated peripheral blood mononuclear cells, vectors carrying the 142-3pT sequence showed a remarkable decrease in GFP expression relative to the parental vector, and viral spread was not observed over time. In a syngeneic subcutaneous mouse tumor model, RRVs with and without the 142-3pT sequences spread equally well in tumor cells; were strongly repressed in blood, bone marrow, and spleen; and generated antiviral immune responses. In an immune-deficient mouse model, RRVs with 142-3pT sequences were strongly repressed in blood, bone marrow, and spleen compared with unmodified RRV. Tissue-specific microRNA-based selective attenuation of RRV replication can maintain antiviral immunity, and if needed, provide an additional safeguard to this delivery platform for gene therapy applications. PMID:24825189

  16. Transgene expression and effective gene silencing in vagal afferent neurons in vivo using recombinant adeno-associated virus vectors

    PubMed Central

    Kollarik, M; Carr, M J; Ru, F; Ring, C J A; Hart, V J; Murdock, P; Myers, A C; Muroi, Y; Undem, B J

    2010-01-01

    Vagal afferent fibres innervating thoracic structures such as the respiratory tract and oesophagus are diverse, comprising several subtypes of functionally distinct C-fibres and A-fibres. Both morphological and functional studies of these nerve subtypes would be advanced by selective, effective and long-term transduction of vagal afferent neurons with viral vectors. Here we addressed the hypothesis that vagal sensory neurons can be transduced with adeno-associated virus (AAV) vectors in vivo, in a manner that would be useful for morphological assessment of nerve terminals, using enhanced green fluorescent protein (eGFP), as well as for the selective knock-down of specific genes of interest in a tissue-selective manner. We found that a direct microinjection of AAV vectors into the vagal nodose ganglia in vivo leads to selective, effective and long-lasting transduction of the vast majority of primary sensory vagal neurons without transduction of parasympathetic efferent neurons. The transduction of vagal neurons by pseudoserotype AAV2/8 vectors in vivo is sufficiently efficient such that it can be used to functionally silence TRPV1 gene expression using short hairpin RNA (shRNA). The eGFP encoded by AAV vectors is robustly transported to both the central and peripheral terminals of transduced vagal afferent neurons allowing for bright imaging of the nerve endings in living tissues and suitable for structure–function studies of vagal afferent nerve endings. Finally, the AAV2/8 vectors are efficiently taken up by the vagal nerve terminals in the visceral tissue and retrogradely transported to the cell body, allowing for tissue-specific transduction. PMID:20736420

  17. Genome-wide analysis of long noncoding RNA (lncRNA) expression in hepatoblastoma tissues.

    PubMed

    Dong, Rui; Jia, Deshui; Xue, Ping; Cui, Ximao; Li, Kai; Zheng, Shan; He, Xianghuo; Dong, Kuiran

    2014-01-01

    Long noncoding RNAs (lncRNAs) have crucial roles in cancer biology. We performed a genome-wide analysis of lncRNA expression in hepatoblastoma tissues to identify novel targets for further study of hepatoblastoma. Hepatoblastoma and normal liver tissue samples were obtained from hepatoblastoma patients. The genome-wide analysis of lncRNA expression in these tissues was performed using a 4×180 K lncRNA microarray and Sureprint G3 Human lncRNA Chips. Quantitative RT-PCR (qRT-PCR) was performed to confirm these results. The differential expressions of lncRNAs and mRNAs were identified through fold-change filtering. Gene Ontology (GO) and pathway analyses were performed using the standard enrichment computation method. Associations between lncRNAs and adjacent protein-coding genes were determined through complex transcriptional loci analysis. We found that 2736 lncRNAs were differentially expressed in hepatoblastoma tissues. Among these, 1757 lncRNAs were upregulated more than two-fold relative to normal tissues and 979 lncRNAs were downregulated. Moreover, in hepatoblastoma there were 420 matched lncRNA-mRNA pairs for 120 differentially expressed lncRNAs, and 167 differentially expressed mRNAs. The co-expression network analysis predicted 252 network nodes and 420 connections between 120 lncRNAs and 132 coding genes. Within this co-expression network, 369 pairs were positive, and 51 pairs were negative. Lastly, qRT-PCR data verified six upregulated and downregulated lncRNAs in hepatoblastoma, plus endothelial cell-specific molecule 1 (ESM1) mRNA. Our results demonstrated that expression of these aberrant lncRNAs could respond to hepatoblastoma development. Further study of these lncRNAs could provide useful insight into hepatoblastoma biology.

  18. Expression profiling of microRNA using oligo DNA arrays

    PubMed Central

    Liu, Chang-Gong; Spizzo, Riccardo; Calin, George Adrian; Croce, Carlo Maria

    2012-01-01

    After 12 years from its first application, microarray technology has become the reference technique to monitor gene expression of thousands of genes in the same experiment. In the past few years an increasing amount of evidence showed the importance of non coding RNA (ncRNA) in different human diseases. The microRNAs (miRNAs) are one of the groups of ncRNA. They are small RNA fragments, 19–25 nucleotides long, with a main regulatory function on both protein coding genes and non-coding RNAs. The application of microarray platforms applied to miRNA profiling determined their deregulation in virtually all human diseases that have been studied. We previously developed a custom miRNA microarray platform, and here we describe the protocol we used to work with it including the oligo design strategy, the microaray printing protocol, the target-probe hybridization and the signal detection. PMID:18158129

  19. Polyester: simulating RNA-seq datasets with differential transcript expression

    PubMed Central

    Frazee, Alyssa C.; Jaffe, Andrew E.; Langmead, Ben; Leek, Jeffrey T.

    2015-01-01

    Motivation: Statistical methods development for differential expression analysis of RNA sequencing (RNA-seq) requires software tools to assess accuracy and error rate control. Since true differential expression status is often unknown in experimental datasets, artificially constructed datasets must be utilized, either by generating costly spike-in experiments or by simulating RNA-seq data. Results: Polyester is an R package designed to simulate RNA-seq data, beginning with an experimental design and ending with collections of RNA-seq reads. Its main advantage is the ability to simulate reads indicating isoform-level differential expression across biological replicates for a variety of experimental designs. Data generated by Polyester is a reasonable approximation to real RNA-seq data and standard differential expression workflows can recover differential expression set in the simulation by the user. Availability and implementation: Polyester is freely available from Bioconductor (http://bioconductor.org/). Contact: jtleek@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25926345

  20. An Integrated mRNA and microRNA Expression Signature for Glioblastoma Multiforme Prognosis

    PubMed Central

    Xiong, Jie; Bing, Zhitong; Su, Yanlin; Deng, Defeng; Peng, Xiaoning

    2014-01-01

    Although patients with Glioblastoma multiforme (GBM) have grave prognosis, significant variability in patient outcome is observed. The objective of this study is to identify a molecular signature for GBM prognosis. We subjected 355 mRNA and microRNA expression profiles to elastic net-regulated Cox regression for identification of an integrated RNA signature for GBM prognosis. A prognostic index (PI) was generated for patient stratification. Survival comparison was conducted by Kaplan-Meier method and a general multivariate Cox regression procedure was applied to evaluate the independence of the PI. The abilities and efficiencies of signatures to predict GBM patient outcome was assessed and compared by the area under the curve (AUC) of the receiver-operator characteristic (ROC). An integrated RNA prognostic signature consisted by 4 protective mRNAs, 12 risky mRNAs, and 1 risky microRNA was identified. Decreased survival was associated with being in the high-risk group (hazard ratio = 2.864, P<0.0001). The prognostic value of the integrated signature was validated in five independent GBM expression datasets (n = 201, hazard ratio = 2.453, P<0.0001). The PI outperformed the known clinical factors, mRNA-only, and miRNA-only prognostic signatures for GBM prognosis (area under the ROC curve for the integrated RNA, mRNA-only, and miRNA-only signatures were 0.828, 0.742, and 0.757 at 3 years of overall survival, respectively, P<0.0001 by permutation test). We describe the first, to our knowledge, robust transcriptome-based integrated RNA signature that improves the current GBM prognosis based on clinical variables, mRNA-only, and miRNA-only signatures. PMID:24871302

  1. Mono-allelic VSG expression by RNA polymerase I in Trypanosoma brucei: expression site control from both ends?

    PubMed

    Günzl, Arthur; Kirkham, Justin K; Nguyen, Tu N; Badjatia, Nitika; Park, Sung Hee

    2015-02-01

    Trypanosoma brucei is a vector borne, lethal protistan parasite of humans and livestock in sub-Saharan Africa. Antigenic variation of its cell surface coat enables the parasite to evade adaptive immune responses and to live freely in the blood of its mammalian hosts. The coat consists of ten million copies of variant surface glycoprotein (VSG) that is expressed from a single VSG gene, drawn from a large repertoire and located near the telomere at one of fifteen so-called bloodstream expression sites (BESs). Thus, antigenic variation is achieved by switching to the expression of a different VSG gene. A BES is a tandem array of expression site-associated genes and a terminal VSG gene. It is polycistronically transcribed by a multifunctional RNA polymerase I (RNAPI) from a short promoter that is located 45-60 kb upstream of the VSG gene. The mechanism(s) restricting VSG expression to a single BES are not well understood. There is convincing evidence that epigenetic silencing and transcription attenuation play important roles. Furthermore, recent data indicated that there is regulation at the level of transcription initiation and that, surprisingly, the VSG mRNA appears to have a role in restricting VSG expression to a single gene. Here, we review BES expression regulation and propose a model in which telomere-directed, epigenetic BES silencing is opposed by BES promoter-directed, activated RNAPI transcription.

  2. A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production

    PubMed Central

    Cabrita, Lisa D; Dai, Weiwen; Bottomley, Stephen P

    2006-01-01

    Background In the past few years, both automated and manual high-throughput protein expression and purification has become an accessible means to rapidly screen and produce soluble proteins for structural and functional studies. However, many of the commercial vectors encoding different solubility tags require different cloning and purification steps for each vector, considerably slowing down expression screening. We have developed a set of E. coli expression vectors with different solubility tags that allow for parallel cloning from a single PCR product and can be purified using the same protocol. Results The set of E. coli expression vectors, encode for either a hexa-histidine tag or the three most commonly used solubility tags (GST, MBP, NusA) and all with an N-terminal hexa-histidine sequence. The result is two-fold: the His-tag facilitates purification by immobilised metal affinity chromatography, whilst the fusion domains act primarily as solubility aids during expression, in addition to providing an optional purification step. We have also incorporated a TEV recognition sequence following the solubility tag domain, which allows for highly specific cleavage (using TEV protease) of the fusion protein to yield native protein. These vectors are also designed for ligation-independent cloning and they possess a high-level expressing T7 promoter, which is suitable for auto-induction. To validate our vector system, we have cloned four different genes and also one gene into all four vectors and used small-scale expression and purification techniques. We demonstrate that the vectors are capable of high levels of expression and that efficient screening of new proteins can be readily achieved at the laboratory level. Conclusion The result is a set of four rationally designed vectors, which can be used for streamlined cloning, expression and purification of target proteins in the laboratory and have the potential for being adaptable to a high-throughput screening. PMID

  3. A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production.

    PubMed

    Cabrita, Lisa D; Dai, Weiwen; Bottomley, Stephen P

    2006-03-01

    In the past few years, both automated and manual high-throughput protein expression and purification has become an accessible means to rapidly screen and produce soluble proteins for structural and functional studies. However, many of the commercial vectors encoding different solubility tags require different cloning and purification steps for each vector, considerably slowing down expression screening. We have developed a set of E. coli expression vectors with different solubility tags that allow for parallel cloning from a single PCR product and can be purified using the same protocol. The set of E. coli expression vectors, encode for either a hexa-histidine tag or the three most commonly used solubility tags (GST, MBP, NusA) and all with an N-terminal hexa-histidine sequence. The result is two-fold: the His-tag facilitates purification by immobilised metal affinity chromatography, whilst the fusion domains act primarily as solubility aids during expression, in addition to providing an optional purification step. We have also incorporated a TEV recognition sequence following the solubility tag domain, which allows for highly specific cleavage (using TEV protease) of the fusion protein to yield native protein. These vectors are also designed for ligation-independent cloning and they possess a high-level expressing T7 promoter, which is suitable for auto-induction. To validate our vector system, we have cloned four different genes and also one gene into all four vectors and used small-scale expression and purification techniques. We demonstrate that the vectors are capable of high levels of expression and that efficient screening of new proteins can be readily achieved at the laboratory level. The result is a set of four rationally designed vectors, which can be used for streamlined cloning, expression and purification of target proteins in the laboratory and have the potential for being adaptable to a high-throughput screening.

  4. [Amphiregulin antisense RNA expression inhibits angiogenesis of human breast cancer in nude mice].

    PubMed

    Ma, Lin; Serova, Maria; Podgorniak, Marie Pierre; Berthois, Yolande; Mourah, Samia; Calvo, Fabien

    2005-09-01

    To investigate the anti-angiogenic effect of amphiregulin (AR) antisense RNA expression in breast cancer. Human AR cDNA antisense plasmid was transfected into NS2T2A1 cells (a human breast cancer cell line). Two selected clones expressed AR antisense RNA (AR AS1 and AR AS3 cell lines) in which AR protein expression was reduced. Control cell line NS2T2A1 V was obtained by empty vector transfection. These cells were injected subcutaneously into nude mice. The effects of conditioned media on proliferation of human microvascular endothelial cells (HMEC) were evaluated and VEGF secreted by the cells was measured by ELISA method. In tumor tissues, VEGF expression levels were measured by quantitative RT-PCR, and CD31-immunostaining was used for intra-tumoral vascular quantification. The proliferation index of HMEC cells grown in conditioned media with AR AS1 and AR AS3 was significantly reduced in comparison with that of control cells, accompanied by a decreased VEGF secretion. In tumors derived from AR AS1 and AR AS3 cells, intra-tumoral vascularization was reduced to about 50% of that derived from control cell line, accompanied with a decrease of VEGF expression. Amphiregulin antisense RNA expression inhibits efficiently the angiogenesis in breast cancer, suggesting this growth factor could represent a novel therapeutic target in breast cancer.

  5. Genetic variants in microRNA genes: impact on microRNA expression, function, and disease

    PubMed Central

    Cammaerts, Sophia; Strazisar, Mojca; De Rijk, Peter; Del Favero, Jurgen

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression and like any other gene, their coding sequences are subject to genetic variation. Variants in miRNA genes can have profound effects on miRNA functionality at all levels, including miRNA transcription, maturation, and target specificity, and as such they can also contribute to disease. The impact of variants in miRNA genes is the focus of the present review. To put these effects into context, we first discuss the requirements of miRNA transcripts for maturation. In the last part an overview of available databases and tools and experimental approaches to investigate miRNA variants related to human disease is presented. PMID:26052338

  6. Analysis of microRNA expression by in situ hybridization with RNA oligonucleotide probes

    PubMed Central

    Thompson, Robert C.; Deo, Monika; Turner, David L.

    2007-01-01

    In situ hybridization is an important tool for analyzing gene expression and developing hypotheses about gene functions. The discovery of hundreds of microRNA (miRNA) genes in animals has provided new challenges for analyzing gene expression and functions. The small size of the mature miRNAs (∼20-24 nucleotides in length) presents difficulties for conventional in situ hybridization methods. However, we have developed a modified in situ hybridization method for detection of mammalian miRNAs in tissue sections, based upon the use of RNA oligonucleotide probes in combination with highly specific wash conditions. Here we present detailed procedures for detection of miRNAs in tissue sections or cultured cells. The methods described can utilize either nonradioactive hapten-conjugated probes that are detected by enzyme-coupled antibodies, or radioactively labeled probes that are detected by autoradiography. The ability to visualize miRNA expression patterns in tissue sections provides an additional tool for the analyses of miRNA expression and function. In addition, the use of radioactively labeled probes should facilitate quantitative analyses of changes in miRNA gene expression. PMID:17889803

  7. The molecular sensory machinery of a Chagas disease vector: expression changes through imaginal moult and sexually dimorphic features

    PubMed Central

    Latorre-Estivalis, Jose Manuel; Robertson, Hugh M.; Walden, Kimberly K. O.; Ruiz, Jerônimo; Gonçalves, Leilane Oliveira; Guarneri, Alessandra A.; Lorenzo, Marcelo Gustavo

    2017-01-01

    The triatomine bug Rhodnius prolixus is a main vector of Chagas disease, which affects several million people, mostly in Latin-America. Host searching, pheromone communication, and microclimatic preferences are aspects of its behaviour that depend on multimodal sensory inputs. The molecular bases of these sensory processes are largely unknown. The expression levels of genes transcribed in antennae were compared between 5th instar larvae, and female and male adults by means of RNA-Seq. The antennae of R. prolixus showed increased expression of several chemosensory-related genes in imaginal bugs, while both sexes had similar expression patterns for most target genes. Few cases suggest involvement of target genes in sexually dimorphic functions. Most odorant and ionotropic receptor genes seemed to be expressed in all libraries. OBPs and CSPs showed very high expression levels. Other sensory-related genes such as TRPs, PPKs and mechanoreceptors had consistent levels of expression in all libraries. Our study characterises most of the sensory gene repertoire of these insects, opening an avenue for functional genetics studies. The increase in expression of chemosensory genes suggests an enhanced role in adult bugs. This knowledge allows developing new behaviour interfering strategies, increasing the options for translational research in the vector control field. PMID:28059141

  8. Polycistronic Expression of the Influenza A Virus RNA-Dependent RNA Polymerase by Using the Thosea asigna Virus 2A-Like Self-Processing Sequence

    PubMed Central

    Momose, Fumitaka; Morikawa, Yuko

    2016-01-01

    The RNA-dependent RNA polymerase (RdRp) of influenza A virus consists of three subunits, PB2, PB1, and PA, and catalyses both viral RNA genome replication and transcription. Cotransfection of four monocistronic expression vectors for these subunits and nucleoprotein with an expression vector for viral RNA reconstitutes functional viral ribonucleoprotein complex (vRNP). However, the specific activity of reconstituted RdRp is usually very low since the expression level and the ratio of the three subunits by transfection are uncontrollable at single-cell levels. For efficient reconstitution of RdRp and vRNP, their levels need to be at least comparable. We constructed polycistronic expression vectors in which the coding sequences of the three subunits were joined with the 2A-like self-processing sequence of Thosea asigna virus (TaV2A) in various orders. The level of PB1 protein, even when it was placed at the most downstream, was comparable with that expressed from the monocistronic PB1 vector. In contrast, the levels of PB2 and PA were very low, the latter of which was most likely due to proteasomal degradation caused by the TaV2A-derived sequences attached to the amino- and/or carboxyl-terminal ends in this expression system. Interestingly, two of the constructs, in which the PB1 coding sequence was placed at the most upstream, showed much higher reporter activity in a luciferase-based mini-genome assay than that observed by cotransfection of the monocistronic vectors. When the coding sequence of selective antibiotic marker was further placed at the most downstream of the PB1-PA-PB2 open reading frame, stable cells expressing RdRp were easily established, indicating that acquisition of antibiotic resistance assured the expression of upstream RdRp. The addition of an affinity tag to the carboxyl-terminal end of PB2 allowed us to isolate reconstituted vRNP. Taken together, the polycistronic expression system for influenza virus RdRp may be available for functional and

  9. Serial bone marrow transplantation reveals in vivo expression of the pCLPG retroviral vector

    PubMed Central

    2010-01-01

    Background Gene therapy in the hematopoietic system remains promising, though certain aspects of vector design, such as transcriptional control elements, continue to be studied. Our group has developed a retroviral vector where transgene expression is controlled by p53 with the intention of harnessing the dynamic and inducible nature of this tumor suppressor and transcription factor. We present here a test of in vivo expression provided by the p53-responsive vector, pCLPG. For this, we used a model of serial transplantation of transduced bone marrow cells. Results We observed, by flow cytometry, that the eGFP transgene was expressed at higher levels when the pCLPG vector was used as compared to the parental pCL retrovirus, where expression is directed by the native MoMLV LTR. Expression from the pCLPG vector was longer lasting, but did decay along with each sequential transplant. The detection of eGFP-positive cells containing either vector was successful only in the bone marrow compartment and was not observed in peripheral blood, spleen or thymus. Conclusions These findings indicate that the p53-responsive pCLPG retrovirus did offer expression in vivo and at a level that surpassed the non-modified, parental pCL vector. Our results indicate that the pCLPG platform may provide some advantages when applied in the hematopoietic system. PMID:20096105

  10. Boiler: lossy compression of RNA-seq alignments using coverage vectors

    PubMed Central

    Pritt, Jacob; Langmead, Ben

    2016-01-01

    We describe Boiler, a new software tool for compressing and querying large collections of RNA-seq alignments. Boiler discards most per-read data, keeping only a genomic coverage vector plus a few empirical distributions summarizing the alignments. Since most per-read data is discarded, storage footprint is often much smaller than that achieved by other compression tools. Despite this, the most relevant per-read data can be recovered; we show that Boiler compression has only a slight negative impact on results given by downstream tools for isoform assembly and quantification. Boiler also allows the user to pose fast and useful queries without decompressing the entire file. Boiler is free open source software available from github.com/jpritt/boiler. PMID:27298258

  11. Boiler: lossy compression of RNA-seq alignments using coverage vectors.

    PubMed

    Pritt, Jacob; Langmead, Ben

    2016-09-19

    We describe Boiler, a new software tool for compressing and querying large collections of RNA-seq alignments. Boiler discards most per-read data, keeping only a genomic coverage vector plus a few empirical distributions summarizing the alignments. Since most per-read data is discarded, storage footprint is often much smaller than that achieved by other compression tools. Despite this, the most relevant per-read data can be recovered; we show that Boiler compression has only a slight negative impact on results given by downstream tools for isoform assembly and quantification. Boiler also allows the user to pose fast and useful queries without decompressing the entire file. Boiler is free open source software available from github.com/jpritt/boiler.

  12. Expression and secretion of aequorin as a chimeric antibody by means of a mammalian expression vector.

    PubMed Central

    Casadei, J; Powell, M J; Kenten, J H

    1990-01-01

    A fusion protein has been expressed from the relevant genes in mammalian cells consisting of the photoprotein aequorin and an anti-4-hydroxy-3-nitrophenacetyl antibody gene. This chimeric antibody has allowed the development of a sensitive luminescent immunoassay. Initially the cDNA of the photoprotein aequorin from Aequorea victoria was cloned and expressed in Escherichia coli. The gene was expressed as apoaequorin and, by using luciferin isolated from Renilla reniformis, its activity was found essentially identical to native aequorin. The aequorin gene was subcloned into a mammalian expression vector to produce a fusion protein directing secretion of apoaequorin; the aequorin gene was fused to the 3' terminus of an immunoglobulin heavy-chain gene that directed expression of an anti-4-hydroxy-3-nitrophenacetyl antibody. The gene fusion contained the variable region, the constant region domain 1, and part of domain 2 for the IgG2b mouse immunoglobulin, followed by the aequorin gene. Transfection of the chimeric gene into a cell line expressing the complementary lambda 1 light chain, J558L, allowed recovery of a chimeric antibody with binding specificity for the 4-hydroxy-3-nitrophenacetyl group and the related 4-hydroxy-3-iodo-5-nitrophenacetyl hapten. The Ca2(+)-dependent bioluminescent activity of aequorin was also recovered. Images PMID:2315301

  13. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    USDA-ARS?s Scientific Manuscript database

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  14. Specific small nucleolar RNA expression profiles in acute leukemia.

    PubMed

    Valleron, W; Laprevotte, E; Gautier, E-F; Quelen, C; Demur, C; Delabesse, E; Agirre, X; Prósper, F; Kiss, T; Brousset, P

    2012-09-01

    Apart from microRNAs, little is known about the regulation of expression of non-coding RNAs in cancer. We investigated whether small nucleolar RNAs (snoRNAs) accumulation displayed specific signatures in acute myeloblastic and acute lymphoblastic leukemias. Using microarrays and high-throughput quantitative PCR (qPCR), we demonstrate here that snoRNA expression patterns are negatively altered in leukemic cells compared with controls. Interestingly, a specific signature was found in acute promyelocytic leukemia (APL) with ectopic expression of SNORD112-114 snoRNAs located at the DLK1-DIO3 locus. In vitro experiments carried out on APL blasts demonstrate that transcription of these snoRNAs was lost under all-trans retinoic acid-mediated differentiation and induced by enforced expression of the PML-RARalpha fusion protein in negative leukemic cell lines. Further experiments revealed that the SNORD114-1 (14q(II-1)) variant promoted cell growth through cell cycle modulation; its expression was implicated in the G0/G1 to S phase transition mediated by the Rb/p16 pathways. This study thus reports three important observations: (1) snoRNA regulation is different in normal cells compared with cancer cells; (2) a relationship exists between a chromosomal translocation and expression of snoRNA loci; and (3) snoRNA expression can affect Rb/p16 cell cycle regulation. Taken together, these data strongly suggest that snoRNAs have a role in cancer development.

  15. Construction and evaluation of an adenoviral vector for the liver-specific expression of the serine/arginine-rich splicing factor, SRSF3

    PubMed Central

    Suchanek, Amanda L.; Salati, Lisa M.

    2015-01-01

    Serine/arginine-rich splicing factor-3 (SRSF3), alternatively known as SRp20, is a member of the highly-conserved SR protein family of mRNA splicing factors. SRSF3 generally functions as an enhancer of mRNA splicing by binding to transcripts in a sequence-specific manner to both recruit and stabilize the binding of spliceosomal components to the mRNA. In liver, expression of SRSF3 is relatively low and its activity is increased in response to insulin and feeding a high carbohydrate diet. We sought to over-express SRSF3 in primary rat hepatocytes to identify regulatory targets. A standard adenoviral shuttle vector system containing an epitope-tagged SRSF3 under the transcriptional control of the CMV promoter could not be used to produce infectious adenoviral particles. SRSF3 over-expression in the packaging cell line prevented the production of infectious adenovirus particles by interfering with the viral splicing program. To circumvent this issue, SRSF3 expression from the shuttle vector was blocked by placing its expression under the control of the liver-specific albumin promoter. In this system, the FLAG-SRSF3 transgene is only expressed in the target cells (hepatocytes) but not in the packaging cell line. An additional benefit of the albumin promoter is that expression of the transgene does not require the addition of hormones or antibiotics to drive SRSF3 expression in the hepatocytes. Robust expression of FLAG-SRSF3 protein is detected in both HepG2 cells and primary rat hepatocytes infected with adenovirus prepared from this new shuttle vector. Furthermore, abundances of several known and suspected mRNA targets of SRSF3 action are increased in response to over-expression using this virus. This report details the construction of the albumin promoter-driven adenoviral shuttle vector, termed pmAlbAd5-FLAG.SRSF3, that can be used to generate functional adenovirus to express FLAG-SRSF3 specifically in liver. This vector would be suitable for over-expression of

  16. Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm.

    PubMed

    Na, Young Ji; Sung, Jung Hwan; Lee, Suk Chan; Lee, Young Ju; Choi, Yeun Joo; Park, Woong Yang; Shin, Hee Sup; Kim, Ju Han

    2009-09-30

    To investigate the potential role of microRNA (miRNA) in the regulation of circadian rhythm, we performed microarray-based expression profiling study of both miRNA and mRNA in mouse liver for 48 h at 4-hour intervals. Circadian miRNA-mRNA target pair is defined as the pair both elements of which show circadian expression patterns and the sequence-based target relationship of which can be predicted. Circadian initiators, Clock and Bmal1, showed inversely correlated circadian expression patterns against their corresponding miRNAs, miR-181d and miR-191, targeting them. In contrast, circadian suppressors, Per, Cry, CKIe and Rev-erba, exhibited positively correlated circadian expression patterns to their corresponding miRNAs. Genomic location analysis revealed that intronic region showed higher abundance of cyclic than non-cyclic miRNAs targeting circadian genes while other (i.e., 3-UTR, exon and intergenic) regions showed no difference. It is suggested that miRNAs are involved in the regulation of peripheral circadian rhythm in mouse liver by modulating Clock:Bmal1 complex. Identifying specific miRNAs and their targets that are critically involved in circadian rhythm will provide a better understanding of the regulation of circadian- clock system.

  17. Selective MicroRNA-Offset RNA Expression in Human Embryonic Stem Cells

    PubMed Central

    Juhila, Juuso; Holm, Frida; Weltner, Jere; Trokovic, Ras; Mikkola, Milla; Toivonen, Sanna; Balboa, Diego; Lampela, Riina; Icay, Katherine; Tuuri, Timo; Otonkoski, Timo; Wong, Garry; Hovatta, Outi

    2015-01-01

    Small RNA molecules, including microRNAs (miRNAs), play critical roles in regulating pluripotency, proliferation and differentiation of embryonic stem cells. miRNA-offset RNAs (moRNAs) are similar in length to miRNAs, align to miRNA precursor (pre-miRNA) loci and are therefore believed to derive from processing of the pre-miRNA hairpin sequence. Recent next generation sequencing (NGS) studies have reported the presence of moRNAs in human neurons and cancer cells and in several tissues in mouse, including pluripotent stem cells. In order to gain additional knowledge about human moRNAs and their putative development-related expression, we applied NGS of small RNAs in human embryonic stem cells (hESCs) and fibroblasts. We found that certain moRNA isoforms are notably expressed in hESCs from loci coding for stem cell-selective or cancer-related miRNA clusters. In contrast, we observed only sparse moRNAs in fibroblasts. Consistent with earlier findings, most of the observed moRNAs derived from conserved loci and their expression did not appear to correlate with the expression of the adjacent miRNAs. We provide here the first report of moRNAs in hESCs, and their expression profile in comparison to fibroblasts. Moreover, we expand the repertoire of hESC miRNAs. These findings provide an expansion on the known repertoire of small non-coding RNA contents in hESCs. PMID:25822230

  18. A microRNA expression signature predicts meningioma recurrence.

    PubMed

    Zhi, Feng; Zhou, Guangxin; Wang, Suinuan; Shi, Yimin; Peng, Ya; Shao, Naiyuan; Guan, Wei; Qu, Hongtao; Zhang, Yi; Wang, Qiang; Yang, Changchun; Wang, Rong; Wu, Sujia; Xia, Xiwei; Yang, Yilin

    2013-01-01

    The aberrant expression of microRNAs (miRNAs) is associated with a variety of diseases, including cancer. In our study, we examined the miRNA expression profile of meningiomas, which is a common type of benign intracranial tumor derived from the protective meninges membranes that surround the brain and spinal cord. To define a typical human meningioma miRNA profile, the expression of 200 miRNAs in a training sample set were screened using quantitative reverse transcription polymerase chain reaction analysis, and then significantly altered miRNAs were validated in a secondary independent sample set. Kaplan-Meier and univariate/multivariate Cox proportional hazard regression analyses were performed to assess whether miRNA expression could predict the recurrence of meningioma after tumor resection. After a two-phase selection and validation process, 14 miRNAs were found to exhibit significantly different expression profiles in meningioma samples compared to normal adjacent tissue (NAT) samples. Unsupervised clustering analysis indicated that the 14-miRNA profile differed between tumor and NAT samples. Downregulation of miR-29c-3p and miR-219-5p were found to be associated with advanced clinical stages of meningioma. Kaplan-Meier analysis showed that high expression of miR-190a and low expression of miR-29c-3p and miR-219-5p correlated significantly with higher recurrence rates in meningioma patients. Cox proportional hazard regression analysis revealed that miR-190a expression level is an important prognostic predictor that is independent of other clinicopathological factors. Our results suggest that the use of miRNA profiling has significant potential as an effective diagnostic and prognostic marker in defining the expression signature of meningiomas and in predicting postsurgical outcomes. Copyright © 2012 UICC.

  19. MicroRNA expression in the aging mouse thymus.

    PubMed

    Ye, Yaqiong; Li, Daotong; Ouyang, Dan; Deng, Li; Zhang, Yuan; Ma, Yongjiang; Li, Yugu

    2014-09-01

    MicroRNAs (miRNAs) have been implicated in the process of aging in many model organisms, such as Caenorhabditis elegans, and in many organs, such as the mouse lung and human epididymis. However, the role of miRNAs in the thymus tissues of the aging mouse remains unclear. To address this question, we investigated the miRNA expression profiles in the thymuses of 1-, 10- and 19-month-old mice using miRNA array and qRT-PCR assays. A total of 223 mouse miRNAs were screened, and the expression levels of those miRNAs exhibited gradual increases and decreases over the course of thymus aging. Fifty miRNAs in the 10-month-old thymus and 81 miRNAs in the 19-month-old thymus were defined as differentially expressed miRNAs (p<0.05) in comparison with their levels in the 1-month-old mouse, and approximately one-third of these miRNAs were grouped within 11 miRNA clusters. Each miRNA cluster contained 2 to 5 miRNA genes, and most of the cluster members displayed similar expression patterns, being either increased or decreased. In addition, Ingenuity Pathway Analysis (IPA) software and the IPA database were used to analyze the 12 miRNAs that exhibited significant expression changes, revealing that as many as 15 pathways may be involved. Thus, our current study determined the expression profiles of miRNAs in the mouse thymus during the process of aging. The results suggested that these miRNAs could become meaningful biomarkers for studying thymus aging and that the aging-related alternations in miRNA expression may be involved in the regulation of cell proliferation, apoptosis, development and carcinogenesis/tumorigenesis.

  20. Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci.

    PubMed

    Budach, Stefan; Heinig, Matthias; Marsico, Annalisa

    2016-08-01

    Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However, the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions, and other functional annotations to determine the relationship between functional elements and microRNA regulation. We built a logistic regression model that classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy; shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers, and transcription factor binding sites; and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA eQTLs and messenger RNA eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently. Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line derived from B cells, we find genome-wide association (GWA) variants associated to blood-related traits more likely to be microRNA eQTLs than random GWA and non-GWA variants, aiding the interpretation of GWA results. Copyright © 2016 by the Genetics Society of America.

  1. Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci

    PubMed Central

    Budach, Stefan; Heinig, Matthias; Marsico, Annalisa

    2016-01-01

    Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However, the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions, and other functional annotations to determine the relationship between functional elements and microRNA regulation. We built a logistic regression model that classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy; shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers, and transcription factor binding sites; and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA eQTLs and messenger RNA eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently. Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line derived from B cells, we find genome-wide association (GWA) variants associated to blood-related traits more likely to be microRNA eQTLs than random GWA and non-GWA variants, aiding the interpretation of GWA results. PMID:27260304

  2. Development of a plant viral-vector-based gene expression assay for the screening of yeast cytochrome p450 monooxygenases.

    PubMed

    Hanley, Kathleen; Nguyen, Long V; Khan, Faizah; Pogue, Gregory P; Vojdani, Fakhrieh; Panda, Sanjay; Pinot, Franck; Oriedo, Vincent B; Rasochova, Lada; Subramanian, Mani; Miller, Barbara; White, Earl L

    2003-02-01

    Development of a gene discovery tool for heterologously expressed cytochrome P450 monooxygenases has been inherently difficult. The activity assays are labor-intensive and not amenable to parallel screening. Additionally, biochemical confirmation requires coexpression of a homologous P450 reductase or complementary heterologous activity. Plant virus gene expression systems have been utilized for a diverse group of organisms. In this study we describe a method using an RNA vector expression system to phenotypically screen for cytochrome P450-dependent fatty acid omega-hydroxylase activity. Yarrowia lipolytica CYP52 gene family members involved in n-alkane assimilation were amplified from genomic DNA, cloned into a plant virus gene expression vector, and used as a model system for determining heterologous expression. Plants infected with virus vectors expressing the yeast CYP52 genes (YlALK1-YlALK7) showed a distinct necrotic lesion phenotype on inoculated plant leaves. No phenotype was detected on negative control constructs. YlALK3-, YlALK5-, and YlALK7-inoculated plants all catalyzed the terminal hydroxylation of lauric acid as confirmed using thin-layer and gas chromatography/mass spectrometry methods. The plant-based cytochrome P450 phenotypic screen was tested on an n-alkane-induced Yarrowia lipolytica plant virus expression library. A subset of 1,025 random library clones, including YlALK1-YlALK7 constructs, were tested on plants. All YlALK gene constructs scored positive in the randomized screen. Following nucleotide sequencing of the clones that scored positive using a phenotypic screen, approximately 5% were deemed appropriate for further biochemical analysis. This report illustrates the utility of a plant-based system for expression of heterologous cytochrome P450 monooxygenases and for the assignment of gene function.

  3. RNA decay modulates gene expression and controls its fidelity

    PubMed Central

    GHOSH, SHUBHENDU; JACOBSON, ALLAN

    2010-01-01

    Maintenance of cellular function relies on the expression of genetic information with high fidelity, a process in which RNA molecules form an important link. mRNAs are intermediates that define the proteome, rRNAs and tRNAs are effector molecules that act together to decode mRNA sequence information, and small noncoding RNAs can regulate mRNA half-life and translatability. The steady-state levels of these RNAs occur through transcriptional and post-transcriptional regulatory mechanisms, of which RNA decay pathways are integral components. RNA decay can initiate from the ends of a transcript or through endonucleolytic cleavage, and numerous factors that catalyze or promote these reactions have been identified and characterized. The rate at which decay occurs depends on RNA sequence or structural elements and usually requires the RNA to be modified in a way that allows recruitment of the decay machinery to the transcript through the binding of accessory factors or small RNAs. The major RNA decay pathways also play important roles in the quality control of gene expression. Acting in both the nucleus and cytoplasm, multiple quality control factors monitor newly synthesized transcripts, or mRNAs undergoing translation, for properties essential to function, including structural integrity or the presence of complete open reading frames. Transcripts targeted by these surveillance mechanisms are rapidly shunted into conventional decay pathways where they are degraded rapidly to ensure that they do not interfere with the normal course of gene expression. Collectively, degradative mechanisms are important determinants of the extent of gene expression and play key roles in maintaining its accuracy. PMID:21132108

  4. A 5' Noncoding Exon Containing Engineered Intron Enhances Transgene Expression from Recombinant AAV Vectors in vivo.

    PubMed

    Lu, Jiamiao; Williams, James A; Luke, Jeremy; Zhang, Feijie; Chu, Kirk; Kay, Mark A

    2017-01-01

    We previously developed a mini-intronic plasmid (MIP) expression system in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within a universal 5' UTR noncoding exon. Like minicircle DNA plasmids (devoid of bacterial backbone sequences), MIP plasmids overcome transcriptional silencing of the transgene. However, in addition MIP plasmids increase transgene expression by 2 and often >10 times higher than minicircle vectors in vivo and in vitro. Based on these findings, we examined the effects of the MIP intronic sequences in a recombinant adeno-associated virus (AAV) vector system. Recombinant AAV vectors containing an intron with a bacterial replication origin and bacterial selectable marker increased transgene expression by 40 to 100 times in vivo when compared with conventional AAV vectors. Therefore, inclusion of this noncoding exon/intron sequence upstream of the coding region can substantially enhance AAV-mediated gene expression in vivo.

  5. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides.

    PubMed

    Deo, Monika; Yu, Jenn-Yah; Chung, Kwan-Ho; Tippens, Melissa; Turner, David L

    2006-09-01

    We have developed an in situ hybridization procedure for the detection of microRNAs (miRNAs) in tissue sections from mouse embryos and adult organs. The method uses highly specific washing conditions for RNA oligonucleotide probes conjugated to a fluorescein hapten. We show that this method detects predominantly mature miRNAs rather than the miRNA precursors or primary transcripts. We have determined expression patterns for several miRNAs expressed in the developing and adult nervous system, including miR-124a, miR-9, miR-92, and miR-204. Whereas miR-124a is expressed in neurons, miR-9 is expressed in neural progenitors and some neurons, and miR-204 is expressed in the choroid plexus, retinal pigment epithelium, and ciliary body. miR-204 is located in an intron of the TRPM3 gene, and the TRPM3 mRNA is coexpressed with miR-204 in the choroid plexus. We also find that primary transcripts for miR-124a and miR-9 genes are expressed in patterns similar to their respective mature miRNAs. The ability to visualize expression of specific miRNAs in embryos and tissues should aid studies on miRNA function.

  6. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    PubMed Central

    Brown, Joshua D.; Summers, Michael F.

    2015-01-01

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the 1H NMR and 13C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and 1H and 13C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA 1H and 13C chemical shifts. In addition, our findings enabled the recalibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides. PMID:26141454

  7. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression.

    PubMed

    Brown, Joshua D; Summers, Michael F; Johnson, Bruce A

    2015-09-01

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR and (13)C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and (1)H and (13)C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA (1)H and (13)C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.

  8. NMDA Mediated Contextual Conditioning Changes miRNA Expression

    PubMed Central

    Kye, Min Jeong; Zhou, Miou; Steen, Judith A.; Sahin, Mustafa; Kosik, Kenneth S.; Silva, Alcino J.

    2011-01-01

    We measured the expression of 187 miRNAs using quantitative real time PCR in the hippocampal CA1 region of contextually conditioned mice and cultured embryonic rat hippocampal neurons after neuronal stimulation with either NMDA or bicuculline. Many of the changes in miRNA expression after these three types of stimulation were similar. Surprisingly, the expression level of half of the 187 measured miRNAs was changed in response to contextual conditioning in an NMDA receptor-dependent manner. Genes that control miRNA biogenesis and components of the RISC also exhibited activity induced expression changes and are likely to contribute to the widespread changes in the miRNA profile. The widespread changes in miRNA expression are consistent with the finding that genes up-regulated by contextual conditioning have longer 3′ UTRs and more predicted binding sites for miRNAs. Among the miRNAs that changed their expression after contextual conditioning, several inhibit inhibitors of the mTOR pathway. These findings point to a role for miRNAs in learning and memory that includes mTOR-dependent modulation of protein synthesis. PMID:21931811

  9. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    NASA Astrophysics Data System (ADS)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  10. Specific RNA Interference in Caenorhabditis elegans by Ingested dsRNA Expressed in Bacillus subtilis

    PubMed Central

    Lezzerini, Marco; van de Ven, Koen; Veerman, Martijn; Brul, Stanley; Budovskaya, Yelena V.

    2015-01-01

    In nematodes, genome-wide RNAi-screening has been widely used as a rapid and efficient method to identify genes involved in the aging processes. By far the easiest way of inducing RNA interference (RNAi) in Caenorhabditis elegans is by feeding Escherichia coli that expresses specific double stranded RNA (dsRNA) to knockdown translation of targeted mRNAs. However, it has been shown that E. coli is mildly pathogenic to C. elegans and this pathogenicity might influence aging and the accuracy of the RNAi-screening during aging may as well be affected. Here, we describe a novel system that utilizes the non-pathogenic bacterium Bacillus subtilis, to express dsRNA and therefore eliminates the effects of bacterial pathogenicity from the genetic analysis of aging. PMID:25928543

  11. AAVPG: A vigilant vector where transgene expression is induced by p53

    SciTech Connect

    Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.; Strauss, Bryan E.

    2013-12-15

    Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 fold increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.

  12. Differential expression in RNA-seq: a matter of depth.

    PubMed

    Tarazona, Sonia; García-Alcalde, Fernando; Dopazo, Joaquín; Ferrer, Alberto; Conesa, Ana

    2011-12-01

    Next-generation sequencing (NGS) technologies are revolutionizing genome research, and in particular, their application to transcriptomics (RNA-seq) is increasingly being used for gene expression profiling as a replacement for microarrays. However, the properties of RNA-seq data have not been yet fully established, and additional research is needed for understanding how these data respond to differential expression analysis. In this work, we set out to gain insights into the characteristics of RNA-seq data analysis by studying an important parameter of this technology: the sequencing depth. We have analyzed how sequencing depth affects the detection of transcripts and their identification as differentially expressed, looking at aspects such as transcript biotype, length, expression level, and fold-change. We have evaluated different algorithms available for the analysis of RNA-seq and proposed a novel approach--NOISeq--that differs from existing methods in that it is data-adaptive and nonparametric. Our results reveal that most existing methodologies suffer from a strong dependency on sequencing depth for their differential expression calls and that this results in a considerable number of false positives that increases as the number of reads grows. In contrast, our proposed method models the noise distribution from the actual data, can therefore better adapt to the size of the data set, and is more effective in controlling the rate of false discoveries. This work discusses the true potential of RNA-seq for studying regulation at low expression ranges, the noise within RNA-seq data, and the issue of replication.

  13. Cloning, soluble expression, and purification of the RNA polymerase II subunit RPB5 from Saccharomyces cerevisiae.

    PubMed

    Chhetri, Gaurav; Ghosh, Arabinda; Chinta, Ramesh; Akhtar, Sohail; Tripathi, Timir

    2015-01-01

    We report the molecular cloning, expression, and single-step homogeneous purification of RNA polymerase II subunit RPB5 from Saccharomyces cerevisiae. RPB5 is a 210 amino acid nuclear protein that functions as the fifth largest subunit of polymerase II and plays a central role in transcription. The gene that codes for RPB5 was generated by amplification by polymerase chain reaction. It was then inserted in the expression vector pET28a(+) under the transcriptional control of the bacteriophage T7 promoter and lac operator. BL21(DE3) Escherichia coli strain transformed with the rpb5 expression vector pET28a(+)-rpb5 accumulates large amounts of a soluble protein of about 30 kDa (25 kDa plus 5 kDa double His6-Tag at N and C-terminal). The protein was purified to homogeneity using immobilized metal affinity chromatography. RPB5 recombinant protein was further confirmed by immunoblotting with anti-His antibody. In this study, the expression and purification procedures have provided a simple and efficient method to obtain pure RPB5 in large quantities. This will provide an opportunity to study the role of S. cerevisiae RPB5 in gene expression and transcription regulation. Furthermore, it can provide additional knowledge of the interaction partners of RPB5 during various steps of transcription and gene expression.

  14. dsRNA interference on expression of a RNA-dependent RNA polymerase gene of Bombyx mori cytoplasmic polyhedrosis virus.

    PubMed

    Pan, Zhong-Hua; Gao, Kun; Hou, Cheng-Xiang; Wu, Ping; Qin, Guang-Xing; Geng, Tao; Guo, Xi-Jie

    2015-07-01

    Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is one of the major viral pathogens in silkworm. Its infection often results in significant losses to sericulture. Studies have demonstrated that RNAi is one of the important anti-viral mechanisms in organisms. In this study, three dsRNAs targeting the RNA-dependent RNA polymerase (RDRP) gene of BmCPV were designed and synthesized with 2'-F modification to explore their interference effects on BmCPV replication in silkworm larvae. The results showed that injecting dsRNA in the dosage of 4-6 ng per mg body weight into the 5th instar larvae can interfere with the BmCPV-RDRP expression by 93% after virus infection and by 99.9% before virus infection. In addition, the expression of two viral structural protein genes (genome RNA segments 1 and 5) was also decreased with the decrease of RDRP expression, suggesting that RNAi interference of BmCPV-RDRP expression could affect viral replication. The study provides an effective method for investigating virus replication as well as the virus-host interactions in the silkworm larvae using dsRNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    SciTech Connect

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M.; Cleasby, Mark E.; Millard, Susan; Leong, Gary M.; Cooney, Gregory J.; Muscat, George E.O.

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  16. Correction of murine sickle cell disease using gamma-globin lentiviral vectors to mediate high-level expression of fetal hemoglobin.

    PubMed

    Pestina, Tamara I; Hargrove, Phillip W; Jay, Dennis; Gray, John T; Boyd, Kelli M; Persons, Derek A

    2009-02-01

    Increased levels of red cell fetal hemogloblin, whether due to hereditary persistence of expression or from induction with hydroxyurea therapy, effectively ameliorate sickle cell disease (SCD). Therefore, we developed erythroid-specific, gamma-globin lentiviral vectors for hematopoietic stem cell (HSC)-targeted gene therapy with the goal of permanently increasing fetal hemoglobin (HbF) production in sickle red cells. We evaluated two different gamma-globin lentiviral vectors for therapeutic efficacy in the BERK sickle cell mouse model. The first vector, V5, contained the gamma-globin gene driven by 3.1 kb of beta-globin regulatory sequences and a 130-bp beta-globin promoter. The second vector, V5m3, was identical except that the gamma-globin 3'-untranslated region (3'-UTR) was replaced with the beta-globin 3'-UTR. Adult erythroid cells have beta-globin mRNA 3'-UTR-binding proteins that enhance beta-globin mRNA stability and we postulated this design might enhance gamma-globin expression. Stem cell gene transfer was efficient and nearly all red cells in transplanted mice expressed human gamma-globin. Both vectors demonstrated efficacy in disease correction, with the V5m3 vector producing a higher level of gamma-globin mRNA which was associated with high-level correction of anemia and secondary organ pathology. These data support the rationale for a gene therapy approach to SCD by permanently enhancing HbF using a gamma-globin lentiviral vector.

  17. Correction of Murine Sickle Cell Disease Using γ-Globin Lentiviral Vectors to Mediate High-level Expression of Fetal Hemoglobin

    PubMed Central

    Pestina, Tamara I; Hargrove, Phillip W; Jay, Dennis; Gray, John T; Boyd, Kelli M; Persons, Derek A

    2008-01-01

    Increased levels of red cell fetal hemogloblin, whether due to hereditary persistence of expression or from induction with hydroxyurea therapy, effectively ameliorate sickle cell disease (SCD). Therefore, we developed erythroid-specific, γ-globin lentiviral vectors for hematopoietic stem cell (HSC)-targeted gene therapy with the goal of permanently increasing fetal hemoglobin (HbF) production in sickle red cells. We evaluated two different γ-globin lentiviral vectors for therapeutic efficacy in the BERK sickle cell mouse model. The first vector, V5, contained the γ-globin gene driven by 3.1 kb of β-globin regulatory sequences and a 130-bp β-globin promoter. The second vector, V5m3, was identical except that the γ-globin 3′-untranslated region (3′-UTR) was replaced with the β-globin 3′-UTR. Adult erythroid cells have β-globin mRNA 3′-UTR-binding proteins that enhance β-globin mRNA stability and we postulated this design might enhance γ-globin expression. Stem cell gene transfer was efficient and nearly all red cells in transplanted mice expressed human γ-globin. Both vectors demonstrated efficacy in disease correction, with the V5m3 vector producing a higher level of γ-globin mRNA which was associated with high-level correction of anemia and secondary organ pathology. These data support the rationale for a gene therapy approach to SCD by permanently enhancing HbF using a γ-globin lentiviral vector. PMID:19050697

  18. Micro-RNA Expression and Function in Lymphomas

    PubMed Central

    Sandhu, Sukhinder K.; Croce, Carlo M.; Garzon, Ramiro

    2011-01-01

    The recent discovery of microRNAs (miRNAs) has introduced a new layer of complexity to the process of gene regulation. MiRNAs are essential for cellular function, and their dysregulation often results in disease. Study of miRNA expression and function in animal models and human lymphomas has improved our knowledge of the pathogenesis of this heterogeneous disease. In this paper, we attempt to describe the expression of miRNAs and their function in lymphomas and discuss potential miRNA-based therapies in the diagnosis and treatment of lymphomas. PMID:21461378

  19. Adeno-associated virus gene therapy vector scAAVIGF-I for transduction of equine articular chondrocytes and RNA-seq analysis.

    PubMed

    Hemphill, D D; McIlwraith, C W; Slayden, R A; Samulski, R J; Goodrich, L R

    2016-05-01

    IGF-I is one of several anabolic factors being investigated for the treatment of osteoarthritis (OA). Due to the short biological half-life, extended administration is required for more robust cartilage healing. Here we create a self-complimentary adeno-associated virus (AAV) gene therapy vector utilizing the transgene for IGF-I. Various biochemical assays were performed to investigate the cellular response to scAAVIGF-I treatment vs an scAAVGFP positive transduction control and a negative for transduction control culture. RNA-sequencing analysis was also performed to establish a differential regulation profile of scAAVIGF-I transduced chondrocytes. Biochemical analyses indicated an average media IGF-I concentration of 608 ng/ml in the scAAVIGF-I transduced chondrocytes. This increase in IGF-I led to increased expression of collagen type II and aggrecan and increased protein concentrations of cellular collagen type II and media glycosaminoglycan vs both controls. RNA-seq revealed a global regulatory pattern consisting of 113 differentially regulated GO categories including those for chondrocyte and cartilage development and regulation of apoptosis. This research substantiates that scAAVIGF-I gene therapy vector increased production of IGF-I to clinically relevant levels with a biological response by chondrocytes conducive to increased cartilage healing. The RNA-seq further established a set of differentially expressed genes and gene ontologies induced by the scAAVIGF-I vector while controlling for AAV infection. This dataset provides a static representation of the cellular transcriptome that, while only consisting of one time point, will allow for further gene expression analyses to compare additional cartilage healing therapeutics or a transient cellular response. Copyright © 2015. Published by Elsevier Ltd.

  20. Sleeping Beauty-baculovirus hybrid vectors for long-term gene expression in the eye.

    PubMed

    Turunen, Tytteli Anni Kaarina; Laakkonen, Johanna Päivikki; Alasaarela, Laura; Airenne, Kari Juhani; Ylä-Herttuala, Seppo

    2014-01-01

    A baculovirus vector is capable of efficiently transducing many nondiving and diving cell types. However, the potential of baculovirus is restricted for many gene delivery applications as a result of the transient gene expression that it mediates. The plasmid-based Sleeping Beauty (SB) transposon system integrates transgenes into target cell genome efficiently with a genomic integration pattern that is generally considered safer than the integration of many other integrating vectors; yet efficient delivery of therapeutic genes into cells of target tissues in vivo is a major challenge for nonviral gene therapy. In the present study, SB was introduced into baculovirus to obtain novel hybrid vectors that would combine the best features of the two vector systems (i.e. effective gene delivery and efficient integration into the genome), thus circumventing the major limitations of these vectors. We constructed and optimized SB-baculovirus hybrid vectors that bear either SB100x transposase or SB transposon in the forward or reverse orientations with respect to the viral backbone The functionality of the novel hybrid vectors was investigated in cell cultures and in a proof-of-concept study in the mouse eye. The hybrid vectors showed high and sustained transgene expression that remained stable and demonstrated no signs of decline during the 2 months follow-up in vitro. These results were verified in the mouse eye where persistent transgene expression was detected two months after intravitreal injection. Our results confirm that (i) SB-baculovirus hybrid vectors mediate long-term gene expression in vitro and in vivo, and (ii) the hybrid vectors are potential new tools for the treatment of ocular diseases. Copyright © 2014 John Wiley & Sons, Ltd.

  1. RNA stem-loop enhanced expression of previously non-expressible genes.

    PubMed

    Paulus, Michael; Haslbeck, Martin; Watzele, Manfred

    2004-05-26

    The key step in bacterial translation is formation of the pre-initiation complex. This requires initial contacts between mRNA, fMet-tRNA and the 30S subunit of the ribosome, steps that limit the initiation of translation. Here we report a method for improving translational initiation, which allows expression of several previously non-expressible genes. This method has potential applications in heterologous protein synthesis and high-throughput expression systems. We introduced a synthetic RNA stem-loop (stem length, 7 bp; DeltaG(0) = -9.9 kcal/mol) in front of various gene sequences. In each case, the stem-loop was inserted 15 nt downstream from the start codon. Insertion of the stem-loop allowed in vitro expression of five previously non-expressible genes and enhanced the expression of all other genes investigated. Analysis of the RNA structure proved that the stem-loop was formed in vitro, and demonstrated that stabilization of the ribosome binding site is due to stem-loop introduction. By theoretical RNA structure analysis we showed that the inserted RNA stem-loop suppresses long-range interactions between the translation initiation domain and gene-specific mRNA sequences. Thus the inserted RNA stem-loop supports the formation of a separate translational initiation domain, which is more accessible to ribosome binding.

  2. Construction of human BMP2-IRES-HIF1αmu adenovirus expression vector and its expression in mesenchymal stem cells.

    PubMed

    Liu, Danping; Hu, Liang; Zhang, Zheng; Li, Quan Ying; Wang, Guoxian

    2013-02-01

    The present study aimed to construct a novel recombinant adenovirus expression vector Ad-BMP2-IRES-HIF1αmu that expresses human bone morphogenetic protein (BMP2) and mutant hypoxia-inducible factor 1α, and investigated its effects in promoting neogenesis of bone and angiogenesis. The recombinant adenovirus BMP2, HIF1αmu and pIRES2-EGFP expression vectors were constructed and transfected into HEK293A cells. The groups were divided into group A, transfection with Ad-BMP2-IRES-HIF1αmu; group B, transfection with Ad-HIF1αmu-IRES-hrGFP-1; group C, transfection with Ad-BMP2-IRES-hrGFP-1; group D, transfection with Ad-IRES-hrGFP-1; group E, not transfected. Adenovirus liquid was transferred into rabbit mesenchymal stem cells (MSCs) pretreated with dexamethasone at the best multiplicity of infection (MOI). The mRNA and protein expression of BMP2 and HIF1α were detected by RT-PCR and western blot analysis. Adenovirus was successfully packaged. The expression level of HIF1α mRNA in group A and B was markedly higher than that in groups C, D and E, showing a significant difference (P<0.01). There was a significant difference in the expression level of BMP2 mRNA between group A and C (P<0.05) and this was markedly higher than that in groups B, D and E (P<0.01). The protein expression level of HIF1α in group A and B was markedly higher than that in groups C, D and E (P<0.01). The protein expression level of BMP2 in group A and C was markedly higher than that in groups B, D and E (P<0.01). The human BMP2-IRES-HIF1αmu adenovirus expression vector was successfully constructed and the experimental groups formed bone and blood vessels prior to the positive and negative control groups.

  3. Tissue-specific mRNA expression profiling in grape berry tissues

    PubMed Central

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  4. Profiling Pre-MicroRNA and Mature MicroRNA Expressions Using a Single Microarray and Avoiding Separate Sample Preparation

    PubMed Central

    Gan, Lin; Denecke, Bernd

    2013-01-01

    Mature microRNA is a crucial component in the gene expression regulation network. At the same time, microRNA gene expression and procession is regulated in a precise and collaborated way. Pre-microRNAs mediate products during the microRNA transcription process, they can provide hints of microRNA gene expression regulation or can serve as alternative biomarkers. To date, little effort has been devoted to pre-microRNA expression profiling. In this study, three human and three mouse microRNA profile data sets, based on the Affymetrix miRNA 2.0 array, have been re-analyzed for both mature and pre-microRNA signals as a primary test of parallel mature/pre-microRNA expression profiling on a single platform. The results not only demonstrated a glimpse of pre-microRNA expression in human and mouse, but also the relationship of microRNA expressions between pre- and mature forms. The study also showed a possible application of currently available microRNA microarrays in profiling pre-microRNA expression in a time and cost effective manner. PMID:27605179

  5. Long Noncoding RNA Expression Profiling Using Arraystar LncRNA Microarrays.

    PubMed

    Shi, Yanggu; Shang, Jindong

    2016-01-01

    Arraystar LncRNA microarrays are designed for global gene expression profiling of both LncRNAs and mRNAs on the same array. The array contents feature comprehensive collections of LncRNAs and include entire sets of known coding mRNAs. Each RNA transcript is detected by a splice junction-specific probe or a unique exon sequence, such that the alternatively spliced transcript isoforms or variants are reliably and accurately detected. The highly optimized experimental protocols and efficient workflow ensure sensitive, robust, and accurate microarray data generation. Standard data analyses are provided for microarray raw data processing, data quality control, gene expression clustering and heat map visualization, differentially expressed LncRNAs and mRNAs, LncRNA subcategories, regulatory relationships of LncRNAs with the mRNAs, gene ontology, and pathway analysis. The LncRNA microarrays are powerful tools for the study of LncRNAs in biology and disease, with broad applications in gene expression profiling, gene regulatory mechanism research, LncRNA functional discovery, and biomarker development.

  6. Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti

    PubMed Central

    Hussain, Mazhar; Frentiu, Francesca D.; Moreira, Luciano A.; O'Neill, Scott L.; Asgari, Sassan

    2011-01-01

    The obligate endosymbiont Wolbachia pipientis is found in a wide range of invertebrates where they are best known for manipulating host reproduction. Recent studies have shown that Wolbachia also can modulate the lifespan of host insects and interfere with the development of human pathogens in mosquito vectors. Despite considerable study, very little is known about the molecular interactions between Wolbachia and its hosts that might mediate these effects. Using microarrays, we show that the microRNA (miRNA) profile of the mosquito, Aedes aegypti, is significantly altered by the wMelPop-CLA strain of W. pipientis. We found that a host miRNA (aae-miR-2940) is induced after Wolbachia infection in both mosquitoes and cell lines. One target of aae-miR-2940 is the Ae. aegypti metalloprotease gene. Interestingly, expression of the target gene was induced after Wolbachia infection, ectopic expression of the miRNA independent of Wolbachia, or transfection of an artificial mimic of the miRNA into mosquito cells. We also confirmed the interaction of aae-miR-2940 with the target sequences using GFP as a reporter gene. Silencing of the metalloprotease gene in both Wolbachia-infected cells and adult mosquitoes led to a significant reduction in Wolbachia density, as did inhibition of the miRNA in cells. These results indicate that manipulation of the mosquito metalloprotease gene via aae-miR-2940 is crucial for efficient maintenance of the endosymbiont. This report shows how Wolbachia alters the host miRNA profile and provides insight into the mechanisms of host manipulation used by this widespread endosymbiont. PMID:21576469

  7. An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs

    PubMed Central

    Ibrišimović, Mirza; Kneidinger, Doris; Lion, Thomas; Klein, Reinhard

    2013-01-01

    Human adenoviruses are rarely associated with life-threatening infections in healthy individuals. However, immunocompromised patients, and particularly allogeneic hematopoietic stem cell transplant recipients, are at high risk of developing disseminated and potentially fatal disease. The efficacy of commonly used drugs to treat adenovirus infections (i.e., cidofovir in most cases) is limited, and alternative treatment options are needed. Artificial microRNAs (amiRNAs) are a class of synthetic RNAs resembling cellular miRNAs, and, similar to their natural relatives, can mediate the knockdown of endogenous gene expression. This process, termed RNA interference, can be harnessed to target and potentially silence both cellular and viral genes. In this study, we designed amiRNAs directed against adenoviral E1A, DNA polymerase, and preterminal protein (pTP) mRNAs in order to inhibit adenoviral replication in vitro. For the expression of amiRNA-encoding sequences, we utilized replication-deficient adenoviral vectors. In cells transduced with the recombinant vectors and infected with the wild-type (wt) adenovirus, one particular amiRNA that was directed against the pTP mRNA was capable of decreasing the output of infectious wt virus progeny by 2.6 orders of magnitude. This inhibition rate could be achieved by concatemerizing amiRNA-encoding sequences to allow for high intracellular amiRNA concentrations. Because superinfecting wt virus induces the replication and amplification of the recombinant adenoviral vector, amiRNA concentrations were increased in cells infected with wt adenovirus. Furthermore, a combination of amiRNA expression and treatment of infected cells with cidofovir resulted in additive effects that manifested as a total reduction of infectious virus progeny by greater than 3 orders of magnitude. PMID:23127366

  8. An adenoviral vector-based expression and delivery system for the inhibition of wild-type adenovirus replication by artificial microRNAs.

    PubMed

    Ibrišimović, Mirza; Kneidinger, Doris; Lion, Thomas; Klein, Reinhard

    2013-01-01

    Human adenoviruses are rarely associated with life-threatening infections in healthy individuals. However, immunocompromised patients, and particularly allogeneic hematopoietic stem cell transplant recipients, are at high risk of developing disseminated and potentially fatal disease. The efficacy of commonly used drugs to treat adenovirus infections (i.e., cidofovir in most cases) is limited, and alternative treatment options are needed. Artificial microRNAs (amiRNAs) are a class of synthetic RNAs resembling cellular miRNAs, and, similar to their natural relatives, can mediate the knockdown of endogenous gene expression. This process, termed RNA interference, can be harnessed to target and potentially silence both cellular and viral genes. In this study, we designed amiRNAs directed against adenoviral E1A, DNA polymerase, and preterminal protein (pTP) mRNAs in order to inhibit adenoviral replication in vitro. For the expression of amiRNA-encoding sequences, we utilized replication-deficient adenoviral vectors. In cells transduced with the recombinant vectors and infected with the wild-type (wt) adenovirus, one particular amiRNA that was directed against the pTP mRNA was capable of decreasing the output of infectious wt virus progeny by 2.6 orders of magnitude. This inhibition rate could be achieved by concatemerizing amiRNA-encoding sequences to allow for high intracellular amiRNA concentrations. Because superinfecting wt virus induces the replication and amplification of the recombinant adenoviral vector, amiRNA concentrations were increased in cells infected with wt adenovirus. Furthermore, a combination of amiRNA expression and treatment of infected cells with cidofovir resulted in additive effects that manifested as a total reduction of infectious virus progeny by greater than 3 orders of magnitude.

  9. Single-polarity recombinant adeno-associated virus 2 vector-mediated transgene expression in vitro and in vivo: mechanism of transduction.

    PubMed

    Zhong, Li; Zhou, Xiaohuai; Li, Yanjun; Qing, Keyun; Xiao, Xiao; Samulski, Richard Jude; Srivastava, Arun

    2008-02-01

    Recombinant adeno-associated virus 2 (AAV) vectors encapsidate single-stranded genomes of either polarity equally frequently in separate mature virions. Because viral genomes of either polarity are transcriptionally inactive, both the failure to undergo viral second-strand DNA synthesis and the failure to undergo DNA strand annealing have been proposed as possible reasons to account for the observed low efficiency of transgene expression. We compared the transduction efficiencies of conventional AAV vectors containing both [-] and [+] polarity genomes with those containing either the [-] or the [+] polarity genomes, in vitro as well as in vivo. We document that the transduction efficiency of single-polarity AAV vectors is significantly enhanced by (i) co-infection with adenovirus; (ii) small interfering RNA (siRNA)-mediated down-modulation of a cellular protein, FKBP52, tyrosine-phosphorylated forms of which inhibit AAV second-strand DNA synthesis; (iii) over-expression of a cellular protein tyrosine phosphatase, T cell protein tyrosine phosphatase (TC-PTP), which catalyzes tyrosine-dephosphorylation of FKBP52; and (iv) deliberate over-expression of TC-PTP, or the absence of FKBP52, respectively, in TC-PTP-transgenic mice and in FKBP52-knockout mice. These data confirm that viral second-strand DNA synthesis, rather than DNA strand annealing, is the rate-limiting step in efficient transduction by AAV vectors. This finding has implications in the use of these vectors in human gene therapy.

  10. [Cloning of human bone morphogenetic protein-2 gene and the construction of its eukaryotic expression vector].

    PubMed

    Zhou, Nuo; Huang, Xuan-ping; Liao, Ni; Wei, Shan-liang; Liang, Fei-xin; Mai, Hua-ming

    2007-10-01

    To clone human bone morphogenetic protein-2 (hBMP2) gene and construct its eukaryotic expression vector pcDNA3.1 -hBMP2. Human BMP2 gene was amplified by RT-PCR method from human osteosarcoma cells and constructed into eukaryotic expression vector pcDNA3.1-hBMP2. The gene in the vector pcDNA3.1-hBMP2 was identified by PCR amplification, enzyme digestion and DNA sequencing. The cloned DNA was confirmed to be hBMP-2 gene. In this study, hBMP2 gene is successfully cloned and its eukaryotic expression vector pcDNA3.1-hBMP2 is constructed, which provides the foundation of using BMP2 gene therapy to accelerate new bone formation in distraction osteogenesis.

  11. The vector-related influences of autophagic microRNA delivery by Lipofectamine 2000 and polyethylenimine 25K on mouse embryonic fibroblast cells.

    PubMed

    Lin, Chia-Wei; Jan, Ming-Shiou; Kuo, Jung-Hua Steven

    2017-04-01

    Despite the greater potential for clinical applications of autophagic microRNA (miRNA) delivery, the vector-related effects of such delivery on cells have not been fully explored. In this study, autophagic mmu-miR-494-3p (miR-494) in mouse embryonic fibroblast (MEF) cells was selected as a cargo miRNA, and two commonly used non-viral carriers (Lipofectamine 2000 (Lipo) and polyethylenimine 25K (PEI)), were used as delivery vectors to mechanistically elucidate its vector-related effects. The cellular uptake, nuclear localization, and quantitative miR-494 levels of the complexes of miR-494 with Lipo (miR-494 lipoplexes) were lower than those of the complexes of miR-494 with PEI (miR-494 polyplexes) in MEF cells. The indicator of autophagic activity (LC3 (microtubule-associated protein 1 light chain 3)-II/LC3-I ratio) in cells treated with miR-494 lipoplexes was higher than that in cells treated with miR-494 polyplexes. Lipo alone and PEI alone induced slight increases in the quantitative levels of miR-494 in cells, but Lipo resulted in higher gene and protein expressions of target Igf1, higher LC3-II/LC3-I ratios, and higher autophagosome formation than PEI. We also demonstrated that the delivery of miR-494 by Lipo was more involved in apoptotic caspase-3 pathways than such delivery by PEI. By applying knock-out atg5 gene in MEF cells, we found that autophagy played a protective role in cell survival and also affected cellular uptake, the quantitative level of miR-494, and target gene Igf1 regulation of delivery systems. Taken together, these results indicate that there are different degrees of responses in MEF cells for autophagic miR-494 delivery through the use of Lipo or PEI vectors that also induce autophagy in cells. Therefore, Lipo and PEI vectors cannot be treated as inert molecules, and their effects must be known and evaluated when they are used in autophagic miRNA delivery systems. Most importantly, understanding these vector-related effects on cells will

  12. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector.

    PubMed Central

    Fuerstenberg, S; Beug, H; Introna, M; Khazaie, K; Muñoz, A; Ness, S; Nordström, K; Sap, J; Stanley, I; Zenke, M

    1990-01-01

    A retrovirus vector was constructed from the genome of avian erythroblastosis virus ES4. The v-erbA sequences of avian erythroblastosis virus were replaced by those coding for neomycin phosphotransferase, creating a gag-neo fusion protein which provides G418 resistance as a selectable marker. The v-erbB sequences following the splice acceptor were replaced by a cloning linker allowing insertion of foreign genes. The vector has been tested in conjunction with several helper viruses for the transmission of G418 resistance, titer, stability, transcription, and the transduction and expression of foreign genes in both chicken embryo fibroblasts and the QT6 quail cell line. The results show that the vector is capable of producing high titers of Neor virus from stably integrated proviruses. These proviruses express a balanced ratio of genome length to spliced transcripts which are efficiently translated into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion exchange protein has been expressed from the vector in both chicken embryo fibroblasts and QT6 cells and appears to function as an active, plasma membrane-based anion transporter. The ectopic expression of band 3 protein provides a visual marker for vector function in these cells. Images PMID:2173771

  13. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector.

    PubMed

    Fuerstenberg, S; Beug, H; Introna, M; Khazaie, K; Muñoz, A; Ness, S; Nordström, K; Sap, J; Stanley, I; Zenke, M

    1990-12-01

    A retrovirus vector was constructed from the genome of avian erythroblastosis virus ES4. The v-erbA sequences of avian erythroblastosis virus were replaced by those coding for neomycin phosphotransferase, creating a gag-neo fusion protein which provides G418 resistance as a selectable marker. The v-erbB sequences following the splice acceptor were replaced by a cloning linker allowing insertion of foreign genes. The vector has been tested in conjunction with several helper viruses for the transmission of G418 resistance, titer, stability, transcription, and the transduction and expression of foreign genes in both chicken embryo fibroblasts and the QT6 quail cell line. The results show that the vector is capable of producing high titers of Neor virus from stably integrated proviruses. These proviruses express a balanced ratio of genome length to spliced transcripts which are efficiently translated into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion exchange protein has been expressed from the vector in both chicken embryo fibroblasts and QT6 cells and appears to function as an active, plasma membrane-based anion transporter. The ectopic expression of band 3 protein provides a visual marker for vector function in these cells.

  14. Gene Therapy for Bladder Overactivity and Nociception with Herpes Simplex Virus Vectors Expressing Preproenkephalin

    PubMed Central

    Yokoyama, Hitoshi; Sasaki, Katsumi; Franks, Michael E.; Goins, William F.; Goss, James R.; de Groat, William C.; Glorioso, Joseph C.; Chancellor, Michael B.

    2009-01-01

    Abstract Interstitial cystitis/painful bladder syndrome (IC/PBS) is a major challenge to treat. We studied the effect of targeted and localized expression of enkephalin in afferent nerves that innervate the bladder by gene transfer using replication-defective herpes simplex virus (HSV) vectors in a rat model of bladder hyperactivity and pain. Replication-deficient HSV vectors encoding preproenkephalin, which is a precursor for Met- and Leu-enkephalin, or control vector encoding the lacZ reporter gene, were injected into the bladder wall of female rats. After viral vector injection, quantitative polymerase chain reaction showed high preproenkephalin transgene levels in bladder and dorsal root ganglia innervating the bladder in enkephalin vector-treated animals. Functionally, enkephalin vector-treated animals showed reductions in bladder hyperactivity and nociceptive behavior induced by intravesical application of capsaicin; however, vector-mediated expression of enkephalin did not alter normal voiding. This antinociceptive effect of enkephalin gene therapy was antagonized by naloxone hydrochloride administration. Together, our results with HSV vectors encoding preproenkephalin demonstrated physiological improvement in visceral pain induced by bladder irritation. Thus, gene therapy may represent a potentially useful treatment modality for bladder hypersensitive disorders such as IC/PBS. PMID:20377371

  15. An efficient plasmid vector for constitutive high-level expression of foreign genes in Escherichia coli.

    PubMed

    Seo, Jeong-Woo; Hong, Won-kyung; Rairakhwada, Dina; Seo, Pil-Soo; Choi, Min Ho; Song, Ki-Bang; Rhee, Sang-Ki; Kim, Chul Ho

    2009-06-01

    The levansucrase gene (lsrA) from Rahnella aquatilis was strongly expressed in a constitutive manner in Escherichia coli when cloned into a pBluescript KS-based pRL1CP plasmid vector. The native promoter upstream of lsrA and the lacZ promoter cooperatively enhanced the expression of lsrA to a level that was comparable to that of the T7 promoter, which is used in commercial pET expression vector system. A putative rho-independent transcription termination signal downstream of lsrA was crucial for gene expression. This plasmid vector also proved to be applicable for efficient expression of other foreign genes in E. coli.

  16. Construction of a shuttle expression vector with a promoter functioning in both halophilic Archaea and Bacteria.

    PubMed

    Lv, Jie; Wang, Shuai; Zeng, Chi; Huang, Yuping; Chen, Xiangdong

    2013-12-01

    A shuttle expression vector, designated as pAJ, was constructed based on the Haloferax volcanii-Escherichia coli shuttle vector pSY1. This new construct contains the amyH promoter from Haloarcula hispanica and was able to confer the promoter activity in both Hfx. volcanii and E. coli. pAJ successfully expressed proteins in Hfx. volcanii or E. coli, rendering it feasible to express target proteins in corresponding domains. In addition, pAJ contains a multiple cloning site with 11 restriction sites and a 6×His tag sequence, and the vector size was decreased to 8903 bp. To the best of our knowledge, pAJ is the first reported shuttle expression vector that can express proteins in both Bacteria and Archaea. Importantly, pAJ can even express the haloarchaeal heat shock protein DnaK in both domains. In conclusion, this novel vector only provides researchers with a new means to manipulate genes or express proteins in Haloarchaea but also serves as a convenient tool for the comparative study of the function of some highly conserved genes in Haloarchaea and in Bacteria.

  17. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    PubMed

    López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.

  18. Flexible expressed region analysis for RNA-seq with derfinder

    PubMed Central

    Collado-Torres, Leonardo; Nellore, Abhinav; Frazee, Alyssa C.; Wilks, Christopher; Love, Michael I.; Langmead, Ben; Irizarry, Rafael A.; Leek, Jeffrey T.; Jaffe, Andrew E.

    2017-01-01

    Differential expression analysis of RNA sequencing (RNA-seq) data typically relies on reconstructing transcripts or counting reads that overlap known gene structures. We previously introduced an intermediate statistical approach called differentially expressed region (DER) finder that seeks to identify contiguous regions of the genome showing differential expression signal at single base resolution without relying on existing annotation or potentially inaccurate transcript assembly. We present the derfinder software that improves our annotation-agnostic approach to RNA-seq analysis by: (i) implementing a computationally efficient bump-hunting approach to identify DERs that permits genome-scale analyses in a large number of samples, (ii) introducing a flexible statistical modeling framework, including multi-group and time-course analyses and (iii) introducing a new set of data visualizations for expressed region analysis. We apply this approach to public RNA-seq data from the Genotype-Tissue Expression (GTEx) project and BrainSpan project to show that derfinder permits the analysis of hundreds of samples at base resolution in R, identifies expression outside of known gene boundaries and can be used to visualize expressed regions at base-resolution. In simulations, our base resolution approaches enable discovery in the presence of incomplete annotation and is nearly as powerful as feature-level methods when the annotation is complete. derfinder analysis using expressed region-level and single base-level approaches provides a compromise between full transcript reconstruction and feature-level analysis. The package is available from Bioconductor at www.bioconductor.org/packages/derfinder. PMID:27694310

  19. Roles of Prolyl Isomerases in RNA-Mediated Gene Expression

    PubMed Central

    Thapar, Roopa

    2015-01-01

    The peptidyl-prolyl cis-trans isomerases (PPIases) that include immunophilins (cyclophilins and FKBPs) and parvulins (Pin1, Par14, Par17) participate in cell signaling, transcription, pre-mRNA processing and mRNA decay. The human genome encodes 19 cyclophilins, 18 FKBPs and three parvulins. Immunophilins are receptors for the immunosuppressive drugs cyclosporin A, FK506, and rapamycin that are used in organ transplantation. Pin1 has also been targeted in the treatment of Alzheimer’s disease, asthma, and a number of cancers. While these PPIases are characterized as molecular chaperones, they also act in a nonchaperone manner to promote protein-protein interactions using surfaces outside their active sites. The immunosuppressive drugs act by a gain-of-function mechanism by promoting protein-protein interactions in vivo. Several immunophilins have been identified as components of the spliceosome and are essential for alternative splicing. Pin1 plays roles in transcription and RNA processing by catalyzing conformational changes in the RNA Pol II C-terminal domain. Pin1 also binds several RNA binding proteins such as AUF1, KSRP, HuR, and SLBP that regulate mRNA decay by remodeling mRNP complexes. The functions of ribonucleoprotein associated PPIases are largely unknown. This review highlights PPIases that play roles in RNA-mediated gene expression, providing insight into their structures, functions and mechanisms of action in mRNP remodeling in vivo. PMID:25992900

  20. miRNA expression during prickly pear cactus fruit development.

    PubMed

    Rosas-Cárdenas, Flor de Fátima; Caballero-Pérez, Juan; Gutiérrez-Ramos, Ximena; Marsch-Martínez, Nayelli; Cruz-Hernández, Andrés; de Folter, Stefan

    2015-02-01

    miRNAs are a class of small non-coding RNAs that regulate gene expression. They are involved in the control of many developmental processes, including fruit development. The increasing amount of information on miRNAs, on their expression, abundance, and conservation between various species, provides a new opportunity to study the role of miRNAs in non-model plant species. In this work, we used a combination of Northern blot and tissue print hybridization analysis to identify conserved miRNAs expressed during prickly pear cactus (Opuntia ficus indica) fruit development. Comparative profiling detected the expression of 34 miRNAs, which were clustered in three different groups that were associated with the different phases of fruit development. Variation in the level of miRNA expression was observed. Gradual expression increase of several miRNAs was observed during fruit development, including miR164. miR164 was selected for stem-loop RT-PCR and for a detailed spatial-temporal expression analysis. At early floral stages, miR164 was mainly localized in meristematic tissues, boundaries and fusion zones, while it was more homogenously expressed in fruit tissues. Our results provide the first evidence of miRNA expression in the prickly pear cactus and provide the basis for future research on miRNAs in Opuntia. Moreover, our analyses suggest that miR164 plays different roles during prickly pear cactus fruit development.

  1. How to analyze gene expression using RNA-sequencing data.

    PubMed

    Ramsköld, Daniel; Kavak, Ersen; Sandberg, Rickard

    2012-01-01

    RNA-Seq is arising as a powerful method for transcriptome analyses that will eventually make microarrays obsolete for gene expression analyses. Improvements in high-throughput sequencing and efficient sample barcoding are now enabling tens of samples to be run in a cost-effective manner, competing with microarrays in price, excelling in performance. Still, most studies use microarrays, partly due to the ease of data analyses using programs and modules that quickly turn raw microarray data into spreadsheets of gene expression values and significant differentially expressed genes. Instead RNA-Seq data analyses are still in its infancy and the researchers are facing new challenges and have to combine different tools to carry out an analysis. In this chapter, we provide a tutorial on RNA-Seq data analysis to enable researchers to quantify gene expression, identify splice junctions, and find novel transcripts using publicly available software. We focus on the analyses performed in organisms where a reference genome is available and discuss issues with current methodology that have to be solved before RNA-Seq data can utilize its full potential.

  2. Control of Cytokine mRNA Expression by RNA-binding Proteins and microRNAs

    PubMed Central

    Palanisamy, V.; Jakymiw, A.; Van Tubergen, E.A.; D’Silva, N.J.; Kirkwood, K.L.

    2012-01-01

    Cytokines are critical mediators of inflammation and host defenses. Regulation of cytokines can occur at various stages of gene expression, including transcription, mRNA export, and post- transcriptional and translational levels. Among these modes of regulation, post-transcriptional regulation has been shown to play a vital role in controlling the expression of cytokines by modulating mRNA stability. The stability of cytokine mRNAs, including TNFα, IL-6, and IL-8, has been reported to be altered by the presence of AU-rich elements (AREs) located in the 3′-untranslated regions (3′UTRs) of the mRNAs. Numerous RNA-binding proteins and microRNAs bind to these 3′UTRs to regulate the stability and/or translation of the mRNAs. Thus, this paper describes the cooperative function between RNA-binding proteins and miRNAs and how they regulate AU-rich elements containing cytokine mRNA stability/degradation and translation. These mRNA control mechanisms can potentially influence inflammation as it relates to oral biology, including periodontal diseases and oral pharyngeal cancer progression. PMID:22302144

  3. Analysis of messenger RNA expression by in situ hybridization using RNA probes synthesized via in vitro transcription

    PubMed Central

    Carter, Bradley S.; Fletcher, Jonathan S.; Thompson, Robert C.

    2010-01-01

    The analysis of the spatial patterning of mRNA expression is critically important for assigning functional and physiological significance to a given gene product. Given the tens of thousands of mRNAs in the mammalian genome, a full assessment of individual gene functions would ideally be overlaid upon knowledge of the specific cell types expressing each mRNA. In situ hybridization approaches represent a molecular biological/histological method that can reveal cellular patterns of mRNA expression. Here, we present detailed procedures for the detection of specific mRNAs using radioactive RNA probes in tissue sections followed by autoradiographic detection. These methods allow for the specific and sensitive detection of spatial patterns of mRNA expression, thereby linking mRNA expression with cell type and function. Radioactive detection methods also facilitate semi-quantitative analyses of changes in mRNA gene expression. PMID:20699122

  4. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1

    PubMed Central

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem–loop structure containing the branch site near its apical loop and the 3′ splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing. PMID:26546116

  5. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1.

    PubMed

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem-loop structure containing the branch site near its apical loop and the 3' splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing.

  6. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG.

    PubMed

    Fuchs, Sebastian P; Martinez-Navio, José M; Gao, Guangping; Desrosiers, Ronald C

    2016-01-01

    Adeno-associated virus (AAV) has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG) molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV) vector (one vector approach) was compared to expression from two self-complementary AAV (scAAV) vectors, one for heavy chain and one for light chain (two vector approach). Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A) increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE) further increased IgG expression 1.5-2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG.

  7. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG

    PubMed Central

    Fuchs, Sebastian P.; Martinez-Navio, José M.; Gao, Guangping; Desrosiers, Ronald C.

    2016-01-01

    Adeno-associated virus (AAV) has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG) molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV) vector (one vector approach) was compared to expression from two self-complementary AAV (scAAV) vectors, one for heavy chain and one for light chain (two vector approach). Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A) increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE) further increased IgG expression 1.5–2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG. PMID:27332822

  8. Transplantation of mesenchymal stem cells expressing TIMP-1-shRNA improves hepatic fibrosis in CCl4-treated rats

    PubMed Central

    Zhu, Yingwei; Miao, Zongning; Gong, Lei; Chen, Weichang

    2015-01-01

    This study was to investigate the therapeutic effect of intravenous transplantation of TIMP-1-silencing mesenchymal stem cells (MSCs) in a rat model of liver fibrosis. MSCs were transduced with a lentiviral vector expressing tissue inhibitor of metalloproteinase 1 (TIMP-1)-shRNA, and the liver cirrhosis model was established by injection of CCl4 (1 ml/kg body weight twice a week for 4 weeks) in Sprague Dawley rats. The survived 36 rats were randomly divided into 3 groups: control group, MSCs group, and TIMP-1-shRNA group. At 4 weeks after establishment of animal model, 3×106 MSCs were intravenously injected. In TIMP-1-shRNA group, MSCs expressing TIMP-1-shRNA were transplanted. Animals were sacrificed 4 weeks later. Blood was collected for the detection of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The livers were harvested for histological examination. At 5 days after transfection, strong fluorescence was detectable in each group. TIMP-1-shRNA group had the lowest TIMP-1 expression. Following MSCs transplantation, serum ALT and AST reduced in rats with hepatic cirrhosis, and histology showed less fibrotic areas and collagens, as compared to control group. These improvements were more obvious in the TIMP-1-shRNA group. Our study indicates that transplantation of MSCs expressing TIMP-1-shRNA is able to inhibit the progression of liver fibrosis and possibly restore the liver function in a rat model. PMID:26464632

  9. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus

    PubMed Central

    Park, Sang-Ho; Choi, Hoseong; Kim, Semin; Cho, Won Kyong; Kim, Kook-Hyung

    2016-01-01

    Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH) gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana. PMID:27493613

  10. Comprehensive set of integrative plasmid vectors for copper-inducible gene expression in Myxococcus xanthus.

    PubMed

    Gómez-Santos, Nuria; Treuner-Lange, Anke; Moraleda-Muñoz, Aurelio; García-Bravo, Elena; García-Hernández, Raquel; Martínez-Cayuela, Marina; Pérez, Juana; Søgaard-Andersen, Lotte; Muñoz-Dorado, José

    2012-04-01

    Myxococcus xanthus is widely used as a model system for studying gliding motility, multicellular development, and cellular differentiation. Moreover, M. xanthus is a rich source of novel secondary metabolites. The analysis of these processes has been hampered by the limited set of tools for inducible gene expression. Here we report the construction of a set of plasmid vectors to allow copper-inducible gene expression in M. xanthus. Analysis of the effect of copper on strain DK1622 revealed that copper concentrations of up to 500 μM during growth and 60 μM during development do not affect physiological processes such as cell viability, motility, or aggregation into fruiting bodies. Of the copper-responsive promoters in M. xanthus reported so far, the multicopper oxidase cuoA promoter was used to construct expression vectors, because no basal expression is observed in the absence of copper and induction linearly depends on the copper concentration in the culture medium. Four different plasmid vectors have been constructed, with different marker selection genes and sites of integration in the M. xanthus chromosome. The vectors have been tested and gene expression quantified using the lacZ gene. Moreover, we demonstrate the functional complementation of the motility defect caused by lack of PilB by the copper-induced expression of the pilB gene. These versatile vectors are likely to deepen our understanding of the biology of M. xanthus and may also have biotechnological applications.

  11. Induction of protein expression within Escherichia coli vector for entry into mammalian cells.

    PubMed

    Chen, Qingwen; Lee, Choon-Weng; Sim, Edmund Ui-Hang; Narayanan, Kumaran

    2014-02-01

    Direct protein delivery into the cytosol of mammalian cells by invasive Escherichia coli (E. coli) bacterial vector will bypass the need to achieve nuclear entry and transcription of DNA, a major hurdle that is known to seriously limit gene transfer. The bacterial vector is induced to express the protein during its growth phase, before presentation for entry into mammalian cells and release of its content into the cellular environment. For this class of vector, crossing the plasma membrane becomes the primary step that determines the success of protein delivery. Yet, how the mechanics of protein expression within the vector affect its entry into the host is poorly understood. We found the vector's effectiveness to enter HeLa cells diminished together with its viability when phage N15 protelomerase (TelN) expression was induced continuously in the invasive E. coli despite producing an abundant amount of functional protein. By comparison, shorter induction, even as little as 3 hr, produced sufficient amounts of functional TelN and showed more effective invasion of HeLa cells, comparable to that of uninduced invasive E. coli. These results demonstrate that brief induction of protein expression during vector growth is essential for optimal entry into mammalian cells, an important step for achieving bacteria-mediated protein delivery.

  12. Induction of humoral responses to BHV-1 glycoprotein D expressed by HSV-1 amplicon vectors

    PubMed Central

    Blanc, Andrea Maria; Berois, Mabel Beatriz; Tomé, Lorena Magalí; Epstein, Alberto L.

    2012-01-01

    Herpes simplex virus type-1 (HSV-1) amplicon vectors are versatile and useful tools for transferring genes into cells that are capable of stimulating a specific immune response to their expressed antigens. In this work, two HSV-1-derived amplicon vectors were generated. One of these expressed the full-length glycoprotein D (gD) of bovine herpesvirus 1 while the second expressed the truncated form of gD (gDtr) which lacked the trans-membrane region. After evaluating gD expression in the infected cells, the ability of both vectors to induce a specific gD immune response was tested in BALB/c mice that were intramuscularly immunized. Specific serum antibody responses were detected in mice inoculated with both vectors, and the response against truncated gD was higher than the response against full-length gD. These results reinforce previous findings that HSV-1 amplicon vectors can potentially deliver antigens to animals and highlight the prospective use of these vectors for treating infectious bovine rhinotracheitis disease. PMID:22437537

  13. Genome-wide analysis of microRNA and mRNA expression signatures in cancer

    PubMed Central

    Li, Ming-hui; Fu, Sheng-bo; Xiao, Hua-sheng

    2015-01-01

    Cancer is an extremely diverse and complex disease that results from various genetic and epigenetic changes such as DNA copy-number variations, mutations, and aberrant mRNA and/or protein expression caused by abnormal transcriptional regulation. The expression profiles of certain microRNAs (miRNAs) and messenger RNAs (mRNAs) are closely related to cancer progression stages. In the past few decades, DNA microarray and next-generation sequencing techniques have been widely applied to identify miRNA and mRNA signatures for cancers on a genome-wide scale and have provided meaningful insights into cancer diagnosis, prognosis and personalized medicine. In this review, we summarize the progress in genome-wide analysis of miRNAs and mRNAs as cancer biomarkers, highlighting their diagnostic and prognostic roles. PMID:26299954

  14. The expression of miRNA-221 and miRNA-222 in gliomas patients and their prognosis.

    PubMed

    Xue, Liang; Wang, Yi; Yue, Shuyuan; Zhang, Jianning

    2017-01-01

    The aim of this study is to explore the expression of microRNA (miRNA)-221 and miRNA-222 in human glioma cells and tissues. The expression of miRNA-221 and miRNA-222 in human glioma cell line U87, U251, A172, LN229 and surgery resected glioma tissues were measured. The survival rate of X-ray (2 Gy) irradiated glioma cells were calculated. 165 cases of glioma patients were recruited successfully; the expression of miRNA-221 and miRNA-222 in their resected tissues were measured. The expression of miRNA-221 and miRNA-222 in cancer tissues were obviously higher than control tissues (normal brain tissue) and control cell (gastric mucosal epithelial cell, GES) (p < 0.05). The highly malignant glioma tissues expressed significantly higher miRNA-221 and miRNA-222 than low malignant glioma tissues. Patients with highly expressed miRNA-221 and miRNA-222 have shorter survival time. Survival rate of glioma cells was significantly higher than GES cell after irradiation (p < 0.05); miRNA-221 in glioma cells. The expressions of miRNA-221 and miRNA-222 in irritated glioma cells were positively correlated with the survival rate of glioma cells (r = 0.629, 0.712, both p < 0.01). For the 165 glioma patients, the expressions of miRNA-221 and miRNA-222 increased with the increasing of pathological grades (χ (2) = 42.85, p < 0.01); and their survival time decreased when miRNA-221 expression elevated (χ (2) = 57.12, p < 0.01). MiRNA-221 and miRNA-222 express highly in human glioma cells and tissues. Expression of miRNA-221 and miRNA-222 are closely related to pathological grading and prognosis of glioma; they could be used as independent prognostic factor for glioma.

  15. Differential expression profile analysis of lncRNA UCA1α regulated mRNAs in bladder cancer.

    PubMed

    Wang, Yu; Zhang, Hong; Li, Xu; Chen, Wei

    2017-08-16

    Urothelial carcinoma associated 1α (UCA1α) is a novel long non-coding RNA (lncRNA) that regulates bladder cancer proliferation, migration, and invasion. The target genes of UCA1α have, however, not been identified. To address this, a pCDNA3.1(+)-UCA1α over-expression vector was transfected into UM-UC-2 bladder cancer cells. Genes differentially expressed between pCDNA3.1(+)-UCA1α and pCDNA3.1(+) transfected cell were then detected by microarray and bioinformatics analysis. A total of 71 differentially expressed genes were identified, including 52 up-regulated genes and 19 down-regulated genes. As expected, the lncRNA UCA1α expression level was significantly increased when compared to that of pCDNA3.1(+) transfected cells. The five most significantly up-regulated and five most significantly down-regulated genes were selected, and their expression levels were also assessed by real time quantitative polymerase chain reaction and Western blot. The mRNA and protein expression levels of FOXI3 and GSTA3 were found to be significantly increased, and those of MED18 and TEX101 were found to be significantly decreased. Gene ontology (GO) clustering identified several significant biological processes, cellular components, and molecular functions, associated with lncRNA UCA1α over-expression. The differentially expressed genes were involved in several significant pathways as shown by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway clustering. Cell proliferation activity was significantly increased following overexpression of lncRNA UCA1α increasing over culture time. The present study identifies, for the first time, potential target genes for lncRNA UCA1α in bladder cancer, and provides a significant reference for studying the role of lncRNA UCA1α in bladder cancer. © 2017 Wiley Periodicals, Inc.

  16. Metabolic engineering of the baculovirus-expression system via inverse "shotgun" genomic analysis and RNA interference (dsRNA) increases product yield and cell longevity.

    PubMed

    Kim, Eun Jeong; Kramer, Shannon F; Hebert, Colin G; Valdes, James J; Bentley, William E

    2007-10-15

    RNA interference (RNAi) is as powerful tool for characterizing gene function in eukaryotic organisms and cultured cell lines. Its use in metabolic engineering has been limited and few reports have targeted protein expression systems to increase yield. In this work, we examine the use of in vitro synthesized double stranded RNA (dsRNA) in the baculovirus expression vector system (BEVS), using commercially relevant cultured cells (Spodoptera frugiperda, Sf-9) and larvae (Trichoplusia ni) as hosts. First, we employed an inverse "shotgun" genomic analysis to "find" an array of 16 putative insect gene targets. We then synthesized dsRNA in vitro targeting these genes and investigated the effects of injected dsRNA on larval growth, development, and product yield. Growth and development was at times stunted and in several cases, the effects were lethal. However, dsRNA targeting an acidic juvenile hormone-suppressible protein (AJHSP1), and translational elongation factor 2 (Ef-2) resulted in significantly increased yield of model product, GFP. Next, we targeted known genes, v-cath and apoptosis inducer, sf-caspase 1, in cultured Sf-9 cells. We confirm RNAi-mediated sf-caspase 1 suppression in Sf-9 cells, but not in baculovirus-infected cells, likely due to the overriding effects of inhibitor of apoptosis protein, p35. We also demonstrate suppression of v-cath in infected cells, which leads to a approximately 3-fold increase in product yield. Overall, our results support the application of RNAi in metabolic engineering, specifically for enhancing protein productivity in the baculovirus expression vector system. Copyright 2007 Wiley Periodicals, Inc.

  17. Differential adenoassociated virus vector-driven expression of a neuropeptide Y gene in primary rat brain astroglial cultures after transfection with Sendai virosomes versus Lipofectin.

    PubMed

    de Fiebre, C M; Wu, P; Notabartolo, D; Millard, W J; Meyer, E M

    1994-06-01

    The ability of Sendai virosomes or Lipofectin to introduce an AAV vector into primary rat brain astroglial cultures was characterized. The pJDT95npy vector was constructed by inserting rat NPY cDNA downstream from the indigenous AAV p5, p19 and p40 promoters in pJDT95. Lipofectin-mediated transfection with pJDT95npy (10 micrograms) resulted in pronounced expression of several NPY mRNA species: p5-driven (3.3 kb), p19-driven (2.7 kb) and p40-driven (0.6, 0.8, 1.1, and 1.8 kb). Exposure to virosomally encapsulated pJDT95npy (50 or 100 ng) resulted in transient expression of some p40-driven mRNA species (0.8 and 1.8 kb). Neither method produced astroglia cells which synthesized mature NPY immunoreactivity. This demonstrates that an AAV-derived vector can drive gene expression in astroglia, that Sendai virosomes can infuse vectors into astroglia, but that the amount of DNA infused in this manner may limit long term expression.

  18. Integrated Analysis of Long Noncoding RNA and mRNA Expression Profile in Advanced Laryngeal Squamous Cell Carcinoma.

    PubMed

    Feng, Ling; Wang, Ru; Lian, Meng; Ma, Hongzhi; He, Ning; Liu, Honggang; Wang, Haizhou; Fang, Jugao

    2016-01-01

    Long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the expression pattern and function of lncRNAs in laryngeal squamous cell carcinoma (LSCC) are still unclear. To investigate the aberrantly expressed lncRNAs and mRNAs in advanced LSCC, we screened lncRNA and mRNA expression profiles in 9 pairs of primary Stage IVA LSCC tissues and adjacent non-neoplastic tissues by lncRNA and mRNA integrated microarrays. Gene Ontology and pathway analysis were performed to find out the significant function and pathway of the differentially expressed mRNAs, gene-gene functional interaction network and ceRNA network were constructed to select core mRNAs, and lncRNA-mRNA expression correlation network was built to identify the interactions between lncRNA and mRNA. qRT-PCR was performed to further validate the expressions of selected lncRNAs and mRNAs in advanced LSCC. We found 1459 differentially expressed lncRNAs and 2381 differentially expressed mRNAs, including 846 up-regulated lncRNAs and 613 down-regulated lncRNAs, 1542 up-regulated mRNAs and 839 down-regulated mRNAs. The mRNAs ITGB1, HIF1A, and DDIT4 were selected as core mRNAs, which are mainly involved in biological processes, such as matrix organization, cell cycle, adhesion, and metabolic pathway. LncRNA-mRNA expression correlation network showed LncRNA NR_027340, MIR31HG were positively correlated with ITGB1, HIF1A respectively. LncRNA SOX2-OT was negatively correlated with DDIT4. qRT-PCR further validated the expression of these lncRNAs and mRNAs. The work provides convincing evidence that the identified lncRNAs and mRNAs are potential biomarkers in advanced LSCC for further future studies.

  19. High lib mRNA expression in breast carcinomas.

    PubMed

    Satoh, Kazuki; Hata, Mitsumi; Yokota, Hiroshi

    2004-06-30

    Lib, first identified as a novel beta-amyloid responsive gene in rat astrocytes, has an extracellular domain of 15 leucine-rich repeats (LRRs) followed by a transmembrane domain and a short cytoplasmic region. It is a distinctly inducible gene and is thought to play a key role in inflammatory states via the LRR extracellular motif, an ideal structural framework for protein-protein and protein-matrix interactions. To evaluate potential roles of Lib, we screened various tumors for Lib expression. Lib mRNA expression was high and uniquely expressed in breast tumor tissues, compared to paired normal breast tissues. Lib mRNA was localized in the ductal carcinoma cells and Lib protein displayed a homophilic association on the surface of cultured cells. These data suggest that Lib may play a role in the progression of breast carcinomas and may be a diagnostic marker for breast tumors.

  20. Cationized gelatin delivery of a plasmid DNA expressing small interference RNA for VEGF inhibits murine squamous cell carcinoma.

    PubMed

    Matsumoto, Goichi; Kushibiki, Toshihiro; Kinoshita, Yukihiko; Lee, Ushaku; Omi, Yasushi; Kubota, Eiro; Tabata, Yasuhiko

    2006-04-01

    Double-stranded RNA (dsRNA) plays a major role in RNA interference (RNAi), a process in which segments of dsRNA are initially cleaved by the Dicer into shorter segments (21-23 nt) called small interfering RNA (siRNA). These siRNA then specifically target homologous mRNA molecules causing them to be degraded by cellular ribonucleases. RNAi down regulates endogenous gene expression in mammalian cells. Vascular endothelial growth factor (VEGF) is a key molecule in vasculogenesis as well as in angiogenesis. Tumor growth is an angiogenesis-dependent process, and therapeutic strategies aimed at inhibiting angiogenesis are theoretically attractive. To investigate the feasibility of using siRNA for VEGF in the specific knockdown of VEGF mRNA, thereby inhibiting angiogenesis, we have performed experiments with a DNA vector based on a siRNA system that targets VEGF (siVEGF). It almost completely inhibited the expression of three different isoforms (VEGF120, VEGF164 and VEGF188) of VEGF mRNA and the secretion of VEGF protein in mouse squamous cell carcinoma NRS-1 cells. The siVEGF released from cationized gelatin microspheres suppressed tumor growth in vivo. A marked reduction in vascularity accompanied the inhibition of a siVEGF-transfected tumor. Fluorescent microscopic study showed that the complex of siVEGF with cationized gelatin microspheres was still present around the tumor 10 days after injection, while free siVEGF had vanished by that time. siVEGF gene therapy increased the fraction of vessels covered by pericytes and induced expression of angiopoietin-1 by pericytes. These data suggest that cationized-gelatin microspheres containing siVEGF can be used to normalize tumor vasculature and inhibit tumor growth in a NRS-1 squamous cell carcinoma xenograft model.

  1. CFTR inactivation by lentiviral vector-mediated RNA interference and CRISPR-Cas9 genome editing in human airway epithelial cells.

    PubMed

    Bellec, Jessica; Bacchetta, Marc; Losa, Davide; Anegon, Ignacio; Chanson, Marc; Nguyen, Tuan Huy

    2015-01-01

    Polarized airway epithelial cell cultures modelling Cystic Fibrosis Transmembrane conductance Regulator (CFTR) defect are crucial for CF and biomedical research. RNA interference has proven its value to generate knockdown models for various pathologies. More recently, genome editing using CRISPR-Cas9 artificial endonuclease was a valuable addition to the toolbox of gene inactivation. Calu-3 cells and primary HAECs were transduced with HIV-1-derived lentiviral vectors (LVV) encoding small hairpin RNA (shRNA) sequence or CRISPR-Cas9 components targeting CFTR alongside GFP. After sorting of GFP-positive cells, CFTR expression was measured by RT-qPCR and Western blot in polarized or differentiated cells. CFTR channel function was assessed in Ussing chambers. Il-8 secretion, proliferation and cell migration were also studied in transduced cells. shRNA interference and CRISPRCas9 strategies efficiently decreased CFTR expression in Calu-3 cells. Strong CFTR knockdown was confirmed at the functional level in CRISPR-Cas9-modified cells. CFTR-specific shRNA sequences did not reduce gene expression in primary HAECs, whereas CRISPR-Cas9-mediated gene modification activity was correlated with a reduction of transepithelial secretion and response to a CFTR inhibitor. CFTR inactivation in the CRISPR-Cas9-modified Calu-3 cells did not affect migration and proliferation but slightly increased basal interleukin-8 secretion. We generated CFTR inactivated cell lines and demonstrated that CRISPR-Cas9 vectorised in a single LVV efficiently promotes CFTR inactivation in primary HAECs. These results provide a new protocol to engineer CF primary epithelia with their isogenic controls and pave the way for manipulation of CFTR expression in these cultures.

  2. Silencing of hepatitis C virus replication by a non-viral vector based on solid lipid nanoparticles containing a shRNA targeted to the internal ribosome entry site (IRES).

    PubMed

    Torrecilla, Josune; Del Pozo-Rodríguez, Ana; Solinís, María Ángeles; Apaolaza, Paola S; Berzal-Herranz, Beatriz; Romero-López, Cristina; Berzal-Herranz, Alfredo; Rodríguez-Gascón, Alicia

    2016-10-01

    Gene silencing mediated by RNAi has gained increasing interest as an alternative for the treatment of infectious diseases such as refractory hepatitis C virus (HCV) infection. In this work we have designed and evaluated a non-viral vector based on solid lipid nanoparticles (SLN) bearing hyaluronic acid, protamine and a short hairpin RNA (shRNA74) targeted to the Internal Ribosome Entry Site (IRES) of the HCV. The vector was able to inhibit the expression of the HCV IRES in Huh-7 cells, with the inhibition level dependent on the shRNA74 to SLN ratio and on the shRNA74 dose added to the culture cells. The nanocarrier was also able to inhibit the replication in human hepatoma cells supporting a subgenomic HCV replicon (Huh-7 NS3-3'). The vector was quickly and efficiently internalized by the cells, and endocytosis was the most productive uptake mechanism for silencing. Clathrin-mediated endocytosis and to a lesser extent caveolae/lipid raft-mediated endocytosis were identified as endocytic mechanisms involved in the cell uptake. Internalization via the CD44 receptor was also involved, although this entry route seems to be less productive for silencing than endocytosis. The vector did not induce either hemolysis or agglutination of red cells in vitro, which was indicative of good biocompatibility. In summary, we have shown for the first time the ability of a non-viral SLN-based vector to silence a HCV replicon.

  3. Construction and characterization of regulated L-arabinose-inducible broad host range expression vectors in Xanthomonas.

    PubMed

    Sukchawalit, R; Vattanaviboon, P; Sallabhan, R; Mongkolsuk, S

    1999-12-15

    Several versions of broad host range (BHR), L-arabinose-inducible expression vectors were constructed. These expression vectors were based on a high copy number BHR pBBR1MCS-4 replicon that could replicate in both enteric and non-enteric Gram-negative bacteria. Two versions of expression cassettes containing multiple cloning sites either with or without a ribosome binding site were placed under transcriptional control of the Escherichia coli BAD promoter and araC gene. Three versions of vectors containing ampicillin or kanamycin or tetracycline resistance genes as selectable markers were constructed. In all six new L-arabinose-inducible BHR expression vectors containing many unique cloning sites, selectable markers were made to facilitate cloning and expression of genes in various Gram-negative bacteria. A Tn9 chloramphenicol acetyl transferase (cat) gene was cloned into an expression vector, resulting in pBBad18Acat that was used to establish optimal expression conditions (addition of 0.02% L-arabinose to mid-exponential phase cells for at least 1 h) in a Xanthomonas campestris pv. phaseoli. Comparison of the Cat enzyme activities between uninduced and a 180-min L-arabinose-induced culture showed a greater than 150-fold increased Cat specific activity. In addition, L-arabinose induction of exponential phase cells harboring pBBad18Acat gave a higher amount of Cat than similarly treated stationary phase cells. The usefulness of the expression vector was also demonstrated in both enteric and non-enteric Gram-negative bacteria.

  4. Retroviral vectors for homologous recombination provide efficient cloning and expression in mammalian cells.

    PubMed

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Horii, Masae; Hamana, Hiroshi; Nagai, Terumi; Muraguchi, Atsushi

    2014-02-14

    Homologous recombination technologies enable high-throughput cloning and the seamless insertion of any DNA fragment into expression vectors. Additionally, retroviral vectors offer a fast and efficient method for transducing and expressing genes in mammalian cells, including lymphocytes. However, homologous recombination cannot be used to insert DNA fragments into retroviral vectors; retroviral vectors contain two homologous regions, the 5'- and 3'-long terminal repeats, between which homologous recombination occurs preferentially. In this study, we have modified a retroviral vector to enable the cloning of DNA fragments through homologous recombination. To this end, we inserted a bacterial selection marker in a region adjacent to the gene insertion site. We used the modified retroviral vector and homologous recombination to clone T-cell receptors (TCRs) from single Epstein Barr virus-specific human T cells in a high-throughput and comprehensive manner and to efficiently evaluate their function by transducing the TCRs into a murine T-cell line through retroviral infection. In conclusion, the modified retroviral vectors, in combination with the homologous recombination method, are powerful tools for the high-throughput cloning of cDNAs and their efficient functional analysis.

  5. Classification of Dengue Fever Patients Based on Gene Expression Data Using Support Vector Machines

    PubMed Central

    Khan, Asif M.; Gil, Laura H. V. G.; Marques, Ernesto T. A.; Calzavara-Silva, Carlos E.; Tan, Tin Wee

    2010-01-01

    Background Symptomatic infection by dengue virus (DENV) can range from dengue fever (DF) to dengue haemorrhagic fever (DHF), however, the determinants of DF or DHF progression are not completely understood. It is hypothesised that host innate immune response factors are involved in modulating the disease outcome and the expression levels of genes involved in this response could be used as early prognostic markers for disease severity. Methodology/Principal Findings mRNA expression levels of genes involved in DENV innate immune responses were measured using quantitative real time PCR (qPCR). Here, we present a novel application of the support vector machines (SVM) algorithm to analyze the expression pattern of 12 genes in peripheral blood mononuclear cells (PBMCs) of 28 dengue patients (13 DHF and 15 DF) during acute viral infection. The SVM model was trained using gene expression data of these genes and achieved the highest accuracy of ∼85% with leave-one-out cross-validation. Through selective removal of gene expression data from the SVM model, we have identified seven genes (MYD88, TLR7, TLR3, MDA5, IRF3, IFN-α and CLEC5A) that may be central in differentiating DF patients from DHF, with MYD88 and TLR7 observed to be the most important. Though the individual removal of expression data of five other genes had no impact on the overall accuracy, a significant combined role was observed when the SVM model of the two main genes (MYD88 and TLR7) was re-trained to include the five genes, increasing the overall accuracy to ∼96%. Conclusions/Significance Here, we present a novel use of the SVM algorithm to classify DF and DHF patients, as well as to elucidate the significance of the various genes involved. It was observed that seven genes are critical in classifying DF and DHF patients: TLR3, MDA5, IRF3, IFN-α, CLEC5A, and the two most important MYD88 and TLR7. While these preliminary results are promising, further experimental investigation is necessary to validate

  6. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    PubMed

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  7. The mirror RNA expression pattern in human tissues

    PubMed Central

    Bythwood, Tameka N.; Xu, Wei; Li, Wenzhi; Rao, Weinian; Li, Qiling; Xue, Xue; Richards, Jendai; Ma, Li; Song, Qing

    2017-01-01

    It has been realized in recent years that non-coding RNAs are playing important roles in genome functions and human diseases. Here we developed a new technology and observed a new pattern of gene expression. We observed that over 72% of RNAs in human genome are expressed in forward-reverse pairs, just like mirror images of each other between forward expression and reverse expression; the overview showed that it cannot be simply described as transcript overlapping, so we designated it as mirror expression. Furthermore, we found that the mirror expression is gene-specific and tissue-specific, and less common in the proximal promoter regions. The size of the shadows varies between different genes, different tissues and different classes. The shadow expression is most significant in the Alu element, it was also observed among L1, Simple Repeats and LTR elements, but rare in other repeats such as low-complexity, LINE/L2, DNA and MIRs. Although there is no evidence yet about the relationship of this mirror pattern and double-strand RNA (dsRNA), this new striking pattern provides a new clue and a new direction to unveil the role of RNAs in the genome functions and diseases.

  8. [Expression silence of Physarum polycephalum serine/arginine protein kinase by small interfering RNA].

    PubMed

    Tian, Sheng Li; Zheng, Shuo; Liu, Shi De; Zhang, Jian Hua; Xing, Miao

    2008-04-01

    Serine/arginine protein kinases are specific kinase family for phosphorylating SR protein regulating alternative splicing of SR protein and its distribution, localization in the nucleus. However, it is unclear how Physarum Polycephalum Serine/Arginine Protein Kinase(PSRPK) functions in the cells. In order to study its function, Oligonucleotides for transcribing siRNAs were designed and inserted into pSIREN-RetroQ vector to construct pSIREN-PSRPK-1, pSIREN-PSRPK-2, pSIREN-PSRPK-3, pSIREN-PSRPK-4, pSIREN-PSRPK-5 for expressing siRNAs targeting at PSRPK, as well as the negative control pSIREN-PSRPK-Neg. The PSRPK cDNA amplified by PCR was inserted into the pDsRed-N1 vector to construct a pPSRPK-DsRed plasmid. After the pPSRPK-DsRed was co-transfected into HEK293 cell with recombinant siRNA expression plasmids respectively, the PSRPK-DsRed fusion fluorescent protein was observed under fluorescent microscope after 72 hours co-transfection. The results indicated that pSIREN-PSRPK-2 and pSIREN-PSRPK-5 were able to inhibit the expression of PSRPK-DsRed fusion fluorescent protein efficiently. RT-PCR and Northern dot blot analysis further demonstrated that pSIREN-PSRPK-2 and pSIREN-PSRPK-5 can effectively inhibit PSRPK expression, which accorded with the results under the fluorescent microscope.

  9. RNA Sequencing and Co-expressed Long Non-coding RNA in Modern and Wild Wheats.

    PubMed

    Cagirici, Halise Busra; Alptekin, Burcu; Budak, Hikmet

    2017-09-06

    There is an urgent need for the improvement of drought-tolerant bread and durum wheat. The huge and complex genome of bread wheat (BBAADD genome) stands as a vital obstruction for understanding the molecular mechanism underlying drought tolerance. However, tetraploid wheat (Triticum turgidum ssp., BBAA genome) is an ancestor of modern bread wheat and offers an important model for studying the drought response due to its less complex genome. Additionally, several wild relatives of tetraploid wheat have already shown a significant drought tolerance. We sequenced root transcriptome of three tetraploid wheat varieties with varying stress tolerance profiles, and built differential expression library of their transcripts under control and drought conditions. More than 5,000 differentially expressed transcripts were identified from each genotype. Functional characterization of transcripts specific to drought-tolerant genotype, revealed their association with osmolytes production and secondary metabolite pathways. Comparative analysis of differentially expressed genes and their non-coding RNA partners, long noncoding RNAs and microRNAs, provided valuable insight to gene expression regulation in response to drought stress. LncRNAs as well as coding transcripts share similar structural features in different tetraploid species; yet, lncRNAs slightly differ from coding transcripts. Several miRNA-lncRNA target pairs were detected as differentially expressed in drought stress. Overall, this study suggested an important pool of transcripts where their manipulations confer a better performance of wheat varieties under drought stress.

  10. Transfection of infectious RNA and DNA/RNA layered vectors of semliki forest virus by the cell-penetrating peptide based reagent PepFect6.

    PubMed

    Pärn, Kalle; Viru, Liane; Lehto, Taavi; Oskolkov, Nikita; Langel, Ülo; Merits, Andres

    2013-01-01

    Viral vectors have a wide variety of applications ranging from fundamental studies of viruses to therapeutics. Recombinant viral vectors are usually constructed using methods of reverse genetics to obtain the genetic material of the viral vector. The physicochemical properties of DNA and RNA make them unable to access cells by themselves, and they require assistance to achieve intracellular delivery. Non-viral delivery vectors can be used for this purpose if they enable efficient intracellular delivery without interfering with the viral life cycle. In this report, we utilize Semliki Forest virus (genus alphavirus) based RNA and DNA vectors to study the transfection efficiency of the non-viral cell-penetrating peptide-based delivery vector PepFect6 in comparison with that of the cationic liposome-based Lipofectamine 2000, and assess their impact on viral replication. The optimal conditions for transfection were determined for both reagents. These results demonstrate, for the first time, the ability of PepFect6 to transport large (13-19 kbp) constructs across the cell membrane. Curiously, DNA molecules delivered using the PepFect6 reagent were found to be transported to the cell nucleus approximately 1.5 hours later than DNA molecules delivered using the Lipofectamine 2000 reagent. Finally, although both PepFect6 and Lipofectamine 2000 reagents can be used for alphavirus research, PepFect6 is preferred because it does not induce changes in the normal cellular phenotype and it does not affect the normal replication-infection cycle of viruses in previously transfected cells.

  11. Identify signature regulatory network for glioblastoma prognosis by integrative mRNA and miRNA co-expression analysis.

    PubMed

    Bing, Zhi-Tong; Yang, Guang-Hui; Xiong, Jie; Guo, Ling; Yang, Lei

    2016-12-01

    Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults. Patients with this disease have a poor prognosis. The objective of this study is to identify survival-related individual genes (or miRNAs) and miRNA -mRNA pairs in GBM using a multi-step approach. First, the weighted gene co-expression network analysis and survival analysis are applied to identify survival-related modules from mRNA and miRNA expression profiles, respectively. Subsequently, the role of individual genes (or miRNAs) within these modules in GBM prognosis are highlighted using survival analysis. Finally, the integration analysis of miRNA and mRNA expression as well as miRNA target prediction is used to identify survival-related miRNA -mRNA regulatory network. In this study, five genes and two miRNA modules that significantly correlated to patient's survival. In addition, many individual genes (or miRNAs) assigned to these modules were found to be closely linked with survival. For instance, increased expression of neuropilin-1 gene (a member of module turquoise) indicated poor prognosis for patients and a group of miRNA -mRNA regulatory networks that comprised 38 survival-related miRNA -mRNA pairs. These findings provide a new insight into the underlying molecular regulatory mechanisms of GBM.

  12. Heterologous protein production using euchromatin-containing expression vectors in mammalian cells.

    PubMed

    Zboray, Katalin; Sommeregger, Wolfgang; Bogner, Edith; Gili, Andreas; Sterovsky, Thomas; Fauland, Katharina; Grabner, Beatrice; Stiedl, Patricia; Moll, Herwig P; Bauer, Anton; Kunert, Renate; Casanova, Emilio

    2015-09-18

    Upon stable cell line generation, chromosomal integration site of the vector DNA has a major impact on transgene expression. Here we apply an active gene environment, rather than specified genetic elements, in expression vectors used for random integration. We generated a set of Bacterial Artificial Chromosome (BAC) vectors with different open chromatin regions, promoters and gene regulatory elements and tested their impact on recombinant protein expression in CHO cells. We identified the Rosa26 BAC as the most efficient vector backbone showing a nine-fold increase in both polyclonal and clonal production of the human IgG-Fc. Clonal protein production was directly proportional to integrated vector copy numbers and remained stable during 10 weeks without selection pressure. Finally, we demonstrated the advantages of BAC-based vectors by producing two additional proteins, HIV-1 glycoprotein CN54gp140 and HIV-1 neutralizing PG9 antibody, in bioreactors and shake flasks reaching a production yield of 1 g/l. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Heterologous protein production using euchromatin-containing expression vectors in mammalian cells

    PubMed Central

    Zboray, Katalin; Sommeregger, Wolfgang; Bogner, Edith; Gili, Andreas; Sterovsky, Thomas; Fauland, Katharina; Grabner, Beatrice; Stiedl, Patricia; Moll, Herwig P.; Bauer, Anton; Kunert, Renate; Casanova, Emilio

    2015-01-01

    Upon stable cell line generation, chromosomal integration site of the vector DNA has a major impact on transgene expression. Here we apply an active gene environment, rather than specified genetic elements, in expression vectors used for random integration. We generated a set of Bacterial Artificial Chromosome (BAC) vectors with different open chromatin regions, promoters and gene regulatory elements and tested their impact on recombinant protein expression in CHO cells. We identified the Rosa26 BAC as the most efficient vector backbone showing a nine-fold increase in both polyclonal and clonal production of the human IgG-Fc. Clonal protein production was directly proportional to integrated vector copy numbers and remained stable during 10 weeks without selection pressure. Finally, we demonstrated the advantages of BAC-based vectors by producing two additional proteins, HIV-1 glycoprotein CN54gp140 and HIV-1 neutralizing PG9 antibody, in bioreactors and shake flasks reaching a production yield of 1 g/l. PMID:25977298

  14. Construction of a recombinant human FGF1 expression vector for mammary gland-specific expression in human breast cancer cells.

    PubMed

    Zhou, Yang; Ren, Linzhu; Zhu, Jianguo; Yan, Sen; Wang, Haijun; Song, Na; Li, Li; Ouyang, Hongsheng; Pang, Daxin

    2011-08-01

    Human Fibroblast growth factor 1 (FGF1) has been recognized as a valuable protein drug for the treatment of many diseases because of its multiple functions in regulating a variety of biological processes involved in embryonic development, cell growth and differentiation, morphogenesis, tissue repair, and others. The aim of this study was to develop an FGF1 mammary gland-specific expression vector to produce FGF1 on a large scale from transgenic cows to meet the demand for FGF1 in medical use. In this study, we generated an FGF1 mammary gland-specific expression vector and validated its function in human MCF-7 cells. This vector was shown to successfully express functional FGF1, thus potentially enabling the generation of transgenic cows to be used as mammary gland bioreactors.

  15. Optimized Lentiviral Vector Design Improves Titer and Transgene Expression of Vectors Containing the Chicken β-Globin Locus HS4 Insulator Element

    PubMed Central

    Hanawa, Hideki; Yamamoto, Motoko; Zhao, Huifen; Shimada, Takashi; Persons, Derek A

    2009-01-01

    Hematopoietic cell gene therapy using retroviral vectors has achieved success in clinical trials. However, safety issues regarding vector insertional mutagenesis have emerged. In two different trials, vector insertion resulted in the transcriptional activation of proto-oncogenes. One strategy for potentially diminishing vector insertional mutagenesis is through the use of self-inactivating lentiviral vectors containing the 1.2-kb insulator element derived from the chicken β-globin locus. However, use of this element can dramatically decrease both vector titer and transgene expression, thereby compromising its practical use. Here, we studied lentiviral vectors containing either the full-length 1.2-kb insulator or the smaller 0.25-kb core element in both orientations in the partially deleted long-terminal repeat. We show that use of the 0.25-kb core insulator rescued vector titer by alleviating a postentry block to reverse transcription associated with the 1.2-kb element. In addition, in an orientation-dependent manner, the 0.25-kb core element significantly increased transgene expression from an internal promoter due to improved transcriptional termination. This element also demonstrated barrier activity, reducing variability of expression due to position effects. As it is known that the 0.25-kb core insulator has enhancer-blocking activity, this particular insulated lentiviral vector design may be useful for clinical application. PMID:19223867

  16. Prolyl carboxypeptidase mRNA expression in the mouse brain.

    PubMed

    Jeong, Jin Kwon; Diano, Sabrina

    2014-01-13

    Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain.

  17. RNA expression profile of calcified bicuspid, tricuspid, and normal human aortic valves by RNA sequencing.

    PubMed

    Guauque-Olarte, Sandra; Droit, Arnaud; Tremblay-Marchand, Joël; Gaudreault, Nathalie; Kalavrouziotis, Dimitri; Dagenais, Francois; Seidman, Jonathan G; Body, Simon C; Pibarot, Philippe; Mathieu, Patrick; Bossé, Yohan

    2016-10-01

    The molecular mechanisms leading to premature development of aortic valve stenosis (AS) in individuals with a bicuspid aortic valve are unknown. The objective of this study was to identify genes differentially expressed between calcified bicuspid aortic valves (BAVc) and tricuspid valves with (TAVc) and without (TAVn) AS using RNA sequencing (RNA-Seq). We collected 10 human BAVc and nine TAVc from men who underwent primary aortic valve replacement. Eight TAVn were obtained from men who underwent heart transplantation. mRNA levels were measured by RNA-Seq and compared between valve groups. Two genes were upregulated, and none were downregulated in BAVc compared with TAVc, suggesting a similar gene expression response to AS in individuals with bicuspid and tricuspid valves. There were 462 genes upregulated and 282 downregulated in BAVc compared with TAVn. In TAVc compared with TAVn, 329 genes were up- and 170 were downregulated. A total of 273 upregulated and 147 downregulated genes were concordantly altered between BAVc vs. TAVn and TAVc vs. TAVn, which represent 56 and 84% of significant genes in the first and second comparisons, respectively. This indicates that extra genes and pathways were altered in BAVc. Shared pathways between calcified (BAVc and TAVc) and normal (TAVn) aortic valves were also more extensively altered in BAVc. The top pathway enriched for genes differentially expressed in calcified compared with normal valves was fibrosis, which support the remodeling process as a therapeutic target. These findings are relevant to understand the molecular basis of AS in patients with bicuspid and tricuspid valves.

  18. On a stochastic gene expression with pre-mRNA, mRNA and protein contribution.

    PubMed

    Rudnicki, Ryszard; Tomski, Andrzej

    2015-12-21

    In this paper we develop a model of stochastic gene expression, which is an extension of the model investigated in the paper [T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.R. Brasier, M. Kimmel, Transcriptional stochasticity in gene expression, J. Theor. Biol. 238 (2006) 348-367]. In our model, stochastic effects still originate from random fluctuations in gene activity status, but we precede mRNA production by the formation of pre-mRNA, which enriches classical transcription phase. We obtain a stochastically regulated system of ordinary differential equations (ODEs) describing evolution of pre-mRNA, mRNA and protein levels. We perform mathematical analysis of a long-time behavior of this stochastic process, identified as a piece-wise deterministic Markov process (PDMP). We check exact results using numerical simulations for the distributions of all three types of particles. Moreover, we investigate the deterministic (adiabatic) limit state of the process, when depending on parameters it can exhibit two specific types of behavior: bistability and the existence of the limit cycle. The latter one is not present when only two kinds of gene expression products are considered.

  19. Alphavirus vectors for cancer gene therapy (review).

    PubMed

    Yamanaka, Ryuya

    2004-04-01

    Alphaviruses have several characteristics that make them attractive as gene therapy vectors such as transient and high-level expression of a heterologous gene. Alphavirus vectors, Semliki Forest virus (SFV), Sindbis virus (SIN) and Venezuelan equine encephalitis virus (VEE) have been developed as gene expression vectors. Alphaviruses are positive-strand RNA viruses that can mediate efficient cytoplasmic gene expression in mammalian cells. The alphavirus RNA replication machinery has been engineered for high level heterologous gene expression. Since an RNA virus vector cannot integrate into chromosomal DNA, concerns about cell transformation are reduced. Alphavirus vectors demonstrate promise for the safe tumor-killing and tumor-specific immune responses. Recombinant alphavirus RNA replicons may facilitate gene therapy of cancer.

  20. RNA-FISH to analyze allele-specific expression.

    PubMed

    Braidotti, G

    2001-01-01

    One of the difficulties associated with the analysis of imprinted gene expression is the need to distinguish RNA synthesis occurring at the maternal vs the paternally inherited copy of the gene. Most of the techniques used to examine allele-specific expression exploit naturally occurring polymorphisms and measure steady-state levels of RNA isolated from a pool of cells. Hence, a restriction fragment length polymorphism (RFLP) an be exploited in a heterozygote, by a reverse transcriptase polymerase chain reaction (RT-PCR)- based procedure, to analyze maternal vs paternal gene expression. The human IGF2R gene was analyzed in this way. Smrzka et al. (1) were thus able to show that the IGF2R gene possesses a hemimethylated, intronic CpG island analogous to the mouse imprinting box. However, IGF2R mRNA was detected that possessed the RFLP from both the maternal and paternal alleles in all but one of the 70 lymphoblastoid samples. (The one monoallelic sample reactivated its paternal allele with continued cell culturing.) It was concluded that monoallelic expression of the human gene is a polymorphic trait occurring in a small minority of all tested samples (reviewed in refs. 2,3). Although this is a sound conclusion, the question remains: Is the human IGF2R gene imprinted?

  1. MicroRNA expression profiling of cat and dog kidneys.

    PubMed

    Ichii, Osamu; Otsuka, Saori; Ohta, Hiroshi; Yabuki, Akira; Horino, Taro; Kon, Yasuhiro

    2014-04-01

    MicroRNAs (miRNAs) play a role in the pathogenesis of certain diseases and may serve as biomarkers. Here, we present the first analysis of miRNA expression in the kidneys of healthy cats and dogs. Kidneys were divided into renal cortex (CO) and medulla (MD), and RNA sequence analysis was performed using the mouse genome as a reference. A total of 277, 276, 295, and 297 miRNAs were detected in cat CO, cat MD, dog CO, and dog MD, respectively. By comparing the expression ratio of CO to MD, we identified highly expressed miRNAs in each tissue as follows: 41 miRNAs including miR-192-5p in cat CO; 45 miRNAs including miR-323-3p in dog CO; 78 miRNAs including miR-20a-5p in cat MD; and 11 miRNAs including miR-132-5p in dog MD. Further, the target mRNAs of these miRNAs were identified. These data provide veterinary medicine critical information regarding renal miRNA expression.

  2. Vibrational force alters mRNA expression in osteoblasts.

    PubMed

    Tjandrawinata, R R; Vincent, V L; Hughes-Fulford, M

    1997-05-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  3. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  4. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  5. Long-Term Rescue of Retinal Structure and Function by Rhodopsin RNA Replacement with a Single Adeno-Associated Viral Vector in P23H RHO Transgenic Mice

    PubMed Central

    Mao, Haoyu; Gorbatyuk, Marina S.; Rossmiller, Brian; Hauswirth, William W.

    2012-01-01

    Abstract Many mutations in the human rhodopsin gene (RHO) cause autosomal dominant retinitis pigmentosa (ADRP). Our previous studies with a P23H (proline-23 substituted by histidine) RHO transgenic mouse model of ADRP demonstrated significant improvement of retinal function and preservation of retinal structure after transfer of wild-type rhodopsin by AAV. In this study we demonstrate long-term rescue of retinal structure and function by a single virus expressing both RHO replacement cDNA and small interfering RNA (siRNA) to digest mouse Rho and human P23H RHO mRNA. This combination should prevent overexpression of rhodopsin, which can be deleterious to photoreceptors. On the basis of the electroretinogram (ERG) response, degeneration of retinal function was arrested at 2 months postinjection, and the response was maintained at this level until termination at 9 months. Preservation of the ERG response in P23H RHO mice reflected survival of photoreceptors: both the outer nuclear layer (ONL) and outer segments of photoreceptor cells maintained the same thickness as in nontransgenic mice, whereas the control injected P23H eyes exhibited severe thinning of the ONL and outer segments. These findings suggest that delivery of both a modified cDNA and an siRNA by a single adeno-associated viral vector provided long-term rescue of ADRP in this model. Because the siRNA targets human as well as mouse rhodopsin mRNAs, the combination vector may be useful for the treatment of human disease. PMID:22289036

  6. Complex Effects of Deletions in the 5′ Untranslated Region of Primate Foamy Virus on Viral Gene Expression and RNA Packaging

    PubMed Central

    Heinkelein, Martin; Thurow, Jana; Dressler, Marco; Imrich, Horst; Neumann-Haefelin, Dieter; McClure, Myra O.; Rethwilm, Axel

    2000-01-01

    Due to various advantageous features there is current interest in retroviral vectors derived from primate foamy viruses (PFVs). Two PFV cis-acting sequences have been mapped in the 5′ region of the RNA (pre-)genome and in the 3′ pol genomic region. In order to genetically separate PFV packaging constructs from vector constructs, we investigated the effect of deletions in the 5′ untranslated region (UTR) of PFV packaging constructs and vectors on gene expression and RNA incorporation into viral particles. Our results indicate that the 5′ UTR serves different previously unknown functions. First, the R region of the long terminal repeat was found to be required for PFV gag gene expression. This regulation of gene expression appeared to be mainly posttranscriptional. Second, constructs with sequence deletions between the R region and the gag gene start codon packaged as much viral mRNA into particles as the undeleted construct, and RNA from such a 5′-UTR-deleted packaging construct was copackaged into vector-virus particles, together with vector RNA which was preferentialy packaged. Finally, in the U5 region a sequence was identified that was required to allow cleavage of the Gag precursor protein by the pol gene-encoded protease, suggesting a role of RNA in PFV particle formation. Taken together, the results indicate that complex interactions of the viral RNA, capsid, and polymerase proteins take place during PFV particle formation and that a clear separation of PFV vector and packaging construct sequences may be difficult to achieve. PMID:10708430

  7. Detection of Long Noncoding RNA Expression by Nonradioactive Northern Blots.

    PubMed

    Hu, Xiaowen; Feng, Yi; Hu, Zhongyi; Zhang, Youyou; Yuan, Chao-Xing; Xu, Xiaowei; Zhang, Lin

    2016-01-01

    With the advances in sequencing technology and transcriptome analysis, it is estimated that up to 75 % of the human genome is transcribed into RNAs. This finding prompted intensive investigations on the biological functions of noncoding RNAs and led to very exciting discoveries of microRNAs as important players in disease pathogenesis and therapeutic applications. Research on long noncoding RNAs (lncRNAs) is in its infancy, yet a broad spectrum of biological regulations has been attributed to lncRNAs. As a novel class of RNA transcripts, the expression level and splicing variants of lncRNAs are various. Northern blot analysis can help us learn about the identity, size, and abundance of lncRNAs. Here we describe how to use northern blot to determine lncRNA abundance and identify different splicing variants of a given lncRNA.

  8. Polyamidoamine-Decorated Nanodiamonds as a Hybrid Gene Delivery Vector and siRNA Structural Characterization at the Charged Interfaces.

    PubMed

    Lim, Dae Gon; Rajasekaran, Nirmal; Lee, Dukhee; Kim, Nam Ah; Jung, Hun Soon; Hong, Sungyoul; Shin, Young Kee; Kang, Eunah; Jeong, Seong Hoon

    2017-09-20

    Nanodiamonds have been discovered as a new exogenous material source in biomedical applications. As a new potent form of nanodiamond (ND), polyamidoamine-decorated nanodiamonds (PAMAM-NDs) were prepared for E7 or E6 oncoprotein-suppressing siRNA gene delivery for high risk human papillomavirus-induced cervical cancer, such as types 16 and 18. It is critical to understand the physicochemical properties of siRNA complexes immobilized on cationic solid ND surfaces in the aspect of biomolecular structural and conformational changes, as the new inert carbon material can be extended into the application of a gene delivery vector. A spectral study of siRNA/PAMAM-ND complexes using differential scanning calorimetry and circular dichroism spectroscopy proved that the hydrogen bonding and electrostatic interactions between siRNA and PAMAM-NDs decreased endothermic heat capacity. Moreover, siRNA/PAMAM-ND complexes showed low cell cytotoxicity and significant suppressing effects for forward target E6 and E7 oncogenic genes, proving functional and therapeutic efficacy. The cellular uptake of siRNA/PAMAM-ND complexes at 8 h was visualized by macropinocytes and direct endosomal escape of the siRNA/PAMAM-ND complexes. It is presumed that PAMAM-NDs provided a buffering cushion to adjust the pH and hard mechanical stress to escape endosomes. siRNA/PAMAM-ND complexes provide a potential organic/inorganic hybrid material source for gene delivery carriers.

  9. Developing adenoviral vectors encoding therapeutic genes toxic to host cells: comparing binary and single-inducible vectors expressing truncated E2F-1.

    PubMed

    Gomez-Gutierrez, Jorge G; Rao, Xiao-Mei; Garcia-Garcia, Aracely; Hao, Hongying; McMasters, Kelly M; Zhou, H Sam

    2010-02-20

    Adenoviral vectors are highly efficient at transferring genes into cells and are broadly used in cancer gene therapy. However, many therapeutic genes are toxic to vector host cells and thus inhibit vector production. The truncated form of E2F-1 (E2Ftr), which lacks the transactivation domain, can significantly induce cancer cell apoptosis, but is also toxic to HEK-293 cells and inhibits adenovirus replication. To overcome this, we have developed binary- and single-vector systems with a modified tetracycline-off inducible promoter to control E2Ftr expression. We compared several vectors and found that the structure of expression cassettes in vectors significantly affects E2Ftr expression. One construct expresses high levels of inducible E2Ftr and efficiently causes apoptotic cancer cell death by activation of caspase-3. The approach developed in this study may be applied in other viral vectors for encoding therapeutic genes that are toxic to their host cells and/or inhibit vector propagation.

  10. Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma.

    PubMed

    Maire, Georges; Martin, Jeff W; Yoshimoto, Maisa; Chilton-MacNeill, Susan; Zielenska, Maria; Squire, Jeremy A

    2011-03-01

    Osteosarcoma is an aggressive sarcoma of the bone characterized by a high level of genetic instability and recurrent DNA deletions and amplifications. This study assesses whether deregulation of microRNA (miRNA) expression is a post-transcriptional mechanism leading to gene expression changes in osteosarcoma. miRNA expression profiling was performed for 723 human miRNAs in 7 osteosarcoma tumors, and 38 miRNAs differentially expressed ≥10-fold (28 under- and 10 overexpressed) were identified. In most cases, observed changes in miRNA expression were DNA copy number-correlated. However, various mechanisms of alteration, including positional and/or epigenetic modifications, may have contributed to the expression change of 23 closely linked miRNAs in cytoband 14q32. To develop a comprehensive molecular genetic map of osteosarcoma, the miRNA profiles were integrated with previously published array comparative genomic hybridization DNA imbalance and mRNA gene expression profiles from a set of partially overlapping osteosarcoma tumor samples. Many of the predicted gene targets of differentially expressed miRNA are involved in intracellular signaling pathways important in osteosarcoma, including Notch, RAS/p21, MAPK, Wnt, and the Jun/FOS pathways. By integrating data on copy number variation with mRNA and miRNA expression profiles, we identified osteosarcoma-associated gene expression changes that are DNA copy number-correlated, DNA copy number-independent, mRNA-driven, and/or modulated by miRNA expression. These data collectively suggest that miRNAs provide a novel post-transcriptional mechanism for fine-tuning the expression of specific genes and pathways relevant to osteosarcoma. Thus, the miRNA identified in this manner may provide a starting point for experimentally modulating therapeutically relevant pathways in this tumor.

  11. Construction of a directional T vector for cloning PCR products and expression in Escherichia coli.

    PubMed

    Liang, Xiu-Yi; Liang, Zhi-Cheng; Zhang, Zhi; Zhou, Jiao-Jiao; Liu, Shi-Yu; Tian, Sheng-Li

    2015-05-01

    In order to clone PCR products and express them effectively in Escherichia coli, a directional cloning system was constructed by generating a T vector based on pQE-30Xa. The vector was prepared by inserting an XcmI cassette containing an endonuclease XcmI site, a kanamycin selective marker, a multiple-cloning-site (MCS) region and an opposite endonuclease XcmI site into the vector pQE-30Xa. The T vector pQE-T with single overhanging dT residues at both 3' ends was obtained by digesting with the restriction enzyme XcmI. For directional cloning, a BamHI site was introduced to the ends of the PCR products. A BamHI site was also located on the multiple cloning site of pQE-T. The PCR products were ligated with pQE-T. The directionally inserted recombinants were distinguished by using BamHI to digest the recombinants because there are two BamHI sites located on the both sides of PCR fragment. In order to identify the T-vector functions, the 14-3-3-ZsGreen and hRBP genes were amplified and a BamHI site was added to the ends of the genes to confirm this vector by ligation with pQE-T. Results showed that the 14-3-3-ZsGreen and hRBP were cloned to the vector pQE-T directly and corresponding proteins were successfully produced. It was here demonstrated that this directional vector is capable of gene cloning and is used to manipulate gene expression very easily. The methodology proposed here involves easy incorporation of the construct into other vectors in various hosts.

  12. Construction of non-invasively constitutive expression vectors using a metagenome-derived promoter for soluble expression of proteins.

    PubMed

    Cheong, Dea-Eun; Choi, Jong Hyun; Song, Jae Jun; Kim, Geun-Joong

    2013-06-01

    Expression of soluble and functional proteins has been one of the critical challenges to many aspects of synthetic biology, metabolic and protein engineering. Among the current methods for expression of target proteins, constitutive expression systems offer several advantages over inducible systems, which require a chemical or physical inducer. In a previous study, a G196 DNA fragment containing constitutive promoters was mined from the soil metagenome and evaluated for the expression of target proteins in the functional and soluble state. In this study, we further improved this system by constructing a series of constitutive expression vectors, pCEM (using the CEM promoter trimmed from G196), pCEMT (incorporating rrnB T1 and T2 terminator into the downstream region of MCS in pCEM) and pRCEMT (grafting the cis-acting region of pCEMT into a low-copy-number plasmid). Subsequently, genes encoding GFPuv, esterase 1767 and β-glucosidase were subcloned into the resulting vectors, and their expression level and solubility were compared with those of IPTG-inducible vector systems pQE30 and pTrc99A. The extent of homogeneity and the ratio of the soluble fraction in the pRCEMT vector were relatively higher, without any delay of growth rate, than that of the pQE30 or pTrc99A. These results indicate that new expression vectors with moderate constitutive function could more easily lead to a homogenous population of cells expressing target proteins than those with conventionally inducible promoters.

  13. Airway Epithelial miRNA Expression Is Altered in Asthma

    PubMed Central

    Solberg, Owen D.; Ostrin, Edwin J.; Love, Michael I.; Peng, Jeffrey C.; Bhakta, Nirav R.; Nguyen, Christine; Solon, Margaret; Nguyen, Cindy; Barczak, Andrea J.; Zlock, Lorna T.; Blagev, Denitza P.; Finkbeiner, Walter E.; Ansel, K. Mark; Arron, Joseph R.; Erle, David J.

    2012-01-01

    Rationale: Changes in airway epithelial cell differentiation, driven in part by IL-13, are important in asthma. Micro-RNAs (miRNAs) regulate cell differentiation in many systems and could contribute to epithelial abnormalities in asthma. Objectives: To determine whether airway epithelial miRNA expression is altered in asthma and identify IL-13–regulated miRNAs. Methods: We used miRNA microarrays to analyze bronchial epithelial brushings from 16 steroid-naive subjects with asthma before and after inhaled corticosteroids, 19 steroid-using subjects with asthma, and 12 healthy control subjects, and the effects of IL-13 and corticosteroids on cultured bronchial epithelial cells. We used quantitative polymerase chain reaction to confirm selected microarray results. Measurements and Main Results: Most (12 of 16) steroid-naive subjects with asthma had a markedly abnormal pattern of bronchial epithelial miRNA expression by microarray analysis. Compared with control subjects, 217 miRNAs were differentially expressed in steroid-naive subjects with asthma and 200 in steroid-using subjects with asthma (false discovery rate < 0.05). Treatment with inhaled corticosteroids had modest effects on miRNA expression in steroid-naive asthma, inducing a statistically significant (false discovery rate < 0.05) change for only nine miRNAs. qPCR analysis confirmed differential expression of 22 miRNAs that were highly differentially expressed by microarrays. IL-13 stimulation recapitulated changes in many differentially expressed miRNAs, including four members of the miR-34/449 family, and these changes in miR-34/449 family members were resistant to corticosteroids. Conclusions: Dramatic alterations of airway epithelial cell miRNA levels are a common feature of asthma. These alterations are only modestly corrected by inhaled corticosteroids. IL-13 effects may account for some of these alterations, including repression of miR-34/449 family members that have established roles in airway

  14. Brevibacillus expression system: host-vector system for efficient production of secretory proteins.

    PubMed

    Mizukami, Makoto; Hanagata, Hiroshi; Miyauchi, Akira

    2010-04-01

    Brevibacillus expression system is an effective bacterial expression system for secretory proteins. The host bacterium, Brevibacillus choshinensis, a gram-positive bacterium, has strong capacity to secrete a large amount of proteins (approximately 30 g/L), which mostly consist of cell wall protein. A host-vector system that utilizes such high expression capacity has been constructed for the production of secretory proteins and tested for various heterologous proteins, including cytokines, enzymes, antigens, and adjuvants.

  15. Production of human beta interferon in insect cells infected with a Baculovirus expression vector

    SciTech Connect

    Smith, G.E.; Summers, M.D.; Fraser, M.J.

    1983-12-01

    Autographa californica nuclear polyhedrosis virus (AcNPV) was used as an expression vector for human beta interferon. By using specially constructed plasmids, the protein-coding sequences for interferon were linked to the AcNPV promoter for the gene encoding for polyhedrin, the major occlusion protein. The interferon gene was inserted at various locations relative to the AcNPV polyhedrin transcriptional and translational signals, and the interferon-polyhedrin hybrid genes were transferred to infectious AcNPV expression vectors. Biologically active interferon was produced, and greater than 95% was secreted from infected insect cells. A maximum of ca. 5 x 10/sup 6/ U of interferon activity was produced by 10/sup 6/ infected cells. These results demonstrate that AcNPV should be suitable for use as a eucaryotic expression vector for the production of products from cloned genes.

  16. Rule-Based Design of Plant Expression Vectors Using GenoCAD.

    PubMed

    Coll, Anna; Wilson, Mandy L; Gruden, Kristina; Peccoud, Jean

    2015-01-01

    Plant synthetic biology requires software tools to assist on the design of complex multi-genic expression plasmids. Here a vector design strategy to express genes in plants is formalized and implemented as a grammar in GenoCAD, a Computer-Aided Design software for synthetic biology. It includes a library of plant biological parts organized in structural categories and a set of rules describing how to assemble these parts into large constructs. Rules developed here are organized and divided into three main subsections according to the aim of the final construct: protein localization studies, promoter analysis and protein-protein interaction experiments. The GenoCAD plant grammar guides the user through the design while allowing users to customize vectors according to their needs. Therefore the plant grammar implemented in GenoCAD will help plant biologists take advantage of methods from synthetic biology to design expression vectors supporting their research projects.

  17. Plant virus expression vectors set the stage as production platforms for biopharmaceutical proteins.

    PubMed

    Hefferon, Kathleen Laura

    2012-11-10

    Transgenic plants present enormous potential as a cost-effective and safe platform for large-scale production of vaccines and other therapeutic proteins. A number of different technologies are under development for the production of pharmaceutical proteins from plant tissues. One method used to express high levels of protein in plants involves the employment of plant virus expression vectors. Plant virus vectors have been designed to carry vaccine epitopes as well as full therapeutic proteins such as monoclonal antibodies in plant tissue both safely and effectively. Biopharmaceuticals such as these offer enormous potential on many levels, from providing relief to those who have little access to modern medicine, to playing an active role in the battle against cancer. This review describes the current design and status of plant virus expression vectors used as production platforms for biopharmaceutical proteins.

  18. A novel Bacillus subtilis expression vector based on bacteriophage phi 105.

    PubMed

    Gibson, R M; Errington, J

    1992-11-02

    We have developed a novel expression vector based on the bacteriophage phi 105, and employed it for the production of mutant beta-lactamases in Bacillus subtilis. Expression of the beta-lactamase-encoding gene was low when cloned into the prophage under the control of its own promoter. However, expression was considerably elevated when the gene was inserted into the phage genome in the same orientation as phage transcription. A defective phi 105 vector was constructed with a deletion removing a region needed for cell lysis, and with a mutation in the immunity repressor, rendering it temperature sensitive. Production of beta-lactamase could then be induced by a shift in temperature and without concomitant cell lysis, facilitating purification of the protein from the culture supernatant. This phage has considerable potential for development as a vector for controllable production of heterologous proteins in B. subtilis.

  19. Construction of a targeting adenoviral vector carrying AFP promoter for expressing EGFP gene in AFP producing hepatocarcinoma cell

    PubMed Central

    Shi, Yu-Jun; Gong, Jian-Ping; Liu, Chang-An; Li, Xu-Hong; Mei, Ying; Mi, Can; Huo, Yan-Ying

    2004-01-01

    AIM: To construct a recombinant adenoviral vector carrying AFP promoter and EGFP gene for specific expression of EGFP gene in AFP producing hepatocellular carcinoma (HCC) HepG2 cells. METHODS: Based on the Adeno-XTM expression system, the human immediate early cytomegalovirus promoter (PCMV IE) was removed from the plasmid, pshuttle, and replaced by a 0.3 kb α-fetoprotein (AFP) promoter that was synthesized by polymerase chain reaction (PCR). The enhanced green fluorescent protein (EGFP) gene was inserted into the multi-clone site (MCS), and then the recombinant adenovirus vector carrying the 0.3 kb AFP promoter and EGFP gene was constructed. Cells of a normal liver cell line (LO2), a hepatocarcinoma cell line (HepG2) and a cervical cancer cell line (HeLa) were transfected with the adenovirus. Northern blot and fluorescence microscopy were used to detect the expression of the EGFP gene at mRNA or protein level in three different cell lines. RESULTS: The 0.3 kb AFP promoter was synthesized through PCR from the human genome. The AFP promoter and EGFP gene were directly inserted into the plasmid pshuttle as confirmed by restriction digestion and DNA sequencing. Northern blot showed that EGFP gene was markedly transcribed in HepG2 cells, but only slightly in LO2 and HeLa cells. In addition, strong green fluorescence was observed in HepG2 cells under a fluorescence microscopy, but fluorescence was very weak LO2 and HeLa cells. CONCLUSION: Under control of the 0.3 kb human AFP promoter, the recombinant adenovirus vector carrying EGFP gene can be specially expressed in AFP-producing HepG2 cells. Therefore, this adenovirus system can be used as a novel, potent and specific tool for gene-targeting therapy for the AFP positive primary hepatocellular carcinoma. PMID:14716819

  20. Analysis of MicroRNA Expression in the Prepubertal Testis

    PubMed Central

    Kim, Jong; Milosavljevic, Aleksandar; Gunaratne, Preethi H.; Matzuk, Martin M.

    2010-01-01

    Only thirteen microRNAs are conserved between D. melanogaster and the mouse; however, conditional loss of miRNA function through mutation of Dicer causes defects in proliferation of premeiotic germ cells in both species. This highlights the potentially important, but uncharacterized, role of miRNAs during early spermatogenesis. The goal of this study was to characterize on postnatal day 7, 10, and 14 the content and editing of murine testicular miRNAs, which predominantly arise from spermatogonia and spermatocytes, in contrast to prior descriptions of miRNAs in the adult mouse testis which largely reflects the content of spermatids. Previous studies have shown miRNAs to be abundant in the mouse testis by postnatal day 14; however, through Next Generation Sequencing of testes from a B6;129 background we found abundant earlier expression of miRNAs and describe shifts in the miRNA signature during this period. We detected robust expression of miRNAs encoded on the X chromosome in postnatal day 14 testes, consistent with prior studies showing their resistance to meiotic sex chromosome inactivation. Unexpectedly, we also found a similar positional enrichment for most miRNAs on chromosome 2 at postnatal day 14 and for those on chromosome 12 at postnatal day 7. We quantified in vivo developmental changes in three types of miRNA variation including 5′ heterogeneity, editing, and 3′ nucleotide addition. We identified eleven putative novel pubertal testis miRNAs whose developmental expression suggests a possible role in early male germ cell development. These studies provide a foundation for interpretation of miRNA changes associated with testicular pathology and identification of novel components of the miRNA editing machinery in the testis. PMID:21206922

  1. Analysis of microRNA expression in the prepubertal testis.

    PubMed

    Buchold, Gregory M; Coarfa, Cristian; Kim, Jong; Milosavljevic, Aleksandar; Gunaratne, Preethi H; Matzuk, Martin M

    2010-12-29

    Only thirteen microRNAs are conserved between D. melanogaster and the mouse; however, conditional loss of miRNA function through mutation of Dicer causes defects in proliferation of premeiotic germ cells in both species. This highlights the potentially important, but uncharacterized, role of miRNAs during early spermatogenesis. The goal of this study was to characterize on postnatal day 7, 10, and 14 the content and editing of murine testicular miRNAs, which predominantly arise from spermatogonia and spermatocytes, in contrast to prior descriptions of miRNAs in the adult mouse testis which largely reflects the content of spermatids. Previous studies have shown miRNAs to be abundant in the mouse testis by postnatal day 14; however, through Next Generation Sequencing of testes from a B6;129 background we found abundant earlier expression of miRNAs and describe shifts in the miRNA signature during this period. We detected robust expression of miRNAs encoded on the X chromosome in postnatal day 14 testes, consistent with prior studies showing their resistance to meiotic sex chromosome inactivation. Unexpectedly, we also found a similar positional enrichment for most miRNAs on chromosome 2 at postnatal day 14 and for those on chromosome 12 at postnatal day 7. We quantified in vivo developmental changes in three types of miRNA variation including 5' heterogeneity, editing, and 3' nucleotide addition. We identified eleven putative novel pubertal testis miRNAs whose developmental expression suggests a possible role in early male germ cell development. These studies provide a foundation for interpretation of miRNA changes associated with testicular pathology and identification of novel components of the miRNA editing machinery in the testis.

  2. Comparative characterization and cytotoxicity study of TAT-peptide as potential vectors for siRNA and Dicer-substrate siRNA.

    PubMed

    Katas, Haliza; Abdul Ghafoor Raja, Maria; Ee, Lee Choy

    2014-11-01

    Recently, a newly discovered Dicer-substrate siRNA (DsiRNA) demonstrates higher potency in gene silencing than siRNA but both suffer from rapid degradation, poor cellular uptake and chemical instability. Therefore, Tat-peptide was exploited to protect and facilitate their delivery into cells. In this study, Tat-peptide was complexed with siRNA or DsiRNA through simple complexation. The physicochemical properties (particle size, surface charge and morphology) of the complexes formed were then characterized. The ability of Tat-peptide to carry and protect siRNA or DsiRNA was determined by UV-Vis spectrophotometry and serum protection assay, respectively. Cytotoxicity effect of these complexes was assessed in V79 cell line. siRNA-Tat complexes had particle size ranged from 186 ± 17.8 to 375 ± 8.3 nm with surface charge ranged from -9.3 ± 1.0 to +13.5 ± 1.0 mV, depending on the Tat-to-siRNA concentration ratio. As for DsiRNA-Tat complexes, the particle size was smaller than the ones complexed with siRNA, ranging from 176 ± 8.6 to 458 ± 14.7 nm. Their surface charge was in the range of +27.1 ± 3.6 to +38.1 ± 0.9 mV. Both oligonucleotide (ON) species bound strongly to Tat-peptide, forming stable complexes with loading efficiency of more than 86%. These complexes were relatively non cytotoxic as the cell viability of ∼90% was achieved. In conclusion, Tat-peptide has a great potential as siRNA and DsiRNA vector due to the formation of stable complexes with desirable physical characteristics, low toxicity and able to carry high amount of siRNA or DsiRNA.

  3. MicroRNA Expression Analysis of Centenarians and Rheumatoid Arthritis Patients Reveals a Common Expression Pattern.

    PubMed

    Balzano, Francesca; Deiana, Marta; Dei Giudici, Silvia; Oggiano, Annalisa; Pasella, Sara; Pinna, Sara; Mannu, Andrea; Deiana, Nicola; Porcu, Baingio; Masala, Antonio G E; Pileri, Piera V; Scognamillo, Fabrizio; Pala, Carlo; Zinellu, Angelo; Carru, Ciriaco; Deiana, Luca

    2017-01-01

    Micro-RNA (miRNA) are a family of small non-coding ribonucleic acids that inhibits post-transcriptionally the expression of their target messenger RNA (mRNA). We are interested in studying the involvement of miRNA in longevity and autoimmune diseases. In this study we compared the different expression of seven microRNAs between human plasma healthy controls, plasma samples of centenarians and samples from patients with rheumatoid arthritis. We used the Life Technologies' protocol to quantify seven miRNAs from 62 plasma samples: 20 healthy human controls, 14 centenarians, 28 patients with rheumatoid arthritis. TaqMan MicroRNA assays were used to analyze the expression profiles of miR-125b-5p, miR-425-5p, miR-200b5p, miR-200c-3p, miR-579-3p, miR-212-3p, miR-21-5p and miR-126-3p. The relative expression of mature miRNAs was analyzed using software REST. Our results show that miR-425-5p, miR-21 and miR-212 significantly decreased in centenarians and in patients with rheumatoid arthritis compared with controls. Furthermore in this work we highlight a connection between corticosteroid treatment and miRNAs expression.

  4. A suite of Gateway® compatible ternary expression vectors for functional analysis in Zymoseptoria tritici.

    PubMed

    Sidhu, Y S; Chaudhari, Y K; Usher, J; Cairns, T C; Csukai, M; Haynes, K

    2015-06-01

    Gene overexpression is a widely used functional genomics approach in fungal biology. However, to date it has not been established in Zymoseptoria tritici which is an important pathogen of wheat (Triticum species). Here we report a suite of Gateway® recombination compatible ternary expression vectors for Agrobacterium tumefaciens mediated transformation of Z. tritici. The suite of 32 vectors is based on a combination of four resistance markers for positive selection against glufosinate ammonium, geneticin, hygromycin and sulfonylurea; three constitutive Z. tritici promoters (pZtATUB, pZtGAPDH and pZtTEF) and a nitrogen responsive promoter (pZtNIA1) for controlled expression of the open reading frames. Half of the vectors facilitate expression of proteins tagged with C-terminal EGFP. All 32 vectors allow high frequency targeting of the overexpression cassette into the Ku70 locus and complement the Ku70 gene when transformed into a Z. tritici ku70 null strain, thus circumventing additional phenotypes that can arise from random integration. This suite of ternary expression vectors will be a useful tool for functional analysis through gene overexpression in Z. tritici.

  5. Design of a Retrovirus-Derived Vector for Expression and Transduction of Exogenous Genes in Mammalian Cells

    PubMed Central

    Perkins, Archibald S.; Kirschmeier, Paul T.; Gattoni-Celli, Sebastiano; Weinstein, I. Bernard

    1983-01-01

    We have developed a transfection vector for animal cells that contains long terminal repeat (LTR) sequences to promote expression. Plasmid p101/101, a derivative of plasmid pBR322 containing the complete Moloney murine sarcoma virus genome, was cut with restriction enzymes and religated so that both the 5′ and 3′ LTRs were retained and all but about 700 base pairs of the intervening viral sequences were removed. To test this vector, the Escherichia coli gene gpt was cloned into a unique PstI site, between the two LTRs, with guanine and cytosine tailing, a method that can be generalized for insertion of any DNA segment into this vector. When DNA from recombinant plasmids in which the gpt gene was inserted in the same transcriptional polarity as the LTR sequences was transfected onto murine or rat fibroblast cultures, we obtained a high yield of Gpt+ colonies. However, plasmid constructs with the gpt gene in the opposite polarity were virtually devoid of activity. With gpt in the proper orientation, restriction enzyme cuts within the LTRs or between the 5′ LTR and the gpt gene reduced transfection by more than 98%, whereas a cut between the gpt gene and the 3′ LTR gave an 80% reduction in activity. Thus, both 5′ and 3′ LTR sequences are essential for optimal gpt expression, although the 5′ LTR appears to play a more important role. When the LTR-gpt plasmid was transfected onto murine leukemia virus-infected mouse fibroblasts, we obtained evidence that RNA copies became pseudotyped into viral particles which could transfer the Gpt+ phenotype into rodent cells with extremely high efficiency. This vector should prove useful for high-efficiency transduction of a variety of genes in mammalian cells. Images PMID:6308426

  6. Extranuclear gene expression in yeast: evidence for a plasmid-encoded RNA polymerase of unique structure.

    PubMed Central

    Wilson, D W; Meacock, P A

    1988-01-01

    Strains of the yeast Kluyveromyces lactis that produce killer-toxin have been found to contain two linear dsDNA plasmids, k1 (8.9 Kb) and k2 (13.4 Kb). The four transcribed open reading frames of plasmid k1 contain no recognisable yeast nuclear expression signals. Moreover, a toxin subunit gene fused with the lacZ gene of Escherichia coli is not detectably expressed when introduced to K.lactis or Saccharomyces cerevisiae on a nuclear vector, even when native k1 and k2 are present in the cell. This and other evidence is consistent with the hypothesis that k1 and k2 reside in an extranuclear location, and do not utilise the nuclear RNA polymerases I, II or III for transcription of their genes. Sequencing of plasmid k2, which is thought to encode factors necessary for the maintenance or expression of k1, reveals an open reading frame predicted to encode a 974 amino acid polypeptide with homology to several DNA-directed RNA polymerases. We suggest that this is a component of a novel plasmid-specific extranuclear gene expression system. PMID:3138657

  7. Transient expression of Human papillomavirus type 16 L1 protein in Nicotiana benthamiana using an infectious tobamovirus vector.

    PubMed

    Varsani, Arvind; Williamson, Anna-Lise; Stewart, Debbie; Rybicki, Edward P

    2006-09-01

    A Tobacco mosaic virus (TMV)-derived vector was used to express a native Human papillomavirus type 16 (HPV-16) L1 gene in Nicotiana benthamiana by means of infectious in vitro RNA transcripts inoculated onto N. benthamiana plants. HPV-16 L1 protein expression was quantitated by enzyme-linked immunosorbent assays (ELISA) after concentration of the plant extract. We estimated that the L1 product yield was 20-37 microg/kg of fresh leaf material. The L1 protein in the concentrated extract was antigenically characterised using the neutralising and conformation-specific Mabs H16:V5 and H16:E70, which bound to the plant-produced protein. Particles observed by transmission electron microscopy were mainly capsomers but virus-like particles (VLPs) similar to those produced in other systems were also present. Immunisation of rabbits with the concentrated plant extract induced a weak immune response. This is the first report of the successful expression of an HPV L1 gene in plants using a plant virus vector.

  8. New BK virus episomal vector for complementary DNA expression in human cells.

    PubMed

    Grossi, M P; Caputo, A; Rimessi, P; Chiccoli, L; Balboni, P G; Barbanti-Brodano, G

    1988-01-01

    The properties of pRP-c, a new vector for complementary DNA (cDNA) expression, are described. The vector contains the early region and replication origin of BK virus (BKV), a human papovavirus. Due to the presence of these BKV sequences, pRP-c replicates in human cells allowing amplification of inserted cDNAs. The promoter, intron and polyadenylation region for cDNA expression are separated by unique restriction sites and can therefore be individually excised and substituted with different transcription signals. Coding sequences of the bacterial genes for chloramphenicol-acetyl transferase (CAT) or neomycin phosphotransferase (neo) were inserted into the cDNA cloning site of pRP-c and expressed in human cells in transient assays or stable clones. In both cases expression of the inserted sequences was significantly more efficient than by using the integration vectors pSV2CAT and pSV2neo, demonstrating the advantages of episomal expression vectors in human cells. Possible uses of pRP-c to express viral and cellular cDNAs in human cells are discussed.

  9. Insights into psychosis risk from leukocyte microRNA expression

    PubMed Central

    Jeffries, C D; Perkins, D O; Chandler, S D; Stark, T; Yeo, E; Addington, J; Bearden, C E; Cadenhead, K S; Cannon, T D; Cornblatt, B A; Mathalon, D H; McGlashan, T H; Seidman, L J; Walker, E F; Woods, S W; Glatt, S J; Tsuang, M

    2016-01-01

    Dysregulation of immune system functions has been implicated in schizophrenia, suggesting that immune cells may be involved in the development of the disorder. With the goal of a biomarker assay for psychosis risk, we performed small RNA sequencing on RNA isolated from circulating immune cells. We compared baseline microRNA (miRNA) expression for persons who were unaffected (n=27) or who, over a subsequent 2-year period, were at clinical high risk but did not progress to psychosis (n=37), or were at high risk and did progress to psychosis (n=30). A greedy algorithm process led to selection of five miRNAs that when summed with +1 weights distinguished progressed from nonprogressed subjects with an area under the receiver operating characteristic curve of 0.86. Of the five, miR-941 is human-specific with incompletely understood functions, but the other four are prominent in multiple immune system pathways. Three of those four are downregulated in progressed vs. nonprogressed subjects (with weight -1 in a classifier function that increases with risk); all three have also been independently reported as downregulated in monocytes from schizophrenia patients vs. unaffected subjects. Importantly, these findings passed stringent randomization tests that minimized the risk of conclusions arising by chance. Regarding miRNA–miRNA correlations over the three groups, progressed subjects were found to have much weaker miRNA orchestration than nonprogressed or unaffected subjects. If independently verified, the leukocytic miRNA biomarker assay might improve accuracy of psychosis high-risk assessments and eventually help rationalize preventative intervention decisions. PMID:27959328

  10. [Construction and identification of a prokaryotic expression vector for Zmp1 gene from Mycobacterium tuberculosis].

    PubMed

    Zhang, Jiming; Yang, Chun; He, Yonglin; Mu, Liuqing; Zhang, Chunyan; Fan, Yu; Xu, Lei

    2014-06-01

    To construct a prokaryotic expression plasmid for zinc-dependent metalloprotease-1 (Zmp1) gene from Mycobacterium tuberculosis and express the plasmid in E.coli. Zmp1 gene was amplified by PCR using the genome of Bacillus Calmette-Guerin vaccine (BCG) as a template and inserted into a multiple cloning site of prokaryotic expression vector pET32a(+). The constructed prokaryotic expression vector pET32a±Zmp1 was transformed into E.coli BL21(DE3), and the recombinant proteins were expressed via IPTG induction. Finally, the expression of Zmp1 protein was detected by SDS-PAGE and Western blotting. Restriction analysis and sequencing proved that the recombinant plasmid pET-32a±Zmp1 was constructed correctly. The relative molecular mass of the expressed recombinant protein was about 94 000 which was the same with that of presumed fusion protein. Recombinant Zmp1 protein showed a specific binding to monoclonal antibody with His tag. The prokaryotic expression vector for Zmp1 gene was successfully constructed and the Zmp1 fusion protein was effectively expressed in E. coli BL21(DE3).

  11. Scaffolds for Artificial miRNA Expression in Animal Cells.

    PubMed

    Calloni, Raquel; Bonatto, Diego

    2015-10-01

    Artificial miRNAs (amiRNAs) are molecules that have been developed to promote gene silencing in a similar manner to naturally occurring miRNAs. amiRNAs are generally constructed by replacing the mature miRNA sequence in the pre-miRNA stem-loop with a sequence targeting a gene of interest. These molecules offer an interesting alternative to silencing approaches that are based on shRNAs and siRNAs because they present the same efficiency as these options and are less cytotoxic. amiRNAs have mostly been applied to gene knockdown in plants; they have been examined to a lesser extent in animal cells. Therefore, this article reviews the amiRNAs that have been developed for animal cells and focuses on the miRNA scaffolds that can already be applied to construct the artificial counterparts, as well as on the different approaches that have been described to promote amiRNA expression and silencing efficiency. Furthermore, the availability of amiRNA libraries and other tools that can be used to design and construct these molecules is briefly discussed, along with an overview of the therapeutic applications for which amiRNAs have already been evaluated.

  12. Therapeutic and prophylactic applications of alphavirus vectors.

    PubMed

    Atkins, Gregory J; Fleeton, Marina N; Sheahan, Brian J

    2008-11-11

    Alphavirus vectors are high-level, transient expression vectors for therapeutic and prophylactic use. These positive-stranded RNA vectors, derived from Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus, multiply and are expressed in the cytoplasm of most vertebrate cells, including human cells. Part of the genome encoding the structural protein genes, which is amplified during a normal infection, is replaced by a transgene. Three types of vector have been developed: virus-like particles, layered DNA-RNA vectors and replication-competent vectors. Virus-like particles contain replicon RNA that is defective since it contains a cloned gene in place of the structural protein genes, and thus are able to undergo only one cycle of expression. They are produced by transfection of vector RNA, and helper RNAs encoding the structural proteins. Layered DNA-RNA vectors express the Semliki Forest virus replicon from a cDNA copy via a cytomegalovirus promoter. Replication-competent vectors contain a transgene in addition to the structural protein genes. Alphavirus vectors are used for three main applications: vaccine construction, therapy of central nervous system disease, and cancer therapy.

  13. A micro-RNA expression signature for human NAFLD progression.

    PubMed

    Guo, Yan; Xiong, Yanhua; Sheng, Quanghu; Zhao, Shilin; Wattacheril, Julia; Flynn, Charles Robb

    2016-10-01

    The spectrum of nonalcoholic fatty liver disease (NAFLD) describes disease conditions deteriorating from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) to cirrhosis (CIR) to hepatocellular carcinoma (HCC). From a molecular and biochemical perspective, our understanding of the etiology of this disease is limited by the broad spectrum of disease presentations, the lack of a thorough understanding of the factors contributing to disease susceptibility, and ethical concerns related to repeat sampling of the liver. To better understand the factors associated with disease progression, we investigated by next-generation RNA sequencing the altered expression of microRNAs (miRNAs) in liver biopsies of class III obese subjects (body mass index ≥40 kg/m(2)) biopsied at the time of elective bariatric surgery. Clinical characteristics and unbiased RNA expression profiles for 233 miRs, 313 transfer RNAs (tRNAs), and 392 miscellaneous small RNAs (snoRNAs, snRNAs, rRNAs) were compared among 36 liver biopsy specimens stratified by disease severity. The abundances of 3 miRNAs that were found to be differentially regulated (miR-301a-3p and miR-34a-5p increased and miR-375 decreased) with disease progression were validated by RT-PCR. No tRNAs or miscellaneous RNAs were found to be associated with disease severity. Similar patterns of increased miR-301a and decreased miR-375 expression were observed in 134 hepatocellular carcinoma (HCC) samples deposited in The Cancer Genome Atlas (TCGA). Our analytical results suggest that NAFLD severity is associated with a specific pattern of altered hepatic microRNA expression that may drive the hallmark of this disorder: altered lipid and carbohydrate metabolism. The three identified miRNAs can potentially be used as biomarkers to access the severity of NAFLD. The persistence of this miRNA expression pattern in an external validation cohort of HCC samples suggests that specific microRNA expression patterns may permit and

  14. Engineered Expression Vectors Significantly Enhanced the Production of 2-Keto-D-gluconic Acid by Gluconobacter oxidans.

    PubMed

    Shi, Yuan-yuan; Li, Ke-fei; Lin, Jin-ping; Yang, Sheng-li; Wei, Dong-zhi

    2015-06-10

    2-Keto-D-gluconic acid (2KGA), a precursor of the important food antioxidant erythorbic acid, can be produced by Gluconobacter oxidans. To genetically engineer G. oxidans for improved 2KGA production, six new expression vectors with increased copy numbers based on pBBR1MCS-5 were constructed via rational mutagenesis. The utility of the mutant vectors was demonstrated by the increased ga2dh mRNA abundance, enzyme activity, and 2KGA production when the ga2dh gene was overexpressed using these vectors. Among the obtained constructs, G. oxidans/pBBR-3510-ga2dh displayed the highest oxidative activity toward gluconic acid (GA). In a batch biotransformation process, the G. oxidans/pBBR-3510-ga2dh strain exhibited 2KGA productivity (0.63 g/g CWW/h) higher than that obtained using strain G. oxidans/pBBR-ga2dh (0.40 g/g CWW/h). When sufficient oxygen was supplied during the biotransformation, up to 480 g/L GA was exhausted in 45 h by the G. oxidans/pBBR-3510-ga2dh strain and approximately 486 g/L 2KGA was produced, generating the productivity of 0.54 g/g CWW/h.

  15. Quality Assurance of RNA Expression Profiling in Clinical Laboratories

    PubMed Central

    Tang, Weihua; Hu, Zhiyuan; Muallem, Hind; Gulley, Margaret L.

    2012-01-01

    RNA expression profiles are increasingly used to diagnose and classify disease, based on expression patterns of as many as several thousand RNAs. To ensure quality of expression profiling services in clinical settings, a standard operating procedure incorporates multiple quality indicators and controls, beginning with preanalytic specimen preparation and proceeding thorough analysis, interpretation, and reporting. Before testing, histopathological examination of each cellular specimen, along with optional cell enrichment procedures, ensures adequacy of the input tissue. Other tactics include endogenous controls to evaluate adequacy of RNA and exogenous or spiked controls to evaluate run- and patient-specific performance of the test system, respectively. Unique aspects of quality assurance for array-based tests include controls for the pertinent outcome signatures that often supersede controls for each individual analyte, built-in redundancy for critical analytes or biochemical pathways, and software-supported scrutiny of abundant data by a laboratory physician who interprets the findings in a manner facilitating appropriate medical intervention. Access to high-quality reagents, instruments, and software from commercial sources promotes standardization and adoption in clinical settings, once an assay is vetted in validation studies as being analytically sound and clinically useful. Careful attention to the well-honed principles of laboratory medicine, along with guidance from government and professional groups on strategies to preserve RNA and manage large data sets, promotes clinical-grade assay performance. PMID:22020152

  16. miRNA expression profile in multicellular breast cancer spheroids.

    PubMed

    Mandujano-Tinoco, Edna Ayerim; Garcia-Venzor, Alfredo; Muñoz-Galindo, Laura; Lizarraga-Sanchez, Floria; Favela-Orozco, Andrei; Chavez-Gutierrez, Edwin; Krötzsch, Edgar; Salgado, Rosa M; Melendez-Zajgla, Jorge; Maldonado, Vilma

    2017-10-01

    Multicellular Tumor Spheroids develop a heterogeneous micromilieu and different cell populations, thereby constituting a cancer model with intermediate characteristics between in vitro bi-dimensional cultures and in vivo tumors. Multicellular Tumor Spheroids also acquire tumor aggressiveness features due to transcription modulation of coding and non-coding RNA. Utilizing microarray analyses, we evaluated the microRNAs expression profile in MCF-7 breast cancer cells cultured as Multicellular Tumor Spheroids. The expression data was used to predict associated cellular and molecular functions using different software tools. The biological importance of two dysregulated miRNAs (miR-221-3p and miR-187) was studied by functional assays. Finally, the clinical relevance of these dysregulated miRNAs was explored using previously reported data. Thirty-three dysregulated microRNAs were found in MCF-7 Multicellular Tumor Spheroids. miRNA expression changes were closely linked with growth, proliferation, and cell development. miRNA-221-3p and miR-187 were implicated in the acquisition of migration/invasion capacities, sensitivity to the deprivation of growth factors, cell cycle phase regulation, and cell death. A panel of 5 miRNAs, including miR-187, showed a good predictive value in discriminating between low and high-risk groups of breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Gene Therapy for Neuropathic Pain by Silencing of TNF-α Expression with Lentiviral Vectors Targeting the Dorsal Root Ganglion in Mice

    PubMed Central

    Ogawa, Nobuhiro; Kawai, Hiromichi; Terashima, Tomoya; Kojima, Hideto; Oka, Kazuhiro; Chan, Lawrence; Maegawa, Hiroshi

    2014-01-01

    Neuropathic pain can be a debilitating condition. Many types of drugs that have been used to treat neuropathic pain have only limited efficacy. Recent studies indicate that pro-inflammatory mediators including tumor necrosis factor α (TNF-α) are involved in the pathogenesis of neuropathic pain. In the present study, we engineered a gene therapy strategy to relieve neuropathic pain by silencing TNF-α expression in the dorsal root ganglion (DRG) using lentiviral vectors expressing TNF short hairpin RNA1-4 (LV-TNF-shRNA1-4) in mice. First, based on its efficacy in silencing TNF-α in vitro, we selected shRNA3 to construct LV-TNF-shRNA3 for in vivo study. We used L5 spinal nerve transection (SNT) mice as a neuropathic pain model. These animals were found to display up-regulated mRNA expression of activating transcription factor 3 (ATF3) and neuropeptide Y (NPY), injury markers, and interleukin (IL)-6, an inflammatory cytokine in the ipsilateral L5 DRG. Injection of LV-TNF-shRNA3 onto the proximal transected site suppressed significantly the mRNA levels of ATF3, NPY and IL-6, reduced mechanical allodynia and neuronal cell death of DRG neurons. These results suggest that lentiviral-mediated silencing of TNF-α in DRG relieves neuropathic pain and reduces neuronal cell death, and may constitute a novel therapeutic option for neuropathic pain. PMID:24642694

  18. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties.

    PubMed Central

    Short, J M; Fernandez, J M; Sorge, J A; Huse, W D

    1988-01-01

    A lambda insertion type cDNA cloning vector, Lambda ZAP, has been constructed. In E. coli a phagemid, pBluescript SK(-), contained within the vector, can be excised by f1 or M13 helper phage. The excision process eliminates the need to subclone DNA inserts from the lambda phage into a plasmid by restriction digestion and ligation. This is possible because Lambda ZAP incorporates the signals for both initiation and termination of DNA synthesis from the f1 bacteriophage origin of replication (1). Six of 21 restriction sites in the excised pBluescript SK polylinker, contained within the NH2-portion of the lacZ gene, are unique in lambda ZAP. Coding sequences inserted into these restriction sites, in the appropriate reading frame, can be expressed from the lacZ promoter as fusion proteins. The features of this vector significantly increase the rate at which clones can be isolated and analyzed. The lambda ZAP vector was tested by the preparation of a chicken liver cDNA library and the isolation of actin clones by screening with oligonucleotide probes. Putative actin clones were excised from the lambda vector and identified by DNA sequencing. The ability of lambda ZAP to serve as a vector for the construction of cDNA expression libraries was determined by detecting fusion proteins from clones containing glucocerbrosidase cDNA's using rabbit IgG anti-glucocerbrosidase antibodies. Images PMID:2970625

  19. Gram negative shuttle BAC vector for heterologous expression of metagenomic libraries.

    PubMed

    Kakirde, Kavita S; Wild, Jadwiga; Godiska, Ronald; Mead, David A; Wiggins, Andrew G; Goodman, Robert M; Szybalski, Waclaw; Liles, Mark R

    2011-04-15

    Bacterial artificial chromosome (BAC) vectors enable stable cloning of large DNA fragments from single genomes or microbial assemblages. A novel shuttle BAC vector was constructed that permits replication of BAC clones in diverse Gram-negative species. The "Gram-negative shuttle BAC" vector (pGNS-BAC) uses the F replicon for stable single-copy replication in E. coli and the broad-host-range RK2 mini-replicon for high-copy replication in diverse Gram-negative bacteria. As with other BAC vectors containing the oriV origin, this vector is capable of an arabinose-inducible increase in plasmid copy number. Resistance to both gentamicin and chloramphenicol is encoded on pGNS-BAC, permitting selection for the plasmid in diverse bacterial species. The oriT from an IncP plasmid was cloned into pGNS-BAC to enable conjugal transfer, thereby allowing both electroporation and conjugation of pGNS-BAC DNA into bacterial hosts. A soil metagenomic library was constructed in pGNS-BAC-1 (the first version of the vector, lacking gentamicin resistance and oriT), and recombinant clones were demonstrated to replicate in diverse Gram-negative hosts, including Escherichia coli, Pseudomonas spp., Salmonella enterica, Serratia marcescens, Vibrio vulnificus and Enterobacter nimipressuralis. This shuttle BAC vector can be utilized to clone genomic DNA from diverse sources, and then transfer it into diverse Gram-negative bacterial species to facilitate heterologous expression of recombinant pathways.

  20. An episomal expression vector for screening mutant gene libraries in Pichia pastoris.

    PubMed

    Lee, Charles C; Williams, Tina G; Wong, Dominic W S; Robertson, George H

    2005-07-01

    Screening mutant gene libraries for isolating improved enzyme variants is a powerful technique that benefits from effective and reliable biological expression systems. Pichia pastoris is a very useful organism to express proteins that are inactive in other hosts such as Escherichia coli and Saccharomyces cerevisiae. However, most P. pastoris expression plasmids are designed to integrate into the host chromosome and hence are not as amenable to high-throughput screening projects. We have designed a P. pastoris expression vector, pBGP1, incorporating an autonomous replication sequence that allows the plasmid to exist as an episomal element. This vector contains the alpha-factor signal sequence to direct secretion of the mutant enzymes. Expression of the genes is driven by the constitutive GAP promoter, thus eliminating the need for timed or cell density-specific inductions. The pBGP1 plasmid was used to screen a xylanase gene library to isolate higher activity mutants.

  1. [Construction and characterization of a novel recombinant retroviral vector expressing mouse T-bet].

    PubMed

    Zhang, Xuejie; Zhang, Jianhua; Zhang, Wei; Guo, Jie; Zhou, Xuyu

    2014-10-01

    In order to study T-bet function in mouse cells, a novel retroviral vector expressing mouse T-bet and reporter gene Thy1.1 was constructed. Retrovirus particles were then produced by transfection of the recombinant retroviral plasmid into a packaging cell line Platinum-E. The recombinant retrovirus played considerable infection ability. T-bet expression was then identified by FACS after infection of CD4+ primary T cells from T-bet knockout mouse with recombinant retrovirus. To determine if exogenous expressing T-bet has normal function, we checked the expression level of T-bet target gene, Ifng. IFN-y expression was upregulated in the T-bet knockout T cells infected with recombinant retrovirus. In conclusion, we successfully constructed an effective mouse T-bet recombinant retroviral vector.

  2. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression.

    PubMed

    Diederichs, Sven; Haber, Daniel A

    2007-12-14

    MicroRNAs are small endogenous noncoding RNAs involved in posttranscriptional gene regulation. During microRNA biogenesis, Drosha and Dicer process the primary transcript (pri-miRNA) through a precursor hairpin (pre-miRNA) to the mature miRNA. The miRNA is incorporated into the RNA-Induced Silencing Complex (RISC) with Argonaute proteins, the effector molecules in RNA interference (RNAi). Here, we show that all Argonautes elevate mature miRNA expression posttranscriptionally, independent of RNase activity. Also, we identify a role for the RISC slicer Argonaute2 (Ago2) in cleaving the pre-miRNA to an additional processing intermediate, termed Ago2-cleaved precursor miRNA or ac-pre-miRNA. This endogenous, on-pathway intermediate results from cleavage of the pre-miRNA hairpin 12 nucleotides from its 3'-end. By analogy to siRNA processing, Ago2 cleavage may facilitate removal of the nicked passenger strand from RISC after maturation. The multiple roles of Argonautes in the RNAi effector phase and miRNA biogenesis and maturation suggest coordinate regulation of microRNA expression and function.

  3. Classification of e-government documents based on cooperative expression of word vectors

    NASA Astrophysics Data System (ADS)

    Fu, Qianqian; Liu, Hao; Wei, Zhiqiang

    2017-03-01

    The effective document classification is a powerful technique to deal with the huge amount of e-government documents automatically instead of accomplishing them manually. The word-to-vector (word2vec) model, which converts semantic word into low-dimensional vectors, could be successfully employed to classify the e-government documents. In this paper, we propose the cooperative expressions of word vector (Co-word-vector), whose multi-granularity of integration explores the possibility of modeling documents in the semantic space. Meanwhile, we also aim to improve the weighted continuous bag of words model based on word2vec model and distributed representation of topic-words based on LDA model. Furthermore, combining the two levels of word representation, performance result shows that our proposed method on the e-government document classification outperform than the traditional method.

  4. Optimization of radiation controlled gene expression by adenoviral vectors in vitro.

    PubMed

    Anton, Martina; Gomaa, Iman E O; von Lukowicz, Tobias; Molls, Michael; Gansbacher, Bernd; Würschmidt, Florian

    2005-07-01

    The radiation-inducible EGR-1-promoter has been used in different gene therapy approaches in order to enhance and locally restrict therapeutic efficacy. The aim of this study was to reduce nonspecific gene expression in the absence of irradiation (IR) in an adenoviral vector. Rat rhabdomyosarcoma R1H tumor cells were infected with adenoviral vectors expressing either EGFP or HSV-TK under control of the murine EGR-1 promoter/enhancer. Cells were irradiated at 0-6 Gy. Gene expression was determined by FACS-analysis (EGFP), or crystal violet staining (HSV-TK). The bovine growth hormone polyadenylation signal (BGH pA) was used as insulating sequence and was introduced upstream or upstream and downstream of the expression cassette. Infected R1H cells displayed IR dose-dependent EGFP expression. Cells treated with IR, AdEGR.TK and ganciclovir displayed a survival of 17.3% (6 Gy). However, significant gene expression was observed in the absence of IR with EGR.TK and EGR.EGFP constructs. Introduction of BGHpA upstream or upstream and downstream of expression cassette resulted in decreased nonspecific cytotoxicity by a factor of 1.6-2.3 with minor influence on the induced level of cytotoxicity. Introduction of insulating sequences in adenoviral vectors might allow tighter temporospatial control of gene expression by the radiation-inducible EGR-1 promoter.

  5. An Integrated Analysis of MicroRNA and mRNA Expression Profiles to Identify RNA Expression Signatures in Lambskin Hair Follicles in Hu Sheep

    PubMed Central

    Lv, Xiaoyang; Sun, Wei; Yin, Jinfeng; Ni, Rong; Su, Rui; Wang, Qingzeng; Gao, Wen; Bao, Jianjun; Yu, Jiarui; Wang, Lihong; Chen, Ling

    2016-01-01

    Wave patterns in lambskin hair follicles are an important factor determining the quality of sheep’s wool. Hair follicles in lambskin from Hu sheep, a breed unique to China, have 3 types of waves, designated as large, medium, and small. The quality of wool from small wave follicles is excellent, while the quality of large waves is considered poor. Because no molecular and biological studies on hair follicles of these sheep have been conducted to date, the molecular mechanisms underlying the formation of different wave patterns is currently unknown. The aim of this article was to screen the candidate microRNAs (miRNA) and genes for the development of hair follicles in Hu sheep. Two-day-old Hu lambs were selected from full-sib individuals that showed large, medium, and small waves. Integrated analysis of microRNA and mRNA expression profiles employed high-throughout sequencing technology. Approximately 13, 24, and 18 differentially expressed miRNAs were found between small and large waves, small and medium waves, and medium and large waves, respectively. A total of 54, 190, and 81 differentially expressed genes were found between small and large waves, small and medium waves, and medium and large waves, respectively, by RNA sequencing (RNA-seq) analysis. Differentially expressed genes were classified using gene ontology and pathway analyses. They were found to be mainly involved in cell differentiation, proliferation, apoptosis, growth, immune response, and ion transport, and were associated with MAPK and the Notch signaling pathway. Reverse transcription-polymerase chain reaction (RT-PCR) analyses of differentially-expressed miRNA and genes were consistent with sequencing results. Integrated analysis of miRNA and mRNA expression indicated that, compared to small waves, large waves included 4 downregulated miRNAs that had regulatory effects on 8 upregulated genes and 3 upregulated miRNAs, which in turn influenced 13 downregulated genes. Compared to small waves

  6. Expression of lacZ from the promoter of the Escherichia coli spc operon cloned into vectors carrying the W205 trp-lac fusion.

    PubMed

    Liang, S T; Dennis, P P; Bremer, H

    1998-12-01

    The expression of lacZ has been analyzed and compared in a series of promoter cloning vectors by measuring the amount of lacZ mRNA by hybridization and the amount of beta-galactosidase by standard enzymatic assay. Expression was driven by the promoter, Pspc, of the spc ribosomal protein operon. The vectors contained either the standard W205 trp-lac fusion with the trp operon transcription terminator, trpt, located in the lacZ leader sequence, or a deletion derivative that functionally inactivates trpt. In the presence of trpt, lacZ expression was temperature dependent so that increasing the growth temperature reduced the accumulation of lacZ mRNA and beta-galactosidase activity. The frequency of transcript termination at trpt was estimated to be near zero at 20 degreesC and at about 45% at 37 degreesC. The amount of Pspc-derived lacZ mRNA and the amount of beta-galactosidase produced per lacZ mRNA varied, depending on the mRNA 5' leader sequence between Pspc and lacZ. These results demonstrate that the quantitative assessment of promoter activities with promoter cloning vectors requires careful analysis and interpretation. One particular construct without trpt did not seem to contain fortuitous transcription or translation signals generated at the fusion junction. In this strain, lacZ expression from Pspc was compared at the enzyme activity and mRNA levels with a previously constructed strain in which lacZ was linked to the tandem P1 and P2 promoters of the rrnB operon. At any given growth rate, the different activities of beta-galactosidase in these two strains were found to reflect the same differences in their amounts of lacZ mRNA. Assuming that the promoter-lacZ fusions in these strains reflect the properties of the promoters in their normal chromosomal setting, it was possible to estimate the absolute transcription activity of Pspc and the relative translation efficiency of Pspc-lacZ mRNA at different growth rates. Transcription from the spc promoter was found

  7. Lentiviral Vectors Mediate Long-Term and High Efficiency Transgene Expression in HEK 293T cells

    PubMed Central

    Mao, Yingying; Yan, Renhe; Li, Andrew; Zhang, Yanling; Li, Jinlong; Du, Hongyan; Chen, Baihong; Wei, Wenjin; Zhang, Yi; Sumners, Colin; Zheng, Haifa; Li, Hongwei

    2015-01-01

    Objectives:Lentiviral vectors have been used successfully to rapidly produce decigram quantities of active recombinant proteins in mammalian cell lines. To optimize the protein production platform, the roles of Ubiquitous Chromatin Opening Element (UCOE), an insulator, and selected promoters were evaluated based on efficiency and stability of foreign gene expression mediated by lentiviral vectors. Methods: Five lentiviral vectors, pFIN-EF1α-GFP-2A-mCherH-WPRE containing EF1α promoter and HS4 insulator, p'HR.cppt.3'1.2kb-UCOE-SFFV-eGFP containing SFFV promoter and UCOE, pTYF-CMV(β-globin intron)-eGFP containing CMV promoter and β-globin intron, pTYF-CMV-eGFP containing CMV promoter, and pTYF-EF1α-eGFP with EF1α promoter were packaged, titered, and then transduced into 293T cells (1000 viral genomes per cell). The transduced cells were passaged once every three days at a ratio of 1:10. Expression level and stability of the foreign gene, green fluorescence protein (GFP), was evaluated using fluorescent microscopy and flow cytometry. Furthermore, we constructed a hepatitis C virus (HCV) E1 recombinant lentiviral vector, pLV-CMV-E1, driven by the CMV promoter. This vector was packaged and transduced into 293T cells, and the recombinant cell lines with stable expression of E1 protein were established by limiting dilution. Results:GFP expression in 293T cells transduced with the five lentiviral vectors peaked between passages 3 and 5 and persisted for more than 5 weeks. The expression was prolonged in the cells transduced with TYF-CMV (β-globin intron)-eGFP or TYF-CMV-eGFP, demonstrating less than a 50% decrease even at 9 weeks post transduction (p>0.05). The TYF-CMV-eGFP-transduced cells began with a higher level of GFP expression than other vectors did. The percentage of GFP positive cells for any of the five lentiviral vectors sustained over time. Moreover, the survival rates of all transfected cells exceeded 80% at both 5 and 9 weeks post transduction

  8. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System

    PubMed Central

    Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M.

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health. PMID:26458221

  9. A Narcissus mosaic viral vector system for protein expression and flavonoid production.

    PubMed

    Zhang, Huaibi; Wang, Lei; Hunter, Donald; Voogd, Charlotte; Joyce, Nigel; Davies, Kevin

    2013-07-13

    With the explosive numbers of sequences generated by next generation sequencing, the demand for high throughput screening to understand gene function has grown. Plant viral vectors have been widely used as tools in down-regulating plant gene expression. However, plant viral vectors can also express proteins in a very efficient manner and, therefore, can also serve as a valuable tool for characterizing proteins and their functions in metabolic pathways in planta. In this study, we have developed a Gateway®-based high throughput viral vector cloning system from Narcissus Mosaic Virus (NMV). Using the reporter genes of GFP and GUS, and the plant genes PAP1 (an R2R3 MYB which activates the anthocyanin pathway) and selenium-binding protein 1 (SeBP), we show that NMV vectors and the model plant Nicotiana benthamiana can be used for efficient protein expression, protein subcellular localization and secondary metabolite production. Our results suggest that not only can the plant viral vector system be employed for protein work but also can potentially be amenable to producing valuable secondary metabolites on a large scale, as the system does not require plant regeneration from seed or calli, which are stages where certain secondary metabolites can interfere with development.

  10. A Narcissus mosaic viral vector system for protein expression and flavonoid production

    PubMed Central

    2013-01-01

    Background With the explosive numbers of sequences generated by next generation sequencing, the demand for high throughput screening to understand gene function has grown. Plant viral vectors have been widely used as tools in down-regulating plant gene expression. However, plant viral vectors can also express proteins in a very efficient manner and, therefore, can also serve as a valuable tool for characterizing proteins and their functions in metabolic pathways in planta. Results In this study, we have developed a Gateway®-based high throughput viral vector cloning system from Narcissus Mosaic Virus (NMV). Using the reporter genes of GFP and GUS, and the plant genes PAP1 (an R2R3 MYB which activates the anthocyanin pathway) and selenium-binding protein 1 (SeBP), we show that NMV vectors and the model plant Nicotiana benthamiana can be used for efficient protein expression, protein subcellular localization and secondary metabolite production. Conclusions Our results suggest that not only can the plant viral vector system be employed for protein work but also can potentially be amenable to producing valuable secondary metabolites on a large scale, as the system does not require plant regeneration from seed or calli, which are stages where certain secondary metabolites can interfere with development. PMID:23849589

  11. Exploration of BAC versus plasmid expression vectors in recombinant CHO cells.

    PubMed

    Mader, Alexander; Prewein, Bernhard; Zboray, Katalin; Casanova, Emilio; Kunert, Renate

    2013-05-01

    Vector engineering approaches are commonly used to increase recombinant protein production in mammalian cells, and among various concepts, bacterial artificial chromosomes (BAC) have been proposed to serve as open chromatin regions to omit chromosome positional effects. For proof of concept, we developed stable recombinant Chinese hamster ovary (CHO) cell lines using different expression vector systems: the plasmid vectors contained the identical expression cassette as the BAC constructs. Two anti-HIV1 antibody derivates served as model proteins (3D6scFc and 2F5scFc) for generation of four stable recombinant CHO cell lines. The BAC-derived clones showed three to four times higher specific productivity, and therefore, gene copy numbers and transcript level were quantified. The active chromatin region provided with the BAC environment significantly improved transcription evidenced with both model proteins. Specific transcription was approximately six times higher from BAC-based vectors compared to the corresponding plasmid vectors for both single-chain fragment crystallizable (scFc) proteins. Our accurate investigations elucidated also differences between translational activities related to the protein of choice. 3D6scFc expressed specifically three to four times more product than 2F5scFc indicating that the product by itself also contributes to enhanced productivity. This study indicated comparable increase of transcription level for both scFc proteins when using the BAC system, but translation, maturation, and secretion of individual proteins seem to be protein specific.

  12. Baculoviral vector-mediated transient and stable transgene expression in human embryonic stem cells.

    PubMed

    Zeng, Jieming; Du, Juan; Zhao, Ying; Palanisamy, Nallasivam; Wang, Shu

    2007-04-01

    Human embryonic stem (hES) cells as a renewable cell source have great prospective applications in both developmental biology research and regenerative medicine. To realize these potentials, the development of effective and safe genetic manipulation methods in hES cells is an obvious demand. We report here that baculoviral vectors were able to transduce hES cells efficiently. In transient transduction experiments, a recombinant baculoviral vector equipped with a human elongation factor 1-alpha promoter and a woodchuck hepatitis post-transcriptional regulatory element transduced up to 80% of cells in hES cell clumps and embryoid bodies. For prolonged transgene expression, hybrid baculoviral vectors that have incorporated a rep gene and inverted terminal repeat sequences from adeno-associated virus were produced. These hybrid vectors yielded stable transgene expression during the prolonged undifferentiated proliferation of hES cells and after differentiation. Baculoviral transduction did not affect the normal growth, phenotype, and pluripotency of hES cells. Thus, baculoviral vectors suitable for both transient overexpression and long-term stable expression are an attractive option for genetic manipulation of hES cells.

  13. Parvovirus Expresses a Small Noncoding RNA That Plays an Essential Role in Virus Replication.

    PubMed

    Wang, Zekun; Shen, Weiran; Cheng, Fang; Deng, Xuefeng; Engelhardt, John F; Yan, Ziying; Qiu, Jianming

    2017-04-15

    Human bocavirus 1 (HBoV1) belongs to the species Primate bocaparvovirus of the genus Bocaparvovirus of the Parvoviridae family. HBoV1 causes acute respiratory tract infections in young children and has a selective tropism for the apical surface of well-differentiated human airway epithelia (HAE). In this study, we identified an additional HBoV1 gene, bocavirus-transcribed small noncoding RNA (BocaSR), within the 3' noncoding region (nucleotides [nt] 5199 to 5338) of the viral genome of positive sense. BocaSR is transcribed by RNA polymerase III (Pol III) from an intragenic promoter at levels similar to that of the capsid protein-coding mRNA and is essential for replication of the viral DNA in both transfected HEK293 and infected HAE cells. Mechanistically, we showed that BocaSR regulates the expression of HBoV1-encoded nonstructural proteins NS1, NS2, NS3, and NP1 but not NS4. BocaSR is similar to the adenovirus-associated type I (VAI) RNA in terms of both nucleotide sequence and secondary structure but differs from it in that its regulation of viral protein expression is independent of RNA-activated protein kinase (PKR) regulation. Notably, BocaSR accumulates in the viral DNA replication centers within the nucleus and likely plays a direct role in replication of the viral DNA. Our findings reveal BocaSR to be a novel viral noncoding RNA that coordinates the expression of viral proteins and regulates replication of viral DNA within the nucleus. Thus, BocaSR may be a target for antiviral therapies for HBoV and may also have utility in the production of recombinant HBoV vectors.IMPORTANCE Human bocavirus 1 (HBoV1) is pathogenic to humans, causing acute respiratory tract infections in young children. In this study, we identified a novel HBoV1 gene that lies in the 3' noncoding region of the viral positive-sense genome and is transcribed by RNA polymerase III into a noncoding RNA of 140 nt. This bocavirus-transcribed small RNA (BocaSR) diverges from both adenovirus

  14. Production of Transgenic Calves Expressing an shRNA Targeting Myostatin

    PubMed Central

    Tessanne, K; Golding, MC; Long, CR; Peoples, MD; Hannon, G; Westhusin, ME

    2012-01-01

    Myostatin (MSTN) is a well-known negative regulator of muscle growth. Animals that possess mutations within this gene display an enhanced muscling phenotype, a desirable agricultural trait. Increased neonatal morbidity is common, however, resulting from complications arising from the birth of offspring with increased fetal muscle mass. The objective of the current research was to generate an attenuated MSTN-null phenotype in a large-animal model using RNA interference to enhance muscle development without the detrimental consequences of an inactivating mutation. To this end, we identified a series of short interfering RNAs that demonstrated effective suppression of MSTN mRNA and protein levels. To produce transgenic offspring capable of stable MSTN suppression in vivo, a recombinant lentiviral vector expressing a short hairpin RNA (shRNA) targeting MSTN for silencing was introduced into bovine fetal fibroblasts. These cells were used as nucleus donors for somatic cell nuclear transfer (SCNT). Twenty blastocysts were transferred into seven recipient cows resulting in five pregnancies. One transgenic calf developed to term, but died following delivery by Caesarean-section. As an alternative strategy, microinjection of recombinant lentiviral particles into the perivitelline space of in vitro-produced bovine zygotes was utilized to produce 40 transgenic blastocysts that were transferred into 14 recipient cows, resulting in 7 pregnancies. Five transgenic calves were produced, of which three expressed the transgene. This is the first report of transgenic livestock produced by direct injection of a recombinant lentivirus, and expressing transgenes encoding shRNAs targeting an endogenous gene (myostatin) for silencing. PMID:22139943

  15. Globally increased ultraconserved noncoding RNA expression in pancreatic adenocarcinoma

    PubMed Central

    Lee, Eun Joo; Gusev, Yuriy; Allard, David; Sutaria, Dhruvitkumar S.; Badawi, Mohamed; Elgamal, Ola A.; Lerner, Megan R.; Brackett, Daniel J.; Calin, George A.; Schmittgen, Thomas D.

    2016-01-01

    Transcribed ultraconserved regions (T-UCRs) are a class of non-coding RNAs with 100% sequence conservation among human, rat and mouse genomes. T-UCRs are differentially expressed in several cancers, however their expression in pancreatic adenocarcinoma (PDAC) has not been studied. We used a qPCR array to profile all 481 T-UCRs in pancreatic cancer specimens, pancreatic cancer cell lines, during experimental pancreatic desmoplasia and in the pancreases of P48Cre/wt; KrasLSL-G12D/wt mice. Fourteen, 57 and 29% of the detectable T-UCRs were differentially expressed in the cell lines, human tumors and transgenic mouse pancreases, respectively. The vast majority of the differentially expressed T-UCRs had increased expression in the cancer. T-UCRs were monitored using an in vitro model of the desmoplastic reaction. Twenty-five % of the expressed T-UCRs were increased in the HPDE cells cultured on PANC-1 cellular matrix. UC.190, UC.233 and UC.270 were increased in all three human data sets. siRNA knockdown of each of these three T-UCRs reduced the proliferation of MIA PaCa-2 cells up to 60%. The expression pattern among many T-UCRs in the human and mouse pancreases closely correlated with one another, suggesting that groups of T-UCRs are co-activated in PDAC. Successful knockout of the transcription factor EGR1 in PANC-1 cells caused a reduction in the expression of a subset of T-UCRs suggesting that EGR1 may control T-UCR expression in PDAC. We report a global increase in expression of T-UCRs in both human and mouse PDAC. Commonalties in their expression pattern suggest a similar mechanism of transcriptional upregulation for T-UCRs in PDAC. PMID:27363020

  16. Broad-host-range plasmid vectors for gene expression in bacteria.

    PubMed

    Lale, Rahmi; Brautaset, Trygve; Valla, Svein

    2011-01-01

    This chapter provides methods and insights into the use of broad-host-range plasmid vectors useful for expression of genes in a variety of bacteria. The main focus is on IncQ, IncW, IncP, and pBBR1-based plasmids which have all been used for such applications. The specific design of each vector is adapted to its use, and here we describe, as an example, a protocol for construction (in Escherichia coli) of large insert DNA libraries in an IncP type vector and transfer of the library to the desired host. The genes of interest will in this case have to be expressed from their own promoters and the libraries will be screened by a method that best fits the functions of the gene or gene clusters searched for.

  17. RNAi-mediated Mortality of the Whitefly through Transgenic Expression of Double-stranded RNA Homologous to Acetylcholinesterase and Ecdysone Receptor in Tobacco Plants

    USDA-ARS?s Scientific Manuscript database

    The whitefly Bemisia tabaci (Genn.) is a pest and vector of plant viruses affecting plants worldwide. Using RNA interference (RNAi) to downregulate whitefly genes by expressing their homologous double stranded RNAs in plants has great potential for management of whiteflies to reduce plant virus dise...

  18. Improvement of in vivo expression of genes delivered by self-amplifying RNA using Vaccinia Virus immune evasion proteins.

    PubMed

    Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C; Erbar, Stephanie; Selmi, Abderaouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2017-09-06

    Among nucleic acid based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly high protein levels, can by produced from even minute amounts of transfected templates. It is an obstacle to full exploitation of this platform, though, that saRNA induces a strong innate host immune response. In transfected cells pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shut-down. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation we co-delivered the non-replicating mRNA encoding Vaccinia Virus immune evasion proteins E3, K3 and B18. Here we show that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of IFNβ upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, we achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, reduc