Science.gov

Sample records for rna interference inhibiting

  1. Inhibition of Henipavirus infection by RNA interference.

    PubMed

    Mungall, Bruce A; Schopman, Nick C T; Lambeth, Luke S; Doran, Tim J

    2008-12-01

    Nipah virus (NiV) and Hendra virus (HeV) are recently emerged zoonotic paramyxoviruses exclusively grouped within a new genus, Henipavirus. These viruses cause fatal disease in a wide range of species, including humans. Both NiV and HeV have continued to re-emerge sporadically in Bangladesh and Australia, respectively. There are currently no therapeutics or vaccines available to treat Henipavirus infection and both are classified as BSL4 pathogens. RNA interference (RNAi) is a process by which double-stranded RNA directs sequence-specific degradation of messenger RNA in animal and plant cells. Small interfering RNAs (siRNAs) mediate RNAi by inhibiting gene expression of homologous mRNA and our preliminary studies suggest RNAi may be a useful approach to developing novel therapies for these highly lethal pathogens. Eight NiV siRNA molecules (four L and four N gene specific), two HeV N gene specific, and two non-specific control siRNA molecules were designed and tested for their ability to inhibit a henipavirus minigenome replication system (which does not require the use of live virus) in addition to live virus infections in vitro. In the minigenome assay three out of the four siRNAs that targeted the L gene of NiV effectively inhibited replication. In contrast, only NiV N gene siRNAs were effective in reducing live NiV replication, suggesting inhibition of early, abundantly expressed gene transcripts may be more effective than later, less abundant transcripts. Additionally, some of the siRNAs effective against NiV infection were only partially effective inhibitors of HeV infection. An inverse correlation between the number of nucleotide mismatches and the efficacy of siRNA inhibition was observed. The demonstration that RNAi effectively inhibits henipavirus replication in vitro, is a novel approach and may provide an effective therapy for these highly lethal, zoonotic pathogens. PMID:18687361

  2. RNA Interference

    MedlinePlus

    ... NIGMS Home > Science Education > RNA Interference Fact Sheet RNA Interference Fact Sheet Tagline (Optional) Middle/Main Content Area What is RNA interference? RNA interference (RNAi) is a natural process ...

  3. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    SciTech Connect

    Wu, William Ka Kei; Lee, Chung Wa; Cho, Chi Hin; Chan, Francis Ka Leung; Yu, Jun; Sung, Joseph Jao Yiu

    2011-06-10

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G{sub 0}/G{sub 1}-phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D{sub 3} and p21{sup Waf1}, which stabilizes cyclin D/cdk4 complex for G{sub 1}-S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  4. Inhibition of Tulane Virus Replication in vitro with RNA Interference

    PubMed Central

    Fan, Qiang; Wei, Chao; Xia, Ming; Jiang, Xi

    2012-01-01

    RNA interference (RNAi), a conserved mechanism triggered by small interfering RNA (siRNA), has been used for suppressing gene expression through RNA degradation. The replication of caliciviruses (CVs) with RNAi was studied using the Tulane virus (TV) as a model. Five siRNAs targeting the non-structural, the major (VP1) and minor (VP2) structural genes of the TV were developed and the viruses were quantified using qPCR and TCID50 assay. Treatment of the cells with siRNA 4 hours before viral inoculation significantly reduced viral titer by up to 2.6 logs and dramatically decreased viral RNA copy numbers and viral titers 48 hours post infection in four of the five siRNAs studied. The results were confirmed by Western blot, in which the major structural protein VP1 was markedly reduced in both the cells and the culture medium. Two small protein bands of the S and P domains of the viral capsid protein were also detected in the cell lysates, although their role in viral replication remains unknown. Since the TV shares many biological properties with human noroviruses (NoVs), the successful demonstration of RNAi in TV replication would provide valuable information in control of acute gastroenteritis caused by human NoVs. PMID:23154881

  5. Inhibition of RNA interference and modulation of transposable element expression by cell death in Drosophila.

    PubMed

    Xie, Weiwu; Liang, Chengzhi; Birchler, James A

    2011-08-01

    RNA interference (RNAi) regulates gene expression by sequence-specific destruction of RNA. It acts as a defense mechanism against viruses and represses the expression of transposable elements (TEs) and some endogenous genes. We report that mutations and transgene constructs that condition cell death suppress RNA interference in adjacent cells in Drosophila melanogaster. The reversal of RNAi is effective for both the white (w) eye color gene and green fluorescent protein (GFP), indicating the generality of the inhibition. Antiapoptotic transgenes that reverse cell death will also reverse the inhibition of RNAi. Using GFP and a low level of cell death produced by a heat shock-head involution defective (hs-hid) transgene, the inhibition appears to occur by blocking the conversion of double-stranded RNA (dsRNA) to short interfering RNA (siRNA). We also demonstrate that the mus308 gene and endogenous transposable elements, which are both regularly silenced by RNAi, are increased in expression and accompanied by a reduced level of siRNA, when cell death occurs. The finding that chronic ectopic cell death affects RNAi is critical for an understanding of the application of the technique in basic and applied studies. These results also suggest that developmental perturbations, disease states, or environmental insults that cause ectopic cell death would alter transposon and gene expression patterns in the organism by the inhibition of small RNA silencing processes. PMID:21596898

  6. Potent and Specific Inhibition of Human Immunodeficiency Virus Type 1 Replication by RNA Interference

    PubMed Central

    Coburn, Glen A.; Cullen, Bryan R.

    2002-01-01

    Synthetic small interfering RNAs (siRNAs) have been shown to induce the degradation of specific mRNA targets in human cells by inducing RNA interference (RNAi). Here, we demonstrate that siRNA duplexes targeted against the essential Tat and Rev regulatory proteins encoded by human immunodeficiency virus type 1 (HIV-1) can specifically block Tat and Rev expression and function. More importantly, we show that these same siRNAs can effectively inhibit HIV-1 gene expression and replication in cell cultures, including those of human T-cell lines and primary lymphocytes. These observations demonstrate that RNAi can effectively block virus replication in human cells and raise the possibility that RNAi could provide an important innate protective response, particularly against viruses that express double-stranded RNAs as part of their replication cycle. PMID:12186906

  7. Inhibiting tumor growth by targeting liposomally encapsulated CDC20siRNA to tumor vasculature: therapeutic RNA interference.

    PubMed

    Majumder, Poulami; Bhunia, Sukanya; Bhattacharyya, Jayanta; Chaudhuri, Arabinda

    2014-04-28

    Many cancer cells over express CDC20 (Cell Division Cycle homologue 20), a key cell cycle regulator required for the completion of mitosis in organisms from yeast to human. A recent in vitro study showed that specific knockdown of CDC20 expression using CDC20siRNA can significantly inhibit growth of human pancreatic carcinoma cells. However, preclinical study aimed at demonstrating therapeutic potential of CDC20siRNA in inhibiting tumor growth has just begun. Using a syngeneic C57BL/6J mouse tumor model, herein we show that intravenous administration of a 19bp synthetic CDC20siRNA encapsulated within α5β1 integrin receptor selective liposomes of pegylated RGDK-lipopeptide inhibits melanoma tumor growth. Liposomally encapsulated CDC20siRNA was found to be efficient in silencing the expression of CDC20 in tumor and endothelial cells at both mRNA and protein levels under in vitro settings. Findings in the flow cytometric studies confirmed the presence of significantly enhanced populations of the G2/M phase in cells treated with liposomally encapsulated CDC20siRNA. Immunohistochemical staining of tumor cryosections from mice treated with liposomally encapsulated fluorescently labeled siRNAs revealed tumor vasculatures targeting capabilities of the present liposomal formulations. The colocalizations of the TUNEL and VE-cadherin positive cells in tumor cryosections are consistent with tumor growth inhibition being mediated via apoptosis of the tumor endothelial cells. In summary, the presently disclosed liposomal formulation of CDC20siRNA is a promising RNA interference tool for use in anti-angiogenic cancer therapy. PMID:24556418

  8. Efficient Inhibition of Human Glioma Development by RNA Interference-Mediated Silencing of PAK5

    PubMed Central

    Gu, Xuefeng; Wang, Ce; Wang, Xuefeng; Ma, Guoda; Li, You; Cui, Lili; Chen, Yanyan; Zhao, Bin; Li, Keshen

    2015-01-01

    Glioma is the most common type of primary intracranial tumor and is highly lethal due to its pathogenetic location, high invasiveness, and poor prognosis. Even combined surgery and chemoradiotherapy do not effectively rescue glioma patients. Molecular target therapy is considered a safe and promising therapy for glioma. The identification of a novel, effective target protein in gliomas is of great interest. We found that PAK5 was highly expressed in the tumor tissues of glioma patients and human glioma cell lines. We then used a lentivirus-delivered short hairpin RNA to stably silence PAK5 expression in glioma cells and explore its influence. The results showed that the inhibition of PAK5 reduced cell viability and delayed the cell cycle at the G0/G1 phase in the glioma cells with PAK5 high expression. In addition, silencing PAK5 expression in U87 cells weakened their colony formation ability and in vivo tumorigenesis ability. Further studies demonstrated that PAK5 inhibition led to an increase in cleaved caspase 3 and a decrease in β-catenin. In conclusion, our results suggest that the inhibition of PAK5 by RNA interference might efficiently suppress tumor development of glioma cells with PAK5 high expression. This finding provides a novel, promising therapeutic target for glioma treatment. PMID:25632266

  9. Slug down-regulation by RNA interference inhibits invasion growth in human esophageal squamous cell carcinoma

    PubMed Central

    2011-01-01

    Background Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive carcinomas of the gastrointestinal tract. We assessed the relevance of Slug in measuring the invasive potential of ESCC cells in vitro and in vivo in immunodeficient mice. Methods We utilized RNA interference to knockdown Slug gene expression, and effects on survival and invasive carcinoma were evaluated using a Boyden chamber transwell assay in vitro. We evaluated the effect of Slug siRNA-transfection and Slug cDNA-transfection on E-cadherin and Bcl-2 expression in ESCC cells. A pseudometastatic model of ESCC in immunodeficient mice was used to assess the effects of Slug siRNA transfection on tumor metastasis development. Results The EC109 cell line was transfected with Slug-siRNA to knockdown Slug expression. The TE13 cell line was transfected with Slug-cDNA to increase Slug expression. EC109 and TE13 cell lines were tested for the expression of apoptosis-related genes bcl-2 and metastasis-related gene E-cadherin identified previously as Slug targets. Bcl-2 expression was increased and E-cadherin was decreased in Slug siRNA-transfected EC109 cells. Bcl-2 expression was increased and E-cadherin was decreased in Slug cDNA-transfected TE13 cells. Invasion of Slug siRNA-transfected EC109 cells was reduced and apoptosis was increased whereas invasion was greater in Slug cDNA-transfected cells. Animals injected with Slug siRNA-transfected EC109 cells exhihited fewer seeded nodes and demonstrated more apoptosis. Conclusions Slug down-regulation promotes cell apoptosis and decreases invasion capability in vitro and in vivo. Slug inhibition may represent a novel strategy for treatment of metastatic ESCC. PMID:21599940

  10. Direct Pharmacological Inhibition of β-Catenin by RNA Interference in Tumors of Diverse Origin.

    PubMed

    Ganesh, Shanthi; Koser, Martin L; Cyr, Wendy A; Chopda, Girish R; Tao, Junyan; Shui, Xue; Ying, Bo; Chen, Dongyu; Pandya, Purva; Chipumuro, Edmond; Siddiquee, Zakir; Craig, Kevin; Lai, Chengjung; Dudek, Henryk; Monga, Satdarshan P; Wang, Weimin; Brown, Bob D; Abrams, Marc T

    2016-09-01

    The Wnt/β-catenin pathway is among the most frequently altered signaling networks in human cancers. Despite decades of preclinical and clinical research, efficient therapeutic targeting of Wnt/β-catenin has been elusive. RNA interference (RNAi) technology silences genes at the mRNA level and therefore can be applied to previously undruggable targets. Lipid nanoparticles (LNP) represent an elegant solution for the delivery of RNAi-triggering oligonucleotides to disease-relevant tissues, but have been mostly restricted to applications in the liver. In this study, we systematically tuned the composition of a prototype LNP to enable tumor-selective delivery of a Dicer-substrate siRNA (DsiRNA) targeting CTNNB1, the gene encoding β-catenin. This formulation, termed EnCore-R, demonstrated pharmacodynamic activity in subcutaneous human tumor xenografts, orthotopic patient-derived xenograft (PDX) tumors, disseminated hematopoietic tumors, genetically induced primary liver tumors, metastatic colorectal tumors, and murine metastatic melanoma. DsiRNA delivery was homogeneous in tumor sections, selective over normal liver and independent of apolipoprotein-E binding. Significant tumor growth inhibition was achieved in Wnt-dependent colorectal and hepatocellular carcinoma models, but not in Wnt-independent tumors. Finally, no evidence of accelerated blood clearance or sustained liver transaminase elevation was observed after repeated dosing in nonhuman primates. These data support further investigation to gain mechanistic insight, optimize dose regimens, and identify efficacious combinations with standard-of-care therapeutics. Mol Cancer Ther; 15(9); 2143-54. ©2016 AACR. PMID:27390343

  11. In vitro RNA interference targeting the DNA polymerase gene inhibits orf virus replication in primary ovine fetal turbinate cells.

    PubMed

    Wang, Gaili; He, Wenqi; Song, Deguang; Li, Jida; Bao, Yingfu; Lu, Rongguang; Bi, Jingying; Zhao, Kui; Gao, Feng

    2014-05-01

    Orf, which is caused by orf virus (ORFV), is distributed worldwide and is endemic in most sheep- and/or goat-raising countries. RNA interference (RNAi) pathways have emerged as important regulators of virus-host cell interactions. In this study, the specific effect of RNAi on the replication of ORFV was explored. The application of RNA interference (RNAi) inhibited the replication of ORFV in cell culture by targeting the ORF025 gene of ORFV, which encodes the viral polymerase. Three small interfering RNA (siRNA) (named siRNA704, siRNA1017 and siRNA1388) were prepared by in vitro transcription. The siRNAs were evaluated for antiviral activity against the ORFV Jilin isolate by the observation of cytopathic effects (CPE), virus titration, and real-time PCR. After 48 h of infection, siRNA704, siRNA1017 and siRNA1388 reduced virus titers by 59- to 199-fold and reduced the level of viral replication by 73-89 %. These results suggest that these three siRNAs can efficiently inhibit ORFV genome replication and infectious virus production. RNAi targeting of the DNA polymerase gene is therefore potentially useful for studying the replication of ORFV and may have potential therapeutic applications.

  12. Inhibition of avian metapneumovirus (AMPV) replication by RNA interference targeting nucleoprotein gene (N) in cultured cells.

    PubMed

    Ferreira, Helena Lage; Spilki, Fernando Rosado; de Almeida, Renata Servan; Santos, Márcia M A B; Arns, Clarice Weis

    2007-04-01

    Avian metapneumovirus (AMPV) is the primary causative agent of severe rhinotracheitis in turkeys. It is associated with swollen head syndrome in chickens and is the source of significant economic losses to animal food production. In this study, we designed specific short interfering RNA (siRNA) targeting the AMPV nucleoprotein (N) and fusion (F) genes. Three days post-virus infection, virus titration, real time RT-PCR, and RT-PCR assays were performed to verify the effect of siRNA in AMPV replication. A marked decrease in virus titers from transfected CER cells treated with siRNA/N was observed. Also, the production of N, F, and G mRNAs in AMPV was decreased. Results indicate that N-specific siRNA can inhibit virus replication. In future studies, a combination of siRNAs targeting the RNA polymerase complex may be used as a tool to study AMPV replication and/or antiviral therapy.

  13. Inhibition of acidic mammalian chitinase by RNA interference suppresses ovalbumin-sensitized allergic asthma.

    PubMed

    Yang, Ching-Jen; Liu, Yu-Kuo; Liu, Chao-Lin; Shen, Chia-Ning; Kuo, Ming-Ling; Su, Chien-Chang; Tseng, Ching-Ping; Yen, Tzu-Chen; Shen, Chia-Rui

    2009-12-01

    Asthma, a chronic helper T cell type 2-mediated inflammatory disease, is characterized by airway hyperresponsiveness and inflammation. Growing evidence suggests that increased expression of acidic mammalian chitinase (AMCase) may play a role in the pathogenesis of asthma. In the present study, we sought to develop an RNA interference approach to suppress allergic asthma in mice through silencing of AMCase expression. Mice sensitized with ovalbumin (OVA) were intratracheally administered a recombinant adeno-associated virus expressing short hairpin RNA (rAAV-shRNA) against AMCase. In OVA-sensitized mice, the development of allergic symptoms was significantly associated with elevated AMCase expression. After administration of rAAV-shRNA, there was a significant reduction of AMCase expression in the lung and in bronchoalveolar lavage fluid (BALF) cells of sensitized mice. Sensitized mice receiving rAAV-shRNA showed a significant improvement in allergic symptoms, including airway hyperresponsiveness (AHR), eosinophil infiltration, eotaxin, interleukin-13 secretion in BALF, and serum OVA-specific IgE level. Our data suggest the hyperexpression of AMCase in asthma can be suppressed by rAAV-mediated shRNA. Silencing AMCase expression by shRNA may be a promising therapeutic strategy in asthma.

  14. Establishment and evaluation of stable cell lines inhibiting foot-and-mouth disease virus by RNA interference.

    PubMed

    Gu, Yuan-Xing; Gao, Zong-Liang; Zhou, Jian-Hua; Zhang, Jie; Liu, Yong-Sheng

    2014-01-01

    RNA interference (RNAi) has been proved to be a powerful tool for foot-and-mouth disease virus FMDV inhibition in vitro and in vivo. We established five stable baby hamster kidney 21 cell lines (BHK-21) containing five short hairpin RNAs (shRNAs) expression plasmids (p3D1shRNA, p3D2shRNA, p3D3shRNA, p3D4shRNA, and p3D5shRNA) targeting 3D gene of FMDV. Immunofluorescent assay, virus titration, and real-time quantitative reverse transcription polymerase chain reaction (Q-RT-PCR) were conducted to detect the effect of shRNAs on FMDV replication. After challenged with FMDV of O/CHA/99, two cell lines (p3D1shRNA and p3D4shRNA) showed a significant reduction in the synthesis of viral protein and RNA, accompanied by a sharp decrease in viral yield, and the inhibition could last for at least thirty passages. We developed an efficient procedure for the establishment and evaluation of stable cell lines for anti-FMDV research based on RNAi technology, which can be a candidate method for anti-FMDV research.

  15. Potent inhibition of Hendra virus infection via RNA interference and poly I:C immune activation.

    PubMed

    McCaskill, Jana L; Marsh, Glenn A; Monaghan, Paul; Wang, Lin-Fa; Doran, Timothy; McMillan, Nigel A J

    2013-01-01

    Hendra virus (HeV) is a highly pathogenic zoonotic paramyxovirus that causes fatal disease in a wide range of species, including humans. HeV was first described in Australia in 1994, and has continued to re-emerge with increasing frequency. HeV is of significant concern to human health due to its high mortality rate, increasing emergence, absence of vaccines and limited post exposure therapies. Here we investigate the use of RNA interference (RNAi) based therapeutics targeting HeV in conjunction with the TLR3 agonist Poly I:C and show that they are potent inhibitors of HeV infection in vitro. We found that short interfering RNAs (siRNAs) targeting the abundantly expressed N, P and M genes of HeV caused over 95% reduction of HeV virus titre, protein and mRNA. Furthermore, we found that the combination of HeV targeting siRNA and Poly I:C had an additive effect in suppressing HeV infection. Our results demonstrate for the first time that RNAi and type I interferon stimulation are effective inhibitors of HeV replication in vitro and may provide an effective therapy for this highly lethal, zoonotic pathogen.

  16. Adenoviral-mediated RNA interference targeting URG11 inhibits growth of human hepatocellular carcinoma.

    PubMed

    Fan, Rui; Li, Xiaohua; Du, Wenqi; Zou, Xue; Du, Rui; Zhao, Lina; Luo, Guanhong; Mo, Ping; Xia, Lin; Pan, Yanglin; Shi, Yongquan; Lian, Zhaorui; Feitelson, Mark A; Nie, Yongzhan; Liu, Jie; Fan, Daiming

    2011-06-15

    Hepatocellular carcinoma (HCC) is the second most common malignancy in Asia, with a 5-year survival rate of less than 5% due to high recurrence after surgery and resistance to chemotherapy. A variety of therapeutic interventions to treat HCC, particularly gene therapy, have recently been investigated in tumor model systems to provide a more complete understanding of hepatocarcinogenesis and effectively design therapeutic strategies to treat this disease. In our study, we constructed an adenoviral vector expressing small interfering RNA (siRNA) targeting a newly discovered gene named upregulated gene 11 (URG11). We introduced this vector into HCC cells to investigate the role of URG11 in HCC carcinogenesis. We observed that upon URG11 knockdown, HCC cell proliferation was inhibited through downregulation of several G1-S phase related molecules including cyclin D1 and apoptosis was induced as a result of Bcl-2 downregulation. Besides decreased expression of cyclin D1, CDK4, pRb and Bcl-2, URG11 also suppressed several other proteins including CAPN9, which was identified by cDNA microarray and 2D gel electrophoresis. Moreover, Ad-URG11-siRNA significantly suppressed HCC tumor growth in nude mice. In conclusion, Ad-URG11-siRNA can significantly suppress HCC tumor growth in vitro and in vivo by silencing the URG11 gene, and the use of this vector for gene therapy may represent a novel strategy to treat human HCC.

  17. RNA interference mediated pten knock-down inhibit the formation of polycystic ovary.

    PubMed

    Ouyang, Jie-Xiu; Luo, Tao; Sun, Hui-Yun; Huang, Jian; Tang, Dan-Feng; Wu, Lei; Zheng, Yue-Hui; Zheng, Li-Ping

    2013-08-01

    Pten (phosphatase and tensin homolog deleted on chromosome 10), a kind of tumor suppressor gene, plays important roles in female reproductive system. But its expression and roles in the formation of polycystic ovaries are yet to be known. In this study, we constructed a rat model of PCOS using norethindrone and HCG injections and found the expressions of pten mRNA and PTEN protein increased significantly in the polycystic ovary tissue by immunohistochemistry, RT-PCR, and western blot. Furthermore, the results showed that in vivo ovaries could be effectively transfected by lentiviral vectors through the ovarian microinjection method and indicated that pten shRNA may inhibit the formation of polycystic ovaries by pten down-regulation. Our study provides new information regarding the role of PTEN in female reproductive disorders, such as polycystic ovary syndrome.

  18. Gene silencing of 4-1BB by RNA interference inhibits acute rejection in rats with liver transplantation.

    PubMed

    Shi, Yang; Hu, Shuqun; Song, Qingwei; Yu, Shengcai; Zhou, Xiaojun; Yin, Jun; Qin, Lei; Qian, Haixin

    2013-01-01

    The 4-1BB signal pathway plays a key role in organ transplantation tolerance. In this study, we have investigated the effect of gene silencing of 4-1BB by RNA interference (RNAi) on the acute rejection in rats with liver transplantation. The recombination vector of lentivirus that contains shRNA targeting the 4-1BB gene (LV-sh4-1BB) was constructed. The liver transplantation was performed using the two-cuff technique. Brown-Norway (BN) recipient rats were infected by the recombinant LVs. The results showed that gene silencing of 4-1BB by RNAi downregulated the 4-1BB gene expression of the splenic lymphocytes in vitro, and the splenic lymphocytes isolated from the rats with liver transplantation. LV-sh4-1BB decreased the plasma levels of liver injury markers including AST, ALT, and BIL and also decreased the level of plasma IL-2 and IFN- γ in recipient rats with liver transplantation. Lentivirus-mediated delivery of shRNA targeting 4-1BB gene prolonged the survival time of recipient and alleviated the injury of liver morphology in recipient rats with liver transplantation. In conclusion, our results demonstrate that gene silencing of 4-1BB by RNA interference inhibits the acute rejection in rats with liver transplantation.

  19. Targeting MACC1 by RNA interference inhibits proliferation and invasion of bladder urothelial carcinoma in T24 cells

    PubMed Central

    Xu, Song-Tao; Ding, Xiang; Ni, Qing-Feng; Jin, Shao-Ju

    2015-01-01

    The purpose of this article is to research on whether MACC1 can serve as a potential target for gene therapy of human bladder urothelial carcinoma (BUC). In this study, the expression of MACC1 gene was knocked down by RNA interference (RNAi) in the T24 cell (human BUC cell). The transcription level of MACC1 was detected by RT-PCR. Activities of MACC1, caspase-3, caspase-8, Bax and Met (mesenchymal-epithelial transition factor) protein were measured by Western blot. The cell proliferation and apoptosis were detected by MTT and flow cytometry. The cell’s invasion ability was performed on Matrigel transwell assay. We also detect MMP2 (metalloproteinase-2) proteins by ELISA. The results showed that the level of MACC1 mRNA and protein was significantly reduced after RNAi. MTT assay showed that the proliferation of T24 cell was decreased due to RNA interference. Apoptosis studies also showed that MACC1 gene interference in T24 loses its anti-apoptotic effects. The expression of apoptosis proteins (Caspase-3, Caspase-8 and Bax) increased significantly due to the MACC1 RNAi. The level of Met protein was down-regulated obviously due to RNAi. Transwell assay showed that invasion abilities of T24 cells were reduced obviously due to MACC1 RNAi. Further studies showed that the secretion of MMP-2 was reduced by RNAi. It can conclude that the ability of proliferation and invasion in T24 cells can be inhibited by RNAi-targeting MACC1. As a result, MACC1 can serve as a potential target for gene therapy of human bladder urothelial carcinoma. PMID:26339359

  20. Inhibition of Newcastle disease virus replication by RNA interference targeting the matrix protein gene in chicken embryo fibroblasts.

    PubMed

    Yin, Renfu; Ding, Zhuang; Liu, Xinxin; Mu, Lianzhi; Cong, Yanlong; Stoeger, Tobias

    2010-07-01

    Newcastle disease (ND) is an infectious viral disease of birds caused by the Newcastle disease virus (NDV), also known as avian paramyxovirus type 1 (AMPV-1), which leads to severe economic losses in the poultry industry worldwide. In this study, the application of RNA interference (RNAi) for inhibiting the replication of NDV in cell culture by targeting the viral matrix protein gene (M) is described. Two M-specific shRNA-expressing plasmid constructs, named pS(M641) and pS(M827), were evaluated for antiviral activity against the NDV strain NA-1 by cytopathic effects (CPE), virus titration and real-time RT-PCR. After 36h of infection, both pS(M641) and pS(M827) reduced virus titers by 79.4- and 31.6-fold, respectively, and they down-regulated mRNA expression levels of the matrix protein gene M by 94.6% and 84.8%, respectively, in chicken embryo fibroblast (CEF) cells, while only pS(M641) significantly decreased CPE, compared to the control group. These results indicated that the M gene 641 and 827 sites represent potential antiviral therapy targets, and RNAi targeting of the M gene could not only represent an effective treatment in Newcastle disease but also aid as a method for studying the replication of NDV.

  1. Inhibition of influenza A virus matrix and nonstructural gene expression using RNA interference.

    PubMed

    McMillen, Cynthia M; Beezhold, Donald H; Blachere, Francoise M; Othumpangat, Sreekumar; Kashon, Michael L; Noti, John D

    2016-10-01

    Influenza antiviral drugs that use protein inhibitors can lose their efficacy as resistant strains emerge. As an alternative strategy, we investigated the use of small interfering RNA molecules (siRNAs) by characterizing three siRNAs (M747, M776 and M832) targeting the influenza matrix 2 gene and three (NS570, NS595 and NS615) targeting the nonstructural protein 1 and 2 genes. We also re-examined two previously reported siRNAs, M331 and M950, which target the matrix 1 and 2 genes. Treatment with M331-, M776-, M832-, and M950-siRNAs attenuated influenza titer. M776-siRNA treated cells had 29.8% less infectious virus than cells treated with the previously characterized siRNA, M950. NS570-, NS595- and NS615-siRNAs reduced nonstructural protein 1 and 2 expression and enhanced type I interferon expression by 50%. Combination siRNA treatment attenuated 20.9% more infectious virus than single siRNA treatment. Our results suggest a potential use for these siRNAs as an effective anti-influenza virus therapy.

  2. [Progress of RNA interference mechanism].

    PubMed

    Yan, Fei; Cheng, Zhuo-Min

    2005-01-01

    RNA interference (RNAi) is a phenomenon that the double-stranded RNA (dsRNA) intermediates the degradation of complementary mRNA found in many organisms. This is a specifically mechanism involved in kinds of proteins to complete the interference function. Structure of siRNA affects which strand will be assembled into RISC. Another role of siRNA is directing RITS complex to bind with homologue chromosome, and then induces heterochromatinization. Although systemic silence induced by dsRNA is observed in Caenorhabditis elegans and plants, this progress is probably transmembrane protein-dependent, and mostly, the systemic silencing is controlled by multi-factors.

  3. Adeno-associated viruses serotype 2-mediated RNA interference efficiently inhibits rabies virus replication in vitro and in vivo.

    PubMed

    Wu, Hong-Xia; Wang, Hua-Lei; Guo, Xiao-Feng; Yang, Yu-Jiao; Ma, Jin-Zhu; Wang, Tie-Cheng; Gao, Yu-Wei; Zhao, Yong-Kun; Yang, Song-Tao; Xia, Xian-Zhu

    2013-10-01

    To investigate the potential of adeno-associated viruses serotype 2 (AAV2)-mediated RNA interference (RNAi) as an antiviral agent against rabies, recombinant AAV2 vectors expressing siRNA targeting the nucleoprotein (N) gene of rabies virus (RABV) (rAAV-N796) were constructed and evaluated. When NA cells pretreated with rAAV-N796 were challenged with RABV, there was a 37.8 ± 3.4% to 55.1 ± 5.3% reduction in RABV virus titer. When cells pre-challenged with RABV were treated with rAAV-N796, there was a 4.4 ± 1.4 to 28.8 ± 3.2% reduction in RABV virus titer. Relative quantification of RABV transcripts using real-time PCR and Western blot revealed that the knockdown of RABV-N gene transcripts was based on the rAAV-N796 inoculation titer. When any NA cells were treated with rAAV-N796 before or after challenged with RABV, significant reduction in virus titer was observed in both administrations. Mice treated intracerebrally with rAAV-N796 exhibited 50 ± 5.3 and 62.5 ± 4.7% protection when challenged intracerebrally or intramuscally, respectively, with lethal RABV. When mice treated intramuscularly with rAAV-N796 were challenged intramuscularly with lethal RABV, they exhibited 37.5 ± 3.7% protection. When mice were intracerebrally and intramuscularly with rAAV-N796 24 hr after exposure to RABV infection, they exhibited 25 ± 4.1% protection The N gene mRNA levels in the brains of challenged mice with three different administrations were reduced (55, 68, 32 and 25%, respectively). These results indicated that AAV2 vector-mediated siRNA delivery in vitro in NA cells inhibited RABV multiplication, inhibited RABV multiplication in vivo in the mice brain and imparted partial protection against lethal rabies. So, it may have a potential to be used as an alternative antiviral approach against rabies.

  4. Silencing of Gonad-Inhibiting Hormone Transcripts in Litopenaeus vannamei Females by use of the RNA Interference Technology.

    PubMed

    Feijó, Rubens G; Braga, André L; Lanes, Carlos F C; Figueiredo, Márcio A; Romano, Luis A; Klosterhoff, Marta C; Nery, Luis E M; Maggioni, Rodrigo; Wasielesky, Wilson; Marins, Luis F

    2016-02-01

    The method usually employed to stimulate gonadal maturation and spawning of captive shrimp involves unilateral eyestalk ablation, which results in the removal of the endocrine complex responsible for gonad-inhibiting hormone (GIH) synthesis and release. In the present study, RNAi technology was used to inhibit transcripts of GIH in Litopenaeus vannamei females. The effect of gene silencing on gonad development was assessed by analyzing the expression of GIH and vitellogenin, respectively, in the eyestalk and ovaries of L. vannamei females, following ablation or injection with dsRNA-GIH, dsRNA-IGSF4D (non-related dsRNA), or saline solution. Histological analyses were performed to determine the stage of gonadal development and to assess the diameter of oocytes throughout the experimental procedure. Only oocytes at pre-vitellogenesis and primary vitellogenesis stages were identified in females injected with dsRNA-GIH, dsRNA-IGSF4D, or saline solution. Oocytes at all developmental stages were observed in eyestalk-ablated females, with predominance of later stages, such as secondary vitellogenesis and mature oocytes. Despite achieving 64, 73, and 71% knockdown of eyestalk GIH mRNA levels by 15, 30, and 37 days post-injection (dpi), respectively, in dsRNA-GIH-injected females, the expected increase in ovary vitellogenin mRNA expression was only observed on the 37th dpi. This is the first report of the use of RNAi technology to develop an alternative method to eyestalk ablation in captive L. vannamei shrimps.

  5. RNA interference and antiviral therapy

    PubMed Central

    Ma, Yan; Chan, Chu-Yan; He, Ming-Liang

    2007-01-01

    RNA interference (RNAi) is an evolutionally conserved gene silencing mechanism present in a variety of eukaryotic species. RNAi uses short double-stranded RNA (dsRNA) to trigger degradation or translation repression of homologous RNA targets in a sequence-specific manner. This system can be induced effectively in vitro and in vivo by direct application of small interfering RNAs (siRNAs), or by expression of short hairpin RNA (shRNA) with non-viral and viral vectors. To date, RNAi has been extensively used as a novel and effective tool for functional genomic studies, and has displayed great potential in treating human diseases, including human genetic and acquired disorders such as cancer and viral infections. In the present review, we focus on the recent development in the use of RNAi in the prevention and treatment of viral infections. The mechanisms, strategies, hurdles and prospects of employing RNAi in the pharmaceutical industry are also discussed. PMID:17876887

  6. Multimodality Imaging of RNA Interference

    PubMed Central

    Nayak, Tapas R.; Krasteva, Lazura K.; Cai, Weibo

    2013-01-01

    The discovery of small interfering RNAs (siRNAs) and their potential to knock down virtually any gene of interest has ushered in a new era of RNA interference (RNAi). Clinical use of RNAi faces severe limitations due to inefficiency delivery of siRNA or short hairpin RNA (shRNA). Many molecular imaging techniques have been adopted in RNAi-related research for evaluation of siRNA/shRNA delivery, biodistribution, pharmacokinetics, and the therapeutic effect. In this review article, we summarize the current status of in vivo imaging of RNAi. The molecular imaging techniques that have been employed include bioluminescence/fluorescence imaging, magnetic resonance imaging/spectroscopy, positron emission tomography, single-photon emission computed tomography, and various combinations of these techniques. Further development of non-invasive imaging strategies for RNAi, not only focusing on the delivery of siRNA/shRNA but also the therapeutic efficacy, is critical for future clinical translation. Rigorous validation will be needed to confirm that biodistribution of the carrier is correlated with that of siRNA/shRNA, since imaging only detects the label (e.g. radioisotopes) but not the gene or carrier themselves. It is also essential to develop multimodality imaging approaches for realizing the full potential of therapeutic RNAi, as no single imaging modality may be sufficient to simultaneously monitor both the gene delivery and silencing effect of RNAi. PMID:23745567

  7. RNA interference targeting CD147 inhibits the invasion of human cervical squamous carcinoma cells by downregulating MMP-9.

    PubMed

    Fan, Xiaobin; Wu, Weiguang; Shi, Haixia; Han, Jianqiu

    2013-07-01

    Cervical squamous carcinoma is a highly invasive tumour that has a great capacity to metastasise. Extracellular matrix metalloproteinase inducer (EMMPRIN or CD147), a member of the immunoglobulin superfamily, is a widely distributed cell surface glycoprotein. It is highly expressed on malignant tumour cell surfaces, including human cervical squamous carcinoma. It also plays a critical role in the invasive and metastatic activity of malignant cells by stimulating the expression of matrix metalloproteinases (MMPs). The anti-invasive effect of small interfering RNA (siRNA) against CD147 on human cervical squamous carcinoma cells and its possible pathways has been investigated. The downregulation of CD147 by transfection with siRNA resulted in MMP-9 expression and decreased activity in the cervical squamous carcinoma cell line SiHa. In vitro analysis showed that the invasive capacity of SiHa cells decreased. Thus CD147 inhibition and subsequent MMP-9 deletion may have anti-tumour effects by inhibiting the invasiveness of human cervical squamous carcinoma cells.

  8. RNA interference targeting extracellular matrix metalloproteinase inducer (CD147) inhibits growth and increases chemosensitivity in human cervical cancer cells.

    PubMed

    Zhang, F; Zeng, Y L; Zhang, X G; Chen, W J; Yang, R; Li, S J

    2013-01-01

    Overexpression of extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN CD147) has been implicated in the growth and survival of malignant cells. However, its presence and role in cervical cancer cells has not been well-studied. In the present study, small interfering RNA (siRNA) was designed and synthesized to breakdown the expression of CD147. The present data demonstrated that 24 and 48 hours after transfecting CD147 siRNA, both the CD147 mRNA and protein expression were significantly inhibited as determined by quantitative real-time polymerase chain reaction (RT-PCR) and immunocytochemistry. Meanwhile, simultaneous silencing of CD147 resulted in distinctly increasing MMP-9, VEGF, and MDR-1. Further studies demonstrated decreased CD147 expression, resulted in G1/S phase transition with flow cytometry analysis, as well as the resistance of the cells to 5-FU. These findings provide further evidence that CD147 may become a promising therapeutic target for human cervical cancer and a potential chemotherapy-sensitizing agent.

  9. RNA interference-mediated knockdown of translationally controlled tumor protein induces apoptosis, and inhibits growth and invasion in glioma cells

    PubMed Central

    JIN, HUA; ZHANG, XUEXIN; SU, JUN; TENG, YUEQIU; REN, HUAN; YANG, LIZHUANG

    2015-01-01

    Translationally controlled tumor protein (TCTP) is a highly conserved, growth-associated and small molecule protein, which is highly expressed in various types of tumor cell. TCTP can promote the growth and suppress apoptosis of tumor cels. However, few studies have reported the effects of TCTP in gliomas. In the present study, a glioma cell line was established, which was stably transfected with TCTP short hairpin ribonucleic acid (shRNA), to investigate the impact of downregulated expression of TCTP on the proliferation, apoptosis and invasion of glioma cells. Western blot and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that TCTP shRNA effectively reduced the expression of TCTP in the U251 glioma cell line. MTT and colony formation assays revealed that downregulated expression of TCTP significantly inhibited glioma cell proliferation. Cell cycle analysis using flow cytometry revealed that the cells in the pRNA-H1.1-TCTP group were arrested in the G0/G1 phase of the cell cycle. Western blot analysis detected downregulated expression levels of cyclins, including Cyclin D1, Cyclin E and Cyclin B. Annexin V-fluorescein isothiocyanate/propidium iodide and Hoechst staining demonstrated that the apoptotic rate of the cells in the pRNA-H1.1-TCTP group was significantly higher than that of the cells in the pRNA-H1.1-control group, with upregulated expression levels of B-cell-associated X protein and cleaved-caspase-3 and downregulated expression of B-cell lmyphoma-2 in the apoptotic process. Wound healing and Transwell assays revealed that downregulated expression of TCTP significantly inhibited the migration and invasiveness of the glioma cells; and the expression levels and activities of matrix metalloproteinase (MMP)-2 and MMP-9 were also significantly affected. In conclusion, the present study demonstrated that downregulated expression of TCTP significantly inhibited proliferation and invasion, and induced apoptosis in the glioma

  10. Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells

    SciTech Connect

    Kuang, Chun-yan; Yu, Yang; Guo, Rui-wei; Qian, De-hui; Wang, Kui; Den, Meng-yang; Shi, Yan-kun; Huang, Lan

    2010-07-23

    Research highlights: {yields} STIM1 and TRPC1 are expressed in EPCs. {yields} Knockdown of STIM1 inhibits the proliferation, migration and SOCE of EPCs. {yields} TRPC1-SOC cooperates with STIM1 to mediate the SOCE of EPCs. -- Abstract: Knockdown of stromal interaction molecule 1 (STIM1) significantly suppresses neointima hyperplasia after vascular injury. Endothelial progenitor cells (EPCs) are the major source of cells that respond to endothelium repair and contribute to re-endothelialization by reducing neointima formation after vascular injury. We hypothesized that the effect of STIM1 on neointima hyperplasia inhibition is mediated through its effect on the biological properties of EPCs. In this study, we investigated the effects of STIM1 on the proliferation and migration of EPCs and examined the effect of STIM1 knockdown using cultured rat bone marrow-derived EPCs. STIM1 was expressed in EPCs, and knockdown of STIM1 by adenoviral delivery of small interfering RNA (siRNA) significantly suppressed the proliferation and migration of EPCs. Furthermore, STIM1 knockdown decreased store-operated channel entry 48 h after transfection. Replenishment with recombinant human STIM1 reversed the effects of STIM1 knockdown. Our data suggest that the store-operated transient receptor potential canonical 1 channel is involved in regulating the biological properties of EPCs through STIM1. STIM1 is a potent regulator of cell proliferation and migration in rat EPCs and may play an important role in the biological properties of EPCs.

  11. Silence of MACC1 expression by RNA interference inhibits proliferation, invasion and metastasis, and promotes apoptosis in U251 human malignant glioma cells

    PubMed Central

    SUN, LONGFENG; LI, GANG; DAI, BING; TAN, WEI; ZHAO, HONGWEN; LI, XIAOFEI; WANG, AIPING

    2015-01-01

    The overexpression of metastasis-associated in colon cancer 1 (MACC1) has been demonstrated not only in colon cancer, but also in various other types of cancer. Gliomas are the most common type of intracranial tumors, and recent studies have reported MACC1 to be involved in human glioma progression. The present study aimed to investigate the effects of MACC1 expression silencing in glioma cells using RNA interference, in order to determine the underlying biological mechanisms of glioma progression, including proliferation, apoptosis, invasion and metastasis. The expression levels of MACC1 were determined in various types of U251 glioma cells using western blot analyses. MACC1-specific short hairpin RNA (shRNA) was used to silence the expression of MACC1 in the U251 cells. The results obtained following MACC1 silencing demonstrated a significant inhibition of cell proliferation, invasion and migration, as well as a marked enhancement of apoptosis. MACC1 shRNA-induced inhibition of cell proliferation was observed by colony forming and MTT assays, and cell apoptosis was measured using flow cytometry and Hoechst staining. In addition, inhibition of cell invasion and migration was assessed using wound healing and transwell assays. Western blotting and fluorescence-activated cell sorting (FACS) revealed a G0/G1 phase cell cycle arrest regulated by cyclins D1 and E; cell apoptosis regulated by caspase-3; and cell invasion and migration regulated by matrix metalloproteinases 2 and 9, respectively. The present study demonstrated that the expression levels of MACC1 were significantly correlated with the biological processes underlying glioma cell proliferation, invasion and metastasis. Therefore, MACC1 may serve as a promising novel therapeutic target in human glioma. Notably, the inhibition of MACC1 expression by shRNA may prove to be an effective genetic therapeutic strategy for glioma treatment. PMID:26043756

  12. Targeting CRMP-4 by lentivirus-mediated RNA interference inhibits SW480 cell proliferation and colorectal cancer growth

    PubMed Central

    Chen, Si-Le; Cai, Shi-Rong; Zhang, Xin-Hua; Li, Wen-Feng; Zhai, Er-Tao; Peng, Jian-Jun; Wu, Hui; Chen, Chuang-Qi; Ma, Jin-Ping; Wang, Zhao; He, Yu-Long

    2016-01-01

    The aim of the present study was to investigate the expression level of collapsin response mediator protein 4 (CRMP-4) in human colorectal cancer (CRC) tissue and to evauluate its impact on SW480 cell proliferation, in addition to tumor growth in a mouse xenograft model. Clinical CRC tissue samples were collected to detect the CRMP-4 protein expression levels using western blot and immunohistochemistry analyses. A specific small interfering RNA sequence targeting the CRMP-4 gene (DPYSL3) was constructed and transfected into an SW480 cell line using a lentivirus vector to obtain a stable cell line with low expression of CRMP-4. The effectiveness of the interference was evaluated using western blot and reverse transcription-quantitative polymerase chain reaction, and the cell proliferation was determined using MTT and BrdU colorimetric methods. Tumor growth was assessed by subcutaneously inoculating the constructed cells into BALB/c nude mice. The protein expression levels of CRMP-4 were markedly increased in colon tumor tissue of the human samples. The proliferation of SW480 cells and the tumor growth rate in nude mice of the si-CPMR-4 group were evidently depressed compared with the si-scramble group. Thus, the present results suggest that CRMP-4 may be involved in the pathogenesis of CRC. PMID:27698685

  13. Targeting CRMP-4 by lentivirus-mediated RNA interference inhibits SW480 cell proliferation and colorectal cancer growth

    PubMed Central

    Chen, Si-Le; Cai, Shi-Rong; Zhang, Xin-Hua; Li, Wen-Feng; Zhai, Er-Tao; Peng, Jian-Jun; Wu, Hui; Chen, Chuang-Qi; Ma, Jin-Ping; Wang, Zhao; He, Yu-Long

    2016-01-01

    The aim of the present study was to investigate the expression level of collapsin response mediator protein 4 (CRMP-4) in human colorectal cancer (CRC) tissue and to evauluate its impact on SW480 cell proliferation, in addition to tumor growth in a mouse xenograft model. Clinical CRC tissue samples were collected to detect the CRMP-4 protein expression levels using western blot and immunohistochemistry analyses. A specific small interfering RNA sequence targeting the CRMP-4 gene (DPYSL3) was constructed and transfected into an SW480 cell line using a lentivirus vector to obtain a stable cell line with low expression of CRMP-4. The effectiveness of the interference was evaluated using western blot and reverse transcription-quantitative polymerase chain reaction, and the cell proliferation was determined using MTT and BrdU colorimetric methods. Tumor growth was assessed by subcutaneously inoculating the constructed cells into BALB/c nude mice. The protein expression levels of CRMP-4 were markedly increased in colon tumor tissue of the human samples. The proliferation of SW480 cells and the tumor growth rate in nude mice of the si-CPMR-4 group were evidently depressed compared with the si-scramble group. Thus, the present results suggest that CRMP-4 may be involved in the pathogenesis of CRC.

  14. Lentiviral-mediated RNA interference targeting stathmin1 gene in human gastric cancer cells inhibits proliferation in vitro and tumor growth in vivo

    PubMed Central

    2013-01-01

    Background Gastric cancer is highly aggressive disease. Despite advances in diagnosis and therapy, the prognosis is still poor. Various genetic and molecular alterations are found in gastric cancer that underlies the malignant transformation of gastric mucosa during the multistep process of gastric cancer pathogenesis. The detailed mechanism of the gastric cancer development remains uncertain. In present study we investigated the potential role of stathmin1 gene in gastric cancer tumorigenesis and examined the usefulness of RNA interference (RNAi) targeting stathmin1 as a form of gastric cancer treatment. Methods A lentiviral vector encoding a short hairpin RNA (shRNA) targeted against stathmin1 was constructed and transfected into the packaging cells HEK 293 T and the viral supernatant was collected to transfect MKN-45 cells. The transwell chemotaxis assay and the CCK-8 assay were used to measure migration and proliferation of tumor cells, respectively. Quantitative real-time PCR and western blotting were used to detect the expression levels of stathmin1. Results Lentivirus mediated RNAi effectively reduced stathmin1 expression in gastric cells. Significant decreases in stathmin1 mRNA and protein expression were detected in gastric cells carrying lentiviral stathmin-shRNA vector and also significantly inhibited the proliferation, migration in gastric cancer cells and tumorigenicity in Xenograft Animal Models. Conclusions Our findings suggest that stathmin1 overexpression is common in gastric cancer and may play a role in its pathogenesis. Lentivirus mediated RNAi effectively reduced stathmin1 expression in gastric cells. In summary, shRNA targeting of stathmin1 can effectively inhibits human gastric cancer cell growth in vivo and may be a potential therapeutic strategy for gastric cancer. PMID:24040910

  15. RNA Interference for Antimetastatic Therapy.

    PubMed

    Dahlmann, Mathias; Stein, Ulrike

    2015-01-01

    The suppression of genes involved in tumor progression, metastasis formation, or therapy resistance by RNA interference is a promising tool to treat cancer disease. Efficient delivery of interfering molecules and their sustained presence in tumor cells are required for therapeutic success. This chapter describes a method of systemic application of shRNA expression plasmid via tail vein injection in xenograft mice, causing the sustained reduction of target gene expression in the primary tumor. By choosing S100A4 as a metastasis driving target gene, this therapeutic approach restricted the formation of distant colorectal cancer metastases after intrasplenic transplantation. In vivo imaging of bioluminescent cancer cells allows the monitoring of tumor growth and metastasis formation over time. End point analysis of the trial included scoring of the metastatic burden and the quantification of target gene expression in the tumor. Average S100A4 expression in tumor tissues was reduced by 30 %, causing a 70 % decrease of liver metastases. PMID:26072407

  16. Artemether Combined with shRNA Interference of Vascular Cell Adhesion Molecule-1 Significantly Inhibited the Malignant Biological Behavior of Human Glioma Cells

    PubMed Central

    Wang, Ping; Xue, Yi-Xue; Yao, Yi-Long; Yu, Bo; Liu, Yun-Hui

    2013-01-01

    Artemether is the derivative extracted from Chinese traditional herb and originally used for malaria. Artemether also has potential therapeutic effects against tumors. Vascular cell adhesion molecule-1 (VCAM-1) is an important cell surface adhesion molecule associated with malignancy of gliomas. In this work, we investigated the role and mechanism of artemether combined with shRNA interference of VCAM-1 (shRNA-VCAM-1) on the migration, invasion and apoptosis of glioma cells. U87 human glioma cells were treated with artemether at various concentrations and shRNA interfering technology was employed to silence the expression of VCAM-1. Cell viability, migration, invasiveness and apoptosis were assessed with MTT, wound healing, Transwell and Annexin V-FITC/PI staining. The expression of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and phosphorylated Akt (p-Akt) was checked by Western blot assay. Results showed that artemether and shRNA-VCAM-1 not only significantly inhibited the migration, invasiveness and expression of MMP-2/9 and p-Akt, but also promoted the apoptosis of U87 cells. Combined treatment of both displayed the maximum inhibitory effects on the malignant biological behavior of glioma cells. Our work revealed the potential therapeutic effects of artemether and antiVCAM-1 in the treatments of gliomas. PMID:23593320

  17. Gene expression: RNA interference in adult mice

    NASA Astrophysics Data System (ADS)

    McCaffrey, Anton P.; Meuse, Leonard; Pham, Thu-Thao T.; Conklin, Douglas S.; Hannon, Gregory J.; Kay, Mark A.

    2002-07-01

    RNA interference is an evolutionarily conserved surveillance mechanism that responds to double-stranded RNA by sequence-specific silencing of homologous genes. Here we show that transgene expression can be suppressed in adult mice by synthetic small interfering RNAs and by small-hairpin RNAs transcribed in vivo from DNA templates. We also show the therapeutic potential of this technique by demonstrating effective targeting of a sequence from hepatitis C virus by RNA interference in vivo.

  18. Inhibition of the expression of aquaporin‑1 by RNA interference in pulmonary epithelial cells and its effects on water transport.

    PubMed

    Zhang, Qiuyue; Fu, Jianhua; Xue, Xindong

    2016-01-01

    In the present study, the effect of aquaporin‑1 (AQP1) on fluid transportation in pulmonary epithelial cells, and the role of AQP1 in alveolar fluid clearance were investigated to provide an experimental foundation to elucidate the pathogenesis of hyperoxic lung edema. An siRNA transfection technique was used to silence AQP1 in the A549 cell line. The transfected cells were randomized into a hyperoxia exposure and an air control group, with a negative control group set for each group. Cell volume was determined using flow cytometry, and Pf values were used to determine osmotic water permeability. Cell volume was found to be reduced in the AQP1‑silenced A549 cells, compared with the negative control group 72 h following air exposure. In addition, cell volume was reduced in the AQP1‑silenced A549 cells, compared with the negative control group 48 and 72 h following hyperoxia exposure. The osmotic water permeability of the AQP1‑silenced cells was reduced in the air control and hyperoxia exposure groups, compared with the negative control group 48 and 72 h following exposure. The volume and cell membrane osmotic water permeability of the A549 cells were reduced, compared with those in the control group following AQP1‑silencing, which indicated that the downregulation of AQP1 impedes extracellular to intracellular fluid transportation. Therefore, the disturbance in alveolar fluid clearance resulting from the downregulation of AQP1 following hyperoxia exposure may be one of the key mechanisms responsible for hyperoxic lung edema. PMID:26549133

  19. Inhibition of the expression of aquaporin‑1 by RNA interference in pulmonary epithelial cells and its effects on water transport.

    PubMed

    Zhang, Qiuyue; Fu, Jianhua; Xue, Xindong

    2016-01-01

    In the present study, the effect of aquaporin‑1 (AQP1) on fluid transportation in pulmonary epithelial cells, and the role of AQP1 in alveolar fluid clearance were investigated to provide an experimental foundation to elucidate the pathogenesis of hyperoxic lung edema. An siRNA transfection technique was used to silence AQP1 in the A549 cell line. The transfected cells were randomized into a hyperoxia exposure and an air control group, with a negative control group set for each group. Cell volume was determined using flow cytometry, and Pf values were used to determine osmotic water permeability. Cell volume was found to be reduced in the AQP1‑silenced A549 cells, compared with the negative control group 72 h following air exposure. In addition, cell volume was reduced in the AQP1‑silenced A549 cells, compared with the negative control group 48 and 72 h following hyperoxia exposure. The osmotic water permeability of the AQP1‑silenced cells was reduced in the air control and hyperoxia exposure groups, compared with the negative control group 48 and 72 h following exposure. The volume and cell membrane osmotic water permeability of the A549 cells were reduced, compared with those in the control group following AQP1‑silencing, which indicated that the downregulation of AQP1 impedes extracellular to intracellular fluid transportation. Therefore, the disturbance in alveolar fluid clearance resulting from the downregulation of AQP1 following hyperoxia exposure may be one of the key mechanisms responsible for hyperoxic lung edema.

  20. RNA Interference Silencing of Glycogen Synthase Kinase 3β Inhibites Tau Phosphorylation in Mice with Alzheimer Disease.

    PubMed

    Bian, Hong; Bian, Wei; Lin, Xiaoying; Ma, Zhaoyin; Chen, Wen; Pu, Ying

    2016-09-01

    To explore the effect of glycogen synthase kinase 3β (GSK-3β) silencing on Tau-5 phosphorylation in mice suffering Alzheimer disease (AD). GSK-3β was firstly silenced in human neuroblastoma SH-SY5Y cells using special lentivirus (LV) and the content of Tau (A-12), p-Tau (Ser396) and p-Tau (PHF-6) proteins. GSK-3β was also silenced in APP/PS1 mouse model of AD mice, which were divided into three groups (n = 10): AD, vehicle, and LV group. Ten C57 mice were used as control. The memory ability of mice was tested by square water maze, and the morphological changes of hippocampus and neuron death were analyzed by haematoxylin-eosin staining. Moreover, the levels of Tau and phosphorylated Tau (p-Tau) were detected by western blotting and immunohistochemistry, respectively. The lentivirus-mediated GSK-3β silencing system was successfully developed and silencing GSK-3β at the cellular level reduced Tau phosphorylation obviously. Moreover, GSK-3β silence significantly improved the memory ability of AD mice in LV group compared with AD group (P < 0.05) according to the latency periods and error numbers. As for the hippocampus morphology and neuron death, no significant change was observed between LV group and normal control. Immunohistochemical detection and western blotting revealed that the levels of Tau and p-Tau were significantly down-regulated after GSK-3β silence. Silencing GSK-3β may have a positive effect on inhibiting the pathologic progression of AD through down-regulating the level of p-Tau.

  1. Ethical Perspectives on RNA Interference Therapeutics

    PubMed Central

    Ebbesen, Mette; Jensen, Thomas G.; Andersen, Svend; Pedersen, Finn Skou

    2008-01-01

    RNA interference is a mechanism for controlling normal gene expression which has recently begun to be employed as a potential therapeutic agent for a wide range of disorders, including cancer, infectious diseases and metabolic disorders. Clinical trials with RNA interference have begun. However, challenges such as off-target effects, toxicity and safe delivery methods have to be overcome before RNA interference can be considered as a conventional drug. So, if RNA interference is to be used therapeutically, we should perform a risk-benefit analysis. It is ethically relevant to perform a risk-benefit analysis since ethical obligations about not inflicting harm and promoting good are generally accepted. But the ethical issues in RNA interference therapeutics not only include a risk-benefit analysis, but also considerations about respecting the autonomy of the patient and considerations about justice with regard to the inclusion criteria for participation in clinical trials and health care allocation. RNA interference is considered a new and promising therapeutic approach, but the ethical issues of this method have not been greatly discussed, so this article analyses these issues using the bioethical theory of principles of the American bioethicists, Tom L. Beauchamp and James F. Childress. PMID:18612370

  2. Generation of siRNA Nanosheets for Efficient RNA Interference

    NASA Astrophysics Data System (ADS)

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-04-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.

  3. Generation of siRNA Nanosheets for Efficient RNA Interference

    PubMed Central

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-01-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances. PMID:27120975

  4. Generation of siRNA Nanosheets for Efficient RNA Interference.

    PubMed

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-01-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances. PMID:27120975

  5. Transgenic inhibitors of RNA interference in Drosophila.

    PubMed

    Chou, Yu-ting; Tam, Bergin; Linay, Fabien; Lai, Eric C

    2007-01-01

    RNA silencing functions as an adaptive antiviral defense in both plants and animals. In turn, viruses commonly encode suppressors of RNA silencing, which enable them to mount productive infection. These inhibitor proteins may be exploited as reagents with which to probe mechanisms and functions of RNA silencing pathways. In this report, we describe transgenic Drosophila strains that allow inducible expression of the viral RNA silencing inhibitors Flock House virus-B2, Nodamura virus-B2, vaccinia virus-E3L, influenza A virus-NS1 and tombusvirus P19. Some of these, especially the B2 proteins, are effective transgenic inhibitors of double strand RNA-induced gene silencing in flies. On the other hand, none of them is effective against the Drosophila microRNA pathway. Their functional selectivity makes these viral silencing proteins useful reagents with which to study biological functions of the Drosophila RNA interference pathway.

  6. Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity.

    PubMed

    Menendez, Javier A; Vellon, Luciano; Colomer, Ramon; Lupu, Ruth

    2005-05-20

    combined treatment of C75 and Taxol inactivated the anti-apoptotic AKT (protein kinase B) kinase more than either agent alone, as evidenced by a synergistic down-regulation of AKT phosphorylation at its activating site Ser(473) without affecting AKT protein levels. To rule out a role for non-FAS C75-mediated effects, we finally used the potent and highly sequence-specific mechanism of RNA interference (RNAi) to block FAS-dependent signaling. Importantly, SK-Br3 and multi-drug resistant MCF-7/AdrR cells transiently transfected with sequence-specific double-stranded RNA oligonucleotides targeting FAS gene demonstrated hypersensitivity to Taxol-induced apoptotic cell death. Our findings establish for the first time that FAS blockade augments the cytotoxicity of anti-mitotic drug Taxol against breast cancer cells and that this chemosensitizing effect is schedule-dependent. We suggest that the alternate activation of both the pro-apoptotic p38 MAPK-p53 signaling and the cytoprotective MEK1/2 --> ERK1/2 cascade, as well as the inactivation of the anti-apoptotic AKT activity may explain, at least in part, the sequence-dependent enhancement of Taxol-induced cytotoxicity and apoptosis that follows inhibition of FAS activity in breast cancer cells. If chemically stable FAS inhibitors demonstrate systemic anticancer effects of FAS inhibition in vivo, these findings may render FAS as a valuable molecular target to enhance the efficacy of taxanes-based chemotherapy in human breast cancer.

  7. RNA interference-mediated antiviral defense in insects

    PubMed Central

    Gammon, Don B.; Mello, Craig C.

    2015-01-01

    Small interfering RNA (siRNA)-mediated RNA interference (RNAi) pathways are critical for the detection and inhibition of RNA virus replication in insects. Recent work has also implicated RNAi pathways in the establishment of persistent virus infections and in the control of DNA virus replication. Accumulating evidence suggests that diverse double-stranded RNAs produced by RNA and DNA viruses can trigger RNAi responses yet many viruses have evolved mechanisms to inhibit RNAi defenses. Therefore, an evolutionary arms race exists between host RNAi pathways and invading viral pathogens. Here we review recent advances in our knowledge of how insect RNAi pathways are elicited upon infection, the strategies used by viruses to counter these defenses, and discuss recent evidence implicating Piwi-interacting RNAs in antiviral defense. PMID:26034705

  8. RNA interference: genetic wand and genetic watchdog.

    PubMed

    Bosher, J M; Labouesse, M

    2000-02-01

    In many species, introduction of double-stranded RNA (dsRNA) induces potent and specific gene silencing, a phenomenon called RNA interference or RNAi. The apparently widespread nature of RNAi in eukaryotes, ranging from trypanosome to mouse, has sparked great interest from both applied and fundamental standpoints. Here we review the technical improvements being made to increase the experimental potential of this technique. We also discuss recent advances in uncovering the proteins that act during the RNAi process, discoveries that have revealed enticing links between transposition, transgene silencing and RNAi. PMID:10655601

  9. Silencing structural and nonstructural genes in baculovirus by RNA interference.

    PubMed

    Flores-Jasso, C Fabian; Valdes, Victor Julian; Sampieri, Alicia; Valadez-Graham, Viviana; Recillas-Targa, Felix; Vaca, Luis

    2004-06-01

    We review several aspects of RNAi and gene silencing with baculovirus. We show that the potency of RNAi in Spodoptera frugiperda (Sf21) insect cells correlates well with the efficiency of transfection of the siRNA. Using a fluorescein-labeled siRNA we found that the siRNA localized in areas surrounding the endoplasmic reticulum (ER). Both long (700 nucleotides long) and small ( approximately 25 nucleotides long) interfering RNAs were equally effective in initiating RNA interference (RNAi), and the duration of the interfering effect was indistinguishable. Even though RNAi in Sf21 cells is very effective, in vitro experiments show that these cells fragment the long dsRNA into siRNA poorly, when compared to HEK cells. Finally, we show that in vivo inhibition of baculovirus infection with dsRNA homologous to genes that are essential for baculovirus infectivity depends strongly on the amount of dsRNA used in the assays. Five hundred nanogram of dsRNA directly injected into the haemolymph of insects prevent animal death to over 95%. In control experiments, over 96% of insects not injected with dsRNA or injected with an irrelevant dsRNA died within a week. These results demonstrate the efficiency of dsRNA for in vivo prevention of a viral infection by virus that is very cytotoxic and lytic in animals.

  10. Symbiont-mediated RNA interference in insects.

    PubMed

    Whitten, Miranda M A; Facey, Paul D; Del Sol, Ricardo; Fernández-Martínez, Lorena T; Evans, Meirwyn C; Mitchell, Jacob J; Bodger, Owen G; Dyson, Paul J

    2016-02-24

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects. PMID:26911963

  11. Symbiont-mediated RNA interference in insects

    PubMed Central

    Whitten, Miranda M. A.; Facey, Paul D.; Del Sol, Ricardo; Fernández-Martínez, Lorena T.; Evans, Meirwyn C.; Mitchell, Jacob J.; Bodger, Owen G.

    2016-01-01

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects. PMID:26911963

  12. Selective knockdown of AT1 receptors by RNA interference inhibits Val5-ANG II endocytosis and NHE-3 expression in immortalized rabbit proximal tubule cells

    PubMed Central

    Li, Xiao C.; Zhuo, Jia L.

    2008-01-01

    Receptor-mediated endocytosis of extracellular ANG II has been suggested to play an important role in the regulation of proximal tubule cell (PTC) function. Using immortalized rabbit PTCs as an in vitro cell culture model, we tested the hypothesis that extracellular ANG II is taken up by PTCs through angiotensin type 1 receptor (AT1; or AT1a) receptor-mediated endocytosis and that inhibition of ANG II endocytosis using a selective AT1 receptor small-interfering RNA (siRNA; AT1R siRNA) or endocytotic inhibitors exerts a physiological effect on total and apical sodium and hydrogen exchanger isoform 3 (NHE-3) protein abundance. Western blots and live cell imaging with FITC-labeled ANG II confirmed that transfection of PTCs with a human specific AT1R siRNA for 48 h selectively knocked down AT1 receptor protein by 76 ± 5% (P < 0.01), whereas transfection with a scrambled siRNA had little effect. In nontransfected PTCs, exposure to extracellular ANG II (1 nM) for 60 min at 37°C increased intracellular ANG II accumulation by 67% (control: 566 ± 55 vs. ANG II: 943 ± 160 pg/mg protein, P < 0.05) and induced mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) 1/2 phosphorylation (163 ± 15% of control, P < 0.01). AT1R siRNA reduced ANG II endocytosis to a level similar to losartan, which blocks cell surface AT1 receptors (557 ± 37 pg/mg protein, P < 0.05 vs. ANG II), or to colchicine, which disrupts cytoskeleton microtubules (613 ± 12 pg/mg protein, P < 0.05 vs. ANG II). AT1R siRNA, losartan, and colchicine all attenuated ANG II-induced ERK1/2 activation and total cell lysate and apical membrane NHE-3 abundance. The scrambled siRNA had no effect on ANG II endocytosis, ERK1/2 activation, or NHE-3 expression. These results suggest that AT1 receptor-mediated endocytosis of extracellular ANG II may regulate proximal tubule sodium transport by increasing total and apical NHE-3 proteins. PMID:17428839

  13. RNA Interference: Biology, Mechanism, and Applications

    PubMed Central

    Agrawal, Neema; Dasaradhi, P. V. N.; Mohmmed, Asif; Malhotra, Pawan; Bhatnagar, Raj K.; Mukherjee, Sunil K.

    2003-01-01

    Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes. PMID:14665679

  14. RNA interference-mediated knockdown of astrocyte elevated gene-1 inhibits growth, induces apoptosis, and increases the chemosensitivity to 5-fluorouracil in renal cancer Caki-1 cells.

    PubMed

    Wang, Peng; Yin, Bo; Shan, Liping; Zhang, Hui; Cui, Jun; Zhang, Mo; Song, Yongsheng

    2014-12-31

    Astrocyte elevated gene-1 (AEG-1) is a recently discovered oncogene that has been reported to be highly expressed in various types of malignant tumors, including renal cell carcinoma. However, the precise role of AEG-1 in renal cancer cell proliferation and apoptosis has not been clarified. In this study, we transfected the renal cancer cell line Caki-1 with a plasmid expressing AEG-1 short hairpin RNA (shRNA) and obtained cell colonies with stable knockdown of AEG-1. We found that AEG-1 down-regulation inhibited cell proliferation and colony formation and arrested cell cycle progression at the sub-G1 and G0/G1 phase. Western blot analysis indicated that the expression of proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E were significantly reduced following AEG-1 down-regulation. In addition, AEG-1 knockdown led to the appearance of apoptotic bodies in renal cancer cells, and the ratio of apoptotic cells significantly increased. Expression of the anti-apoptotic factor Bcl-2 was dramatically reduced, whereas the pro-apoptotic factors Bax, caspase-3 and poly (ADP-ribose) polymerase (PARP) were significantly activated. Finally, AEG-1 knockdown in Caki-1 cells remarkably suppressed cell proliferation and enhanced cell apoptosis in response to 5-fluorouracil (5-FU) treatment, suggesting that AEG-1 inhibition sensitizes Caki-1 cells to 5-FU. Taken together, our data suggest that AEG-1 plays an important role in renal cancer formation and development and may be a potential target for future gene therapy for renal cell carcinoma.

  15. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155.

    PubMed

    Chung, Kwan-Ho; Hart, Christopher C; Al-Bassam, Sarmad; Avery, Adam; Taylor, Jennifer; Patel, Paresh D; Vojtek, Anne B; Turner, David L

    2006-01-01

    Vector-based RNA interference (RNAi) has emerged as a valuable tool for analysis of gene function. We have developed new RNA polymerase II expression vectors for RNAi, designated SIBR vectors, based upon the non-coding RNA BIC. BIC contains the miR-155 microRNA (miRNA) precursor, and we find that expression of a short region of the third exon of mouse BIC is sufficient to produce miR-155 in mammalian cells. The SIBR vectors use a modified miR-155 precursor stem-loop and flanking BIC sequences to express synthetic miRNAs complementary to target RNAs. Like RNA polymerase III driven short hairpin RNA vectors, the SIBR vectors efficiently reduce target mRNA and protein expression. The synthetic miRNAs can be expressed from an intron, allowing coexpression of a marker or other protein with the miRNAs. In addition, intronic expression of a synthetic miRNA from a two intron vector enhances RNAi. A SIBR vector can express two different miRNAs from a single transcript for effective inhibition of two different target mRNAs. Furthermore, at least eight tandem copies of a synthetic miRNA can be expressed in a polycistronic transcript to increase the inhibition of a target RNA. The SIBR vectors are flexible tools for a variety of RNAi applications.

  16. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155

    PubMed Central

    Chung, Kwan-Ho; Hart, Christopher C.; Al-Bassam, Sarmad; Avery, Adam; Taylor, Jennifer; Patel, Paresh D.; Vojtek, Anne B.; Turner, David L.

    2006-01-01

    Vector-based RNA interference (RNAi) has emerged as a valuable tool for analysis of gene function. We have developed new RNA polymerase II expression vectors for RNAi, designated SIBR vectors, based upon the non-coding RNA BIC. BIC contains the miR-155 microRNA (miRNA) precursor, and we find that expression of a short region of the third exon of mouse BIC is sufficient to produce miR-155 in mammalian cells. The SIBR vectors use a modified miR-155 precursor stem–loop and flanking BIC sequences to express synthetic miRNAs complementary to target RNAs. Like RNA polymerase III driven short hairpin RNA vectors, the SIBR vectors efficiently reduce target mRNA and protein expression. The synthetic miRNAs can be expressed from an intron, allowing coexpression of a marker or other protein with the miRNAs. In addition, intronic expression of a synthetic miRNA from a two intron vector enhances RNAi. A SIBR vector can express two different miRNAs from a single transcript for effective inhibition of two different target mRNAs. Furthermore, at least eight tandem copies of a synthetic miRNA can be expressed in a polycistronic transcript to increase the inhibition of a target RNA. The SIBR vectors are flexible tools for a variety of RNAi applications. PMID:16614444

  17. Internal guide RNA interactions interfere with Cas9-mediated cleavage.

    PubMed

    Thyme, Summer B; Akhmetova, Laila; Montague, Tessa G; Valen, Eivind; Schier, Alexander F

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9-gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9-gRNA complex formation. PMID:27282953

  18. Internal guide RNA interactions interfere with Cas9-mediated cleavage

    PubMed Central

    Thyme, Summer B.; Akhmetova, Laila; Montague, Tessa G.; Valen, Eivind; Schier, Alexander F.

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9–gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9–gRNA complex formation. PMID:27282953

  19. Hepatic RNA Interference: Delivery by Synthetic Vectors

    PubMed Central

    Haynes, Matthew; Huang, Leaf

    2013-01-01

    Though the pharmaceutical industry’s infatuation with the therapeutic potential of RNA interference (RNAi) technology has finally come down from its initial lofty levels,[1] hope is by no means lost for the once-burgeoning enterprise, as recent clinical trials are beginning to show efficacy in areas ranging from amyloidosis to hypercholesterolemia to muscular dystrophy. With such resurgence comes a more informed perspective on the needs of such therapeutics: a renewed focus on true RNA drug development, and a desire for enhanced site-specific delivery.[2] In this review, we will discuss the latter with regard to hepatic targeting by synthetic vectors, covering the implications of organ and cellular physiology on conjugate structure, particle morphology, and active targeting. In presenting efficacy in a variety of disease models, we emphasize as well the extraordinary degree to which synthetic formulation improves upon and coordinates efforts with oligonucleotide development. Such advances in the understanding of and the technology behind RNAi have the potential to finally stabilize the long-term prospects RNA therapeutic development. PMID:24678447

  20. [The Nobel Prize in Physiology or Medicine for 2006 for the discovery of RNA interference].

    PubMed

    Bernards, R

    2006-12-30

    The Nobel Prize in Physiology or Medicine has been awarded to Andrew Fire and Craig Mello for their discovery of RNA interference, i.e. the suppression of gene activity by double-stranded RNA. Small interfering RNA molecules (siRNAs), notably the antisense strand, recognise and inhibit the corresponding mRNA, thereby silencing the appropriate gene. RNA interference can help to determine the function of genes and may assist in the development ofnew drugs. It may also lead to a better understanding of mechanisms of drug resistance. In addition, siRNAs themselves may prove to have therapeutic value as many diseases are the result of alterations in gene activity.

  1. Role of RNA interference in plant improvement

    NASA Astrophysics Data System (ADS)

    Jagtap, Umesh Balkrishna; Gurav, Ranjit Gajanan; Bapat, Vishwas Anant

    2011-06-01

    Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.

  2. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells.

    PubMed

    Schnettler, Esther; Sterken, Mark G; Leung, Jason Y; Metz, Stefan W; Geertsema, Corinne; Goldbach, Rob W; Vlak, Just M; Kohl, Alain; Khromykh, Alexander A; Pijlman, Gorben P

    2012-12-01

    West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3'-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses. PMID:23035235

  3. Noncoding Flavivirus RNA Displays RNA Interference Suppressor Activity in Insect and Mammalian Cells

    PubMed Central

    Schnettler, Esther; Sterken, Mark G.; Leung, Jason Y.; Metz, Stefan W.; Geertsema, Corinne; Goldbach, Rob W.; Vlak, Just M.; Kohl, Alain

    2012-01-01

    West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3′-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses. PMID:23035235

  4. RNA interference targets arbovirus replication in Culicoides cells.

    PubMed

    Schnettler, Esther; Ratinier, Maxime; Watson, Mick; Shaw, Andrew E; McFarlane, Melanie; Varela, Mariana; Elliott, Richard M; Palmarini, Massimo; Kohl, Alain

    2013-03-01

    Arboviruses are transmitted to vertebrate hosts by biting arthropod vectors such as mosquitoes, ticks, and midges. These viruses replicate in both arthropods and vertebrates and are thus exposed to different antiviral responses in these organisms. RNA interference (RNAi) is a sequence-specific RNA degradation mechanism that has been shown to play a major role in the antiviral response against arboviruses in mosquitoes. Culicoides midges are important vectors of arboviruses, known to transmit pathogens of humans and livestock such as bluetongue virus (BTV) (Reoviridae), Oropouche virus (Bunyaviridae), and likely the recently discovered Schmallenberg virus (Bunyaviridae). In this study, we investigated whether Culicoides cells possess an antiviral RNAi response and whether this is effective against arboviruses, including those with double-stranded RNA (dsRNA) genomes, such as BTV. Using reporter gene-based assays, we established the presence of a functional RNAi response in Culicoides sonorensis-derived KC cells which is effective in inhibiting BTV infection. Sequencing of small RNAs from KC and Aedes aegypti-derived Aag2 cells infected with BTV or the unrelated Schmallenberg virus resulted in the production of virus-derived small interfering RNAs (viRNAs) of 21 nucleotides, similar to the viRNAs produced during arbovirus infections of mosquitoes. In addition, viRNA profiles strongly suggest that the BTV dsRNA genome is accessible to a Dicer-type nuclease. Thus, we show for the first time that midge cells target arbovirus replication by mounting an antiviral RNAi response mainly resembling that of other insect vectors of arboviruses.

  5. RNA Interference Targets Arbovirus Replication in Culicoides Cells

    PubMed Central

    Schnettler, Esther; Ratinier, Maxime; Watson, Mick; Shaw, Andrew E.; McFarlane, Melanie; Varela, Mariana; Elliott, Richard M.; Palmarini, Massimo

    2013-01-01

    Arboviruses are transmitted to vertebrate hosts by biting arthropod vectors such as mosquitoes, ticks, and midges. These viruses replicate in both arthropods and vertebrates and are thus exposed to different antiviral responses in these organisms. RNA interference (RNAi) is a sequence-specific RNA degradation mechanism that has been shown to play a major role in the antiviral response against arboviruses in mosquitoes. Culicoides midges are important vectors of arboviruses, known to transmit pathogens of humans and livestock such as bluetongue virus (BTV) (Reoviridae), Oropouche virus (Bunyaviridae), and likely the recently discovered Schmallenberg virus (Bunyaviridae). In this study, we investigated whether Culicoides cells possess an antiviral RNAi response and whether this is effective against arboviruses, including those with double-stranded RNA (dsRNA) genomes, such as BTV. Using reporter gene-based assays, we established the presence of a functional RNAi response in Culicoides sonorensis-derived KC cells which is effective in inhibiting BTV infection. Sequencing of small RNAs from KC and Aedes aegypti-derived Aag2 cells infected with BTV or the unrelated Schmallenberg virus resulted in the production of virus-derived small interfering RNAs (viRNAs) of 21 nucleotides, similar to the viRNAs produced during arbovirus infections of mosquitoes. In addition, viRNA profiles strongly suggest that the BTV dsRNA genome is accessible to a Dicer-type nuclease. Thus, we show for the first time that midge cells target arbovirus replication by mounting an antiviral RNAi response mainly resembling that of other insect vectors of arboviruses. PMID:23269795

  6. Testing the efficacy of RNA interference constructs in Aspergillus fumigatus.

    PubMed

    Henry, Christine; Mouyna, Isabelle; Latgé, Jean-Paul

    2007-04-01

    We recently developed a silencing vector in Aspergillus fumigatus which carries a hygromycin resistance marker and a transcriptional unit for hairpin RNA expression under the control of the inducible glucoamylase promoter (pGla) (Mouyna et al. in FEMS Microbiol Lett 237:317-324, 2004). We showed previously that this vector can be used for the RNA interference application of two genes ALB1 and FKS1 of which reduced mRNA levels occurred for both, with phenotypic consequences resembling disruptions of genes involved in melanin (ALB1) and beta(1-3)glucan biosynthesis (FKS1). We reported here the silencing of KRE6 and CRH1, two other genes putatively involved in cell wall biosynthesis using a similar construction under the control of the constitutive promoter glyceraldehyde-3-phosphate dehydrogenase (pgpdA). Silencing of the expression of these two genes was obtained. Further analysis of the transformants showed however that (1) a 100% loss of expression was never achieved for all genes tested (2) the vector used for RNAi is lost or modified over successive transfers resulting in an inhibition of the silencing. These disadvantages of RNAi indicate that classical gene disruption by gene replacement remains the most efficient method for a molecular analysis of gene function in A. fumigatus. PMID:17273823

  7. Triggering of RNA Interference with RNA–RNA, RNA–DNA, and DNA–RNA Nanoparticles

    PubMed Central

    2015-01-01

    Control over cellular delivery of different functionalities and their synchronized activation is a challenging task. We report several RNA and RNA/DNA-based nanoparticles designed to conditionally activate the RNA interference in various human cells. These nanoparticles allow precise control over their formulation, stability in blood serum, and activation of multiple functionalities. Importantly, interferon and pro-inflammatory cytokine activation assays indicate the significantly lower responses for DNA nanoparticles compared to the RNA counterparts, suggesting greater potential of these molecules for therapeutic use. PMID:25521794

  8. Role of RNA Interference (RNAi) in the Moss Physcomitrella patens

    PubMed Central

    Arif, Muhammad Asif; Frank, Wolfgang; Khraiwesh, Basel

    2013-01-01

    RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species. PMID:23344055

  9. Bringing RNA Interference (RNAi) into the High School Classroom

    ERIC Educational Resources Information Center

    Sengupta, Sibani

    2013-01-01

    RNA interference (abbreviated RNAi) is a relatively new discovery in the field of mechanisms that serve to regulate gene expression (a.k.a. protein synthesis). Gene expression can be regulated at the transcriptional level (mRNA production, processing, or stability) and at the translational level (protein synthesis). RNAi acts in a gene-specific…

  10. Gene silencing in Caenorhabditis elegans by transitive RNA interference

    PubMed Central

    ALDER, MATTHEW N.; DAMES, SHALE; GAUDET, JEFFREY; MANGO, SUSAN E.

    2003-01-01

    When a cell is exposed to double-stranded RNA (dsRNA), mRNA from the homologous gene is selectively degraded by a process called RNA interference (RNAi). Here, we provide evidence that dsRNA is amplified in Caenorhabditis elegans to ensure a robust RNAi response. Our data suggest a model in which mRNA targeted by RNAi functions as a template for 5′ to 3′ synthesis of new dsRNA (termed transitive RNAi). Strikingly, the effect is nonautonomous: dsRNA targeted to a gene expressed in one cell type can lead to transitive RNAi-mediated silencing of a second gene expressed in a distinct cell type. These data suggest dsRNA synthesized in vivo can mediate systemic RNAi. PMID:12554873

  11. The Fascinating World of RNA Interference

    PubMed Central

    Naqvi, Afsar Raza; Islam, Md. Nazrul; Choudhury, Nirupam Roy; Haq., Qazi Mohd. Rizwanul

    2009-01-01

    Micro- and short-interfering RNAs represent small RNA family that are recognized as critical regulatory species across the eukaryotes. Recent high-throughput sequencing have revealed two more hidden players of the cellular small RNA pool. Reported in mammals and Caenorhabditis elegans respectively, these new small RNAs are named piwi-interacting RNAs (piRNAs) and 21U-RNAs. Moreover, small RNAs including miRNAs have been identified in unicellular alga Chlamydomonas reinhardtii, redefining the earlier concept of multi-cellularity restricted presence of these molecules. The discovery of these species of small RNAs has allowed us to understand better the usage of genome and the number of genes present but also have complicated the situation in terms of biochemical attributes and functional genesis of these molecules. Nonetheless, these new pools of knowledge have opened up avenues for unraveling the finer details of the small RNA mediated pathways. PMID:19173032

  12. Applicability of RNA interference in cancer therapy: Current status.

    PubMed

    Maduri, S

    2015-01-01

    Cancer is a manifestation of dysregulated gene function arising from a complex interplay of oncogenes and tumor suppressor genes present in our body. Cancer has been constantly chased using various therapies but all in vain as most of them are highly effective only in the early stages of cancer. Recently, RNA interference (RNAi) therapy, a comparatively new entrant is evolving as a promising player in the battle against cancer due to its post-transcriptional gene silencing ability. The most alluring feature of this non-invasive technology lies in its utility in the cancer detection and the cancer treatment at any stage. Once this technology is fully exploited it can bring a whole new era of therapeutics capable of curing cancer at any stage mainly due to its ability to target the vital processes required for cell proliferation such as response to growth factors, nutrient uptake/synthesis, and energy generation. This therapy can also be used to treat stage IV cancer, the most difficult to treat till date, by virtue of its metastasis inhibiting capability. Recent research has also proved that cancer can even be prevented by proper modulation of physiological RNAi pathways and researchers have found that many nutrients, which are a part of routine diet, can effectively modulate these pathways and prevent cancer. Even after having all these advantages the potential of RNAi therapy could not be fully tapped earlier, due to many limitations associated with the administration of RNAi based therapeutics. However, recent advancements in this direction, such as the development of small interfering RNA (siRNA) tolerant to nucleases and the development of non-viral vectors such as cationic liposomes and nanoparticles, can overcome this obstacle and facilitate the clinical use of RNAi based therapeutics in the treatment of cancer. The present review focuses on the current status of RNAi therapeutics and explores their potential as future diagnostics and therapeutics against

  13. RNA interference-mediated intrinsic antiviral immunity in invertebrates.

    PubMed

    Nayak, Arabinda; Tassetto, Michel; Kunitomi, Mark; Andino, Raul

    2013-01-01

    In invertebrates such as insects and nematodes, RNA interference (RNAi) provides RNA-based protection against viruses. This form of immunity restricts viral replication and dissemination from infected cells and viruses, in turn, have evolved evasion mechanisms or RNAi suppressors to counteract host defenses. Recent advances indicate that, in addition to RNAi, other related small RNA pathways contribute to antiviral functions in invertebrates. This has led to a deeper understanding of fundamental aspects of small RNA-based antiviral immunity in invertebrates and its contribution to viral spread and pathogenesis.

  14. Silence of the strands: RNA interference in eukaryotic pathogens.

    PubMed

    Cottrell, Tricia R; Doering, Tamara L

    2003-01-01

    Double-stranded (ds) RNA interference (RNAi) is a recent technological advance that enables researchers to reduce gene expression at the post-transcriptional level. This form of RNA silencing is initiated by dsRNA, expressed in or introduced into a cell of interest, which triggers homology-dependent degradation of the corresponding mRNA. This versatile technique has remarkable promise as a tool for the study of eukaryotic pathogens. Protozoan parasites and pathogenic fungi often resist manipulation using standard molecular genetic approaches. Researchers studying these organisms need flexible molecular tools, particularly to exploit newly sequenced genomes; this review offers a practical guide to establishing RNAi in pathogenic eukaryotes.

  15. Harnessing RNA interference for the treatment of viral infections.

    PubMed

    Arbuthnot, Patrick

    2010-01-01

    Exploiting the RNA interference (RNAi) pathway to inhibit viral gene expression has become an active field of research. The approach has potential for therapeutic application and several viruses are susceptible to RNAi-mediated knockdown. Differences in the characteristics of individual viruses require that viral gene silencing be tailored to specific infections. Important considerations are viral tissue tropism, acute or chronic nature of the infection and the efficiency with which antiviral sequences can be delivered to affected tissue. Both synthetic short interfering RNAs (siRNAs) and expressed RNAi activators are being developed for viral therapy. The sustained silencing of expressed antiviral sequences is useful for countering chronic viral infection. siRNAs, which may be chemically modified to improve specificity and stability, are being developed for knockdown of viruses that cause acute or chronic infections. Preventing viral escape from silencing is important and overcoming this problem using combinatorial RNAi or through silencing of host dependency factors is promising. Although improving delivery efficiency and limiting off-target effects remain obstacles, rapid progress continues to be made in the field and it is likely that the goal of achieving licensed RNAi-based viral therapies will soon be realized. PMID:20697601

  16. Chemical modification: the key to clinical application of RNA interference?

    PubMed Central

    Corey, David R.

    2007-01-01

    RNA interference provides a potent and specific method for controlling gene expression in human cells. To translate this potential into a broad new family of therapeutics, it is necessary to optimize the efficacy of the RNA-based drugs. As discussed in this Review, it might be possible to achieve this optimization using chemical modifications that improve their in vivo stability, cellular delivery, biodistribution, pharmacokinetics, potency, and specificity. PMID:18060019

  17. RNA interference as a tool for Alzheimer's disease therapy.

    PubMed

    Orlacchio, Antonio; Bernardi, Giorgio; Orlacchio, Aldo; Martino, Sabata

    2007-11-01

    RNA interference is a biological process that controls gene silencing in all living cells. Targeting the RNA interference system represents a novel therapeutic strategy able to intercede with multiple disease-related genes and to target many neurodegenerative diseases. Recently, the design of small interfering RNA-selective compounds has become more straightforward because of the significant progress made in predictive modeling for new therapeutic approaches. Although in vivo delivery of RNA interference remains a significant obstacle, new data show that RNAi blocks gene function in vivo, suggesting a potential therapeutic approach for humans. Some groups have demonstrated the efficacy of RNAi therapy in Alzheimer's disease. Results, based on animal models, show a down-regulation of the amyloid precursor protein and a consequent reduction of the amyloid-beta peptide accumulation in the brain or the inactivation of beta-secretase (BACE1). Indeed, lentiviral vectors expressing siRNAs targeting BACE1 reduce amyloid production and the neurodegenerative and behavioural deficit in APP transgenic mice. This review highlights recent advances in RNA research and focuses on strengths and weaknesses of RNAi compounds in Alzheimer's disease. PMID:18045220

  18. A Mg2+-dependent RNA tertiary structure forms in the Bacillus subtilis trp operon leader transcript and appears to interfere with trpE translation control by inhibiting TRAP binding.

    PubMed

    Schaak, Janell E; Yakhnin, Helen; Bevilacqua, Philip C; Babitzke, Paul

    2003-09-19

    Expression of the trpEDCFBA operon of Bacillus subtilis is regulated by transcription attenuation and translation control mechanisms. In each case, binding of the trp RNA-binding attenuation protein (TRAP) to the untranslated trp leader transcript mediates conformational changes in the RNA secondary structure. We examined the structure of the trp leader readthrough RNA in the absence of TRAP. Using chemical and enzymatic probes, the secondary structure of the trp leader RNA was found to be similar to predicted models. In addition, this RNA was found to adopt a Mg(2+)-dependent, long-range tertiary interaction under physiological monovalent salt conditions. Formation of this tertiary structure does not require significant changes in the preformed secondary structure. Enzymatic probing of the RNA in the presence of competitor DNA oligonucleotides that were designed to disrupt the predicted tertiary structure allowed identification of the interacting partners as the single-stranded portion of the purine-rich TRAP binding target and a large downstream pyrimidine-rich internal loop. UV cross-linking experiments utilizing 5'-p-azidophenacyl-containing transcripts revealed a Mg(2+)-dependent cross-link. Mapping of this cross-link provided evidence that the single-stranded segment of the TRAP binding site is in close proximity to the internal loop. Results from UV melting experiments with wild-type and mutant trp leader transcripts suggested a likely base-pairing register for the tertiary structure. Filter-binding studies demonstrated that the addition of Mg(2+) inhibits TRAP binding, which may be partially due to the effect of Mg(2+) on RNA tertiary structure formation. Results from expression studies using trpE'-'lacZ translational fusions and RNA-directed cell-free translation experiments suggest that the Mg(2+)-dependent tertiary structure inhibits TRAP's ability to regulate translation of trpE. PMID:12963367

  19. A system for Cre-regulated RNA interference in vivo

    PubMed Central

    Stern, Patrick; Astrof, Sophie; Erkeland, Stefan J.; Schustak, Joshua; Sharp, Phillip A.; Hynes, Richard O.

    2008-01-01

    We report a system for Cre-regulated expression of RNA interference in vivo. Expression cassettes comprise selectable and FACS-sortable markers in tandem with additional marker genes and shRNAs in the antisense orientation. The cassettes are flanked by tandem LoxP sites arranged so that Cre expression inverts the marker–shRNA construct, allowing its regulated expression (and, at the same time, deletes the original selection/marker genes). The cassettes can be incorporated into retroviral or lentiviral vectors and delivered to cells in culture or used to generate transgenic mice. We describe cassettes incorporating various combinations of reporter genes, miRNA-based RNAi (including two shRNA constructs at once), and oncogenes and demonstrate the delivery of effective RNA interference in cells in culture, efficient transduction into hematopoietic stem cells with cell-type-specific knockdown in their progeny, and rapid generation of regulated shRNA knockdown in transgenic mice. These vector systems allow regulated combinatorial manipulation (both overexpression and loss of function) of gene expression in multiple systems in vitro and in vivo. PMID:18779577

  20. RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila.

    PubMed

    Goic, Bertsy; Vodovar, Nicolas; Mondotte, Juan A; Monot, Clément; Frangeul, Lionel; Blanc, Hervé; Gausson, Valérie; Vera-Otarola, Jorge; Cristofari, Gael; Saleh, Maria-Carla

    2013-04-01

    How persistent viral infections are established and maintained is widely debated and remains poorly understood. We found here that the persistence of RNA viruses in Drosophila melanogaster was achieved through the combined action of cellular reverse-transcriptase activity and the RNA-mediated interference (RNAi) pathway. Fragments of diverse RNA viruses were reverse-transcribed early during infection, which resulted in DNA forms embedded in retrotransposon sequences. Those virus-retrotransposon DNA chimeras produced transcripts processed by the RNAi machinery, which in turn inhibited viral replication. Conversely, inhibition of reverse transcription hindered the appearance of chimeric DNA and prevented persistence. Our results identify a cooperative function for retrotransposons and antiviral RNAi in the control of lethal acute infection for the establishment of viral persistence.

  1. Fetal Bovine Serum RNA Interferes with the Cell Culture derived Extracellular RNA

    PubMed Central

    Wei, Zhiyun; Batagov, Arsen O.; Carter, David R. F.; Krichevsky, Anna M.

    2016-01-01

    Fetal bovine serum (FBS) has been used in eukaryotic cell cultures for decades. However, little attention has been paid to the biological effects associated with RNA content of FBS on cell cultures. Here, using RNA sequencing, we demonstrate that FBS contains a diverse repertoire of protein-coding and regulatory RNA species, including mRNA, miRNA, rRNA, and snoRNA. The majority of them (>70%) are retained even after extended ultracentrifugation in the preparations of vesicle-depleted FBS (vdFBS) commonly utilized in the studies of extracellular vesicles (EV) and intercellular communication. FBS-associated RNA is co-isolated with cell-culture derived extracellular RNA (exRNA) and interferes with the downstream RNA analysis. Many evolutionally conserved FBS-derived RNA species can be falsely annotated as human or mouse transcripts. Notably, specific miRNAs abundant in FBS, such as miR-122, miR-451a and miR-1246, have been previously reported as enriched in cell-culture derived EVs, possibly due to the confounding effect of the FBS. Analysis of publically available exRNA datasets supports the notion of FBS contamination. Furthermore, FBS transcripts can be taken up by cultured cells and affect the results of highly sensitive gene expression profiling technologies. Therefore, precautions for experimental design are warranted to minimize the interference and misinterpretations caused by FBS-derived RNA. PMID:27503761

  2. Fetal Bovine Serum RNA Interferes with the Cell Culture derived Extracellular RNA.

    PubMed

    Wei, Zhiyun; Batagov, Arsen O; Carter, David R F; Krichevsky, Anna M

    2016-01-01

    Fetal bovine serum (FBS) has been used in eukaryotic cell cultures for decades. However, little attention has been paid to the biological effects associated with RNA content of FBS on cell cultures. Here, using RNA sequencing, we demonstrate that FBS contains a diverse repertoire of protein-coding and regulatory RNA species, including mRNA, miRNA, rRNA, and snoRNA. The majority of them (>70%) are retained even after extended ultracentrifugation in the preparations of vesicle-depleted FBS (vdFBS) commonly utilized in the studies of extracellular vesicles (EV) and intercellular communication. FBS-associated RNA is co-isolated with cell-culture derived extracellular RNA (exRNA) and interferes with the downstream RNA analysis. Many evolutionally conserved FBS-derived RNA species can be falsely annotated as human or mouse transcripts. Notably, specific miRNAs abundant in FBS, such as miR-122, miR-451a and miR-1246, have been previously reported as enriched in cell-culture derived EVs, possibly due to the confounding effect of the FBS. Analysis of publically available exRNA datasets supports the notion of FBS contamination. Furthermore, FBS transcripts can be taken up by cultured cells and affect the results of highly sensitive gene expression profiling technologies. Therefore, precautions for experimental design are warranted to minimize the interference and misinterpretations caused by FBS-derived RNA. PMID:27503761

  3. Ups and downs of RNA interference in parasitic nematodes.

    PubMed

    Britton, Collette; Samarasinghe, Buddhini; Knox, David P

    2012-09-01

    RNA interference (RNAi) is widely used in Caenorhabiditis elegans to identify essential gene function. In parasitic nematodes RNAi has been reported to result in transcript knockdown of some target genes, but not others, thus limiting its use as a potential functional genomics tool. We recently extended work in Haemonchus contortus to examine why only some genes seem to be susceptible to RNAi and to test RNAi effects in vivo. Here we review our findings, which suggest that site of gene expression influences silencing. This most likely reflects limited uptake of dsRNA from the environment, a phenomenon also observed in other free-living nematodes. We discuss new technologies to improve dsRNA delivery, such as nanoparticles being developed for therapeutic siRNA delivery, and methods to monitor RNAi effects. Alternative approaches will be important in progressing the application of RNAi to identify essential gene function in parasitic nematodes. PMID:21854774

  4. RNA interference-based nanosystems for inflammatory bowel disease therapy

    PubMed Central

    Guo, Jian; Jiang, Xiaojing; Gui, Shuangying

    2016-01-01

    Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn’s disease, is a chronic, recrudescent disease that invades the gastrointestinal tract, and it requires surgery or lifelong medicinal therapy. The conventional medicinal therapies for IBD, such as anti-inflammatories, glucocorticoids, and immunosuppressants, are limited because of their systemic adverse effects and toxicity during long-term treatment. RNA interference (RNAi) precisely regulates susceptibility genes to decrease the expression of proinflammatory cytokines related to IBD, which effectively alleviates IBD progression and promotes intestinal mucosa recovery. RNAi molecules generally include short interfering RNA (siRNA) and microRNA (miRNA). However, naked RNA tends to degrade in vivo as a consequence of endogenous ribonucleases and pH variations. Furthermore, RNAi treatment may cause unintended off-target effects and immunostimulation. Therefore, nanovectors of siRNA and miRNA were introduced to circumvent these obstacles. Herein, we introduce non-viral nanosystems of RNAi molecules and discuss these systems in detail. Additionally, the delivery barriers and challenges associated with RNAi molecules will be discussed from the perspectives of developing efficient delivery systems and potential clinical use. PMID:27789943

  5. Rescue of a Dominant Mutant With RNA Interference

    PubMed Central

    Wu, Yongrui; Messing, Joachim

    2010-01-01

    Maize Mucronate1 is a dominant floury mutant based on a misfolded 16-kDa γ-zein protein. To prove its function, we applied RNA interference (RNAi) as a dominant suppressor of the mutant seed phenotype. A γ-zein RNAi transgene was able to rescue the mutation and restore normal seed phenotype. RNA interference prevents gene expression. In most cases, this is used to study gene function by creating a new phenotype. Here, we use it for the opposite purpose. We use it to reverse the creation of a mutant phenotype by restoring the normal phenotype. In the case of the maize Mucronate1 (Mc1) phenotype, interaction of a misfolded protein with other proteins is believed to be the basis for the Mc1 phenotype. If no misfolded protein is present, we can reverse the mutant to the normal phenotype. One can envision using this approach to study complex traits and in gene therapy. PMID:20876558

  6. RNA Interference Pathways in Fungi: Mechanisms and Functions

    PubMed Central

    Chang, Shwu-Shin; Zhang, Zhenyu; Liu, Yi

    2015-01-01

    RNA interference (RNAi) is a conserved eukaryotic gene regulatory mechanism that uses small non-coding RNAs to mediate post-transcriptional/transcriptional gene silencing. The fission yeast Schizosaccharomyces pombe and the filamentous fungus Neurospora crassa have served as important model systems since the beginning of RNAi studies. Studies in these two organisms and other fungi have contributed significantly to our understanding of the mechanisms and functions of RNAi in eukaryotes. In addition, surprisingly diverse RNAi-mediated processes and small RNA biogenesis pathways have been discovered in fungi. In this review, an overview is given of different fungal RNAi pathways with a focus on their mechanisms and functions. PMID:22746336

  7. Inducible RNA Interference of brlAβ in Aspergillus nidulans▿

    PubMed Central

    Barton, L. M.; Prade, R. A.

    2008-01-01

    An inducible RNA interference (RNAi) construct composed of inverted repeating alcA promoters flanking the developmental regulatory gene brlAβ was tested in Aspergillus nidulans. On inducing medium, the RNAi strains failed to sporulate and lacked brlAα and brlAβ expression. RNAi was specific for brlAβ, but not brlAα, silencing, indicating brlAα regulation by brlAβ. PMID:18757565

  8. Regulation of Human Adenovirus Replication by RNA Interference.

    PubMed

    Nikitenko, N A; Speiseder, T; Lam, E; Rubtsov, P M; Tonaeva, Kh D; Borzenok, S A; Dobner, T; Prassolov, V S

    2015-01-01

    Adenoviruses cause a wide variety of human infectious diseases. Adenoviral conjunctivitis and epidemic keratoconjunctivitis are commonly associated with human species D adenoviruses. Currently, there is no sufficient or appropriate treatment to counteract these adenovirus infections. Thus, there is an urgent need for new etiology-directed therapies with selective activity against human adenoviruses. To address this problem, the adenoviral early genes E1A and E2B (viral DNA polymerase) seem to be promising targets. Here, we propose an effective approach to downregulate the replication of human species D adenoviruses by means of RNA interference. We generated E1A expressing model cell lines enabling fast evaluation of the RNA interference potential. Small interfering RNAs complementary to the E1A mRNA sequences of human species D adenoviruses mediate significant suppression of the E1A expression in model cells. Furthermore, we observed a strong downregulation of replication of human adenoviruses type D8 and D37 by small hairpin RNAs complementary to the E1A or E2B mRNA sequences in primary human limbal cells. We believe that our results will contribute to the development of efficient anti-adenoviral therapy.

  9. Regulation of Human Adenovirus Replication by RNA Interference

    PubMed Central

    Nikitenko, N. A.; Speiseder, T.; Lam, E.; Rubtsov, P. M.; Tonaeva, Kh. D.; Borzenok, S. A.; Dobner, T.; Prassolov, V. S.

    2015-01-01

    Adenoviruses cause a wide variety of human infectious diseases. Adenoviral conjunctivitis and epidemic keratoconjunctivitis are commonly associated with human species D adenoviruses. Currently, there is no sufficient or appropriate treatment to counteract these adenovirus infections. Thus, there is an urgent need for new etiology-directed therapies with selective activity against human adenoviruses. To address this problem, the adenoviral early genes E1A and E2B (viral DNA polymerase) seem to be promising targets. Here, we propose an effective approach to downregulate the replication of human species D adenoviruses by means of RNA interference. We generated E1A expressing model cell lines enabling fast evaluation of the RNA interference potential. Small interfering RNAs complementary to the E1A mRNA sequences of human species D adenoviruses mediate significant suppression of the E1A expression in model cells. Furthermore, we observed a strong downregulation of replication of human adenoviruses type D8 and D37 by small hairpin RNAs complementary to the E1A or E2B mRNA sequences in primary human limbal cells. We believe that our results will contribute to the development of efficient anti-adenoviral therapy. PMID:26483965

  10. ATP requirements and small interfering RNA structure in the RNA interference pathway.

    PubMed

    Nykänen, A; Haley, B; Zamore, P D

    2001-11-01

    We examined the role of ATP in the RNA interference (RNAi) pathway. Our data reveal two ATP-dependent steps and suggest that the RNAi reaction comprises at least four sequential steps: ATP-dependent processing of double-stranded RNA into small interfering RNAs (siRNAs), incorporation of siRNAs into an inactive approximately 360 kDa protein/RNA complex, ATP-dependent unwinding of the siRNA duplex to generate an active complex, and ATP-independent recognition and cleavage of the RNA target. Furthermore, ATP is used to maintain 5' phosphates on siRNAs. A 5' phosphate on the target-complementary strand of the siRNA duplex is required for siRNA function, suggesting that cells check the authenticity of siRNAs and license only bona fide siRNAs to direct target RNA destruction.

  11. Self-assembled RNA interference microsponges for efficient siRNA delivery.

    PubMed

    Lee, Jong Bum; Hong, Jinkee; Bonner, Daniel K; Poon, Zhiyong; Hammond, Paula T

    2012-04-01

    The encapsulation and delivery of short interfering RNA (siRNA) has been realized using lipid nanoparticles, cationic complexes, inorganic nanoparticles, RNA nanoparticles and dendrimers. Still, the instability of RNA and the relatively ineffectual encapsulation process of siRNA remain critical issues towards the clinical translation of RNA as a therapeutic. Here we report the synthesis of a delivery vehicle that combines carrier and cargo: RNA interference (RNAi) polymers that self-assemble into nanoscale pleated sheets of hairpin RNA, which in turn form sponge-like microspheres. The RNAi-microsponges consist entirely of cleavable RNA strands, and are processed by the cell's RNA machinery to convert the stable hairpin RNA to siRNA only after cellular uptake, thus inherently providing protection for siRNA during delivery and transport to the cytoplasm. More than half a million copies of siRNA can be delivered to a cell with the uptake of a single RNAi-microsponge. The approach could lead to novel therapeutic routes for siRNA delivery.

  12. Self-assembled RNA interference microsponges for efficient siRNA delivery

    NASA Astrophysics Data System (ADS)

    Lee, Jong Bum; Hong, Jinkee; Bonner, Daniel K.; Poon, Zhiyong; Hammond, Paula T.

    2012-04-01

    The encapsulation and delivery of short interfering RNA (siRNA) has been realized using lipid nanoparticles, cationic complexes, inorganic nanoparticles, RNA nanoparticles and dendrimers. Still, the instability of RNA and the relatively ineffectual encapsulation process of siRNA remain critical issues towards the clinical translation of RNA as a therapeutic. Here we report the synthesis of a delivery vehicle that combines carrier and cargo: RNA interference (RNAi) polymers that self-assemble into nanoscale pleated sheets of hairpin RNA, which in turn form sponge-like microspheres. The RNAi-microsponges consist entirely of cleavable RNA strands, and are processed by the cell’s RNA machinery to convert the stable hairpin RNA to siRNA only after cellular uptake, thus inherently providing protection for siRNA during delivery and transport to the cytoplasm. More than half a million copies of siRNA can be delivered to a cell with the uptake of a single RNAi-microsponge. The approach could lead to novel therapeutic routes for siRNA delivery.

  13. Inducing RNA interference in the arbovirus vector, Culicoides sonorensis.

    PubMed

    Mills, M K; Nayduch, D; Michel, K

    2015-02-01

    Biting midges in the genus Culicoides are important vectors of arboviral diseases, including epizootic haemorrhagic disease, bluetongue and most likely Schmallenberg, which cause significant economic burdens worldwide. Research on these vectors has been hindered by the lack of a sequenced genome, the difficulty of consistent culturing of certain species and the absence of molecular techniques such as RNA interference (RNAi). Here, we report the establishment of RNAi as a research tool for the adult midge, Culicoides sonorensis. Based on previous research and transcriptome analysis, which revealed putative small interfering RNA pathway member orthologues, we hypothesized that adult C. sonorensis midges have the molecular machinery needed to perform RNA silencing. Injection of control double-stranded RNA targeting green fluorescent protein (dsGFP), into the haemocoel of 2-3-day-old adult female midges resulted in survival curves that support virus transmission. dsRNA injection targeting the newly identified C. sonorensis inhibitor of apoptosis protein 1 (CsIAP1) orthologue resulted in a 40% decrease of transcript levels and 73% shorter median survivals as compared with dsGFP-injected controls. These results reveal the conserved function of IAP1. Importantly, they also demonstrate the feasibility of RNAi by dsRNA injection in adult midges, which will greatly facilitate studies of the underlying mechanisms of vector competence in C. sonorensis.

  14. RNA interference against interleukin-5 attenuates airway inflammation and hyperresponsiveness in an asthma model.

    PubMed

    Chen, Shao-xing; Huang, Feng-ying; Tan, Guang-hong; Wang, Cai-chun; Huang, Yong-hao; Wang, Hua; Zhou, Song-lin; Chen, Fan; Lin, Ying-ying; Liu, Jun-bao

    2009-01-01

    Interleukin-5 (IL-5) accompanies the development of airway inflammation and hyperresponsiveness through the activation of eosinophils. Therefore, interference of IL-5 expression in lung tissue seems to be an accepted approach in asthma therapy. In this study, we designed a small interfering RNA (siRNA) to inhibit the expression of IL-5. The siRNAs against IL-5 were constructed in a lentivirus expressing system, and 1.5x10(6) IFU (inclusion-forming unit) lentiviruses were administered intratracheally to ovalbumin (OVA)-sensitized murine asthmatic models. Our results show that lentivirus-delivered siRNA against IL-5 efficiently inhibited the IL-5 messenger ribonucleic acid (mRNA) expression and significantly attenuated the inflammation in lung tissue. Significant decrease of eosinophils and inflammatory cells were found in peripheral blood, bronchoalveolar lavage fluid (BALF), and lung tissue. In addition, significant inhibition of airway hyperresponsiveness (AHR) was found in the mice treated with siRNA against IL-5. These observations demonstrate that siRNA delivered by means of the lentivirus system is possibly an efficacious therapeutic approach for asthma.

  15. Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape.

    PubMed

    Cecere, Germano; Hoersch, Sebastian; O'Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla

    2014-04-01

    Argonaute proteins and their small RNA cofactors short interfering RNAs are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) that are antisense to germline transcripts. However, its role in gene expression regulation remains controversial. Here we used genome-wide profiling of nascent RNA transcripts and found that the CSR-1 RNA interference pathway promoted sense-oriented RNA polymerase II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. On the basis of these findings, we propose that the CSR-1 pathway helps maintain the directionality of active transcription, thereby propagating the distinction between transcriptionally active and silent genomic regions.

  16. Evaluation of inhibition of miRNA expression induced by anti-miRNA oligonucleotides.

    PubMed

    Chae, Dong-Kyu; Ban, Eunmi; Yoo, Young Sook; Baik, Ja-Hyun; Song, Eun Joo

    2016-07-01

    MicroRNAs (miRNAs) are short RNA molecules that control the expression of mRNAs associated with various biological processes. Therefore, deregulated miRNAs play an important role in the pathogenesis of diseases. Numerous studies aimed at developing novel miRNA-based drugs or determining miRNA functions have been conducted by inhibiting miRNAs using anti-miRNA oligonucleotides (AMOs), which inhibit the function by hybridizing with miRNA. To increase the binding affinity and specificity to target miRNA, AMOs with various chemical modifications have been developed. Evaluating the potency of these various types of AMOs is an essential step in their development. In this study, we developed a capillary electrophoresis with laser-induced fluorescence (CE-LIF) method to evaluate the potency of AMOs by measuring changes in miRNA levels with fluorescence-labeled ssDNA probes using AMO-miR-23a, which inhibits miR-23a related to lung cancer. In order to eliminate interference by excess AMOs during hybridization of the ssDNA probe with the miR-23a, the concentration of the ssDNA probe was optimized. This newly developed method was used to compare the potency of two different modified AMOs. The data were supported by the results of a luciferase assay. This study demonstrated that CE-LIF analysis could be used to accurately evaluate AMO potency in biological samples. PMID:27178549

  17. High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing

    PubMed Central

    2011-01-01

    RNA interference (RNAi) screening is a state-of-the-art technology that enables the dissection of biological processes and disease-related phenotypes. The commercial availability of genome-wide, short hairpin RNA (shRNA) libraries has fueled interest in this area but the generation and analysis of these complex data remain a challenge. Here, we describe complete experimental protocols and novel open source computational methodologies, shALIGN and shRNAseq, that allow RNAi screens to be rapidly deconvoluted using next generation sequencing. Our computational pipeline offers efficient screen analysis and the flexibility and scalability to quickly incorporate future developments in shRNA library technology. PMID:22018332

  18. Who Watches the Watchmen: Roles of RNA Modifications in the RNA Interference Pathway

    PubMed Central

    Xhemalce, Blerta

    2016-01-01

    RNA levels are widely thought to be predictive of RNA function. However, the existence of more than a hundred chemically distinct modifications of RNA alone is a major indication that these moieties may impart distinct functions to subgroups of RNA molecules that share a primary sequence but display distinct RNA “epigenetic” marks. RNAs can be modified on many sites, including 5′ and 3′ ends, the sugar phosphate backbone, or internal bases, which collectively provide many opportunities for posttranscriptional regulation through a variety of mechanisms. Here, we will focus on how modifications on messenger and microRNAs may affect the process of RNA interference in mammalian cells. We believe that taking RNA modifications into account will not only advance our understanding of this crucial pathway in disease and cancer but will also open the path to exploiting the enzymes that “write” and “erase” them as targets for therapeutic drug development. PMID:27441695

  19. Who Watches the Watchmen: Roles of RNA Modifications in the RNA Interference Pathway.

    PubMed

    Shelton, Samantha B; Reinsborough, Calder; Xhemalce, Blerta

    2016-07-01

    RNA levels are widely thought to be predictive of RNA function. However, the existence of more than a hundred chemically distinct modifications of RNA alone is a major indication that these moieties may impart distinct functions to subgroups of RNA molecules that share a primary sequence but display distinct RNA "epigenetic" marks. RNAs can be modified on many sites, including 5' and 3' ends, the sugar phosphate backbone, or internal bases, which collectively provide many opportunities for posttranscriptional regulation through a variety of mechanisms. Here, we will focus on how modifications on messenger and microRNAs may affect the process of RNA interference in mammalian cells. We believe that taking RNA modifications into account will not only advance our understanding of this crucial pathway in disease and cancer but will also open the path to exploiting the enzymes that "write" and "erase" them as targets for therapeutic drug development.

  20. Disruption of Specific RNA-RNA Interactions in a Double-Stranded RNA Virus Inhibits Genome Packaging and Virus Infectivity.

    PubMed

    Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly

    2015-12-01

    Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs

  1. Disruption of Specific RNA-RNA Interactions in a Double-Stranded RNA Virus Inhibits Genome Packaging and Virus Infectivity

    PubMed Central

    Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly

    2015-01-01

    Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3’untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3’ UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3’UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3’UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3’ UTRs. Additionally, the inhibition of packaging in-trans with inhibitory

  2. RNA Interference in Moths: Mechanisms, Applications, and Progress

    PubMed Central

    Xu, Jin; Wang, Xia-Fei; Chen, Peng; Liu, Fang-Tao; Zheng, Shuai-Chao; Ye, Hui; Mo, Ming-He

    2016-01-01

    The vast majority of lepidopterans, about 90%, are moths. Some moths, particularly their caterpillars, are major agricultural and forestry pests in many parts of the world. However, some other members of moths, such as the silkworm Bombyx mori, are famous for their economic value. Fire et al. in 1998 initially found that exogenous double-stranded RNA (dsRNA) can silence the homolog endogenous mRNA in organisms, which is called RNA interference (RNAi). Soon after, the RNAi technique proved to be very promising not only in gene function determination but also in pest control. However, later studies demonstrate that performing RNAi in moths is not as straightforward as shown in other insect taxa. Nevertheless, since 2007, especially after 2010, an increasing number of reports have been published that describe successful RNAi experiments in different moth species either on gene function analysis or on pest management exploration. So far, more than 100 peer-reviewed papers have reported successful RNAi experiments in moths, covering 10 families and 25 species. By using classic and novel dsRNA delivery methods, these studies effectively silence the expression of various target genes and determine their function in larval development, reproduction, immunology, resistance against chemicals, and other biological processes. In addition, a number of laboratory and field trials have demonstrated that RNAi is also a potential strategy for moth pest management. In this review, therefore, we summarize and discuss the mechanisms and applications of the RNAi technique in moths by focusing on recent progresses. PMID:27775569

  3. Larval RNA Interference in the Red Flour Beetle, Tribolium castaneum

    PubMed Central

    Tomoyasu, Yoshinori

    2014-01-01

    The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle’s body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting. PMID:25350485

  4. Larval RNA interference in the red flour beetle, Tribolium castaneum.

    PubMed

    Linz, David M; Clark-Hachtel, Courtney M; Borràs-Castells, Ferran; Tomoyasu, Yoshinori

    2014-10-13

    The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle's body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting.

  5. Abasic pivot substitution harnesses target specificity of RNA interference

    PubMed Central

    Lee, Hye-Sook; Seok, Heeyoung; Lee, Dong Ha; Ham, Juyoung; Lee, Wooje; Youm, Emilia Moonkyung; Yoo, Jin Seon; Lee, Yong-Seung; Jang, Eun-Sook; Chi, Sung Wook

    2015-01-01

    Gene silencing via RNA interference inadvertently represses hundreds of off-target transcripts. Because small interfering RNAs (siRNAs) can function as microRNAs, avoiding miRNA-like off-target repression is a major challenge. Functional miRNA–target interactions are known to pre-require transitional nucleation, base pairs from position 2 to the pivot (position 6). Here, by substituting nucleotide in pivot with abasic spacers, which prevent base pairing and alleviate steric hindrance, we eliminate miRNA-like off-target repression while preserving on-target activity at ∼80–100%. Specifically, miR-124 containing dSpacer pivot substitution (6pi) loses seed-mediated transcriptome-wide target interactions, repression activity and biological function, whereas other conventional modifications are ineffective. Application of 6pi allows PCSK9 siRNA to efficiently lower plasma cholesterol concentration in vivo, and abolish potentially deleterious off-target phenotypes. The smallest spacer, C3, also shows the same improvement in target specificity. Abasic pivot substitution serves as a general means to harness the specificity of siRNA experiments and therapeutic applications. PMID:26679372

  6. Impaired inhibition of proactive interference in abstinent individuals with alcoholism.

    PubMed

    Noël, Xavier; Billieux, Joël; Van der Linden, Martial; Dan, Bernard; Hanak, Catherine; de Bournonville, Stéphanie; Baurain, Céline; Verbanck, Paul

    2009-01-01

    Cognitive impairment has been associated with higher risk of alcoholism and relapse. Recent theoretical refinements have separated inhibition of dominant response and inhibition of proactive interference. We assessed the latter using a directed-forgetting procedure in 38 recently detoxified individuals with alcoholism and in 26 controls. On this task, memory performance of letter trigrams was compared when presented alone, followed by a second trigram to be recalled, then a second trigram to be forgotten (directed-forgetting condition). Individuals with alcoholism recalled more letters to be forgotten and performed worse than controls in the directed-forgetting condition, which significantly correlated with the duration of alcoholism.

  7. Optimizing RNA interference for application in mammalian cells.

    PubMed Central

    Medema, René H

    2004-01-01

    Over the last 2 years, the scientific community has rapidly embraced novel technologies that allow gene silencing in vertebrates. Ease of application, cost effectiveness and the possibilities for genome-wide reverse genetics have quickly turned this approach into a widely accepted, almost mandatory asset for a self-respecting laboratory in life sciences. This review discusses some of the recent technological developments that allow the application of RNAi (RNA interference) in mammalian cells. In addition, the advantages of applying RNAi to study cell cycle events and the emerging approaches to perform mutational analysis by complementation in mammalian cells are evaluated. In addition, common pitfalls and drawbacks of RNAi will be reviewed, as well as the possible ways to get around these shortcomings of gene silencing by small interfering RNA. PMID:15056071

  8. Sequence-non-specific effects of RNA interference triggers and microRNA regulators

    PubMed Central

    Olejniczak, Marta; Galka, Paulina; Krzyzosiak, Wlodzimierz J.

    2010-01-01

    RNA reagents of diverse lengths and structures, unmodified or containing various chemical modifications are powerful tools of RNA interference and microRNA technologies. These reagents which are either delivered to cells using appropriate carriers or are expressed in cells from suitable vectors often cause unintended sequence-non-specific immune responses besides triggering intended sequence-specific silencing effects. This article reviews the present state of knowledge regarding the cellular sensors of foreign RNA, the signaling pathways these sensors mobilize and shows which specific features of the RNA reagents set the responsive systems on alert. The representative examples of toxic effects caused in the investigated cell lines and tissues by the RNAs of specific types and structures are collected and may be instructive for further studies of sequence-non-specific responses to foreign RNA in human cells. PMID:19843612

  9. Biological mechanisms determining the success of RNA interference in insects.

    PubMed

    Wynant, Niels; Santos, Dulce; Vanden Broeck, Jozef

    2014-01-01

    Insects constitute the largest group of animals on this planet, having a huge impact on our environment, as well as on our quality of life. RNA interference (RNAi) is a posttranscriptional gene silencing mechanism triggered by double-stranded (ds)RNA fragments. This process not only forms the basis of a widely used reverse genetics research method in many different eukaryotes but also holds great promise to contribute to the species-specific control of agricultural pests and to combat viral infections in beneficial and disease vectoring insects. However, in many economically important insect species, such as flies, mosquitoes, and caterpillars, systemic delivery of naked dsRNA does not trigger effective gene silencing. Although many components of the RNAi pathway have initially been deciphered in the fruit fly, Drosophila melanogaster, it will be of major importance to investigate this process in a wider variety of species, including dsRNA-sensitive insects such as locusts and beetles, to elucidate the factors responsible for the remarkable variability in RNAi efficiency, as observed in different insects. In this chapter, we review the current knowledge on the RNAi pathway, as well as the most recent insights into the mechanisms that might determine successful RNAi in insects.

  10. Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors.

    PubMed

    Palmer, Adam C; Egan, J Barry; Shearwin, Keith E

    2011-01-01

    Transcriptional interference is the in cis suppression of one transcriptional process by another. Mathematical modeling shows that promoter occlusion by elongating RNA polymerases cannot produce strong interference. Interference may instead be generated by (1) dislodgement of slow-to-assemble pre-initiation complexes and transcription factors and (2) prolonged occlusion by paused RNA polymerases.

  11. [Silencing HSV1 gD expression in cultured cells by RNA interference].

    PubMed

    Zhu, Qin-Chang; Ren, Zhe; Zhang, Chun-Long; Zhang, Mei-Ying; Liao, Hong-Juan; Liu, Qiu-Ying; Zhang, Pei-Zhuo; Li, Jiu-Xiang; Hu, Chao-Feng; Wang, Hua-Dong; Wang, Yi-Fei

    2007-01-01

    To explore the anti-HSV-1 effect of silencing gD gene expression by RNA interference, five 21-nucleotide duplex small interfering RNAs(siRNAs) targeting the HSV1 gD sequence were designed and the gD-EGFP fusion gene expression vector was constructed, then co-transfected into Vero cell, and screened the effective siRNA through analyzing the intensity of the EGFP fluorescence. Finally, the anti-HSV1 effect was confirmed by plaque reduction assay, real-time PCR and daughter virus titration of HSV1 infected Vero cells transfected with siRNAs. The study demonstrated that siRNAs could effectively and specifically inhibit gD gene expression in HSV1-infected cells, but only had a little effect on HSV1 infection, so taking gD as the target of siRNA against HSV1 needs further study.

  12. Interference of hepatitis C virus RNA replication by short interfering RNAs

    NASA Astrophysics Data System (ADS)

    Kapadia, Sharookh B.; Brideau-Andersen, Amy; Chisari, Francis V.

    2003-02-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, which can lead to the development of liver cirrhosis and hepatocellular carcinoma. Current therapy of patients with chronic HCV infection includes treatment with IFN in combination with ribavirin. Because most treated patients do not resolve the infection, alternative treatment is essential. RNA interference (RNAi) is a recently discovered antiviral mechanism present in plants and animals that induces double-stranded RNA degradation. Using a selectable subgenomic HCV replicon cell culture system, we have shown that RNAi can specifically inhibit HCV RNA replication and protein expression in Huh-7 cells that stably replicate the HCV genome, and that this antiviral effect is independent of IFN. These results suggest that RNAi may represent a new approach for the treatment of persistent HCV infection.

  13. RNA interference tools for the western flower thrips, Frankliniella occidentalis.

    PubMed

    Badillo-Vargas, Ismael E; Rotenberg, Dorith; Schneweis, Brandi A; Whitfield, Anna E

    2015-05-01

    The insect order Thysanoptera is exclusively comprised of small insects commonly known as thrips. The western flower thrips, Frankliniella occidentalis, is an economically important pest amongst thysanopterans due to extensive feeding damage and tospovirus transmission to hundreds of plant species worldwide. Geographically-distinct populations of F. occidentalis have developed resistance against many types of traditional chemical insecticides, and as such, management of thrips and tospoviruses are a persistent challenge in agriculture. Molecular methods for defining the role(s) of specific genes in thrips-tospovirus interactions and for assessing their potential as gene targets in thrips management strategies is currently lacking. The goal of this work was to develop an RNA interference (RNAi) tool that enables functional genomic assays and to evaluate RNAi for its potential as a biologically-based approach for controlling F. occidentalis. Using a microinjection system, we delivered double-stranded RNA (dsRNA) directly to the hemocoel of female thrips to target the vacuolar ATP synthase subunit B (V-ATPase-B) gene of F. occidentalis. Gene expression analysis using real-time quantitative reverse transcriptase-PCR (qRT-PCR) revealed significant reductions of V-ATPase-B transcripts at 2 and 3 days post-injection (dpi) with dsRNA of V-ATPase-B compared to injection with dsRNA of GFP. Furthermore, the effect of knockdown of the V-ATPase-B gene in females at these two time points was mirrored by the decreased abundance of V-ATPase-B protein as determined by quantitative analysis of Western blots. Reduction in V-ATPase-B expression in thrips resulted in increased female mortality and reduced fertility, i.e., number of viable offspring produced. Survivorship decreased significantly by six dpi compared to the dsRNA-GFP control group, which continued decreasing significantly until the end of the bioassay. Surviving female thrips injected with dsRNA-V-ATPase-B produced

  14. Suppression of prion protein in livestock by RNA interference.

    PubMed

    Golding, Michael C; Long, Charles R; Carmell, Michelle A; Hannon, Gregory J; Westhusin, Mark E

    2006-04-01

    Given the difficulty of applying gene knockout technology to species other than mice, we decided to explore the utility of RNA interference (RNAi) in silencing the expression of genes in livestock. Short hairpin RNAs (shRNAs) were designed and screened for their ability to suppress the expression of caprine and bovine prion protein (PrP). Lentiviral vectors were used to deliver a transgene expressing GFP and an shRNA targeting PrP into goat fibroblasts. These cells were then used for nuclear transplantation to produce a cloned goat fetus, which was surgically recovered at 81 days of gestation and compared with an age-matched control derived by natural mating. All tissues examined in the cloned fetus expressed GFP, and PCR analysis confirmed the presence of the transgene encoding the PrP shRNA. Most relevant, Western blot analysis performed on brain tissues comparing the transgenic fetus with control demonstrated a significant (>90%) decrease in PrP expression levels. To confirm that similar methodologies could be applied to the bovine, recombinant virus was injected into the perivitelline space of bovine ova. After in vitro fertilization and culture, 76% of the blastocysts exhibited GFP expression, indicative that they expressed shRNAs targeting PrP. Our results provide strong evidence that the approach described here will be useful in producing transgenic livestock conferring potential disease resistance and provide an effective strategy for suppressing gene expression in a variety of large-animal models.

  15. Discovery of midgut genes for the RNA interference control of corn rootworm.

    PubMed

    Hu, Xu; Richtman, Nina M; Zhao, Jian-Zhou; Duncan, Keith E; Niu, Xiping; Procyk, Lisa A; Oneal, Meghan A; Kernodle, Bliss M; Steimel, Joseph P; Crane, Virginia C; Sandahl, Gary; Ritland, Julie L; Howard, Richard J; Presnail, James K; Lu, Albert L; Wu, Gusui

    2016-01-01

    RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality. In RNAi treated WCR, injury to the midgut was manifested by "blebbing" of the midgut epithelium into the gut lumen. Ultrastructural examination of midgut epithelial cells revealed apoptosis and regenerative activities. Transgenic plants expressing dsRNA targeting dvssj1 show insecticidal activity and significant plant protection from WCR damage. The data indicate that dvssj1 and dvssj2 are effective gene targets for the control of WCR using RNAi technology, by apparent suppression of production of their respective smooth septate junction membrane proteins located within the intestinal lining, leading to growth inhibition and mortality. PMID:27464714

  16. Discovery of midgut genes for the RNA interference control of corn rootworm

    PubMed Central

    Hu, Xu; Richtman, Nina M.; Zhao, Jian-Zhou; Duncan, Keith E.; Niu, Xiping; Procyk, Lisa A.; Oneal, Meghan A.; Kernodle, Bliss M.; Steimel, Joseph P.; Crane, Virginia C.; Sandahl, Gary; Ritland, Julie L.; Howard, Richard J.; Presnail, James K.; Lu, Albert L.; Wu, Gusui

    2016-01-01

    RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality. In RNAi treated WCR, injury to the midgut was manifested by “blebbing” of the midgut epithelium into the gut lumen. Ultrastructural examination of midgut epithelial cells revealed apoptosis and regenerative activities. Transgenic plants expressing dsRNA targeting dvssj1 show insecticidal activity and significant plant protection from WCR damage. The data indicate that dvssj1 and dvssj2 are effective gene targets for the control of WCR using RNAi technology, by apparent suppression of production of their respective smooth septate junction membrane proteins located within the intestinal lining, leading to growth inhibition and mortality. PMID:27464714

  17. Emerging strategies for RNA interference (RNAi) applications in insects

    PubMed Central

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response. PMID:25424593

  18. Emerging strategies for RNA interference (RNAi) applications in insects.

    PubMed

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.

  19. Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system.

    PubMed

    Bivalkar-Mehla, Shalmali; Vakharia, Janaki; Mehla, Rajeev; Abreha, Measho; Kanwar, Jagat Rakesh; Tikoo, Akshay; Chauhan, Ashok

    2011-01-01

    Pathogenic viruses have developed a molecular defense arsenal for their survival by counteracting the host anti-viral system known as RNA interference (RNAi). Cellular RNAi, in addition to regulating gene expression through microRNAs, also serves as a barrier against invasive foreign nucleic acids. RNAi is conserved across the biological species, including plants, animals and invertebrates. Viruses in turn, have evolved mechanisms that can counteract this anti-viral defense of the host. Recent studies of mammalian viruses exhibiting RNA silencing suppressor (RSS) activity have further advanced our understanding of RNAi in terms of host-virus interactions. Viral proteins and non-coding viral RNAs can inhibit the RNAi (miRNA/siRNA) pathway through different mechanisms. Mammalian viruses having dsRNA-binding regions and GW/WG motifs appear to have a high chance of conferring RSS activity. Although, RSSs of plant and invertebrate viruses have been well characterized, mammalian viral RSSs still need in-depth investigations to present the concrete evidences supporting their RNAi ablation characteristics. The information presented in this review together with any perspective research should help to predict and identify the RSS activity-endowed new viral proteins that could be the potential targets for designing novel anti-viral therapeutics.

  20. Nuclear Outsourcing of RNA Interference Components to Human Mitochondria

    PubMed Central

    Bandiera, Simonetta; Rüberg, Silvia; Girard, Muriel; Cagnard, Nicolas; Hanein, Sylvain; Chrétien, Dominique; Munnich, Arnold; Lyonnet, Stanislas; Henrion-Caude, Alexandra

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that associate with Argonaute proteins to regulate gene expression at the post-transcriptional level in the cytoplasm. However, recent studies have reported that some miRNAs localize to and function in other cellular compartments. Mitochondria harbour their own genetic system that may be a potential site for miRNA mediated post-transcriptional regulation. We aimed at investigating whether nuclear-encoded miRNAs can localize to and function in human mitochondria. To enable identification of mitochondrial-enriched miRNAs, we profiled the mitochondrial and cytosolic RNA fractions from the same HeLa cells by miRNA microarray analysis. Mitochondria were purified using a combination of cell fractionation and immunoisolation, and assessed for the lack of protein and RNA contaminants. We found 57 miRNAs differentially expressed in HeLa mitochondria and cytosol. Of these 57, a signature of 13 nuclear-encoded miRNAs was reproducibly enriched in mitochondrial RNA and validated by RT-PCR for hsa-miR-494, hsa-miR-1275 and hsa-miR-1974. The significance of their mitochondrial localization was investigated by characterizing their genomic context, cross-species conservation and instrinsic features such as their size and thermodynamic parameters. Interestingly, the specificities of mitochondrial versus cytosolic miRNAs were underlined by significantly different structural and thermodynamic parameters. Computational targeting analysis of most mitochondrial miRNAs revealed not only nuclear but also mitochondrial-encoded targets. The functional relevance of miRNAs in mitochondria was supported by the finding of Argonaute 2 localization to mitochondria revealed by immunoblotting and confocal microscopy, and further validated by the co-immunoprecipitation of the mitochondrial transcript COX3. This study provides the first comprehensive view of the localization of RNA interference components to the mitochondria. Our data outline the molecular

  1. A kinetic model for RNA-interference of focal adhesions

    PubMed Central

    2013-01-01

    Background Focal adhesions are integrin-based cell-matrix contacts that transduce and integrate mechanical and biochemical cues from the environment. They develop from smaller and more numerous focal complexes under the influence of mechanical force and are key elements for many physiological and disease-related processes, including wound healing and metastasis. More than 150 different proteins localize to focal adhesions and have been systematically classified in the adhesome project (http://www.adhesome.org). First RNAi-screens have been performed for focal adhesions and the effect of knockdown of many of these components on the number, size, shape and location of focal adhesions has been reported. Results We have developed a kinetic model for RNA interference of focal adhesions which represents some of its main elements: a spatially layered structure, signaling through the small GTPases Rac and Rho, and maturation from focal complexes to focal adhesions under force. The response to force is described by two complementary scenarios corresponding to slip and catch bond behavior, respectively. Using estimated and literature values for the model parameters, three time scales of the dynamics of RNAi-influenced focal adhesions are identified: a sub-minute time scale for the assembly of focal complexes, a sub-hour time scale for the maturation to focal adhesions, and a time scale of days that controls the siRNA-mediated knockdown. Our model shows bistability between states dominated by focal complexes and focal adhesions, respectively. Catch bonding strongly extends the range of stability of the state dominated by focal adhesions. A sensitivity analysis predicts that knockdown of focal adhesion components is more efficient for focal adhesions with slip bonds or if the system is in a state dominated by focal complexes. Knockdown of Rho leads to an increase of focal complexes. Conclusions The suggested model provides a kinetic description of the effect of RNA-interference

  2. Distinct Neural Correlates for Two Types of Inhibition in Bilinguals: Response Inhibition versus Interference Suppression

    ERIC Educational Resources Information Center

    Luk, Gigi; Anderson, John A. E.; Craik, Fergus I. M.; Grady, Cheryl; Bialystok, Ellen

    2010-01-01

    To examine the effects of bilingualism on cognitive control, we studied monolingual and bilingual young adults performing a flanker task with functional MRI. The trial types of primary interest for this report were incongruent and no-go trials, representing interference suppression and response inhibition, respectively. Response times were similar…

  3. A novel measurement of allele discrimination for assessment of allele-specific silencing by RNA interference.

    PubMed

    Takahashi, Masaki; Hohjoh, Hirohiko

    2014-11-01

    Allele-specific silencing by RNA interference (ASP-RNAi) is an atypical RNAi that is capable of discriminating target alleles from non-target alleles, and may be therapeutically useful for specific inhibition of disease-causing alleles without affecting their corresponding normal alleles. However, it is difficult to design and select small interfering RNA (siRNAs) that confer ASP-RNAi. A major problem is that there are few appropriate measures in determining optimal allele-specific siRNAs. Here we show two novel formulas for calculating a new measure of allele-discrimination, named "ASP-score". The formulas and ASP-score allow for an unbiased determination of optimal siRNAs, and may contribute to characterizing such allele-specific siRNAs.

  4. Exposure to dsRNA elicits RNA interference in Brachionus manjavacas (Rotifera).

    PubMed

    Snell, Terry W; Shearer, Tonya L; Smith, Hilary A

    2011-04-01

    RNA interference (RNAi) is a powerful technique for functional genomics, yet no studies have reported its successful application to zooplankton. Many zooplankton, particularly microscopic metazoans of phylum Rotifera, have unique life history traits for which genetic investigation has been limited. In this paper, we report the development of RNAi methods for rotifers, with the exogenous introduction of double-stranded RNA (dsRNA) through the use of a lipofection reagent. Transfection with dsRNA for heat shock protein 90, the membrane-associated progesterone receptor, and mitogen-activated protein kinase significantly increased the proportion of non-reproductive females. Additionally, a fluorescence-based lectin binding assay confirmed the significant suppression of four of six glycosylation enzymes that were targeted with dsRNA. Suppression of mRNA transcripts was confirmed with quantitative PCR. Development of RNAi for rotifers promises to enhance the ability for assessing genetic regulation of features critical to their life history and represents a key step toward functional genomics research in zooplankton.

  5. RNA interference in nematodes and the chance that favored Sydney Brenner

    PubMed Central

    Félix, Marie-Anne

    2008-01-01

    The efficiency of RNA interference varies between different organisms, even among nematodes. A recent report of successful RNA interference in the nematode Panagrolaimus superbus in BMC Molecular Biology has implications for the comparative study of the functional genomics of nematode species, and prompts reflections on the choice of Caenorhabditis elegans as a model organism. PMID:19014674

  6. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference.

    PubMed

    Xu, Zhongping; Li, Jingwen; Guo, Xiaoping; Jin, Shuangxia; Zhang, Xianlong

    2016-01-01

    Cottonseed oil is recognized as an important oil in food industry for its unique characters: low flavor reversion and the high level of antioxidants (VitaminE) as well as unsaturated fatty acid. However, the cottonseed oil content of cultivated cotton (Gossypium hirsutum) is only around 20%. In this study, we modified the accumulation of oils by the down-regulation of phosphoenolpyruvate carboxylase 1 (GhPEPC1) via RNA interference in transgenic cotton plants. The qRT-PCR and enzyme activity assay revealed that the transcription and expression of GhPEPC1 was dramatically down-regulated in transgenic lines. Consequently, the cottonseed oil content in several transgenic lines showed a significant (P < 0.01) increase (up to 16.7%) without obvious phenotypic changes under filed condition when compared to the control plants. In order to elucidate the molecular mechanism of GhPEPC1 in the regulation of seed oil content, we quantified the expression of the carbon metabolism related genes of transgenic GhPEPC1 RNAi lines by transcriptome analysis. This analysis revealed the decrease of GhPEPC1 expression led to the increase expression of triacylglycerol biosynthesis-related genes, which eventually contributed to the lipid biosynthesis in cotton. This result provides a valuable information for cottonseed oil biosynthesis pathway and shows the potential of creating high cottonseed oil germplasm by RNAi strategy for cotton breeding. PMID:27620452

  7. Antiviral Stratagems Against HIV-1 Using RNA Interference (RNAi) Technology

    PubMed Central

    Vlachakis, Dimitrios; Tsiliki, Georgia; Pavlopoulou, Athanasia; Roubelakis, Maria G.; Champeris Tsaniras, Spyridon; Kossida, Sophia

    2013-01-01

    The versatility of human immunodeficiency virus (HIV)-1 and its evolutionary potential to elude antiretroviral agents by mutating may be its most invincible weapon. Viruses, including HIV, in order to adapt and survive in their environment evolve at extremely fast rates. Given that conventional approaches which have been applied against HIV have failed, novel and more promising approaches must be employed. Recent studies advocate RNA interference (RNAi) as a promising therapeutic tool against HIV. In this regard, targeting multiple HIV sites in the context of a combinatorial RNAi-based approach may efficiently stop viral propagation at an early stage. Moreover, large high-throughput RNAi screens are widely used in the fields of drug development and reverse genetics. Computer-based algorithms, bioinformatics, and biostatistical approaches have been employed in traditional medicinal chemistry discovery protocols for low molecular weight compounds. However, the diversity and complexity of RNAi screens cannot be efficiently addressed by these outdated approaches. Herein, a series of novel workflows for both wet- and dry-lab strategies are presented in an effort to provide an updated review of state-of-the-art RNAi technologies, which may enable adequate progress in the fight against the HIV-1 virus. PMID:23761954

  8. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference

    PubMed Central

    Xu, Zhongping; Li, Jingwen; Guo, Xiaoping; Jin, Shuangxia; Zhang, Xianlong

    2016-01-01

    Cottonseed oil is recognized as an important oil in food industry for its unique characters: low flavor reversion and the high level of antioxidants (VitaminE) as well as unsaturated fatty acid. However, the cottonseed oil content of cultivated cotton (Gossypium hirsutum) is only around 20%. In this study, we modified the accumulation of oils by the down-regulation of phosphoenolpyruvate carboxylase 1 (GhPEPC1) via RNA interference in transgenic cotton plants. The qRT-PCR and enzyme activity assay revealed that the transcription and expression of GhPEPC1 was dramatically down-regulated in transgenic lines. Consequently, the cottonseed oil content in several transgenic lines showed a significant (P < 0.01) increase (up to 16.7%) without obvious phenotypic changes under filed condition when compared to the control plants. In order to elucidate the molecular mechanism of GhPEPC1 in the regulation of seed oil content, we quantified the expression of the carbon metabolism related genes of transgenic GhPEPC1 RNAi lines by transcriptome analysis. This analysis revealed the decrease of GhPEPC1 expression led to the increase expression of triacylglycerol biosynthesis-related genes, which eventually contributed to the lipid biosynthesis in cotton. This result provides a valuable information for cottonseed oil biosynthesis pathway and shows the potential of creating high cottonseed oil germplasm by RNAi strategy for cotton breeding. PMID:27620452

  9. Compressed sensing methods for DNA microarrays, RNA interference, and metagenomics.

    PubMed

    Rao, Aditya; P, Deepthi; Renumadhavi, C H; Chandra, M Girish; Srinivasan, Rajgopal

    2015-02-01

    Compressed sensing (CS) is a sparse signal sampling methodology for efficiently acquiring and reconstructing a signal from relatively few measurements. Recent work shows that CS is well-suited to be applied to problems in genomics, including probe design in microarrays, RNA interference (RNAi), and taxonomic assignment in metagenomics. The principle of using different CS recovery methods in these applications has thus been established, but a comprehensive study of using a wide range of CS methods has not been done. For each of these applications, we apply three hitherto unused CS methods, namely, l1-magic, CoSaMP, and l1-homotopy, in conjunction with CS measurement matrices such as randomly generated CS m matrix, Hamming matrix, and projective geometry-based matrix. We find that, in RNAi, the l1-magic (the standard package for l1 minimization) and l1-homotopy methods show significant reduction in reconstruction error compared to the baseline. In metagenomics, we find that l1-homotopy as well as CoSaMP estimate concentration with significantly reduced time when compared to the GPSR and WGSQuikr methods.

  10. FOXO regulates RNA interference in Drosophila and protects from RNA virus infection

    PubMed Central

    Spellberg, Michael J.; Marr, Michael T.

    2015-01-01

    Small RNA pathways are important players in posttranscriptional regulation of gene expression. These pathways play important roles in all aspects of cellular physiology from development to fertility to innate immunity. However, almost nothing is known about the regulation of the central genes in these pathways. The forkhead box O (FOXO) family of transcription factors is a conserved family of DNA-binding proteins that responds to a diverse set of cellular signals. FOXOs are crucial regulators of cellular homeostasis that have a conserved role in modulating organismal aging and fitness. Here, we show that Drosophila FOXO (dFOXO) regulates the expression of core small RNA pathway genes. In addition, we find increased dFOXO activity results in an increase in RNA interference (RNAi) efficacy, establishing a direct link between cellular physiology and RNAi. Consistent with these findings, dFOXO activity is stimulated by viral infection and is required for effective innate immune response to RNA virus infection. Our study reveals an unanticipated connection among dFOXO, stress responses, and the efficacy of small RNA-mediated gene silencing and suggests that organisms can tune their gene silencing in response to environmental and metabolic conditions. PMID:26553999

  11. Distinct neural correlates for two types of inhibition in bilinguals: response inhibition versus interference suppression.

    PubMed

    Luk, Gigi; Anderson, John A E; Craik, Fergus I M; Grady, Cheryl; Bialystok, Ellen

    2010-12-01

    To examine the effects of bilingualism on cognitive control, we studied monolingual and bilingual young adults performing a flanker task with functional MRI. The trial types of primary interest for this report were incongruent and no-go trials, representing interference suppression and response inhibition, respectively. Response times were similar between groups. Brain data were analyzed using partial least squares (PLS) to identify brain regions where activity covaried across conditions. Monolinguals and bilinguals activated different sets of brain regions for congruent and incongruent trials, but showed activation in the same regions for no-go trials. During the incongruent trials, monolinguals activated the left temporal pole and left superior parietal regions. In contrast, an extensive network including bilateral frontal, temporal and subcortical regions was active in bilinguals during the incongruent trials and in both groups for the no-go trials. Correlations between brain activity and reaction time difference relative to neutral trials revealed that monolinguals and bilinguals showed increased activation in different brain regions to achieve less interference from incongruent flankers. Results indicate that bilingualism selectively affects neural correlates for suppressing interference, but not response inhibition. Moreover, the neural correlates associated with more efficient suppression of interference were different in bilinguals than in monolinguals, suggesting a bilingual-specific network for cognitive control.

  12. Inhibitory effects and analysis of RNA interference on thioredoxin glutathione reductase expression in Schistosoma japonicum.

    PubMed

    Han, Yanhui; Fu, Zhiqiang; Hong, Yang; Zhang, Min; Han, Hongxiao; Lu, Ke; Yang, Jianmei; Li, Xiangrui; Lin, Jiaojiao

    2014-08-01

    Schistosomes infect around 280 million people worldwide. The worms survive in the veins of the final host, where thioredoxin glutathione reductase (TGR) activity helps the parasites to survive in the aerobic environment. In the present study, we synthesized 4 small interfering RNAs (siRNA S1, S2, S3, and S4) targeting the Schistosoma japonicum (Sj) TGR gene and used them to knockdown the TGR gene. The knockdown effects of the siRNAs on SjTGR, and the thioredoxin reductase (TrxR) activity of SjTGR, were evaluated in vitro. The results of transfection with the siRNAs via the soaking method in vitro were confirmed by flow cytometry. S2 siRNA at a final concentration of 200 nM partially inhibited the expression of SjTGR at both the transcript and protein levels in vitro. TrxR-activity was lower in worms in the S2 siRNA-treated group compared with the control groups. Further analysis revealed that purified recombinant SjTGR could remove oxygen free radicals but not H(2)O(2) directly, which may explain the incomplete effects of RNA interference on SjTGR. The results of this study indicate that SjTGR may play an important role in the clearance of oxygen free radicals and protection of S. japonicum parasites against oxidative damage.

  13. Downregulation of survivin by siRNA inhibits invasion and promotes apoptosis in neuroblastoma SH-SY5Y cells.

    PubMed

    Zhang, L; Liang, H; Cao, W; Xu, R; Ju, X L

    2014-07-01

    Neuroblastoma is a solid tumor that occurs mainly in children. Malignant neuroblastomas have a poor prognosis because conventional chemotherapeutic agents are not very effective. Survivin, a member of the inhibitor of the apoptosis protein family, plays a significant role in cell division, inhibition of apoptosis, and promotion of cell proliferation and invasion. Previous studies found that survivin is highly expressed in some malignant neuroblastomas and is correlated with poor prognosis. The aim of this study was to investigate whether survivin could serve as a potential therapeutic target of human neuroblastoma. We employed RNA interference to reduce survivin expression in the human neuroblastoma SH-SY5Y cell line and analyzed the effect of RNA interference on cell proliferation and invasion in vitro and in vivo. RNA interference of survivin led to a significant decrease in invasiveness and proliferation and increased apoptosis in SH-SY5Y cells in vitro. RNA interference of survivin inhibited tumor growth in vivo by 68 ± 13% (P=0.002) and increased the number of apoptotic cells by 9.8 ± 1.2% (P=0.001) compared with negative small interfering RNA (siRNA) treatment controls. Moreover, RNA interference of survivin inhibited the formation of lung metastases by 92% (P=0.002) and reduced microvascular density by 60% (P=0.0003). Survivin siRNA resulted in significant downregulation of survivin mRNA and protein expression both in vitro and in vivo compared with negative siRNA treatment controls. RNA interference of survivin was found to be a potent inhibitor of SH-SY5Y tumor growth and metastasis formation. These results support further clinical development of RNA interference of survivin as a treatment of neuroblastoma and other cancer types.

  14. Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system

    PubMed Central

    Zhao, Yicheng; Dai, Zhen; Liang, Yang; Yin, Ming; Ma, Kuiying; He, Mei; Ouyang, Hongsheng; Teng, Chun-Bo

    2014-01-01

    Here, we report a convenient and efficient miRNA inhibition strategy employing the CRISPR system. Using specifically designed gRNAs, miRNA gene has been cut at a single site by Cas9, resulting in knockdown of the miRNA in murine cells. Using a modified CRISPR interference system (CRISPRi), inactive Cas9 can reversibly prevent the expression of both monocistronic miRNAs and polycistronic miRNA clusters. Furthermore, CRISPR/CRISPRi is also capable of suppressing genes in porcine cells. PMID:24487629

  15. Suppression of Bedbug's Reproduction by RNA Interference of Vitellogenin.

    PubMed

    Moriyama, Minoru; Hosokawa, Takahiro; Tanahashi, Masahiko; Nikoh, Naruo; Fukatsu, Takema

    2016-01-01

    Recent resurgence of the bedbug Cimex lectularius is a global problem on the public health. On account of the worldwide rise of insecticide-resistant bedbug populations, exploration of new approaches to the bedbug control and management is anticipated. In this context, gene silencing by RNA interference (RNAi) has been considered for its potential application to pest control and management, because RNAi enables specific suppression of target genes and thus flexible selection of target traits to be disrupted. In this study, in an attempt to develop a control strategy targeting reproduction of the bedbug, we investigated RNAi-mediated gene silencing of vitellogenin (Vg), a major yolk protein precursor essential for oogenesis. From the bedbug transcriptomes, we identified a typical Vg gene and a truncated Vg gene, which were designated as ClVg and ClVg-like, respectively. ClVg gene was highly expressed mainly in the fat body of adult females, which was more than 100 times higher than the expression level of ClVg-like gene, indicating that ClVg gene is the primary functional Vg gene in the bedbug. RNAi-mediated suppression of ClVg gene expression in adult females resulted in drastically reduced egg production, atrophied ovaries, and inflated abdomen due to hypertrophied fat bodies. These phenotypic consequences are expected not only to suppress the bedbug reproduction directly but also to deteriorate its feeding and survival indirectly via behavioral modifications. These results suggest the potential of ClVg gene as a promising target for RNAi-based population management of the bedbug. PMID:27096422

  16. RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA.

    PubMed

    Zhou, Xuguo; Wheeler, Marsha M; Oi, Faith M; Scharf, Michael E

    2008-08-01

    RNA interference (RNAi) represents a breakthrough technology for conducting functional genomics research in non-model organisms and for the highly targeted control of insect pests. This study investigated RNAi via voluntary feeding in the economically important pest termite, Reticulitermes flavipes. We used a high-dose double-stranded (ds) RNA feeding approach to silence two termite genes: one encoding an endogenous digestive cellulase enzyme and the other a caste-regulatory hexamerin storage protein. Contrary to results from previous low-dose studies that examined injection-based RNAi, high-dose silencing of either gene through dsRNA feeding led to significantly reduced group fitness and mortality. Hexamerin silencing in combination with ectopic juvenile hormone treatments additionally led to lethal molting impacts and increased differentiation of presoldier caste phenotypes (a phenotype that is not capable of feeding). These results provide the first examples of insecticidal effects from dsRNA feeding in a termite. Additionally, these results validate a high-throughput bioassay approach for use in (i) termite functional genomics research, and (ii) characterizing target sites of conventional and novel RNAi-based termiticides. PMID:18625404

  17. Silencing of c-kit with small interference RNA attenuates inflammation in a murine model of allergic asthma.

    PubMed

    Wu, Wei; Wang, Tao; Dong, Jia-Jia; Liao, Zeng-Lin; Wen, Fu-Qiang

    2012-07-01

    Asthma is a chronic respiratory disease characterized by the inflammation of the airways due to infiltration and activation of several inflammatory cells that produce cytokines. c-kit, a proto-oncogene that encodes a tyrosine kinase receptor, has been found to be associated with allergic inflammation. The aim of the present study was to assess whether silencing of c-kit with small interference RNA (siRNA) would attenuate inflammation in allergic asthma. A mouse model of ovalbumin (OVA)-induced allergic asthma was treated with systemic administration of anti-c-kit siRNA to inhibit the expression of the c-kit gene. siRNAs were injected through the vena caudalis. We measured inflammatory response in both anti-c-kit siRNA-treated and control mice. Systemic administration of siRNA could effectively inhibit the expression of the c-kit gene and reduce the infiltration of inflammatory cells (eosinophils and lymphocytes) into the lung tissue and bronchoalveolar lavage fluid. In addition, we found that c-kit siRNA can decrease the production of the T-helper type 2 (Th2) cytokines, interleukin 4 (IL-4) and IL-5, but has no influence on IFN-γ generation. These results show that inhibition of c-kit expression with siRNA can reduce the inflammatory response in allergic asthma.

  18. Late-bolting transgenic Chinese cabbage obtained by RNA interference technique.

    PubMed

    Xia, Guang-Qing; Zhu, Jun-Yi; He, Qi-Wei; Zhao, Shuang-Yi; Wang, Cui-Hua

    2007-10-01

    LEAFY (LFY) gene plays an important role in determining plant flowering mainly by controlling the timing of phase transition. Constitutive under-expression of LFY in Arabidopsis resulted in the formation of a late-flowering and highly branching phenotype. In this paper, an RNAi approach was used in down-regulated LFY gene expression to delay Chinese cabbage (Brassica rapa L. ssp. pekinensis) bolting and flowering. The results show that transgenic plant has a later transition to the reproductive phase, and the transgenic plants have more branches, more leaves, but a lower height. Results of RQ-RT-PCR analysis show that LFY gene expression was greatly reduced in transgenic plants. These results suggest that inhibiting LFY gene expression by RNA interference can delay bolting in a cold-sensitive long-day (LD) condition. Late flowering of Chinese cabbage can be used as a good genetic resource for the breeding late-bolting Chinese cabbage.

  19. Toward a durable anti-HIV gene therapy based on RNA interference.

    PubMed

    Berkhout, Ben

    2009-09-01

    Basic research in the field of molecular biology led to the discovery of the mechanism of RNA interference (RNAi) in Caenorhabditis elegans in 1998. RNAi is now widely appreciated as an important gene control mechanism in mammals, and several RNAi-based gene-silencing applications have already been used in clinical trials. In this review I will discuss RNAi approaches to inhibit the pathogenic human immunodeficiency virus type 1 (HIV-1), which establishes a chronic infection that would most likely require a durable gene therapy approach. Viruses, such as HIV-1, are particularly difficult targets for RNAi attack because they mutate frequently, which allows viral escape by mutation of the RNAi target sequence. Combinatorial RNAi strategies are required to prevent viral escape. PMID:19796072

  20. Using RNA-interference to Investigate the Innate Immune Response in Mouse Macrophages

    PubMed Central

    De Arras, Lesly; Guthrie, Brandon S.; Alper, Scott

    2014-01-01

    Macrophages are key phagocytic innate immune cells. When macrophages encounter a pathogen, they produce antimicrobial proteins and compounds to kill the pathogen, produce various cytokines and chemokines to recruit and stimulate other immune cells, and present antigens to stimulate the adaptive immune response. Thus, being able to efficiently manipulate macrophages with techniques such as RNA-interference (RNAi) is critical to our ability to investigate this important innate immune cell. However, macrophages can be technically challenging to transfect and can exhibit inefficient RNAi-induced gene knockdown. In this protocol, we describe methods to efficiently transfect two mouse macrophage cell lines (RAW264.7 and J774A.1) with siRNA using the Amaxa Nucleofector 96-well Shuttle System and describe procedures to maximize the effect of siRNA on gene knockdown. Moreover, the described methods are adapted to work in 96-well format, allowing for medium and high-throughput studies. To demonstrate the utility of this approach, we describe experiments that utilize RNAi to inhibit genes that regulate lipopolysaccharide (LPS)-induced cytokine production. PMID:25407484

  1. Using RNA-interference to investigate the innate immune response in mouse macrophages.

    PubMed

    De Arras, Lesly; Guthrie, Brandon S; Alper, Scott

    2014-11-03

    Macrophages are key phagocytic innate immune cells. When macrophages encounter a pathogen, they produce antimicrobial proteins and compounds to kill the pathogen, produce various cytokines and chemokines to recruit and stimulate other immune cells, and present antigens to stimulate the adaptive immune response. Thus, being able to efficiently manipulate macrophages with techniques such as RNA-interference (RNAi) is critical to our ability to investigate this important innate immune cell. However, macrophages can be technically challenging to transfect and can exhibit inefficient RNAi-induced gene knockdown. In this protocol, we describe methods to efficiently transfect two mouse macrophage cell lines (RAW264.7 and J774A.1) with siRNA using the Amaxa Nucleofector 96-well Shuttle System and describe procedures to maximize the effect of siRNA on gene knockdown. Moreover, the described methods are adapted to work in 96-well format, allowing for medium and high-throughput studies. To demonstrate the utility of this approach, we describe experiments that utilize RNAi to inhibit genes that regulate lipopolysaccharide (LPS)-induced cytokine production.

  2. Targeting Th17 Cells with Small Molecules and Small Interference RNA

    PubMed Central

    Lin, Hui; Song, Pingfang; Zhao, Yi; Xue, Li-Jia; Liu, Yi; Chu, Cong-Qiu

    2015-01-01

    T helper 17 (Th17) cells play a central role in inflammatory and autoimmune diseases via the production of proinflammatory cytokines interleukin- (IL-) 17, IL-17F, and IL-22. Anti-IL-17 monoclonal antibodies show potent efficacy in psoriasis but poor effect in rheumatoid arthritis (RA) and Crohn's disease. Alternative agents targeting Th17 cells may be a better way to inhibit the development and function of Th17 cells than antibodies of blocking a single effector cytokine. Retinoic acid-related orphan receptor gamma t (RORγt) which acts as the master transcription factor of Th17 differentiation has been an attractive pharmacologic target for the treatment of Th17-mediated autoimmune disease. Recent progress in technology of chemical screen and engineering nucleic acid enable two new classes of therapeutics targeting RORγt. Chemical screen technology identified several small molecule specific inhibitors of RORγt from a small molecule library. Systematic evolution of ligands by exponential enrichment (SELEX) technology enabled target specific aptamers to be isolated from a random sequence oligonucleotide library. In this review, we highlight the development and therapeutic potential of small molecules inhibiting Th17 cells by targeting RORγt and aptamer mediated CD4+ T cell specific delivery of small interference RNA against RORγt gene expression to inhibit pathogenic effector functions of Th17 lineage. PMID:26792955

  3. Targeting Th17 Cells with Small Molecules and Small Interference RNA.

    PubMed

    Lin, Hui; Song, Pingfang; Zhao, Yi; Xue, Li-Jia; Liu, Yi; Chu, Cong-Qiu

    2015-01-01

    T helper 17 (Th17) cells play a central role in inflammatory and autoimmune diseases via the production of proinflammatory cytokines interleukin- (IL-) 17, IL-17F, and IL-22. Anti-IL-17 monoclonal antibodies show potent efficacy in psoriasis but poor effect in rheumatoid arthritis (RA) and Crohn's disease. Alternative agents targeting Th17 cells may be a better way to inhibit the development and function of Th17 cells than antibodies of blocking a single effector cytokine. Retinoic acid-related orphan receptor gamma t (RORγt) which acts as the master transcription factor of Th17 differentiation has been an attractive pharmacologic target for the treatment of Th17-mediated autoimmune disease. Recent progress in technology of chemical screen and engineering nucleic acid enable two new classes of therapeutics targeting RORγt. Chemical screen technology identified several small molecule specific inhibitors of RORγt from a small molecule library. Systematic evolution of ligands by exponential enrichment (SELEX) technology enabled target specific aptamers to be isolated from a random sequence oligonucleotide library. In this review, we highlight the development and therapeutic potential of small molecules inhibiting Th17 cells by targeting RORγt and aptamer mediated CD4(+) T cell specific delivery of small interference RNA against RORγt gene expression to inhibit pathogenic effector functions of Th17 lineage. PMID:26792955

  4. Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: evidence from Manduca sexta and Blattella germanica.

    PubMed

    Garbutt, Jennie S; Bellés, Xavier; Richards, Elaine H; Reynolds, Stuart E

    2013-02-01

    RNA interference (RNAi) is a specific gene silencing mechanism mediated by double-stranded RNA (dsRNA), which has been harnessed as a useful reverse genetics tool in insects. Unfortunately, however, this technology has been limited by the variable sensitivity of insect species to RNAi. We propose that rapid degradation of dsRNA in insect hemolymph could impede gene silencing by RNAi and experimentally investigate the dynamics of dsRNA persistence in two insects, the tobacco hornworm, Manduca sexta, a species in which experimental difficulty has been experienced with RNAi protocols and the German cockroach, Blattella germanica, which is known to be highly susceptible to experimental RNAi. An ex vivo assay revealed that dsRNA was rapidly degraded by an enzyme in M. sexta hemolymph plasma, whilst dsRNA persisted much longer in B. germanica plasma. A quantitative reverse transcription PCR-based assay revealed that dsRNA, accordingly, disappeared rapidly from M. sexta hemolymph in vivo. The M. sexta dsRNAse is inactivated by exposure to high temperature and is inhibited by EDTA. These findings lead us to propose that the rate of persistence of dsRNA in insect hemolymph (mediated by the action of one or more nucleases) could be an important factor in determining the susceptibility of insect species to RNAi. PMID:22664137

  5. Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase.

    PubMed

    Van Ekert, Evelien; Powell, Charles A; Shatters, Robert G; Borovsky, Dov

    2014-11-01

    RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including mosquitoes and many other insects. Little has been done, however, to harness this approach in order to control adult and larval mosquitoes. Juvenile hormone (JH) plays a pivotal role in the control of reproduction in adults and metamorphism in larval mosquitoes. This report describes an approach to control Aedes aegypti using RNAi against JH acid methyl transferase (AeaJHAMT), the ultimate enzyme in the biosynthetic pathway of JH III that converts JH acid III (JHA III) into JH III. In female A. aegypti that were injected or fed jmtA dsRNA targeting the AeaJHAMT gene (jmtA) transcript, egg development was inhibited in 50% of the treated females. In mosquito larvae that were fed transgenic Pichia pastoris cells expressing long hair pin (LHP) RNA, adult eclosion was delayed by 3 weeks causing high mortality. Northern blot analyses and qPCR studies show that jmtA dsRNA causes inhibition of jmtA transcript in adults and larvae, which is consistent with the observed inhibition of egg maturation and larval development. Taken together, these results suggest that jmtA LHP RNA expressed in heat inactivated genetically modified P. pastoris cells could be used to control mosquito populations in the marsh.

  6. Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase.

    PubMed

    Van Ekert, Evelien; Powell, Charles A; Shatters, Robert G; Borovsky, Dov

    2014-11-01

    RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including mosquitoes and many other insects. Little has been done, however, to harness this approach in order to control adult and larval mosquitoes. Juvenile hormone (JH) plays a pivotal role in the control of reproduction in adults and metamorphism in larval mosquitoes. This report describes an approach to control Aedes aegypti using RNAi against JH acid methyl transferase (AeaJHAMT), the ultimate enzyme in the biosynthetic pathway of JH III that converts JH acid III (JHA III) into JH III. In female A. aegypti that were injected or fed jmtA dsRNA targeting the AeaJHAMT gene (jmtA) transcript, egg development was inhibited in 50% of the treated females. In mosquito larvae that were fed transgenic Pichia pastoris cells expressing long hair pin (LHP) RNA, adult eclosion was delayed by 3 weeks causing high mortality. Northern blot analyses and qPCR studies show that jmtA dsRNA causes inhibition of jmtA transcript in adults and larvae, which is consistent with the observed inhibition of egg maturation and larval development. Taken together, these results suggest that jmtA LHP RNA expressed in heat inactivated genetically modified P. pastoris cells could be used to control mosquito populations in the marsh. PMID:25111689

  7. RNA Interference of Gonadotropin-Inhibitory Hormone Gene Induces Arousal in Songbirds

    PubMed Central

    Ubuka, Takayoshi; Mukai, Motoko; Wolfe, Jordan; Beverly, Ryan; Clegg, Sarah; Wang, Ariel; Hsia, Serena; Li, Molly; Krause, Jesse S.; Mizuno, Takanobu; Fukuda, Yujiro; Tsutsui, Kazuyoshi; Bentley, George E.; Wingfield, John C.

    2012-01-01

    Gonadotropin-inhibitory hormone (GnIH) was originally identified in quail as a hypothalamic neuropeptide inhibitor of pituitary gonadotropin synthesis and release. However, GnIH neuronal fibers do not only terminate in the median eminence to control anterior pituitary function but also extend widely in the brain, suggesting it has multiple roles in the regulation of behavior. To identify the role of GnIH neurons in the regulation of behavior, we investigated the effect of RNA interference (RNAi) of the GnIH gene on the behavior of white-crowned sparrows, a highly social songbird species. Administration of small interfering RNA against GnIH precursor mRNA into the third ventricle of male and female birds reduced resting time, spontaneous production of complex vocalizations, and stimulated brief agonistic vocalizations. GnIH RNAi further enhanced song production of short duration in male birds when they were challenged by playbacks of novel male songs. These behaviors resembled those of breeding birds during territorial defense. The overall results suggest that GnIH gene silencing induces arousal. In addition, the activities of male and female birds were negatively correlated with GnIH mRNA expression in the paraventricular nucleus. Density of GnIH neuronal fibers in the ventral tegmental area was decreased by GnIH RNAi treatment in female birds, and the number of gonadotropin-releasing hormone neurons that received close appositions of GnIH neuronal fiber terminals was negatively correlated with the activity of male birds. In summary, GnIH may decrease arousal level resulting in the inhibition of specific motivated behavior such as in reproductive contexts. PMID:22279571

  8. Effective Treatment of Respiratory Alphaherpesvirus Infection Using RNA Interference

    PubMed Central

    Fulton, Amy; Peters, Sarah T.; Perkins, Gillian A.; Jarosinski, Keith W.; Damiani, Armando; Brosnahan, Margaret; Buckles, Elizabeth L.; Osterrieder, Nikolaus; Van de Walle, Gerlinde R.

    2009-01-01

    Background Equine herpesvirus type 1 (EHV-1), a member of the Alphaherpesvirinae, is spread via nasal secretions and causes respiratory disease, neurological disorders and abortions. The virus is a significant equine pathogen, but current EHV-1 vaccines are only partially protective and effective metaphylactic and therapeutic agents are not available. Small interfering RNAs (siRNA's), delivered intranasally, could prove a valuable alternative for infection control. siRNA's against two essential EHV-1 genes, encoding the viral helicase (Ori) and glycoprotein B, were evaluated for their potential to decrease EHV-1 infection in a mouse model. Methodology/Principal Fndings siRNA therapy in vitro significantly reduced virus production and plaque size. Viral titers were reduced 80-fold with 37.5 pmol of a single siRNA or with as little as 6.25 pmol of each siRNA when used in combination. siRNA therapy in vivo significantly reduced viral replication and clinical signs. Intranasal treatment did not require a transport vehicle and proved effective when given up to 12 h before or after infection. Conclusions/Significance siRNA treatment has potential for both prevention and early treatment of EHV-1 infections. PMID:19122813

  9. Intergenic transcriptional interference is blocked by RNA polymerase III transcription factor TFIIIB in Saccharomyces cerevisiae.

    PubMed

    Korde, Asawari; Rosselot, Jessica M; Donze, David

    2014-02-01

    The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such "extratranscriptional" activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467-ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins.

  10. Assessment of allele-specific gene silencing by RNA interference with mutant and wild-type reporter alleles.

    PubMed

    Ohnishi, Yusuke; Tokunaga, Katsushi; Kaneko, Kiyotoshi; Hohjoh, Hirohiko

    2006-02-28

    Allele-specific gene silencing by RNA interference (RNAi) is therapeutically useful for specifically suppressing the expression of alleles associated with disease. To realize such allele-specific RNAi (ASPRNAi), the design and assessment of small interfering RNA (siRNA) duplexes conferring ASP-RNAi is vital, but is also difficult. Here, we show ASP-RNAi against the Swedish- and London-type amyloid precursor protein (APP) variants related to familial Alzheimer's disease using two reporter alleles encoding the Photinus and Renilla luciferase genes and carrying mutant and wild-type allelic sequences in their 3'-untranslated regions. We examined the effects of siRNA duplexes against the mutant alleles in allele-specific gene silencing and off-target silencing against the wild-type allele under heterozygous conditions, which were generated by cotransfecting the reporter alleles and siRNA duplexes into cultured human cells. Consistently, the siRNA duplexes determined to confer ASP-RNAi also inhibited the expression of the bona fide mutant APP and the production of either amyloid beta 40- or 42-peptide in Cos-7 cells expressing both the full-length Swedish- and wild-type APP alleles. The present data suggest that the system with reporter alleles may permit the preclinical assessment of siRNA duplexes conferring ASP-RNAi, and thus contribute to the design and selection of the most suitable of such siRNA duplexes.

  11. Versatile RNA Interference Nanoplatform for Systemic Delivery of RNAs

    PubMed Central

    2015-01-01

    Development of nontoxic, tumor-targetable, and potent in vivo RNA delivery systems remains an arduous challenge for clinical application of RNAi therapeutics. Herein, we report a versatile RNAi nanoplatform based on tumor-targeted and pH-responsive nanoformulas (NFs). The NF was engineered by combination of an artificial RNA receptor, Zn(II)-DPA, with a tumor-targetable and drug-loadable hyaluronic acid nanoparticle, which was further modified with a calcium phosphate (CaP) coating by in situ mineralization. The NF can encapsulate small-molecule drugs within its hydrophobic inner core and strongly secure various RNA molecules (siRNAs, miRNAs, and oligonucleotides) by utilizing Zn(II)-DPA and a robust CaP coating. We substantiated the versatility of the RNAi nanoplatform by demonstrating effective delivery of siRNA and miRNA for gene silencing or miRNA replacement into different human types of cancer cells in vitro and into tumor-bearing mice in vivo by intravenous administration. The therapeutic potential of NFs coloaded with an anticancer drug doxorubicin (Dox) and multidrug resistance 1 gene target siRNA (siMDR) was also demonstrated in this study. NFs loaded with Dox and siMDR could successfully sensitize drug-resistant OVCAR8/ADR cells to Dox and suppress OVCAR8/ADR tumor cell proliferation in vitro and tumor growth in vivo. This gene/drug delivery system appears to be a highly effective nonviral method to deliver chemo- and RNAi therapeutics into host cells. PMID:24779637

  12. [Perspectives of RNA interference application in the therapy of diseases associated with defects in alternative RNA splicing].

    PubMed

    Wysokiński, Daniel; Błasiak, Janusz

    2012-09-18

    The primary transcript of an eukaryotic gene (pre-mRNA) is composed of coding regions--exons intervened by non-coding introns--which are removed in the RNA splicing process, leading to the formation of mature, intron-free mRNA. Alternative splicing of pre-mRNA is responsible for high complexity of the cellular proteome and expresses effective use of genetic information contained in genomic DNA. Alternative splicing plays important roles in the organism, including apoptosis regulation or development and plasticity of the nervous system. The main role of alternative splicing is differential, dependent on conditions and the cell type, splicing of mRNA, generating diverse transcripts from one gene, and, after the translation, different isoforms of a particular protein. Because of the high complexity of this mechanism, alternative splicing is particularly prone to errors. The perturbations resulting from mutations in the key sequences for splicing regulations are especially harmful. The pathogenesis of numerous diseases results from disturbed alternative RNA splicing, and those include cancers and neurodegenerative disorders. The treatment of these conditions is problematic due to their genetic background and currently RNA interference, which is a common mechanism of eukaryotic gene regulation, is being studied. Initial successes in the attempts of silencing the expression of faulty protein isoforms support the idea of using RNA interference in targeting disease related to disturbances in alternative splicing of RNA.

  13. Stopping while Going! Response Inhibition Does Not Suffer Dual-Task Interference

    ERIC Educational Resources Information Center

    Yamaguchi, Motonori; Logan, Gordon D.; Bissett, Patrick G.

    2012-01-01

    Although dual-task interference is ubiquitous in a variety of task domains, stop-signal studies suggest that response inhibition is not subject to such interference. Nevertheless, no study has directly examined stop-signal performance in a dual-task setting. In two experiments, stop-signal performance was examined in a psychological refractory…

  14. Autoregulation of Inducible Nitric Oxide Synthase Expression by RNA Interference Provides Neuroprotection in Neonatal Rats

    PubMed Central

    Wang, Zhi; Feng, Chenzhuo; Zhao, Huijuan; Ren, Xiaoyan; Peng, Shuling; Zuo, Zhiyi

    2015-01-01

    We have shown that autoregulation of gene expression by RNA interference is achievable in cell cultures. To determine whether this novel concept could be used to produce neuroprotection under in vivo condition, postnatal day (PND) 3 rats received intracerebroventricular injection of lentivirus that carried or did not carry code for short hairpin RNA (shRNA) of inducible nitric oxide synthase (iNOS). The expression of this shRNA was controlled by an iNOS promoter (piNOS-shRNA) or cytomegalovirus promoter (pCMV-shRNA). The rats were subjected to brain hypoxia-ischemia at PND7. Ischemic brain tissues had increased iNOS expression. This increase was attenuated by virus carrying piNOS-shRNA. Virus carrying pCMV-shRNA reduced iNOS to a level that was lower than control. Brain tissue loss and functional impairment after the hypoxia-ischemia were attenuated by the virus carrying piNOS-shRNA but not by pCMV-shRNA. Our results provide proof-of-concept evidence that autoregulation of iNOS expression by RNA interference induces neuroprotection in vivo and that appropriate regulation of gene expression is important. PMID:25767617

  15. Ultraviolet light-induced inhibition of small nuclear RNA synthesis.

    PubMed

    Eliceiri, B P; Choudhury, K; Scott, Q O; Eliceiri, G L

    1989-03-01

    Two apparently distinct types of inhibition of the synthesis of U1, U2, U3, U4, and U5 small nuclear RNA, induced by ultraviolet (UV) radiation, have been described before: immediate and delayed. Our present observation can be summarized as follows: a) neither the immediate nor the delayed inhibition appear to be mediated by the formation of cyclobutane pyrimidine dimers, since they were not prevented by photoreactivating light, in ICR 2A frog cells; b) the inhibition of U1 RNA synthesis, monitored in HeLA cells within the first few minutes after irradiation, extrapolated to a substantial suppression at time zero of postirradiation cell incubation, providing further support for the proposal that the immediate inhibition is a reaction separate from the delayed UV light-induced inhibition of U1 RNA synthesis; c) the transition from the pattern of the immediate inhibition to that of the delayed inhibition (disappearance of the UV-resistant fraction of U1 RNA synthesis and increased rate of inhibition) occurred gradually, without an apparent threshold, within the first 2 hr of incubation after irradiation; and d) the incident UV dose that resulted in a 37% level of residual U1 RNA synthesis (D37) during the delayed inhibition was about 7 J/m2, with an apparent UV dose threshold, and was about 60 J/m2 for the immediate inhibition. PMID:2925798

  16. Polysome shift assay for direct measurement of miRNA inhibition by anti-miRNA drugs.

    PubMed

    Androsavich, John R; Sobczynski, Daniel J; Liu, Xueqing; Pandya, Shweta; Kaimal, Vivek; Owen, Tate; Liu, Kai; MacKenna, Deidre A; Chau, B Nelson

    2016-01-29

    Anti-miRNA (anti-miR) oligonucleotide drugs are being developed to inhibit overactive miRNAs linked to disease. To help facilitate the transition from concept to clinic, new research tools are required. Here we report a novel method--miRNA Polysome Shift Assay (miPSA)--for direct measurement of miRNA engagement by anti-miR, which is more robust than conventional pharmacodynamics using downstream target gene derepression. The method takes advantage of size differences between active and inhibited miRNA complexes. Active miRNAs bind target mRNAs in high molecular weight polysome complexes, while inhibited miRNAs are sterically blocked by anti-miRs from forming this interaction. These two states can be assessed by fractionating tissue or cell lysates using differential ultracentrifugation through sucrose gradients. Accordingly, anti-miR treatment causes a specific shift of cognate miRNA from heavy to light density fractions. The magnitude of this shift is dose-responsive and maintains a linear relationship with downstream target gene derepression while providing a substantially higher dynamic window for aiding drug discovery. In contrast, we found that the commonly used 'RT-interference' approach, which assumes that inhibited miRNA is undetectable by RT-qPCR, can yield unreliable results that poorly reflect the binding stoichiometry of anti-miR to miRNA. We also demonstrate that the miPSA has additional utility in assessing anti-miR cross-reactivity with miRNAs sharing similar seed sequences.

  17. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea

    PubMed Central

    Marraffini, Luciano A.; Sontheimer, Erik J.

    2010-01-01

    Sequence-directed genetic interference pathways control gene expression and preserve genome integrity in all kingdoms of life. The importance of such pathways is highlighted by the extensive study of RNA interference (RNAi) and related processes in eukaryotes. In many bacteria and most archaea, clustered, regularly interspaced short palindromic repeats (CRISPRs) are involved in a more recently discovered interference pathway that protects cells from bacteriophages and conjugative plasmids. CRISPR sequences provide an adaptive, heritable record of past infections and express CRISPR RNAs — small RNAs that target invasive nucleic acids. Here, we review the mechanisms of CRISPR interference and its roles in microbial physiology and evolution. We also discuss potential applications of this novel interference pathway. PMID:20125085

  18. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways

    PubMed Central

    Clemens, James C.; Worby, Carolyn A.; Simonson-Leff, Nancy; Muda, Marco; Maehama, Tomohiko; Hemmings, Brian A.; Dixon, Jack E.

    2000-01-01

    We demonstrate the efficacy of double-stranded RNA-mediated interference (RNAi) of gene expression in generating “knock-out” phenotypes for specific proteins in several Drosophila cell lines. We prove the applicability of this technique for studying signaling cascades by dissecting the well-characterized insulin signal transduction pathway. Specifically, we demonstrate that inhibiting the expression of the DSOR1 (mitogen-activated protein kinase kinase, MAPKK) prevents the activation of the downstream ERK-A (MAPK). In contrast, blocking ERK-A expression results in increased activation of DSOR1. We also show that Drosophila AKT (DAKT) activation depends on the insulin receptor substrate, CHICO (IRS1–4). Finally, we demonstrate that blocking the expression of Drosophila PTEN results in the activation of DAKT. In all cases, the interference of the biochemical cascade by RNAi is consistent with the known steps in the pathway. We extend this powerful technique to study two proteins, DSH3PX1 and Drosophila ACK (DACK). DSH3PX1 is an SH3, phox homology domain-containing protein, and DACK is homologous to the mammalian activated Cdc42 tyrosine kinase, ACK. Using RNAi, we demonstrate that DACK is upstream of DSH3PX1 phosphorylation, making DSH3PX1 an identified downstream target/substrate of ACK-like tyrosine kinases. These experiments highlight the usefulness of RNAi in dissecting complex biochemical signaling cascades and provide a highly effective method for determining the function of the identified genes arising from the Drosophila genome sequencing project. PMID:10823906

  19. Short 5'-phosphorylated double-stranded RNAs induce RNA interference in Drosophila.

    PubMed

    Boutla, A; Delidakis, C; Livadaras, I; Tsagris, M; Tabler, M

    2001-11-13

    Double-stranded (ds) RNA causes the specific degradation of homologous RNAs in a process called "RNA interference (RNAi)"[1-4]; this process is called "posttranscriptional gene silencing (PTGS)" in plants [5-7]. Both classes of gene silencing have been reviewed extensively [8-13]. The duplex RNA becomes processed by Dicer [14] or another RNase III-like enzyme to short dsRNA fragments of about 21-23 nucleotides (nt) [15], which are incorporated in the RNA-induced silencing complex (RISC)[16] that directs target-specific RNA degradation [17, 18]. Here, we show that different synthetic dsRNA cassettes, consisting of two 5'-phosphorylated RNA strands of 22 nt each, can initiate RNAi in Drosophila embryos. The cassettes were active at similar quantities required to initiate RNAi by conventional dsRNA. Their sequence specificity was confirmed using synthetic dsRNA cassettes for two different genes, Notch and hedgehog; each time, only the relevant embryonic phenotype was observed. Introduction of point mutations had only a moderate effect on the silencing potential, indicating that the silencing machinery does not require perfect sequence identity. 5'-phosphorylated synthetic RNA was more active than its hydroxylated form. Substitution of either RNA strand by DNA strongly reduced activity. Synthetic cassettes of siRNA will provide a new tool to induce mutant phenotypes of genes with unknown function.

  20. Delayed Newcastle disease virus replication using RNA interference to target the nucleoprotein.

    PubMed

    Hutcheson, Jessica M; Susta, Leonardo; Stice, Steven L; Afonso, Claudio L; West, Franklin D

    2015-07-01

    Each year millions of chickens die from Newcastle disease virus (NDV) worldwide leading to severe economic and food losses. Current vaccination campaigns have limitations especially in developing countries, due to elevated costs, need of trained personnel for effective vaccine administration, and functional cold chain network to maintain vaccine viability. These problems have led to heightened interest in producing new antiviral strategies, such as RNA interference (RNAi). RNAi methodology is capable of substantially decreasing viral replication at a cellular level, both in vitro and in vivo. In this study, we utilize microRNA (miRNA)-expressing constructs (a type of RNA interference) in an attempt to target and knockdown five NDV structural RNAs for nucleoprotein (NP), phosphoprotein (P), matrix (M), fusion (F), and large (L) protein genes. Immortalized chicken embryo fibroblast cells (DF-1) that transiently expressed miRNA targeting NP mRNA, showed increased resistance to NDV-induced cytopathic effects, as determined by cell count, relative to the same cells expressing miRNA against alternative NDV proteins. Upon infection with NDV, DF-1 cells constitutively expressing the NP miRNA construct had improved cell survival up to 48 h post infection (h.p.i) and decreased viral yield up to 24 h.p.i. These results suggest that overexpression of the NP miRNA in cells and perhaps live animal may provide resistance to NDV. PMID:26050911

  1. Negative Priming Effect after Inhibition of Weight/Number Interference in a Piaget-Like Task

    ERIC Educational Resources Information Center

    Schirlin, Olivier; Houde, Olivier

    2007-01-01

    Piagetian tasks have more to do with the child's ability to inhibit interference than they do with the ability to grasp their underlying logic. Here we used a chronometric paradigm with 11-year-olds, who succeed in Piaget's conservation-of-weight task, to test the role of cognitive inhibition in a priming version of this classical task. The…

  2. Inhibition of hepatitis B virus (HBV) by LNA-mediated nuclear interference with HBV DNA transcription

    SciTech Connect

    Sun, Zhen; Xiang, Wenqing; Guo, Yajuan; Chen, Zhi; Liu, Wei; Lu, Daru

    2011-06-10

    Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.

  3. Cell penetrable humanized-VH/V(H)H that inhibit RNA dependent RNA polymerase (NS5B) of HCV.

    PubMed

    Thueng-in, Kanyarat; Thanongsaksrikul, Jeeraphong; Srimanote, Potjanee; Bangphoomi, Kunan; Poungpair, Ornnuthchar; Maneewatch, Santi; Choowongkomon, Kiattawee; Chaicumpa, Wanpen

    2012-01-01

    NS5B is pivotal RNA dependent RNA polymerase (RdRp) of HCV and NS5B function interfering halts the virus infective cycle. This work aimed to produce cell penetrable humanized single domain antibodies (SdAb; VH/V(H)H) that interfere with the RdRp activity. Recombinant NS5BΔ55 of genotype 3a HCV with de novo RNA synthetic activity was produced and used in phage biopanning for selecting phage clones that displayed NS5BΔ55 bound VH/V(H)H from a humanized-camel VH/V(H)H display library. VH/V(H)H from E. coli transfected with four selected phage clones inhibited RdRp activity when tested by ELISA inhibition using 3'di-cytidylate 25 nucleotide directed in vitro RNA synthesis. Deduced amino acid sequences of two clones showed V(H)H hallmark and were designated V(H)H6 and V(H)H24; other clones were conventional VH, designated VH9 and VH13. All VH/V(H)H were linked molecularly to a cell penetrating peptide, penetratin. The cell penetrable VH9, VH13, V(H)H6 and V(H)H24 added to culture of Huh7 cells transfected with JHF-1 RNA of genotype 2a HCV reduced the amounts of RNA intracellularly and in culture medium implying that they inhibited the virus replication. VH/V(H)H mimotopes matched with residues scattered on the polymerase fingers, palm and thumb which were likely juxtaposed to form conformational epitopes. Molecular docking revealed that the antibodies covered the RdRp catalytic groove. The transbodies await further studies for in vivo role in inhibiting HCV replication.

  4. Satellite RNAs interfere with the function of viral RNA silencing suppressors.

    PubMed

    Shen, Wan-Xia; Au, Phil Chi Khang; Shi, Bu-Jun; Smith, Neil A; Dennis, Elizabeth S; Guo, Hui-Shan; Zhou, Chang-Yong; Wang, Ming-Bo

    2015-01-01

    Viral satellite RNAs (satRNAs) are small subviral RNAs and depend on the helper virus for replication and spread. satRNAs can attenuate helper virus-induced symptoms, the mechanism of which remains unclear. Here, we show that two virus-encoded suppressors of RNA silencing (VSRs), Cucumber mosaic virus (CMV) 2b and Tombusvirus P19, suppress hairpin RNA (hpRNA)-induced silencing of a β-glucuronidase (GUS) gene in Nicotiana benthamiana. This suppression can be overcome by CMV Y-satellite RNA (Y-Sat) via the Y-Sat-derived small interfering RNAs (siRNAs), which bind to the VSRs and displace the bound hpGUS-derived siRNAs. We also show that microRNA target gene expression in N. tabacum was elevated by CMV infection, presumably due to function of the 2b VSR, but this upregulation of microRNA target genes was reversed in the presence of Y-Sat. These results suggest that satRNA infection minimizes the effect of VSRs on host siRNA and microRNA-directed silencing. Our results suggest that the high abundance of satRNA-derived siRNAs contributes to symptom attenuation by binding helper virus-encoded VSRs, minimizing the capacity of the VSRs to bind host siRNA and miRNA and interfere with their function. PMID:25964791

  5. Powering up the molecular therapy of RNA interference by novel nanoparticles.

    PubMed

    Liao, Wenzhen; Li, Wen; Zhang, Tiantian; Kirberger, Micheal; Liu, Jun; Wang, Pei; Chen, Wei; Wang, Yong

    2016-06-21

    RNA interference technology has been widely applied in biomedical therapy in recent years. A type of small RNA molecule - siRNA could regulate the expression of disease related genes by breaking down the integrity of mRNA with high specificity. However, the low efficiency of siRNA delivery to its target seriously hampered the RNAi therapy. Compared with viral-based delivery systems, non-viral-based nanoparticles are more suitable for disease treatment due to reduced cellular toxicity, higher loading capacity, and better biocompatibility. This review article highlights several nanoparticle-based siRNA delivery systems, including liposomes, cationic solid lipid nanoparticles, reconstituted high density lipoprotein, polymeric nanoparticles, cationic cell penetrating peptides, and inorganic nanoparticles. The molecular mechanism of gene silencing, clinical examples, and the limitations of current technology related to nanomaterial sciences, are also discussed. PMID:27221980

  6. A Simple Laboratory Practical to Illustrate RNA Mediated Gene Interference Using Drosophila Cell Culture

    ERIC Educational Resources Information Center

    Buluwela, Laki; Kamalati, Tahereh; Photiou, Andy; Heathcote, Dean A.; Jones, Michael D.; Ali, Simak

    2010-01-01

    RNA mediated gene interference (RNAi) is now a key tool in eukaryotic cell and molecular biology research. This article describes a five session laboratory practical, spread over a seven day period, to introduce and illustrate the technique. During the exercise, students working in small groups purify PCR products that encode "in vitro"…

  7. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium species)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium ssp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function ...

  8. How Golden Is Silence? Teaching Undergraduates the Power and Limits of RNA Interference

    ERIC Educational Resources Information Center

    Kuldell, Natalie H.

    2006-01-01

    It is hard and getting harder to strike a satisfying balance in teaching. Time dedicated to student-generated models or ideas is often sacrificed in an effort to "get through the syllabus." I describe a series of RNA interference (RNAi) experiments for undergraduate students that simultaneously explores fundamental concepts in gene regulation,…

  9. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive ex...

  10. Inhibition of RNA polymerase by streptolydigin: no cycling allowed.

    PubMed

    Kyzer, Scotty; Zhang, Jinwei; Landick, Robert

    2005-08-26

    Bacterial RNA polymerase is a common target for many antibiotics. In two recent papers in Cell and Molecular Cell, and describe a structural basis for inhibition of bacterial RNA polymerase by the antibiotic streptolydigin. Streptolydigin may prevent distortion of a "bridge" alpha helix postulated to occur during the nucleotide addition cycle of RNA polymerase or may block a small movement of the bridge helix that helps load nucleotide triphosphates into the active site. PMID:16122417

  11. Identification of giant Mimivirus protein functions using RNA interference

    PubMed Central

    Sobhy, Haitham; Scola, Bernard La; Pagnier, Isabelle; Raoult, Didier; Colson, Philippe

    2015-01-01

    Genomic analysis of giant viruses, such as Mimivirus, has revealed that more than half of the putative genes have no known functions (ORFans). We knocked down Mimivirus genes using short interfering RNA as a proof of concept to determine the functions of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a protein absent in a Mimivirus mutant devoid of fibers as well as three genes encoding products identified in a protein concentrate of fibers, including one ORFan and one gene of unknown function. We found that knocking down these four genes was associated with depletion or modification of the fibers. Our strategy of silencing ORFan genes in giant viruses opens a way to identify its complete gene repertoire and may clarify the role of these genes, differentiating between junk DNA and truly used genes. Using this strategy, we were able to annotate four proteins in Mimivirus and 30 homologous proteins in other giant viruses. In addition, we were able to annotate >500 proteins from cellular organisms and 100 from metagenomic databases. PMID:25972846

  12. Reliability and Plasticity of Response Inhibition and Interference Control

    ERIC Educational Resources Information Center

    Wostmann, Nicola M.; Aichert, Desiree S.; Costa, Anna; Rubia, Katya; Moller, Hans-Jurgen; Ettinger, Ulrich

    2013-01-01

    This study investigated the internal reliability, temporal stability and plasticity of commonly used measures of inhibition-related functions. Stop-signal, go/no-go, antisaccade, Simon, Eriksen flanker, Stroop and Continuous Performance tasks were administered twice to 23 healthy participants over a period of approximately 11 weeks in order to…

  13. Small interfering RNA silencing of interleukin-6 in mesenchymal stromal cells inhibits multiple myeloma cell growth.

    PubMed

    Teoh, Hoon Koon; Chong, Pei Pei; Abdullah, Maha; Sekawi, Zamberi; Tan, Geok Chin; Leong, Chooi Fun; Cheong, Soon Keng

    2016-01-01

    Studies demonstrated that mesenchymal stromal cells (MSC) from bone marrow stroma produced high concentration of interleukin-6 (IL-6) that promoted multiple myeloma cell growth. In view of the failure of IL-6 monoclonal antibody therapy to demonstrate substantial clinical responses in early clinical trials, more effective methods are needed in order to disrupt the favourable microenvironment provided by the bone marrow stroma. In this study, we evaluated the short interfering RNA (siRNA)-mediated silencing of IL-6 in MSC and the efficacy of these genetically modified MSC, with IL-6 suppression, on inhibition of U266 multiple myeloma cell growth. IL-6 mRNA and protein were significantly suppressed by 72h post IL-6 siRNA transfection without affecting the biological properties of MSC. Here we show significant inhibition of cell growth and IL-6 production in U266 cells co-cultured with MSC transfected with IL-6 siRNA when compared to U266 cells co-cultured with control MSC. We also show that the tumour volume and mitotic index of tumours in nude mice co-injected with U266 and MSC transfected with IL-6 siRNA were significantly reduced compared to tumours of mice co-injected with control MSC. Our results suggest potential use of RNA interference mediated therapy for multiple myeloma.

  14. Rapid generation of microRNA sponges for microRNA inhibition.

    PubMed

    Kluiver, Joost; Gibcus, Johan H; Hettinga, Chris; Adema, Annelies; Richter, Mareike K S; Halsema, Nancy; Slezak-Prochazka, Izabella; Ding, Ye; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and tested their efficiency in various assays. Using a single directional ligation reaction we generated sponges with 10 or more miRNA binding sites. Luciferase and AGO2-immuno precipitation (IP) assays confirmed effective binding of the miRNAs to the sponges. Using a GFP competition assay we showed that miR-19 sponges with central mismatches in the miRNA binding sites are efficient miRNA inhibitors while sponges with perfect antisense binding sites are not. Quantification of miRNA sponge levels suggests that this is at least in part due to degradation of the perfect antisense sponge transcripts. Finally, we provide evidence that combined inhibition of miRNAs of the miR-17∼92 cluster results in a more effective growth inhibition as compared to inhibition of individual miRNAs. In conclusion, we describe and validate a method to rapidly generate miRNA sponges for miRNA loss-of-function studies. PMID:22238599

  15. Transcriptome dynamics of the microRNA inhibition response.

    PubMed

    Wen, Jiayu; Leucci, Elenora; Vendramin, Roberto; Kauppinen, Sakari; Lund, Anders H; Krogh, Anders; Parker, Brian J

    2015-07-27

    We report a high-resolution time series study of transcriptome dynamics following antimiR-mediated inhibition of miR-9 in a Hodgkin lymphoma cell-line-the first such dynamic study of the microRNA inhibition response-revealing both general and specific aspects of the physiological response. We show miR-9 inhibition inducing a multiphasic transcriptome response, with a direct target perturbation before 4 h, earlier than previously reported, amplified by a downstream peak at ∼32 h consistent with an indirect response due to secondary coherent regulation. Predictive modelling indicates a major role for miR-9 in post-transcriptional control of RNA processing and RNA binding protein regulation. Cluster analysis identifies multiple co-regulated gene regulatory modules. Functionally, we observe a shift over time from mRNA processing at early time points to translation at later time points. We validate the key observations with independent time series qPCR and we experimentally validate key predicted miR-9 targets. Methodologically, we developed sensitive functional data analytic predictive methods to analyse the weak response inherent in microRNA inhibition experiments. The methods of this study will be applicable to similar high-resolution time series transcriptome analyses and provides the context for more accurate experimental design and interpretation of future microRNA inhibition studies. PMID:26089393

  16. Adenosylcobalamin inhibits ribosome binding to btuB RNA.

    PubMed

    Nou, X; Kadner, R J

    2000-06-20

    Expression of the btuB gene encoding the outer membrane cobalamin transporter in Escherichia coli is strongly reduced on growth with cobalamins. Previous studies have shown that this regulation occurs in response to adenosylcobalamin (Ado-Cbl) and operates primarily at the translational level. Changes in the level and stability of btuB RNA are consequences of the modulated translation initiation. To examine how Ado-Cbl affects translation, the binding of E. coli 30S ribosomal subunits to btuB RNA was investigated by using a primer extension inhibition assay. Ribosome binding to btuB RNA was much less efficient than to other RNAs and was preferentially lost when the ribosomes were subjected to a high-salt wash. Ribosome binding to btuB RNA was inhibited by Ado-Cbl but not by cyanocobalamin, with half-maximal inhibition around 0.3 microM Ado-Cbl. Ribosome-binding activity was increased or decreased by mutations in the btuB leader region, which affected two predicted RNA hairpins and altered expression of btuB-lacZ reporters. Finally, the presence of Ado-Cbl elicited formation of a single primer extension-inhibition product with the same specificity and Cbl-concentration dependence as the inhibition of ribosome binding. These results indicate that btuB expression is controlled by the specific binding of Ado-Cbl to btuB RNA, which then affects access to its ribosome-binding sequence. PMID:10852957

  17. Adenosylcobalamin inhibits ribosome binding to btuB RNA

    PubMed Central

    Nou, Xiangwu; Kadner, Robert J.

    2000-01-01

    Expression of the btuB gene encoding the outer membrane cobalamin transporter in Escherichia coli is strongly reduced on growth with cobalamins. Previous studies have shown that this regulation occurs in response to adenosylcobalamin (Ado-Cbl) and operates primarily at the translational level. Changes in the level and stability of btuB RNA are consequences of the modulated translation initiation. To examine how Ado-Cbl affects translation, the binding of E. coli 30S ribosomal subunits to btuB RNA was investigated by using a primer extension inhibition assay. Ribosome binding to btuB RNA was much less efficient than to other RNAs and was preferentially lost when the ribosomes were subjected to a high-salt wash. Ribosome binding to btuB RNA was inhibited by Ado-Cbl but not by cyanocobalamin, with half-maximal inhibition around 0.3 μM Ado-Cbl. Ribosome-binding activity was increased or decreased by mutations in the btuB leader region, which affected two predicted RNA hairpins and altered expression of btuB-lacZ reporters. Finally, the presence of Ado-Cbl elicited formation of a single primer extension-inhibition product with the same specificity and Cbl-concentration dependence as the inhibition of ribosome binding. These results indicate that btuB expression is controlled by the specific binding of Ado-Cbl to btuB RNA, which then affects access to its ribosome-binding sequence. PMID:10852957

  18. miRNA Inhibition in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Beavers, Kelsey R.; Nelson, Christopher E.; Duvall, Craig L.

    2014-01-01

    MicroRNA (miRNA) are noncoding RNA that provide an endogenous negative feedback mechanism for translation of messenger RNA (mRNA) into protein. Single miRNAs can regulate hundreds of mRNAs, enabling miRNAs to orchestrate robust biological responses by simultaneously impacting multiple gene networks. MiRNAs can act as master regulators of normal and pathological tissue development, homeostasis, and repair, which has recently motivated expanding efforts toward development of technologies for therapeutically modulating miRNA activity for regenerative medicine and tissue engineering applications. This review highlights the tools currently available for miRNA inhibition and their recent therapeutic applications for improving tissue repair. PMID:25553957

  19. Complete reduction of p53 expression by RNA interference following heterozygous knockout in porcine fibroblasts.

    PubMed

    Kim, Young June; Kim, Tae-Hyun; Kim, Minjeong; Kim, Min Ju; Kim, Hae-Won; Shim, Hosup

    2016-08-01

    Tumor suppressor p53 plays a critical role in the regulation of cell cycle and apoptosis in mammals. Mutations of p53 often cause various cancers. Murine models have improved our understanding on tumorigenesis associated with p53 mutations. However, mice and humans are different in many ways. For example, the short lifespans of mice limit the clinical application of the data obtained from this species. Porcine model could be an alternative as pigs share many anatomical and physiological similarities with humans. Here, we modified the expression levels of p53 messenger RNA (mRNA) and protein in porcine fetal fibroblasts using a combination of gene targeting and RNA interference. First, we disrupted the p53 gene to produce p53 knockout (KO) cells. Second, the p53 shRNA expression vector was introduced into fibroblasts to isolate p53 knockdown (KD) cells. We obtained p53 KO, KD, and KO + KD fibroblasts which involve p53 KO and KD either separately or simultaneously. The mRNA expression of p53 in p53 KO fibroblasts was similar to that in the wild-type control. However, the mRNA expression levels of p53 in KD and KO + KD cells were significantly decreased. The p53 protein level significant reduced in p53 KD. Interestingly, no p53 protein was detected in KO + KD, suggesting a complete reduction of the protein by synergistic effect of KO and KD. This study demonstrated that various expression levels of p53 in porcine fibroblasts could be achieved by gene targeting and RNA interference. Moreover, complete abolishment of protein expression is feasible using a combination of gene targeting and RNA interference.

  20. Complete reduction of p53 expression by RNA interference following heterozygous knockout in porcine fibroblasts.

    PubMed

    Kim, Young June; Kim, Tae-Hyun; Kim, Minjeong; Kim, Min Ju; Kim, Hae-Won; Shim, Hosup

    2016-08-01

    Tumor suppressor p53 plays a critical role in the regulation of cell cycle and apoptosis in mammals. Mutations of p53 often cause various cancers. Murine models have improved our understanding on tumorigenesis associated with p53 mutations. However, mice and humans are different in many ways. For example, the short lifespans of mice limit the clinical application of the data obtained from this species. Porcine model could be an alternative as pigs share many anatomical and physiological similarities with humans. Here, we modified the expression levels of p53 messenger RNA (mRNA) and protein in porcine fetal fibroblasts using a combination of gene targeting and RNA interference. First, we disrupted the p53 gene to produce p53 knockout (KO) cells. Second, the p53 shRNA expression vector was introduced into fibroblasts to isolate p53 knockdown (KD) cells. We obtained p53 KO, KD, and KO + KD fibroblasts which involve p53 KO and KD either separately or simultaneously. The mRNA expression of p53 in p53 KO fibroblasts was similar to that in the wild-type control. However, the mRNA expression levels of p53 in KD and KO + KD cells were significantly decreased. The p53 protein level significant reduced in p53 KD. Interestingly, no p53 protein was detected in KO + KD, suggesting a complete reduction of the protein by synergistic effect of KO and KD. This study demonstrated that various expression levels of p53 in porcine fibroblasts could be achieved by gene targeting and RNA interference. Moreover, complete abolishment of protein expression is feasible using a combination of gene targeting and RNA interference. PMID:27142766

  1. Modulating Drug Resistance by Targeting BCRP/ABCG2 Using Retrovirus-Mediated RNA Interference

    PubMed Central

    Yuan, Jianhui; Liu, Wenlan; Deng, Tingting; Li, Zigang; Jin, Yi; Hu, Zhangli

    2014-01-01

    Background The BCRP/ABCG2 transporter, which mediates drug resistance in many types of cells, depends on energy provided by ATP hydrolysis. Here, a retrovirus encoding a shRNA targeting the ATP-binding domain of this protein was used to screen for highly efficient agents that could reverse drug resistance and improve cell sensitivity to drugs, thus laying the foundation for further studies and applications. Methodology/Principal Findings To target the ATP-binding domain of BCRP/ABCG2, pLenti6/BCRPsi shRNA recombinant retroviruses, with 20 bp target sequences starting from the 270th, 745th and 939th bps of the 6th exon, were constructed and packaged. The pLenti6/BCRPsi retroviruses (V-BCRPi) that conferred significant knockdown effects were screened using a drug-sensitivity experiment and flow cytometry. The human choriocarcinoma cell line JAR, which highly expresses endogenous BCRP/ABCG2, was injected under the dorsal skin of a hairless mouse to initiate a JAR cytoma. After injecting V-BCRPi-infected JAR tumor cells into the dorsal skin of hairless mice, BCRP/ABCG2 expression in the tumor tissue was determined using immunohistochemistry, fluorescent quantitative RT-PCR and Western blot analyses. After intraperitoneal injection of BCRP/ABCG2-tolerant 5-FU, the tumor volume, weight change, and apoptosis rate of the tumor tissue were determined using in situ hybridization. V-BCRPi increased the sensitivity of the tumor histiocytes to 5-FU and improved the cell apoptosis-promoting effects of 5-FU in the tumor. Conclusions/Significance The goal of the in vivo and in vitro studies was to screen for an RNA interference recombinant retrovirus capable of stably targeting the ATP-binding domain of BCRP/ABCG2 (V-BCRPi) to inhibit its function. A new method to improve the chemo-sensitivity of breast cancer and other tumor cells was discovered, and this method could be used for gene therapy and functional studies of malignant tumors. PMID:25076217

  2. eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference

    NASA Astrophysics Data System (ADS)

    Yi, Tingfang; Arthanari, Haribabu; Akabayov, Barak; Song, Huaidong; Papadopoulos, Evangelos; Qi, Hank H.; Jedrychowski, Mark; Güttler, Thomas; Guo, Cuicui; Luna, Rafael E.; Gygi, Steven P.; Huang, Stephen A.; Wagner, Gerhard

    2015-05-01

    MicroRNA (miRNA) biogenesis and miRNA-guided RNA interference (RNAi) are essential for gene expression in eukaryotes. Here we report that translation initiation factor eIF1A directly interacts with Ago2 and promotes Ago2 activities in RNAi and miR-451 biogenesis. Biochemical and NMR analyses demonstrate that eIF1A binds to the MID domain of Ago2 and this interaction does not impair translation initiation. Alanine mutation of the Ago2-facing Lys56 in eIF1A impairs RNAi activities in human cells and zebrafish. The eIF1A-Ago2 assembly facilitates Dicer-independent biogenesis of miR-451, which mediates erythrocyte maturation. Human eIF1A (heIF1A), but not heIF1A(K56A), rescues the erythrocyte maturation delay in eif1axb knockdown zebrafish. Consistently, miR-451 partly compensates erythrocyte maturation defects in zebrafish with eif1axb knockdown and eIF1A(K56A) expression, supporting a role of eIF1A in miRNA-451 biogenesis in this model. Our results suggest that eIF1A is a novel component of the Ago2-centred RNA-induced silencing complexes (RISCs) and augments Ago2-dependent RNAi and miRNA biogenesis.

  3. RNA interference targeting tNOX attenuates cell migration via a mechanism that involves membrane association of Rac

    SciTech Connect

    Liu, S.-C.; Yang, J.-J.; Shao, K.-N.; Chueh, P.J.

    2008-01-25

    tNOX, a tumor-associated NADH oxidase, is a growth-related protein present in transformed cells. In this study, we employed RNA interference (RNAi)-mediated down-regulation of tNOX protein expression to explore the role of tNOX in regulating cell growth in human cervical adenocarcinoma (HeLa) cells. In this first reported use of RNAi to decrease tNOX expression, we found that HeLa cell growth was significantly inhibited by shRNA-knockdown of tNOX. Furthermore, cell migration and membrane association of Rac were decreased concomitantly with the reduction in tNOX protein expression. These results indicate that shRNA targeting of tNOX inhibits the growth of cervical cancer cells, and reduces cell migration via a decrease in the membrane association of Rac. We propose that tNOX is a potential upstream mediator of Rho activation that plays a role in regulating cell proliferation, migration, and invasion.

  4. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing.

    PubMed

    Burroughs, Alexander Maxwell; Ando, Yoshinari; Aravind, L

    2014-01-01

    Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently known small RNA classes and place them in context of the reconstructed evolutionary history of the RNA interference (RNAi) protein machinery. This synthesis indicates that the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: (1) sense-antisense transcriptional products, (2) genome-encoded, imperfectly complementary hairpin sequences, and (3) larger noncoding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNAi. They were recruited alongside RNaseIII domains and RNA-dependent RNA polymerase (RdRP) domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleocytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs. PMID:24311560

  5. Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference.

    PubMed

    Chen, X; Tian, H; Zou, L; Tang, B; Hu, J; Zhang, W

    2008-12-01

    RNA interference (RNAi) is a powerful tool for rapidly analyzing gene functions. However, little is known about the possible use of dsRNA/siRNA as a pest control method. Here, we demonstrate that dsRNA/siRNA can induce the silence of chitin synthase gene A (CHSA), which is an important gene for the growth and development of cuticles and trachea in beet armyworm, Spodoptera exigua. Based on the in vitro RNAi experiments in an insect cell line (Trichoplusia ni High 5), in vivo RNAi was performed by injecting synthesized dsRNA/siRNA into the 4th instar larvae of S. exigua. Significantly lower levels of CHSA transcripts were detected. In addition, the cuticle of these insects was disordered and the epithelial walls of larval trachea did not expand uniformly in injected individuals. Moreover, Injections significantly increased abnormalities relative to control larvae. These results highlighted the possibility of dsRNA/siRNA for gene function studies in lepidopteran insects and future pest control. PMID:18662430

  6. An RNA synthesis inhibition assay for detecting toxic substances using click chemistry.

    PubMed

    Kametani, Yukiko; Iwai, Shigenori; Kuraoka, Isao

    2014-04-01

    Biological risk assessment studies of chemical substances that induce DNA lesions have been primarily based on the action of DNA polymerases during replication. However, DNA lesions interfere not only with replication, but also with transcription. There is no simple method for the detection of the DNA lesion-induced inhibition of transcription. Here, we report an assay for estimating the toxicity of chemical substances by visualizing transcription in mammalian cells using nucleotide analog 5-ethynyluridine (EU) and its click chemistry reaction. Ultraviolet light and representative chemical substances (camptothecin, 4-nitroquinoline-1-oxide, mitomycin C, and cisplatin, but not etoposide) of DNA- damaging agents show toxicity, as indicated by RNA synthesis inhibition in response to DNA damage in HeLa cells. Using titanium dioxide, we observed RNA synthesis inhibition in response to the rutile form, but not the anatase form, indicating that rutile titanium dioxide is a toxic substance. Because this method is based on the transcriptional response to DNA lesions, we can use terminally differentiated neuron-like PC12 cells, the differentiation of which can be induced by nerve growth factors, for evaluating chemical substances. Ultraviolet light and some chemicals (camptothecin, 4-nitroquinoline-1-oxide, mitomycin C, and cisplatin, but not etoposide) inhibited RNA synthesis in non-differentiated PC12 cells. Conversely, camptothecin and cisplatin did not inhibit RNA synthesis in differentiated PC12 cells, but 4-nitroquinoline-1-oxide, mitomycin C, and etoposide did. And using titanium dioxide, we did not observed any RNA synthesis inhibition. These data suggest that this method might be used to estimate the potential risk of chemical substances in differentiated mammalian cells, which are the most common cell type found in the human body.

  7. RNA interference targeting leucine aminopeptidase blocks hatching of Schistosoma mansoni eggs.

    PubMed

    Rinaldi, Gabriel; Morales, Maria E; Alrefaei, Yousef N; Cancela, Martín; Castillo, Estela; Dalton, John P; Tort, José F; Brindley, Paul J

    2009-10-01

    Schistosoma mansoni leucine aminopeptidase (LAP) is thought to play a central role in hatching of the miracidium from the schistosome egg. We identified two discrete LAPs genes in the S. mansoni genome, and their orthologs in S. japonicum. The similarities in sequence and exon/intron structure of the two genes, LAP1 and LAP2, suggest that they arose by gene duplication and that this occurred before separation of the mansoni and japonicum lineages. The SmLAP1 and SmLAP2 genes have different expression patterns in diverse stages of the cycle; whereas both are equally expressed in the blood dwelling stages (schistosomules and adult), SmLAP2 expression was higher in free living larval (miracidia) and in parasitic intra-snail (sporocysts) stages. We investigated the role of each enzyme in hatching of schistosome eggs and the early stages of schistosome development by RNA interference (RNAi). Using RNAi, we observed marked and specific reduction of mRNAs, along with a loss of exopeptidase activity in soluble parasite extracts against the diagnostic substrate l-leucine-7-amido-4-methylcoumarin hydroxide. Strikingly, knockdown of either SmLAP1 or SmLAP2, or both together, was accompanied by >or=80% inhibition of hatching of schistosome eggs showing that both enzymes are important to the escape of miracidia from the egg. The methods employed here refine the utility of RNAi for functional genomics studies in helminth parasites and confirm these can be used to identify potential drug targets, in this case schistosome aminopeptidases. PMID:19463860

  8. Combinatorial RNA Interference Therapy Prevents Selection of Pre-existing HBV Variants in Human Liver Chimeric Mice.

    PubMed

    Shih, Yao-Ming; Sun, Cheng-Pu; Chou, Hui-Hsien; Wu, Tzu-Hui; Chen, Chun-Chi; Wu, Ping-Yi; Enya Chen, Yu-Chen; Bissig, Karl-Dimiter; Tao, Mi-Hua

    2015-01-01

    Selection of escape mutants with mutations within the target sequence could abolish the antiviral RNA interference activity. Here, we investigated the impact of a pre-existing shRNA-resistant HBV variant on the efficacy of shRNA therapy. We previously identified a highly potent shRNA, S1, which, when delivered by an adeno-associated viral vector, effectively inhibits HBV replication in HBV transgenic mice. We applied the "PICKY" software to systemically screen the HBV genome, then used hydrodynamic transfection and HBV transgenic mice to identify additional six highly potent shRNAs. Human liver chimeric mice were infected with a mixture of wild-type and T472C HBV, a S1-resistant HBV variant, and then treated with a single or combined shRNAs. The presence of T472C mutant compromised the therapeutic efficacy of S1 and resulted in replacement of serum wild-type HBV by T472C HBV. In contrast, combinatorial therapy using S1 and P28, one of six potent shRNAs, markedly reduced titers for both wild-type and T472C HBV. Interestingly, treatment with P28 alone led to the emergence of escape mutants with mutations in the P28 target region. Our results demonstrate that combinatorial RNAi therapy can minimize the escape of resistant viral mutants in chronic HBV patients.

  9. Simultaneous inhibition of GSK3alpha and GSK3beta using hairpin siRNA expression vectors.

    PubMed

    Yu, Jenn-Yah; Taylor, Jennifer; DeRuiter, Stacy L; Vojtek, Anne B; Turner, David L

    2003-02-01

    Short interfering RNAs (siRNAs) can mediate sequence-specific inhibition of gene expression in mammalian cells. We and others have recently developed expression vector-based systems for synthesizing siRNAs or hairpin siRNAs in mammalian cells. Expression vector-based RNA interference (RNAi) effectively suppresses expression of target genes and is likely to be a powerful tool for analysis of gene function. Here we compare inhibition by vectors expressing hairpin siRNA designs either with different loop sequences connecting the two siRNA strands, or with duplex regions of different lengths. Our results suggest that lengthening the 19-nucleotide duplex region of a relatively ineffective hairpin siRNA can increase inhibition, but increasing the length of an effective 19-nt hairpin siRNA does not increase inhibition. We also demonstrate that hairpin siRNA vectors can be used to inhibit two target genes simultaneously. We have targeted glycogen synthase kinase-3alpha (GSK-3alpha) and GSK-3beta, two related kinases involved in the regulation of a variety of cellular processes and also implicated in the pathogenesis of several human diseases. Inhibition of either GSK-3alpha or GSK-3beta by transfection of hairpin siRNA vectors leads to elevated expression of the GSK-3 target beta-catenin, whereas inhibition of both kinases further increases beta-catenin expression. Our results suggest that vector-based siRNA inhibition may be useful for dissecting the functional roles of GSK-3alpha and GSK-3beta in somatic cells. The ability to inhibit two or more genes simultaneously with hairpin siRNA expression vectors should facilitate studies of gene function in mammalian cells.

  10. The Role of RNA Interference (RNAi) in Arbovirus-Vector Interactions

    PubMed Central

    Blair, Carol D.; Olson, Ken E.

    2015-01-01

    RNA interference (RNAi) was shown over 18 years ago to be a mechanism by which arbovirus replication and transmission could be controlled in arthropod vectors. During the intervening period, research on RNAi has defined many of the components and mechanisms of this antiviral pathway in arthropods, yet a number of unexplored questions remain. RNAi refers to RNA-mediated regulation of gene expression. Originally, the term described silencing of endogenous genes by introduction of exogenous double-stranded (ds)RNA with the same sequence as the gene to be silenced. Further research has shown that RNAi comprises three gene regulation pathways that are mediated by small RNAs: the small interfering (si)RNA, micro (mi)RNA, and Piwi-interacting (pi)RNA pathways. The exogenous (exo-)siRNA pathway is now recognized as a major antiviral innate immune response of arthropods. More recent studies suggest that the piRNA and miRNA pathways might also have important roles in arbovirus-vector interactions. This review will focus on current knowledge of the role of the exo-siRNA pathway as an arthropod vector antiviral response and on emerging research into vector piRNA and miRNA pathway modulation of arbovirus-vector interactions. Although it is assumed that arboviruses must evade the vector’s antiviral RNAi response in order to maintain their natural transmission cycles, the strategies by which this is accomplished are not well defined. RNAi is also an important tool for arthropod gene knock-down in functional genomics studies and in development of arbovirus-resistant mosquito populations. Possible arbovirus strategies for evasion of RNAi and applications of RNAi in functional genomics analysis and arbovirus transmission control will also be reviewed. PMID:25690800

  11. The role of RNA interference (RNAi) in arbovirus-vector interactions.

    PubMed

    Blair, Carol D; Olson, Ken E

    2015-02-17

    RNA interference (RNAi) was shown over 18 years ago to be a mechanism by which arbovirus replication and transmission could be controlled in arthropod vectors. During the intervening period, research on RNAi has defined many of the components and mechanisms of this antiviral pathway in arthropods, yet a number of unexplored questions remain. RNAi refers to RNA-mediated regulation of gene expression. Originally, the term described silencing of endogenous genes by introduction of exogenous double-stranded (ds)RNA with the same sequence as the gene to be silenced. Further research has shown that RNAi comprises three gene regulation pathways that are mediated by small RNAs: the small interfering (si)RNA, micro (mi)RNA, and Piwi-interacting (pi)RNA pathways. The exogenous (exo-)siRNA pathway is now recognized as a major antiviral innate immune response of arthropods. More recent studies suggest that the piRNA and miRNA pathways might also have important roles in arbovirus-vector interactions. This review will focus on current knowledge of the role of the exo-siRNA pathway as an arthropod vector antiviral response and on emerging research into vector piRNA and miRNA pathway modulation of arbovirus-vector interactions. Although it is assumed that arboviruses must evade the vector's antiviral RNAi response in order to maintain their natural transmission cycles, the strategies by which this is accomplished are not well defined. RNAi is also an important tool for arthropod gene knock-down in functional genomics studies and in development of arbovirus-resistant mosquito populations. Possible arbovirus strategies for evasion of RNAi and applications of RNAi in functional genomics analysis and arbovirus transmission control will also be reviewed.

  12. Novel siRNA-loaded Bubble Liposomes with Ultrasound Exposure for RNA Interference

    NASA Astrophysics Data System (ADS)

    Endo-Takahashi, Yoko; Negishi, Yoichi; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko

    2011-09-01

    Recently, we have developed novel polyethyleneglycol (PEG) modified liposomes (Bubble liposomes; BLs) entrapping an ultrasound (US) imaging gas, which can work as a gene delivery tool with US exposure. We have shown that the combination of BLs and US was also useful for the delivery of siRNA. However, for use in intravenous administration, there is room for improvement in the colocalization of BLs and siRNA in blood vessels and the stability of siRNA. In this study, we have attempted to prepare novel siRNA-loaded BLs (si-BLs) using cationic lipid, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). As a result, siRNA loaded onto the surface of BLs could be observed. Furthermore, siRNA-loaded BLs were stable even in the presence of serum. The specific gene silencing effect caused by transfection with si-BLs and US could be also observed. Thus, si-BLs with US-exposure may be a useful novel transfection method for siRNA delivery to a target tissue or organ via systemic injection.

  13. Local RNA flexibility perturbation of the IRES element induced by a novel ligand inhibits viral RNA translation

    PubMed Central

    Lozano, Gloria; Trapote, Alejandro; Ramajo, Jorge; Elduque, Xavier; Grandas, Anna; Robles, Jordi; Pedroso, Enrique; Martínez-Salas, Encarnación

    2015-01-01

    The internal ribosome entry site (IRES) element located at the 5´untranslated genomic region of various RNA viruses mediates cap-independent initiation of translation. Picornavirus IRES activity is highly dependent on both its structural organization and its interaction with host factors. Small molecules able to interfere with RNA function are valuable candidates for antiviral agents. Here we show that a small molecule based on benzimidazole (IRAB) inhibited foot-and-mouth disease virus (FMDV) IRES-dependent protein synthesis in cells transfected with infectious RNA leading to a decrease of the virus titer, which was higher than that induced by a structurally related benzimidazole derivative. Interestingly, IRAB preferentially inhibited IRES-dependent translation in cell free systems in a dose-dependent manner. RNA structural analysis by SHAPE demonstrated an increased local flexibility of the IRES structure upon incubation with IRAB, which affected 3 stem-loops (SL) of domain 3. Fluorescence binding assays conducted with individual aminopurine-labeled oligoribonucleotides indicated that the SL3A binds IRAB (EC50 18 μM). Taken together, the results derived from SHAPE reactivity and fluorescence binding assays suggested that the target site of IRAB within the FMDV IRES might be a folded RNA structure that involves the entire apical region of domain 3. Our data suggest that the conformational changes induced by this compound on a specific region of the IRES structure which is essential for its activity is, at least in part, responsible for the reduced IRES efficiency observed in cell free lysates and, particularly, in RNA-transfected cells. PMID:25775053

  14. Applications of RNA interference in cancer therapeutics as a powerful tool for suppressing gene expression.

    PubMed

    He, Song; Zhang, Dechun; Cheng, Fang; Gong, Fanghong; Guo, Yanan

    2009-11-01

    Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. The history of RNA interference (RNAi) has only a dozen years, however, further studies have revealed that it is a potent method of gene silencing that has developed rapidly over the past few years as a result of its extensive importance in the study of genetics, molecular biology and physiology. RNAi is a natural process by which small interfering RNA (siRNA) duplex directs sequence specific post-transcriptional silencing of homologous genes by binding to its complementary mRNA and triggering its elimination. RNAi has been extensively used as a novel and effective gene silencing tool for the fundamental research of cancer therapeutics, and has displayed great potential in clinical treatment.

  15. Several Grassland Soil Nematode Species Are Insensitive to RNA-Mediated Interference

    PubMed Central

    Wheeler, David; Darby, Brian J.; Todd, Timothy C.; Herman, Michael A.

    2012-01-01

    Phenotypic analysis of defects caused by RNA mediated interference (RNAi) in Caenorhabditis elegans has proven to be a powerful tool for determining gene function. In this study we investigated the effectiveness of RNAi in four non-model grassland soil nematodes, Oscheius sp FVV-2., Rhabditis sp, Mesorhabditis sp., and Acrobeloides sp. In contrast to reference experiments performed using C. elegans and Caenorhabditis briggsae, feeding bacteria expressing dsRNA and injecting dsRNA into the gonad did not produce the expected RNAi knockdown phenotypes in any of the grassland nematodes. Quantitative reverse-transcribed PCR (qRT-PCR) assays did not detect a statistically significant reduction in the mRNA levels of endogenous genes targeted by RNAi in Oscheius sp., and Mesorhabditis sp. From these studies we conclude that due to low effectiveness and inconsistent reproducibility, RNAi knockdown phenotypes in non-Caenorhabditis nematodes should be interpreted cautiously. PMID:23483038

  16. Inhibition of Hepatitis B virus cccDNA replication by siRNA

    SciTech Connect

    Li Guiqiu; Gu Hongxi . E-mail: hxgu2432@163.com; Li Di; Xu Weizhen

    2007-04-06

    The development of an effective therapy for Hepatitis B virus (HBV) infection is still a challenge. Progress in RNA interference (RNAi) has shed slight on developing a new anti-HBV strategy. Here, we present a series of experiments showing a significant reduction in HBV transcripts and replication intermediates in HepG2.2.15 cells by vector-based siRNA targeted nuclear localization signal (NLS) region. More importantly, we showed that siRNA1 markedly inhibited HBV covalently closed circular DNA (cccDNA) replication. Our results indicated that HBV NLS may serve as a novel RNAi target to combat HBV infection, which can enhance anti-HBV efficacy and overcome the drawbacks of current therapies.

  17. Colorado potato beetle (Coleoptera) gut transcriptome analysis: expression of RNA interference-related genes.

    PubMed

    Swevers, L; Huvenne, H; Menschaert, G; Kontogiannatos, D; Kourti, A; Pauchet, Y; ffrench-Constant, R; Smagghe, G

    2013-12-01

    In the search for new methods of pest control, the potential of RNA interference (RNAi) is being explored. Because the gut is the first barrier for the uptake of double-stranded (ds)RNA, pyrosequencing of the gut transcriptome is a powerful tool for obtaining the necessary sequences for specific dsRNA-mediated pest control. In the present study, a dataset representing the gut transcriptome of the Colorado potato beetle (CPB; Leptinotarsa decemlineata) was generated and analysed for the presence of RNAi-related genes. Almost all selected genes that were implicated in silencing efficiency at different levels in the RNAi pathway (core machinery, associated intracellular factors, dsRNA uptake, antiviral RNAi, nucleases), which uses different types of small RNA (small interfering RNA, microRNA and piwi-RNA), were expressed in the CPB gut. Although the database is of lower quality, the majority of the RNAi genes are also found to be present in the gut transcriptome of the tobacco hornworm [TH; Manduca sexta (19 out of 35 genes analysed)]. The high quality of the CPB transcriptome database will lay the foundation for future gene expression and functional studies regarding the gut and RNAi. PMID:24580832

  18. Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference

    PubMed Central

    Li, Xiaoxue; Dong, Xiaolong; Zou, Cong; Zhang, Hongyu

    2015-01-01

    RNA interference (RNAi) is a powerful and convenient tool for sequence-specific gene silencing, and it is triggered by double-stranded RNA (dsRNA). RNAi can be easily achieved in many eukaryotes by either injecting or feeding dsRNAs. This mechanism has demonstrated its potential in fundamental research on genetics, medicine and agriculture. However, the possibility that insects might develop refractoriness to RNAi remains unexplored. In this study, we report that the oriental fruit fly, Bactrocera dorsalis, became refractory to RNAi using orally administered dsRNA targeting endogenous genes. Furthermore, refractoriness to RNAi is not gene-specific, and its duration depends on the dsRNA concentration. RNAi blockage requires the endocytic pathway. Fluorescence microscopy indicated that in RNAi refractory flies, dsRNA uptake is blocked. Genes involved in the entry of dsRNAs into cells, including chc, cog3, light and others, are down-regulated in RNAi refractory flies. Increasing the endocytic capacity by improving F-actin polymerization disrupts RNAi refractoriness after both primary and secondary dsRNA exposures. Our results demonstrate that an insect can become refractory to RNAi by preventing the entry of dsRNA into its cells. PMID:25731667

  19. Colorado potato beetle (Coleoptera) gut transcriptome analysis: expression of RNA interference-related genes.

    PubMed

    Swevers, L; Huvenne, H; Menschaert, G; Kontogiannatos, D; Kourti, A; Pauchet, Y; ffrench-Constant, R; Smagghe, G

    2013-12-01

    In the search for new methods of pest control, the potential of RNA interference (RNAi) is being explored. Because the gut is the first barrier for the uptake of double-stranded (ds)RNA, pyrosequencing of the gut transcriptome is a powerful tool for obtaining the necessary sequences for specific dsRNA-mediated pest control. In the present study, a dataset representing the gut transcriptome of the Colorado potato beetle (CPB; Leptinotarsa decemlineata) was generated and analysed for the presence of RNAi-related genes. Almost all selected genes that were implicated in silencing efficiency at different levels in the RNAi pathway (core machinery, associated intracellular factors, dsRNA uptake, antiviral RNAi, nucleases), which uses different types of small RNA (small interfering RNA, microRNA and piwi-RNA), were expressed in the CPB gut. Although the database is of lower quality, the majority of the RNAi genes are also found to be present in the gut transcriptome of the tobacco hornworm [TH; Manduca sexta (19 out of 35 genes analysed)]. The high quality of the CPB transcriptome database will lay the foundation for future gene expression and functional studies regarding the gut and RNAi.

  20. Tumor-targeted RNA-interference: functional non-viral nanovectors

    PubMed Central

    Pan, Xinghua; Thompson, Rachel; Meng, Xiaojie; Wu, Daocheng; Xu, Liang

    2011-01-01

    While small interfering RNA (siRNA) and microRNA (miRNA) have attracted extensive attention and showed significant promise for the study, diagnosis and treatment of human cancers, delivering siRNA or miRNA specifically and efficiently into tumor cells in vivo remains a great challenge. Delivery barriers, which arise mainly from the routes of administration associated with complex physiochemical microenvironments of the human body and the unique properties of RNAs, hinder the development of RNA-interference (RNAi)-based therapeutics in clinical practice. However, in available delivery systems, non-viral nanoparticle-based gene/RNA-delivery vectors, or nanovectors, are showing powerful delivery capacities and huge potential for improvements in functional nanomaterials, including novel fabrication approaches which would greatly enhance delivery performance. In this review, we summarize the currently recognized RNAi delivery barriers and the anti-barrier requirements related to vectors' properties. Recent efforts and achievements in the development of novel nanomaterials, nanovectors fabrication methods, and delivery approaches are discussed. We also review the outstanding needs in the areas of material synthesis and assembly, multifunction combinations, proper delivery and assisting approaches that require more intensive investigation for the comprehensive and effective delivery of RNAi by non-viral nanovectors. PMID:21572539

  1. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies.

    PubMed

    Deng, Yan; Wang, Chi Chiu; Choy, Kwong Wai; Du, Quan; Chen, Jiao; Wang, Qin; Li, Lu; Chung, Tony Kwok Hung; Tang, Tao

    2014-04-01

    During recent decades there have been remarkable advances in biology, in which one of the most important discoveries is RNA interference (RNAi). RNAi is a specific post-transcriptional regulatory pathway that can result in silencing gene functions. Efforts have been done to translate this new discovery into clinical applications for disease treatment. However, technical difficulties restrict the development of RNAi, including stability, off-target effects, immunostimulation and delivery problems. Researchers have attempted to surmount these barriers and improve the bioavailability and safety of RNAi-based therapeutics by optimizing the chemistry and structure of these molecules. This paper aimed to describe the principles of RNA interference, review the therapeutic potential in various diseases and discuss the new strategies for in vivo delivery of RNAi to overcome the challenges.

  2. Interference and Inhibition in Bilingual Language Comprehension: Evidence from Polish-English Interlingual Homographs.

    PubMed

    Durlik, Joanna; Szewczyk, Jakub; Muszyński, Marek; Wodniecka, Zofia

    2016-01-01

    The main goal of the present study was to explore the involvement of inhibition in resolution of cross-language activation in bilingual comprehension and a possible modulatory effect of L2 proficiency. We used a semantic relatedness judgment task in L2 English that included Polish-English interlingual homographs and English translations of the Polish homographs' meanings. Based on previous studies using the same paradigm, we expected a strong homograph interference and inhibition of the homographs' Polish meanings translations. In addition, we predicted that participants with lower L2 proficiency would experience greater interference and stronger inhibitory effects. The reported results confirm a strong homograph interference effect. In addition, our results indicate that the scope of inhibition generalized from the homograph's irrelevant meaning to a whole semantic category, indicating the flexibility of the inhibitory mechanisms. Contrary to our expectations, L2 proficiency did not modulate the effects of interference and inhibition, possibly due to a relatively low variability in proficiency within our participant sample.

  3. Interference and Inhibition in Bilingual Language Comprehension: Evidence from Polish-English Interlingual Homographs

    PubMed Central

    Durlik, Joanna; Szewczyk, Jakub; Muszyński, Marek; Wodniecka, Zofia

    2016-01-01

    The main goal of the present study was to explore the involvement of inhibition in resolution of cross-language activation in bilingual comprehension and a possible modulatory effect of L2 proficiency. We used a semantic relatedness judgment task in L2 English that included Polish-English interlingual homographs and English translations of the Polish homographs’ meanings. Based on previous studies using the same paradigm, we expected a strong homograph interference and inhibition of the homographs’ Polish meanings translations. In addition, we predicted that participants with lower L2 proficiency would experience greater interference and stronger inhibitory effects. The reported results confirm a strong homograph interference effect. In addition, our results indicate that the scope of inhibition generalized from the homograph’s irrelevant meaning to a whole semantic category, indicating the flexibility of the inhibitory mechanisms. Contrary to our expectations, L2 proficiency did not modulate the effects of interference and inhibition, possibly due to a relatively low variability in proficiency within our participant sample. PMID:26977810

  4. Interference and Inhibition in Bilingual Language Comprehension: Evidence from Polish-English Interlingual Homographs.

    PubMed

    Durlik, Joanna; Szewczyk, Jakub; Muszyński, Marek; Wodniecka, Zofia

    2016-01-01

    The main goal of the present study was to explore the involvement of inhibition in resolution of cross-language activation in bilingual comprehension and a possible modulatory effect of L2 proficiency. We used a semantic relatedness judgment task in L2 English that included Polish-English interlingual homographs and English translations of the Polish homographs' meanings. Based on previous studies using the same paradigm, we expected a strong homograph interference and inhibition of the homographs' Polish meanings translations. In addition, we predicted that participants with lower L2 proficiency would experience greater interference and stronger inhibitory effects. The reported results confirm a strong homograph interference effect. In addition, our results indicate that the scope of inhibition generalized from the homograph's irrelevant meaning to a whole semantic category, indicating the flexibility of the inhibitory mechanisms. Contrary to our expectations, L2 proficiency did not modulate the effects of interference and inhibition, possibly due to a relatively low variability in proficiency within our participant sample. PMID:26977810

  5. Knockdown of actin and caspase gene expression by RNA interference in the symbiotic anemone Aiptasia pallida.

    PubMed

    Dunn, Simon R; Phillips, Wendy S; Green, Douglas R; Weis, Virginia M

    2007-06-01

    Since the discovery of the ancient eukaryotic process of RNA-mediated gene silencing, the reverse-genetics technique RNA interference (RNAi) has increasingly been used to examine gene function in vertebrate and invertebrate systems. In this study, we report on the use of RNAi, adapted from studies on animal model systems, to manipulate gene expression in a symbiotic marine cnidarian. We describe gene knockdown of actin and of acasp--a cysteine protease, or caspase--in the symbiotic sea anemone Aiptasia pallida. Knockdown was assessed qualitatively with in situ hybridizations for both genes. Quantitative PCR and caspase activity assays were used as a quantitative measure of knockdown for acasp. PMID:17565114

  6. Gold nanoparticle interference study during the isolation, quantification, purity and integrity analysis of RNA.

    PubMed

    Sanabria, Natasha M; Vetten, Melissa; Andraos, Charlene; Boodhia, Kailen; Gulumian, Mary

    2014-01-01

    Investigations have been conducted regarding the interference of nanoparticles (NPs) with different toxicological assay systems, but there is a lack of validation when conducting routine tests for nucleic acid isolation, quantification, integrity, and purity analyses. The interference of citrate-capped gold nanoparticles (AuNPs) was investigated herein. The AuNPs were added to either BEAS-2B bronchial human cells for 24 h, the isolated pure RNA, or added during the isolation procedure, and the resultant interaction was assessed. Total RNA that was isolated from untreated BEAS-2B cells was spiked with various concentrations (v/v%) of AuNPs and quantified. A decrease in the absorbance spectrum (220-340 nm) was observed in a concentration-dependent manner. The 260 and 280 nm absorbance ratios that traditionally infer RNA purity were also altered. Electrophoresis was performed to determine RNA integrity, but could not differentiate between AuNP-exposed samples. However, the spiked post-isolation samples did produce differences in spectra (190-220 nm), where shifts were observed at a shorter wavelength. These shifts could be due to alterations to chromophores found in nucleic acids. The co-isolation samples, spiked with 100 µL AuNP during the isolation procedure, displayed a peak shift to a longer wavelength and were similar to the results obtained from a 24 h AuNP treatment, under non-cytotoxic test conditions. Moreover, hyperspectral imaging using CytoViva dark field microscopy did not detect AuNP spectral signatures in the RNA isolated from treated cells. However, despite the lack of AuNPs in the final RNA product, structural changes in RNA could still be observed between 190-220 nm. Consequently, full spectral analyses should replace the traditional ratios based on readings at 230, 260, and 280 nm. These are critical points of analyses, validation, and optimization for RNA-based techniques used to assess AuNPs effects.

  7. Cell growth inhibition by sequence-specific RNA minihelices.

    PubMed Central

    Hipps, D; Schimmel, P

    1995-01-01

    RNA minihelices which reconstruct the 12 base pair acceptor-T psi C domains of transfer RNAs interact with their cognate tRNA synthetases. These substrates lack the anticodons of the genetic code and, therefore, cannot participate in steps of protein synthesis subsequent to aminoacylation. We report here that expression in Escherichia coli of either of two minihelices, each specific for a different amino acid, inhibited cell growth. Inhibition appears to be due to direct competition between the minihelix and its related tRNA for binding to their common synthetase. This competition, in turn, sharply lowers the pool of the specific charged tRNA for protein synthesis. Inhibition is relieved by single nucleotide changes which disrupt the minihelix-synthetase interaction. The results suggest that sequence-specific RNA minihelix substrates bind to cognate synthetases in vivo and can, in principle, act as cell growth regulators. Naturally occurring non-tRNA substrates for aminoacylation may serve a similar purpose. Images PMID:7664744

  8. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing

    PubMed Central

    Burroughs, Alexander Maxwell; Ando, Yoshinari; Aravind, L

    2014-01-01

    Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently-known small RNA classes and place them in context of the reconstructed evolutionary history of the RNAi protein machinery. This synthesis indicates the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: 1) sense-antisense transcriptional products, 2) genome-encoded, imperfectly-complementary hairpin sequences, and 3) larger non-coding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNA interference. They were recruited alongside RNaseIII domains and RdRP domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleo-cytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs. PMID:24311560

  9. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II.

    PubMed

    Serebryannyy, Leonid A; Parilla, Megan; Annibale, Paolo; Cruz, Christina M; Laster, Kyle; Gratton, Enrico; Kudryashov, Dmitri; Kosak, Steven T; Gottardi, Cara J; de Lanerolle, Primal

    2016-09-15

    Actin is abundant in the nucleus and it is clear that nuclear actin has important functions. However, mystery surrounds the absence of classical actin filaments in the nucleus. To address this question, we investigated how polymerizing nuclear actin into persistent nuclear actin filaments affected transcription by RNA polymerase II. Nuclear filaments impaired nuclear actin dynamics by polymerizing and sequestering nuclear actin. Polymerizing actin into stable nuclear filaments disrupted the interaction of actin with RNA polymerase II and correlated with impaired RNA polymerase II localization, dynamics, gene recruitment, and reduced global transcription and cell proliferation. Polymerizing and crosslinking nuclear actin in vitro similarly disrupted the actin-RNA-polymerase-II interaction and inhibited transcription. These data rationalize the general absence of stable actin filaments in mammalian somatic nuclei. They also suggest a dynamic pool of nuclear actin is required for the proper localization and activity of RNA polymerase II.

  10. RNA Interference Induced by the Cationic Lipid Delivery of siRNA

    NASA Astrophysics Data System (ADS)

    Bouxsein, Nathan

    2005-03-01

    Recent discoveries demonstrate that the introduction of synthetically prepared duplexes of 19-21 bp short interfering RNAs (siRNA) into mammalian cells results in the cleavage of target mRNA leading to post transcriptional gene silencing [1]. Our work focuses on the cationic-lipid (CL) mediated delivery of siRNA into mammalian cell lines in an approach similar to CL based gene delivery [2]. Co-transfection of a target and a non-target reporter plasmid followed by the CL delivery of a sequence specific siRNA allows us to probe the silencing efficiency (SE) of the target plasmid relative to non-specific silencing of both plasmids. We have created a phase diagram for SE as a function of the complex membrane charge density and as a function of the CL:siRNA charge ratio. X-ray diffraction was performed to probe the structure of the complexes at points along the phase diagram. Funding provided by NIH AI-12520, AI-20611 and GM-59288. [1] Elbashir et. al., Nature, 411 494-498 (2001) [2] Ewert et. al., Curr. Med. Chem. 11 133-149 (2004)

  11. Selective Inhibition and Naming Performance in Semantic Blocking, Picture-Word Interference, and Color-Word Stroop Tasks

    ERIC Educational Resources Information Center

    Shao, Zeshu; Roelofs, Ardi; Martin, Randi C.; Meyer, Antje S.

    2015-01-01

    In 2 studies, we examined whether explicit distractors are necessary and sufficient to evoke selective inhibition in 3 naming tasks: the semantic blocking, picture-word interference, and color-word Stroop task. Delta plots were used to quantify the size of the interference effects as a function of reaction time (RT). Selective inhibition was…

  12. Androstenedione interferes in luteal regression by inhibiting apoptosis and stimulating progesterone production.

    PubMed

    Goyeneche, Alicia A; Calvo, Virginia; Gibori, Geula; Telleria, Carlos M

    2002-05-01

    Androgens, in concert with lactogenic hormones, contribute to the maintenance of function of the corpus luteum (CL) in pregnant rats. Whereas some of the androgenic actions in the CL are clearly mediated by intracrine conversion to estrogen, pure androgenic effects are also implicated in the regulation of this transient endocrine gland. In this report, we have established, to our knowledge for the first time, the expression of androgen receptor (AR) mRNA and protein throughout gestation in the rat CL. We have found that the AR remains expressed in the CL of gestation on Day 4 postpartum and becomes expressed in the newly formed CL after postpartum ovulation. An AR immunoreactive protein was identified in the CL of pregnancy as well as in prostate and epididymis, which were used as positive controls. The luteal AR protein had mainly nuclear localization, yet some diffuse cytoplasmic staining was also observed. Moreover, we have established that androstenedione, the main circulating androgen in pregnant rats, significantly reduces the decline in luteal weight observed during postpartum structural regression. This effect was correlated with a decrease in the number of cells undergoing apoptosis and with enhanced levels of circulating progesterone. In addition, in vivo administration of androstenedione delayed the occurrence of DNA fragmentation in postpartum CL incubated in serum-free conditions. Finally, we have shown that the interference with apoptosis in vitro elicited by androstenedione is accompanied by an increased capacity of the CL to secrete progesterone. In summary, the results of this study have established that the rat CL expresses AR throughout pregnancy and after parturition, and they have defined a potential role for androstenedione in opposing postpartum luteal regression through inhibition of apoptosis and stimulation of progesterone production.

  13. RNA interference in parasitic helminths: current situation, potential pitfalls and future prospects.

    PubMed

    Geldhof, P; Visser, A; Clark, D; Saunders, G; Britton, C; Gilleard, J; Berriman, M; Knox, D

    2007-05-01

    RNA interference (RNAi) has become an invaluable tool for the functional analysis of genes in a wide variety of organisms including the free-living nematode Caenorhabditis elegans. Recently, attempts have been made to apply this technology to parasitic helminths of animals and plants with variable success. Gene knockdown has been reported for Schistosoma mansoni by soaking or electroporating different life-stages in dsRNA. Similar approaches have been tested on parasitic nematodes which clearly showed that, under certain conditions, it was possible to interfere with gene expression. However, despite these successes, the current utility of this technology in parasite research is questionable. First, problems have arisen with the specificity of RNAi. Treatment of the parasites with dsRNA resulted, in many cases, in non-specific effects. Second, the current RNAi methods have a limited efficiency and effects are sometimes difficult to reproduce. This was especially the case in strongylid parasites where only a small number of genes were susceptible to RNAi-mediated gene knockdown. The future application of RNAi in parasite functional genomics will greatly depend on how we can overcome these difficulties. Optimization of the dsRNA delivery methods and in vitro culture conditions will be the major challenges. PMID:17201997

  14. Alfalfa dwarf cytorhabdovirus P protein is a local and systemic RNA silencing supressor which inhibits programmed RISC activity and prevents transitive amplification of RNA silencing.

    PubMed

    Bejerman, Nicolás; Mann, Krin S; Dietzgen, Ralf G

    2016-09-15

    Plants employ RNA silencing as an innate defense mechanism against viruses. As a counter-defense, plant viruses have evolved to express RNA silencing suppressor proteins (RSS), which target one or more steps of the silencing pathway. In this study, we show that the phosphoprotein (P) encoded by the negative-sense RNA virus alfalfa dwarf virus (ADV), a species of the genus Cytorhabdovirus, family Rhabdoviridae, is a suppressor of RNA silencing. ADV P has a relatively weak local RSS activity, and does not prevent siRNA accumulation. On the other hand, ADV P strongly suppresses systemic RNA silencing, but does not interfere with the short-distance spread of silencing, which is consistent with its lack of inhibition of siRNA accumulation. The mechanism of suppression appears to involve ADV P binding to RNA-induced silencing complex proteins AGO1 and AGO4 as shown in protein-protein interaction assays when ectopically expressed. In planta, we demonstrate that ADV P likely functions by inhibiting miRNA-guided AGO1 cleavage and prevents transitive amplification by repressing the production of secondary siRNAs. As recently described for lettuce necrotic yellows cytorhabdovirus P, but in contrast to other viral RSS known to disrupt AGO activity, ADV P sequence does not contain any recognizable GW/WG or F-box motifs, which suggests that cytorhabdovirus P proteins may use alternative motifs to bind to AGO proteins.

  15. Alfalfa dwarf cytorhabdovirus P protein is a local and systemic RNA silencing supressor which inhibits programmed RISC activity and prevents transitive amplification of RNA silencing.

    PubMed

    Bejerman, Nicolás; Mann, Krin S; Dietzgen, Ralf G

    2016-09-15

    Plants employ RNA silencing as an innate defense mechanism against viruses. As a counter-defense, plant viruses have evolved to express RNA silencing suppressor proteins (RSS), which target one or more steps of the silencing pathway. In this study, we show that the phosphoprotein (P) encoded by the negative-sense RNA virus alfalfa dwarf virus (ADV), a species of the genus Cytorhabdovirus, family Rhabdoviridae, is a suppressor of RNA silencing. ADV P has a relatively weak local RSS activity, and does not prevent siRNA accumulation. On the other hand, ADV P strongly suppresses systemic RNA silencing, but does not interfere with the short-distance spread of silencing, which is consistent with its lack of inhibition of siRNA accumulation. The mechanism of suppression appears to involve ADV P binding to RNA-induced silencing complex proteins AGO1 and AGO4 as shown in protein-protein interaction assays when ectopically expressed. In planta, we demonstrate that ADV P likely functions by inhibiting miRNA-guided AGO1 cleavage and prevents transitive amplification by repressing the production of secondary siRNAs. As recently described for lettuce necrotic yellows cytorhabdovirus P, but in contrast to other viral RSS known to disrupt AGO activity, ADV P sequence does not contain any recognizable GW/WG or F-box motifs, which suggests that cytorhabdovirus P proteins may use alternative motifs to bind to AGO proteins. PMID:27543392

  16. Inhibition of DNA-dependent RNA synthesis by 8-methoxypsoralen.

    PubMed

    Gniazdowski, M; Czyz, M; Wilmańska, D; Studzian, K; Frasunek, M; Płucienniczak, A; Szmigiero, L

    1988-09-01

    The effect of the photobinding of 8-methoxypsoralen to phage T7 DNA on different steps of RNA synthesis in vitro was assayed. Total RNA synthesis is reduced to a few percent and the transcript size is decreased, as shown by means of gel filtration on a Sepharose 4B column when DNA of the adduct content of six drug molecules per 10(3) nucleotides is used. The initiation of RNA chains seems to be less affected, as inferred from an abortive initiation assay. Synthesis of pppApU on DNA of the same adduct content is inhibited to 34% of the corresponding controls, while the overall RNA synthesis is inhibited to 6%. The amount of the enzyme needed for maximal retention of DNA, the kinetics of its binding and the decay of the polymerase-DNA complex at high ionic strength (or on decrease of the temperature) are similar with DNA either irradiated in the absence of the drug or DNA bearing six 8-methoxypsoralen molecules per 10(3) nucleotides. It is concluded from this study that 8-methoxypsoralen partially inhibits initiation and blocks movement of RNA polymerase along the template, inducing premature termination. It does not appear to influence the binding of the enzyme to DNA. PMID:3048406

  17. In Vitro Gene Silencing of the Fish Microsporidian Heterosporis saurida by RNA Interference

    PubMed Central

    Kumar, Gokhlesh; Abdel-Baki, Abdel-Azeem; Dkhil, Mohamed A.; El-Matbouli, Mansour; Al-Quraishy, Saleh

    2016-01-01

    Heterosporis saurida, a microsporidian parasite of lizardfish, Saurida undosquamis, causes severe economic losses in marine aquaculture. Among the novel approaches being explored for treatment of parasitic infections in aquaculture is small interfering RNA molecules. The aim of the present study was to investigate the efficiency of using siRNA to knock down expression of specific genes of H. saurida in vitro. For this purpose, siRNAs specific for ATP/ADP antiporter 1 and methionine aminopeptidase II genes were designed and tested using a previously developed in vitro cultivation model. Silencing of H. saurida target genes was assessed and the efficacy of using siRNA for inhibition of gene expression was measured by quantitative real-time polymerase chain reaction (PCR). Silencing of ATP/ADP antiporter 1 or methionine aminopeptidase II by siRNA reduced H. saurida infection levels in EK-1 cells 40% and 60%, respectively, as measured by qRT-PCR and spore counts. Combined siRNA treatment of both ATP/ADP antiporter 1 and methionine aminopeptidase II siRNAs was more effective against H. saurida infection as seen by the 16S rRNA level and spore counts. Our study concluded that siRNA could be used to advance development of novel approaches to inhibit H. saurida and provide an alternative approach to combat microsporidia. PMID:27228357

  18. Recombinant AAV as a Platform for Translating the Therapeutic Potential of RNA Interference

    PubMed Central

    Borel, Florie; Kay, Mark A; Mueller, Christian

    2014-01-01

    RNA interference has become a ubiquitous biological tool, and is being harnessed for therapeutic purposes as well. Therapeutic posttranscriptional gene silencing takes advantage of the endogenous RNAi pathway through delivery of either chemically synthesized siRNAs, or transgenes expressing hairpin-based inhibitory RNAs (e.g., shRNAs and artificial miRNAs). RNAi has expanded the field of viral gene therapy from gene replacement to gene knockdown. Here, we review various noncoding RNAs such as shRNAs, miRNAs, and miRNA decoys which can be utilized for therapeutic applications when expressed from recombinant adeno-associated vectors (AAV), and present examples of their basic design. In addition the basis of exploiting cellular miRNA profiles for detargeting AAV expression from specific cells is described. Finally, an overview of AAV-mediated RNAi preclinical studies is presented, and current RNAi-based clinical trials are reviewed. PMID:24352214

  19. Selective inhibition and naming performance in semantic blocking, picture-word interference, and color-word Stroop tasks.

    PubMed

    Shao, Zeshu; Roelofs, Ardi; Martin, Randi C; Meyer, Antje S

    2015-11-01

    In 2 studies, we examined whether explicit distractors are necessary and sufficient to evoke selective inhibition in 3 naming tasks: the semantic blocking, picture-word interference, and color-word Stroop task. Delta plots were used to quantify the size of the interference effects as a function of reaction time (RT). Selective inhibition was operationalized as the decrease in the size of the interference effect as a function of naming RT. For all naming tasks, mean naming RTs were significantly longer in the interference condition than in the control condition. The slopes of the interference effects for the longest naming RTs correlated with the magnitude of the mean interference effect in both the semantic blocking task and the picture-word interference task, suggesting that selective inhibition was involved to reduce the interference from strong semantic competitors either invoked by a single explicit competitor or strong implicit competitors in picture naming. However, there was no correlation between the slopes and the mean interference effect in the Stroop task, suggesting less importance of selective inhibition in this task despite explicit distractors. Whereas the results of the semantic blocking task suggest that an explicit distractor is not necessary for triggering inhibition, the results of the Stroop task suggest that such a distractor is not sufficient for evoking inhibition either. PMID:26030631

  20. Selective inhibition and naming performance in semantic blocking, picture-word interference, and color-word Stroop tasks.

    PubMed

    Shao, Zeshu; Roelofs, Ardi; Martin, Randi C; Meyer, Antje S

    2015-11-01

    In 2 studies, we examined whether explicit distractors are necessary and sufficient to evoke selective inhibition in 3 naming tasks: the semantic blocking, picture-word interference, and color-word Stroop task. Delta plots were used to quantify the size of the interference effects as a function of reaction time (RT). Selective inhibition was operationalized as the decrease in the size of the interference effect as a function of naming RT. For all naming tasks, mean naming RTs were significantly longer in the interference condition than in the control condition. The slopes of the interference effects for the longest naming RTs correlated with the magnitude of the mean interference effect in both the semantic blocking task and the picture-word interference task, suggesting that selective inhibition was involved to reduce the interference from strong semantic competitors either invoked by a single explicit competitor or strong implicit competitors in picture naming. However, there was no correlation between the slopes and the mean interference effect in the Stroop task, suggesting less importance of selective inhibition in this task despite explicit distractors. Whereas the results of the semantic blocking task suggest that an explicit distractor is not necessary for triggering inhibition, the results of the Stroop task suggest that such a distractor is not sufficient for evoking inhibition either.

  1. Disruption of amylase genes by RNA interference affects reproduction in the Pacific oyster Crassostrea gigas.

    PubMed

    Huvet, Arnaud; Béguel, Jean-Philippe; Cavaleiro, Nathalia Pereira; Thomas, Yoann; Quillien, Virgile; Boudry, Pierre; Alunno-Bruscia, Marianne; Fabioux, Caroline

    2015-06-01

    Feeding strategies and digestive capacities can have important implications for variation in energetic pathways associated with ecological and economically important traits, such as growth or reproduction in bivalve species. Here, we investigated the role of amylase in the digestive processes of Crassostrea gigas, using in vivo RNA interference. This approach also allowed us to investigate the relationship between energy intake by feeding and gametogenesis in oysters. Double-stranded (ds)RNA designed to target the two α-amylase genes A and B was injected in vivo into the visceral mass of oysters at two doses. These treatments caused significant reductions in mean mRNA levels of the amylase genes: -50.7% and -59% mRNA A, and -71.9% and -70.6% mRNA B in 15 and 75 µg dsRNA-injected oysters, respectively, relative to controls. Interestingly, reproductive knock-down phenotypes were observed for both sexes at 48 days post-injection, with a significant reduction of the gonad area (-22.5% relative to controls) and germ cell under-proliferation revealed by histology. In response to the higher dose of dsRNA, we also observed reductions in amylase activity (-53%) and absorption efficiency (-5%). Based on these data, dynamic energy budget modeling showed that the limitation of energy intake by feeding that was induced by injection of amylase dsRNA was insufficient to affect gonadic development at the level observed in the present study. This finding suggests that other driving mechanisms, such as endogenous hormonal modulation, might significantly change energy allocation to reproduction, and increase the maintenance rate in oysters in response to dsRNA injection.

  2. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy

    PubMed Central

    Bisset, Darren R.; Stepniak-Konieczna, Ewa A.; Zavaljevski, Maja; Wei, Jessica; Carter, Gregory T.; Weiss, Michael D.; Chamberlain, Joel R.

    2015-01-01

    RNA interference (RNAi) offers a promising therapeutic approach for dominant genetic disorders that involve gain-of-function mechanisms. One candidate disease for RNAi therapy application is myotonic dystrophy type 1 (DM1), which results from toxicity of a mutant mRNA. DM1 is caused by expansion of a CTG repeat in the 3′ UTR of the DMPK gene. The expression of DMPK mRNA containing an expanded CUG repeat (CUGexp) leads to defects in RNA biogenesis and turnover. We designed miRNA-based RNAi hairpins to target the CUGexp mRNA in the human α-skeletal muscle actin long-repeat (HSALR) mouse model of DM1. RNAi expression cassettes were delivered to HSALR mice using recombinant adeno-associated viral (rAAV) vectors injected intravenously as a route to systemic gene therapy. Vector delivery significantly reduced disease pathology in muscles of the HSALR mice, including a reduction in the CUGexp mRNA, a reduction in myotonic discharges, a shift toward adult pre-mRNA splicing patterns, reduced myofiber hypertrophy and a decrease in myonuclear foci containing the CUGexp mRNA. Significant reversal of hallmarks of DM1 in the rAAV RNAi-treated HSALR mice indicate that defects characteristic of DM1 can be mitigated with a systemic RNAi approach targeting the nuclei of terminally differentiated myofibers. Efficient rAAV-mediated delivery of RNAi has the potential to provide a long-term therapy for DM1 and other dominant muscular dystrophies. PMID:26082468

  3. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference.

    PubMed

    Murphy, Katherine A; Tabuloc, Christine A; Cervantes, Kevin R; Chiu, Joanna C

    2016-01-01

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest. PMID:26931800

  4. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti.

    PubMed

    Franz, Alexander W E; Sanchez-Vargas, Irma; Adelman, Zach N; Blair, Carol D; Beaty, Barry J; James, Anthony A; Olson, Ken E

    2006-03-14

    Mosquitoes (Aedes aegypti) were genetically modified to exhibit impaired vector competence for dengue type 2 viruses (DENV-2). We exploited the natural antiviral RNA interference (RNAi) pathway in the mosquito midgut by constructing an effector gene that expresses an inverted-repeat (IR) RNA derived from the premembrane protein coding region of the DENV-2 RNA genome. The A. aegypti carboxypeptidase A promoter was used to express the IR RNA in midgut epithelial cells after ingestion of a bloodmeal. The promoter and effector gene were inserted into the genome of a white-eye Puerto Rico Rexville D (Higgs' white eye) strain by using the nonautonomous mariner MosI transformation system. A transgenic family, Carb77, expressed IR RNA in the midgut after a bloodmeal. Carb77 mosquitoes ingesting an artificial bloodmeal containing DENV-2 exhibited marked reduction of viral envelope antigen in midguts and salivary glands after infection. DENV-2 titration of individual mosquitoes showed that most Carb77 mosquitoes poorly supported virus replication. Transmission in vitro of virus from the Carb77 line was significantly diminished when compared to control mosquitoes. The presence of DENV-2-derived siRNAs in RNA extracts from midguts of Carb77 and the loss of the resistance phenotype when the RNAi pathway was interrupted proved that DENV-2 resistance was caused by a RNAi response. Engineering of transgenic A. aegypti that show a high level of resistance against DENV-2 provides a powerful tool for developing population replacement strategies to control transmission of dengue viruses.

  5. A simple "soaking method" for RNA interference in the planarian Dugesia japonica.

    PubMed

    Orii, Hidefumi; Mochii, Makoto; Watanabe, Kenji

    2003-04-01

    A simple method was developed for RNA interference (RNAi) in the planarian Dugesia japonica. The DjIFb ( Dugesia japonica intermediate filament b) gene was used to evaluate the effect of RNAi because both the cDNA and an antiserum against the gene product were available. After transverse cutting at the pre- and post-pharyngeal regions, the middle part of the body fragment was soaked in water containing double-stranded RNA (dsRNA) for about 5 h and then allowed to regenerate in water. On the 5th day of regeneration, little DjIFb protein was detected in the new tissues. When the worms were cut after soaking in dsRNA water, no RNAi effect was observed, suggesting that the dsRNA was introduced through the cut surface. A high concentration of dsRNA or repeated "cutting and soaking" resulted in more effective RNAi. This simple soaking method in combination with expressed sequence tag analysis should be very useful for high-throughput analyses of gene functions in planarian regeneration.

  6. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference

    PubMed Central

    Murphy, Katherine A.; Tabuloc, Christine A.; Cervantes, Kevin R.; Chiu, Joanna C.

    2016-01-01

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest. PMID:26931800

  7. Darwin's "Abominable Mystery": the role of RNA interference in the evolution of flowering plants.

    PubMed

    Cibrián-Jaramillo, A; Martienssen, R A

    2009-01-01

    Darwin was famously concerned that the sudden appearance and rapid diversification of flowering plants in the mid-Cretaceous could not have occurred by gradual change. Here, we review our attempts to resolve the relationships among the major seed plant groups, i.e., cycads, ginkgo, conifers, gnetophytes, and flowering plants, and to provide a pipeline in which these relationships can be used as a platform for identifying genes of functional importance in plant diversification. Using complete gene sets and unigenes from 16 plant species, genes with positive partitioned Bremer support at major nodes were used to identify overrepresented gene ontology (GO) terms. Posttranscriptional silencing via RNA interference (RNAi) was overrepresented at several major nodes, including between monocots and dicots during early angiosperm divergence. One of these genes, RNA-dependent RNA polymerase 6, is required for the biogenesis of trans-acting small interfering RNA (tasiRNA), confers heteroblasty and organ polarity, and restricts maternal specification of the germline. Processing of small RNA and transfer between neighboring cells underlies these roles and may have contributed to distinct mutant phenotypes in plants, and in particular in the early split of the monocots and eudicots. PMID:20508061

  8. Isolation and characterization of homologous TRBP cDNA for RNA interference in Penaeus monodon.

    PubMed

    Yang, Lishi; Li, Xiaolan; Huang, Jianhua; Zhou, Falin; Su, Tianfeng; Jiang, Shigui

    2013-02-01

    The transactivation response RNA-binding protein (TRBP) interacts with Dicer and binds to double-stranded RNA as a critical component of the RNA-induced silencing complex, which is a key complex in the RNA interference pathway. The full-length cDNA of TRBP from the tiger prawn, Penaeus monodon, (PmTRBP; 1548 bp long with a 1029 bp coding region) was isolated. The encoded polypeptide of 343 amino acids had a predicted molecular mass of 36.8 kDa. Sequence homology and phylogenetic analysis indicated that PmTRBP was evolutionarily closest to TRBP1 from Litopenaeus vannamei, with the three double-stranded RNA-binding motifs that were typical of the TRBP family. Tissue expression profile analysis by quantitative real-time reverse transcription polymerase chain reaction showed that PmTRBP1 was constitutively expressed in all the examined tissues, with a predominant expression in the lymphatic organs and with the weakest expression in the ovaries. Significantly upregulated PmTRBP1 expression was elicited by systemic injections of Staphylococcus aureus, Vibrio vulnificus, and white spot syndrome virus, thereby revealing its pathogen inducibility. Furthermore, exogenous viral nucleoside analogs (high-molecular-weight poly(I:C) dsRNAs as well as R484 single-stranded RNA) were remarkably induced PmTRBP1 transcription at 48 h and 9 h post-injection, respectively, which suggested that PmTRBP1 might function in tiger prawn antibacterial and antiviral response.

  9. Response Inhibition and Interference Control in Obsessive–Compulsive Spectrum Disorders

    PubMed Central

    van Velzen, Laura S.; Vriend, Chris; de Wit, Stella J.; van den Heuvel, Odile A.

    2014-01-01

    Over the past 20 years, motor response inhibition and interference control have received considerable scientific effort and attention, due to their important role in behavior and the development of neuropsychiatric disorders. Results of neuroimaging studies indicate that motor response inhibition and interference control are dependent on cortical–striatal–thalamic–cortical (CSTC) circuits. Structural and functional abnormalities within the CSTC circuits have been reported for many neuropsychiatric disorders, including obsessive–compulsive disorder (OCD) and related disorders, such as attention-deficit hyperactivity disorder, Tourette’s syndrome, and trichotillomania. These disorders also share impairments in motor response inhibition and interference control, which may underlie some of their behavioral and cognitive symptoms. Results of task-related neuroimaging studies on inhibitory functions in these disorders show that impaired task performance is related to altered recruitment of the CSTC circuits. Previous research has shown that inhibitory performance is dependent upon dopamine, noradrenaline, and serotonin signaling, neurotransmitters that have been implicated in the pathophysiology of these disorders. In this narrative review, we discuss the common and disorder-specific pathophysiological mechanisms of inhibition-related dysfunction in OCD and related disorders. PMID:24966828

  10. Inhibition of Plasmodium falciparum proliferation in vitro by double-stranded RNA nanoparticle against malaria topoisomerase II.

    PubMed

    Attasart, Pongsopee; Boonma, Siriwan; Sunintaboon, Panya; Tanwilai, Dolpawan; Pothikasikorn, Jinrapa; Noonpakdee, Wilai Tienrungroj

    2016-05-01

    The need to develop new effective antimalarial agents is urgent due to the rapid emergence of drug resistance to all current drugs by the most virulent human malaria parasite, Plasmodium falciparum. A promising avenue is in the development of antimalarials based on RNA interference targeting expression of malaria parasite vital genes, viz. DNA topoisomerase II gene (PfTOP2). Biodegradable chitosan nanoparticle system has proven to be effective in delivering DNA and small double-stranded interfering RNA to target cells. We have employed a long double-stranded (dsRNA) targeting the coding region of PfTOP2 that is complexed with chitosan nanoparticles in order to interfere with the cognate mRNA expression and examined its effect on P. falciparum growth in culture. Exposure of ring stage-infected erythrocytes to 10 μg/ml PfTOP2 chitosan/dsRNA nanoparticles for 48 h resulted in 71% growth inhibition as determined by [(3)H] hypoxanthine incorporation and microscopic assays, compared with 41% inhibition using an equivalent amount of free PfTOP2 dsRNA or 12% with unrelated chitosan/dsRNA nanoparticles. This inhibition was shown to occur during maturation of trophozoite to schizont stages. RT-PCR analysis indicated 56% and 38% decrease in PfTOP2 transcript levels in P. falciparum trophozoites treated with PfTOP2 dsRNA nanoparticles and free PfTOP2 dsRNA respectively. These results suggest that chitosan-based nanoparticles might be a useful tool for delivering dsRNA into malaria parasites.

  11. Transgenic sugarcane resistant to Sorghum mosaic virus based on coat protein gene silencing by RNA interference.

    PubMed

    Guo, Jinlong; Gao, Shiwu; Lin, Qinliang; Wang, Hengbo; Que, Youxiong; Xu, Liping

    2015-01-01

    As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV) and/or Sorghum mosaic virus (SrMV), with additional differences in viral strains. RNA interference (RNAi) is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP) genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.

  12. Impaired cognitive inhibition in schizophrenia: a meta-analysis of the Stroop interference effect.

    PubMed

    Westerhausen, René; Kompus, Kristiina; Hugdahl, Kenneth

    2011-12-01

    Schizophrenia has been consistently shown to be associated with impairment in executive functioning. However, although frequently treated as such, the term executive functioning does not refer to a unitary cognitive function; it rather represents a set of basic, lower-level cognitive sub-components, e.g. updating, shifting, and cognitive inhibition. This specification into sub-components allows for a further differentiation of the executive deficits found in schizophrenia. Focusing on the sub-component of cognitive inhibition, we here present a meta-analysis of interference effect as assessed with the Stroop Color-Word Interference paradigm. Including the results of 36 studies with 1081 schizophrenia patients and 1026 healthy control subjects, it was shown that schizophrenia patients exhibit an increased Stroop interference effect both in response time (mean effect size: M(g) = 0.43; 95% confidence interval, CI95%: 0.35-0.52) and accuracy (M(g) = 0.62; CI95%: 0.47-0.77) measures of interference. However, a meta-regression analysis revealed that the size of the effect varies depending on the version of the Stroop paradigm used. Regarding the response time measures of interference, studies using the classical card version of the paradigm showed a significantly larger effect size than studies using a single-trial computerized version of the paradigm (M(g) = 0.60 vs. M(g) = 0.19). Despite of the dissociation between the two versions of the paradigm, the results of the present meta-analysis indicate that the reported global deficits in executive functioning found to be associated with schizophrenia are at least partly due to a reduced ability of cognitive inhibition.

  13. Delivery of small interfering RNA for inhibition of endothelial cell apoptosis by hypoxia and serum deprivation

    SciTech Connect

    Cho, Seung-Woo; Hartle, Lauren; Son, Sun Mi; Yang, Fan; Goldberg, Michael; Xu, Qiaobing; Langer, Robert; Anderson, Daniel G.

    2008-11-07

    RNA interference (RNAi) for anti-angiogenic or pro-apoptotic factors in endothelial cells (ECs) has great potential for the treatment of ischemic diseases by promoting angiogenesis or inhibiting apoptosis. Here, we report the utility of small interfering RNA (siRNA) in inhibiting EC apoptosis induced by tumor necrosis factor-{alpha} (TNF-{alpha}). siRNA was designed and synthesized targeting tumor necrosis factor-{alpha} receptor-1 (TNFR-1) and Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1). Human umbilical vein endothelial cells (HUVECs) were cultured under in vitro hypoxic and serum-deprived conditions to simulate in vivo ischemic conditions. Two days after liposomal delivery of siRNA targeting TNFR-1 and SHP-1, significant silencing of each target (TNFR-1; 76.5% and SHP-1; 97.2%) was detected. Under serum-deprived hypoxic (1% oxygen) conditions, TNF-{alpha} expression in HUVECs increased relative to normoxic (20% oxygen) and serum-containing conditions. Despite enhanced TNF-{alpha} expression, suppression of TNFR-1 or SHP-1 by siRNA delivery not only enhanced expression of angiogenic factors (KDR/Flk-1 and eNOS) and anti-apoptotic factor (Bcl-xL) but also reduced expression of a pro-apoptotic factor (Bax). Transfection of TNFR-1 or SHP-1 siRNA significantly decreased the HUVEC apoptosis while significantly enhancing HUVEC proliferation and capillary formation. The present study demonstrates that TNFR-1 and SHP-1 may be useful targets for the treatment of myocardial or hindlimb ischemia.

  14. GENE SILENCING BY PARENTAL RNA INTERFERENCE IN THE GREEN RICE LEAFHOPPER, Nephotettix cincticeps (HEMIPTERA: CICADELLIDAE).

    PubMed

    Matsumoto, Yukiko; Hattori, Makoto

    2016-03-01

    RNA interference (RNAi) has been widely used for investigating gene function in many nonmodel insect species. Parental RNAi causes gene knockdown in the next generation through the administration of double-strand RNA (dsRNA) to the mother generation. In this study, we demonstrate that parental RNAi mediated gene silencing is effective in determining the gene function of the cuticle and the salivary glands in green rice leafhopper (GRH), Nephotettix cincticeps (Uhler). Injection of dsRNA of NcLac2 (9 ng/female) to female parents caused a strong knockdown of laccase-2 gene of first instar nymphs, which eventually led to high mortality rates and depigmentation of side lines on the body. The effects of parental RNAi on the mortality of the nymphs were maintained through 12-14 days after the injections. We also confirmed the effectiveness of parental RNAi induced silencing on the gene expressed in the salivary gland, the gene product of which is passed from instar to instar. The parental RNAi method can be used to examine gene function by phenotyping many offspring nymphs with injection of dsRNA into a small number of parent females, and may be applicable to high-efficiency determination of gene functions in this species. PMID:26728387

  15. Enzymatic synthesis and RNA interference of nucleosides incorporating stable isotopes into a base moiety.

    PubMed

    Hatano, Akihiko; Shiraishi, Mitsuya; Terado, Nanae; Tanabe, Atsuhiro; Fukuda, Kenji

    2015-10-15

    Thymidine phosphorylase was used to catalyze the conversion of thymidine (or methyluridine) and uracil incorporating stable isotopes to deoxyuridine (or uridine) with the uracil base incorporating the stable isotope. These base-exchange reactions proceeded with high conversion rates (75-96%), and the isolated yields were also good (64-87%). The masses of all synthetic compounds incorporating stable isotopes were identical to the theoretical molecular weights via EIMS. (13)C NMR spectra showed spin-spin coupling between (13)C and (15)N in the synthetic compounds, and the signals were split, further proving incorporation of the isotopes into the compounds. The RNA interference effects of this siRNA with uridine incorporating stable isotopes were also investigated. A 25mer siRNA had a strong knockdown effect on the MARCKS protein. The insertion position and number of uridine moieties incorporating stable isotopes introduced into the siRNA had no influence on the silencing of the target protein. This incorporation of stable isotopes into RNA and DNA has the potential to function as a chemically benign tracer in cells.

  16. Evolutionarily conserved roles of the dicer helicase domain in regulating RNA interference processing.

    PubMed

    Kidwell, Mary Anne; Chan, Jessica M; Doudna, Jennifer A

    2014-10-10

    The enzyme Dicer generates 21-25 nucleotide RNAs that target specific mRNAs for silencing during RNA interference and related pathways. Although their active sites and RNA binding regions are functionally conserved, the helicase domains have distinct activities in the context of different Dicer enzymes. To examine the evolutionary origins of Dicer helicase functions, we investigated two related Dicer enzymes from the thermophilic fungus Sporotrichum thermophile. RNA cleavage assays showed that S. thermophile Dicer-1 (StDicer-1) can process hairpin precursor microRNAs, whereas StDicer-2 can only cleave linear double-stranded RNAs. Furthermore, only StDicer-2 possesses robust ATP hydrolytic activity in the presence of double-stranded RNA. Deletion of the StDicer-2 helicase domain increases both StDicer-2 cleavage activity and affinity for hairpin RNA. Notably, both StDicer-1 and StDicer-2 could complement the distantly related yeast Schizosaccharomyces pombe lacking its endogenous Dicer gene but only in their full-length forms, underscoring the importance of the helicase domain. These results suggest an in vivo regulatory function for the helicase domain that may be conserved from fungi to humans. PMID:25135636

  17. Evolutionarily Conserved Roles of the Dicer Helicase Domain in Regulating RNA Interference Processing*

    PubMed Central

    Kidwell, Mary Anne; Chan, Jessica M.; Doudna, Jennifer A.

    2014-01-01

    The enzyme Dicer generates 21–25 nucleotide RNAs that target specific mRNAs for silencing during RNA interference and related pathways. Although their active sites and RNA binding regions are functionally conserved, the helicase domains have distinct activities in the context of different Dicer enzymes. To examine the evolutionary origins of Dicer helicase functions, we investigated two related Dicer enzymes from the thermophilic fungus Sporotrichum thermophile. RNA cleavage assays showed that S. thermophile Dicer-1 (StDicer-1) can process hairpin precursor microRNAs, whereas StDicer-2 can only cleave linear double-stranded RNAs. Furthermore, only StDicer-2 possesses robust ATP hydrolytic activity in the presence of double-stranded RNA. Deletion of the StDicer-2 helicase domain increases both StDicer-2 cleavage activity and affinity for hairpin RNA. Notably, both StDicer-1 and StDicer-2 could complement the distantly related yeast Schizosaccharomyces pombe lacking its endogenous Dicer gene but only in their full-length forms, underscoring the importance of the helicase domain. These results suggest an in vivo regulatory function for the helicase domain that may be conserved from fungi to humans. PMID:25135636

  18. GENE SILENCING BY PARENTAL RNA INTERFERENCE IN THE GREEN RICE LEAFHOPPER, Nephotettix cincticeps (HEMIPTERA: CICADELLIDAE).

    PubMed

    Matsumoto, Yukiko; Hattori, Makoto

    2016-03-01

    RNA interference (RNAi) has been widely used for investigating gene function in many nonmodel insect species. Parental RNAi causes gene knockdown in the next generation through the administration of double-strand RNA (dsRNA) to the mother generation. In this study, we demonstrate that parental RNAi mediated gene silencing is effective in determining the gene function of the cuticle and the salivary glands in green rice leafhopper (GRH), Nephotettix cincticeps (Uhler). Injection of dsRNA of NcLac2 (9 ng/female) to female parents caused a strong knockdown of laccase-2 gene of first instar nymphs, which eventually led to high mortality rates and depigmentation of side lines on the body. The effects of parental RNAi on the mortality of the nymphs were maintained through 12-14 days after the injections. We also confirmed the effectiveness of parental RNAi induced silencing on the gene expressed in the salivary gland, the gene product of which is passed from instar to instar. The parental RNAi method can be used to examine gene function by phenotyping many offspring nymphs with injection of dsRNA into a small number of parent females, and may be applicable to high-efficiency determination of gene functions in this species.

  19. Statistical Methods for Analysis of High-Throughput RNA Interference Screens

    PubMed Central

    Birmingham, Amanda; Selfors, Laura M.; Forster, Thorsten; Wrobel, David; Kennedy, Caleb J.; Shanks, Emma; Santoyo-Lopez, Javier; Dunican, Dara J.; Long, Aideen; Kelleher, Dermot; Smith, Queta; Beijersbergen, Roderick L.; Ghazal, Peter; Shamu, Caroline E.

    2009-01-01

    RNA interference (RNAi) has become a powerful technique for reverse genetics and drug discovery and, in both of these areas, large-scale high-throughput RNAi screens are commonly performed. The statistical techniques used to analyze these screens are frequently borrowed directly from small-molecule screening; however small-molecule and RNAi data characteristics differ in meaningful ways. We examine the similarities and differences between RNAi and small-molecule screens, highlighting particular characteristics of RNAi screen data that must be addressed during analysis. Additionally, we provide guidance on selection of analysis techniques in the context of a sample workflow. PMID:19644458

  20. Design and Methods of Large-Scale RNA Interference Screens in Drosophila.

    PubMed

    Zhou, Jia; Tong, Chao

    2016-01-01

    Drosophila is an ideal model system for addressing important questions in biology. The use of RNA interference (RNAi) to knockdown gene expression in fly tissues is both very effective and relatively simple. In the past few decades, genome-wide UAS-RNAi transgenic libraries and thousands of Gal4 strains have been generated and have facilitated large-scale in vivo RNAi screening. Here, we discuss methods for the design and performance of a large-scale in vivo RNAi screen in Drosophila. Furthermore, methods for the validation of results and analysis of data will be introduced. PMID:27581292

  1. Virus-Derived Gene Expression and RNA Interference Vector for Grapevine

    PubMed Central

    Kurth, Elizabeth G.; Peremyslov, Valera V.; Prokhnevsky, Alexey I.; Kasschau, Kristin D.; Miller, Marilyn; Carrington, James C.

    2012-01-01

    The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests. PMID:22438553

  2. Sleeping Beauty-mediated knockdown of sheep myostatin by RNA interference.

    PubMed

    Hu, Shengwei; Ni, Wei; Sai, Wujiafu; Zhang, Hui; Cao, Xudong; Qiao, Jun; Sheng, Jinliang; Guo, Fei; Chen, Chuangfu

    2011-10-01

    Myostatin is a negative regulator of skeletal muscle growth. Myostatin dysfunction therefore offers a strategy for promoting animal muscle growth in livestock production. Knockdown of myostatin was achieved by combining RNA interference and the Sleeping Beauty (SB) transposon system in sheep cells. Four targeting sites of sheep myostatin were designed and measured for myostatin silencing in sheep fetal fibroblasts by real-time PCR. The sh3 construct induced significant decrease of myostatin gene expression by 90% (P<0.05). Myostatin silencing induced by SB-mediated sh3 was further tested in stably transfected cells. SB transposition increased the integration frequency of genes into sheep genomes and mediated a more efficient myostatin knockdown than random integration of sh3. We suggest that SB-mediated shRNA provides a novel potential tool for gene knockdown in the donor cells of animal cloning. PMID:21698446

  3. Virus-derived gene expression and RNA interference vector for grapevine.

    PubMed

    Kurth, Elizabeth G; Peremyslov, Valera V; Prokhnevsky, Alexey I; Kasschau, Kristin D; Miller, Marilyn; Carrington, James C; Dolja, Valerian V

    2012-06-01

    The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests.

  4. Construction of an artificial MicroRNA expression vector for simultaneous inhibition of multiple genes in mammalian cells.

    PubMed

    Hu, Tao; Fu, Qiong; Chen, Ping; Ma, Li; Sin, Onsam; Guo, Deyin

    2009-05-14

    Recently, artificial microRNA (amiRNA) has become a promising RNA interference (RNAi) technology. Here, we describe a flexible and reliable method for constructing both single- and multi-amiRNA expression vectors. Two universal primers, together with two specific primers carrying the encoding sequence of amiRNA were designed and utilized to synthesize the functional amiRNA cassette through a one-step PCR. With appropriate restriction sites, the synthesized amiRNA cassettes can be cloned into any site of different destination vectors. Using the method, we constructed both single- and multi-amiRNA expression vectors to target three reporter genes, which code firefly luciferase (Fluc), enhanced green fluorescent protein (EGFP) and beta-galactosidase (LacZ), respectively. The expressions of three genes were all specifically inhibited by either the corresponding single- or the multi-amiRNA expression vector in 293T cells. And the RNAi efficiency of each amiRNA produced by both single- and multi-amiRNA expression vectors was comparable.

  5. RNA interference can be used to disrupt gene function in tardigrades

    PubMed Central

    Tenlen, Jennifer R.; McCaskill, Shaina; Goldstein, Bob

    2012-01-01

    How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We show that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions, and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments. PMID:23187800

  6. A rapid and scalable system for studying gene function in mice using conditional RNA interference

    PubMed Central

    Premsrirut, Prem K.; Dow, Lukas E.; Kim, Sang Yong; Camiolo, Matthew; Malone, Colin D.; Miething, Cornelius; Scuoppo, Claudio; Zuber, Johannes; Dickins, Ross A.; Kogan, Scott C.; Shroyer, Kenneth R.; Sordella, Raffaella; Hannon, Gregory J.; Lowe, Scott W.

    2011-01-01

    Summary RNA interference is a powerful tool for studying gene function, however, the reproducible generation of RNAi transgenic mice remains a significant limitation. By combining optimized fluorescence-coupled miR30-based shRNAs with high efficiency ES cell targeting, we developed a fast, scalable pipeline for the production of shRNA transgenic mice. Using this system, we generated eight tet-regulated shRNA transgenic lines targeting Firefly and Renilla luciferases, Oct4 and tumor suppressors p53, p16INK4a, p19ARF and APC and demonstrate potent gene silencing and GFP-tracked knockdown in a broad range of tissues in vivo. Further, using an shRNA targeting APC, we illustrate how this approach can identify predicted phenotypes and also unknown functions for a well-studied gene. In addition, through regulated gene silencing we validate APC/Wnt and p19ARF as potential therapeutic targets in T cell acute lymphoblastic leukemia/lymphoma and lung adenocarcinoma, respectively. This system provides a cost-effective and scalable platform for the production of RNAi transgenic mice targeting any mammalian gene. PMID:21458673

  7. DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells

    PubMed Central

    Spike, Caroline A.; Bader, Jason; Reinke, Valerie; Strome, Susan

    2008-01-01

    P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs). PMID:18234720

  8. RNA interference can be used to disrupt gene function in tardigrades.

    PubMed

    Tenlen, Jennifer R; McCaskill, Shaina; Goldstein, Bob

    2013-05-01

    How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We showed that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments.

  9. RNA interference can be used to disrupt gene function in tardigrades.

    PubMed

    Tenlen, Jennifer R; McCaskill, Shaina; Goldstein, Bob

    2013-05-01

    How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We showed that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments. PMID:23187800

  10. Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNA-seq, RNA interference and irradiation approach

    PubMed Central

    2012-01-01

    Background Planarian stem cells, or neoblasts, drive the almost unlimited regeneration capacities of freshwater planarians. Neoblasts are traditionally described by their morphological features and by the fact that they are the only proliferative cell type in asexual planarians. Therefore, they can be specifically eliminated by irradiation. Irradiation, however, is likely to induce transcriptome-wide changes in gene expression that are not associated with neoblast ablation. This has affected the accurate description of their specific transcriptomic profile. Results We introduce the use of Smed-histone-2B RNA interference (RNAi) for genetic ablation of neoblast cells in Schmidtea mediterranea as an alternative to irradiation. We characterize the rapid, neoblast-specific phenotype induced by Smed-histone-2B RNAi, resulting in neoblast ablation. We compare and triangulate RNA-seq data after using both irradiation and Smed-histone-2B RNAi over a time course as means of neoblast ablation. Our analyses show that Smed-histone-2B RNAi eliminates neoblast gene expression with high specificity and discrimination from gene expression in other cellular compartments. We compile a high confidence list of genes downregulated by both irradiation and Smed-histone-2B RNAi and validate their expression in neoblast cells. Lastly, we analyze the overall expression profile of neoblast cells. Conclusions Our list of neoblast genes parallels their morphological features and is highly enriched for nuclear components, chromatin remodeling factors, RNA splicing factors, RNA granule components and the machinery of cell division. Our data reveal that the regulation of planarian stem cells relies on posttranscriptional regulatory mechanisms and suggest that planarians are an ideal model for this understudied aspect of stem cell biology. PMID:22439894

  11. Drosophila Dicer-2 has an RNA interference-independent function that modulates Toll immune signaling.

    PubMed

    Wang, Zhaowei; Wu, Di; Liu, Yongxiang; Xia, Xiaoling; Gong, Wanyun; Qiu, Yang; Yang, Jie; Zheng, Ya; Li, Jingjing; Wang, Yu-Feng; Xiang, Ye; Hu, Yuanyang; Zhou, Xi

    2015-10-01

    Dicer-2 is the central player for small interfering RNA biogenesis in the Drosophila RNA interference (RNAi) pathway. Intriguingly, we found that Dicer-2 has an unconventional RNAi-independent function that positively modulates Toll immune signaling, which defends against Gram-positive bacteria, fungi, and some viruses, in both cells and adult flies. The loss of Dicer-2 expression makes fruit flies more susceptible to fungal infection. We further revealed that Dicer-2 posttranscriptionally modulates Toll signaling because Dicer-2 is required for the proper expression of Toll protein but not for Toll protein stability or Toll mRNA transcription. Moreover, Dicer-2 directly binds to the 3' untranslated region (3'UTR) of Toll mRNA via its PAZ (Piwi/Argonaute/Zwille) domain and is required for protein translation mediated by Toll 3'UTR. The loss of Toll 3'UTR binding activity makes Dicer-2 incapable of promoting Toll signaling. These data indicate that the interaction between Dicer-2 and Toll mRNA plays a pivotal role in Toll immune signaling. In addition, we found that Dicer-2 is also required for the Toll signaling induced by two different RNA viruses in Drosophila cells. Consequently, our findings uncover a novel RNAi-independent function of Dicer-2 in the posttranscriptional regulation of Toll protein expression and signaling, indicate an unexpected intersection of the RNAi pathway and the Toll pathway, and provide new insights into Toll immune signaling, Drosophila Dicer-2, and probably Dicer and Dicer-related proteins in other organisms. PMID:26601278

  12. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis.

    PubMed

    Maciąg-Dorszyńska, Monika; Węgrzyn, Grzegorz; Guzow-Krzemińska, Beata

    2014-04-01

    Usnic acid, a compound produced by various lichen species, has been demonstrated previously to inhibit growth of different bacteria and fungi; however, mechanism of its antimicrobial activity remained unknown. In this report, we demonstrate that usnic acid causes rapid and strong inhibition of RNA and DNA synthesis in Gram-positive bacteria, represented by Bacillus subtilis and Staphylococcus aureus, while it does not inhibit production of macromolecules (DNA, RNA, and proteins) in Escherichia coli, which is resistant to even high doses of this compound. However, we also observed slight inhibition of RNA synthesis in a Gram-negative bacterium, Vibrio harveyi. Inhibition of protein synthesis in B. subtilis and S. aureus was delayed, which suggest indirect action (possibly through impairment of transcription) of usnic acid on translation. Interestingly, DNA synthesis was halted rapidly in B. subtilis and S. aureus, suggesting interference of usnic acid with elongation of DNA replication. We propose that inhibition of RNA synthesis may be a general mechanism of antibacterial action of usnic acid, with additional direct mechanisms, such as impairment of DNA replication in B. subtilis and S. aureus.

  13. Inhibition of Bacterial RNase P RNA by Phenothiazine Derivatives.

    PubMed

    Wu, Shiying; Mao, Guanzhong; Kirsebom, Leif A

    2016-01-01

    There is a need to identify novel scaffolds and targets to develop new antibiotics. Methylene blue is a phenothiazine derivative, and it has been shown to possess anti-malarial and anti-trypanosomal activities. Here, we show that different phenothiazine derivatives and pyronine G inhibited the activities of three structurally different bacterial RNase P RNAs (RPRs), including that from Mycobacterium tuberculosis, with Ki values in the lower μM range. Interestingly, three antipsychotic phenothiazines (chlorpromazine, thioridazine, and trifluoperazine), which are known to have antibacterial activities, also inhibited the activity of bacterial RPRs, albeit with higher Ki values than methylene blue. Phenothiazines also affected lead(II)-induced cleavage of bacterial RPR and inhibited yeast tRNA(Phe), indicating binding of these drugs to functionally important regions. Collectively, our findings provide the first experimental data showing that long, noncoding RNAs could be targeted by different phenothiazine derivatives. PMID:27618117

  14. Role of Halloween genes in ecdysteroids biosynthesis of the swimming crab (Portunus trituberculatus): Implications from RNA interference and eyestalk ablation.

    PubMed

    Xie, Xi; Liu, Zhiye; Liu, Mingxin; Tao, Tian; Shen, Xiquan; Zhu, Dongfa

    2016-09-01

    Molting, including metamorphosis molting in arthropods are controlled by the ecdysteroids that are synthesized and secreted by the crustacean Y-organ (YO) or the insect prothoracic gland (PG). The Halloween genes encoding the enzymes mainly involved in the biosynthesis of ecdysteroids are well studied in insects but not in crustaceans. Given the importance of Halloween genes in ecdysteroids biosynthesis, we have previously reported the cDNA cloning of disembodied (Dib) in P. trituberculatus. Here, cDNA sequences of another two Halloween genes, Spook (Spo) and Shadow (Sad), were further identified and characterized. The predicted amino acid sequences for these two Halloween genes of Portunus trituberculatus were compared to those of several other arthropods, and several typical domains of the cytochrome P450 mono-oxygenase (CYP) were identified. Similar to the tissue distribution of Dib, the Spo and Sad also showed high specificity to the YO. RNA interference (RNAi) of these 3 genes indicated they all play essential role in ecdysteroids biosynthesis. To investigate the relationships of the Halloween genes to the eyestalk neuropeptides such as molt-inhibiting hormone (MIH), effects of eyestalk ablation (ESA) on the expression of Dib, Spo and Sad were detected. Expression of Dib and Sad, but not Spo, was significantly induced by ESA. The result indicated that the inhibition of MIH in ecdysteroids biosynthesis may be partly through the transcriptional regulation of certain Halloween genes, such as Dib and Sad, while the Spo might not be the target for MIH signal. PMID:27267122

  15. Role of Halloween genes in ecdysteroids biosynthesis of the swimming crab (Portunus trituberculatus): Implications from RNA interference and eyestalk ablation.

    PubMed

    Xie, Xi; Liu, Zhiye; Liu, Mingxin; Tao, Tian; Shen, Xiquan; Zhu, Dongfa

    2016-09-01

    Molting, including metamorphosis molting in arthropods are controlled by the ecdysteroids that are synthesized and secreted by the crustacean Y-organ (YO) or the insect prothoracic gland (PG). The Halloween genes encoding the enzymes mainly involved in the biosynthesis of ecdysteroids are well studied in insects but not in crustaceans. Given the importance of Halloween genes in ecdysteroids biosynthesis, we have previously reported the cDNA cloning of disembodied (Dib) in P. trituberculatus. Here, cDNA sequences of another two Halloween genes, Spook (Spo) and Shadow (Sad), were further identified and characterized. The predicted amino acid sequences for these two Halloween genes of Portunus trituberculatus were compared to those of several other arthropods, and several typical domains of the cytochrome P450 mono-oxygenase (CYP) were identified. Similar to the tissue distribution of Dib, the Spo and Sad also showed high specificity to the YO. RNA interference (RNAi) of these 3 genes indicated they all play essential role in ecdysteroids biosynthesis. To investigate the relationships of the Halloween genes to the eyestalk neuropeptides such as molt-inhibiting hormone (MIH), effects of eyestalk ablation (ESA) on the expression of Dib, Spo and Sad were detected. Expression of Dib and Sad, but not Spo, was significantly induced by ESA. The result indicated that the inhibition of MIH in ecdysteroids biosynthesis may be partly through the transcriptional regulation of certain Halloween genes, such as Dib and Sad, while the Spo might not be the target for MIH signal.

  16. Cognitive inhibition and interference in dissociative identity disorder: the effects of anxiety on specific executive functions.

    PubMed

    Dorahy, Martin J; McCusker, Chris G; Loewenstein, Richard J; Colbert, Kimberly; Mulholland, Ciaran

    2006-05-01

    Using an experimentally based, computer-presented task, this study assessed cognitive inhibition and interference in individuals from the dissociative identity disorder (DID; n=12), generalized anxiety disorder (GAD; n=12) and non-clinical (n=12) populations. Participants were assessed in a neutral and emotionally negative (anxiety provoking) context, manipulated by experimental instructions and word stimuli. The DID sample displayed effective cognitive inhibition in the neutral but not the anxious context. The GAD sample displayed the opposite findings. However, the interaction between group and context failed to reach significance. There was no indication of an attentional bias to non-schema specific negative words in any sample. Results are discussed in terms of the potential benefit of weakened cognitive inhibition during anxious arousal in dissociative individuals.

  17. Inhibition of AGS Cancer Cell Proliferation following siRNA-Mediated Downregulation of VEGFR2

    PubMed Central

    Zarei Mahmudabadi, Ali; Masoomi Karimi, Masoomeh; Bahabadi, Majid; Bagheri Hoseinabadi, Zahra; JafariSani, Moslem; Ahmadi, Reza

    2016-01-01

    Objective Vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) play important roles in angiogenesis of different developmental mechanisms such as wound healing, embryogenesis and diseases, including different types of cancer. VEGFR2 is associated with cell proliferation, migration, and vascular permeability of endothelial cells. Blocking VEGF and its receptors is suggested as a therapeutic approach to prevent tumor growth. In this study, we aim to block VEGF signaling via small interfering RNA (siRNA) inhibition of VEGFR2. Materials and Methods In this experimental study, we used the RNA interference (RNAi) mechanism to suppress expression of the VEGFR2 gene. We conducted the 3-(4,5-di- methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, real-time polymerase chain reaction (PCR), Western blot, and flow cytometry analyses of VEGFR2 expression. Results Real-time PCR and Western blot results showed that VEGFR2 expression significantly downregulated. This suppression was followed by inhibition of cell prolifera- tion, reduction of viability, and induction of apoptosis in the cancer cells. Conclusion These findings suggest that VEGFR2 has a role in cell proliferation and tumor growth. Accordingly, it is suggested that VEGFR2 can be a therapeutic target for controlling tumor growth and proliferation. PMID:27602320

  18. Silencing Aurora-A with siRNA inhibits cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Zhong, Ning; Shi, Shunbin; Wang, Hongzhen; Wu, Guangzhou; Wang, Yunliang; Ma, Qiang; Wang, Hongwei; Liu, Yuanhua; Wang, Jinzhi

    2016-09-01

    Aurora kinase A (AURKA) is an oncogenic serine/threonine kinase, it plays important roles in tumorigenesis and chemoresistance. In this study, we investigated the expression of AURKA in lung adenocarcinoma tissues, the role of small interference RNA targeting AURKA on growth, cell cycle, and apoptosis of lung adenocarcinoma cell lines in vitro. The AURKA is highly expressed in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines. Lentivirus-mediated short hairpin RNA (shRNA) was used to knock down AURKA expression in human lung adenocarcinoma cell lines H1299 and A549. The results indicated that depletion of AURKA could inhibit cell growth, cause cell cycle arrest and apoptosis. The potential mechanisms of AURKA inhibition induced cell cycle arrest and apoptosis are associated with downregulated RAF-1, CCND2, CCND3, CDK4, PAK4, EGFR and upregulated WEE1 expression. Furthermore, AURKA knockdown cooperated with vincristine (VCR) to repress A549 cell proliferation. Therefore, AURKA plays important roles in the proliferation of human lung adenocarcinoma cells, which suggests that AURKA could be a promising tool for lung adenocarcinoma therapy. PMID:27571708

  19. Inhibition of AGS Cancer Cell Proliferation following siRNA-Mediated Downregulation of VEGFR2

    PubMed Central

    Zarei Mahmudabadi, Ali; Masoomi Karimi, Masoomeh; Bahabadi, Majid; Bagheri Hoseinabadi, Zahra; JafariSani, Moslem; Ahmadi, Reza

    2016-01-01

    Objective Vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) play important roles in angiogenesis of different developmental mechanisms such as wound healing, embryogenesis and diseases, including different types of cancer. VEGFR2 is associated with cell proliferation, migration, and vascular permeability of endothelial cells. Blocking VEGF and its receptors is suggested as a therapeutic approach to prevent tumor growth. In this study, we aim to block VEGF signaling via small interfering RNA (siRNA) inhibition of VEGFR2. Materials and Methods In this experimental study, we used the RNA interference (RNAi) mechanism to suppress expression of the VEGFR2 gene. We conducted the 3-(4,5-di- methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, real-time polymerase chain reaction (PCR), Western blot, and flow cytometry analyses of VEGFR2 expression. Results Real-time PCR and Western blot results showed that VEGFR2 expression significantly downregulated. This suppression was followed by inhibition of cell prolifera- tion, reduction of viability, and induction of apoptosis in the cancer cells. Conclusion These findings suggest that VEGFR2 has a role in cell proliferation and tumor growth. Accordingly, it is suggested that VEGFR2 can be a therapeutic target for controlling tumor growth and proliferation.

  20. Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians

    PubMed Central

    Newmark, Phillip A.; Reddien, Peter W.; Cebrià, Francesc; Alvarado, Alejandro Sánchez

    2003-01-01

    Freshwater planarian flatworms are capable of regenerating complete organisms from tiny fragments of their bodies; the basis for this regenerative prowess is an experimentally accessible stem cell population that is present in the adult planarian. The study of these organisms, classic experimental models for investigating metazoan regeneration, has been revitalized by the application of modern molecular biological approaches. The identification of thousands of unique planarian ESTs, coupled with large-scale whole-mount in situ hybridization screens, and the ability to inhibit planarian gene expression through double-stranded RNA-mediated genetic interference, provide a wealth of tools for studying the molecular mechanisms that regulate tissue regeneration and stem cell biology in these organisms. Here we show that, as in Caenorhabditis elegans, ingestion of bacterially expressed double-stranded RNA can inhibit gene expression in planarians. This inhibition persists throughout the process of regeneration, allowing phenotypes with disrupted regenerative patterning to be identified. These results pave the way for large-scale screens for genes involved in regenerative processes. PMID:12917490

  1. Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo.

    PubMed

    Chen, Weizao; Liu, Mingqiu; Jiao, Ye; Yan, Weiyao; Wei, Xuefeng; Chen, Jiulian; Fei, Liang; Liu, Yang; Zuo, Xiaoping; Yang, Fugui; Lu, Yonggan; Zheng, Zhaoxin

    2006-04-01

    Foot-and-mouth disease virus (FMDV) infection is responsible for the heavy economic losses in stockbreeding each year. Because of the limited effectiveness of existing vaccines and antiviral drugs, the development of new strategies is needed. RNA interference (RNAi) is an effective means of suppressing virus replication in vitro. Here we demonstrate that treatment with recombinant, replication-defective human adenovirus type 5 (Ad5) expressing short-hairpin RNAs (shRNAs) directed against either structural protein 1D (Ad5-NT21) or polymerase 3D (Ad5-POL) of FMDV totally protects swine IBRS-2 cells from homologous FMDV infection, whereas only Ad5-POL inhibits heterologous FMDV replication. Moreover, delivery of these shRNAs significantly reduces the susceptibility of guinea pigs and swine to FMDV infection. Three of five guinea pigs inoculated with 10(6) PFU of Ad5-POL and challenged 24 h later with 50 50% infectious doses (ID50) of homologous virus were protected from the major clinical manifestation of disease: the appearance of vesicles on the feet. Two of three swine inoculated with an Ad5-NT21-Ad5-POL mixture containing 2 x 10(9) PFU each and challenged 24 h later with 100 ID50 of homologous virus were protected from the major clinical disease, but treatment with a higher dose of adenovirus mixture cannot promote protection of animals. The inhibition was rapid and specific because treatment with a control adenovirus construct (Ad5-LacZ) expressing Escherichia coli galactosidase-specific shRNA showed no marked antiviral activity. Our data highlight the in vivo potential of RNAi technology in the case of FMD. PMID:16537624

  2. MicroRNA binding to the HIV-1 Gag protein inhibits Gag assembly and virus production

    PubMed Central

    Chen, Antony K.; Sengupta, Prabuddha; Waki, Kayoko; Van Engelenburg, Schuyler B.; Ochiya, Takahiro; Ablan, Sherimay D.; Freed, Eric O.; Lippincott-Schwartz, Jennifer

    2014-01-01

    MicroRNAs (miRNAs) are small, 18–22 nt long, noncoding RNAs that act as potent negative gene regulators in a variety of physiological and pathological processes. To repress gene expression, miRNAs are packaged into RNA-induced silencing complexes (RISCs) that target mRNAs for degradation and/or translational repression in a sequence-specific manner. Recently, miRNAs have been shown to also interact with proteins outside RISCs, impacting cellular processes through mechanisms not involving gene silencing. Here, we define a previously unappreciated activity of miRNAs in inhibiting RNA–protein interactions that in the context of HIV-1 biology blocks HIV virus budding and reduces virus infectivity. This occurs by miRNA binding to the nucleocapsid domain of the Gag protein, the main structural component of HIV-1 virions. The resulting miRNA–Gag complexes interfere with viral–RNA-mediated Gag assembly and viral budding at the plasma membrane, with imperfectly assembled Gag complexes endocytosed and delivered to lysosomes. The blockade of virus production by miRNA is reversed by adding the miRNA’s target mRNA and stimulated by depleting Argonaute-2, suggesting that when miRNAs are not mediating gene silencing, they can block HIV-1 production through disruption of Gag assembly on membranes. Overall, our findings have significant implications for understanding how cells modulate HIV-1 infection by miRNA expression and raise the possibility that miRNAs can function to disrupt RNA-mediated protein assembly processes in other cellular contexts. PMID:24938790

  3. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference

    PubMed Central

    Hochstrasser, Megan L.; Taylor, David W.; Bhat, Prashant; Guegler, Chantal K.; Sternberg, Samuel H.; Nogales, Eva; Doudna, Jennifer A.

    2014-01-01

    In bacteria, the clustered regularly interspaced short palindromic repeats (CRISPR)–associated (Cas) DNA-targeting complex Cascade (CRISPR-associated complex for antiviral defense) uses CRISPR RNA (crRNA) guides to bind complementary DNA targets at sites adjacent to a trinucleotide signature sequence called the protospacer adjacent motif (PAM). The Cascade complex then recruits Cas3, a nuclease-helicase that catalyzes unwinding and cleavage of foreign double-stranded DNA (dsDNA) bearing a sequence matching that of the crRNA. Cascade comprises the CasA–E proteins and one crRNA, forming a structure that binds and unwinds dsDNA to form an R loop in which the target strand of the DNA base pairs with the 32-nt RNA guide sequence. Single-particle electron microscopy reconstructions of dsDNA-bound Cascade with and without Cas3 reveal that Cascade positions the PAM-proximal end of the DNA duplex at the CasA subunit and near the site of Cas3 association. The finding that the DNA target and Cas3 colocalize with CasA implicates this subunit in a key target-validation step during DNA interference. We show biochemically that base pairing of the PAM region is unnecessary for target binding but critical for Cas3-mediated degradation. In addition, the L1 loop of CasA, previously implicated in PAM recognition, is essential for Cas3 activation following target binding by Cascade. Together, these data show that the CasA subunit of Cascade functions as an essential partner of Cas3 by recognizing DNA target sites and positioning Cas3 adjacent to the PAM to ensure cleavage. PMID:24748111

  4. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.

    PubMed

    Hochstrasser, Megan L; Taylor, David W; Bhat, Prashant; Guegler, Chantal K; Sternberg, Samuel H; Nogales, Eva; Doudna, Jennifer A

    2014-05-01

    In bacteria, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) DNA-targeting complex Cascade (CRISPR-associated complex for antiviral defense) uses CRISPR RNA (crRNA) guides to bind complementary DNA targets at sites adjacent to a trinucleotide signature sequence called the protospacer adjacent motif (PAM). The Cascade complex then recruits Cas3, a nuclease-helicase that catalyzes unwinding and cleavage of foreign double-stranded DNA (dsDNA) bearing a sequence matching that of the crRNA. Cascade comprises the CasA-E proteins and one crRNA, forming a structure that binds and unwinds dsDNA to form an R loop in which the target strand of the DNA base pairs with the 32-nt RNA guide sequence. Single-particle electron microscopy reconstructions of dsDNA-bound Cascade with and without Cas3 reveal that Cascade positions the PAM-proximal end of the DNA duplex at the CasA subunit and near the site of Cas3 association. The finding that the DNA target and Cas3 colocalize with CasA implicates this subunit in a key target-validation step during DNA interference. We show biochemically that base pairing of the PAM region is unnecessary for target binding but critical for Cas3-mediated degradation. In addition, the L1 loop of CasA, previously implicated in PAM recognition, is essential for Cas3 activation following target binding by Cascade. Together, these data show that the CasA subunit of Cascade functions as an essential partner of Cas3 by recognizing DNA target sites and positioning Cas3 adjacent to the PAM to ensure cleavage.

  5. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila.

    PubMed

    Cernilogar, Filippo M; Onorati, Maria Cristina; Kothe, Greg O; Burroughs, A Maxwell; Parsi, Krishna Mohan; Breiling, Achim; Lo Sardo, Federica; Saxena, Alka; Miyoshi, Keita; Siomi, Haruhiko; Siomi, Mikiko C; Carninci, Piero; Gilmour, David S; Corona, Davide F V; Orlando, Valerio

    2011-11-06

    RNA interference (RNAi) pathways have evolved as important modulators of gene expression that operate in the cytoplasm by degrading RNA target molecules through the activity of short (21-30 nucleotide) RNAs. RNAi components have been reported to have a role in the nucleus, as they are involved in epigenetic regulation and heterochromatin formation. However, although RNAi-mediated post-transcriptional gene silencing is well documented, the mechanisms of RNAi-mediated transcriptional gene silencing and, in particular, the role of RNAi components in chromatin dynamics, especially in animal multicellular organisms, are elusive. Here we show that the key RNAi components Dicer 2 (DCR2) and Argonaute 2 (AGO2) associate with chromatin (with a strong preference for euchromatic, transcriptionally active, loci) and interact with the core transcription machinery. Notably, loss of function of DCR2 or AGO2 showed that transcriptional defects are accompanied by the perturbation of RNA polymerase II positioning on promoters. Furthermore, after heat shock, both Dcr2 and Ago2 null mutations, as well as missense mutations that compromise the RNAi activity, impaired the global dynamics of RNA polymerase II. Finally, the deep sequencing of the AGO2-associated small RNAs (AGO2 RIP-seq) revealed that AGO2 is strongly enriched in small RNAs that encompass the promoter regions and other regions of heat-shock and other genetic loci on both the sense and antisense DNA strands, but with a strong bias for the antisense strand, particularly after heat shock. Taken together, our results show that DCR2 and AGO2 are globally associated with transcriptionally active loci and may have a pivotal role in shaping the transcriptome by controlling the processivity of RNA polymerase II.

  6. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast

    SciTech Connect

    Iida, Tetsushi; Iida, Naoko; Tsutsui, Yasuhiro; Yamao, Fumiaki; Kobayashi, Takehiko

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer RNAi is linked to the cell cycle checkpoint in fission yeast. Black-Right-Pointing-Pointer Ptr1 co-purifies with Ago1. Black-Right-Pointing-Pointer The ptr1-1 mutation impairs the checkpoint but does not affect gene silencing. Black-Right-Pointing-Pointer ago1{sup +} and ptr1{sup +} regulate the cell cycle checkpoint via the same pathway. Black-Right-Pointing-Pointer Mutations in ago1{sup +} and ptr1{sup +} lead to the nuclear accumulation of poly(A){sup +} RNAs. -- Abstract: Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1{sup +}, the overexpression of ago1{sup +} alleviated the cell cycle defect in dcr1{Delta}. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1{sup +} is dependent on ptr1{sup +}. Nuclear accumulation of poly(A){sup +} RNAs was detected in mutants of ago1{sup +} and ptr1{sup +}, suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.

  7. Training alters the resolution of lexical interference: Evidence for plasticity of competition and inhibition.

    PubMed

    Kapnoula, Efthymia C; McMurray, Bob

    2016-01-01

    Language learning is generally described as a problem of acquiring new information (e.g., new words). However, equally important are changes in how the system processes known information. For example, a wealth of studies has suggested dramatic changes over development in how efficiently children recognize familiar words, but it is unknown what kind of experience-dependent mechanisms of plasticity give rise to such changes in real-time processing. We examined the plasticity of the language processing system by testing whether a fundamental aspect of spoken word recognition, lexical interference, can be altered by experience. Adult participants were trained on a set of familiar words over a series of 4 tasks. In the high-competition (HC) condition, tasks were designed to encourage coactivation of similar words (e.g., net and neck) and to require listeners to resolve this competition. Tasks were similar in the low-competition (LC) condition, but did not enhance this competition. Immediately after training, interlexical interference was tested using a visual world paradigm task. Participants in the HC group resolved interference to a fuller degree than those in the LC group, demonstrating that experience can shape the way competition between words is resolved. TRACE simulations showed that the observed late differences in the pattern of interference resolution can be attributed to differences in the strength of lexical inhibition. These findings inform cognitive models in many domains that involve competition/interference processes, and suggest an experience-dependent mechanism of plasticity that may underlie longer term changes in processing efficiency associated with both typical and atypical development.

  8. Training alters the resolution of lexical interference: Evidence for plasticity of competition and inhibition.

    PubMed

    Kapnoula, Efthymia C; McMurray, Bob

    2016-01-01

    Language learning is generally described as a problem of acquiring new information (e.g., new words). However, equally important are changes in how the system processes known information. For example, a wealth of studies has suggested dramatic changes over development in how efficiently children recognize familiar words, but it is unknown what kind of experience-dependent mechanisms of plasticity give rise to such changes in real-time processing. We examined the plasticity of the language processing system by testing whether a fundamental aspect of spoken word recognition, lexical interference, can be altered by experience. Adult participants were trained on a set of familiar words over a series of 4 tasks. In the high-competition (HC) condition, tasks were designed to encourage coactivation of similar words (e.g., net and neck) and to require listeners to resolve this competition. Tasks were similar in the low-competition (LC) condition, but did not enhance this competition. Immediately after training, interlexical interference was tested using a visual world paradigm task. Participants in the HC group resolved interference to a fuller degree than those in the LC group, demonstrating that experience can shape the way competition between words is resolved. TRACE simulations showed that the observed late differences in the pattern of interference resolution can be attributed to differences in the strength of lexical inhibition. These findings inform cognitive models in many domains that involve competition/interference processes, and suggest an experience-dependent mechanism of plasticity that may underlie longer term changes in processing efficiency associated with both typical and atypical development. PMID:26709587

  9. Training Alters the Resolution of Lexical Interference: Evidence for Plasticity of Competition and Inhibition

    PubMed Central

    Kapnoula, Efthymia C.; McMurray, Bob

    2016-01-01

    Language learning is generally described as a problem of acquiring new information (e.g., new words). However, equally important are changes in how the system processes known information. For example, a wealth of studies has suggested dramatic changes over development in how efficiently children recognize familiar words, but it is unknown what kind of experience-dependent mechanisms of plasticity give rise to such changes in real-time processing. We examined the plasticity of the language processing system by testing whether a fundamental aspect of spoken word recognition, lexical interference, can be altered by experience. Adult participants were trained on a set of familiar words over a series of 4 tasks. In the high-competition (HC) condition, tasks were designed to encourage coactivation of similar words (e.g., net and neck) and to require listeners to resolve this competition. Tasks were similar in the low-competition (LC) condition, but did not enhance this competition. Immediately after training, interlexical interference was tested using a visual world paradigm task. Participants in the HC group resolved interference to a fuller degree than those in the LC group, demonstrating that experience can shape the way competition between words is resolved. TRACE simulations showed that the observed late differences in the pattern of interference resolution can be attributed to differences in the strength of lexical inhibition. These findings inform cognitive models in many domains that involve competition/interference processes, and suggest an experience-dependent mechanism of plasticity that may underlie longer term changes in processing efficiency associated with both typical and atypical development. PMID:26709587

  10. Mutant p53 inhibits miRNA biogenesis by interfering with the microprocessor complex.

    PubMed

    Garibaldi, F; Falcone, E; Trisciuoglio, D; Colombo, T; Lisek, K; Walerych, D; Del Sal, G; Paci, P; Bossi, G; Piaggio, G; Gurtner, A

    2016-07-21

    Downregulation of microRNAs (miRNAs) is commonly observed in cancers and promotes tumorigenesis suggesting that miRNAs may function as tumor suppressors. However, the mechanism through which miRNAs are regulated in cancer, and the connection between oncogenes and miRNA biogenesis remain poorly understood. The TP53 tumor-suppressor gene is mutated in half of human cancers resulting in an oncogene with gain-of-function activities. Here we demonstrate that mutant p53 (mutp53) oncoproteins modulate the biogenesis of a subset of miRNAs in cancer cells inhibiting their post-transcriptional maturation. Interestingly, among these miRNAs several are also downregulated in human tumors. By confocal, co-immunoprecipitation and RNA-chromatin immunoprecipitation experiments, we show that endogenous mutp53 binds and sequesters RNA helicases p72/82 from the microprocessor complex, interfering with Drosha-pri-miRNAs association. In agreement with this, the overexpression of p72 leads to an increase of mature miRNAs levels. Moreover, functional experiments demonstrate the oncosuppressive role of mutp53-dependent miRNAs (miR-517a, -519a, -218, -105). Our study highlights a previously undescribed mechanism by which mutp53 interferes with Drosha-p72/82 association leading, at least in part, to miRNA deregulation observed in cancer.

  11. PPNDS inhibits murine Norovirus RNA-dependent RNA-polymerase mimicking two RNA stacking bases.

    PubMed

    Croci, Romina; Tarantino, Delia; Milani, Mario; Pezzullo, Margherita; Rohayem, Jacques; Bolognesi, Martino; Mastrangelo, Eloise

    2014-05-01

    Norovirus (NV) is a major cause of gastroenteritis worldwide. Antivirals against such important pathogens are on demand. Among the viral proteins that orchestrate viral replication, RNA-dependent-RNA-polymerase (RdRp) is a promising drug development target. From an in silico-docking search focused on the RdRp active site, we selected the compound PPNDS, which showed low micromolar IC50vs. murine NV-RdRp in vitro. We report the crystal structure of the murine NV-RdRp/PPNDS complex showing that two molecules of the inhibitor bind in antiparallel stacking interaction, properly oriented to block exit of the newly synthesized RNA. Such inhibitor-binding mode mimics two stacked nucleotide-bases of the RdRp/ssRNA complex.

  12. RNA interference in plant parasitic nematodes: a summary of the current status.

    PubMed

    Lilley, C J; Davies, L J; Urwin, P E

    2012-04-01

    SUMMARYRNA interference (RNAi) has emerged as an invaluable gene-silencing tool for functional analysis in a wide variety of organisms, particularly the free-living model nematode Caenorhabditis elegans. An increasing number of studies have now described its application to plant parasitic nematodes. Genes expressed in a range of cell types are silenced when nematodes take up double stranded RNA (dsRNA) or short interfering RNAs (siRNAs) that elicit a systemic RNAi response. Despite many successful reports, there is still poor understanding of the range of factors that influence optimal gene silencing. Recent in vitro studies have highlighted significant variations in the RNAi phenotype that can occur with different dsRNA concentrations, construct size and duration of soaking. Discrepancies in methodology thwart efforts to reliably compare the efficacy of RNAi between different nematodes or target tissues. Nevertheless, RNAi has become an established experimental tool for plant parasitic nematodes and also offers the prospect of being developed into a novel control strategy when delivered from transgenic plants. PMID:22217302

  13. RNA interference: from an ancient mechanism to a state of the art therapeutic application?

    PubMed

    Arenz, Christoph; Schepers, Ute

    2003-08-01

    Now that the sequencing of many genomes has been completed, the basic challenges are finding the genes and predicting their functions. Up until now, a large information gap has existed between the knowledge of genome sequence and our knowledge of protein function. The assessment of gene function may be performed using the tools of reverse genetics, including knock-out mice, antisense oligomers, aptamers, and ribozymes. These approaches have been superseded by RNA interference (RNAi), which exhibits much more potency for the investigation of protein function than the techniques listed above. As already known some years ago, RNAi is based on an ancient anti-viral defense mechanism in lower eukaryotes. It is induced by double-stranded RNA and its processing to 21-23 nt small interfering RNAs (siRNAs), which cause the degradation of homologous endogenous mRNA. The way RNAi works has still to be determined, but it already serves as a first-choice approach to generate loss-of-function phenotypes among a broad variety of eukaryotic species, such as nematodes, flies, plants, fungi and mammals. RNAi also represents an extremely powerful tool, becoming a therapeutic approach to curing infectious diseases originated by viral or parasitic invasion. In this review we present the current view of how RNAi works in different eukaryotic species and its high potential for functional genomics and in rational drug design. PMID:12955224

  14. Cyclooxygenase inhibitors inhibit antibody response through interference with MAPK/ERK pathways and BLIMP-1 inhibition.

    PubMed

    Purssell, E

    2014-09-01

    Fever is a common symptom of illness in children, and although not harmful in itself, fever and its associated symptoms are often treated with antipyretic drugs. A number of national and other guidelines now recommend against their routine use; a conclusion that was initially supported by a study showing that the prophylactic use of paracetamol might reduce antibody response to some vaccine antigens, although data from booster vaccinations are more equivocal. Although in vivo data on the cause of this inhibition are scarce, in vitro data suggests that the cause may be due to inhibition of the mitogen activated protein kinase/extracellular regulated protein kinase pathways, and a subsequent reduction in the process of plasma cell differentiation at the beginning of the antibody response. This suggests that in high-risk patients these drugs could be avoided in the early part of an infection when plasma-cell differentiation is occurring. More data are needed to define this period; until then existing data support the recommendation against the routine use of these drugs. PMID:25012778

  15. Cyclooxygenase inhibitors inhibit antibody response through interference with MAPK/ERK pathways and BLIMP-1 inhibition.

    PubMed

    Purssell, E

    2014-09-01

    Fever is a common symptom of illness in children, and although not harmful in itself, fever and its associated symptoms are often treated with antipyretic drugs. A number of national and other guidelines now recommend against their routine use; a conclusion that was initially supported by a study showing that the prophylactic use of paracetamol might reduce antibody response to some vaccine antigens, although data from booster vaccinations are more equivocal. Although in vivo data on the cause of this inhibition are scarce, in vitro data suggests that the cause may be due to inhibition of the mitogen activated protein kinase/extracellular regulated protein kinase pathways, and a subsequent reduction in the process of plasma cell differentiation at the beginning of the antibody response. This suggests that in high-risk patients these drugs could be avoided in the early part of an infection when plasma-cell differentiation is occurring. More data are needed to define this period; until then existing data support the recommendation against the routine use of these drugs.

  16. Specific Inhibition of MicroRNA Processing Using L-RNA Aptamers.

    PubMed

    Sczepanski, Jonathan T; Joyce, Gerald F

    2015-12-30

    In vitro selection was used to obtain l-RNA aptamers that bind the distal stem-loop of various precursor microRNAs (pre-miRs). These l-aptamers, termed "aptamiRs", bind their corresponding pre-miR target through highly specific tertiary interactions rather than Watson-Crick pairing. Formation of a pre-miR-aptamiR complex inhibits Dicer-mediated processing of the pre-miR, which is required to form the mature functional microRNA. One of the aptamiRs, which was selected to bind oncogenic pre-miR-155, inhibits Dicer processing under simulated physiological conditions, with an IC50 of 87 nM. Given that l-RNAs are intrinsically resistant to nuclease degradation, these results suggest that aptamiRs might be pursued as a new class of miR inhibitors. PMID:26652064

  17. Illuminating the gateway of gene silencing: perspective of RNA interference technology in clinical therapeutics.

    PubMed

    Sindhu, Annu; Arora, Pooja; Chaudhury, Ashok

    2012-07-01

    A novel laboratory revolution for disease therapy, the RNA interference (RNAi) technology, has adopted a new era of molecular research as the next generation "Gene-targeted prophylaxis." In this review, we have focused on the chief technological challenges associated with the efforts to develop RNAi-based therapeutics that may guide the biomedical researchers. Many non-curable maladies, like neurodegenerative diseases and cancers have effectively been cured using this technology. Rapid advances are still in progress for the development of RNAi-based technologies that will be having a major impact on medical research. We have highlighted the recent discoveries associated with the phenomenon of RNAi, expression of silencing molecules in mammals along with the vector systems used for disease therapeutics.

  18. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.)

    PubMed Central

    Abdurakhmonov, Ibrokhim Y.; Ayubov, Mirzakamol S.; Ubaydullaeva, Khurshida A.; Buriev, Zabardast T.; Shermatov, Shukhrat E.; Ruziboev, Haydarali S.; Shapulatov, Umid M.; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z.; Percy, Richard G.; Devor, Eric J.; Sharma, Govind C.; Sripathi, Venkateswara R.; Kumpatla, Siva P.; van der Krol, Alexander; Kater, Hake D.; Khamidov, Khakimdjan; Salikhov, Shavkat I.; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization. PMID:26941765

  19. Analysis of Nuclear RNA Interference (RNAi) in Human Cells by Subcellular Fractionation and Argonaute Loading

    PubMed Central

    Gagnon, Keith T.; Li, Liande; Janowski, Bethany A.; Corey, David R.

    2014-01-01

    RNA interference (RNAi) is well known for its ability to regulate gene expression in the cytoplasm of mammalian cells. In mammalian cell nuclei, however, the impact of RNAi has remained more controversial. A key technical hurdle has been a lack of optimized protocols for the isolation and analysis of cell nuclei. Here we describe a simplified protocol for nuclei isolation from cultured cells that incorporates a method for obtaining nucleoplasmic and chromatin fractions and removing cytoplasmic contamination. Cell fractions can then be used to detect the presence and activity of RNAi factors in the nucleus. We present a protocol for investigating an early step in RNAi, Argonaute protein loading with small RNAs, which is enabled by our improved extract preparations. These protocols facilitate characterization of nuclear RNAi and can be applied to the analysis of other nuclear proteins and pathways. From cellular fractionation to analysis of Argonaute loading results, this protocol takes 4–6 d to complete. PMID:25079428

  20. Exogenous RNA interference exposes contrasting roles for sugar exudation in host-finding by plant pathogens.

    PubMed

    Warnock, Neil D; Wilson, Leonie; Canet-Perez, Juan V; Fleming, Thomas; Fleming, Colin C; Maule, Aaron G; Dalzell, Johnathan J

    2016-07-01

    Plant parasitic nematodes (PPN) locate host plants by following concentration gradients of root exudate chemicals in the soil. We present a simple method for RNA interference (RNAi)-induced knockdown of genes in tomato seedling roots, facilitating the study of root exudate composition, and PPN responses. Knockdown of sugar transporter genes, STP1 and STP2, in tomato seedlings triggered corresponding reductions of glucose and fructose, but not xylose, in collected root exudate. This corresponded directly with reduced infectivity and stylet thrusting of the promiscuous PPN Meloidogyne incognita, however we observed no impact on the infectivity or stylet thrusting of the selective Solanaceae PPN Globodera pallida. This approach can underpin future efforts to understand the early stages of plant-pathogen interactions in tomato and potentially other crop plants. PMID:27033013

  1. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.).

    PubMed

    Abdurakhmonov, Ibrokhim Y; Ayubov, Mirzakamol S; Ubaydullaeva, Khurshida A; Buriev, Zabardast T; Shermatov, Shukhrat E; Ruziboev, Haydarali S; Shapulatov, Umid M; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Percy, Richard G; Devor, Eric J; Sharma, Govind C; Sripathi, Venkateswara R; Kumpatla, Siva P; van der Krol, Alexander; Kater, Hake D; Khamidov, Khakimdjan; Salikhov, Shavkat I; Jenkins, Johnie N; Abdukarimov, Abdusattor; Pepper, Alan E

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization.

  2. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference.

    PubMed

    Barrangou, Rodolphe; Birmingham, Amanda; Wiemann, Stefan; Beijersbergen, Roderick L; Hornung, Veit; Smith, Anja van Brabant

    2015-04-20

    The discovery that the machinery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 bacterial immune system can be re-purposed to easily create deletions, insertions and replacements in the mammalian genome has revolutionized the field of genome engineering and re-invigorated the field of gene therapy. Many parallels have been drawn between the newly discovered CRISPR-Cas9 system and the RNA interference (RNAi) pathway in terms of their utility for understanding and interrogating gene function in mammalian cells. Given this similarity, the CRISPR-Cas9 field stands to benefit immensely from lessons learned during the development of RNAi technology. We examine how the history of RNAi can inform today's challenges in CRISPR-Cas9 genome engineering such as efficiency, specificity, high-throughput screening and delivery for in vivo and therapeutic applications.

  3. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference

    PubMed Central

    Barrangou, Rodolphe; Birmingham, Amanda; Wiemann, Stefan; Beijersbergen, Roderick L.; Hornung, Veit; Smith, Anja van Brabant

    2015-01-01

    The discovery that the machinery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 bacterial immune system can be re-purposed to easily create deletions, insertions and replacements in the mammalian genome has revolutionized the field of genome engineering and re-invigorated the field of gene therapy. Many parallels have been drawn between the newly discovered CRISPR-Cas9 system and the RNA interference (RNAi) pathway in terms of their utility for understanding and interrogating gene function in mammalian cells. Given this similarity, the CRISPR-Cas9 field stands to benefit immensely from lessons learned during the development of RNAi technology. We examine how the history of RNAi can inform today's challenges in CRISPR-Cas9 genome engineering such as efficiency, specificity, high-throughput screening and delivery for in vivo and therapeutic applications. PMID:25800748

  4. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.).

    PubMed

    Abdurakhmonov, Ibrokhim Y; Ayubov, Mirzakamol S; Ubaydullaeva, Khurshida A; Buriev, Zabardast T; Shermatov, Shukhrat E; Ruziboev, Haydarali S; Shapulatov, Umid M; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Percy, Richard G; Devor, Eric J; Sharma, Govind C; Sripathi, Venkateswara R; Kumpatla, Siva P; van der Krol, Alexander; Kater, Hake D; Khamidov, Khakimdjan; Salikhov, Shavkat I; Jenkins, Johnie N; Abdukarimov, Abdusattor; Pepper, Alan E

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization. PMID:26941765

  5. PsOr1, a potential target for RNA interference-based pest management.

    PubMed

    Zhao, Y Y; Liu, F; Yang, G; You, M S

    2011-02-01

    Insect pests cause billions of dollars in agricultural losses, and attempts to kill them have resulted in growing threats from insecticide resistance, dietary pesticide pollution and environmental destruction. New approaches to control refractory insect pests are therefore needed. The host-plant preferences of insect pests rely on olfaction and are mediated via a seven transmembrane-domain odorant receptor (Or) family. The present study reports the cloning and characterization of PsOr1, the first candidate member of the Or gene family from Phyllotreta striolata, a devastating beetle pest that causes damage worldwide. PsOr1 is remarkably well conserved with respect to other insect orthologues, including DmOr83b from Drosophila melanogaster. These insect orthologues form an essential non-conventional Or sub-family and may play an important and generalized role in insect olfaction. We designed double-stranded (ds) RNA directly against the PsOr1 gene and exploited RNA interference (RNAi) to control P. striolata. The chemotactic behavioural measurements showed that adult beetles were unable to sense the attractant or repellent odour stimulus after microinjection of dsRNA against PsOr1. Reverse Transcription (RT)-PCR analysis showed specific down-regulation of mRNA transcript levels for this gene. Furthermore, host-plant preference experiments confirmed that silencing PsOr1 by RNAi treatment impaired the host-plant preferences of P. striolata for cruciferous vegetables. These results demonstrate that this insect control approach of using RNAi to target PsOr1 and its orthologues might be effective in blocking host-plant-seeking behaviours in diverse insect pests. The results also support the theory that this unique receptor type plays an essential general role in insect olfaction. PMID:20854479

  6. Microfluidic platforms for RNA interference screening of virus-host interactions.

    PubMed

    Schudel, Benjamin R; Harmon, Brooke; Abhyankar, Vinay V; Pruitt, Benjamin W; Negrete, Oscar A; Singh, Anup K

    2013-03-01

    RNA interference (RNAi) is a powerful tool for functional genomics with the capacity to comprehensively analyze host-pathogen interactions. High-throughput RNAi screening is used to systematically perturb cellular pathways and discover therapeutic targets, but the method can be tedious and requires extensive capital equipment and expensive reagents. To aid in the development of an inexpensive miniaturized RNAi screening platform, we have developed a two part microfluidic system for patterning and screening gene targets on-chip to examine cellular pathways involved in virus entry and infection. First, a multilayer polydimethylsiloxane (PDMS)-based spotting device was used to array siRNA molecules into 96 microwells targeting markers of endocytosis, along with siRNA controls. By using a PDMS-based spotting device, we remove the need for a microarray printer necessary to perform previously described small scale (e.g. cellular microarrays) and microchip-based RNAi screening, while still minimizing reagent usage tenfold compared to conventional screening. Second, the siRNA spotted array was transferred to a reversibly sealed PDMS-based screening platform containing microchannels designed to enable efficient cell loading and transfection of mammalian cells while preventing cross-contamination between experimental conditions. Validation of the screening platform was examined using Vesicular stomatitis virus and emerging pathogen Rift Valley fever virus, which demonstrated virus entry pathways of clathrin-mediated endocytosis and caveolae-mediated endocytosis, respectively. The techniques here are adaptable to other well-characterized infection pathways with a potential for large scale screening in high containment biosafety laboratories.

  7. Treatment with antibiotics that interfere with peptidoglycan biosynthesis inhibits chloroplast division in the desmid Closterium.

    PubMed

    Matsumoto, Hiroko; Takechi, Katsuaki; Sato, Hiroshi; Takio, Susumu; Takano, Hiroyoshi

    2012-01-01

    Charophytes is a green algal group closely related to land plants. We investigated the effects of antibiotics that interfere with peptidoglycan biosynthesis on chloroplast division in the desmid Closterium peracerosum-strigosum-littorale complex. To detect cells just after division, we used colchicine, which inhibits Closterium cell elongation after division. Although normal Closterium cells had two chloroplasts before and after cell division, cells treated with ampicillin, D-cycloserine, or fosfomycin had only one chloroplast after cell division, suggesting that the cells divided without chloroplast division. The antibiotics bacitracin and vancomycin showed no obvious effect. Electron microscopic observation showed that irregular-shaped chloroplasts existed in ampicillin-treated Closterium cells. Because antibiotic treatments resulted in the appearance of long cells with irregular chloroplasts and cell death, we counted cell types in the culture. The results suggested that cells with one chloroplast appeared first and then a huge chloroplast was generated that inhibited cell division, causing elongation followed by cell death.

  8. Treatment with Antibiotics that Interfere with Peptidoglycan Biosynthesis Inhibits Chloroplast Division in the Desmid Closterium

    PubMed Central

    Matsumoto, Hiroko; Takechi, Katsuaki; Sato, Hiroshi; Takio, Susumu; Takano, Hiroyoshi

    2012-01-01

    Charophytes is a green algal group closely related to land plants. We investigated the effects of antibiotics that interfere with peptidoglycan biosynthesis on chloroplast division in the desmid Closterium peracerosum–strigosum–littorale complex. To detect cells just after division, we used colchicine, which inhibits Closterium cell elongation after division. Although normal Closterium cells had two chloroplasts before and after cell division, cells treated with ampicillin, D-cycloserine, or fosfomycin had only one chloroplast after cell division, suggesting that the cells divided without chloroplast division. The antibiotics bacitracin and vancomycin showed no obvious effect. Electron microscopic observation showed that irregular-shaped chloroplasts existed in ampicillin-treated Closterium cells. Because antibiotic treatments resulted in the appearance of long cells with irregular chloroplasts and cell death, we counted cell types in the culture. The results suggested that cells with one chloroplast appeared first and then a huge chloroplast was generated that inhibited cell division, causing elongation followed by cell death. PMID:22815801

  9. Bactrocera dorsalis male sterilization by targeted RNA interference of spermatogenesis: empowering sterile insect technique programs

    PubMed Central

    Dong, Yong-Cheng; Wang, Zhi-Jian; Chen, Zhen-Zhong; Clarke, Anthony R.; Niu, Chang-Ying

    2016-01-01

    RNA interference (RNAi) is a genetic technique which has novel application for sustainable pest control. The Sterile Insect Technique (SIT) uses releases of mass-produced, sterile male insects to out-compete wild males for mates to reduce pest populations. RNAi sterilization of SIT males would have several advantages over radiation sterilization, but to achieve this appropriate target genes must first be identified and then targeted with interference technology. With this goal, eight spermatogenesis related candidate genes were cloned and tested for potential activity in Bactrocera dorsalis. The knockdown of candidate genes by oral delivery of dsRNAs did not influence the mating of male flies, but significantly affected the daily average number of eggs laid by females, and reduced egg hatching rate by 16–60%. RNAi negatively affected spermatozoa quantitatively and qualitatively. Following the mating of lola-/topi-/rac-/rho-/upd-/magu-silenced males, we recorded a significant decrease in number and length of spermatozoa in female spermatheca compared to gfp-silenced control group. In a greenhouse trial, the number of damaged oranges and B. dorsalis larvae were significantly reduced in a dsrho-treated group compared with the dsgfp group. This study provides strong evidence for the use RNAi in pest management, especially for the improvement of SIT against B. dorsalis and other species. PMID:27767174

  10. RNA interference-mediated targeting of DKK1 gene expression in Ishikawa endometrial carcinoma cells causes increased tumor cell invasion and migration

    PubMed Central

    YI, NUO; LIAO, QIN-PING; LI, ZHEN-HUA; XIE, BAO-JIANG; HU, YU-HONG; YI, WEI; LIU, MIN

    2013-01-01

    The Wnt signaling pathway plays an essential role in tumor invasion and migration. DKK1 functions as an important inhibitor of the pathway and represents a promising target for cancer therapy. The aim of the present study was to determine the role of DKK1 in endometrial carcinoma (EC) cell invasion and migration using RNA interference (RNAi) technology. Ishikawa EC cells were transfected at high efficiency with specific DKK1 siRNA. RT-PCR and western blot analysis were used to determine the mRNA and protein levels of DKK1, β-catenin and metalloproteinase 14 (MMP14) in siRNA-treated and -untreated cells. In addition, the invasion and migration of the EC cells were detected by invasion and migration assays. Transient transfection of DKK1 siRNA significantly inhibited the mRNA and protein levels of DKK1. Markedly increased cell invasion and migration was observed following treatment with DKK1 siRNA when compared with the negative control siRNA-treated and siRNA-untreated cells. The knockdown of DKK1 also elevated the mRNA and protein levels of β-catenin and MMP14 involved in the Wnt signaling pathway, indicating that targeting this gene may promote intracellular Wnt signal transduction and thus, accelerate EC cell invasion and migration in vitro. The RNAi-mediated targeting of DKK1 gene expression in Ishikawa EC cells resulted in increased tumor cell invasion and migration. DKK1 was identified as an inhibitor of EC cell invasion and migration via its novel role in the Wnt signaling pathway. Targeting DKK1 may therefore represent an effective anti-invasion and -migration strategy for the treatment of EC. PMID:24137406

  11. Thiol-dependent inhibition of RNA synthesis in vitro by acridines: structure-inhibition relationships.

    PubMed

    Gniazdowski, M; Szmigiero, L; Wilmańska, D

    1982-01-01

    In the presence of sulfhydryl compounds an anticancer drug, 1-nitro-9-aminoalkylacridine derivative, forms with DNA irreversible, probably covalent, complexes of decreased template properties. Five 9-substituted 1-nitro-9-aminoacridine derivatives of cytostatic activity show irreversible thiol-dependent inhibitory effects on the RNA synthesis in vitro system while equal inhibition is observed both in the presence and in the absence of dithiothreitol with biologically inactive analogues of nitrocrine. In the absence of sulfhydryl compounds the inhibition depends on the planarity of the acridine ring. Hence, both 1-nitro-9-aminoalkylacridine and tetrahydroacridine derivatives show low inhibitory effect. PMID:6174208

  12. Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression

    PubMed Central

    2011-01-01

    Background MicroRNAs, post-transcriptional regulators of eukaryotic gene expression, are implicated in host defense against pathogens. Viruses and bacteria have evolved strategies that suppress microRNA functions, resulting in a sustainable infection. In this work we report that Helicobacter pylori, a human stomach-colonizing bacterium responsible for severe gastric inflammatory diseases and gastric cancers, downregulates an embryonic stem cell microRNA cluster in proliferating gastric epithelial cells to achieve cell cycle arrest. Results Using a deep sequencing approach in the AGS cell line, a widely used cell culture model to recapitulate early events of H. pylori infection of gastric mucosa, we reveal that hsa-miR-372 is the most abundant microRNA expressed in this cell line, where, together with hsa-miR-373, it promotes cell proliferation by silencing large tumor suppressor homolog 2 (LATS2) gene expression. Shortly after H. pylori infection, miR-372 and miR-373 synthesis is highly inhibited, leading to the post-transcriptional release of LATS2 expression and thus, to a cell cycle arrest at the G1/S transition. This downregulation of a specific cell-cycle-regulating microRNA is dependent on the translocation of the bacterial effector CagA into the host cells, a mechanism highly associated with the development of severe atrophic gastritis and intestinal-type gastric carcinoma. Conclusions These data constitute a novel example of host-pathogen interplay involving microRNAs, and unveil the couple LATS2/miR-372 and miR-373 as an unexpected mechanism in infection-induced cell cycle arrest in proliferating gastric cells, which may be relevant in inhibition of gastric epithelium renewal, a major host defense mechanism against bacterial infections. PMID:22027184

  13. Stable RNA interference of ErbB-2 gene synergistic with epirubicin suppresses breast cancer growth in vitro and in vivo

    SciTech Connect

    Hu Xiaoqu; Su Fengxi; Qin Li; Jia Weijuan; Gong Chang; Yu Fengyan; Guo Jujiang; Song Erwei . E-mail: songerwei02@yahoo.com.cn

    2006-08-04

    Overexpression of human epidermal growth factor receptor-2 (Her2, ErbB-2) contributes to the progression and metastasis of breast cancer, implying that Her2 gene is a suitable target of RNA interference (RNAi) for breast cancer therapy. Here, we employed plasmid-mediated expression of 2 different Her2-shRNAs (pU6-Her2shRNAs) efficiently silenced the target gene expression on Her2 expressing SKBR-3 breast cancer cells in both mRNA and protein levels. Consequently, pU6-Her2shRNA increased apoptosis and reduced proliferation of SKBR-3 cells assayed by TUNEL and MTT, respectively. In vivo, intra-tumor injection of pU6-Her2shRNA inhibited the growth of SKBR-3 tumors inoculated subcutaneously in nude mice. Furthermore, pU6-Her2shRNA synergized the tumor suppression effect of epirubicin to SKBR-3 cells in vitro and implanted subcutaneously in nude mice. Therefore, we concluded that stable silencing of Her2 gene expression with plasmid expressing shRNA may hold great promise as a novel therapy for Her2 expressing breast cancers alone or in combination with anthracycline chemotherapy.

  14. A Unique Nodavirus with Novel Features: Mosinovirus Expresses Two Subgenomic RNAs, a Capsid Gene of Unknown Origin, and a Suppressor of the Antiviral RNA Interference Pathway

    PubMed Central

    Schuster, Susan; Zirkel, Florian; Kurth, Andreas; van Cleef, Koen W. R.; Drosten, Christian

    2014-01-01

    ABSTRACT Insects are a reservoir for many known and novel viruses. We discovered an unknown virus, tentatively named mosinovirus (MoNV), in mosquitoes from a tropical rainforest region in Côte d'Ivoire. The MoNV genome consists of two segments of positive-sense RNA of 2,972 nucleotides (nt) (RNA 1) and 1,801 nt (RNA 2). Its putative RNA-dependent RNA polymerase shares 43% amino acid identity with its closest relative, that of the Pariacoto virus (family Nodaviridae). Unexpectedly, for the putative capsid protein, maximal pairwise identity of 16% to Lake Sinai virus 2, an unclassified virus with a nonsegmented RNA genome, was found. Moreover, MoNV virions are nonenveloped and about 50 nm in diameter, larger than any of the known nodaviruses. Mature MoNV virions contain capsid proteins of ∼56 kDa, which do not seem to be cleaved from a longer precursor. Northern blot analyses revealed that MoNV expresses two subgenomic RNAs of 580 nt (RNA 3) and 292 nt (RNA 4). RNA 4 encodes a viral suppressor of RNA interference (RNAi) that shares its mechanism with the B2 RNAi suppressor protein of other nodaviruses despite lacking recognizable similarity to these proteins. MoNV B2 binds long double-stranded RNA (dsRNA) and, accordingly, inhibits Dicer-2-mediated processing of dsRNA into small interfering RNAs (siRNAs). Phylogenetic analyses indicate that MoNV is a novel member of the family Nodaviridae that acquired its capsid gene via reassortment from an unknown, distantly related virus beyond the family level. IMPORTANCE The identification of novel viruses provides important information about virus evolution and diversity. Here, we describe an unknown unique nodavirus in mosquitoes, named mosinovirus (MoNV). MoNV was classified as a nodavirus based on its genome organization and on phylogenetic analyses of the RNA-dependent RNA polymerase. Notably, its capsid gene was acquired from an unknown virus with a distant relationship to nodaviruses. Another remarkable feature of Mo

  15. Gently restless: association of ADHD-like traits with response inhibition and interference control.

    PubMed

    Polner, Bertalan; Aichert, Désirée; Macare, Christine; Costa, Anna; Ettinger, Ulrich

    2015-12-01

    Impairment of inhibition-related functions is one of the most pronounced cognitive deficits found in attention-deficit/hyperactivity disorder (ADHD). Compelling evidence from studies of unaffected relatives of patients with ADHD and of ADHD-like traits in healthy subjects suggest the continuous distribution of ADHD symptoms in the population. A more subtle inhibitory deficit can also be found in healthy relatives of patients and in subjects with high ADHD-like traits. Here, we examined the relationship between inhibitory performance and ADHD-like traits, for the first time, in a large sample of healthy adults by applying multiple, widely used tests of inhibition-related functions. ADHD-like traits, in general, were independently predicted by Stroop interference score and, at trend level, by go/no-go commission error rate while controlling for socio-demographic factors, verbal intelligence and neuroticism. Additionally, higher inattentive traits were related to worse Stroop performance at trend level, and higher hyperactive/impulsive traits were significantly associated with more go/no-go commission errors. ADHD-like traits were strongly related to neuroticism. The study shows that individual differences in ADHD-like traits are related to variance in fundamental inhibition-related functions over and above effects of negative affect regulation, but the relationships tend to be small. The results suggest the quasi-dimensionality of ADHD and raise further questions about the relationship between genetic factors and the deficit of inhibition-related functions in the ADHD spectrum. PMID:25209569

  16. Mcam Silencing With RNA Interference Using Magnetofection has Antitumor Effect in Murine Melanoma

    PubMed Central

    Prosen, Lara; Markelc, Bostjan; Dolinsek, Tanja; Music, Branka; Cemazar, Maja; Sersa, Gregor

    2014-01-01

    The melanoma cell adhesion molecule (MCAM) is involved in melanoma development and its progression, including invasiveness, metastatic potential and angiogenesis. Therefore, MCAM represents a potential target for gene therapy of melanoma, whose expression could be hindered with posttranscriptional specific gene silencing with RNA interference technology. In this study, we constructed a plasmid DNA encoding short hairpin RNA against MCAM (pMCAM) to explore the antitumor and antiangiogenic effects. The experiments were performed in vitro on murine melanoma and endothelial cells, as well as in vivo on melanoma tumors in mice. The antiproliferative, antimigratory, antiangiogenic and antitumor effects were examined after gene therapy with pMCAM. Gene delivery was performed by magnetofection, and its efficacy compared to gene electrotransfer. Gene therapy with pMCAM has proved to be an effective approach in reducing the proliferation and migration of melanoma cells, as well as having antiangiogenic effect in endothelial cells and antitumor effect on melanoma tumors. Magnetofection as a developing nonviral gene delivery system was effective in the transfection of melanoma cells and tumors with pMCAM, but less efficient than gene electrotransfer in in vivo tumor gene therapy due to the lack of antiangiogenic effect after silencing Mcam by magnetofection. PMID:25350580

  17. RNA interference technology used for the study of aquatic virus infections.

    PubMed

    Reshi, Mohammad Latif; Wu, Jen-Leih; Wang, Hao-Ven; Hong, Jiann-Ruey

    2014-09-01

    Aquaculture is one of the most important economic activities in Asia and is presently the fastest growing sector of food production in the world. Explosive increases in global fish farming have been accompanied by an increase in viral diseases. Viral infections are responsible for huge economic losses in fish farming, and control of these viral diseases in aquaculture remains a serious challenge. Recent advances in biotechnology have had a significant impact on disease reduction in aquaculture. RNAi is one of the most important technological breakthroughs in modern biology, allowing us to directly observe the effects of the loss of specific genes in living systems. RNA interference technology has emerged as a powerful tool for manipulating gene expression in the laboratory. This technology represents a new therapeutic approach for treating aquatic diseases, including viral infections. RNAi technology is based on a naturally occurring post-transcriptional gene silencing process mediated by the formation of dsRNA. RNAi has been proven widely effective for gene knockdown in mammalian cultured cells, but its utility in fish remains unexplored. This review aims to highlight the RNAi technology that has made significant contributions toward the improvement of aquatic animal health and will also summarize the current status and future strategies concerning the therapeutic applications of RNAi to combat viral disease in aquacultured organisms. PMID:24945574

  18. Efficient gene silencing in mesenchymal stem cells by substrate-mediated RNA interference.

    PubMed

    Hsu, Shan-Hui; Huang, Guo-Shiang; Ho, Tung-Tso; Feng, Fuh

    2014-11-01

    We described a novel substrate-mediated RNA interference (RNAi) technology to investigate the effect of neural crest marker expression on the multipotency of human gingival fibroblasts (HGFs). HGFs showed significantly higher neural and chondrogenic differentiation potentials compared with adult bone-marrow-derived mesenchymal stem cells and stem cells from human exfoliated deciduous teeth. By sending target-specific RNAi agents with the conventional vehicle (PolyFect), we observed that the multipotency of HGFs was closely associated with the expression of neural crest marker gene Forkhead box D3 (FoxD3). Using the novel chitosan substrate-mediated method, we successfully delivered short-hairpin RNA constructs to HGFs grown on chitosan without the use of conventional vehicles. The delivery efficiency measured by flow cytometry showed a 10-fold increase for HGFs on chitosan versus those on culture dish, and the cell viability was >95%. Moreover, HGFs with FoxD3 gene knockdown did not form spheroids on chitosan. Based on this working principle, we further selected the gene-silenced population from HGFs. The nonsilenced HGFs showed much higher neural differentiation ability with the nestin expression 40-fold greater than FoxD3-silenced population after induction, suggesting the feasibility of the method to silence genes. The new substrate-mediated gene silencing platform that combines the use of substrate and RNAi can be used to clarify the functions of important genes without suffering the toxicity. PMID:24624901

  19. RNA interference screen for human genes associated with West Nile virus infection.

    PubMed

    Krishnan, Manoj N; Ng, Aylwin; Sukumaran, Bindu; Gilfoy, Felicia D; Uchil, Pradeep D; Sultana, Hameeda; Brass, Abraham L; Adametz, Rachel; Tsui, Melody; Qian, Feng; Montgomery, Ruth R; Lev, Sima; Mason, Peter W; Koski, Raymond A; Elledge, Stephen J; Xavier, Ramnik J; Agaisse, Herve; Fikrig, Erol

    2008-09-11

    West Nile virus (WNV), and related flaviviruses such as tick-borne encephalitis, Japanese encephalitis, yellow fever and dengue viruses, constitute a significant global human health problem. However, our understanding of the molecular interaction of such flaviviruses with mammalian host cells is limited. WNV encodes only 10 proteins, implying that it may use many cellular proteins for infection. WNV enters the cytoplasm through pH-dependent endocytosis, undergoes cycles of translation and replication, assembles progeny virions in association with endoplasmic reticulum, and exits along the secretory pathway. RNA interference (RNAi) presents a powerful forward genetics approach to dissect virus-host cell interactions. Here we report the identification of 305 host proteins that affect WNV infection, using a human-genome-wide RNAi screen. Functional clustering of the genes revealed a complex dependence of this virus on host cell physiology, requiring a wide variety of molecules and cellular pathways for successful infection. We further demonstrate a requirement for the ubiquitin ligase CBLL1 in WNV internalization, a post-entry role for the endoplasmic-reticulum-associated degradation pathway in viral infection, and the monocarboxylic acid transporter MCT4 as a viral replication resistance factor. By extending this study to dengue virus, we show that flaviviruses have both overlapping and unique interaction strategies with host cells. This study provides a comprehensive molecular portrait of WNV-human cell interactions that forms a model for understanding single plus-stranded RNA virus infection, and reveals potential antiviral targets.

  20. From The Cover: Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation

    NASA Astrophysics Data System (ADS)

    Nollen, Ellen A. A.; Garcia, Susana M.; van Haaften, Gijs; Kim, Soojin; Chavez, Alejandro; Morimoto, Richard I.; Plasterk, Ronald H. A.

    2004-04-01

    Protein misfolding and the formation of aggregates are increasingly recognized components of the pathology of human genetic disease and hallmarks of many neurodegenerative disorders. As exemplified by polyglutamine diseases, the propensity for protein misfolding is associated with the length of polyglutamine expansions and age-dependent changes in protein-folding homeostasis, suggesting a critical role for a protein homeostatic buffer. To identify the complement of protein factors that protects cells against the formation of protein aggregates, we tested transgenic Caenorhabditis elegans strains expressing polyglutamine expansion yellow fluorescent protein fusion proteins at the threshold length associated with the age-dependent appearance of protein aggregation. We used genome-wide RNA interference to identify genes that, when suppressed, resulted in the premature appearance of protein aggregates. Our screen identified 186 genes corresponding to five principal classes of polyglutamine regulators: genes involved in RNA metabolism, protein synthesis, protein folding, and protein degradation; and those involved in protein trafficking. We propose that each of these classes represents a molecular machine collectively comprising the protein homeostatic buffer that responds to the expression of damaged proteins to prevent their misfolding and aggregation. protein misfolding | neurodegenerative diseases

  1. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design.

    PubMed

    Terenius, Olle; Papanicolaou, Alexie; Garbutt, Jennie S; Eleftherianos, Ioannis; Huvenne, Hanneke; Kanginakudru, Sriramana; Albrechtsen, Merete; An, Chunju; Aymeric, Jean-Luc; Barthel, Andrea; Bebas, Piotr; Bitra, Kavita; Bravo, Alejandra; Chevalier, François; Collinge, Derek P; Crava, Cristina M; de Maagd, Ruud A; Duvic, Bernard; Erlandson, Martin; Faye, Ingrid; Felföldi, Gabriella; Fujiwara, Haruhiko; Futahashi, Ryo; Gandhe, Archana S; Gatehouse, Heather S; Gatehouse, Laurence N; Giebultowicz, Jadwiga M; Gómez, Isabel; Grimmelikhuijzen, Cornelis J P; Groot, Astrid T; Hauser, Frank; Heckel, David G; Hegedus, Dwayne D; Hrycaj, Steven; Huang, Lihua; Hull, J Joe; Iatrou, Kostas; Iga, Masatoshi; Kanost, Michael R; Kotwica, Joanna; Li, Changyou; Li, Jianghong; Liu, Jisheng; Lundmark, Magnus; Matsumoto, Shogo; Meyering-Vos, Martina; Millichap, Peter J; Monteiro, Antónia; Mrinal, Nirotpal; Niimi, Teruyuki; Nowara, Daniela; Ohnishi, Atsushi; Oostra, Vicencio; Ozaki, Katsuhisa; Papakonstantinou, Maria; Popadic, Aleksandar; Rajam, Manchikatla V; Saenko, Suzanne; Simpson, Robert M; Soberón, Mario; Strand, Michael R; Tomita, Shuichiro; Toprak, Umut; Wang, Ping; Wee, Choon Wei; Whyard, Steven; Zhang, Wenqing; Nagaraju, Javaregowda; Ffrench-Constant, Richard H; Herrero, Salvador; Gordon, Karl; Swevers, Luc; Smagghe, Guy

    2011-02-01

    Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as our public database at http://insectacentral.org/RNAi will continue to gather information on RNAi experiments.

  2. RNA interference technology used for the study of aquatic virus infections.

    PubMed

    Reshi, Mohammad Latif; Wu, Jen-Leih; Wang, Hao-Ven; Hong, Jiann-Ruey

    2014-09-01

    Aquaculture is one of the most important economic activities in Asia and is presently the fastest growing sector of food production in the world. Explosive increases in global fish farming have been accompanied by an increase in viral diseases. Viral infections are responsible for huge economic losses in fish farming, and control of these viral diseases in aquaculture remains a serious challenge. Recent advances in biotechnology have had a significant impact on disease reduction in aquaculture. RNAi is one of the most important technological breakthroughs in modern biology, allowing us to directly observe the effects of the loss of specific genes in living systems. RNA interference technology has emerged as a powerful tool for manipulating gene expression in the laboratory. This technology represents a new therapeutic approach for treating aquatic diseases, including viral infections. RNAi technology is based on a naturally occurring post-transcriptional gene silencing process mediated by the formation of dsRNA. RNAi has been proven widely effective for gene knockdown in mammalian cultured cells, but its utility in fish remains unexplored. This review aims to highlight the RNAi technology that has made significant contributions toward the improvement of aquatic animal health and will also summarize the current status and future strategies concerning the therapeutic applications of RNAi to combat viral disease in aquacultured organisms.

  3. RNA interference technology to control pest sea lampreys--a proof-of-concept.

    PubMed

    Heath, George; Childs, Darcy; Docker, Margaret F; McCauley, David W; Whyard, Steven

    2014-01-01

    The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0-fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species.

  4. RNA Interference Technology to Control Pest Sea Lampreys - A Proof-of-Concept

    PubMed Central

    Heath, George; Childs, Darcy; Docker, Margaret F.; McCauley, David W.; Whyard, Steven

    2014-01-01

    The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0–fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species. PMID:24505485

  5. RNA interference technology to control pest sea lampreys--a proof-of-concept.

    PubMed

    Heath, George; Childs, Darcy; Docker, Margaret F; McCauley, David W; Whyard, Steven

    2014-01-01

    The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0-fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species. PMID:24505485

  6. Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts.

    PubMed

    Zhai, Zhiyang; Sooksa-nguan, Thanwalee; Vatamaniuk, Olena K

    2009-02-01

    Double-stranded (ds)RNA interference (RNAi) is widely used for functional analysis of plant genes and is achieved via generating stable transformants expressing dsRNA in planta. This study demonstrated that RNAi can also be utilized to examine gene functions in protoplasts. Because protoplasts are nongrowing cells, effective RNAi-triggered gene silencing depends not only on a depletion of gene transcripts but also on turnover rates of corresponding polypeptides. Herein, we tested if transient RNAi in protoplasts would result in the depletion of a targeted polypeptide and, because protoplasts have a limited life span, if functional assays of RNAi knockout genes would be feasible in protoplasts. We showed that protoplasts transfection with an in vitro-synthesized dsRNA against Arabidopsis (Arabidopsis thaliana) beta-glutamylcysteine synthase (ECS1), a key enzyme in the synthesis of glutathione, resulted in a 95% depletion of ECS1 transcript, a 72% decrease of ECS1 polypeptide, and a 60% drop in glutathione content. These results were comparable with those obtained upon analysis of Arabidopsis seedlings bearing the cad2-1 mutant allele of ECS1. We also improved the procedure for RNAi inactivation of several genes simultaneously. Finally, because we isolated protoplasts from tissues of 14-d-old seedlings instead of 1-month-old mature plants, the described procedure is rapid (as it only takes 20 d from seed planting to functional studies), suitable for analyzing multiple genes in parallel, and independent of cloning dsRNAs into plant expression vectors. Therefore, RNAi in protoplasts complements existing genetic tools, as it allows rapid, cost- and space-efficient initial screening and selection of genes for subsequent in planta studies.

  7. RNA interference based approach to down regulate Osmoregulators of whitefly Bemisia tabaci: potential technology for the control of whitefly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) could offer potential for insect pest management. Insects feeding exclusively on plant sap depend on osmotic pressure...

  8. EGFP-EGF1-conjugated PLGA nanoparticles for targeted delivery of siRNA into injured brain microvascular endothelial cells for efficient RNA interference.

    PubMed

    Chen, Chen; Mei, Heng; Shi, Wei; Deng, Jun; Zhang, Bo; Guo, Tao; Wang, Huafang; Hu, Yu

    2013-01-01

    Injured endothelium is an important target for drug and/or gene therapy because brain microvascular endothelial cells (BMECs) play critical roles in various pathophysiological conditions. RNA-mediated gene silencing presents a new therapeutic approach for treating such diseases, but major challenge is to ensure minimal toxicity and target delivery of siRNA to injured BMECs. Injured BMECs overexpress tissue factor (TF), which the fusion protein EGFP-EGF1 could be targeted to. In this study, TNF alpha (TNF-α) was chosen as a stimulus for primary BMECs to produce injured endothelium in vitro. The EGFP-EGF1-PLGA nanoparticles (ENPs) with loaded TF-siRNA were used as a new carrier for targeted delivery to the injured BMECs. The nanoparticles then produced intracellular RNA interference against TF. We compared ENP-based transfections with NP-mediated transfections, and our studies show that the ENP-based transfections result in a more efficient downregulation of TF. Our findings also show that the TF siRNA-loaded ENPs had minimal toxicity, with almost 96% of the cells viable 24 h after transfection while Lipofectamine-based transfections resulted in only 75% of the cells. Therefore, ENP-based transfection could be used for efficient siRNA transfection to injured BMECs and for efficient RNA interference (RNAi). This transfection could serve as a potential treatment for diseases, such as stroke, atherosclerosis and cancer.

  9. Functional inhibition of chemokine receptor CCR2 by dicer-substrate-siRNA prevents pain development

    PubMed Central

    Midavaine, Élora; Dansereau, Marc-André; Tétreault, Pascal; Longpré, Jean-Michel; Jacobi, Ashley M; Rose, Scott D; Behlke, Mark A; Beaudet, Nicolas; Sarret, Philippe

    2016-01-01

    Background Accumulating evidence suggests that the C-C chemokine ligand 2 (CCL2, or monocyte chemoattractant protein 1) acts as a neuromodulator in the central nervous system through its binding to the C-C chemokine receptor 2 (CCR2). Notably, it is well established that the CCL2/CCR2 axis plays a key role in neuron-glia communication as well as in spinal nociceptive transmission. Gene silencing through RNA interference has recently emerged as a promising avenue in research and drug development, including therapeutic management of chronic pain. In the present study, we used 27-mer Dicer-substrate small interfering RNA (DsiRNA) targeting CCR2 and assessed their ability to reverse the nociceptive behaviors induced by spinal CCL2 injection or following intraplantar injection of complete Freund’s adjuvant. Results To this end, we first developed high-potency DsiRNAs designed to target different sequences distributed across the rat CCR2 (rCCR2) messenger RNA. For optimization, methyl groups were added to the two most potent DsiRNA candidates (Evader and M7 2′-O-methyl modified duplexes) in order to improve in vivo duplex stability and to reduce potential immunostimulatory activity. Our results demonstrated that all modified candidates formulated with the cell-penetrating peptide reagent Transductin showed strong RNAi activity following intrathecal delivery, exhibiting >50% rCCR2 knockdown in lumbar dorsal root ganglia. Accordingly, we found that these DsiRNA duplexes were able to reduce spinal microglia activation and were effective at blocking CCL2-induced mechanical hypersensitivity. Along with similar reductions of rCCR2 messenger RNA, both sequences and methylation patterns were similarly effective in inhibiting the CCL2 nociceptive action for the whole seven days testing period, compared to mismatch DsiRNA. DsiRNAs against CCR2 also reversed the hypernociceptive responses observed in the complete Freund’s adjuvant-induced inflammatory chronic pain model

  10. Binding of small interfering RNA molecules is crucial for RNA interference suppressor activity of rice hoja blanca virus NS3 in plants.

    PubMed

    Hemmes, Hans; Kaaij, Lucas; Lohuis, Dick; Prins, Marcel; Goldbach, Rob; Schnettler, Esther

    2009-07-01

    The NS3 protein of rice hoja blanca virus represents a viral suppressor of RNA interference (RNAi) that sequesters small interfering (si)RNAs in vitro. To determine whether this siRNA binding property is the critical determinant for the suppressor activity of NS3, NS3 was altered by alanine point mutations and the resulting mutant proteins were tested for both siRNA binding ability and RNAi suppressor activity in plants. Alanine substitutions of lysine residues at positions 173-175 resulted in mutant proteins that lost both their affinity for siRNAs and their RNAi suppressor activity in planta. This indicates that siRNA binding of NS3 is indeed essential for the suppressor function of NS3 and that residues at positions 173-175 are involved in the siRNA binding and suppressor activities. PMID:19282433

  11. Nuclear Factor 90, a cellular dsRNA binding protein inhibits the HIV Rev-export function

    PubMed Central

    Urcuqui-Inchima, Silvio; Castaño, Maria Eugenia; Hernandez-Verdun, Danièle; St-Laurent, Georges; Kumar, Ajit

    2006-01-01

    Background The HIV Rev protein is known to facilitate export of incompletely spliced and unspliced viral transcripts to the cytoplasm, a necessary step in virus life cycle. The Rev-mediated nucleo-cytoplasmic transport of nascent viral transcripts, dependents on interaction of Rev with the RRE RNA structural element present in the target RNAs. The C-terminal variant of dsRNA-binding nuclear protein 90 (NF90ctv) has been shown to markedly attenuate viral replication in stably transduced HIV-1 target cell line. Here we examined a mechanism of interference of viral life cycle involving Rev-NF90ctv interaction. Results Since Rev:RRE complex formations depend on protein:RNA and protein:protein interactions, we investigated whether the expression of NF90ctv might interfere with Rev-mediated export of RRE-containing transcripts. When HeLa cells expressed both NF90ctv and Rev protein, we observed that NF90ctv inhibited the Rev-mediated RNA transport. In particular, three regions of NF90ctv protein are involved in blocking Rev function. Moreover, interaction of NF90ctv with the RRE RNA resulted in the expression of a reporter protein coding sequences linked to the RRE structure. Moreover, Rev influenced the subcellular localization of NF90ctv, and this process is leptomycin B sensitive. Conclusion The dsRNA binding protein, NF90ctv competes with HIV Rev function at two levels, by competitive protein:protein interaction involving Rev binding to specific domains of NF90ctv, as well as by its binding to the RRE-RNA structure. Our results are consistent with a model of Rev-mediated HIV-1 RNA export that envisions Rev-multimerization, a process interrupted by NF90ctv. PMID:17125513

  12. RNA binding by a novel helical fold of b2 protein from wuhan nodavirus mediates the suppression of RNA interference and promotes b2 dimerization.

    PubMed

    Qi, Nan; Cai, Dawei; Qiu, Yang; Xie, Jiazheng; Wang, Zhaowei; Si, Jie; Zhang, Jiamin; Zhou, Xi; Hu, Yuanyang

    2011-09-01

    Wuhan nodavirus (WhNV) is a newly identified member of the Nodaviridae family with a bipartite genome of positive-sense RNAs. A nonstructural protein encoded by subgenomic RNA3 of nodaviruses, B2, serves as a potent RNA silencing suppressor (RSS) by sequestering RNA duplexes. We have previously demonstrated that WhNV B2 blocks RNA silencing in cultured Drosophila cells. However, the molecular mechanism by which WhNV B2 functions remains unknown. Here, we successfully established an RNA silencing system in cells derived from Pieris rapae, a natural host of WhNV, by introducing into these cells double-stranded RNA (dsRNA)-expressing plasmids or chemically synthesized small interfering RNAs (siRNAs). Using this system, we revealed that the WhNV B2 protein inhibited Dicer-mediated dsRNA cleavage and the incorporation of siRNA into the RNA-induced silencing complex (RISC) by sequestering dsRNA and siRNA. Based on the modeled B2 3-dimensional structure, serial single alanine replacement mutations and N-terminal deletion analyses showed that the RNA-binding domain of B2 is formed by its helices α2 and α3, while helix α1 mediates B2 dimerization. Furthermore, positive feedback between RNA binding and B2 dimerization was uncovered by gel shift assay and far-Western blotting, revealing that B2 dimerization is required for its binding to RNA, whereas RNA binding to B2 in turn promotes its dimerization. All together, our findings uncovered a novel RNA-binding mode of WhNV B2 and provided evidence that the promotion effect of RNA binding on dimerization exists in a viral RSS protein. PMID:21734038

  13. RNA Binding by a Novel Helical Fold of B2 Protein from Wuhan Nodavirus Mediates the Suppression of RNA Interference and Promotes B2 Dimerization ▿

    PubMed Central

    Qi, Nan; Cai, Dawei; Qiu, Yang; Xie, Jiazheng; Wang, Zhaowei; Si, Jie; Zhang, Jiamin; Zhou, Xi; Hu, Yuanyang

    2011-01-01

    Wuhan nodavirus (WhNV) is a newly identified member of the Nodaviridae family with a bipartite genome of positive-sense RNAs. A nonstructural protein encoded by subgenomic RNA3 of nodaviruses, B2, serves as a potent RNA silencing suppressor (RSS) by sequestering RNA duplexes. We have previously demonstrated that WhNV B2 blocks RNA silencing in cultured Drosophila cells. However, the molecular mechanism by which WhNV B2 functions remains unknown. Here, we successfully established an RNA silencing system in cells derived from Pieris rapae, a natural host of WhNV, by introducing into these cells double-stranded RNA (dsRNA)-expressing plasmids or chemically synthesized small interfering RNAs (siRNAs). Using this system, we revealed that the WhNV B2 protein inhibited Dicer-mediated dsRNA cleavage and the incorporation of siRNA into the RNA-induced silencing complex (RISC) by sequestering dsRNA and siRNA. Based on the modeled B2 3-dimensional structure, serial single alanine replacement mutations and N-terminal deletion analyses showed that the RNA-binding domain of B2 is formed by its helices α2 and α3, while helix α1 mediates B2 dimerization. Furthermore, positive feedback between RNA binding and B2 dimerization was uncovered by gel shift assay and far-Western blotting, revealing that B2 dimerization is required for its binding to RNA, whereas RNA binding to B2 in turn promotes its dimerization. All together, our findings uncovered a novel RNA-binding mode of WhNV B2 and provided evidence that the promotion effect of RNA binding on dimerization exists in a viral RSS protein. PMID:21734038

  14. Phenotypic impacts of PBAN RNA interference in an ant, Solenopsis invicta, and a moth, Helicoverpa zea.

    PubMed

    Choi, Man-Yeon; Vander Meer, Robert K; Coy, Monique; Scharf, Michael E

    2012-08-01

    Insect neuropeptide hormones represent more than 90% of all insect hormones. The PBAN/pyrokinin family is a major group of insect neuropeptides, and they are expected to be found from all insect groups. These species-specific neuropeptides have been shown to have a variety of functions from embryo to adult. PBAN is well understood in moth species relative to sex pheromone biosynthesis, but other potential functions are yet to be determined. Recently, we focused on defining the PBAN gene and peptides in fire ants in preparation for an investigation of their function(s). RNA interference (RNAi) technology is a convenient tool to investigate unknown physiological functions in insects, and it is now an emerging method for development of novel biologically-based control agents as alternatives to insecticides. This could be a paradigm shift that will avoid many problems associated with conventional chemical insecticides. In this study, we selected the PBAN gene and its neuropeptide products as an RNAi target from two insect groups; a social insect, the fire ant (Solenopsis invicta) and a non-social insect, the corn earworm (Helicoverpa zea). Both insects are economically important pests. We report negative impacts after PBAN dsRNA treatment to suppress PBAN gene transcription during developmental and adult stages of both species, e.g. increased adult and larval mortality, delayed pupal development and decreased sex pheromone production in the moth. This is an important first step in determining the multiple functions of the PBAN gene in these two insects. This work illustrates the variety of phenotypic effects observed after RNAi silencing of the PBAN gene and suggests the possibility of novel biologically-based insect pest control methods. PMID:22705256

  15. Transgenic RNA interference (RNAi)-derived field resistance to cassava brown streak disease.

    PubMed

    Ogwok, Emmanuel; Odipio, John; Halsey, Mark; Gaitán-Solís, Eliana; Bua, Anton; Taylor, Nigel J; Fauquet, Claude M; Alicai, Titus

    2012-12-01

    Cassava brown streak disease (CBSD), caused by the Ipomoviruses Cassava brown streak virus (CBSV) and Ugandan Cassava brown streak virus (UCBSV), is considered to be an imminent threat to food security in tropical Africa. Cassava plants were transgenically modified to generate small interfering RNAs (siRNAs) from truncated full-length (894-bp) and N-terminal (402-bp) portions of the UCBSV coat protein (ΔCP) sequence. Seven siRNA-producing lines from each gene construct were tested under confined field trials at Namulonge, Uganda. All nontransgenic control plants (n = 60) developed CBSD symptoms on aerial tissues by 6 months after planting, whereas plants transgenic for the full-length ΔCP sequence showed a 3-month delay in disease development, with 98% of clonal replicates within line 718-001 remaining symptom free over the 11-month trial. Reverse transcriptase-polymerase chain reaction (RT-PCR) diagnostics indicated the presence of UCBSV within the leaves of 57% of the nontransgenic controls, but in only two of 413 plants tested (0.5%) across the 14 transgenic lines. All transgenic plants showing CBSD were PCR positive for the presence of CBSV, except for line 781-001, in which 93% of plants were confirmed to be free of both pathogens. At harvest, 90% of storage roots from nontransgenic plants were severely affected by CBSD-induced necrosis. However, transgenic lines 718-005 and 718-001 showed significant suppression of disease, with 95% of roots from the latter line remaining free from necrosis and RT-PCR negative for the presence of both viral pathogens. Cross-protection against CBSV by siRNAs generated from the full-length UCBSV ΔCP confirms a previous report in tobacco. The information presented provides proof of principle for the control of CBSD by RNA interference-mediated technology, and progress towards the potential control of this damaging disease.

  16. Transcriptome Analysis in Cotton Boll Weevil (Anthonomus grandis) and RNA Interference in Insect Pests

    PubMed Central

    Coelho, Roberta Ramos; Antonino de Souza Jr, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas-Jr, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families’ data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects. PMID:24386449

  17. Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests.

    PubMed

    Firmino, Alexandre Augusto Pereira; Fonseca, Fernando Campos de Assis; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; Antonino de Souza, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas-Jr, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  18. The Baculovirus Antiapoptotic p35 Protein Functions as an Inhibitor of the Host RNA Interference Antiviral Response

    PubMed Central

    Mehrabadi, Mohammad; Hussain, Mazhar; Matindoost, Leila

    2015-01-01

    ABSTRACT RNA interference (RNAi) is considered an ancient antiviral defense in diverse organisms, including insects. Virus infections generate double-strand RNAs (dsRNAs) that trigger the RNAi machinery to process dsRNAs into virus-derived short interfering RNAs (vsiRNAs), which target virus genomes, mRNAs, or replication intermediates. Viruses, in turn, have evolved viral suppressors of RNAi (VSRs) to counter host antiviral RNAi. Following recent discoveries that insects mount an RNAi response against DNA viruses, in this study, we found that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection similarly induces an RNAi response in Spodoptera frugiperda cells by generating a large number of vsiRNAs postinfection. Interestingly, we found that AcMNPV expresses a potent VSR to counter RNAi. The viral p35 gene, which is well known as an inhibitor of apoptosis, was found to be responsible for the suppression of RNAi in diverse insect and mammalian cells. The VSR activity of p35 was further confirmed by a p35-null AcMNPV that did not suppress the response. In addition, our results showed that the VSR activity is not due to inhibition of dsRNA cleavage by Dicer-2 but acts downstream in the RNAi pathway. Furthermore, we found that the VSR activity is not linked to the antiapoptotic activity of the protein. Overall, our results provide evidence for the existence of VSR activity in a double-stranded DNA virus and identify the responsible gene, which is involved in the inhibition of RNAi as well as apoptosis. IMPORTANCE Our findings demonstrate the occurrence of an insect RNAi response against a baculovirus (AcMNPV) that is highly utilized in microbial control, biological and biomedical research, and protein expression. Moreover, our investigations led to the identification of a viral suppressor of RNAi activity and the gene responsible for the activity. Notably, this gene is also a potent inhibitor of apoptosis. The outcomes signify the dual role of a

  19. [Inhibition of proliferation of H5N1 subtype AIV in CEF by chemosynthetic siRNA].

    PubMed

    Li, Ru-Shu; Yu, Dan; Luo, Bao-Zheng; Bo, Qing-Ru; Xu, Hai-Nie; Sha, Cai-Hua; Liao, Xiu-Yun

    2013-06-01

    In order to study the proliferation inhibition effect of H5N1 subtype avian influenza virus (AIV) with small interfere RNA (siRNA), a total of 4 siRNAs were designed in accordance with the NP and PA genes of H5N1 subtype AIV, the siRNAs were then transfected to chicken embryo fibroblast(CEF), CEF was infected with H5N1 subtype AIV after 6 hrs. Virus titer of cell supernatant was tested at 16-56hrs post infection, and pathological changes of the cells was observed; mRNA levels of NP, PA, HA and p13-actin gene were tested at 36hrs post infection. The results showed that these 4 siRNAs could inhibit the prolif-eration of H5N1 subtype AIV in CEF in varying degrees, and one siRNA targeting PA was best per-formed. The experimental results also showed that the inhibition effect was decreased with the time prolonged. This research provides a basis for further studying RNAi on AIV prevention and control.

  20. RNA interference: Applications and advances in insect toxicology and insect pest management.

    PubMed

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management. PMID:25987228

  1. RNA interference-based suppression of phosphoenolpyruvate carboxylase results in susceptibility of rapeseed to osmotic stress.

    PubMed

    Chen, Mei; Tang, Yunlai; Zhang, Jingmei; Yang, Mingfeng; Xu, Yinong

    2010-06-01

    The diverse functions of phosphoenolpyruvate carboxylase (PEPCase; EC 4.1.1.31) in C(3) plants are not as well understood as in C(4) plants. To investigate the functions of PEPCase in C(3) plants, rapeseed (Brassica napus L.) PEPCase gene (referred to as BNPE15) was silenced by the RNA interference (RNAi) technique. Under normal growth conditions, no significant difference in lipid content and fatty acid composition were found between wild-type (WT) and transgenic rapeseed plants. However, when these plants were subjected to osmotic stress induced by osmoticum polyethylene glycol (PEG-6000), membrane permeability and membrane lipid peroxidization in roots and leaves of transgenic plants were higher than those of WT plants. It suggested that transgenic plants are more susceptible to osmotic stress than WT plants. Taken together, the results showed that the suppression of PEPCase by RNAi leads to susceptibility to osmotic stress in rapeseed, and PEPCase is involved in the response of C(3) plants to environmental stress.

  2. Applications of RNA interference-based gene silencing in animal agriculture.

    PubMed

    Long, Charles R; Tessanne, Kimberly J; Golding, Michael C

    2010-01-01

    Classical genetic selection, recently aided by genomic selection tools, has been successful in achieving remarkable progress in livestock improvement. However, genetic selection has led to decreased genetic diversity and, in some cases, acquisition of undesirable traits. In order to meet the increased demands of our expanding population, new technologies and practices must be developed that contend with zoonotic and animal disease, environmental impacts of large farming operations and the increased food and fibre production needed to feed and clothe our society. Future increases in productivity may be dependent upon the acquisition of genetic traits not currently encoded by the genomes of animals used in standard agricultural practice, thus making classical genetic selection impossible. Genetic engineering of livestock is commonly used to produce pharmaceuticals or to impart enhanced production characteristics to animals, but has also demonstrated its usefulness in producing animals with disease resistance. However, significant challenges remain because it has been more difficult to produce animals in which specific genes have been removed. It is now possible to modify livestock genomes to block expression of endogenous and exogenous genes (such as those expressed following virus infection). In the present review, we discuss mechanisms of silencing gene expression via the biology of RNA interference (RNAi), the technology of activating the RNAi pathway and the application of this technology to enhance livestock production through increased production efficiency and prevention of disease. An increased demand for sustainable food production is at the forefront of scientific challenges and RNAi technology will undoubtedly play a key role.

  3. Increased keratinocyte proliferation initiated through downregulation of desmoplakin by RNA interference

    SciTech Connect

    Wan Hong . E-mail: hong.wan@cancer.org.uk; South, Andrew P.; Hart, Ian R.

    2007-07-01

    The intercellular adhesive junction desmosomes are essential for the maintenance of tissue structure and integrity in skin. Desmoplakin (Dp) is a major obligate plaque protein which plays a fundamental role in anchoring intermediate filaments to desmosomal cadherins. Evidence from hereditary human disease caused by mutations in the gene encoding Dp, e.g. Dp haploinsufficiency, suggests that alterations in Dp expression result not only in the disruption of tissue structure and integrity but also could evoke changes in keratinocyte proliferation. We have used transient RNA interference (RNAi) to downregulate Dp specifically in HaCaT keratinocytes. We showed that this Dp downregulation also caused reduced expression of several other desmosomal proteins. Increased cell proliferation and enhanced G{sub 1}-to-S-phase entry in the cell cycle, as monitored by colonial cellular density and BrdU incorporation, were seen in Dp RNAi-treated cells. These proliferative changes were associated with elevated phospho-ERK1/2 and phospho-Akt levels. Furthermore, this increase in phospho-ERK/1/2 and phospho-Akt levels was sustained in Dp RNAi-treated cells at confluence whereas in control cells there was a significant reduction in phosphorylation of ERK1/2. This study indicates that Dp may participate in the regulation of keratinocyte cell proliferation by, in part at least, regulating cell cycle progression.

  4. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting.

    PubMed

    Kuang, Yuyang; An, Sai; Guo, Yubo; Huang, Shixian; Shao, Kun; Liu, Yang; Li, Jianfeng; Ma, Haojun; Jiang, Chen

    2013-09-15

    Among all the malignant brain tumors, glioma is the deadliest and most common form with poor prognosis. Gene therapy is regarded as a promising way to halt the progress of the disease or even cure the tumor and RNA interference (RNAi) stands out. However, the existence of the blood-brain barrier (BBB) and blood tumor barrier (BTB) limits the delivery of these therapeutic genes. In this work, the delivery system targeting to the transferrin (Tf) receptor highly expressed on both BBB and glioma was successfully synthesized and would not compete with endogenous Tf. U87 cells stably express luciferase were employed here to simulate tumor and the RNAi experiments in vitro and in vivo validated that the gene silencing activity was 2.17-fold higher with the targeting ligand modification. The dual-targeting gene delivery system exhibits a series of advantages, such as high efficiency, low toxicity, stability and high transaction efficiency, which may provide new opportunities in RNAi therapeutics and nanomedicine of brain tumors.

  5. Promise and challenge of RNA interference-based therapy for cancer.

    PubMed

    Petrocca, Fabio; Lieberman, Judy

    2011-02-20

    Cancer therapeutics still fall far short of our goals for treating patients with locally advanced or metastatic disease. Until recently, almost all cancer drugs were crude cytotoxic agents that discriminate poorly between cancer cells and normally dividing cells. The development of targeted biologics that recognize tumor cell surface antigens and of specific inhibitors of pathways dysregulated in cancer cells or normal cellular pathways on which a cancer cell differentially depends has provided hope for converting our increasing understanding of cellular transformation into intelligently designed anticancer therapeutics. However, new drug development is painfully slow, and the pipeline of new therapeutics is thin. The discovery of RNA interference (RNAi), a ubiquitous cellular pathway of gene regulation that is dysregulated in cancer cells, provides an exciting opportunity for relatively rapid and revolutionary approaches to cancer drug design. Small RNAs that harness the RNAi machinery may become the next new class of drugs for treating a variety of diseases. Although it has only been 9 years since RNAi was shown to work in mammalian cells, about a dozen phase I to III clinical studies have already been initiated, including four for cancer. So far there has been no unexpected toxicity and suggestions of benefit in one phase II study. However, the obstacles for RNAi-based cancer therapeutics are substantial. This article will discuss how the endogenous RNAi machinery might be harnessed for cancer therapeutics, why academic researchers and biotech and pharmaceutical companies are so excited, and what the obstacles are and how they might be overcome.

  6. Global effects on gene expression in fission yeast by silencing and RNA interference machineries.

    PubMed

    Hansen, Klavs R; Burns, Gavin; Mata, Juan; Volpe, Thomas A; Martienssen, Robert A; Bähler, Jürg; Thon, Geneviève

    2005-01-01

    Histone modifications influence gene expression in complex ways. The RNA interference (RNAi) machinery can repress transcription by recruiting histone-modifying enzymes to chromatin, although it is not clear whether this is a general mechanism for gene silencing or whether it requires repeated sequences such as long terminal repeats (LTRs). We analyzed the global effects of the Clr3 and Clr6 histone deacetylases, the Clr4 methyltransferase, the zinc finger protein Clr1, and the RNAi proteins Dicer, RdRP, and Argonaute on the transcriptome of Schizosaccharomyces pombe (fission yeast). The clr mutants derepressed similar subsets of genes, many of which also became transcriptionally activated in cells that were exposed to environmental stresses such as nitrogen starvation. Many genes that were repressed by the Clr proteins clustered in extended regions close to the telomeres. Surprisingly few genes were repressed by both the silencing and RNAi machineries, with transcripts from centromeric repeats and Tf2 retrotransposons being notable exceptions. We found no correlation between repression by RNAi and proximity to LTRs, and the wtf family of repeated sequences seems to be repressed by histone deacetylation independent of RNAi. Our data indicate that the RNAi and Clr proteins show only a limited functional overlap and that the Clr proteins play more global roles in gene silencing. PMID:15632061

  7. Iron(II) supramolecular helicates interfere with the HIV-1 Tat–TAR RNA interaction critical for viral replication

    PubMed Central

    Malina, Jaroslav; Hannon, Michael J.; Brabec, Viktor

    2016-01-01

    The interaction between the HIV-1 transactivator protein Tat and TAR (transactivation responsive region) RNA, plays a critical role in HIV-1 transcription. Iron(II) supramolecular helicates were evaluated for their in vitro activity to inhibit Tat–TAR RNA interaction using UV melting studies, electrophoretic mobility shift assay, and RNase A footprinting. The results demonstrate that iron(II) supramolecular helicates inhibit Tat-TAR interaction at nanomolar concentrations by binding to TAR RNA. These studies provide a new insight into the biological potential of metallosupramolecular helicates. PMID:27405089

  8. Iron(II) supramolecular helicates interfere with the HIV-1 Tat–TAR RNA interaction critical for viral replication

    NASA Astrophysics Data System (ADS)

    Malina, Jaroslav; Hannon, Michael J.; Brabec, Viktor

    2016-07-01

    The interaction between the HIV-1 transactivator protein Tat and TAR (transactivation responsive region) RNA, plays a critical role in HIV-1 transcription. Iron(II) supramolecular helicates were evaluated for their in vitro activity to inhibit Tat–TAR RNA interaction using UV melting studies, electrophoretic mobility shift assay, and RNase A footprinting. The results demonstrate that iron(II) supramolecular helicates inhibit Tat-TAR interaction at nanomolar concentrations by binding to TAR RNA. These studies provide a new insight into the biological potential of metallosupramolecular helicates.

  9. Structure-based inhibition of Norovirus RNA-dependent RNA polymerases.

    PubMed

    Mastrangelo, Eloise; Pezzullo, Margherita; Tarantino, Delia; Petazzi, Roberto; Germani, Francesca; Kramer, Dorothea; Robel, Ivonne; Rohayem, Jacques; Bolognesi, Martino; Milani, Mario

    2012-06-01

    Caliciviridae are RNA viruses with a single-stranded, positively oriented polyadenylated genome, responsible for a broad spectrum of diseases such as acute gastroenteritis in humans. Recently, analyses on the structures and functionalities of the RNA-dependent RNA polymerase (RdRp) from several Caliciviruses have been reported. The RdRp is predicted to play a key role in genome replication, as well as in synthesis and amplification of additional subgenomic RNA. Starting from the crystal structures of human Norovirus (hNV) RdRp, we performed an in silico docking search to identify synthetic compounds with predicted high affinity for the enzyme active site. The best-ranked candidates were tested in vitro on murine Norovirus (MNV) and hNV RdRps to assay their inhibition of RNA polymerization. The results of such combined computational and experimental screening approach led to the identification of two high-potency inhibitors: Suramin and NF023, both symmetric divalent molecules hosting two naphthalene-trisulfonic acid heads. We report here the crystal structure of MNV RdRp alone and in the presence of the two identified inhibitors. Both inhibitory molecules occupy the same RdRp site, between the fingers and thumb domains, with one inhibitor head close to residue 42 and to the protein active site. To further validate the structural results, we mutated Trp42 to Ala in MNV RdRp and the corresponding residue (i.e., Tyr41 to Ala) in hNV RdRp. Both NF023 and Suramin displayed reduced inhibitory potency versus the mutated hNV RdRp, thus hinting at a conserved inhibitor binding mode in the two polymerases.

  10. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA.

    PubMed

    Woerner, Andreas C; Frottin, Frédéric; Hornburg, Daniel; Feng, Li R; Meissner, Felix; Patra, Maria; Tatzelt, Jörg; Mann, Matthias; Winklhofer, Konstanze F; Hartl, F Ulrich; Hipp, Mark S

    2016-01-01

    Amyloid-like protein aggregation is associated with neurodegeneration and other pathologies. The nature of the toxic aggregate species and their mechanism of action remain elusive. Here, we analyzed the compartment specificity of aggregate toxicity using artificial β-sheet proteins, as well as fragments of mutant huntingtin and TAR DNA binding protein-43 (TDP-43). Aggregation in the cytoplasm interfered with nucleocytoplasmic protein and RNA transport. In contrast, the same proteins did not inhibit transport when forming inclusions in the nucleus at or around the nucleolus. Protein aggregation in the cytoplasm, but not the nucleus, caused the sequestration and mislocalization of proteins containing disordered and low-complexity sequences, including multiple factors of the nuclear import and export machinery. Thus, impairment of nucleocytoplasmic transport may contribute to the cellular pathology of various aggregate deposition diseases. PMID:26634439

  11. The RNA recognition motif domains of RBM5 are required for RNA binding and cancer cell proliferation inhibition

    SciTech Connect

    Zhang, Lei; Zhang, Qing; Yang, Yu; Wu, Chuanfang

    2014-02-14

    Highlights: • RNA recognition motif domains of RBM5 are essential for cell proliferation inhibition. • RNA recognition motif domains of RBM5 are essential for apoptosis induction. • RNA recognition motif domains of RBM5 are essential for RNA binding. • RNA recognition motif domains of RBM5 are essential for caspase-2 alternative splicing. - Abstract: RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required for RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition.

  12. RNA interference-mediated knockdown of brain-derived neurotrophic factor (BDNF) promotes cell cycle arrest and apoptosis in B-cell lymphoma cells.

    PubMed

    Xia, D; Li, W; Zhang, L; Qian, H; Yao, S; Qi, X

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin superfamily that has been reported to be involved in a number of neurological and psychological situations. Recently, high expression level of BDNF is observed in diverse human malignancies, delineating a role of BDNF in tumorigenesis. Nevertheless, its effect on B-cell lymphoma remains unclear. In this study, RNA interference technology mediated by short hairpin RNA (shRNA) was performed to inhibit endogenous BDNF expression in B-cell lymphoma cells. Results showed that knockdown of BDNF reduced cell growth and proliferation of Raji and Ramos cells. Furthermore, down-regulation of BDNF induced a cell cycle arrest at G0/G1 phase in Raji cells, and consequently led to cell apoptosis in vitro. Meanwhile, down-regulation of Bcl-2 and up-regulation of Bax, activated caspase-3 and caspase-9 and cleaved poly (ADP-ribose) polymerase (PARP) were observed in Raji cells when endogenous BDNF was inhibited. Besides, we also found that suppression of BDNF in Raji cells increased their sensitivity to chemotherapeutic drug, 5-Fluorouracil (5-FU). Our research provides a promising therapeutic strategy for human B-cell lymphoma by targeting BDNF.

  13. Sex-dependent effects on tasks assessing reinforcement learning and interference inhibition

    PubMed Central

    Evans, Kelly L.; Hampson, Elizabeth

    2015-01-01

    Increasing evidence suggests that the prefrontal cortex (PFC) is influenced by sex steroids and that some cognitive functions dependent on the PFC may be sexually differentiated in humans. Past work has identified a male advantage on certain complex reinforcement learning tasks, but it is unclear which latent task components are important to elicit the sex difference. The objective of the current study was to investigate whether there are sex differences on measures of response inhibition and valenced feedback processing, elements that are shared by previously studied reinforcement learning tasks. Healthy young adults (90 males, 86 females) matched in general intelligence completed the Probabilistic Selection Task (PST), a Simon task, and the Stop-Signal task. On the PST, females were more accurate than males in learning from positive (but not negative) feedback. On the Simon task, males were faster than females, especially in the face of incongruent stimuli. No sex difference was observed in Stop-Signal reaction time. The current findings provide preliminary support for a sex difference in the processing of valenced feedback and in interference inhibition. PMID:26257691

  14. Sex-dependent effects on tasks assessing reinforcement learning and interference inhibition.

    PubMed

    Evans, Kelly L; Hampson, Elizabeth

    2015-01-01

    Increasing evidence suggests that the prefrontal cortex (PFC) is influenced by sex steroids and that some cognitive functions dependent on the PFC may be sexually differentiated in humans. Past work has identified a male advantage on certain complex reinforcement learning tasks, but it is unclear which latent task components are important to elicit the sex difference. The objective of the current study was to investigate whether there are sex differences on measures of response inhibition and valenced feedback processing, elements that are shared by previously studied reinforcement learning tasks. Healthy young adults (90 males, 86 females) matched in general intelligence completed the Probabilistic Selection Task (PST), a Simon task, and the Stop-Signal task. On the PST, females were more accurate than males in learning from positive (but not negative) feedback. On the Simon task, males were faster than females, especially in the face of incongruent stimuli. No sex difference was observed in Stop-Signal reaction time. The current findings provide preliminary support for a sex difference in the processing of valenced feedback and in interference inhibition.

  15. Sex-dependent effects on tasks assessing reinforcement learning and interference inhibition.

    PubMed

    Evans, Kelly L; Hampson, Elizabeth

    2015-01-01

    Increasing evidence suggests that the prefrontal cortex (PFC) is influenced by sex steroids and that some cognitive functions dependent on the PFC may be sexually differentiated in humans. Past work has identified a male advantage on certain complex reinforcement learning tasks, but it is unclear which latent task components are important to elicit the sex difference. The objective of the current study was to investigate whether there are sex differences on measures of response inhibition and valenced feedback processing, elements that are shared by previously studied reinforcement learning tasks. Healthy young adults (90 males, 86 females) matched in general intelligence completed the Probabilistic Selection Task (PST), a Simon task, and the Stop-Signal task. On the PST, females were more accurate than males in learning from positive (but not negative) feedback. On the Simon task, males were faster than females, especially in the face of incongruent stimuli. No sex difference was observed in Stop-Signal reaction time. The current findings provide preliminary support for a sex difference in the processing of valenced feedback and in interference inhibition. PMID:26257691

  16. Structural bases of norovirus RNA dependent RNA polymerase inhibition by novel suramin-related compounds.

    PubMed

    Croci, Romina; Pezzullo, Margherita; Tarantino, Delia; Milani, Mario; Tsay, Shwu-Chen; Sureshbabu, Radhakrishnan; Tsai, Yi-Jin; Mastrangelo, Eloise; Rohayem, Jacques; Bolognesi, Martino; Hwu, Jih Ru

    2014-01-01

    Noroviruses (NV) are +ssRNA viruses responsible for severe gastroenteritis; no effective vaccines/antivirals are currently available. We previously identified Suramin (9) as a potent inhibitor of NV-RNA dependent RNA polymerase (NV-RdRp). Despite significant in vitro activities versus several pharmacological targets, Suramin clinical use is hampered by pharmacokinetics/toxicity problems. To improve Suramin access to NV-RdRp in vivo, a Suramin-derivative, 8, devoid of two sulphonate groups, was synthesized, achieving significant anti-human-NV-RdRp activity (IC50 = 28 nM); the compound inhibits also murine NV (mNV) RdRp. The synthesis process led to the isolation/characterization of lower molecular weight intermediates (3-7) hosting only one sulphonate head. The crystal structures of both hNV/mNV-RdRps in complex with 6, were analyzed, providing new knowledge on the interactions that a small fragment can establish with NV-RdRps, and establishing a platform for structure-guided optimization of potency, selectivity and drugability.

  17. Structural Bases of Norovirus RNA Dependent RNA Polymerase Inhibition by Novel Suramin-Related Compounds

    PubMed Central

    Tarantino, Delia; Milani, Mario; Tsay, Shwu-Chen; Sureshbabu, Radhakrishnan; Tsai, Yi-Jin; Mastrangelo, Eloise; Rohayem, Jacques; Bolognesi, Martino; Hwu, Jih Ru

    2014-01-01

    Noroviruses (NV) are +ssRNA viruses responsible for severe gastroenteritis; no effective vaccines/antivirals are currently available. We previously identified Suramin (9) as a potent inhibitor of NV-RNA dependent RNA polymerase (NV-RdRp). Despite significant in vitro activities versus several pharmacological targets, Suramin clinical use is hampered by pharmacokinetics/toxicity problems. To improve Suramin access to NV-RdRp in vivo, a Suramin-derivative, 8, devoid of two sulphonate groups, was synthesized, achieving significant anti-human-NV-RdRp activity (IC50 = 28 nM); the compound inhibits also murine NV (mNV) RdRp. The synthesis process led to the isolation/characterization of lower molecular weight intermediates (3–7) hosting only one sulphonate head. The crystal structures of both hNV/mNV-RdRps in complex with 6, were analyzed, providing new knowledge on the interactions that a small fragment can establish with NV-RdRps, and establishing a platform for structure-guided optimization of potency, selectivity and drugability. PMID:24622391

  18. RNAs nonspecifically inhibit RNA polymerase II by preventing binding to the DNA template.

    PubMed

    Pai, Dave A; Kaplan, Craig D; Kweon, Hye Kyong; Murakami, Kenji; Andrews, Philip C; Engelke, David R

    2014-05-01

    Many RNAs are known to act as regulators of transcription in eukaryotes, including certain small RNAs that directly inhibit RNA polymerases both in prokaryotes and eukaryotes. We have examined the potential for a variety of RNAs to directly inhibit transcription by yeast RNA polymerase II (Pol II) and find that unstructured RNAs are potent inhibitors of purified yeast Pol II. Inhibition by RNA is achieved by blocking binding of the DNA template and requires binding of the RNA to Pol II prior to open complex formation. RNA is not able to displace a DNA template that is already stably bound to Pol II, nor can RNA inhibit elongating Pol II. Unstructured RNAs are more potent inhibitors than highly structured RNAs and can also block specific transcription initiation in the presence of basal transcription factors. Crosslinking studies with ultraviolet light show that unstructured RNA is most closely associated with the two large subunits of Pol II that comprise the template binding cleft, but the RNA has contacts in a basic residue channel behind the back wall of the active site. These results are distinct from previous observations of specific inhibition by small, structured RNAs in that they demonstrate a sensitivity of the holoenzyme to inhibition by unstructured RNA products that bind to a surface outside the DNA cleft. These results are discussed in terms of the need to prevent inhibition by RNAs, either though sequestration of nascent RNA or preemptive interaction of Pol II with the DNA template.

  19. The efficiency of RNA interference for conferring stable resistance to Plum Pox Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plum transformed with an intron hairpin RNA CP (ihRNA-CP) were resistant to PPV infection through the specific process of RNA silencing involving both small interfering -RNA interfering (siRNA) and a methylated virus transgene. This recognition process specifically targeted the triggered PPV genome...

  20. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles

    SciTech Connect

    Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie; Weinberg, Marc S.; Arbuthnot, Patrick

    2009-11-20

    RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.

  1. Breast cancer cell line MDA-MB-231 miRNA profile expression after BIK interference: BIK involvement in autophagy.

    PubMed

    Ruiz Esparza-Garrido, Ruth; Torres-Márquez, María Eugenia; Viedma-Rodríguez, Rubí; Velázquez-Wong, Ana Claudia; Salamanca-Gómez, Fabio; Rosas-Vargas, Haydeé; Velázquez-Flores, Miguel Ángel

    2016-05-01

    B-cell lymphoma 2 (BCL2)-interacting killer (apoptosis inducing) (BIK) has been proposed as a tumor suppressor in diverse types of cancers. However, BIK's overexpression in breast cancer (BC) and in non-small lung cancer cells (NSCLCs), associated with a poor prognosis, suggests its participation in tumor progression. In this study, we evaluated the global expression pattern of microRNAs (miRNAs), messenger RNA (mRNA) expression changes in autophagy, and autophagic flux after BIK interference. BIK gene expression was silenced by small interfering RNA (siRNA) in BC cell MDA-MB-231, and BIK interference efficiency was tested by real-time PCR and by Western blotting. BIK expression levels decreased by 75 ± 18 % in the presence of 600 nM siRNA, resulting in the abolishment of BIK expression by 94 ± 30 %. BIK interference resulted in the overexpression of 17 miRNAs that, according to the DIANA-miRPath v3.0 database, are mainly implied in the control of cell signaling, gene expression, and autophagy. The autophagy array revealed downregulation of transcripts which participate in autophagy, and their interactome revealed a complex network, where hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), α-synuclein (SNCA), unc-51-like autophagy activating kinase 1/2 (ULK1/2), and mitogen-activated protein kinase 3 (MAPK3) were shown to be signaling hubs. LC3-II expression-an autophagy marker-was increased by 169 ± 25 % after BIK interference, which indicates the involvement of BIK in autophagy. Altogether, our results indicate-for the first time-that BIK controls the expression of miRNAs, as well as the autophagic flux in MDA-MB-231 cells. PMID:26662110

  2. Knockdown of PU.1 AS lncRNA inhibits adipogenesis through enhancing PU.1 mRNA translation.

    PubMed

    Pang, Wei-Jun; Lin, Li-Gen; Xiong, Yan; Wei, Ning; Wang, Yu; Shen, Qing-Wu; Yang, Gong-She

    2013-11-01

    PU.1 is an Ets family transcription factor involved in the myelo-lymphoid differentiation. We have previously demonstrated that PU.1 is also expressed in the adipocyte lineage. However, the expression levels of PU.1 mRNA and protein in preadipocytes do not match the levels in mature adipocytes. PU.1 mRNA level is higher in preadipocytes, whereas its protein is expressed in the adipocytes but not in the preadipocytes. The underlying mechanism remains elusive. Here, we find that miR-155 knockdown or overexpression has no effect on the levels of PU.1 mRNA and protein in preadipocytes or adipocytes. MiR-155 regulates adipogenesis not through PU.1, but via C/EBPβ which is another target of miR-155. We also checked the expression levels of PU.1 mRNA and antisense long non-coding RNA (AS lncRNA). Interestingly, compared with the level of PU.1 mRNA, the level of PU.1 AS lncRNA is much higher in preadipocytes, whereas it is opposite in the adipocytes. We further discover that PU.1 AS lncRNA binds to its mRNA forming an mRNA/AS lncRNA compound. The knockdown of PU.1 AS by siRNA inhibits adipogenesis and promotes PU.1 protein expression in both preadipocytes and adipocytes. Furthermore, the repression of PU.1 AS decreases the expression and secretion of adiponectin. We also find that the effect of retroviral-mediated PU.1 AS knockdown on adipogenesis is consistent with that of PU.1 AS knockdown by siRNA. Taken together, our results suggest that PU.1 AS lncRNA promotes adipogenesis through preventing PU.1 mRNA translation via binding to PU.1 mRNA to form mRNA/AS lncRNA duplex in preadipocytes.

  3. Inhibition of pre-mRNA splicing by a synthetic Blom7α-interacting small RNA.

    PubMed

    Löscher, Marlies; Schosserer, Markus; Dausse, Eric; Lee, Kiseok; Ajuh, Paul; Grillari-Voglauer, Regina; Lamond, Angus I; Toulmé, Jean-Jacques; Grillari, Johannes

    2012-01-01

    Originally the novel protein Blom7α was identified as novel pre-mRNA splicing factor that interacts with SNEV(Prp19/Pso4), an essential protein involved in extension of human endothelial cell life span, DNA damage repair, the ubiquitin-proteasome system, and pre-mRNA splicing. Blom7α belongs to the heteronuclear ribonucleoprotein K homology (KH) protein family, displaying 2 KH domains, a well conserved and widespread RNA-binding motif. In order to identify specific sequence binding motifs, we here used Systematic Evolution of Ligands by Exponential Enrichment (SELEX) with a synthetic RNA library. Besides sequence motifs like (U/A)(1-4) C(2-6) (U/A)(1-5), we identified an AC-rich RNA-aptamer that we termed AK48 (Aptamer KH-binding 48), binding to Blom7α with high affinity. Addition of AK48 to pre-mRNA splicing reactions in vitro inhibited the formation of mature spliced mRNA and led to a slight accumulation of the H complex of the spliceosome. These results suggest that the RNA binding activity of Blom7α might be required for pre-mRNA splicing catalysis. The inhibition of in-vitro splicing by the small RNA AK48 indicates the potential use of small RNA molecules in targeting the spliceosome complex as a novel target for drug development. PMID:23144703

  4. Evaluation of Four Different Systems for Extraction of RNA from Stool Suspensions Using MS-2 Coliphage as an Exogenous Control for RT-PCR Inhibition

    PubMed Central

    Shulman, Lester M.; Hindiyeh, Musa; Muhsen, Khitam; Cohen, Dani; Mendelson, Ella; Sofer, Danit

    2012-01-01

    Knowing when, and to what extent co-extracted inhibitors interfere with molecular RNA diagnostic assays is of utmost importance. The QIAamp Viral RNA Mini Kit (A); MagNA Pure LC2.0 Automatic extractor (B); KingFisher (C); and NucliSENS EasyMag (D) RNA extraction systems were evaluated for extraction efficiency and co-purification of inhibitors from stool suspensions. Real-Time Reverse Transcriptase Polymerase Chain Reaction (rRT-PCR) of MS-2 coliphage spiked into each system’s lysis buffer served as an external control for both. Cycle thresholds (Cts) of the MS2 were determined for RNA extracted from stool suspensions containing unknown (n = 93) or varying amounts of inhibitors (n = 92). Stool suspensions from the latter group were also used to determine whether MS-2 and enterovirus rRT-PCR inhibitions were correlated. Specifically 23 RNA extracts from stool suspensions were spiked with enterovirus RNA after extraction and 13 of these stool suspension were spiked with intact enterovirus before extraction. MS2 rRT-PCR inhibition varied for RNAs extracted by the different systems. Inhibition was noted in 12 (13.0%), 26 (28.3%), 7 (7.6%), and 7 (7.6%) of the first 93 RNA extracts, and 58 (63.0%), 55 (59.8%), 37 (40.2%) and 30 (32.6%) of the second 92 extracts for A, B, C, and D, respectively. Furthermore, enterovirus rRT-PCR inhibition correlated with MS2 rRT-PCR inhibition for added enterovirus RNA or virus particles. In conclusion, rRT-PCR for MS-2 RNA is a good predictor of inhibition of enterovirus RNA extracted from stool suspensions. EasyMag performed the best, however all four extraction methods were suitable provided that external controls identified problematic samples. PMID:22815706

  5. Inhibition of Plasmodium falciparum proliferation in vitro by double-stranded RNA directed against malaria histone deacetylase

    SciTech Connect

    Sriwilaijaroen, N.; Boonma, S.; Attasart, P.; Pothikasikorn, J.; Panyim, S.; Noonpakdee, W.

    2009-04-03

    Acetylation and deacetylation of histones play important roles in transcription regulation, cell cycle progression and development events. The steady state status of histone acetylation is controlled by a dynamic equilibrium between competing histone acetylase and deacetylase (HDAC). We have used long PfHDAC-1 double-stranded (ds)RNA to interfere with its cognate mRNA expression and determined the effect on malaria parasite growth and development. Chloroquine- and pyrimethamine-resistant Plasmodium falciparum K1 strain was exposed to 1-25 {mu}g of dsRNA/ml of culture for 48 h and growth was determined by [{sup 3}H]-hypoxanthine incorporation and microscopic examination. Parasite culture treated with 10 {mu}g/ml pfHDAC-1 dsRNA exhibited 47% growth inhibition when compared with either untreated control or culture treated with an unrelated dsRNA. PfHDAC-1 dsRNA specifically blocked maturation of trophozoite to schizont stages and decreased PfHDAC-1 transcript 44% in treated trophozoites. These results indicate the potential of HDAC-1 as a target for development of novel antimalarials.

  6. Parental RNA interference of genes involved in embryonic development of the western corn rootworm, Diabrotica virgifera virgifera LeConte.

    PubMed

    Khajuria, Chitvan; Vélez, Ana M; Rangasamy, Murugesan; Wang, Haichuan; Fishilevich, Elane; Frey, Meghan L F; Carneiro, Newton Portilho; Gandra, Premchand; Narva, Kenneth E; Siegfried, Blair D

    2015-08-01

    RNA interference (RNAi) is being developed as a potential tool for insect pest management and one of the most likely target pest species for transgenic plants that express double stranded RNA (dsRNA) is the western corn rootworm. Thus far, most genes proposed as targets for RNAi in rootworm cause lethality in the larval stage. In this study, we describe RNAi-mediated knockdown of two developmental genes, hunchback (hb) and brahma (brm), in the western corn rootworm delivered via dsRNA fed to adult females. dsRNA feeding caused a significant decrease in hb and brm transcripts in the adult females. Although total oviposition was not significantly affected, there was almost complete absence of hatching in the eggs collected from females exposed to dsRNA for either gene. These results confirm that RNAi is systemic in nature for western corn rootworms. These results also indicate that hunchback and brahma play important roles in rootworm embryonic development and could provide useful RNAi targets in adult rootworms to prevent crop injury by impacting the population of larval progeny of exposed adults. The ability to deliver dsRNA in a trans-generational manner by feeding to adult rootworms may offer an additional approach to utilizing RNAi for rootworm pest management. The potential to develop parental RNAi technology targeting progeny of adult rootworms in combination with Bt proteins or dsRNA lethal to larvae may increase opportunities to develop sustainable approaches to rootworm management involving RNAi technologies for rootworm control.

  7. RNA Interference Mediated Interleukin-1β Silencing in Inflamed Chondrocytes Decreases Target and Downstream Catabolic Responses.

    PubMed

    Ortved, Kyla F; Austin, Bethany S; Scimeca, Michael S; Nixon, Alan J

    2016-01-01

    Posttraumatic activation of the catabolic cascade plays a major role in degradation of cartilage. Interleukin-1β (IL-1β), a primary instigator in the catabolic axis, is upregulated in chondrocytes following injury. IL-1β activates key degradative enzymes, including MMPs and aggrecanases, and other proinflammatory mediators such as PGE2 which contribute to ECM breakdown. Posttranscriptional silencing of IL-1β by RNA interference (RNAi) may drive a reduction in IL-1β. We hypothesized that transduction of chondrocytes using rAAV2 expressing a short hairpin RNAi motif targeting IL-1β (shIL-1β) would significantly decrease IL-1β expression and, in turn, decrease expression of other catabolic enzymes. Chondrocyte cultures were transduced with rAAV2-tdT-shIL-1β in serum-free media. The fluorescent protein, tdTomato, was used to determine transduction efficiency via flow cytometry and fluorescent microscopy. Cells were stimulated with lipopolysaccharide (LPS) 48 hours following transduction. After 24-hour stimulation, supernatants were collected for cytokine analysis, and cells lysed for gene expression analysis. IL-1β knockdown led to significantly decreased expression of IL-1β, TNF-α, and ADAMTS5. PGE2 synthesis was also significantly downregulated. Overall, effective silencing of IL-1β using rAAV2 vector expressing a short hairpin IL-1β knockdown sequence was shown. Additionally, significant downstream effects were evident, including decreased expression of TNF-α and ADAMTS5. Targeted silencing of catabolic cytokines may provide a promising treatment avenue for osteoarthritic (OA) joints. PMID:27073697

  8. Development of RNA Interference Trigger-Mediated Gene Silencing in Entamoeba invadens.

    PubMed

    Suresh, Susmitha; Ehrenkaufer, Gretchen; Zhang, Hanbang; Singh, Upinder

    2016-04-01

    Entamoeba histolytica, a protozoan parasite, is an important human pathogen and a leading parasitic cause of death. The organism has two life cycle stages, trophozoites, which are responsible for tissue invasion, and cysts, which are involved in pathogen transmission. Entamoeba invadens is the model system to study Entamoeba developmental biology, as high-grade regulated encystation and excystation are readily achievable. However, the lack of gene-silencing tools in E. invadens has limited the molecular studies that can be performed. Using the endogenous RNA interference (RNAi) pathway in Entamoeba, we developed an RNAi-based trigger gene-silencing approach inE. invadens We demonstrate that a gene's coding region that has abundant antisense small RNAs (sRNAs) can trigger silencing of a gene that is fused to it. The trigger fusion leads to the generation of abundant antisense sRNAs that map to the target gene, with silencing occurring independently of trigger location at the 5' or 3' end of a gene. Gene silencing is stably maintained during development, including encystation and excystation. We have used this approach to successfully silence two E. invadens genes: a putative rhomboid protease gene and a SHAQKY family Myb gene. The Myb gene is upregulated during oxidative stress and development, and its downregulation led, as predicted, to decreased viability under oxidative stress and decreased cyst formation. Thus, the RNAi trigger silencing method can be used to successfully investigate the molecular functions of genes inE. invadens Dissection of the molecular basis of Entamoeba stage conversion is now possible, representing an important technical advance for the system.

  9. Development of RNA Interference Trigger-Mediated Gene Silencing in Entamoeba invadens.

    PubMed

    Suresh, Susmitha; Ehrenkaufer, Gretchen; Zhang, Hanbang; Singh, Upinder

    2016-04-01

    Entamoeba histolytica, a protozoan parasite, is an important human pathogen and a leading parasitic cause of death. The organism has two life cycle stages, trophozoites, which are responsible for tissue invasion, and cysts, which are involved in pathogen transmission. Entamoeba invadens is the model system to study Entamoeba developmental biology, as high-grade regulated encystation and excystation are readily achievable. However, the lack of gene-silencing tools in E. invadens has limited the molecular studies that can be performed. Using the endogenous RNA interference (RNAi) pathway in Entamoeba, we developed an RNAi-based trigger gene-silencing approach inE. invadens We demonstrate that a gene's coding region that has abundant antisense small RNAs (sRNAs) can trigger silencing of a gene that is fused to it. The trigger fusion leads to the generation of abundant antisense sRNAs that map to the target gene, with silencing occurring independently of trigger location at the 5' or 3' end of a gene. Gene silencing is stably maintained during development, including encystation and excystation. We have used this approach to successfully silence two E. invadens genes: a putative rhomboid protease gene and a SHAQKY family Myb gene. The Myb gene is upregulated during oxidative stress and development, and its downregulation led, as predicted, to decreased viability under oxidative stress and decreased cyst formation. Thus, the RNAi trigger silencing method can be used to successfully investigate the molecular functions of genes inE. invadens Dissection of the molecular basis of Entamoeba stage conversion is now possible, representing an important technical advance for the system. PMID:26787723

  10. Development of RNA Interference Trigger-Mediated Gene Silencing in Entamoeba invadens

    PubMed Central

    Suresh, Susmitha; Ehrenkaufer, Gretchen; Zhang, Hanbang

    2016-01-01

    Entamoeba histolytica, a protozoan parasite, is an important human pathogen and a leading parasitic cause of death. The organism has two life cycle stages, trophozoites, which are responsible for tissue invasion, and cysts, which are involved in pathogen transmission. Entamoeba invadens is the model system to study Entamoeba developmental biology, as high-grade regulated encystation and excystation are readily achievable. However, the lack of gene-silencing tools in E. invadens has limited the molecular studies that can be performed. Using the endogenous RNA interference (RNAi) pathway in Entamoeba, we developed an RNAi-based trigger gene-silencing approach in E. invadens. We demonstrate that a gene's coding region that has abundant antisense small RNAs (sRNAs) can trigger silencing of a gene that is fused to it. The trigger fusion leads to the generation of abundant antisense sRNAs that map to the target gene, with silencing occurring independently of trigger location at the 5′ or 3′ end of a gene. Gene silencing is stably maintained during development, including encystation and excystation. We have used this approach to successfully silence two E. invadens genes: a putative rhomboid protease gene and a SHAQKY family Myb gene. The Myb gene is upregulated during oxidative stress and development, and its downregulation led, as predicted, to decreased viability under oxidative stress and decreased cyst formation. Thus, the RNAi trigger silencing method can be used to successfully investigate the molecular functions of genes in E. invadens. Dissection of the molecular basis of Entamoeba stage conversion is now possible, representing an important technical advance for the system. PMID:26787723

  11. Suppression of Bedbug’s Reproduction by RNA Interference of Vitellogenin

    PubMed Central

    Moriyama, Minoru; Hosokawa, Takahiro; Tanahashi, Masahiko; Nikoh, Naruo; Fukatsu, Takema

    2016-01-01

    Recent resurgence of the bedbug Cimex lectularius is a global problem on the public health. On account of the worldwide rise of insecticide-resistant bedbug populations, exploration of new approaches to the bedbug control and management is anticipated. In this context, gene silencing by RNA interference (RNAi) has been considered for its potential application to pest control and management, because RNAi enables specific suppression of target genes and thus flexible selection of target traits to be disrupted. In this study, in an attempt to develop a control strategy targeting reproduction of the bedbug, we investigated RNAi-mediated gene silencing of vitellogenin (Vg), a major yolk protein precursor essential for oogenesis. From the bedbug transcriptomes, we identified a typical Vg gene and a truncated Vg gene, which were designated as ClVg and ClVg-like, respectively. ClVg gene was highly expressed mainly in the fat body of adult females, which was more than 100 times higher than the expression level of ClVg-like gene, indicating that ClVg gene is the primary functional Vg gene in the bedbug. RNAi-mediated suppression of ClVg gene expression in adult females resulted in drastically reduced egg production, atrophied ovaries, and inflated abdomen due to hypertrophied fat bodies. These phenotypic consequences are expected not only to suppress the bedbug reproduction directly but also to deteriorate its feeding and survival indirectly via behavioral modifications. These results suggest the potential of ClVg gene as a promising target for RNAi-based population management of the bedbug. PMID:27096422

  12. Complementarity between the mRNA 5' untranslated region and 18S ribosomal RNA can inhibit translation.

    PubMed

    Verrier, S B; Jean-Jean, O

    2000-04-01

    In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.

  13. [Evaluation of the binding affinity and RNA interference of low-molecular-weight chitosan/siRNA complexes using an imaging system].

    PubMed

    Kawaguchi, Yasuhisa; Okuda, Tomoyuki; Ban, Tatsunori; Danjo, Kazumi; Okamoto, Hirokazu

    2009-04-01

    Chitosan is one of the attractive non-viral carriers for gene delivery including siRNA. However, common chitosan, which has a relatively high molecular weight, is insoluble in water, which might make it difficult to apply clinically. In this study, we investigated the efficacy of low-molecular-weight chitosan (LMWC), which is soluble in water, as a carrier for siRNA delivery. To evaluate the binding affinity and RNA interference (RNAi) of LMWC/siRNA complexes, a multi-well imaging system (IVIS) was adapted. CT26 cells stably expressing firefly luciferase (CT26/Luc cells) were established to evaluate RNAi. Evaluation of RNAi using lipofectamine(TM) 2000 was carried out by employing a luminometer with cell lysis and IVIS without cell lysis. The results were closely correlated, suggesting the advantages of the multi-well imaging system regarding screening, the visualization of results, and nondestructive evaluation. Fluorescence generated by ethidium bromide intercalated in the double strand of siRNA was markedly quenched at a higher ratio of LMWC to siRNA (N/P) and lower pH. Evaluation of the particle size and zeta potential of LMWC/siRNA complexes also indicated the higher binding affinity of LMWC with siRNA. At N/P=300 and pH 6.5, which satisfied the high-level binding affinity of LMWC with siRNA, significantly lower luminescence was detected in CT26/Luc cells treated with LMWC/siRNA compared with those treated with LMWC alone, suggesting the presence of RNAi. These results suggested that LMWC may be an effective carrier for siRNA delivery, and that the multi-well imaging system may be a powerful tool to evaluate the binding affinity and RNAi.

  14. Knockdown of RNA Interference Pathway Genes in Western Corn Rootworms (Diabrotica virgifera virgifera Le Conte) Demonstrates a Possible Mechanism of Resistance to Lethal dsRNA.

    PubMed

    Vélez, Ana María; Khajuria, Chitvan; Wang, Haichuan; Narva, Kenneth E; Siegfried, Blair D

    2016-01-01

    RNA interference (RNAi) is being developed as a potential tool for insect pest management. Increased understanding of the RNAi pathway in target insect pests will provide information to use this technology effectively and to inform decisions related to resistant management strategies for RNAi based traits. Dicer 2 (Dcr2), an endonuclease responsible for formation of small interfering RNA's and Argonaute 2 (Ago2), an essential catalytic component of the RNA-induced silencing complex (RISC) have both been associated with the RNAi pathway in a number of different insect species including the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). We identified both genes from a transcriptome library generated from different tissues and developmental stages of the western corn rootworm, an important target pest for transgenic plants expressing dsRNA targeting essential genes. The expression of these genes was suppressed by more than 90% after injecting gene specific dsRNA into adult rootworms. The injected beetles were then fed vATPase A dsRNA which has previously been demonstrated to cause mortality in western corn rootworm adults. The suppression of both RNAi pathway genes resulted in reduced mortality after subsequent exposure to lethal concentrations of vATPase A dsRNA as well as increased vATPase A expression relative to control treatments. Injections with dsRNA for a non-lethal target sequence (Laccase 2) did not affect mortality or expression caused by vATPase A dsRNA indicating that the results observed with Argo and Dicer dsRNA were not caused by simple competition among different dsRNA's. These results confirm that both genes play an important role in the RNAi pathway for western corn rootworms and indicate that selection pressures that potentially affect the expression of these genes may provide a basis for future studies to understand potential mechanisms of resistance. PMID:27310918

  15. Large-scale RNA interference screening in mammalian cells identifies novel regulators of mutant huntingtin aggregation.

    PubMed

    Yamanaka, Tomoyuki; Wong, Hon Kit; Tosaki, Asako; Bauer, Peter O; Wada, Koji; Kurosawa, Masaru; Shimogori, Tomomi; Hattori, Nobutaka; Nukina, Nobuyuki

    2014-01-01

    In polyglutamine (polyQ) diseases including Huntington's disease (HD), mutant proteins containing expanded polyQ stretch form aggregates in neurons. Genetic or RNAi screenings in yeast, C. elegans or Drosophila have identified multiple genes modifying polyQ aggregation, a few of which are confirmed effective in mammals. However, the overall molecular mechanism underlying polyQ protein aggregation in mammalian cells still remains obscure. We here perform RNAi screening in mouse neuro2a cells to identify mammalian modifiers for aggregation of mutant huntingtin, a causative protein of HD. By systematic cell transfection and automated cell image analysis, we screen ∼ 12000 shRNA clones and identify 111 shRNAs that either suppress or enhance mutant huntingtin aggregation, without altering its gene expression. Classification of the shRNA-targets suggests that genes with various cellular functions such as gene transcription and protein phosphorylation are involved in modifying the aggregation. Subsequent analysis suggests that, in addition to the aggregation-modifiers sensitive to proteasome inhibition, some of them, such as a transcription factor Tcf20, and kinases Csnk1d and Pik3c2a, are insensitive to it. As for Tcf20, which contains polyQ stretches at N-terminus, its binding to mutant huntingtin aggregates is observed in neuro2a cells and in HD model mouse neurons. Notably, except Pik3c2a, the rest of the modifiers identified here are novel. Thus, our first large-scale RNAi screening in mammalian system identifies previously undescribed genetic players that regulate mutant huntingtin aggregation by several, possibly mammalian-specific mechanisms. PMID:24705917

  16. Large-Scale RNA Interference Screening in Mammalian Cells Identifies Novel Regulators of Mutant Huntingtin Aggregation

    PubMed Central

    Tosaki, Asako; Bauer, Peter O.; Wada, Koji; Kurosawa, Masaru; Shimogori, Tomomi; Hattori, Nobutaka; Nukina, Nobuyuki

    2014-01-01

    In polyglutamine (polyQ) diseases including Huntington's disease (HD), mutant proteins containing expanded polyQ stretch form aggregates in neurons. Genetic or RNAi screenings in yeast, C. elegans or Drosophila have identified multiple genes modifying polyQ aggregation, a few of which are confirmed effective in mammals. However, the overall molecular mechanism underlying polyQ protein aggregation in mammalian cells still remains obscure. We here perform RNAi screening in mouse neuro2a cells to identify mammalian modifiers for aggregation of mutant huntingtin, a causative protein of HD. By systematic cell transfection and automated cell image analysis, we screen ∼12000 shRNA clones and identify 111 shRNAs that either suppress or enhance mutant huntingtin aggregation, without altering its gene expression. Classification of the shRNA-targets suggests that genes with various cellular functions such as gene transcription and protein phosphorylation are involved in modifying the aggregation. Subsequent analysis suggests that, in addition to the aggregation-modifiers sensitive to proteasome inhibition, some of them, such as a transcription factor Tcf20, and kinases Csnk1d and Pik3c2a, are insensitive to it. As for Tcf20, which contains polyQ stretches at N-terminus, its binding to mutant huntingtin aggregates is observed in neuro2a cells and in HD model mouse neurons. Notably, except Pik3c2a, the rest of the modifiers identified here are novel. Thus, our first large-scale RNAi screening in mammalian system identifies previously undescribed genetic players that regulate mutant huntingtin aggregation by several, possibly mammalian-specific mechanisms. PMID:24705917

  17. Intravenous Delivery of siRNA Targeting CD47 Effectively Inhibits Melanoma Tumor Growth and Lung Metastasis

    PubMed Central

    Wang, Yuhua; Xu, Zhenghong; Guo, Shutao; Zhang, Lu; Sharma, Arati; Robertson, Gavin P; Huang, Leaf

    2013-01-01

    CD47 is a “self marker” that is usually overexpressed on the surface of cancer cells to enable them to escape immunosurveillance. Recognition of CD47 by its receptor, signal regulatory protein α (SIRPα), which is expressed in the macrophages, inhibits phagocytic destruction of cancer cells by the macrophages. In this study, we have first shown that clinical isolates of human melanoma significantly upregulate CD47, possibly as a mechanism to defend themselves against the macrophages. We then exploited RNA interference (RNAi) technology to test the hypothesis that knocking down CD47 in the tumor cells will render them targets for macrophage destruction; hence, creating a novel anti-cancer therapy. Anti-CD47 siRNA was encapsulated in a liposome-protamine-hyaluronic acid (LPH) nanoparticle (NP) formulation to address the challenge of targeted delivery of siRNA-based therapeutics in vivo. Efficient silencing of CD47 in tumor tissues with systemic administration of LPH(CD47) also significantly inhibited the growth of melanoma tumors. In a lung metastasis model, LPH(CD47) efficiently inhibited lung metastasis to about 27% of the untreated control. Moreover, no hematopoietic toxicity was observed in the animals that received multiple doses of LPH(CD47). Our findings indicate CD47 as a potential prognostic marker for melanoma development as well as a target for therapeutic intervention with RNAi-based nanomedicines. PMID:23774794

  18. The role of outcome inhibition in interference between outcomes: a contingency-learning analogue of retrieval-induced forgetting.

    PubMed

    Vadillo, Miguel A; Orgaz, Cristina; Luque, David; Cobos, Pedro L; López, Francisco J; Matute, Helena

    2013-05-01

    Current associative theories of contingency learning assume that inhibitory learning plays a part in the interference between outcomes. However, it is unclear whether this inhibitory learning results in the inhibition of the outcome representation or whether it simply counteracts previous excitatory learning so that the outcome representation is neither activated nor inhibited. Additionally, these models tend to conceptualize inhibition as a relatively transient and cue-dependent state. However, research on retrieval-induced forgetting suggests that the inhibition of representations is a real process that can be relatively independent of the retrieval cue used to access the inhibited information. Consistent with this alternative view, we found that interference between outcomes reduces the retrievability of the target outcome even when the outcome is associated with a novel (non-inhibitory) cue. This result has important theoretical implications for associative models of interference and shows that the empirical facts and theories developed in studies of retrieval-induced forgetting might be relevant in contingency learning and vice versa.

  19. Structural architecture of an RNA that competitively inhibits RNase L.

    PubMed

    Keel, Amanda Y; Jha, Babal Kant; Kieft, Jeffrey S

    2012-01-01

    Activation of RNase L endonuclease activity is part of the mammalian innate immune response to viral infection. The poliovirus RNA genome contains a sequence in its protein-coding region that can act as a competitive inhibitor of RNase L. Mutation, sequence, and functional analysis of this competitive inhibitor RNA (ciRNA) revealed that its activity depends on specific sequences, showed that a loop-loop hairpin interaction forms in the ciRNA, and suggested the presence of a loop E motif. These features lead to the hypothesis that the ciRNA's function is conferred in part by a specific three-dimensional folded RNA architecture. By using a combination of biophysical, mutational, and functional studies, we have mapped features of the three-dimensional architecture of the ciRNA in its unbound form. We show that the loop-loop interaction forms in the free ciRNA and affects the overall structure, perhaps forming long-range tertiary interactions with the loop E motif. Local tight RNA-RNA backbone packing occurs in parts of the structure, but the fold appears to be less stable than many other tightly packed RNAs. This feature may allow the ciRNA to accommodate the translocation of ribosomes and polymerase across this multifunctional region of the viral RNA but also to function as an RNase L inhibitor.

  20. RNA interference against transcription elongation factor SII does not support its role in transcription-coupled nucleotide excision repair.

    PubMed

    Mackinnon-Roy, Christine; Stubbert, Lawton J; McKay, Bruce C

    2011-01-10

    RNA polymerase II is unable to bypass bulky DNA lesions induced by agents like ultraviolet light (UV light) and cisplatin that are located in the template strand of active genes. Arrested polymerases form a stable ternary complex at the site of DNA damage that is thought to pose an impediment to the repair of these lesions. Transcription-coupled nucleotide excision repair (TC-NER) preferentially repairs these DNA lesions through an incompletely defined mechanism. Based on elegant in vitro experiments, it was hypothesized that the transcription elongation factor IIS (TFIIS) may be required to couple transcription to repair by catalyzing the reverse translocation of the arrested polymerase, allowing access of repair proteins to the site of DNA damage. However the role of TFIIS in this repair process has not been tested in vivo. Here, silencing TFIIS using an RNA interference strategy did not affect the ability of cells to recover nascent RNA synthesis following UV exposure or the ability of cells to repair a UV-damaged reporter gene while a similar strategy to decrease the expression Cockayne syndrome group B protein (CSB) resulted in the expected repair defect. Furthermore, RNA interference against TFIIS did not increase the sensitivity of cells to UV light or cisplatin while decreased expression of CSB did. Taken together, these results indicate that TFIIS is not limiting for the repair of transcription-blocking DNA lesions and thus the present work does not support a role for TFIIS in TC-NER.

  1. RNA interference in marine and freshwater sponges: actin knockdown in Tethya wilhelma and Ephydatia muelleri by ingested dsRNA expressing bacteria

    PubMed Central

    2011-01-01

    Background The marine sponge Tethya wilhelma and the freshwater sponge Ephydatia muelleri are emerging model organisms to study evolution, gene regulation, development, and physiology in non-bilaterian animal systems. Thus far, functional methods (i.e., loss or gain of function) for these organisms have not been available. Results We show that soaking developing freshwater sponges in double-stranded RNA and/or feeding marine and freshwater sponges bacteria expressing double-stranded RNA can lead to RNA interference and reduction of targeted transcript levels. These methods, first utilized in C. elegans, have been adapted for the development and feeding style of easily cultured marine and freshwater poriferans. We demonstrate phenotypic changes result from 'knocking down' expression of the actin gene. Conclusion This technique provides an easy, efficient loss-of-function manipulation for developmental and gene regulatory studies in these important non-bilaterian animals. PMID:21679422

  2. Technical advances in trigger-induced RNA interference gene silencing in the parasite Entamoeba histolytica.

    PubMed

    Khalil, Mohamed I; Foda, Bardees M; Suresh, Susmitha; Singh, Upinder

    2016-03-01

    Entamoeba histolytica has a robust endogenous RNA interference (RNAi) pathway. There are abundant 27 nucleotide (nt) anti-sense small RNAs (AS sRNAs) that target genes for silencing and the genome encodes many genes involved in the RNAi pathway such as Argonaute proteins. Importantly, an E. histolytica gene with numerous AS sRNAs can function as a "trigger" to induce silencing of a gene that is fused to the trigger. Thus, the amebic RNAi pathway regulates gene expression relevant to amebic biology and has additionally been harnessed as a tool for genetic manipulation. In this study we have further improved the trigger-induced gene silencing method. We demonstrate that rather than using the full-length gene, a short portion of the coding region fused to a trigger is sufficient to induce silencing; the first 537 bp of the E. histolytica rhomboid gene (EhROM1) fused in-frame to the trigger was sufficient to silence EhROM1. We also demonstrated that the trigger method could silence two amebic genes concomitantly; fusion of the coding regions of EhROM1 and transcription factor, EhMyb, in-frame to a trigger gene resulted in both genes being silenced. Alternatively, two genes can be silenced sequentially: EhROM1-silenced parasites with no drug selection plasmid were transfected with trigger-EhMyb, resulting in parasites with both EhROM1 and EhMyb silenced. With all approaches tested, the trigger-mediated silencing was substantive and silencing was maintained despite loss of the G418 selectable marker. All gene silencing was associated with generation of AS sRNAs to the silenced gene. We tested the reversibility of the trigger system using inhibitors of histone modifications but found that the silencing was highly stable. This work represents a technical advance in the trigger gene silencing method in E. histolytica. Approaches that readily silence multiple genes add significantly to the genetic toolkit available to the ameba research community. PMID:26747561

  3. Knockdown of RNA Interference Pathway Genes in Western Corn Rootworms (Diabrotica virgifera virgifera Le Conte) Demonstrates a Possible Mechanism of Resistance to Lethal dsRNA

    PubMed Central

    Vélez, Ana María; Khajuria, Chitvan; Wang, Haichuan; Narva, Kenneth E.; Siegfried, Blair D.

    2016-01-01

    RNA interference (RNAi) is being developed as a potential tool for insect pest management. Increased understanding of the RNAi pathway in target insect pests will provide information to use this technology effectively and to inform decisions related to resistant management strategies for RNAi based traits. Dicer 2 (Dcr2), an endonuclease responsible for formation of small interfering RNA’s and Argonaute 2 (Ago2), an essential catalytic component of the RNA-induced silencing complex (RISC) have both been associated with the RNAi pathway in a number of different insect species including the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). We identified both genes from a transcriptome library generated from different tissues and developmental stages of the western corn rootworm, an important target pest for transgenic plants expressing dsRNA targeting essential genes. The expression of these genes was suppressed by more than 90% after injecting gene specific dsRNA into adult rootworms. The injected beetles were then fed vATPase A dsRNA which has previously been demonstrated to cause mortality in western corn rootworm adults. The suppression of both RNAi pathway genes resulted in reduced mortality after subsequent exposure to lethal concentrations of vATPase A dsRNA as well as increased vATPase A expression relative to control treatments. Injections with dsRNA for a non-lethal target sequence (Laccase 2) did not affect mortality or expression caused by vATPase A dsRNA indicating that the results observed with Argo and Dicer dsRNA were not caused by simple competition among different dsRNA’s. These results confirm that both genes play an important role in the RNAi pathway for western corn rootworms and indicate that selection pressures that potentially affect the expression of these genes may provide a basis for future studies to understand potential mechanisms of resistance. PMID:27310918

  4. A meta-analysis of response inhibition and Stroop interference control deficits in adults with traumatic brain injury (TBI).

    PubMed

    Dimoska-Di Marco, Aneta; McDonald, Skye; Kelly, Michelle; Tate, Robyn; Johnstone, Stuart

    2011-04-01

    The prominent clinical feature of behavioral impulsivity following traumatic brain injury (TBI) suggests impairment of frontal inhibitory control processes. This meta-analysis consolidates the recent surge in studies across two forms of "effortful" inhibition, employing well-defined paradigms of response inhibition (N = 20; i.e., go/no-go, sustained attention to response, stop-signal, Conners' continuous performance tasks) and response interference control (N = 21, i.e., Stroop color word tasks). Across 41 effect sizes involving 989 adults with mild to severe TBI and 969 controls, the overall effect of TBI on reduced inhibitory control was small to moderate (d = 0.3) and significant. The effect was larger in studies measuring response inhibition performance (d = 0.5), while Stroop interference control yielded a nonsignificant overall effect size (d = 0.05). Further analysis of the latter finding revealed a large effect size when Stroop task studies used the outcome measure "total time on task" (d = 1.4), but not "RT per trial" or "number of stimuli" (d = -0.8 and -0.9). Response speed in these tasks was impaired to a large degree (d = 0.96). Together these findings support a response inhibition deficit following TBI but suggest factors other than interference control, such as poor processing speed, fatigue, and underarousal, may underlie poor performance in Stroop tasks.

  5. Not all pseudouridine synthases are potently inhibited by RNA containing 5-fluorouridine.

    PubMed

    Spedaliere, Christopher J; Mueller, Eugene G

    2004-02-01

    RNA containing 5-fluorouridine has been assumed to inhibit strongly or irreversibly the pseudouridine synthases that act on the RNA. RNA transcripts containing 5-fluorouridine in place of uridine have, therefore, been added to reconstituted systems in order to investigate the importance of particular pseudouridine residues in a given RNA by inactivating the pseudouridine synthase responsible for their generation. In sharp contradiction to the assumption of universal inhibition of pseudouridine synthases by RNA containing 5-fluorouridine, the Escherichia coli pseudouridine synthase TruB, which has physiologically critical eukaryotic homologs, is not inhibited by such RNA. Instead, the RNA containing 5-fluorouridine was handled as a substrate by TruB. The E. coli pseudouridine synthase RluA, on the other hand, forms a covalent complex and is inhibited stoichiometrically by RNA containing 5-fluorouridine. We offer a hypothesis for this disparate behavior and urge caution in interpreting results from reconstitution experiments in which RNA containing 5-fluorouridine is assumed to inhibit a pseudouridine synthase, as normal function may result from a failure to inactivate the targeted enzyme rather than from the absence of nonessential pseudouridine residues.

  6. Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference.

    PubMed

    Zhao, Lina; Yang, Mengmeng; Shen, Qida; Liu, Xiaojun; Shi, Zuokun; Wang, Shigui; Tang, Bin

    2016-01-01

    RNA interference (RNAi) is an effective gene-silencing tool, and double stranded RNA (dsRNA) is considered a powerful strategy for gene function studies in insects. In the present study, we aimed to investigate the function of trehalase (TRE) genes (TRE 1-1, TRE 1-2, and TRE-2) isolated from the brown planthopper Nilaparvata lugens, a typical piercing-sucking insect in rice, and investigate their regulating roles in chitin synthesis by injecting larvae with dsRNA. The results showed that TRE1 and TRE2 had compensatory function, and the expression of each increased when the other was silenced. The total rate of insects with phenotypic deformities ranged from 19.83 to 24.36% after dsTRE injection, whereas the mortality rate ranged from 14.16 to 31.78%. The mRNA levels of genes involved in the chitin metabolism pathway in RNA-Seq and DGEP, namely hexokinase (HK), glucose-6-phosphate isomerase (G6PI) and chitinase (Cht), decreased significantly at 72 h after single dsTREs injection, whereas two transcripts of chitin synthase (CHS) genes decreased at 72 h after dsTRE1-1 and dsTREs injection. These results demonstrated that TRE silencing could affect the regulation of chitin biosynthesis and degradation, causing moulting deformities. Therefore, expression inhibitors of TREs might be effective tools for the control of planthoppers in rice. PMID:27328657

  7. Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference

    PubMed Central

    Zhao, Lina; Yang, Mengmeng; Shen, Qida; Liu, Xiaojun; Shi, Zuokun; Wang, Shigui; Tang, Bin

    2016-01-01

    RNA interference (RNAi) is an effective gene-silencing tool, and double stranded RNA (dsRNA) is considered a powerful strategy for gene function studies in insects. In the present study, we aimed to investigate the function of trehalase (TRE) genes (TRE 1-1, TRE 1-2, and TRE-2) isolated from the brown planthopper Nilaparvata lugens, a typical piercing-sucking insect in rice, and investigate their regulating roles in chitin synthesis by injecting larvae with dsRNA. The results showed that TRE1 and TRE2 had compensatory function, and the expression of each increased when the other was silenced. The total rate of insects with phenotypic deformities ranged from 19.83 to 24.36% after dsTRE injection, whereas the mortality rate ranged from 14.16 to 31.78%. The mRNA levels of genes involved in the chitin metabolism pathway in RNA-Seq and DGEP, namely hexokinase (HK), glucose-6-phosphate isomerase (G6PI) and chitinase (Cht), decreased significantly at 72 h after single dsTREs injection, whereas two transcripts of chitin synthase (CHS) genes decreased at 72 h after dsTRE1-1 and dsTREs injection. These results demonstrated that TRE silencing could affect the regulation of chitin biosynthesis and degradation, causing moulting deformities. Therefore, expression inhibitors of TREs might be effective tools for the control of planthoppers in rice. PMID:27328657

  8. RNA Interference Screen to Identify Kinases That Suppress Rescue of ΔF508-CFTR.

    PubMed

    Trzcińska-Daneluti, Agata M; Chen, Anthony; Nguyen, Leo; Murchie, Ryan; Jiang, Chong; Moffat, Jason; Pelletier, Lawrence; Rotin, Daniela

    2015-06-01

    Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the Cystic fibrosis transmembrane conductance regulator (CFTR). ΔF508-CFTR, the most common disease-causing CF mutant, exhibits folding and trafficking defects and is retained in the endoplasmic reticulum, where it is targeted for proteasomal degradation. To identify signaling pathways involved in ΔF508-CFTR rescue, we screened a library of endoribonuclease-prepared short interfering RNAs (esiRNAs) that target ∼750 different kinases and associated signaling proteins. We identified 20 novel suppressors of ΔF508-CFTR maturation, including the FGFR1. These were subsequently validated by measuring channel activity by the YFP halide-sensitive assay following shRNA-mediated knockdown, immunoblotting for the mature (band C) ΔF508-CFTR and measuring the amount of surface ΔF508-CFTR by ELISA. The role of FGFR signaling on ΔF508-CFTR trafficking was further elucidated by knocking down FGFRs and their downstream signaling proteins: Erk1/2, Akt, PLCγ-1, and FRS2. Interestingly, inhibition of FGFR1 with SU5402 administered to intestinal organoids (mini-guts) generated from the ileum of ΔF508-CFTR homozygous mice resulted in a robust ΔF508-CFTR rescue. Moreover, combination of SU5402 and VX-809 treatments in cells led to an additive enhancement of ΔF508-CFTR rescue, suggesting these compounds operate by different mechanisms. Chaperone array analysis on human bronchial epithelial cells harvested from ΔF508/ΔF508-CFTR transplant patients treated with SU5402 identified altered expression of several chaperones, an effect validated by their overexpression or knockdown experiments. We propose that FGFR signaling regulates specific chaperones that control ΔF508-CFTR maturation, and suggest that FGFRs may serve as important targets for therapeutic intervention for the treatment of CF.

  9. Interference and Inhibition in Tasks of Selective Attention by Persons with and without Mental Retardation

    ERIC Educational Resources Information Center

    Merrill, Edward C.

    2006-01-01

    Persons with mental retardation often exhibit greater interference in visual selective attention tasks than do persons matched with them on CA. My goal here was to evaluate whether differences in distractor interference between persons with and without mental retardation may be related to differences in negative priming. Fifteen participants with…

  10. Effects of short-hairpin RNA-inhibited {beta}-catenin expression on the growth of human multiple myeloma cells in vitro and in vivo

    SciTech Connect

    Liang, Wenqing; Yang, Chengwei; Qian, Yu; Fu, Qiang

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer {beta}-Catenin expression were markedly down-regulated by CTNNB1 shRNA. Black-Right-Pointing-Pointer CTNNB1 shRNA could inhibit the proliferation of RPMI8226 cells. Black-Right-Pointing-Pointer Significantly profound apoptotic cell death in CTNNB1 shRNA cells. Black-Right-Pointing-Pointer In vivo, CTNNB1 silence led to a growth inhibition of myeloma growth. Black-Right-Pointing-Pointer c-myc and {beta}-catenin in the expression cells of cleaved caspase-3 were increased. -- Abstract: Multiple myeloma (MM) is thrombogenic as a consequence of multiple hemostatic effects. Overexpression of {beta}-catenin has been observed in several types of malignant tumors, including MM. However, the relationship between {beta}-catenin expression and MM remains unclear. In the present study, RNA interference was used to inhibit {beta}-catenin expression in RPMI8226 cells. RT-PCR and Western blotting analyses showed that {beta}-catenin mRNA and protein expression were markedly down-regulated by CTNNB1 shRNA. Western blotting showed that the protein levels of cyclin D1 and glutamine synthetase were downregulated and supported the transcriptional regulatory function of {beta}-catenin. The MTT assay showed that CTNNB1 shRNA could have significant inhibitory effects on the proliferation of RPMI8226 cells. The TOPflash reporter assay demonstrated significant downregulation after CTNNB1 shRNA transfection in RPMI8226 cells. Flow cytometric analyses also showed significantly profound apoptosis in CTNNB1 shRNA cells. We found CTNNB1 silence led to growth inhibition of MM growth in vivo. Immunohistochemical analyses showed that c-myc and {beta}-catenin were reduced in CTNNB1 shRNA tumor tissues, but that expression of cleaved caspase-3 was increased. These results show that {beta}-catenin could be a new therapeutic agent that targets the biology of MM cells.

  11. Development of sheep kidney cells with increased resistance to different subgenotypes of BVDV-1 by RNA interference.

    PubMed

    Ni, Wei; Qiao, Jun; Ma, Qiman; Wang, Jiangde; Wang, Dawei; Zhao, Xinxia; Cao, Yang; Li, Qifeng; Hu, Shengwei; Chen, Chuangfu

    2015-06-15

    Bovine viral diarrhea virus (BVDV) should be a ubiquitous viral pathogen to the cattle and sheep industry. This pathogen is responsible for severe economic losses. We previously showed that plasmid-mediated dual short hairpin RNA (shRNA) efficiently inhibit BVDV replication in bovine kidney epithelial (MDBK) cells. In this study, we delivered the dual shRNA system to sheep fibroblasts and generated transgenic cell colonies. These transgenic fibroblasts were further used for somatic cell nuclear transfer (SCNT). Three lambs were born at full term, but perished soon after birth. Integration of shRNA into the genome of cloned sheep was confirmed by PCR and expression of shRNA in transgenic sheep was confirmed by real-time PCR. Kidney epithelial cells were isolated from transgenic sheep and challenged with multiple BVDV subgenotypes (BVDV-1a, BVDV-1b and BVDV-1c). The dual shRNA expressed in transgenic kidney epithelial cells significantly inhibited BVDV replication in a cross-resistance manner. Our results showed that transgenic RNAi might be a useful tool for preparation of transgenic animals with increased resistance to BVDV.

  12. Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling.

    PubMed

    Cajigas, Ivelisse; Leib, David E; Cochrane, Jesse; Luo, Hao; Swyter, Kelsey R; Chen, Sean; Clark, Brian S; Thompson, James; Yates, John R; Kingston, Robert E; Kohtz, Jhumku D

    2015-08-01

    Transcription-regulating long non-coding RNAs (lncRNAs) have the potential to control the site-specific expression of thousands of target genes. Previously, we showed that Evf2, the first described ultraconserved lncRNA, increases the association of transcriptional activators (DLX homeodomain proteins) with key DNA enhancers but represses gene expression. In this report, mass spectrometry shows that the Evf2-DLX1 ribonucleoprotein (RNP) contains the SWI/SNF-related chromatin remodelers Brahma-related gene 1 (BRG1, SMARCA4) and Brahma-associated factor (BAF170, SMARCC2) in the developing mouse forebrain. Evf2 RNA colocalizes with BRG1 in nuclear clouds and increases BRG1 association with key DNA regulatory enhancers in the developing forebrain. While BRG1 directly interacts with DLX1 and Evf2 through distinct binding sites, Evf2 directly inhibits BRG1 ATPase and chromatin remodeling activities. In vitro studies show that both RNA-BRG1 binding and RNA inhibition of BRG1 ATPase/remodeling activity are promiscuous, suggesting that context is a crucial factor in RNA-dependent chromatin remodeling inhibition. Together, these experiments support a model in which RNAs convert an active enhancer to a repressed enhancer by directly inhibiting chromatin remodeling activity, and address the apparent paradox of RNA-mediated stabilization of transcriptional activators at enhancers with a repressive outcome. The importance of BRG1/RNA and BRG1/homeodomain interactions in neurodevelopmental disorders is underscored by the finding that mutations in Coffin-Siris syndrome, a human intellectual disability disorder, localize to the BRG1 RNA-binding and DLX1-binding domains.

  13. Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling

    PubMed Central

    Cajigas, Ivelisse; Leib, David E.; Cochrane, Jesse; Luo, Hao; Swyter, Kelsey R.; Chen, Sean; Clark, Brian S.; Thompson, James; Yates, John R.; Kingston, Robert E.; Kohtz, Jhumku D.

    2015-01-01

    Transcription-regulating long non-coding RNAs (lncRNAs) have the potential to control the site-specific expression of thousands of target genes. Previously, we showed that Evf2, the first described ultraconserved lncRNA, increases the association of transcriptional activators (DLX homeodomain proteins) with key DNA enhancers but represses gene expression. In this report, mass spectrometry shows that the Evf2-DLX1 ribonucleoprotein (RNP) contains the SWI/SNF-related chromatin remodelers Brahma-related gene 1 (BRG1, SMARCA4) and Brahma-associated factor (BAF170, SMARCC2) in the developing mouse forebrain. Evf2 RNA colocalizes with BRG1 in nuclear clouds and increases BRG1 association with key DNA regulatory enhancers in the developing forebrain. While BRG1 directly interacts with DLX1 and Evf2 through distinct binding sites, Evf2 directly inhibits BRG1 ATPase and chromatin remodeling activities. In vitro studies show that both RNA-BRG1 binding and RNA inhibition of BRG1 ATPase/remodeling activity are promiscuous, suggesting that context is a crucial factor in RNA-dependent chromatin remodeling inhibition. Together, these experiments support a model in which RNAs convert an active enhancer to a repressed enhancer by directly inhibiting chromatin remodeling activity, and address the apparent paradox of RNA-mediated stabilization of transcriptional activators at enhancers with a repressive outcome. The importance of BRG1/RNA and BRG1/homeodomain interactions in neurodevelopmental disorders is underscored by the finding that mutations in Coffin–Siris syndrome, a human intellectual disability disorder, localize to the BRG1 RNA-binding and DLX1-binding domains. PMID:26138476

  14. Interplay between RNA interference and heat shock response systems in Drosophila melanogaster

    PubMed Central

    Funikov, S. Yu; Kanapin, A. A.; Logacheva, M. D.; Penin, A. A.; Snezhkina, A. V.; Shilova, V. Yu.; Garbuz, D. G.; Zatsepina, O. G.

    2016-01-01

    The genome expression pattern is strongly modified during the heat shock response (HSR) to form an adaptive state. This may be partly achieved by modulating microRNA levels that control the expression of a great number of genes that are embedded within the gene circuitry. Here, we investigated the cross-talk between two highly conserved and universal house-keeping systems, the HSR and microRNA machinery, in Drosophila melanogaster. We demonstrated that pronounced interstrain differences in the microRNA levels are alleviated after heat shock (HS) to form a uniform microRNA pattern. However, individual strains exhibit different patterns of microRNA expression during the course of recovery. Importantly, HS-regulated microRNAs may target functionally similar HS-responsive genes involved in the HSR. Despite the observed general downregulation of primary microRNA precursor expression as well as core microRNA pathway genes after HS, the levels of many mature microRNAs are upregulated. This indicates that the regulation of miRNA expression after HS occurs at transcriptional and post-transcriptional levels. It was also shown that deletion of all hsp70 genes had no significant effect on microRNA biogenesis but might influence the dynamics of microRNA expression during the HSR. PMID:27805906

  15. Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens.

    PubMed

    Chen, J; Zhang, D; Yao, Q; Zhang, J; Dong, X; Tian, H; Chen, J; Zhang, W

    2010-12-01

    The brown planthopper, Nilaparvata lugens, is the most devastating rice insect pest to have given rise to an outbreak in recent years. RNA interference (RNAi) is a technological breakthrough that has been developed as a powerful tool for studying gene function and for the highly targeted control of insect pests. Here, we examined the effects of using a feeding-based RNAi technique to target the gene trehalose phosphate synthase (TPS) in N. lugens. The full-length cDNA of N. lugens TPS (NlTPS) is 3235 bp and has an open reading frame of 2424 bp, encoding a protein of 807 amino acids. NlTPS was expressed in the fat body, midgut and ovary. Quantitative real-time PCR (qRT-PCR) analysis revealed that NlTPS mRNA is expressed continuously with little change during the life of the insect. Efficient silencing of the TPS gene through double-stranded RNA (dsRNA) feeding led to rapid and significant reduction levels of TPS mRNA and enzymatic activity. Additionally, the development of N. lugens larvae that had been fed with the dsRNA was disturbed, resulting in lethality, and the cumulative survival rates dropped to 75.56, 64.44, 55.56 and 40.00% after continuous ingestion of 0.5 µg/µl dsRNA for 2, 4, 7 and 10 days, respectively. These values were significantly lower than those of the insects in the control group, suggesting that NlTPS dsRNA may be useful as a means of insect pest control. PMID:20726907

  16. Silencing of FRAT1 by siRNA inhibits the proliferation of SGC7901 human gastric adenocarcinoma cells

    PubMed Central

    YU, QINGGONG; SHANG, LU; YU, HONGBO; YANG, ZIRONG; XU, DEKUI

    2016-01-01

    Frequently rearranged in advanced T cell lymphomas-1 (FRAT1) positively regulates the Wnt/β-catenin signaling pathway by inhibiting glycogen synthase kinase-3 mediated phosphorylation of β-catenin. FRAT1 is a proto-oncogene, implicated in tumorigenesis. The present study aimed to investigate the effects of FRAT1 silencing on the proliferation and apoptosis of SGC7901 cells. FRAT1 in SGC7901 cells was silenced by RNA interference. Reverse transcription-quantitative polymerase chain reaction was used for the analysis of FRAT1 mRNA and western blotting was used to evaluate FRAT1 and β-catenin protein levels. Cell proliferation was analyzed by the MTT assay. Cell cycle distribution and apoptosis were analyzed by flow cytometry. The expression of FRAT1 mRNA, FRAT1 and β-catenin protein in FRAT1-silenced SGC7901 cells were reduced significantly compared to untreated cells. The proliferation of FRAT1 silenced SGC7901 cells decreased significantly The FRAT1 silenced SGC7901 cells were arrested at G0/G1 stage to a greater degree, and apoptosis was increased. In summary, silencing of FRAT1 inhibits SGC7901 cell proliferation and induces apoptosis, possible through a reduction in β-catenin expression. FRAT1 may serve as a prognostic biomarker and therapeutic target for gastric cancer. PMID:26893843

  17. Knockdown of Nogo gene by short hairpin RNA interference promotes functional recovery of spinal cord injury in a rat model.

    PubMed

    Liu, Guo-Min; Luo, Yun-Gang; Li, Juan; Xu, Kun

    2016-05-01

    The specific myelin component Nogo protein is one of the major inhibitory molecules of spinal cord axonal outgrowth following spinal cord injury. The present study aimed to investigate the effects of silencing Nogo protein with shRNA interference on the promotion of functional recovery in a rat model with spinal cord hemisection. Nogo-A short hairpin RNAs (Nogo shRNAs) were constructed and transfected into rats with spinal cord hemisection by adenovirus-mediated transfection. Reverse transcription‑polymerase chain reaction and western blotting were performed to analyze the expression of Nogo-A and Growth Associated Protein 43 (GAP-43). In addition, Basso Beattie Bresnahan (BBB) scores were used to assess the functional recovery of rats following spinal cord injury. The results demonstrated that expression of the Nogo‑A gene was observed to be downregulated following transfection and GAP‑43 expression was observed to increase. The BBB scores were increased following treatment with Nogo shRNAs, indicating functional recovery of the injured nerves. Thus, Nogo-A shRNA interference can knockdown Nogo gene expression and upregulate GAP-43 to promote the functional recovery of spinal cord injury in rats. This finding may advance progress toward assisting the regeneration of injured neurons through the use of Nogo-A shRNA. PMID:27035338

  18. RNA Interference Mitigates Motor and Neuropathological Deficits in a Cerebellar Mouse Model of Machado-Joseph Disease

    PubMed Central

    Onofre, Isabel; Albuquerque, David; Déglon, Nicole; Pereira de Almeida, Luís

    2014-01-01

    Machado-Joseph disease or Spinocerebellar ataxia type 3 is a progressive fatal neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Recent studies demonstrate that RNA interference is a promising approach for the treatment of Machado-Joseph disease. However, whether gene silencing at an early time-point is able to prevent the appearance of motor behavior deficits typical of the disease when initiated before onset of the disease had not been explored. Here, using a lentiviral-mediated allele-specific silencing of mutant ataxin-3 in an early pre-symptomatic cerebellar mouse model of Machado-Joseph disease we show that this strategy hampers the development of the motor and neuropathological phenotypic characteristics of the disease. At the histological level, the RNA-specific silencing of mutant ataxin-3 decreased formation of mutant ataxin-3 aggregates, preserved Purkinje cell morphology and expression of neuronal markers while reducing cell death. Importantly, gene silencing prevented the development of impairments in balance, motor coordination, gait and hyperactivity observed in control mice. These data support the therapeutic potential of RNA interference for Machado-Joseph disease and constitute a proof of principle of the beneficial effects of early allele-specific silencing for therapy of this disease. PMID:25144231

  19. RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide

    PubMed Central

    Palli, Subba Reddy

    2015-01-01

    Colorado potato beetle (CPB) is a notorious pest on potatoes and has a remarkable ability to detoxify plant chemicals and develop resistance against insecticides. dsRNA targeting CPB genes could be expressed in potato plants to control this pest. However, previous attempts at introducing transgenic potato plants to control CPB were not highly successful. Recent studies showed that feeding dsRNA expressed in bacteria works very well to kill CPB. To realize the potential of RNAi to control this and other economically important pests, more efficient methods for production and delivery of dsRNA need to be developed. Extensive research to determine off-target and non-target effects, environmental fate and potential for resistance development is also essential. PMID:26705514

  20. In silico molecular docking analysis of the human Argonaute 2 PAZ domain reveals insights into RNA interference.

    PubMed

    Kandeel, Mahmoud; Kitade, Yukio

    2013-07-01

    RNA interference (RNAi) is a critical cellular pathway activated by double stranded RNA and regulates the gene expression of target mRNA. During RNAi, the 3' end of siRNA binds with the PAZ domain, followed by release and rebinding in a cyclic manner, which deemed essential for proper gene silencing. Recently, we provided the forces underlying the recognition of small interfering RNA by PAZ in a computational study based on the structure of Drosophila Argonaute 2 (Ago2) PAZ domain. We have now reanalyzed these data within the view of the new available structures from human Argonauts. While the parameters of weak binding are correlated with higher (RNAi) in the Drosophila model, a different profile is predicted with the human Ago2 PAZ domain. On the basis of the human Ago2 PAZ models, the indicators of stronger binding as the total binding energy and the free energy were associated with better RNAi efficacy. This discrepancy might be attributable to differences in the binding site topology and the difference in the conformation of the bound nucleotides.

  1. Analysis of RNA Interference Lines Identifies New Functions of Maternally-Expressed Genes Involved in Embryonic Patterning in Drosophila melanogaster.

    PubMed

    Liu, Niankun; Lasko, Paul

    2015-03-31

    Embryonic patterning in Drosophila melanogaster is initially established through the activity of a number of maternally expressed genes that are expressed during oogenesis. mRNAs from some of these genes accumulate in the posterior pole plasm of the oocyte and early embryo and localize further into RNA islands, which are transient ring-like structures that form around the nuclei of future primordial germ cells (pole cells) at stage 3 of embryogenesis. As mRNAs from several genes with known functions in anterior-posterior patterning and/or germ cell specification accumulate in RNA islands, we hypothesized that some other mRNAs that localize in this manner might also function in these developmental processes. To test this, we investigated the developmental functions of 51 genes whose mRNAs accumulate in RNA islands by abrogating their activity in the female germline using RNA interference. This analysis revealed requirements for ttk, pbl, Hip14, eIF5, eIF4G, and CG9977 for progression through early oogenesis. We observed dorsal appendage defects in a proportion of eggs produced by females expressing double-stranded RNA targeting Mkrn1 or jvl, implicating these two genes in dorsal-ventral patterning. In addition, posterior patterning defects and a reduction in pole cell number were seen in the progeny of Mkrn1 females. Because the mammalian ortholog of Mkrn1 acts as an E3 ubiquitin ligase, these results suggest an additional link between protein ubiquitination and pole plasm activity.

  2. PDX-1 is a therapeutic target for pancreatic cancer, insulinoma and islet neoplasia using a novel RNA interference platform.

    PubMed

    Liu, Shi-He; Rao, Donald D; Nemunaitis, John; Senzer, Neil; Zhou, Guisheng; Dawson, David; Gingras, Marie-Claude; Wang, Zhaohui; Gibbs, Richard; Norman, Michael; Templeton, Nancy S; Demayo, Francesco J; O'Malley, Bert; Sanchez, Robbi; Fisher, William E; Brunicardi, F Charles

    2012-01-01

    Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a "drugable" target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNA(PDX-1), was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNA(humanPDX-1) lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNA(mousePDX-1) lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNA(mousePDX-1) lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases.

  3. RNA interference-mediated silencing of Atp6i prevents both periapical bone erosion and inflammation in the mouse model of endodontic disease.

    PubMed

    Ma, Junqing; Chen, Wei; Zhang, Lijie; Tucker, Byron; Zhu, Guochun; Sasaki, Hajime; Hao, Liang; Wang, Lin; Ci, Hongliang; Jiang, Hongbing; Stashenko, Philip; Li, Yi-Ping

    2013-04-01

    Dental caries is one of the most prevalent infectious diseases in the United States, affecting approximately 80% of children and the majority of adults. Dental caries may lead to endodontic disease, where the bacterial infection progresses to the root canal system of the tooth, leading to periapical inflammation, bone erosion, severe pain, and tooth loss. Periapical inflammation may also exacerbate inflammation in other parts of the body. Although conventional clinical therapies for this disease are successful in approximately 80% of cases, there is still an urgent need for increased efficacy of treatment. In this study, we applied a novel gene-therapeutic approach using recombinant adeno-associated virus (AAV)-mediated Atp6i RNA interference (RNAi) knockdown of Atp6i/TIRC7 gene expression to simultaneously target periapical bone resorption and periapical inflammation. We found that Atp6i inhibition impaired osteoclast function in vitro and in vivo and decreased the number of T cells in the periapical lesion. Notably, AAV-mediated Atp6i/TIRC7 knockdown gene therapy reduced bacterial infection-stimulated bone resorption by 80% in the mouse model of endodontic disease. Importantly, Atp6i(+/-) mice with haploinsufficiency of Atp6i exhibited protection similar to that in mice with bacterial infection-stimulated bone erosion and periapical inflammation, which confirms the potential therapeutic effect of AAV-small hairpin RNA (shRNA)-Atp6i/TIRC7. Our results demonstrate that AAV-mediated Atp6i/TIRC7 knockdown in periapical tissues can inhibit endodontic disease development, bone resorption, and inflammation, indicating for the first time that this potential gene therapy may significantly improve the health of those who suffer from endodontic disease.

  4. Efficient HIV-1 inhibition by a 16 nt-long RNA aptamer designed by combining in vitro selection and in silico optimisation strategies

    PubMed Central

    Sánchez-Luque, Francisco J.; Stich, Michael; Manrubia, Susanna; Briones, Carlos; Berzal-Herranz, Alfredo

    2014-01-01

    The human immunodeficiency virus type-1 (HIV-1) genome contains multiple, highly conserved structural RNA domains that play key roles in essential viral processes. Interference with the function of these RNA domains either by disrupting their structures or by blocking their interaction with viral or cellular factors may seriously compromise HIV-1 viability. RNA aptamers are amongst the most promising synthetic molecules able to interact with structural domains of viral genomes. However, aptamer shortening up to their minimal active domain is usually necessary for scaling up production, what requires very time-consuming, trial-and-error approaches. Here we report on the in vitro selection of 64 nt-long specific aptamers against the complete 5′-untranslated region of HIV-1 genome, which inhibit more than 75% of HIV-1 production in a human cell line. The analysis of the selected sequences and structures allowed for the identification of a highly conserved 16 nt-long stem-loop motif containing a common 8 nt-long apical loop. Based on this result, an in silico designed 16 nt-long RNA aptamer, termed RNApt16, was synthesized, with sequence 5′-CCCCGGCAAGGAGGGG-3′. The HIV-1 inhibition efficiency of such an aptamer was close to 85%, thus constituting the shortest RNA molecule so far described that efficiently interferes with HIV-1 replication. PMID:25175101

  5. Efficient HIV-1 inhibition by a 16 nt-long RNA aptamer designed by combining in vitro selection and in silico optimisation strategies

    NASA Astrophysics Data System (ADS)

    Sánchez-Luque, Francisco J.; Stich, Michael; Manrubia, Susanna; Briones, Carlos; Berzal-Herranz, Alfredo

    2014-09-01

    The human immunodeficiency virus type-1 (HIV-1) genome contains multiple, highly conserved structural RNA domains that play key roles in essential viral processes. Interference with the function of these RNA domains either by disrupting their structures or by blocking their interaction with viral or cellular factors may seriously compromise HIV-1 viability. RNA aptamers are amongst the most promising synthetic molecules able to interact with structural domains of viral genomes. However, aptamer shortening up to their minimal active domain is usually necessary for scaling up production, what requires very time-consuming, trial-and-error approaches. Here we report on the in vitro selection of 64 nt-long specific aptamers against the complete 5'-untranslated region of HIV-1 genome, which inhibit more than 75% of HIV-1 production in a human cell line. The analysis of the selected sequences and structures allowed for the identification of a highly conserved 16 nt-long stem-loop motif containing a common 8 nt-long apical loop. Based on this result, an in silico designed 16 nt-long RNA aptamer, termed RNApt16, was synthesized, with sequence 5'-CCCCGGCAAGGAGGGG-3'. The HIV-1 inhibition efficiency of such an aptamer was close to 85%, thus constituting the shortest RNA molecule so far described that efficiently interferes with HIV-1 replication.

  6. A genome-wide RNA interference screen uncovers two p24 proteins as regulators of Wingless secretion.

    PubMed

    Port, Fillip; Hausmann, George; Basler, Konrad

    2011-11-01

    Wnt proteins are secreted, lipid-modified glycoproteins that control animal development and adult tissue homeostasis. Secretion of Wnt proteins is at least partly regulated by a dedicated machinery. Here, we report a genome-wide RNA interference screen for genes involved in the secretion of Wingless (Wg), a Drosophila Wnt. We identify three new genes required for Wg secretion. Of these, Emp24 and Eclair are required for proper export of Wg from the endoplasmic reticulum (ER). We propose that Emp24 and Eca act as specific cargo receptors for Wg to concentrate it in forming vesicles at sites of ER export. PMID:21886182

  7. RNA interference for CFTR attenuates lung fluid absorption at birth in rats

    PubMed Central

    Li, Tianbo; Koshy, Shyny; Folkesson, Hans G

    2008-01-01

    Background Small interfering RNA (siRNA) against αENaC (α-subunit of the epithelial Na channel) and CFTR (cystic fibrosis transmembrane conductance regulator) was used to explore ENaC and CTFR function in newborn rat lungs. Methods Twenty-four hours after trans-thoracic intrapulmonary (ttip) injection of siRNA-generating plasmid DNA (pSi-0, pSi-4, or pSi-C2), we measured CFTR and ENaC expression, extravascular lung water, and mortality. Results αENaC and CFTR mRNA and protein decreased by ~80% and ~85%, respectively, following αENaC and CFTR silencing. Extravascular lung water and mortality increased after αENaC and CFTR-silencing. In pSi-C2-transfected isolated DLE cells there were attenuated CFTR mRNA and protein. In pSi-4-transfected DLE cells αENaC mRNA and protein were both reduced. Interestingly, CFTR-silencing also reduced αENaC mRNA and protein. αENaC silencing, on the other hand, only slightly reduced CFTR mRNA and protein. Conclusion Thus, ENaC and CFTR are both involved in the fluid secretion to absorption conversion around at birth. PMID:18652671

  8. Decreased expression of RNA interference machinery, Dicer and Drosha, is associated with poor outcome in ovarian cancer patients

    SciTech Connect

    Merritt, William M.; Lin, Yvonne G.; Han, Liz Y.; Kamat, Aparna A.; Spannuth, Whitney A.; Schmandt, Rosemarie; Urbauer, Diana; Pennacchio, Len A.; Cheng, Jan-Fang; Zeidan, Alexandra; Wang, Hua; Mueller, Peter; Lenburg, Marc E.; Gray, Joe W.; Mok, Samuel; Birrer, Michael J.; Lopez-Berestein, Gabriel; Coleman, Robert L.; Bar-Eli, Menashe; Sood, Anil K.

    2008-05-06

    The clinical and functional significance of RNA interference (RNAi) machinery, Dicer and Drosha, in ovarian cancer is not known and was examined. Dicer and Drosha expression was measured in ovarian cancer cell lines (n=8) and invasive epithelial ovarian cancer specimens (n=111) and correlated with clinical outcome. Validation was performed with previously published cohorts of ovarian, breast, and lung cancer patients. Anti-Galectin-3 siRNA and shRNA transfections were used for in vitro functional studies. Dicer and Drosha mRNA and protein levels were decreased in 37% to 63% of ovarian cancer cell lines and in 60% and 51% of human ovarian cancer specimens, respectively. Low Dicer was significantly associated with advanced tumor stage (p=0.007), and low Drosha with suboptimal surgical cytoreduction (p=0.02). Tumors with both high Dicer and Drosha were associated with increased median patient survival (>11 years vs. 2.66 years for other groups; p<0.001). In multivariate analysis, high Dicer (HR=0.48; p=0.02), high-grade histology (HR=2.46; p=0.03), and poor chemoresponse (HR=3.95; p<0.001) were identified as independent predictors of disease-specific survival. Findings of poor clinical outcome with low Dicer expression were validated in separate cohorts of cancer patients. Galectin-3 silencing with siRNA transfection was superior to shRNA in cell lines with low Dicer (78-95% vs. 4-8% compared to non-targeting sequences), and similar in cell lines with high Dicer. Our findings demonstrate the clinical and functional impact of RNAi machinery alterations in ovarian carcinoma and support the use of siRNA constructs that do not require endogenous Dicer and Drosha for therapeutic applications.

  9. Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport.

    PubMed

    Fortes, P; Beloso, A; Ortín, J

    1994-02-01

    The influenza virus RNA segment 8 encodes two proteins, NS1 and NS2, by differential splicing. The collinear transcript acts as mRNA for NS1 protein, while the spliced mRNA encodes NS2 protein. The splicing of NS1 mRNA was studied in cells transfected with a recombinant plasmid that has the cDNA of RNA segment 8 cloned under the SV40 late promoter and polyadenylation signals. As described for influenza virus-infected cells, NS1 mRNA was poorly spliced to yield NS2 mRNA. However, inactivation of the NS1 gene, but not the NS2 gene, led to a substantial increase in the splicing efficiency, as shown by the relative accumulations of NS1 and NS2 mRNAs. This effect was not specific for NS1 mRNA, since the splicing of the endogenous SV40 early transcript was altered in such a way that t-Ag mRNA was almost eliminated. These changes in the splicing pattern coincided with a strong inhibition of the mRNA nucleocytoplasmic transport. Both NS1 and NS2 mRNAs were retained in the nucleus of cells expressing NS1 protein, but no effect was observed when only NS2 protein was expressed. Furthermore, other mRNAs tested, such as T-Ag mRNA and the non-spliceable nucleoprotein transcript, were also retained in the nucleus upon expression of NS1 protein, suggesting that it induced a generalized block of mRNA export from the nucleus.

  10. Transgene-induced RNA interference: a strategy for overcoming gene redundancy in polyploids to generate loss-of-function mutations.

    PubMed

    Lawrence, Richard J; Pikaard, Craig S

    2003-10-01

    Gene redundancy in polyploid species complicates genetic analyses by making the generation of recessive, loss-of-function alleles impractical. We show that this problem can be circumvented using RNA interference (RNAi) to achieve dominant loss of function of targeted genes. Arabidopsis suecica is an allotetraploid (amphidiploid) hybrid of A. thaliana and A. arenosa. We demonstrate that A. suecica can be genetically transformed using the floral dip method for Agrobacterium-mediated transformation. Transgenes segregate as in a diploid, indicating that chromosome pairing occurs exclusively (or almost so) among homologs and not among homeologs. Expressing a double-stranded (ds) RNA corresponding to the A. thaliana gene, decrease in DNA methylation 1 (DDM1) caused the elimination of DDM1 mRNAs and the loss of methylation at both A. thaliana- and A. arenosa-derived centromere repeats. These results indicate that a single RNAi-inducing transgene can dominantly repress multiple orthologs. PMID:12974816

  11. Involvement of doublesex and mab-3-related transcription factors in human female germ cell development demonstrated by xenograft and interference RNA strategies.

    PubMed

    Poulain, Marine; Frydman, Nelly; Tourpin, Sophie; Muczynski, Vincent; Mucsynski, Vincent; Souquet, Benoit; Benachi, Alexandra; Habert, René; Rouiller-Fabre, Virginie; Livera, Gabriel

    2014-10-01

    We identified three doublesex and mab-3-related transcription factors (DMRT) that were sexually differentially expressed in human fetal gonads and present in the ovaries at the time of meiotic initiation. These were also identified in murine embryonic female germ cells. Among these, we focused on DMRTA2 (DMRT5), whose function is unknown in the developing gonads, and clarified its role in human female fetal germ cells, using an original xenograft model. Early human fetal ovaries (8-11 weeks post-fertilization) were grafted into nude mice. Grafted ovaries developed normally, with no apparent overt changes, when compared with ungrafted ovaries at equivalent developmental stages. Appropriate germ cell density, mitotic/meiotic transition, markers of meiotic progression and follicle formation were evident. Four weeks after grafting, mice were treated with siRNA, specifically targeting human DMRTA2 mRNA. DMRTA2 inhibition triggered an increase in undifferentiated FUT4-positive germ cells and a decrease in the percentage of meiotic γH2AX-positive germ cells, when compared with mice that were injected with control siRNA. Interestingly, the expression of markers associated with pre-meiotic germ cell differentiation was also impaired, as was the expression of DMRTB1 (DMRT6) and DMRTC2 (DMRT7). This study reveals, for the first time, the requirement of DMRTA2 for normal human female embryonic germ cell development. DMRTA2 appears to be necessary for proper differentiation of oogonia, prior to entry into meiosis, in the human species. Additionally, we developed a new model of organ xenografting, coupled with RNA interference, which provides a useful tool for genetic investigations of human germline development.

  12. Involvement of doublesex and mab-3-related transcription factors in human female germ cell development demonstrated by xenograft and interference RNA strategies.

    PubMed

    Poulain, Marine; Frydman, Nelly; Tourpin, Sophie; Muczynski, Vincent; Mucsynski, Vincent; Souquet, Benoit; Benachi, Alexandra; Habert, René; Rouiller-Fabre, Virginie; Livera, Gabriel

    2014-10-01

    We identified three doublesex and mab-3-related transcription factors (DMRT) that were sexually differentially expressed in human fetal gonads and present in the ovaries at the time of meiotic initiation. These were also identified in murine embryonic female germ cells. Among these, we focused on DMRTA2 (DMRT5), whose function is unknown in the developing gonads, and clarified its role in human female fetal germ cells, using an original xenograft model. Early human fetal ovaries (8-11 weeks post-fertilization) were grafted into nude mice. Grafted ovaries developed normally, with no apparent overt changes, when compared with ungrafted ovaries at equivalent developmental stages. Appropriate germ cell density, mitotic/meiotic transition, markers of meiotic progression and follicle formation were evident. Four weeks after grafting, mice were treated with siRNA, specifically targeting human DMRTA2 mRNA. DMRTA2 inhibition triggered an increase in undifferentiated FUT4-positive germ cells and a decrease in the percentage of meiotic γH2AX-positive germ cells, when compared with mice that were injected with control siRNA. Interestingly, the expression of markers associated with pre-meiotic germ cell differentiation was also impaired, as was the expression of DMRTB1 (DMRT6) and DMRTC2 (DMRT7). This study reveals, for the first time, the requirement of DMRTA2 for normal human female embryonic germ cell development. DMRTA2 appears to be necessary for proper differentiation of oogonia, prior to entry into meiosis, in the human species. Additionally, we developed a new model of organ xenografting, coupled with RNA interference, which provides a useful tool for genetic investigations of human germline development. PMID:25082981

  13. 7SK small nuclear RNA inhibits cancer cell proliferation through apoptosis induction.

    PubMed

    Keramati, Farid; Seyedjafari, Ehsan; Fallah, Parviz; Soleimani, Masoud; Ghanbarian, Hossein

    2015-04-01

    7SK small nuclear RNA (snRNA) is a 331-333-bp non-coding RNA, which recruits HEXIM 1/2 protein to inhibit positive elongation factor b (P-TEFb) activity. P-TEFb is an essential factor in alleviating promoter-proximal paused RNA polymerase II (Pol II) and initiating the productive elongation phase of gene transcription. Without this protein, Pol II will remain in its hypophosphorylated state, and no transcription occurs. In this study, we inhibited P-TEFb activity by over-expressing 7SK snRNA in human embryonic kidney (HEK) 293T cancer cell line. This inhibition led to a significant decrease in cell viability, which can be due to the transcription inhibition. Moreover, 7SK snRNA over-expression promoted apoptosis in cancerous cells. Our results suggest 7SK snRNA as a potential endogenous anti-cancer agent, and to the best of our knowledge, this is the first study that uses a long non-coding RNA's over-expression against cancer cell growth and proliferation.

  14. Design and validation of small interfering RNA on respiratory syncytial virus M2-2 gene: A potential approach in RNA interference on viral replication.

    PubMed

    Chin, V K; Atika Aziz, Nur A; Hudu, Shuaibu A; Harmal, Nabil S; Syahrilnizam, A; Jalilian, Farid A; Zamberi, S

    2016-10-01

    Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants and young children globally and is a significant pathogen of the elderly and immunocompromised. The M2-2 protein of respiratory syncytial virus (RSV) is particularly important in regulation of viral RNA transcription and replication that could be a potential anti-viral candidate against RSV infection. In this study, we designed and validated siRNAs that specifically target the RSV M2-2 gene. Four siRNAs targeting different regions of the M2-2 gene were designed using web tool. In-vitro evaluation of silencing effect was performed by using RSV infected Vero cell line. Viral M2-2 linked GFP recombinant plasmid was co-transfected with non-targeted siRNA, Pooled siRNA, siRNA 1, siRNA 2, siRNA 3 and siRNA 4 using synthetic cationic polymer. The silencing effect of M2-2 gene at the protein level was measured both qualitatively and quantitatively by using fluorescence microscopy and flow cytometry. Meanwhile, the silencing effect at the mRNA level was assessed by using RT-qPCR. This study showed that all four designed siRNAs can effectively and efficiently silence M2-2 gene. siRNA 2 showed the highest (98%) silencing effect on protein level and siRNA 4 with 83.1% at the mRNA level. The viral assay showed no significant cytopathic effects observed after 6days post-infection with siRNAs. In conclusion, this study showed the effectiveness of siRNA in silencing M2-2 gene both at the protein and mRNA level which could potentially be used as a novel therapeutic agent in the treatment of RSV infection. However, further study is warranted to investigate the silencing effect of M2-2 protein and inhibition of RSV infection. PMID:27432115

  15. Design and validation of small interfering RNA on respiratory syncytial virus M2-2 gene: A potential approach in RNA interference on viral replication.

    PubMed

    Chin, V K; Atika Aziz, Nur A; Hudu, Shuaibu A; Harmal, Nabil S; Syahrilnizam, A; Jalilian, Farid A; Zamberi, S

    2016-10-01

    Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants and young children globally and is a significant pathogen of the elderly and immunocompromised. The M2-2 protein of respiratory syncytial virus (RSV) is particularly important in regulation of viral RNA transcription and replication that could be a potential anti-viral candidate against RSV infection. In this study, we designed and validated siRNAs that specifically target the RSV M2-2 gene. Four siRNAs targeting different regions of the M2-2 gene were designed using web tool. In-vitro evaluation of silencing effect was performed by using RSV infected Vero cell line. Viral M2-2 linked GFP recombinant plasmid was co-transfected with non-targeted siRNA, Pooled siRNA, siRNA 1, siRNA 2, siRNA 3 and siRNA 4 using synthetic cationic polymer. The silencing effect of M2-2 gene at the protein level was measured both qualitatively and quantitatively by using fluorescence microscopy and flow cytometry. Meanwhile, the silencing effect at the mRNA level was assessed by using RT-qPCR. This study showed that all four designed siRNAs can effectively and efficiently silence M2-2 gene. siRNA 2 showed the highest (98%) silencing effect on protein level and siRNA 4 with 83.1% at the mRNA level. The viral assay showed no significant cytopathic effects observed after 6days post-infection with siRNAs. In conclusion, this study showed the effectiveness of siRNA in silencing M2-2 gene both at the protein and mRNA level which could potentially be used as a novel therapeutic agent in the treatment of RSV infection. However, further study is warranted to investigate the silencing effect of M2-2 protein and inhibition of RSV infection.

  16. RNA Interference based Approach to Down Regulate Osmoregulators of Whitefly (Bemisia tabaci): Potential Technology for the Control of Whitefly.

    PubMed

    Raza, Amir; Malik, Hassan Jamil; Shafiq, Muhammad; Amin, Imran; Scheffler, Jodi A; Scheffler, Brian E; Mansoor, Shahid

    2016-01-01

    Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) that could offer great potential for insect pest management. The diet of insects feeding exclusively on phloem sieves contains water and sugars as main components, and the uptake of the liquid food greatly depends on the osmotic pressure within the insect body. Based on this physiological mechanism, transgenic plants of Nicotiana tabacum were generated expressing double stranded RNA (dsRNA) against both aquaporin (AQP) and a sucrase gene, alpha glucosidase (AGLU). These two genes are involved in osmotic pressure maintenance particularly in sap sucking insects, and the aim was to disrupt osmoregulation within the insect ultimately leading to mortality. Real time quantitative PCR (RT-qPCR) was performed to assess the suppression of gene expression in Bemisia tabaci (B. tabaci) and mortality was recorded during transgenic tobacco feeding bioassays. Feeding of insects on plants expressing dsRNA significantly reduced the transcript level of the target genes in B. tabaci after six days of feeding and more than 70% mortality was observed in B. tabaci fed on transgenic plants compared to the control plants. Our data shows that down-regulation of genes related to osmoregulation may find practical applications for the control of this important pest in cotton and other crops. PMID:27105353

  17. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy.

    PubMed

    Liang, Chao; Guo, Baosheng; Wu, Heng; Shao, Ningsheng; Li, Defang; Liu, Jin; Dang, Lei; Wang, Cheng; Li, Hui; Li, Shaohua; Lau, Wing Ki; Cao, Yu; Yang, Zhijun; Lu, Cheng; He, Xiaojuan; Au, D W T; Pan, Xiaohua; Zhang, Bao-Ting; Lu, Changwei; Zhang, Hongqi; Yue, Kinman; Qian, Airong; Shang, Peng; Xu, Jiake; Xiao, Lianbo; Bian, Zhaoxiang; Tan, Weihong; Liang, Zicai; He, Fuchu; Zhang, Lingqiang; Lu, Aiping; Zhang, Ge

    2015-03-01

    Currently, major concerns about the safety and efficacy of RNA interference (RNAi)-based bone anabolic strategies still exist because of the lack of direct osteoblast-specific delivery systems for osteogenic siRNAs. Here we screened the aptamer CH6 by cell-SELEX, specifically targeting both rat and human osteoblasts, and then we developed CH6 aptamer-functionalized lipid nanoparticles (LNPs) encapsulating osteogenic pleckstrin homology domain-containing family O member 1 (Plekho1) siRNA (CH6-LNPs-siRNA). Our results showed that CH6 facilitated in vitro osteoblast-selective uptake of Plekho1 siRNA, mainly via macropinocytosis, and boosted in vivo osteoblast-specific Plekho1 gene silencing, which promoted bone formation, improved bone microarchitecture, increased bone mass and enhanced mechanical properties in both osteopenic and healthy rodents. These results indicate that osteoblast-specific aptamer-functionalized LNPs could act as a new RNAi-based bone anabolic strategy, advancing the targeted delivery selectivity of osteogenic siRNAs from the tissue level to the cellular level.

  18. Differential nanotoxicological and neuroinflammatory liabilities of non-viral vectors for RNA interference in the central nervous system.

    PubMed

    Godinho, Bruno M D C; McCarthy, David J; Torres-Fuentes, Cristina; Beltrán, Caroll J; McCarthy, Joanna; Quinlan, Aoife; Ogier, Julien R; Darcy, Raphael; O'Driscoll, Caitriona M; Cryan, John F

    2014-01-01

    Progression of RNA interference-based gene silencing technologies for the treatment of disorders of the central nervous system (CNS) depends on the availability of efficient non-toxic nanocarriers. Despite advances in the field of nanotechnology undesired and non-specific interactions with different brain-cell types occur and are poorly investigated. To this end, we studied the cytotoxic and neuroinflammatory effects of widely-used transfection reagents and modified amphiphilic β-cyclodextrins (CDs). All non-viral vectors formed positively charged nanoparticles with distinctive physicochemical properties. Differential and significant cytotoxic effects were observed among commercially available cationic vectors, whereas CDs induced limited disruptions of cellular membrane integrity and mitochondrial dehydrogenase activity. Interestingly, murine derived BV2 microglia cells and a rat striatal in vitro model of Huntington's disease (ST14A-HTT120Q) were more susceptible to toxicity than human U87 astroglioma cells. BV2 microglia presented significant increases in cytokine, toll-like receptor 2 and cyclooxygenase-2 gene expression after transfection with selected commercial vectors but not with CD.siRNA nanoparticles. Non-viral siRNA nanoparticles formulated with G6 polyamidoamine (PAMAM) also significantly increased cytokine gene expression in the brain following injections into the mouse striatum. Together our data identify modified CDs as nanosystems that enable siRNA delivery to the brain with low levels of cytotoxicity and immunological activation. PMID:24138827

  19. Delivery Systems for the Direct Application of siRNAs to Induce RNA Interference (RNAi) In Vivo

    PubMed Central

    Aigner, Achim

    2006-01-01

    RNA interference (RNAi) is a powerful method for specific gene silencing which may also lead to promising novel therapeutic strategies. It is mediated through small interfering RNAs (siRNAs) which sequence-specifically trigger the cleavage and subsequent degradation of their target mRNA. One critical factor is the ability to deliver intact siRNAs into target cells/organs in vivo. This review highlights the mechanism of RNAi and the guidelines for the design of optimal siRNAs. It gives an overview of studies based on the systemic or local application of naked siRNAs or the use of various nonviral siRNA delivery systems. One promising avenue is the the complexation of siRNAs with the polyethylenimine (PEI), which efficiently stabilizes siRNAs and, upon systemic administration, leads to the delivery of the intact siRNAs into different organs. The antitumorigenic effects of PEI/siRNA-mediated in vivo gene-targeting of tumor-relevant proteins like in mouse tumor xenograft models are described. PMID:17057369

  20. RNA Interference based Approach to Down Regulate Osmoregulators of Whitefly (Bemisia tabaci): Potential Technology for the Control of Whitefly

    PubMed Central

    Raza, Amir; Malik, Hassan Jamil; Shafiq, Muhammad; Amin, Imran; Scheffler, Jodi A.; Scheffler, Brian E.; Mansoor, Shahid

    2016-01-01

    Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) that could offer great potential for insect pest management. The diet of insects feeding exclusively on phloem sieves contains water and sugars as main components, and the uptake of the liquid food greatly depends on the osmotic pressure within the insect body. Based on this physiological mechanism, transgenic plants of Nicotiana tabacum were generated expressing double stranded RNA (dsRNA) against both aquaporin (AQP) and a sucrase gene, alpha glucosidase (AGLU). These two genes are involved in osmotic pressure maintenance particularly in sap sucking insects, and the aim was to disrupt osmoregulation within the insect ultimately leading to mortality. Real time quantitative PCR (RT-qPCR) was performed to assess the suppression of gene expression in Bemisia tabaci (B. tabaci) and mortality was recorded during transgenic tobacco feeding bioassays. Feeding of insects on plants expressing dsRNA significantly reduced the transcript level of the target genes in B. tabaci after six days of feeding and more than 70% mortality was observed in B. tabaci fed on transgenic plants compared to the control plants. Our data shows that down-regulation of genes related to osmoregulation may find practical applications for the control of this important pest in cotton and other crops. PMID:27105353

  1. Dihydrotanshinone-I interferes with the RNA-binding activity of HuR affecting its post-transcriptional function.

    PubMed

    D'Agostino, Vito Giuseppe; Lal, Preet; Mantelli, Barbara; Tiedje, Christopher; Zucal, Chiara; Thongon, Natthakan; Gaestel, Matthias; Latorre, Elisa; Marinelli, Luciana; Seneci, Pierfausto; Amadio, Marialaura; Provenzani, Alessandro

    2015-11-10

    Post-transcriptional regulation is an essential determinant of gene expression programs in physiological and pathological conditions. HuR is a RNA-binding protein that orchestrates the stabilization and translation of mRNAs, critical in inflammation and tumor progression, including tumor necrosis factor-alpha (TNF). We identified the low molecular weight compound 15,16-dihydrotanshinone-I (DHTS), well known in traditional Chinese medicine practice, through a validated high throughput screening on a set of anti-inflammatory agents for its ability to prevent HuR:RNA complex formation. We found that DHTS interferes with the association step between HuR and the RNA with an equilibrium dissociation constant in the nanomolar range in vitro (Ki = 3.74 ± 1.63 nM). In breast cancer cell lines, short term exposure to DHTS influences mRNA stability and translational efficiency of TNF in a HuR-dependent manner and also other functional readouts of its post-transcriptional control, such as the stability of selected pre-mRNAs. Importantly, we show that migration and sensitivity of breast cancer cells to DHTS are modulated by HuR expression, indicating that HuR is among the preferential intracellular targets of DHTS. Here, we disclose a previously unrecognized molecular mechanism exerted by DHTS, opening new perspectives to therapeutically target the HuR mediated, post-transcriptional control in inflammation and cancer cells.

  2. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    PubMed Central

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jose R.

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Delivered RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1, and OPR) in the hemi-biotrophic fungus F. oxysporum f. sp. conglutinans. Expression of double stranded RNA (dsRNA) molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75, 83, and 72% reduction for FOW2, FRP1, and OPR, respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30–50% survival and OPR between 45 and 70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants. PMID:25654075

  3. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants.

    PubMed

    Katoch, Rajan; Thakur, Neelam

    2013-03-01

    This review highlights the advances in the knowledge of RNA interference (RNAi) and discusses recent progress on the functionality of different components RNAi machinery operating in the organisms. The silencing of genes by RNA interference has become the technology of choice for investigation of gene functions in different organisms. The refinement in the knowledge of the endogenous RNAi pathways in plants along with the development of new strategies and applications for the improvement of nutritional value of important agricultural crops through suppression of genes in different plants have opened new vistas for nutritional security. The improvement in the nutritional status of the plants and reduction in the level of toxins or antinutrients was desired for long, but the available technology was not completely successful in achieving the tissue specific regulation of some genes. In the recent years, a number of economically important crop plants have been tested successfully for improving plant nutritional value through metabolic engineering using RNAi. The implications of this technology for crop improvement programs, including nutritional enrichment, reduction of antinutrients, disease, and insect control have been successfully tested in variety of crops with commercial considerations. The enhancement of the nutraceutical traits for the desired health benefits in common crop plants through manipulation of gene expression has been elaborated in this article. The tremendous potential with RNAi technology is expected to revolutionize the modern agriculture for meeting the growing challenges is discussed.

  4. Transcriptome analysis and RNA interference of cockroach phototransduction indicate three opsins and suggest a major role for TRPL channels.

    PubMed

    French, Andrew S; Meisner, Shannon; Liu, Hongxia; Weckström, Matti; Torkkeli, Päivi H

    2015-01-01

    Our current understanding of insect phototransduction is based on a small number of species, but insects occupy many different visual environments. We created the retinal transcriptome of a nocturnal insect, the cockroach, Periplaneta americana to identify proteins involved in the earliest stages of compound eye phototransduction, and test the hypothesis that different visual environments are reflected in different molecular contributions to function. We assembled five novel mRNAs: two green opsins, one UV opsin, and one each TRP and TRPL ion channel homologs. One green opsin mRNA (pGO1) was 100-1000 times more abundant than the other opsins (pGO2 and pUVO), while pTRPL mRNA was 10 times more abundant than pTRP, estimated by transcriptome analysis or quantitative PCR (qPCR). Electroretinograms were used to record photoreceptor responses. Gene-specific in vivo RNA interference (RNAi) was achieved by injecting long (596-708 bp) double-stranded RNA into head hemolymph, and verified by qPCR. RNAi of the most abundant green opsin reduced both green opsins by more than 97% without affecting UV opsin, and gave a maximal reduction of 75% in ERG amplitude 7 days after injection that persisted for at least 19 days. RNAi of pTRP and pTRPL genes each specifically reduced the corresponding mRNA by 90%. Electroretinogram (ERG) reduction by pTRPL RNAi was slower than for opsin, reaching 75% attenuation by 21 days, without recovery at 29 days. pTRP RNAi attenuated ERG much less; only 30% after 21 days. Combined pTRP plus pTRPL RNAi gave only weak evidence of any cooperative interactions. We conclude that silencing retinal genes by in vivo RNAi using long dsRNA is effective, that visible light transduction in Periplaneta is dominated by pGO1, and that pTRPL plays a major role in cockroach phototransduction. PMID:26257659

  5. Transcriptome analysis and RNA interference of cockroach phototransduction indicate three opsins and suggest a major role for TRPL channels

    PubMed Central

    French, Andrew S.; Meisner, Shannon; Liu, Hongxia; Weckström, Matti; Torkkeli, Päivi H.

    2015-01-01

    Our current understanding of insect phototransduction is based on a small number of species, but insects occupy many different visual environments. We created the retinal transcriptome of a nocturnal insect, the cockroach, Periplaneta americana to identify proteins involved in the earliest stages of compound eye phototransduction, and test the hypothesis that different visual environments are reflected in different molecular contributions to function. We assembled five novel mRNAs: two green opsins, one UV opsin, and one each TRP and TRPL ion channel homologs. One green opsin mRNA (pGO1) was 100–1000 times more abundant than the other opsins (pGO2 and pUVO), while pTRPL mRNA was 10 times more abundant than pTRP, estimated by transcriptome analysis or quantitative PCR (qPCR). Electroretinograms were used to record photoreceptor responses. Gene-specific in vivo RNA interference (RNAi) was achieved by injecting long (596–708 bp) double-stranded RNA into head hemolymph, and verified by qPCR. RNAi of the most abundant green opsin reduced both green opsins by more than 97% without affecting UV opsin, and gave a maximal reduction of 75% in ERG amplitude 7 days after injection that persisted for at least 19 days. RNAi of pTRP and pTRPL genes each specifically reduced the corresponding mRNA by 90%. Electroretinogram (ERG) reduction by pTRPL RNAi was slower than for opsin, reaching 75% attenuation by 21 days, without recovery at 29 days. pTRP RNAi attenuated ERG much less; only 30% after 21 days. Combined pTRP plus pTRPL RNAi gave only weak evidence of any cooperative interactions. We conclude that silencing retinal genes by in vivo RNAi using long dsRNA is effective, that visible light transduction in Periplaneta is dominated by pGO1, and that pTRPL plays a major role in cockroach phototransduction. PMID:26257659

  6. Role of RNA Interference (RNAi) in Dengue Virus Replication and Identification of NS4B as an RNAi Suppressor

    PubMed Central

    Kakumani, Pavan Kumar; Ponia, Sanket Singh; S, Rajgokul K.; Sood, Vikas; Chinnappan, Mahendran; Banerjea, Akhil C.; Medigeshi, Guruprasad R.; Malhotra, Pawan

    2013-01-01

    RNA interference (RNAi) is an important antiviral defense response in plants and invertebrates; however, evidences for its contribution to mammalian antiviral defense are few. In the present study, we demonstrate the anti-dengue virus role of RNAi in mammalian cells. Dengue virus infection of Huh 7 cells decreased the mRNA levels of host RNAi factors, namely, Dicer, Drosha, Ago1, and Ago2, and in corollary, silencing of these genes in virus-infected cells enhanced dengue virus replication. In addition, we observed downregulation of many known human microRNAs (miRNAs) in response to viral infection. Using reversion-of-silencing assays, we further showed that NS4B of all four dengue virus serotypes is a potent RNAi suppressor. We generated a series of deletion mutants and demonstrated that NS4B mediates RNAi suppression via its middle and C-terminal domains, namely, transmembrane domain 3 (TMD3) and TMD5. Importantly, the NS4B N-terminal region, including the signal sequence 2K, which has been implicated in interferon (IFN)-antagonistic properties, was not involved in mediating RNAi suppressor activity. Site-directed mutagenesis of conserved residues revealed that a Phe-to-Ala (F112A) mutation in the TMD3 region resulted in a significant reduction of the RNAi suppression activity. The green fluorescent protein (GFP)-small interfering RNA (siRNA) biogenesis of the GFP-silenced line was considerably reduced by wild-type NS4B, while the F112A mutant abrogated this reduction. These results were further confirmed by in vitro dicer assays. Together, our results suggest the involvement of miRNA/RNAi pathways in dengue virus establishment and that dengue virus NS4B protein plays an important role in the modulation of the host RNAi/miRNA pathway to favor dengue virus replication. PMID:23741001

  7. Dye label interference with RNA modification reveals 5-fluorouridine as non-covalent inhibitor

    PubMed Central

    Spenkuch, Felix; Hinze, Gerald; Kellner, Stefanie; Kreutz, Christoph; Micura, Ronald; Basché, Thomas; Helm, Mark

    2014-01-01

    The interest in RNA modification enzymes surges due to their involvement in epigenetic phenomena. Here we present a particularly informative approach to investigate the interaction of dye-labeled RNA with modification enzymes. We investigated pseudouridine (Ψ) synthase TruB interacting with an alleged suicide substrate RNA containing 5-fluorouridine (5FU). A longstanding dogma, stipulating formation of a stable covalent complex was challenged by discrepancies between the time scale of complex formation and enzymatic turnover. Instead of classic mutagenesis, we used differentially positioned fluorescent labels to modulate substrate properties in a range of enzymatic conversion between 6% and 99%. Despite this variegation, formation of SDS-stable complexes occurred instantaneously for all 5FU-substrates. Protein binding was investigated by advanced fluorescence spectroscopy allowing unprecedented simultaneous detection of change in fluorescence lifetime, anisotropy decay, as well as emission and excitation maxima. Determination of Kd values showed that introduction of 5FU into the RNA substrate increased protein affinity by 14× at most. Finally, competition experiments demonstrated reversibility of complex formation for 5FU-RNA. Our results lead us to conclude that the hitherto postulated long-term covalent interaction of TruB with 5FU tRNA is based on the interpretation of artifacts. This is likely true for the entire class of pseudouridine synthases. PMID:25300485

  8. Dye label interference with RNA modification reveals 5-fluorouridine as non-covalent inhibitor.

    PubMed

    Spenkuch, Felix; Hinze, Gerald; Kellner, Stefanie; Kreutz, Christoph; Micura, Ronald; Basché, Thomas; Helm, Mark

    2014-11-10

    The interest in RNA modification enzymes surges due to their involvement in epigenetic phenomena. Here we present a particularly informative approach to investigate the interaction of dye-labeled RNA with modification enzymes. We investigated pseudouridine (Ψ) synthase TruB interacting with an alleged suicide substrate RNA containing 5-fluorouridine (5FU). A longstanding dogma, stipulating formation of a stable covalent complex was challenged by discrepancies between the time scale of complex formation and enzymatic turnover. Instead of classic mutagenesis, we used differentially positioned fluorescent labels to modulate substrate properties in a range of enzymatic conversion between 6% and 99%. Despite this variegation, formation of SDS-stable complexes occurred instantaneously for all 5FU-substrates. Protein binding was investigated by advanced fluorescence spectroscopy allowing unprecedented simultaneous detection of change in fluorescence lifetime, anisotropy decay, as well as emission and excitation maxima. Determination of Kd values showed that introduction of 5FU into the RNA substrate increased protein affinity by 14× at most. Finally, competition experiments demonstrated reversibility of complex formation for 5FU-RNA. Our results lead us to conclude that the hitherto postulated long-term covalent interaction of TruB with 5FU tRNA is based on the interpretation of artifacts. This is likely true for the entire class of pseudouridine synthases.

  9. Inhibition of HIV-1 reverse transcription by triple-helix forming oligonucleotides with viral RNA.

    PubMed Central

    Volkmann, S; Jendis, J; Frauendorf, A; Moelling, K

    1995-01-01

    Reverse transcription of retroviral RNA into double-stranded DNA is catalyzed by reverse transcriptase (RT). A highly conserved polypurine tract (PPT) on the viral RNA serves as primer for plus-strand DNA synthesis and is a possible target for triple-helix formation. Triple-helix formation during reverse transcription involves either single-stranded RNA or an RNA.DNA hybrid. The effect of triple-helix formation on reverse transcription has been analyzed here in vitro using a three-strand-system consisting of an RNA.DNA hybrid and triplex-forming oligonucleotides (TFOs) consisting either of DNA or RNA. Three strand triple-helices inhibit RNase H cleavage of the PPT-RNA.DNA hybrid and initiation of plus-strand DNA synthesis in vitro. Triple-helix formation on a single-stranded RNA target has also been tested in a two-strand-system with TFOs comprising Watson-Crick and Hoogsteen base-pairing sequences, both targeted to the PPT-RNA, on a single strand connected by a linker (T)4. TFOs prevent RNase H cleavage of the PPT-RNA and initiation of plus-strand DNA synthesis in vitro. In cell culture experiments one TFO is an efficient inhibitor of retrovirus replication, leading to a block of p24 synthesis and inhibition of syncytia formation in newly infected cells. Images PMID:7537875

  10. Codon-specific and general inhibition of protein synthesis by the tRNA-sequestering minigenes.

    PubMed

    Delgado-Olivares, Luis; Zamora-Romo, Efraín; Guarneros, Gabriel; Hernandez-Sanchez, Javier

    2006-07-01

    The expression of minigenes in bacteria inhibits protein synthesis and cell growth. Presumably, the translating ribosomes, harboring the peptides as peptidyl-tRNAs, pause at the last sense codon of the minigene directed mRNAs. Eventually, the peptidyl-tRNAs drop off and, under limiting activity of peptidyl-tRNA hydrolase, accumulate in the cells reducing the concentration of specific aminoacylable tRNA. Therefore, the extent of inhibition is associated with the rate of starvation for a specific tRNA. Here, we used minigenes harboring various last sense codons that sequester specific tRNAs with different efficiency, to inhibit the translation of reporter genes containing, or not, these codons. A prompt inhibition of the protein synthesis directed by genes containing the codons starved for their cognate tRNA (hungry codons) was observed. However, a non-specific in vitro inhibition of protein synthesis, irrespective of the codon composition of the gene, was also evident. The degree of inhibition correlated directly with the number of hungry codons in the gene. Furthermore, a tRNA(Arg4)-sequestering minigene promoted the production of an incomplete beta-galactosidase polypeptide interrupted, during bacterial polypeptide chain elongation at sites where AGA codons were inserted in the lacZ gene suggesting ribosome pausing at the hungry codons.

  11. Dissecting systemic RNA interference in the red flour beetle Tribolium castaneum: parameters affecting the efficiency of RNAi.

    PubMed

    Miller, Sherry C; Miyata, Keita; Brown, Susan J; Tomoyasu, Yoshinori

    2012-01-01

    The phenomenon of RNAi, in which the introduction of dsRNA into a cell triggers the destruction of the corresponding mRNA resulting in a gene silencing effect, is conserved across a wide array of plant and animal phyla. However, the mechanism by which the dsRNA enters a cell, allowing the RNAi effect to occur throughout a multicellular organism (systemic RNAi), has only been studied extensively in certain plants and the nematode Caenorhabditis elegans. In recent years, RNAi has become a popular reverse genetic technique for gene silencing in many organisms. Although many RNAi techniques in non-traditional model organisms rely on the systemic nature of RNAi, little has been done to analyze the parameters required to obtain a robust systemic RNAi response. The data provided here show that the concentration and length of dsRNA have profound effects on the efficacy of the RNAi response both in regard to initial efficiency and duration of the effect in Tribolium castaneum. In addition, our analyses using a series of short dsRNAs and chimeric dsRNA provide evidence that dsRNA cellular uptake (and not the RNAi response itself) is the major step affected by dsRNA size in Tribolium. We also demonstrate that competitive inhibition of dsRNA can occur when multiple dsRNAs are injected together, influencing the effectiveness of RNAi. These data provide specific information essential to the design and implementation of RNAi based studies, and may provide insight into the molecular basis of the systemic RNAi response in insects. PMID:23133513

  12. PAINS in the Assay: Chemical Mechanisms of Assay Interference and Promiscuous Enzymatic Inhibition Observed during a Sulfhydryl-Scavenging HTS

    PubMed Central

    2015-01-01

    Significant resources in early drug discovery are spent unknowingly pursuing artifacts and promiscuous bioactive compounds, while understanding the chemical basis for these adverse behaviors often goes unexplored in pursuit of lead compounds. Nearly all the hits from our recent sulfhydryl-scavenging high-throughput screen (HTS) targeting the histone acetyltransferase Rtt109 were such compounds. Herein, we characterize the chemical basis for assay interference and promiscuous enzymatic inhibition for several prominent chemotypes identified by this HTS, including some pan-assay interference compounds (PAINS). Protein mass spectrometry and ALARM NMR confirmed these compounds react covalently with cysteines on multiple proteins. Unfortunately, compounds containing these chemotypes have been published as screening actives in reputable journals and even touted as chemical probes or preclinical candidates. Our detailed characterization and identification of such thiol-reactive chemotypes should accelerate triage of nuisance compounds, guide screening library design, and prevent follow-up on undesirable chemical matter. PMID:25634295

  13. Inhibition of Bacterial RNase P RNA by Phenothiazine Derivatives

    PubMed Central

    Wu, Shiying; Mao, Guanzhong; Kirsebom, Leif A.

    2016-01-01

    There is a need to identify novel scaffolds and targets to develop new antibiotics. Methylene blue is a phenothiazine derivative, and it has been shown to possess anti-malarial and anti-trypanosomal activities. Here, we show that different phenothiazine derivatives and pyronine G inhibited the activities of three structurally different bacterial RNase P RNAs (RPRs), including that from Mycobacterium tuberculosis, with Ki values in the lower μM range. Interestingly, three antipsychotic phenothiazines (chlorpromazine, thioridazine, and trifluoperazine), which are known to have antibacterial activities, also inhibited the activity of bacterial RPRs, albeit with higher Ki values than methylene blue. Phenothiazines also affected lead(II)-induced cleavage of bacterial RPR and inhibited yeast tRNAPhe, indicating binding of these drugs to functionally important regions. Collectively, our findings provide the first experimental data showing that long, noncoding RNAs could be targeted by different phenothiazine derivatives. PMID:27618117

  14. RNA ligation in neurons by RtcB inhibits axon regeneration

    PubMed Central

    Kosmaczewski, Sara Guckian; Han, Sung Min; Han, Bingjie; Irving Meyer, Benjamin; Baig, Huma S.; Athar, Wardah; Lin-Moore, Alexander T.; Koelle, Michael R.; Hammarlund, Marc

    2015-01-01

    Activity of the RNA ligase RtcB has only two known functions: tRNA ligation after intron removal and XBP1 mRNA ligation during activation of the unfolded protein response. Here, we show that RtcB acts in neurons to inhibit axon regeneration after nerve injury. This function of RtcB is independent of its basal activities in tRNA ligation and the unfolded protein response. Furthermore, inhibition of axon regeneration is independent of the RtcB cofactor archease. Finally, RtcB is enriched at axon termini after nerve injury. Our data indicate that neurons have co-opted an ancient RNA modification mechanism to regulate specific and dynamic functions and identify neuronal RtcB activity as a critical regulator of neuronal growth potential. PMID:26100902

  15. Silencing MRP1-4 genes by RNA interference enhances sensitivity of human hepatoma cells to chemotherapy

    PubMed Central

    Su, Zheng; Liu, Gaojie; Fang, Tingfeng; Wang, Yang; Zhang, Huayao; Yang, Shanglin; Wei, Jinxing; Lv, Zejian; Tan, Langping; Liu, Jianping

    2016-01-01

    Aim: Besides surgical treatment, systematic chemotherapy plays a crucial role in HCC treatment, especially for patients with advanced HCC. However, none of the single-drug-treatment strategies have shown significant survival benefit due to a high incidence rate of chemoresistance. This study was designed to observe the effect of small interfering of RNA (SiRNA) targeting multidrug resistance-related protein 1-4 (MRP1, MRP2, MRP3, and MRP4) in modulating drug resistance of HepG2/ADM and SMMC7721/ADM cells. Methods: HepG2/Adriamycin (ADM) and SMMC7721/ADM cell lines were developed by exposing parental cells to stepwise increasing concentrations of ADM. MTT assay was used to determine drug sensitivity and half inhibitory concentration (IC50) of drugs was calculated. Flow cytometry was employed to analyze cell cycle distribution. MRP1-4 mRNA expression levels were measured by quantitative real-time PCR (QRT-PCR). Expression of proteins was analyzed by Western blot. The growth curve was draw and the cell apoptosis was also observed. Animal experiment was used to compare the cell growth. Results: MTT assay showed that the values of IC50 and RI of HepG2/ADM and SMMC7721/ADM decreased after siRNA treatment in HepG2/ADM cells and SMMC7721/ADM cells. QRT-PCR analysis demonstrated the MRP1-4 mRNA expression decreased significantly in HepG2/ADM cells and SMMC7721/ADM cells after siRNA transfection. In addition, compared with parental cells, MRP1-4 protein expressions apparently decreased in SMMC7721/ADM and HepG2/ADM cells. Flow cytometry showed significantly elevated apoptosis rate following MRP1-4 siRNA transfection. Animal experiment suggested that silencing MRP1-4 gene in vivo inhibited tumor growth. Conclusion: Inhibition of MRP1-4 by small interfering RNA enhanced and selectively restored sensitivity of hepatoma cells to drugs. MRP1-4 siRNA might represent a new therapeutic option for HCC. PMID:27398162

  16. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells.

    PubMed

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P; Vishwanatha, Jamboor K

    2011-11-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  17. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    NASA Astrophysics Data System (ADS)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P.; Vishwanatha, Jamboor K.

    2011-11-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  18. Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles.

    PubMed

    Feng, Qiang; Yu, Min-Zhi; Wang, Jian-Cheng; Hou, Wen-Jie; Gao, Ling-Yan; Ma, Xiao-Fei; Pei, Xi-Wei; Niu, Yu-Jie; Liu, Xiao-Yan; Qiu, Chong; Pang, Wen-Hao; Du, Li-Li; Zhang, Qiang

    2014-06-01

    A somatostatin analog, vapreotide (VAP), can be used as a ligand for targeting drug delivery based on its high affinity to somatostatin receptors (SSTRs), which is overexpressed in many tumor cells. RNA interference plays an important role on downregulation of vascular endothelial growth factor (VEGF), which is important for tumor growth, progression and metastasis. To improve tumor therapy efficacy, the vapreotide-modified core-shell type nanoparticles co-encapsulating VEGF targeted siRNA (siVEGF) and paclitaxel (PTX), termed as VAP-PLPC/siRNA NPs, were developed in this study. When targeted via somatostatin receptors to tumor cells, the VAP-PLPC/siRNA NPs could simultaneously delivery siVEGF and PTX into cells and achieve a synergistic inhibition of tumor growth. Interestingly, in vitro cell uptake and gene silencing experiments demonstrated that the targeted VAP-PLPC/siRNA NPs exhibited significant higher intracellular siRNA accumulation and VEGF downregulation in human breast cancer MCF-7 cells, compared to those of the non-targeted PEG-PLPC/siRNA NPs. More importantly, in vivo results further demonstrated that the targeted VAP-PLPC/siRNA NPs had significant stronger drug distribution in tumor tissues and tumor growth inhibition efficacy via receptor-mediated targeting delivery, accompany with an obvious inhibition of neovascularization induced by siVEGF silencing. These results suggested that the co-delivery of siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles would be a promising approach for tumor targeted therapy.

  19. Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism.

    PubMed

    Dykxhoorn, Derek M; Schlehuber, Lisa D; London, Irving M; Lieberman, Judy

    2006-04-11

    A single nucleotide polymorphism (SNP) in the sickle beta-globin gene (beta(S)) leads to sickle cell anemia. Sickling increases sharply with deoxy sickle Hb concentration and decreases with increasing fetal gamma-globin concentration. Measures that decrease sickle Hb concentration should have an antisickling effect. RNA interference (RNAi) uses small interfering (si)RNAs for sequence-specific gene silencing. A beta(S) siRNA with position 10 of the guide strand designed to align with the targeted beta(S) SNP specifically silences beta(S) gene expression without affecting the expression of the gamma-globin or normal beta-globin (beta(A)) genes. Silencing is increased by altering the 5' end of the siRNA antisense (guide) strand to enhance its binding to the RNA-induced silencing complex (RISC). Specific beta(S) silencing was demonstrated by using a luciferase reporter and full-length beta(S) cDNA transfected into HeLa cells and mouse erythroleukemia cells, where it was expressed in the context of the endogenous beta-globin gene promoter and the locus control region enhancers. When this strategy was used to target beta(E), silencing was not limited to the mutant gene but also targeted the normal beta(A) gene. siRNAs, mismatched with their target at position 10, guided mRNA cleavage in all cases except when two bulky purines were aligned. The specific silencing of the beta(S)-globin gene, as compared with beta(E), as well as studies of silencing SNP mutants in other diseases, indicates that siRNAs developed to target a disease-causing SNP will be specific if the mutant residue is a pyrimidine and the normal residue is a purine.

  20. Impaired Inhibition of Prepotent Motor Tendencies in Friedreich Ataxia Demonstrated by the Simon Interference Task

    ERIC Educational Resources Information Center

    Corben, L. A.; Akhlaghi, H.; Georgiou-Karistianis, N.; Bradshaw, J. L.; Egan, G. F.; Storey, E.; Churchyard, A. J.; Delatycki, M. B.

    2011-01-01

    Friedreich ataxia (FRDA) is the most common of the genetically inherited ataxias. We recently demonstrated that people with FRDA have impairment in motor planning--most likely because of pathology affecting the cerebral cortex and/or cerebello-cortical projections. We used the Simon interference task to examine how effective 13 individuals with…

  1. Enhanced Eyeblink Conditioning in Behaviorally Inhibited Individuals is Disrupted by Proactive Interference Following US Alone Pre-exposures

    PubMed Central

    Allen, Michael Todd; Miller, Daniel P.

    2016-01-01

    Anxiety vulnerable individuals exhibit enhanced acquisition of conditioned eyeblinks as well as enhanced proactive interference from conditioned stimulus (CS) or unconditioned stimulus (US) alone pre-exposures (Holloway et al., 2012). US alone pre-exposures disrupt subsequent conditioned response (CR) acquisition to CS-US paired trials as compared to context pre-exposure controls. While Holloway et al. (2012) reported enhanced acquisition in high trait anxiety individuals in the context condition, anxiety vulnerability effects were not reported for the US alone pre-exposure group. It appears from the published data that there were no differences between high and low anxiety individuals in the US alone condition. In the work reported here, we sought to extend the findings of enhanced proactive interference with US alone pre-exposures to determine if the enhanced conditioning was disrupted by proactive interference procedures. We also were interested in the spontaneous eyeblinks during the pre-exposure phase of training. We categorized individuals as anxiety vulnerability or non-vulnerable individuals based scores on the Adult Measure of Behavioral Inhibition (AMBI). Sixty-six participants received 60 trials consisting of 30 US alone or context alone pre-exposures followed by 30 CS-US trials. US alone pre-exposures not only disrupted CR acquisition overall, but behaviorally inhibited (BI) individuals exhibited enhanced proactive interference as compared to non-inhibited (NI) individuals. In addition, US alone pre-exposures disrupted the enhanced acquisition observed in BI individuals as compared to NI individuals following context alone pre-exposures. Differences were also found in rates of spontaneous eyeblinks between BI and NI individuals during context pre-exposure. Our findings will be discussed in the light of the neural substrates of eyeblink conditioning as well as possible factors such as hypervigilance in the amygdala and hippocampal systems, and possible

  2. Enhanced Eyeblink Conditioning in Behaviorally Inhibited Individuals is Disrupted by Proactive Interference Following US Alone Pre-exposures.

    PubMed

    Allen, Michael Todd; Miller, Daniel P

    2016-01-01

    Anxiety vulnerable individuals exhibit enhanced acquisition of conditioned eyeblinks as well as enhanced proactive interference from conditioned stimulus (CS) or unconditioned stimulus (US) alone pre-exposures (Holloway et al., 2012). US alone pre-exposures disrupt subsequent conditioned response (CR) acquisition to CS-US paired trials as compared to context pre-exposure controls. While Holloway et al. (2012) reported enhanced acquisition in high trait anxiety individuals in the context condition, anxiety vulnerability effects were not reported for the US alone pre-exposure group. It appears from the published data that there were no differences between high and low anxiety individuals in the US alone condition. In the work reported here, we sought to extend the findings of enhanced proactive interference with US alone pre-exposures to determine if the enhanced conditioning was disrupted by proactive interference procedures. We also were interested in the spontaneous eyeblinks during the pre-exposure phase of training. We categorized individuals as anxiety vulnerability or non-vulnerable individuals based scores on the Adult Measure of Behavioral Inhibition (AMBI). Sixty-six participants received 60 trials consisting of 30 US alone or context alone pre-exposures followed by 30 CS-US trials. US alone pre-exposures not only disrupted CR acquisition overall, but behaviorally inhibited (BI) individuals exhibited enhanced proactive interference as compared to non-inhibited (NI) individuals. In addition, US alone pre-exposures disrupted the enhanced acquisition observed in BI individuals as compared to NI individuals following context alone pre-exposures. Differences were also found in rates of spontaneous eyeblinks between BI and NI individuals during context pre-exposure. Our findings will be discussed in the light of the neural substrates of eyeblink conditioning as well as possible factors such as hypervigilance in the amygdala and hippocampal systems, and possible

  3. Enhanced Eyeblink Conditioning in Behaviorally Inhibited Individuals is Disrupted by Proactive Interference Following US Alone Pre-exposures.

    PubMed

    Allen, Michael Todd; Miller, Daniel P

    2016-01-01

    Anxiety vulnerable individuals exhibit enhanced acquisition of conditioned eyeblinks as well as enhanced proactive interference from conditioned stimulus (CS) or unconditioned stimulus (US) alone pre-exposures (Holloway et al., 2012). US alone pre-exposures disrupt subsequent conditioned response (CR) acquisition to CS-US paired trials as compared to context pre-exposure controls. While Holloway et al. (2012) reported enhanced acquisition in high trait anxiety individuals in the context condition, anxiety vulnerability effects were not reported for the US alone pre-exposure group. It appears from the published data that there were no differences between high and low anxiety individuals in the US alone condition. In the work reported here, we sought to extend the findings of enhanced proactive interference with US alone pre-exposures to determine if the enhanced conditioning was disrupted by proactive interference procedures. We also were interested in the spontaneous eyeblinks during the pre-exposure phase of training. We categorized individuals as anxiety vulnerability or non-vulnerable individuals based scores on the Adult Measure of Behavioral Inhibition (AMBI). Sixty-six participants received 60 trials consisting of 30 US alone or context alone pre-exposures followed by 30 CS-US trials. US alone pre-exposures not only disrupted CR acquisition overall, but behaviorally inhibited (BI) individuals exhibited enhanced proactive interference as compared to non-inhibited (NI) individuals. In addition, US alone pre-exposures disrupted the enhanced acquisition observed in BI individuals as compared to NI individuals following context alone pre-exposures. Differences were also found in rates of spontaneous eyeblinks between BI and NI individuals during context pre-exposure. Our findings will be discussed in the light of the neural substrates of eyeblink conditioning as well as possible factors such as hypervigilance in the amygdala and hippocampal systems, and possible

  4. LincRNA-p21 activates endoplasmic reticulum stress and inhibits hepatocellular carcinoma

    PubMed Central

    Haibin, Zhang; Hui, Sima; Nan, Zhu; Guangshun, Yang

    2015-01-01

    LincRNA-p21 is a downstream long non-coding RNA (lncRNA) transcript of p53. LincRNA-p21 serves as a repressor in p53-dependent transcriptional responses and participates in diverse biological processes, including apoptosis, cell cycle, metabolism and pluripotency. However, the role of lincRNA-p21 in human hepatocellular carcinoma remains to be defined. Here in this work, we demonstrated that lincRNA-p21 acted as a tumor suppressive lncRNA in human hepatocellular carcinoma. We firstly found the downregulation of lincRNA-p21 level in human hepatocellular carcinoma tissues, and showed that low expression of lincRNA-p21 was associated with high disease stage and predicted poor survival. Further we showed that lincRNA-p21 knockdown promoted proliferation and colony formation of HepG2, Huh7 and Bel-7042 cells in vitro, while lincRNA-p21 overexpression obtained oppose results. Using tumor xenograft experiments, we also demonstrated that lincRNA-p21 inhibited HepG2 cell growth in vivo and lincRNA-p21 contributed to sorafenib-induced growth regression of HepG2 cell in vivo. Further mechanism analysis revealed that lincRNA-p21 promoted ER stress both in vitro and in vivo, which facilitated apoptosis of hepatocellular carcinoma cells. Finally, we demonstrated that ER stress accounted for lincRNA-p21 effects on apoptosis, proliferation and in vivo growth of hepatocellular carcinoma. These findings implicate that lincRNA-p21 is a potential prognostic factor and therapeutic target for human hepatocellular carcinoma. PMID:26305675

  5. LincRNA-p21 activates endoplasmic reticulum stress and inhibits hepatocellular carcinoma.

    PubMed

    Yang, Ning; Fu, Yong; Zhang, Haibin; Sima, Hui; Zhu, Nan; Yang, Guangshun

    2015-09-29

    LincRNA-p21 is a downstream long non-coding RNA (lncRNA) transcript of p53. LincRNA-p21 serves as a repressor in p53-dependent transcriptional responses and participates in diverse biological processes, including apoptosis, cell cycle, metabolism and pluripotency. However, the role of lincRNA-p21 in human hepatocellular carcinoma remains to be defined. Here in this work, we demonstrated that lincRNA-p21 acted as a tumor suppressive lncRNA in human hepatocellular carcinoma. We firstly found the downregulation of lincRNA-p21 level in human hepatocellular carcinoma tissues, and showed that low expression of lincRNA-p21 was associated with high disease stage and predicted poor survival. Further we showed that lincRNA-p21 knockdown promoted proliferation and colony formation of HepG2, Huh7 and Bel-7042 cells in vitro, while lincRNA-p21 overexpression obtained oppose results. Using tumor xenograft experiments, we also demonstrated that lincRNA-p21 inhibited HepG2 cell growth in vivo and lincRNA-p21 contributed to sorafenib-induced growth regression of HepG2 cell in vivo. Further mechanism analysis revealed that lincRNA-p21 promoted ER stress both in vitro and in vivo, which facilitated apoptosis of hepatocellular carcinoma cells. Finally, we demonstrated that ER stress accounted for lincRNA-p21 effects on apoptosis, proliferation and in vivo growth of hepatocellular carcinoma. These findings implicate that lincRNA-p21 is a potential prognostic factor and therapeutic target for human hepatocellular carcinoma. PMID:26305675

  6. Acoustic Droplet Ejection Technology and Its Application in High-Throughput RNA Interference Screening

    PubMed Central

    Nebane, N. Miranda; Coric, Tatjana; McKellip, Sara; Woods, LaKeisha; Sosa, Melinda; Rasmussen, Lynn; Bjornsti, Mary-Ann; White, E. Lucile

    2016-01-01

    The development of acoustic droplet ejection (ADE) technology has resulted in many positive changes associated with the operations in a high-throughput screening (HTS) laboratory. Originally, this liquid transfer technology was used to simply transfer DMSO solutions of primarily compounds. With the introduction of Labcyte’s Echo 555, which has aqueous dispense capability, the application of this technology has been expanded beyond its original use. This includes the transfer of many biological reagents solubilized in aqueous buffers, including siRNAs. The Echo 555 is ideal for siRNA dispensing because it is accurate at low volumes and a step-down dilution is not necessary. The potential for liquid carryover and cross-contamination is eliminated, as no tips are needed. Herein, we describe the siRNA screening platform at Southern Research’s HTS Center using the ADE technology. With this technology, an siRNA library can be dispensed weeks or even months in advance of the assay itself. The protocol has been optimized to achieve assay parameters comparable to small-molecule screening parameters, and exceeding the norm reported for genomewide siRNA screens. PMID:26663785

  7. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    NASA Astrophysics Data System (ADS)

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jimmy

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1 and OPR) in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.

  8. PRDM16 is associated with evasion of apoptosis by prostatic cancer cells according to RNA interference screening.

    PubMed

    Zhu, Shaoxing; Xu, Yipeng; Song, Mei; Chen, Guiping; Wang, Hua; Zhao, Yang; Wang, Zongping; Li, Fangyin

    2016-10-01

    Histone methylation, which is regulated by histone methyltransferases (HMTs) and histone demethylases (HDMs), has been indicated to be involved in a variety of diseases, particularly in cancer, including androgen‑independent prostate cancer (PCa). However, the functions of HMTs and HDTs in cancer have largely remained elusive. The present study, utilized an RNA interference screening using a lentiviral small hairpin (sh)RNA library to systematically elucidate the function of HMTs and HDTs in PCa cell growth and viability. Nine HMTs and HDTs, namely FBXO11, PRDM10, JMJD8, MLL, SETD4, JMJD7, PRMT2, MEN1 and PRDM16, were identified to affect DU145 cell viability, as indicated by an MTS assay subsequent to knockdown of the specific genes using shRNA pools. Furthermore, flow cytometric analysis and western blot analysis of apoptosis‑associated proteins indicated that PRDM16 has an anti‑apoptotic role in PCa cells. In addition, the spliced form, sPRDM16/MEL1S, was detected to be overexpressed in PCa cell lines. In conclusion, the present study indicated an important oncogenic role of sPRDM16/MEL1S in PCa and suggested that PRDM16 may represent a novel therapeutic target. PMID:27511603

  9. PRDM16 is associated with evasion of apoptosis by prostatic cancer cells according to RNA interference screening.

    PubMed

    Zhu, Shaoxing; Xu, Yipeng; Song, Mei; Chen, Guiping; Wang, Hua; Zhao, Yang; Wang, Zongping; Li, Fangyin

    2016-10-01

    Histone methylation, which is regulated by histone methyltransferases (HMTs) and histone demethylases (HDMs), has been indicated to be involved in a variety of diseases, particularly in cancer, including androgen‑independent prostate cancer (PCa). However, the functions of HMTs and HDTs in cancer have largely remained elusive. The present study, utilized an RNA interference screening using a lentiviral small hairpin (sh)RNA library to systematically elucidate the function of HMTs and HDTs in PCa cell growth and viability. Nine HMTs and HDTs, namely FBXO11, PRDM10, JMJD8, MLL, SETD4, JMJD7, PRMT2, MEN1 and PRDM16, were identified to affect DU145 cell viability, as indicated by an MTS assay subsequent to knockdown of the specific genes using shRNA pools. Furthermore, flow cytometric analysis and western blot analysis of apoptosis‑associated proteins indicated that PRDM16 has an anti‑apoptotic role in PCa cells. In addition, the spliced form, sPRDM16/MEL1S, was detected to be overexpressed in PCa cell lines. In conclusion, the present study indicated an important oncogenic role of sPRDM16/MEL1S in PCa and suggested that PRDM16 may represent a novel therapeutic target.

  10. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes

    PubMed Central

    Matsa, Elena; Dixon, James E.; Medway, Christopher; Georgiou, Orestis; Patel, Minal J.; Morgan, Kevin; Kemp, Paul J.; Staniforth, Andrew; Mellor, Ian; Denning, Chris

    2014-01-01

    Aims Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. Methods and results We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K+ currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). Conclusions These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart. PMID:23470493

  11. Inhibition of RNA polymerase by captan at both DNA and substrate binding sites.

    PubMed

    Luo, G; Lewis, R A

    1992-12-01

    RNA synthesis carried out in vitro by Escherichia coli RNA polymerase was inhibited irreversibly by captan when T7 DNA was used as template. An earlier report and this one show that captan blocks the DNA binding site on the enzyme. Herein, it is also revealed that captan acts at the nucleoside triphosphate (NTP) binding site, and kinetic relationships of the action of captan at the two sites are detailed. The inhibition by captan via the DNA binding site of the enzyme was confirmed by kinetic studies and it was further shown that [14C]captan bound to the beta' subunit of RNA polymerase. This subunit contains the DNA binding site. Competitive-like inhibition by captan versus UTP led to the conclusion that captan also blocked the NTP binding site. In support of this conclusion, [14C]captan was observed to bind to the beta subunit which contains the NTP binding site. Whereas, preincubation of RNA polymerase with both DNA and NTPs prevented captan inhibition, preincubation with either DNA or NTPs alone was insufficient to protect the enzyme from the action of captan. Furthermore, the interaction of [14C]captan with the beta and beta' subunits was not prevented by a similar preincubation. Captan also bound, to a lesser extent, to the alpha and sigma subunits. Therefore, captan binding appears to involve interaction with RNA polymerase at sites in addition to those for DNA and NTP; however, this action does not inhibit the polymerase activity.

  12. Inhibition of infectious bursal disease virus by vector delivered SiRNA in cell culture.

    PubMed

    Sahare, Amol Ashok; Bedekar, Megha Kadam; Jain, Sudhir Kumar; Singh, Azad; Singh, Sanjeev; Sarkhel, Bikas Chandra

    2015-01-01

    Infectious Bursal Disease (IBD) is major threat to poultry industry. It causes severe immunosuppression and mortality in chicken generally at 3 to 6 weeks of age. RNA intereference (RNAi) emerges as a potent gene regulatory tool in last few years. The present study was conducted to evaluate the efficiency of RNAi to inhibit the IBD virus (IDBV) replication in-vitro. VP2 gene of virus encodes protein involved in capsid formation, cell entry and induction of protective immune responses against it. Thus, VP2 gene of IBDV is the candidate target for the molecular techniques applied for IBDV detection and inhibition assay. In this study, IBDV was isolated from field cases and confirmed by RT-PCR. The virus was then adapted on chicken embryo fibroblast cells (CEF) in which it showed severe cytopathic effects (CPE). The short hairpin RNA (shRNAs) constructs homologous to the VP2 gene were designed and one, having maximum score and fulfilling maximum Reynolds criteria, was selected for evaluation of effective inhibition. Selected shRNA construct (i.e., VP2-shRNA) was observed to be the most effective for inhibiting VP2 gene expression. Real time PCR analysis was performed to measure the relative expression of VP2 gene in different experimental groups. The VP2 gene was less expressed in virus infected cells co-transfected with VP2-shRNA as compared to mock transfected cells and IBDV+ cells (control) at dose 1.6 µ g. The result showed ∼95% efficient down regulation of VP2 gene mRNA in VP2-shRNA treated cells. These findings suggested that designed shRNA construct achieved high level of inhibition of VP2 gene expression in-vitro. PMID:25153457

  13. The Crosslink formation of 2'-OMe oligonucleotide containing 2-amino-6-vinylpurine protects mRNA from miRNA-mediated silencing.

    PubMed

    Hagihara, Shinya; Lin, Wei-Chen; Kusano, Shuhei; Chao, Xiao-Guang; Hori, Tsuneaki; Imoto, Shuhei; Nagatsugi, Fumi

    2013-08-19

    Masking the miRNA binding site: Crosslink-forming oligonucleotide (CFO) was used for target gene-specific inhibition of microRNA (miRNA) functions. This method can interfere with specific miRNA-mRNA interactions by recognizing sequences unique to the 3'-UTR that are inherent in each mRNA.

  14. Metabolic consequences of microRNA-122 inhibition in rainbow trout, Oncorhynchus mykiss

    PubMed Central

    2014-01-01

    Background MicroRNAs (miRNAs) are small regulatory molecules which post-transcriptionally regulate mRNA stability and translation. Several microRNAs have received attention due to their role as key metabolic regulators. In spite of the high evolutionary conservation of several miRNAs, the role of miRNAs in lower taxa of vertebrates has not been studied with regard to metabolism. The liver-specific and highly abundant miRNA-122 is one of the most widely studied miRNA in mammals, where it has been implicated in the control of hepatic lipid metabolism. Following our identification of acute postprandial, nutritional and endocrine regulation of hepatic miRNA-122 isomiRNA expression in rainbow trout, we used complementary in silico and in vivo approaches to study the role of miRNA-122 in rainbow trout metabolism. We hypothesized that the role of miRNA-122 in regulating lipid metabolism in rainbow trout is conserved to that in mammals and that modulation of miRNA-122 function would result in altered lipid homeostasis and secondarily altered glucose homeostasis, since lipogenesis has been suggested to act as glucose sink in trout. Results Our results show that miRNA-122 was functionally inhibited in vivo in the liver. Postprandial glucose concentrations increased significantly in rainbow trout injected with a miRNA-122 inhibitor, and this effect correlated with decreases in hepatic FAS protein abundance, indicative of altered lipogenic potential. Additionally, miRNA-122 inhibition resulted in a 20% decrease in plasma cholesterol concentration, an effect associated with increased expression of genes involved in cholesterol degradation and excretion. Conclusions Overall evidence suggests that miRNA-122 may have evolved in early vertebrates to support liver-specific metabolic functions. Nevertheless, our data also indicate that metabolic consequences of miRNA-122 inhibition may differ quantitatively between vertebrate species and that distinct direct molecular targets of miRNA

  15. Nuclease Tudor-SN Is Involved in Tick dsRNA-Mediated RNA Interference and Feeding but Not in Defense against Flaviviral or Anaplasma phagocytophilum Rickettsial Infection

    PubMed Central

    Ayllón, Nieves; Naranjo, Victoria; Hajdušek, Ondrej; Villar, Margarita; Galindo, Ruth C.; Kocan, Katherine M.; Alberdi, Pilar; Šíma, Radek; Cabezas-Cruz, Alejandro; Rückert, Claudia; Bell-Sakyi, Lesley; Kazimírová, Mária; Havlíková, Sabína; Klempa, Boris; Kopáček, Petr; de la Fuente, José

    2015-01-01

    Tudor staphylococcal nuclease (Tudor-SN) and Argonaute (Ago) are conserved components of the basic RNA interference (RNAi) machinery with a variety of functions including immune response and gene regulation. The RNAi machinery has been characterized in tick vectors of human and animal diseases but information is not available on the role of Tudor-SN in tick RNAi and other cellular processes. Our hypothesis is that tick Tudor-SN is part of the RNAi machinery and may be involved in innate immune response and other cellular processes. To address this hypothesis, Ixodes scapularis and I. ricinus ticks and/or cell lines were used to annotate and characterize the role of Tudor-SN in dsRNA-mediated RNAi, immune response to infection with the rickettsia Anaplasma phagocytophilum and the flaviviruses TBEV or LGTV and tick feeding. The results showed that Tudor-SN is conserved in ticks and involved in dsRNA-mediated RNAi and tick feeding but not in defense against infection with the examined viral and rickettsial pathogens. The effect of Tudor-SN gene knockdown on tick feeding could be due to down-regulation of genes that are required for protein processing and blood digestion through a mechanism that may involve selective degradation of dsRNAs enriched in G:U pairs that form as a result of adenosine-to-inosine RNA editing. These results demonstrated that Tudor-SN plays a role in tick RNAi pathway and feeding but no strong evidence for a role in innate immune responses to pathogen infection was found. PMID:26186700

  16. Nuclease Tudor-SN Is Involved in Tick dsRNA-Mediated RNA Interference and Feeding but Not in Defense against Flaviviral or Anaplasma phagocytophilum Rickettsial Infection.

    PubMed

    Ayllón, Nieves; Naranjo, Victoria; Hajdušek, Ondrej; Villar, Margarita; Galindo, Ruth C; Kocan, Katherine M; Alberdi, Pilar; Šíma, Radek; Cabezas-Cruz, Alejandro; Rückert, Claudia; Bell-Sakyi, Lesley; Kazimírová, Mária; Havlíková, Sabína; Klempa, Boris; Kopáček, Petr; de la Fuente, José

    2015-01-01

    Tudor staphylococcal nuclease (Tudor-SN) and Argonaute (Ago) are conserved components of the basic RNA interference (RNAi) machinery with a variety of functions including immune response and gene regulation. The RNAi machinery has been characterized in tick vectors of human and animal diseases but information is not available on the role of Tudor-SN in tick RNAi and other cellular processes. Our hypothesis is that tick Tudor-SN is part of the RNAi machinery and may be involved in innate immune response and other cellular processes. To address this hypothesis, Ixodes scapularis and I. ricinus ticks and/or cell lines were used to annotate and characterize the role of Tudor-SN in dsRNA-mediated RNAi, immune response to infection with the rickettsia Anaplasma phagocytophilum and the flaviviruses TBEV or LGTV and tick feeding. The results showed that Tudor-SN is conserved in ticks and involved in dsRNA-mediated RNAi and tick feeding but not in defense against infection with the examined viral and rickettsial pathogens. The effect of Tudor-SN gene knockdown on tick feeding could be due to down-regulation of genes that are required for protein processing and blood digestion through a mechanism that may involve selective degradation of dsRNAs enriched in G:U pairs that form as a result of adenosine-to-inosine RNA editing. These results demonstrated that Tudor-SN plays a role in tick RNAi pathway and feeding but no strong evidence for a role in innate immune responses to pathogen infection was found.

  17. Quantitative RT-PCR Gene Evaluation and RNA Interference in the Brown Marmorated Stink Bug.

    PubMed

    Bansal, Raman; Mittapelly, Priyanka; Chen, Yuting; Mamidala, Praveen; Zhao, Chaoyang; Michel, Andy

    2016-01-01

    The brown marmorated stink bug (Halyomorpha halys) has emerged as one of the most important invasive insect pests in the United States. Functional genomics in H. halys remains unexplored as molecular resources in this insect have recently been developed. To facilitate functional genomics research, we evaluated ten common insect housekeeping genes (RPS26, EF1A, FAU, UBE4A, ARL2, ARP8, GUS, TBP, TIF6 and RPL9) for their stability across various treatments in H. halys. Our treatments included two biotic factors (tissues and developmental stages) and two stress treatments (RNAi injection and starvation). Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper) and a web-based tool (RefFinder). The qRT-PCR results indicated ARP8 and UBE4A exhibit the most stable expression across tissues and developmental stages, ARL2 and FAU for dsRNA treatment and TBP and UBE4A for starvation treatment. Following the dsRNA treatment, all genes except GUS showed relatively stable expression. To demonstrate the utility of validated reference genes in accurate gene expression analysis and to explore gene silencing in H. halys, we performed RNAi by administering dsRNA of target gene (catalase) through microinjection. A successful RNAi response with over 90% reduction in expression of target gene was observed. PMID:27144586

  18. RNA interference (RNAI) as a tool to engineer high nutritional value in chicory (Chicorium intybus).

    PubMed

    Asad, M

    2006-01-01

    The major component of chicory (Chicorium intybus) root is inulin, which is a polymer of fructose. Inulin production from chicory is hampered by the enzyme fructan 1-exohydrolase (1-FEH) that degrades inulin and limits its yield. Increased FEH activity results in massive breakdown of fructan and production of Fructose and inulo-n-oses. The latter phenomena are to be avoided for industrial fructan production. RNA silencing, which is termed post-transcriptional gene silencing (PTGS) in plants, is an RNA degradation process through sequence specific nucleotide interactions induced by double-stranded RNA. For genetic improvement of crop plants, RNAi has advantages over antisense-mediated gene silencing and co-suppression, in terms of its efficiency and stability. We are generating a transgenic chicory plants with suppressed FEH (exohydrolas) genes using RNAi resulting in supressed inulin degradation. A small but important part of the construct is a sequence unique for the target gene (exons) or genes,which were cloned. The hairpin constructs were made and chicory was transformed by Agrobacterium tumifaciense, strain (C58C1). The transgenics should be select and check by means of molecular techniques.

  19. Quantitative RT-PCR Gene Evaluation and RNA Interference in the Brown Marmorated Stink Bug

    PubMed Central

    Bansal, Raman; Mittapelly, Priyanka; Chen, Yuting; Mamidala, Praveen; Zhao, Chaoyang; Michel, Andy

    2016-01-01

    The brown marmorated stink bug (Halyomorpha halys) has emerged as one of the most important invasive insect pests in the United States. Functional genomics in H. halys remains unexplored as molecular resources in this insect have recently been developed. To facilitate functional genomics research, we evaluated ten common insect housekeeping genes (RPS26, EF1A, FAU, UBE4A, ARL2, ARP8, GUS, TBP, TIF6 and RPL9) for their stability across various treatments in H. halys. Our treatments included two biotic factors (tissues and developmental stages) and two stress treatments (RNAi injection and starvation). Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper) and a web-based tool (RefFinder). The qRT-PCR results indicated ARP8 and UBE4A exhibit the most stable expression across tissues and developmental stages, ARL2 and FAU for dsRNA treatment and TBP and UBE4A for starvation treatment. Following the dsRNA treatment, all genes except GUS showed relatively stable expression. To demonstrate the utility of validated reference genes in accurate gene expression analysis and to explore gene silencing in H. halys, we performed RNAi by administering dsRNA of target gene (catalase) through microinjection. A successful RNAi response with over 90% reduction in expression of target gene was observed. PMID:27144586

  20. Interference Suppression vs. Response Inhibition: An Explanation for the Absence of a Bilingual Advantage in Preschoolers’ Stroop Task Performance

    PubMed Central

    Esposito, Alena G.; Baker-Ward, Lynne; Mueller, Shane

    2013-01-01

    The well-documented advantage that bilingual speakers demonstrate across the lifespan on measures of controlled attention is not observed in preschoolers’ performance on Stroop task variations. We examined the role of task demands in explaining this discrepancy. Whereas the Color/Word Stroop used with adult participants requires interference suppression, the Stroop task typically used with preschoolers requires only response inhibition. We developed an age-appropriate conflict task that measures interference suppression. Fifty-one preschool children (26 bilinguals) completed this new Color/Shape task and the Day/Night task used in previous research. Bilingual in comparison to monolingual children performed better on incongruent trials of the Color/Shape task, but did not differ on other measures. The results indicate that the discrepancy between preschoolers and older individuals in performance on Stroop task adaptations results from characteristics of the task rather than developmental differences. Further, the findings provide additional support for the importance of interference suppression as a mechanism underlying the bilingual advantage. PMID:24453405

  1. Functional Identification of Tumor Suppressor Genes Through an in vivo RNA Interference Screen in a Mouse Lymphoma Model

    PubMed Central

    Bric, Anka; Miething, Cornelius; Bialucha, Carl Uli; Scuoppo, Claudio; Zender, Lars; Krasnitz, Alexander; Xuan, Zhenyu; Zuber, Johannes; Wigler, Michael; Hicks, James; McCombie, Richard W.; Hemann, Michael T.; Hannon, Gregory J.; Powers, Scott; Lowe, Scott W.

    2009-01-01

    SUMMARY Short hairpin RNAs (shRNAs) capable of stably suppressing gene function by RNA interference (RNAi) can mimic tumor suppressor gene loss in mice. By selecting for shRNAs capable of accelerating lymphomagenesis in a well-characterized mouse lymphoma model, we identified over ten candidate tumor suppressors, including Sfrp1, Numb, Mek1, and Angiopoietin 2. Several components of the DNA damage response machinery were also identified, including Rad17, which acts as a haploinsufficient tumor suppressor that responds to oncogenic stress and whose loss is associated with poor prognosis in human patients. Our results emphasize the utility of in vivo RNAi screens, identify and validate a diverse set of tumor suppressors, and have therapeutic implications. PMID:19800577

  2. Enhancing Cellulase Production in Thermophilic Fungus Myceliophthora thermophila ATCC42464 by RNA Interference of cre1 Gene Expression.

    PubMed

    Yang, Fan; Gong, Yanfen; Liu, Gang; Zhao, Shengming; Wang, Juan

    2015-07-01

    The role of CRE1 in a thermophilic fungus, Myceliophthora thermophila ATCC42464, was studied using RNA interference. In the cre1-silenced strain C88, the filter paper hydrolyzing activity and β-1,4-endoglucanase activity were 3.76-, and 1.31-fold higher, respectively, than those in the parental strain when the strains were cultured in inducing medium for 6 days. The activities of β-1,4-exoglucanase and cellobiase were 2.64-, and 5.59-fold higher, respectively, than those in the parental strain when the strains were cultured for 5 days. Quantitative reverse-transcription polymerase chain reaction showed that the gene expression of egl3, cbh1, and cbh2 was significantly increased in transformant C88 compared with the wild-type strain. Therefore, our findings suggest the feasibility of improving cellulase production by modifying the regulator expression, and an attractive approach to increasing the total cellulase productivity in thermophilic fungi.

  3. Micro RNA-98 interferes with expression interleukin-10 in peripheral B cells of patients with lung cancer

    NASA Astrophysics Data System (ADS)

    Li, Yun; Rong, Jian; Qin, Jie; He, Jin-Yuan; Chen, Hui-Guo; Huang, Shao-Hong

    2016-09-01

    Interleukin (IL)-10-producing B cells (B10 cells) plays an important role in the tumor tolerance. High frequency of peripheral B10 cell was reported in patients with lung cancer recently. Micro RNA (miR) regulates some gene expression. This study test a hypothesis that miR-98 suppresses the expression of IL-10 in B cells of subjects with lung cancer. The results showed that the levels of miR-98 were significantly less in peripheral B cells of patients with lung cancer than that in healthy subjects. IL-10 mRNA levels in peripheral B cells were significantly higher in lung cancer patients as compared with healthy controls. A negative correlation was identified between miR-98 and IL-10 in peripheral B cells. Serum IL-13 was higher in lung cancer patients than that in healthy controls. The levels of IL-13 were also negatively correlated with IL-10 in B cells. Exposure B10 cells to IL-13 in the culture or over expression of miR-98 reduced the expression of IL-10 in B cells. Administration with miR-98-laden liposomes inhibited the lung cancer growth in a mouse model. In conclusion, up regulation of miR-98 inhibits the expression of IL-10 in B cells, which may contribute to inhibit the lung cancer tolerance in the body.

  4. Micro RNA-98 interferes with expression interleukin-10 in peripheral B cells of patients with lung cancer.

    PubMed

    Li, Yun; Rong, Jian; Qin, Jie; He, Jin-Yuan; Chen, Hui-Guo; Huang, Shao-Hong

    2016-01-01

    Interleukin (IL)-10-producing B cells (B10 cells) plays an important role in the tumor tolerance. High frequency of peripheral B10 cell was reported in patients with lung cancer recently. Micro RNA (miR) regulates some gene expression. This study test a hypothesis that miR-98 suppresses the expression of IL-10 in B cells of subjects with lung cancer. The results showed that the levels of miR-98 were significantly less in peripheral B cells of patients with lung cancer than that in healthy subjects. IL-10 mRNA levels in peripheral B cells were significantly higher in lung cancer patients as compared with healthy controls. A negative correlation was identified between miR-98 and IL-10 in peripheral B cells. Serum IL-13 was higher in lung cancer patients than that in healthy controls. The levels of IL-13 were also negatively correlated with IL-10 in B cells. Exposure B10 cells to IL-13 in the culture or over expression of miR-98 reduced the expression of IL-10 in B cells. Administration with miR-98-laden liposomes inhibited the lung cancer growth in a mouse model. In conclusion, up regulation of miR-98 inhibits the expression of IL-10 in B cells, which may contribute to inhibit the lung cancer tolerance in the body. PMID:27605397

  5. Micro RNA-98 interferes with expression interleukin-10 in peripheral B cells of patients with lung cancer

    PubMed Central

    Li, Yun; Rong, Jian; Qin, Jie; He, Jin-yuan; Chen, Hui-guo; Huang, Shao-hong

    2016-01-01

    Interleukin (IL)-10-producing B cells (B10 cells) plays an important role in the tumor tolerance. High frequency of peripheral B10 cell was reported in patients with lung cancer recently. Micro RNA (miR) regulates some gene expression. This study test a hypothesis that miR-98 suppresses the expression of IL-10 in B cells of subjects with lung cancer. The results showed that the levels of miR-98 were significantly less in peripheral B cells of patients with lung cancer than that in healthy subjects. IL-10 mRNA levels in peripheral B cells were significantly higher in lung cancer patients as compared with healthy controls. A negative correlation was identified between miR-98 and IL-10 in peripheral B cells. Serum IL-13 was higher in lung cancer patients than that in healthy controls. The levels of IL-13 were also negatively correlated with IL-10 in B cells. Exposure B10 cells to IL-13 in the culture or over expression of miR-98 reduced the expression of IL-10 in B cells. Administration with miR-98-laden liposomes inhibited the lung cancer growth in a mouse model. In conclusion, up regulation of miR-98 inhibits the expression of IL-10 in B cells, which may contribute to inhibit the lung cancer tolerance in the body. PMID:27605397

  6. RNA interference-mediated silencing of speckle-type POZ protein promotes apoptosis of renal cell cancer cells

    PubMed Central

    Liu, Xiaoxia; Sun, Guiling; Sun, Xiuju

    2016-01-01

    This study aimed to investigate the effects of silencing the speckle-type POZ protein (SPOP) gene on renal cell cancer (RCC) cells and to explore its possible mechanism. The A498 and ACHN RCC cells were transfected with small interference RNA (siRNA)-SPOP by lipofection methods. The silencing efficiency was monitored by quantitative real-time polymerase chain reaction and Western blot. The effects of SPOP silencing on cell apoptosis, cell viability, colony formation ability, cell migration ability, and chemosensitivity to Sorafenib were assessed by flow cytometry, an MTT assay, a colony formation assay, a trans-well migration assay, and a CCK-8 assay, respectively. Its effects on the expression of several cytokines were determined by a protein microarray. Relevant signaling pathways were also analyzed. Compared with the control group, the cell apoptosis rate was significantly higher; the cell viability, the colony formation, and migration ability were significantly decreased in the siRNA-SPOP group. The protein microarray screening showed that the expression of vascular endothelial growth factor receptor, matrix metallopeptidase-9, vascular cell adhesion molecule-1, and stromal cell-derived factor-1 in the siRNA group was significantly decreased and that the expression of granulocyte–macrophage colony-stimulating factor and E-cadherin was significantly increased (P<0.05). The relevant signaling pathways were the integrin-mediated cell surface interactions pathway and extracellular matrix organization signal pathway. SPOP gene silencing induced cell apoptosis, decreased cell viability, colony formation, and migration ability, and elevated the drug sensitivity in the RCC cells. A possible mechanism is that silencing SPOP induces the differential expression of E-cadherin, vascular endothelial growth factor receptor, matrix metallopeptidase-9, and vascular cell adhesion molecule, which are related to the integrin-mediated cell surface interactions and extracellular

  7. Single-target RNA interference for the blockade of multiple interacting proinflammatory and profibrotic pathways in cardiac fibroblasts.

    PubMed

    Tank, Juliane; Lindner, Diana; Wang, Xiaomin; Stroux, Andrea; Gilke, Leona; Gast, Martina; Zietsch, Christin; Skurk, Carsten; Scheibenbogen, Carmen; Klingel, Karin; Lassner, Dirk; Kühl, Uwe; Schultheiss, Heinz-Peter; Westermann, Dirk; Poller, Wolfgang

    2014-01-01

    Therapeutic targets of broad relevance are likely located in pathogenic pathways common to disorders of various etiologies. Screening for targets of this type revealed CCN genes to be consistently upregulated in multiple cardiomyopathies. We developed RNA interference (RNAi) to silence CCN2 and found this single-target approach to block multiple proinflammatory and profibrotic pathways in activated primary cardiac fibroblasts (PCFBs). The RNAi-strategy was developed in murine PCFBs and then investigated in "individual" human PCFBs grown from human endomyocardial biopsies (EMBs). Screening of short hairpin RNA (shRNA) sequences for high silencing efficacy and specificity yielded RNAi adenovectors silencing CCN2 in murine or human PCFBs, respectively. Comparison of RNAi with CCN2-modulating microRNA (miR) vectors expressing miR-30c or miR-133b showed higher efficacy of RNAi. In murine PCFBs, CCN2 silencing resulted in strongly reduced expression of stretch-induced chemokines (Ccl2, Ccl7, Ccl8), matrix metalloproteinases (MMP2, MMP9), extracellular matrix (Col3a1), and a cell-to-cell contact protein (Cx43), suggesting multiple signal pathways to be linked to CCN2. Immune cell chemotaxis towards CCN2-depleted PCFBs was significantly reduced. We demonstrate here that this RNAi strategy is technically applicable to "individual" human PCFBs, too, but that these display individually strikingly different responses to CCN2 depletion. Either genomically encoded factors or stable epigenetic modification may explain different responses between individual PCFBs. The new RNAi approach addresses a key regulator protein induced in cardiomyopathies. Investigation of this and other molecular therapies in individual human PCBFs may help to dissect differential pathogenic processes between otherwise similar disease entities and individuals. PMID:24239602

  8. RNA interference-mediated silencing of speckle-type POZ protein promotes apoptosis of renal cell cancer cells.

    PubMed

    Liu, Xiaoxia; Sun, Guiling; Sun, Xiuju

    2016-01-01

    This study aimed to investigate the effects of silencing the speckle-type POZ protein (SPOP) gene on renal cell cancer (RCC) cells and to explore its possible mechanism. The A498 and ACHN RCC cells were transfected with small interference RNA (siRNA)-SPOP by lipofection methods. The silencing efficiency was monitored by quantitative real-time polymerase chain reaction and Western blot. The effects of SPOP silencing on cell apoptosis, cell viability, colony formation ability, cell migration ability, and chemosensitivity to Sorafenib were assessed by flow cytometry, an MTT assay, a colony formation assay, a trans-well migration assay, and a CCK-8 assay, respectively. Its effects on the expression of several cytokines were determined by a protein microarray. Relevant signaling pathways were also analyzed. Compared with the control group, the cell apoptosis rate was significantly higher; the cell viability, the colony formation, and migration ability were significantly decreased in the siRNA-SPOP group. The protein microarray screening showed that the expression of vascular endothelial growth factor receptor, matrix metallopeptidase-9, vascular cell adhesion molecule-1, and stromal cell-derived factor-1 in the siRNA group was significantly decreased and that the expression of granulocyte-macrophage colony-stimulating factor and E-cadherin was significantly increased (P<0.05). The relevant signaling pathways were the integrin-mediated cell surface interactions pathway and extracellular matrix organization signal pathway. SPOP gene silencing induced cell apoptosis, decreased cell viability, colony formation, and migration ability, and elevated the drug sensitivity in the RCC cells. A possible mechanism is that silencing SPOP induces the differential expression of E-cadherin, vascular endothelial growth factor receptor, matrix metallopeptidase-9, and vascular cell adhesion molecule, which are related to the integrin-mediated cell surface interactions and extracellular

  9. [Construction and identification of a lentiviral vector for RNA interference of human GLUT3 gene].

    PubMed

    Zheng, Chuanyi; Chen, Zhenggang; Bai, Enqi; Li, Zhengzheng; Yang, Kun

    2016-05-01

    目的:筛选出人GLUT3基因有效的RNA干扰(RNA interference,RNAi)序列,并构建出慢病毒RNAi载体。方法:根据GLUT3基因mRNA序列设计合成siRNA片段4个,分别定向克隆至pLV-shRNA载体上,并将构建的质粒转染HeLa细胞,运用实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)检测GLUT3mRNA的表达量验证其干扰效果。筛选出其中有效的质粒与病毒包装质粒共转染293T细胞进行包装,收获并浓缩重组慢病毒颗粒,测定病毒颗粒滴度后,将病毒感染U251胶质瘤细胞以测定感染慢病毒干扰载体后胶质瘤细胞内GLUT3的表达情况。结果:重组RNAi质粒pLV-shRNA-GLUT3-1,pLV-shRNA-GLUT3-2,pLV-shRNA-GLUT3-3,pLV-shRNA- GLUT3-4经测序证实质粒载体构建成功;4个干扰质粒在HeLa细胞中均可以明显抑制GLUT3-mRNA的表达。pLV-shRNA-GLUT3可以在293T细胞中成功包装。收集293T细胞分泌的病毒上清浓缩后测定病毒颗粒LV-GLUT3滴度为1.5×109 TU/mL。与感染阴性对照慢病毒颗粒(0.3641±0.044)相比,胶质瘤U251细胞感染慢病毒颗粒LV- GLUT3后,GLUT3蛋白相对表达明显降低(0.108±0.016,t=16.267,P<0.001)。结论:成功构建了人GLUT3基因有效的慢病毒RNAi载体,为进一步研究GLUT3的生物学功能奠定了基础。.

  10. A loss of function analysis of host factors influencing Vaccinia virus replication by RNA interference.

    PubMed

    Beard, Philippa M; Griffiths, Samantha J; Gonzalez, Orland; Haga, Ismar R; Pechenick Jowers, Tali; Reynolds, Danielle K; Wildenhain, Jan; Tekotte, Hille; Auer, Manfred; Tyers, Mike; Ghazal, Peter; Zimmer, Ralf; Haas, Jürgen

    2014-01-01

    Vaccinia virus (VACV) is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA) screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF) influencing the replication and spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of anti-viral theraputics.

  11. Carvedilol inhibits Kir2.3 channels by interference with PIP₂-channel interaction.

    PubMed

    Ferrer, Tania; Ponce-Balbuena, Daniela; López-Izquierdo, Angélica; Aréchiga-Figueroa, Ivan A; de Boer, Teun P; van der Heyden, Marcel A G; Sánchez-Chapula, José A

    2011-10-01

    Carvedilol, a β- and α-adrenoceptor blocker, is used to treat congestive heart failure, mild to moderate hypertension, and myocardial infarction. It has been proposed to block K(ATP) channels by binding to the bundle crossing region at a domain including cysteine at position 166, and thereby plugging the pore region. However, carvedilol was reported not to affect Kir2.1 channels, which lack 166 Cys. Here, we demonstrate that carvedilol inhibits Kir2.3 carried current by an alternative mechanism. Carvedilol inhibited Kir2.3 channels with at least 100 fold higher potency (IC(50)=0.49 μM) compared to that for Kir2.1 (IC(50)>50 μM). Kir2.3 channel inhibition was concentration-dependent and voltage-independent. Increasing Kir2.3 channel affinity for PIP(2), by a I213L point mutation, decreased the inhibitory effect of carvedilol more than twentyfold (IC(50)=11.1 μM). In the presence of exogenous PIP(2), Kir2.3 channel inhibition by carvedilol was strongly reduced (80 vs. 2% current inhibition). These results suggest that carvedilol, as other cationic amphiphilic drugs, inhibits Kir2.3 channels by interfering with the PIP(2)-channel interaction.

  12. Efficient shRNA-mediated inhibition of gene expression in zebrafish.

    PubMed

    De Rienzo, Gianluca; Gutzman, Jennifer H; Sive, Hazel

    2012-09-01

    Despite the broad repertoire of loss of function (LOF) tools available for use in the zebrafish, there remains a need for a simple and rapid method that can inhibit expression of genes at later stages. RNAi would fulfill that role, and a previous report (Dong et al. 2009) provided encouraging data. The goal of this study was to further address the ability of expressed shRNAs to inhibit gene expression. This included quantifying RNA knockdown, testing specificity of shRNA effects, and determining whether tissue-specific LOF could be achieved. Using an F0 transgenic approach, this report demonstrates that for two genes, wnt5b and zDisc1, each with described mutant and morphant phenotypes, shRNAs efficiently decrease endogenous RNA levels. Phenotypes elicited by shRNA resemble those of mutants and morphants, and are reversed by expression of cognate RNA, further demonstrating specificity. Tissue-specific expression of zDisc1 shRNAs in F0 transgenics demonstrates that conditional LOF can be readily obtained. These results suggest that shRNA expression presents a viable approach for rapid inhibition of zebrafish gene expression.

  13. Reversible suppression of an essential gene in adult mice using transgenic RNA interference

    PubMed Central

    McJunkin, Katherine; Mazurek, Anthony; Premsrirut, Prem K.; Zuber, Johannes; Dow, Lukas E.; Simon, Janelle; Stillman, Bruce; Lowe, Scott W.

    2011-01-01

    RNAi has revolutionized loss-of-function genetics by enabling sequence-specific suppression of virtually any gene. Furthermore, tetracycline response elements (TRE) can drive expression of short hairpin RNAs (shRNAs) for inducible and reversible target gene suppression. Here, we demonstrate the feasibility of transgenic inducible RNAi for suppression of essential genes. We set out to directly target cell proliferation by screening an RNAi library against DNA replication factors and identified multiple shRNAs against Replication Protein A, subunit 3 (RPA3). We generated transgenic mice with TRE-driven Rpa3 shRNAs whose expression enforced a reversible cell cycle arrest. In adult mice, the block in cell proliferation caused rapid atrophy of the intestinal epithelium which led to weight loss and lethality within 8–11 d of shRNA induction. Upon shRNA withdrawal, villus atrophy and weight loss were fully reversible. Thus, shRpa3 transgenic mice provide an interesting tool to study tissue maintenance and regeneration. Overall, we have established a robust system that serves the purpose of temperature-sensitive alleles in other model organisms, enabling inducible and reversible suppression of essential genes in a mammalian system. PMID:21482754

  14. Streamlined platform for short hairpin RNA interference and transgenesis in cultured mammalian cells.

    PubMed

    Khandelia, Piyush; Yap, Karen; Makeyev, Eugene V

    2011-08-01

    Sequence-specific gene silencing by short hairpin (sh) RNAs has recently emerged as an indispensable tool for understanding gene function and a promising avenue for drug discovery. However, a wider biomedical use of this approach is hindered by the lack of straightforward methods for achieving uniform expression of shRNAs in mammalian cell cultures. Here we report a high-efficiency and low-background (HILO) recombination-mediated cassette exchange (RMCE) technology that yields virtually homogeneous cell pools containing doxycycline-inducible shRNA elements in a matter of days and with minimal efforts. To ensure immediate utility of this approach for a wider research community, we modified 11 commonly used human (A549, HT1080, HEK293T, HeLa, HeLa-S3, and U2OS) and mouse (CAD, L929, N2a, NIH 3T3, and P19) cell lines to be compatible with the HILO-RMCE process. Because of its technical simplicity and cost efficiency, the technology will be advantageous for both low- and high-throughput shRNA experiments. We also provide evidence that HILO-RMCE will facilitate a wider range of molecular and cell biology applications by allowing one to rapidly engineer cell populations expressing essentially any transgene of interest. PMID:21768390

  15. Lipid Nanoparticle Delivery of siRNA to Osteocytes Leads to Effective Silencing of SOST and Inhibition of Sclerostin In Vivo.

    PubMed

    Basha, Genc; Ordobadi, Mina; Scott, Wilder R; Cottle, Andrew; Liu, Yan; Wang, Haitang; Cullis, Pieter R

    2016-01-01

    Sclerostin is a protein secreted by osteocytes that is encoded by the SOST gene; it decreases bone formation by reducing osteoblast differentiation through inhibition of the Wnt signaling pathway. Silencing the SOST gene using RNA interference (RNAi) could therefore be an effective way to treat osteoporosis. Here, we investigate the utility of lipid nanoparticle (LNP) formulations of siRNA to silence the SOST gene in vitro and in vivo. It is shown that primary mouse embryonic fibroblasts (MEF) provide a useful model system in which the SOST gene can be induced by incubation in osteogenic media, allowing development of optimized SOST siRNA for silencing the SOST gene. Incubation of MEF cells with LNP containing optimized SOST siRNA produced significant, prolonged knockdown of the induced SOST gene in vitro, which was associated with an increase in osteogenic markers. Intravenous (i.v.) administration of LNP containing SOST siRNA to mice showed significant accumulation of LNP in osteocytes in compact bone, depletion of SOST mRNA and subsequent reduction of circulating sclerostin protein, establishing the potential utility for LNP siRNA systems to promote bone formation. PMID:27623445

  16. Lipid Nanoparticle Delivery of siRNA to Osteocytes Leads to Effective Silencing of SOST and Inhibition of Sclerostin In Vivo

    PubMed Central

    Basha, Genc; Ordobadi, Mina; Scott, Wilder R; Cottle, Andrew; Liu, Yan; Wang, Haitang; Cullis, Pieter R

    2016-01-01

    Sclerostin is a protein secreted by osteocytes that is encoded by the SOST gene; it decreases bone formation by reducing osteoblast differentiation through inhibition of the Wnt signaling pathway. Silencing the SOST gene using RNA interference (RNAi) could therefore be an effective way to treat osteoporosis. Here, we investigate the utility of lipid nanoparticle (LNP) formulations of siRNA to silence the SOST gene in vitro and in vivo. It is shown that primary mouse embryonic fibroblasts (MEF) provide a useful model system in which the SOST gene can be induced by incubation in osteogenic media, allowing development of optimized SOST siRNA for silencing the SOST gene. Incubation of MEF cells with LNP containing optimized SOST siRNA produced significant, prolonged knockdown of the induced SOST gene in vitro, which was associated with an increase in osteogenic markers. Intravenous (i.v.) administration of LNP containing SOST siRNA to mice showed significant accumulation of LNP in osteocytes in compact bone, depletion of SOST mRNA and subsequent reduction of circulating sclerostin protein, establishing the potential utility for LNP siRNA systems to promote bone formation. PMID:27623445

  17. Use of recombinant tobacco mosaic virus to achieve RNA interference in plants against the citrus mealybug, Planococcus citri (Hemiptera: Pseudococcidae).

    PubMed

    Khan, Arif Muhammad; Ashfaq, Muhammad; Kiss, Zsofia; Khan, Azhar Abbas; Mansoor, Shahid; Falk, Bryce W

    2013-01-01

    The citrus mealybug, Planococcus citri, is an important plant pest with a very broad plant host range. P. citri is a phloem feeder and loss of plant vigor and stunting are characteristic symptoms induced on a range of host plants, but P. citri also reduces fruit quality and causes fruit drop leading to significant yield reductions. Better strategies for managing this pest are greatly needed. RNA interference (RNAi) is an emerging tool for functional genomics studies and is being investigated as a practical tool for highly targeted insect control. Here we investigated whether RNAi effects can be induced in P. citri and whether candidate mRNAs could be identified as possible targets for RNAi-based P. citri control. RNAi effects were induced in P. citri, as demonstrated by specific target reductions of P. citri actin, chitin synthase 1 and V-ATPase mRNAs after injection of the corresponding specific double-stranded RNA inducers. We also used recombinant Tobacco mosaic virus (TMV) to express these RNAi effectors in Nicotiana benthamiana plants. We found that P. citri showed lower fecundity and pronounced death of crawlers after feeding on recombinant TMV-infected plants. Taken together, our data show that actin, chitin synthase 1 and V-ATPase mRNAs are potential targets for RNAi against P. citri, and that recombinant TMV is an effective tool for evaluating candidate RNAi effectors in plants.

  18. Interference with glycosylation of glycoproteins. Inhibition of formation of lipid-linked oligosaccharides in vivo.

    PubMed Central

    Datema, R; Schwarz, R T

    1979-01-01

    Influenza-virus-infected cells were labelled with radioactive sugars and extracted to give fractions containing lipid-linked oligosaccharides and glycoproteins. The oligosaccharides linked to lipid were of the 'high-mannose' type and contained glucose. In the glycoprotein fraction, radioactivity was associated with virus proteins and found to occur predominantly in the 'high-mannose' type of glycopeptides. In the presence of the inhibitors 2-deoxy-D-glucose, 2-deoxy-2-amino-D-glucose (glucosamine), 2-deoxy-2-fluoro-D-glucose and 2-deoxy-2-fluoro-D-mannose incorporation of radiolabelled sugars into lipid- and protein-linked oligosaccharides was decreased. Kinetic analysis showed that the inhibitors affected first the assembly of lipid-linked oligosaccharides and then protein glycosylation after a lag period. During inhibition by deoxyglucose and the fluoro sugars lipid-linked oligosaccharides were formed that contained oligosaccharides of decreased molecular weight. No such aberrant forms were found during inhibition by glucosamine. In the case of inhibition by deoxyglucose it was shown that the aberrant oligosaccharides were not transferred to protein. Inhibition of formation of lipid-linked oligosaccharides by deoxyglucose and fluoro sugars was antagonized by mannose, in which case oligosaccharides of normal molecular weight were formed. The inhibition by glucosamine was reversed by its removal from the medium. The reversible effects of these inhibitors exemplify their usefulness as tools in the study of glycosylation processes. PMID:534512

  19. Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome.

    PubMed

    Van den Bossche, An; Hardwick, Steven W; Ceyssens, Pieter-Jan; Hendrix, Hanne; Voet, Marleen; Dendooven, Tom; Bandyra, Katarzyna J; De Maeyer, Marc; Aertsen, Abram; Noben, Jean-Paul; Luisi, Ben F; Lavigne, Rob

    2016-01-01

    In all domains of life, the catalysed degradation of RNA facilitates rapid adaptation to changing environmental conditions, while destruction of foreign RNA is an important mechanism to prevent host infection. We have identified a virus-encoded protein termed gp37/Dip, which directly binds and inhibits the RNA degradation machinery of its bacterial host. Encoded by giant phage фKZ, this protein associates with two RNA binding sites of the RNase E component of the Pseudomonas aeruginosa RNA degradosome, occluding them from substrates and resulting in effective inhibition of RNA degradation and processing. The 2.2 Å crystal structure reveals that this novel homo-dimeric protein has no identifiable structural homologues. Our biochemical data indicate that acidic patches on the convex outer surface bind RNase E. Through the activity of Dip, фKZ has evolved a unique mechanism to down regulate a key metabolic process of its host to allow accumulation of viral RNA in infected cells. PMID:27447594

  20. Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome

    PubMed Central

    Van den Bossche, An; Hardwick, Steven W; Ceyssens, Pieter-Jan; Hendrix, Hanne; Voet, Marleen; Dendooven, Tom; Bandyra, Katarzyna J; De Maeyer, Marc; Aertsen, Abram; Noben, Jean-Paul

    2016-01-01

    In all domains of life, the catalysed degradation of RNA facilitates rapid adaptation to changing environmental conditions, while destruction of foreign RNA is an important mechanism to prevent host infection. We have identified a virus-encoded protein termed gp37/Dip, which directly binds and inhibits the RNA degradation machinery of its bacterial host. Encoded by giant phage фKZ, this protein associates with two RNA binding sites of the RNase E component of the Pseudomonas aeruginosa RNA degradosome, occluding them from substrates and resulting in effective inhibition of RNA degradation and processing. The 2.2 Å crystal structure reveals that this novel homo-dimeric protein has no identifiable structural homologues. Our biochemical data indicate that acidic patches on the convex outer surface bind RNase E. Through the activity of Dip, фKZ has evolved a unique mechanism to down regulate a key metabolic process of its host to allow accumulation of viral RNA in infected cells. DOI: http://dx.doi.org/10.7554/eLife.16413.001 PMID:27447594

  1. Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle

    NASA Astrophysics Data System (ADS)

    Lamoureux, François; Baud'Huin, Marc; Rodriguez Calleja, Lidia; Jacques, Camille; Berreur, Martine; Rédini, Françoise; Lecanda, Fernando; Bradner, James E.; Heymann, Dominique; Ory, Benjamin

    2014-03-01

    The vicious cycle established between bone-associated tumours and bone resorption is the central problem with therapeutic strategies against primary bone tumours and bone metastasis. Here we report data to support inhibition of BET bromodomain proteins as a promising therapeutic strategy that target simultaneously the three partners of the vicious cycle. Treatment with JQ1, a BET bromodomain inhibitor, reduces cell viability of osteosarcoma cells and inhibits osteoblastic differentiation both in vitro and in vivo. These effects are associated with transcriptional silencing of MYC and RUNX2, resulting from the depletion of BRD4 from their respective loci. Moreover, JQ1 also inhibits osteoclast differentiation by interfering with BRD4-dependent RANKL activation of NFATC1 transcription. Collectively, our data indicate that JQ1 is a potent inhibitor of osteoblast and osteoclast differentiation as well as bone tumour development.

  2. Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle.

    PubMed

    Lamoureux, François; Baud'huin, Marc; Rodriguez Calleja, Lidia; Jacques, Camille; Berreur, Martine; Rédini, Françoise; Lecanda, Fernando; Bradner, James E; Heymann, Dominique; Ory, Benjamin

    2014-01-01

    The vicious cycle established between bone-associated tumours and bone resorption is the central problem with therapeutic strategies against primary bone tumours and bone metastasis. Here we report data to support inhibition of BET bromodomain proteins as a promising therapeutic strategy that target simultaneously the three partners of the vicious cycle. Treatment with JQ1, a BET bromodomain inhibitor, reduces cell viability of osteosarcoma cells and inhibits osteoblastic differentiation both in vitro and in vivo. These effects are associated with transcriptional silencing of MYC and RUNX2, resulting from the depletion of BRD4 from their respective loci. Moreover, JQ1 also inhibits osteoclast differentiation by interfering with BRD4-dependent RANKL activation of NFATC1 transcription. Collectively, our data indicate that JQ1 is a potent inhibitor of osteoblast and osteoclast differentiation as well as bone tumour development. PMID:24646477

  3. Increasing the efficiency of homologous recombination vector-mediated end joining repair by inhibition of Lig4 gene using siRNA in sheep embryo fibroblasts.

    PubMed

    Wei, Wang; Yushuang, Wang; Lanlan, Huang; Zijian, Jian; Xinhua, Wang; Shouren, Liu; Wenhui, Pi

    2016-09-01

    In animal cells, inhibition of non-homologous end joining (NHEJ) pathway improves the efficiency of homologous recombination (HR)-mediated double-strand brakes (DSBs) repair. To improve the efficiency of HR in sheep embryo fibroblasts, the NHEJ key molecule DNA ligase 4 (Lig4) was suppressed by siRNA interference. Four pairs of siRNA targeting Lig4 were designed and chemically synthesized. These siRNA were electro-transferred into sheep embryo fibroblasts respectively. Compared with the control groups, two pairs of siRNA were identified to effectively inhibit the expression of sheep Lig4 gene by qRT-PCR and Western blotting. The plasmid rejoining assay was adopted for examining the efficiency of HR-mediated DSB repair. I-SceⅠ endonuclease linearized vector and siRNA were co-transfected into sheep embryo fibroblasts. Flow cytometry analysis of cells after transfection for 72 h showed that suppression of Lig4 using siRNAs increased the rejoining efficiency of HR vector by 3-4 times compared with the control groups. Therefore, e