Science.gov

Sample records for rna-binding protein conserved

  1. Conserved RNA-Binding Proteins Required for Dendrite Morphogenesis in Caenorhabditis elegans Sensory Neurons

    PubMed Central

    Antonacci, Simona; Forand, Daniel; Wolf, Margaret; Tyus, Courtney; Barney, Julia; Kellogg, Leah; Simon, Margo A.; Kerr, Genevieve; Wells, Kristen L.; Younes, Serena; Mortimer, Nathan T.; Olesnicky, Eugenia C.; Killian, Darrell J.

    2015-01-01

    The regulation of dendritic branching is critical for sensory reception, cell−cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans. PMID:25673135

  2. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins

    PubMed Central

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins. PMID:26439842

  3. Evolutionary Conservation and Diversification of Puf RNA Binding Proteins and Their mRNA Targets.

    PubMed

    Hogan, Gregory J; Brown, Patrick O; Herschlag, Daniel

    2015-01-01

    Reprogramming of a gene's expression pattern by acquisition and loss of sequences recognized by specific regulatory RNA binding proteins may be a major mechanism in the evolution of biological regulatory programs. We identified that RNA targets of Puf3 orthologs have been conserved over 100-500 million years of evolution in five eukaryotic lineages. Focusing on Puf proteins and their targets across 80 fungi, we constructed a parsimonious model for their evolutionary history. This model entails extensive and coordinated changes in the Puf targets as well as changes in the number of Puf genes and alterations of RNA binding specificity including that: 1) Binding of Puf3 to more than 200 RNAs whose protein products are predominantly involved in the production and organization of mitochondrial complexes predates the origin of budding yeasts and filamentous fungi and was maintained for 500 million years, throughout the evolution of budding yeast. 2) In filamentous fungi, remarkably, more than 150 of the ancestral Puf3 targets were gained by Puf4, with one lineage maintaining both Puf3 and Puf4 as regulators and a sister lineage losing Puf3 as a regulator of these RNAs. The decrease in gene expression of these mRNAs upon deletion of Puf4 in filamentous fungi (N. crassa) in contrast to the increase upon Puf3 deletion in budding yeast (S. cerevisiae) suggests that the output of the RNA regulatory network is different with Puf4 in filamentous fungi than with Puf3 in budding yeast. 3) The coregulated Puf4 target set in filamentous fungi expanded to include mitochondrial genes involved in the tricarboxylic acid (TCA) cycle and other nuclear-encoded RNAs with mitochondrial function not bound by Puf3 in budding yeast, observations that provide additional evidence for substantial rewiring of post-transcriptional regulation. 4) Puf3 also expanded and diversified its targets in filamentous fungi, gaining interactions with the mRNAs encoding the mitochondrial electron transport

  4. Evolutionary Conservation and Diversification of Puf RNA Binding Proteins and Their mRNA Targets

    PubMed Central

    Hogan, Gregory J.; Brown, Patrick O.; Herschlag, Daniel

    2015-01-01

    Reprogramming of a gene’s expression pattern by acquisition and loss of sequences recognized by specific regulatory RNA binding proteins may be a major mechanism in the evolution of biological regulatory programs. We identified that RNA targets of Puf3 orthologs have been conserved over 100–500 million years of evolution in five eukaryotic lineages. Focusing on Puf proteins and their targets across 80 fungi, we constructed a parsimonious model for their evolutionary history. This model entails extensive and coordinated changes in the Puf targets as well as changes in the number of Puf genes and alterations of RNA binding specificity including that: 1) Binding of Puf3 to more than 200 RNAs whose protein products are predominantly involved in the production and organization of mitochondrial complexes predates the origin of budding yeasts and filamentous fungi and was maintained for 500 million years, throughout the evolution of budding yeast. 2) In filamentous fungi, remarkably, more than 150 of the ancestral Puf3 targets were gained by Puf4, with one lineage maintaining both Puf3 and Puf4 as regulators and a sister lineage losing Puf3 as a regulator of these RNAs. The decrease in gene expression of these mRNAs upon deletion of Puf4 in filamentous fungi (N. crassa) in contrast to the increase upon Puf3 deletion in budding yeast (S. cerevisiae) suggests that the output of the RNA regulatory network is different with Puf4 in filamentous fungi than with Puf3 in budding yeast. 3) The coregulated Puf4 target set in filamentous fungi expanded to include mitochondrial genes involved in the tricarboxylic acid (TCA) cycle and other nuclear-encoded RNAs with mitochondrial function not bound by Puf3 in budding yeast, observations that provide additional evidence for substantial rewiring of post-transcriptional regulation. 4) Puf3 also expanded and diversified its targets in filamentous fungi, gaining interactions with the mRNAs encoding the mitochondrial electron transport

  5. The nucleolar RNA-binding protein B-36 is highly conserved among plants.

    PubMed

    Guiltinan, M J; Schelling, M E; Ehtesham, N Z; Thomas, J C; Christensen, M E

    1988-08-01

    The nucleolar protein B-36 is an RNA-associated protein which has a number of properties in common with pre-mRNA-binding proteins (hnRNP proteins). Like the hnRNP proteins, B-36 appears to be evolutionarily conserved among various eukaryotes (protists and several animal species). The conservation of B-36 throughout the plant kingdom has been investigated using a panel of nine monoclonal antibodies previously shown to recognize a minimum of four different epitopes in Physarum B-36, the protein used to generate the monoclonal antibodies. Two of the epitopes (I and III) are widely conserved in 34 kDa proteins (presumably B-36 homologues) from the various species tested (Chlamydomonas, moss, fern, oat, onion, carrot, and bean). Using immunofluorescence localization in moss and carrot protoplasts, the cross-reacting proteins were shown to be restricted to the nucleolus, further confirming their probable homology to B-36. Epitopes I and III are also unique to the B-36 homologues as demonstrated by the failure of any other bands to cross-react. Another epitope (IV) was specifically recognized in the plant B-36 homologues but exhibited greatly reduced affinity for the monoclonal antibody relative to Physarum B-36. The remaining epitope (II), unlike the others, exhibited variable conservation in the plant B-36 homologues and, in addition, was present in several other seemingly unrelated proteins. Finally, several of the plant species exhibited two cross-reacting variants at roughly the 34 kDa position and in at least one of these cases a single monoclonal antibody was able to distinguish between the two variants, a result indicating that the variants do have bona fide structural differences.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Evolutionary Conservation and Expression of Human RNA-Binding Proteins and Their Role in Human Genetic Disease

    PubMed Central

    Gerstberger, Stefanie; Hafner, Markus; Ascano, Manuel

    2014-01-01

    RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation (PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands of targets at many sites. The importance of RBPs is underscored by their dysregulation or mutations causing a variety of developmental and neurological diseases. This chapter globally discusses human RBPs and provides a brief introduction to their identification and RNA targets. We review RBPs based on common structural RNA-binding domains, study their evolutionary conservation and expression, and summarize disease associations of different RBP classes. PMID:25201102

  7. Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease.

    PubMed

    Gerstberger, Stefanie; Hafner, Markus; Ascano, Manuel; Tuschl, Thomas

    2014-01-01

    RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation (PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands of targets at many sites. The importance of RBPs is underscored by their dysregulation or mutations causing a variety of developmental and neurological diseases. This chapter globally discusses human RBPs and provides a brief introduction to their identification and RNA targets. We review RBPs based on common structural RNA-binding domains, study their evolutionary conservation and expression, and summarize disease associations of different RBP classes.

  8. RNA-binding proteins in eye development and disease: implication of conserved RNA granule components.

    PubMed

    Dash, Soma; Siddam, Archana D; Barnum, Carrie E; Janga, Sarath Chandra; Lachke, Salil A

    2016-07-01

    The molecular biology of metazoan eye development is an area of intense investigation. These efforts have led to the surprising recognition that although insect and vertebrate eyes have dramatically different structures, the orthologs or family members of several conserved transcription and signaling regulators such as Pax6, Six3, Prox1, and Bmp4 are commonly required for their development. In contrast, our understanding of posttranscriptional regulation in eye development and disease, particularly regarding the function of RNA-binding proteins (RBPs), is limited. We examine the present knowledge of RBPs in eye development in the insect model Drosophila as well as several vertebrate models such as fish, frog, chicken, and mouse. Interestingly, of the 42 RBPs that have been investigated for their expression or function in vertebrate eye development, 24 (~60%) are recognized in eukaryotic cells as components of RNA granules such as processing bodies, stress granules, or other specialized ribonucleoprotein (RNP) complexes. We discuss the distinct developmental and cellular events that may necessitate potential RBP/RNA granule-associated RNA regulon models to facilitate posttranscriptional control of gene expression in eye morphogenesis. In support of these hypotheses, three RBPs and RNP/RNA granule components Tdrd7, Caprin2, and Stau2 are linked to ocular developmental defects such as congenital cataract, Peters anomaly, and microphthalmia in human patients or animal models. We conclude by discussing the utility of interdisciplinary approaches such as the bioinformatics tool iSyTE (integrated Systems Tool for Eye gene discovery) to prioritize RBPs for deriving posttranscriptional regulatory networks in eye development and disease. WIREs RNA 2016, 7:527-557. doi: 10.1002/wrna.1355 For further resources related to this article, please visit the WIREs website. PMID:27133484

  9. FUS regulates genes coding for RNA-binding proteins in neurons by binding to their highly conserved introns

    PubMed Central

    Nakaya, Tadashi; Alexiou, Panagiotis; Maragkakis, Manolis; Chang, Alexandra; Mourelatos, Zissimos

    2013-01-01

    Dominant mutations and mislocalization or aggregation of Fused in Sarcoma (FUS), an RNA-binding protein (RBP), cause neuronal degeneration in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD), two incurable neurological diseases. However, the function of FUS in neurons is not well understood. To uncover the impact of FUS in the neuronal transcriptome, we used high-throughput sequencing of immunoprecipitated and cross-linked RNA (HITS–CLIP) of FUS in human brains and mouse neurons differentiated from embryonic stem cells, coupled with RNA-seq and FUS knockdowns. We report conserved neuronal RNA targets and networks that are regulated by FUS. We find that FUS regulates splicing of genes coding for RBPs by binding to their highly conserved introns. Our findings have important implications for understanding the impact of FUS in neurodegenerative diseases and suggest that perturbations of FUS can impact the neuronal transcriptome via perturbations of RBP transcripts. PMID:23389473

  10. Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process

    PubMed Central

    Kim, Joo Yeol; Kim, Won Yong; Kwak, Kyung Jin; Oh, Seung Han; Han, Yeon Soo; Kang, Hunseung

    2010-01-01

    Contrary to the increasing amount of knowledge regarding the functional roles of glycine-rich RNA-binding proteins (GRPs) in Arabidopsis thaliana in stress responses, the physiological functions of GRPs in rice (Oryza sativa) currently remain largely unknown. In this study, the functional roles of six OsGRPs from rice on the growth of E. coli and plants under cold or freezing stress conditions have been evaluated. Among the six OsGRPs investigated, OsGRP1, OsGRP4, and OsGRP6 were shown to have the ability to complement cold-sensitive BX04 E. coli mutant cells under low temperature conditions, and this complementation ability was correlated closely with their DNA- and RNA-melting abilities. Moreover, OsGRP1 and OsGRP4 rescued the growth-defect of a cold-sensitive Arabidopsis grp7 mutant plant under cold and freezing stress, and OsGRP6 conferred freezing tolerance in the grp7 mutant plant, in which the expression of AtGRP7 was suppressed and is sensitive to cold and freezing stresses. OsGRP4 and OsGRP6 complemented the defect in mRNA export from the nucleus to the cytoplasm in grp7 mutants during cold stress. Considering that AtGRP7 confers freezing tolerance in plants and harbours RNA chaperone activity during the cold adaptation process, the results of the present study provide evidence that GRPs in rice and Arabidopsis are functionally conserved, and also suggest that GRPs perform a function as RNA chaperones during the cold adaptation process in monocotyledonous plants, as well as in dicotyledonous plants. PMID:20231330

  11. Conserved Surface Features Form the Double-stranded RNA Binding Site of Non-structural Protein 1 (NS1) from Influenza A and B Viruses

    SciTech Connect

    Yin,C.; Khan, J.; Swapna, G.; Ertekin, A.; Krug, R.; Tong, L.; Montelione, G.

    2007-01-01

    Influenza A viruses cause a highly contagious respiratory disease in humans and are responsible for periodic widespread epidemics with high mortality rates. The influenza A virus NS1 protein (NS1A) plays a key role in countering host antiviral defense and in virulence. The 73-residue N-terminal domain of NS1A (NS1A-(1-73)) forms a symmetric homodimer with a unique six-helical chain fold. It binds canonical A-form double-stranded RNA (dsRNA). Mutational inactivation of this dsRNA binding activity of NS1A highly attenuates virus replication. Here, we have characterized the unique structural features of the dsRNA binding surface of NS1A-(1-73) using NMR methods and describe the 2.1-{angstrom} x-ray crystal structure of the corresponding dsRNA binding domain from human influenza B virus NS1B-(15-93). These results identify conserved dsRNA binding surfaces on both NS1A-(1-73) and NS1B-(15-93) that are very different from those indicated in earlier 'working models' of the complex between dsRNA and NS1A-(1-73). The combined NMR and crystallographic data reveal highly conserved surface tracks of basic and hydrophilic residues that interact with dsRNA. These tracks are structurally complementary to the polyphosphate backbone conformation of A-form dsRNA and run at an {approx}45{sup o} angle relative to the axes of helices {alpha}2/{alpha}2'. At the center of this dsRNA binding epitope, and common to NS1 proteins from influenza A and B viruses, is a deep pocket that includes both hydrophilic and hydrophobic amino acids. This pocket provides a target on the surface of the NS1 protein that is potentially suitable for the development of antiviral drugs targeting both influenza A and B viruses.

  12. SpoVG Is a Conserved RNA-Binding Protein That Regulates Listeria monocytogenes Lysozyme Resistance, Virulence, and Swarming Motility

    PubMed Central

    Burke, Thomas P.

    2016-01-01

    ABSTRACT In this study, we sought to characterize the targets of the abundant Listeria monocytogenes noncoding RNA Rli31, which is required for L. monocytogenes lysozyme resistance and pathogenesis. Whole-genome sequencing of lysozyme-resistant suppressor strains identified loss-of-expression mutations in the promoter of spoVG, and deletion of spoVG rescued lysozyme sensitivity and attenuation in vivo of the rli31 mutant. SpoVG was demonstrated to be an RNA-binding protein that interacted with Rli31 in vitro. The relationship between Rli31 and SpoVG is multifaceted, as both the spoVG-encoded protein and the spoVG 5′-untranslated region interacted with Rli31. In addition, we observed that spoVG-deficient bacteria were nonmotile in soft agar and suppressor mutations that restored swarming motility were identified in the gene encoding a major RNase in Gram-positive bacteria, RNase J1. Collectively, these findings suggest that SpoVG is similar to global posttranscriptional regulators, a class of RNA-binding proteins that interact with noncoding RNA, regulate genes in concert with RNases, and control pleiotropic aspects of bacterial physiology. PMID:27048798

  13. The chicken FMR1 gene is highly conserved with a CCT 5{prime} - untranslated repeat and encodes an RNA-binding protein

    SciTech Connect

    Price, D.K.; Zhang, F.; Ashley, C.T. Jr.; Warren, S.T.

    1996-01-01

    The transcriptional silencing of the human gene, fragile X metal retardation 1 (FMR1), is due to abnormal methylation in response to an expanded 5{prime}-untranslated CGG trinucleotide repeat and accounts for most cases of fragile X syndrome, a frequent inherited form of metal retardation. Although the encoded fragile X mental retardation protein (FMRP) is known to have properties of a RNA-binding protein, the precise function of FMRP remains to be elucidated. We report the cloning of the chicken homolog of FMR1 and show strong evolutionary conservation, with nucleotide and amino acid identities of 85 and 92%, respectively, between chicken and human. In place of the mammalian CGG trinucleotide repeat, a 99-nt tripartite repetitive element containing a CCT trinucleotide repeat flanked on both sides by dinucleotide repeats was identified. Blocks of highly conserved 3{prime}-untranslated sequence were also found. Within the coding region, two copies each of the highly conserved K homology motif and the Arg-Gly-Gly (RGG) box motif, both ribonucleotide particle family domains implicated in RNA binding, were identified. Chicken FMRP was found to bind RNA in vitro, and this activity correlated with the presence of the carboxy-terminal portion of the protein that includes the RGG motifs. 49 refs., 7 figs.

  14. Mutation of the conserved polyadenosine RNA binding protein, ZC3H14/dNab2, impairs neural function in Drosophila and humans

    PubMed Central

    Pak, ChangHui; Garshasbi, Masoud; Kahrizi, Kimia; Gross, Christina; Apponi, Luciano H.; Noto, John J.; Kelly, Seth M.; Leung, Sara W.; Tzschach, Andreas; Behjati, Farkhondeh; Abedini, Seyedeh Sedigheh; Mohseni, Marzieh; Jensen, Lars R.; Hu, Hao; Huang, Brenda; Stahley, Sara N.; Liu, Guanglu; Williams, Kathryn R.; Burdick, Sharon; Feng, Yue; Sanyal, Subhabrata; Bassell, Gary J.; Ropers, Hans-Hilger; Najmabadi, Hossein; Corbett, Anita H.; Moberg, Kenneth H.; Kuss, Andreas W.

    2011-01-01

    Here we report a human intellectual disability disease locus on chromosome 14q31.3 corresponding to mutation of the ZC3H14 gene that encodes a conserved polyadenosine RNA binding protein. We identify ZC3H14 mRNA transcripts in the human central nervous system, and we find that rodent ZC3H14 protein is expressed in hippocampal neurons and colocalizes with poly(A) RNA in neuronal cell bodies. A Drosophila melanogaster model of this disease created by mutation of the gene encoding the ZC3H14 ortholog dNab2, which also binds polyadenosine RNA, reveals that dNab2 is essential for development and required in neurons for normal locomotion and flight. Biochemical and genetic data indicate that dNab2 restricts bulk poly(A) tail length in vivo, suggesting that this function may underlie its role in development and disease. These studies reveal a conserved requirement for ZC3H14/dNab2 in the metazoan nervous system and identify a poly(A) RNA binding protein associated with a human brain disorder. PMID:21734151

  15. Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5.

    PubMed

    Nuñez, Illyce; Rodriguez Pino, Marbelys; Wiley, David J; Das, Maitreyi E; Chen, Chuan; Goshima, Tetsuya; Kume, Kazunori; Hirata, Dai; Toda, Takashi; Verde, Fulvia

    2016-01-01

    RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis. PMID:27474797

  16. Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5

    PubMed Central

    Nuñez, Illyce; Rodriguez Pino, Marbelys; Wiley, David J; Das, Maitreyi E; Chen, Chuan; Goshima, Tetsuya; Kume, Kazunori; Hirata, Dai; Toda, Takashi; Verde, Fulvia

    2016-01-01

    RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis. DOI: http://dx.doi.org/10.7554/eLife.14216.001 PMID:27474797

  17. Functional Equivalence of an Evolutionarily Conserved RNA Binding Module*

    PubMed Central

    Wells, Melissa L.; Hicks, Stephanie N.; Perera, Lalith; Blackshear, Perry J.

    2015-01-01

    Members of the tristetraprolin (TTP) family of proteins participate in the regulation of mRNA turnover after initially binding to AU-rich elements in target mRNAs. Related proteins from most groups of eukaryotes contain a conserved tandem zinc finger (TZF) domain consisting of two closely spaced, similar CCCH zinc fingers that form the primary RNA binding domain. There is considerable sequence variation within the TZF domains from different family members within a single organism and from different organisms, raising questions about sequence-specific effects on RNA binding and decay promotion. We hypothesized that TZF domains from evolutionarily distant species are functionally interchangeable. The single family member expressed in the fission yeast Schizosaccharomyces pombe, Zfs1, promotes the turnover of several dozen transcripts, some of which are involved in cell-cell interactions. Using knockin techniques, we replaced the TZF domain of S. pombe Zfs1 with the equivalent domains from human TTP and the single family member proteins expressed in the silkworm Bombyx mori, the pathogenic yeast Candida guilliermondii, and the plant Chromolaena odorata. We found that the TZF domains from these widely disparate species could completely substitute for the native S. pombe TZF domain, as determined by measurement of target transcript levels and the flocculation phenotype characteristic of Zfs1 deletion. Recombinant TZF domain peptides from several of these species bound to an AU-rich RNA oligonucleotide with comparably high affinity. We conclude that the TZF domains from TTP family members in these evolutionarily widely divergent species are functionally interchangeable in mRNA binding and decay. PMID:26292216

  18. Functional equivalence of an evolutionarily conserved RNA binding module.

    PubMed

    Wells, Melissa L; Hicks, Stephanie N; Perera, Lalith; Blackshear, Perry J

    2015-10-01

    Members of the tristetraprolin (TTP) family of proteins participate in the regulation of mRNA turnover after initially binding to AU-rich elements in target mRNAs. Related proteins from most groups of eukaryotes contain a conserved tandem zinc finger (TZF) domain consisting of two closely spaced, similar CCCH zinc fingers that form the primary RNA binding domain. There is considerable sequence variation within the TZF domains from different family members within a single organism and from different organisms, raising questions about sequence-specific effects on RNA binding and decay promotion. We hypothesized that TZF domains from evolutionarily distant species are functionally interchangeable. The single family member expressed in the fission yeast Schizosaccharomyces pombe, Zfs1, promotes the turnover of several dozen transcripts, some of which are involved in cell-cell interactions. Using knockin techniques, we replaced the TZF domain of S. pombe Zfs1 with the equivalent domains from human TTP and the single family member proteins expressed in the silkworm Bombyx mori, the pathogenic yeast Candida guilliermondii, and the plant Chromolaena odorata. We found that the TZF domains from these widely disparate species could completely substitute for the native S. pombe TZF domain, as determined by measurement of target transcript levels and the flocculation phenotype characteristic of Zfs1 deletion. Recombinant TZF domain peptides from several of these species bound to an AU-rich RNA oligonucleotide with comparably high affinity. We conclude that the TZF domains from TTP family members in these evolutionarily widely divergent species are functionally interchangeable in mRNA binding and decay.

  19. Functional equivalence of an evolutionarily conserved RNA binding module.

    PubMed

    Wells, Melissa L; Hicks, Stephanie N; Perera, Lalith; Blackshear, Perry J

    2015-10-01

    Members of the tristetraprolin (TTP) family of proteins participate in the regulation of mRNA turnover after initially binding to AU-rich elements in target mRNAs. Related proteins from most groups of eukaryotes contain a conserved tandem zinc finger (TZF) domain consisting of two closely spaced, similar CCCH zinc fingers that form the primary RNA binding domain. There is considerable sequence variation within the TZF domains from different family members within a single organism and from different organisms, raising questions about sequence-specific effects on RNA binding and decay promotion. We hypothesized that TZF domains from evolutionarily distant species are functionally interchangeable. The single family member expressed in the fission yeast Schizosaccharomyces pombe, Zfs1, promotes the turnover of several dozen transcripts, some of which are involved in cell-cell interactions. Using knockin techniques, we replaced the TZF domain of S. pombe Zfs1 with the equivalent domains from human TTP and the single family member proteins expressed in the silkworm Bombyx mori, the pathogenic yeast Candida guilliermondii, and the plant Chromolaena odorata. We found that the TZF domains from these widely disparate species could completely substitute for the native S. pombe TZF domain, as determined by measurement of target transcript levels and the flocculation phenotype characteristic of Zfs1 deletion. Recombinant TZF domain peptides from several of these species bound to an AU-rich RNA oligonucleotide with comparably high affinity. We conclude that the TZF domains from TTP family members in these evolutionarily widely divergent species are functionally interchangeable in mRNA binding and decay. PMID:26292216

  20. Regulation of Pluripotency by RNA Binding Proteins

    PubMed Central

    Ye, Julia; Blelloch, Robert

    2015-01-01

    Establishment, maintenance, and exit from pluripotency require precise coordination of a cell’s molecular machinery. Substantial headway has been made in deciphering many aspects of this elaborate system, particularly with respect to epigenetics, transcription, and noncoding RNAs. Less attention has been paid to posttranscriptional regulatory processes such as alternative splicing, RNA processing and modification, nuclear export, regulation of transcript stability, and translation. Here, we introduce the RNA binding proteins that enable the posttranscriptional regulation of gene expression, summarizing current and ongoing research on their roles at different regulatory points and discussing how they help script the fate of pluripotent stem cells. PMID:25192462

  1. Roles for RNA-binding proteins in development and disease.

    PubMed

    Brinegar, Amy E; Cooper, Thomas A

    2016-09-15

    RNA-binding protein activities are highly regulated through protein levels, intracellular localization, and post-translation modifications. During development, mRNA processing of specific gene sets is regulated through manipulation of functional RNA-binding protein activities. The impact of altered RNA-binding protein activities also affects human diseases in which there are either a gain-of-function or loss-of-function causes pathogenesis. We will discuss RNA-binding proteins and their normal developmental RNA metabolism and contrast how their function is disrupted in disease. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.

  2. Systematic discovery of Xist RNA binding proteins.

    PubMed

    Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A; Bharadwaj, Maheetha; Calabrese, J Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y

    2015-04-01

    Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA-protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3' RNA processing machinery. Xist, an essential lncRNA for X chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK, which participates in Xist-mediated gene silencing and histone modifications but not Xist localization, and Drosophila Split ends homolog Spen, which interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing.

  3. Systematic discovery of Xist RNA binding proteins

    PubMed Central

    Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A.; Bharadwaj, Maheetha; Calabrese, J. Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y.

    2015-01-01

    Summary Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA- protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3′ RNA processing machinery. Xist, an essential lncRNA for X-chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK that participates in Xist-mediated gene silencing and histone modifications, but not Xist localization and Drosophila Split ends homolog Spen that interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing. PMID:25843628

  4. Hyper conserved elements in vertebrate mRNA 3′-UTRs reveal a translational network of RNA-binding proteins controlled by HuR

    PubMed Central

    Dassi, Erik; Zuccotti, Paola; Leo, Sara; Provenzani, Alessandro; Assfalg, Michael; D’Onofrio, Mariapina; Riva, Paola; Quattrone, Alessandro

    2013-01-01

    Little is known regarding the post-transcriptional networks that control gene expression in eukaryotes. Additionally, we still need to understand how these networks evolve, and the relative role played in them by their sequence-dependent regulatory factors, non-coding RNAs (ncRNAs) and RNA-binding proteins (RBPs). Here, we used an approach that relied on both phylogenetic sequence sharing and conservation in the whole mapped 3′-untranslated regions (3′-UTRs) of vertebrate species to gain knowledge on core post-transcriptional networks. The identified human hyper conserved elements (HCEs) were predicted to be preferred binding sites for RBPs and not for ncRNAs, namely microRNAs and long ncRNAs. We found that the HCE map identified a well-known network that post-transcriptionally regulates histone mRNAs. We were then able to discover and experimentally confirm a translational network composed of RNA Recognition Motif (RRM)-type RBP mRNAs that are positively controlled by HuR, another RRM-type RBP. HuR shows a preference for these RBP mRNAs bound in stem–loop motifs, confirming its role as a ‘regulator of regulators’. Analysis of the transcriptome-wide HCE distribution revealed a profile of prevalently small clusters separated by unconserved intercluster RNA stretches, which predicts the formation of discrete small ribonucleoprotein complexes in the 3′-UTRs. PMID:23376935

  5. PRBP: Prediction of RNA-Binding Proteins Using a Random Forest Algorithm Combined with an RNA-Binding Residue Predictor.

    PubMed

    Ma, Xin; Guo, Jing; Xiao, Ke; Sun, Xiao

    2015-01-01

    The prediction of RNA-binding proteins is an incredibly challenging problem in computational biology. Although great progress has been made using various machine learning approaches with numerous features, the problem is still far from being solved. In this study, we attempt to predict RNA-binding proteins directly from amino acid sequences. A novel approach, PRBP predicts RNA-binding proteins using the information of predicted RNA-binding residues in conjunction with a random forest based method. For a given protein, we first predict its RNA-binding residues and then judge whether the protein binds RNA or not based on information from that prediction. If the protein cannot be identified by the information associated with its predicted RNA-binding residues, then a novel random forest predictor is used to determine if the query protein is a RNA-binding protein. We incorporated features of evolutionary information combined with physicochemical features (EIPP) and amino acid composition feature to establish the random forest predictor. Feature analysis showed that EIPP contributed the most to the prediction of RNA-binding proteins. The results also showed that the information from the RNA-binding residue prediction improved the overall performance of our RNA-binding protein prediction. It is anticipated that the PRBP method will become a useful tool for identifying RNA-binding proteins. A PRBP Web server implementation is freely available at http://www.cbi.seu.edu.cn/PRBP/.

  6. Alternative polyadenylation and RNA-binding proteins.

    PubMed

    Erson-Bensan, Ayse Elif

    2016-08-01

    Our understanding of the extent of microRNA-based gene regulation has expanded in an impressive pace over the past decade. Now, we are beginning to better appreciate the role of 3'-UTR (untranslated region) cis-elements which harbor not only microRNA but also RNA-binding protein (RBP) binding sites that have significant effect on the stability and translational rate of mRNAs. To add further complexity, alternative polyadenylation (APA) emerges as a widespread mechanism to regulate gene expression by producing shorter or longer mRNA isoforms that differ in the length of their 3'-UTRs or even coding sequences. Resulting shorter mRNA isoforms generally lack cis-elements where trans-acting factors bind, and hence are differentially regulated compared with the longer isoforms. This review focuses on the RBPs involved in APA regulation and their action mechanisms on APA-generated isoforms. A better understanding of the complex interactions between APA and RBPs is promising for mechanistic and clinical implications including biomarker discovery and new therapeutic approaches. PMID:27208003

  7. Conservation of functional domains involved in RNA binding and protein-protein interactions in human and Saccharomyces cerevisiae pre-mRNA splicing factor SF1.

    PubMed

    Rain, J C; Rafi, Z; Rhani, Z; Legrain, P; Krämer, A

    1998-05-01

    The modular structure of splicing factor SF1 is conserved from yeast to man and SF1 acts at early stages of spliceosome assembly in both organisms. The hnRNP K homology (KH) domain of human (h) SF1 is the major determinant for RNA binding and is essential for the activity of hSF1 in spliceosome assembly, supporting the view that binding of SF1 to RNA is essential for its function. Sequences N-terminal to the KH domain mediate the interaction between hSF1 and U2AF65, which binds to the polypyrimidine tract upstream of the 3' splice site. Moreover, yeast (y) SF1 interacts with Mud2p, the presumptive U2AF65 homologue in yeast, and the interaction domain is conserved in ySF1. The C-terminal degenerate RRMs in U2AF65 and Mud2p mediate the association with hSF1 and ySF1, respectively. Analysis of chimeric constructs of hSF1 and ySF indicates that the KH domain may serve a similar function in both systems, whereas sequences C-terminal to the KH domain are not exchangeable. Thus, these results argue for hSF1 and ySF1, as well as U2AF65 and Mud2p, being functional homologues.

  8. Guardian of Genetic Messenger-RNA-Binding Proteins

    PubMed Central

    Anji, Antje; Kumari, Meena

    2016-01-01

    RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins. PMID:26751491

  9. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    PubMed

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein. PMID:24878641

  10. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    PubMed

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.

  11. RNA binding proteins in neurodegeneration: Seq and you shall receive

    PubMed Central

    Nussbacher, Julia K.; Batra, Ranjan; Lagier-Tourenne, Clotilde; Yeo, Gene W.

    2015-01-01

    As critical players in gene regulation, RNA binding proteins are taking center stage in our understanding of cellular function and disease. In our era of bench-top sequencers and unprecedented computational power, biological questions can be addressed in a systematic, genome-wide manner. Development of high-throughput sequencing methodologies provides unparalleled potential to discover new mechanisms of disease-associated perturbations of RNA homeostasis. Complementary to candidate single-gene studies, these innovative technologies may elicit the discovery of unexpected mechanisms, and allow us to determine the widespread influence of the multifunctional RNA binding proteins on their targets. As disruption of RNA processing is increasingly implicated in neurological diseases, these approaches will continue to provide insights into the roles of RNA binding proteins in disease pathogenesis. PMID:25765321

  12. The RNA-binding protein repertoire of Arabidopsis thaliana

    PubMed Central

    Marondedze, Claudius; Thomas, Ludivine; Serrano, Natalia L.; Lilley, Kathryn S.; Gehring, Chris

    2016-01-01

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses. PMID:27405932

  13. Computational Prediction of RNA-Binding Proteins and Binding Sites.

    PubMed

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%-8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein-RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein-RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  14. General RNA binding proteins render translation cap dependent.

    PubMed Central

    Svitkin, Y V; Ovchinnikov, L P; Dreyfuss, G; Sonenberg, N

    1996-01-01

    Translation in rabbit reticulocyte lysate is relatively independent of the presence of the mRNA m7G cap structure and the cap binding protein, eIF-4E. In addition, initiation occurs frequently at spurious internal sites. Here we show that a critical parameter which contributes to cap-dependent translation is the amount of general RNA binding proteins in the extract. Addition of several general RNA binding proteins, such as hnRNP A1, La autoantigen, pyrimidine tract binding protein (hnRNP I/PTB) and the major core protein of cytoplasmic mRNP (p50), rendered translation in a rabbit reticulocyte lysate cap dependent. These proteins drastically inhibited the translation of an uncapped mRNA, but had no effect on translation of a capped mRNA. Based on these and other results, we suggest that one function of general mRNA binding proteins in the cytoplasm is to promote ribosome binding by a 5' end, cap-mediated mechanism, and prevent spurious initiations at aberrant translation start sites. Images PMID:9003790

  15. Crystal structure of the RNA binding ribosomal protein L1 from Thermus thermophilus.

    PubMed Central

    Nikonov, S; Nevskaya, N; Eliseikina, I; Fomenkova, N; Nikulin, A; Ossina, N; Garber, M; Jonsson, B H; Briand, C; Al-Karadaghi, S; Svensson, A; Aevarsson, A; Liljas, A

    1996-01-01

    L1 has a dual function as a ribosomal protein binding rRNA and as a translational repressor binding mRNA. The crystal structure of L1 from Thermus thermophilus has been determined at 1.85 angstroms resolution. The protein is composed of two domains with the N- and C-termini in domain I. The eight N-terminal residues are very flexible, as the quality of electron density map shows. Proteolysis experiments have shown that the N-terminal tail is accessible and important for 23S rRNA binding. Most of the conserved amino acids are situated at the interface between the two domains. They probably form the specific RNA binding site of L1. Limited non-covalent contacts between the domains indicate an unstable domain interaction in the present conformation. Domain flexibility and RNA binding by induced fit seems plausible. Images PMID:8635468

  16. The anti-trp RNA-binding attenuation protein (Anti-TRAP), AT, recognizes the tryptophan-activated RNA binding domain of the TRAP regulatory protein.

    PubMed

    Valbuzzi, Angela; Gollnick, Paul; Babitzke, Paul; Yanofsky, Charles

    2002-03-22

    In Bacillus subtilis, the trp RNA-binding attenuation protein (TRAP) regulates expression of genes involved in tryptophan metabolism in response to the accumulation of l-tryptophan. Tryptophan-activated TRAP negatively regulates expression by binding to specific mRNA sequences and either promoting transcription termination or blocking translation initiation. Conversely, the accumulation of uncharged tRNA(Trp) induces synthesis of an anti-TRAP protein (AT), which forms a complex with TRAP and inhibits its activity. In this report, we investigate the structural features of TRAP required for AT recognition. A collection of TRAP mutant proteins was examined that were known to be partially or completely defective in tryptophan binding and/or RNA binding. Analyses of AT interactions with these proteins were performed using in vitro transcription termination assays and cross-linking experiments. We observed that TRAP mutant proteins that had lost the ability to bind RNA were no longer recognized by AT. Our findings suggest that AT acts by competing with messenger RNA for the RNA binding domain of TRAP. B. subtilis AT was also shown to interact with TRAP proteins from Bacillus halodurans and Bacillus stearothermophilus, implying that the structural elements required for AT recognition are conserved in the TRAP proteins of these species. Analyses of AT interaction with B. stearothermophilus TRAP at 60 degrees C demonstrated that AT is active at this elevated temperature. PMID:11786553

  17. Mammalian synthetic circuits with RNA binding proteins delivered by RNA

    PubMed Central

    Wroblewska, Liliana; Kitada, Tasuku; Endo, Kei; Siciliano, Velia; Stillo, Breanna; Saito, Hirohide; Weiss, Ron

    2015-01-01

    Synthetic regulatory circuits encoded on RNA rather than DNA could provide a means to control cell behavior while avoiding potentially harmful genomic integration in therapeutic applications. We create post-transcriptional circuits using RNA-binding proteins, which can be wired in a plug-and-play fashion to create networks of higher complexity. We show that the circuits function in mammalian cells when encoded on modified mRNA or self-replicating RNA. PMID:26237515

  18. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    PubMed

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  19. CAG trinucleotide RNA repeats interact with RNA-binding proteins.

    PubMed Central

    McLaughlin, B. A.; Spencer, C.; Eberwine, J.

    1996-01-01

    Genes associated with several neurological diseases are characterized by the presence of an abnormally long trinucleotide repeat sequence. By way of example, Huntington's disease (HD), is characterized by selective neuronal degeneration associated with the expansion of a polyglutamine-encoding CAG tract. Normally, this CAG tract is comprised of 11-34 repeats, but in HD it is expanded to > 37 repeats in affected individuals. The mechanism by which CAG repeats cause neuronal degeneration is unknown, but it has been speculated that the expansion primarily causes abnormal protein functioning, which in turn causes HD pathology. Other mechanisms, however, have not been ruled out. Interactions between RNA and RNA-binding proteins have previously been shown to play a role in the expression of several eukaryotic genes. Herein, we report the association of cytoplasmic proteins with normal length and extended CAG repeats, using gel shift and UV crosslinking assays. Cytoplasmic protein extracts from several rat brain regions, including the striatum and cortex, sites of neuronal degeneration in HD, contain a 63-kD RNA-binding protein that specifically interacts with these CAG-repeat sequences. These protein-RNA interactions are dependent on the length of the CAG repeat, with longer repeats binding substantially more protein. Two CAG repeat-binding proteins are present in human cortex and striatum; one comigrates with the rat protein at 63 kD, while the other migrates at 49 kD. These data suggest mechanisms by which RNA-binding proteins may be involved in the pathological course of trinucleotide repeat-associated neurological diseases. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8751857

  20. In vivo and in vitro arginine methylation of RNA-binding proteins.

    PubMed Central

    Liu, Q; Dreyfuss, G

    1995-01-01

    Heterogenous nuclear ribonucleoproteins (hnRNPs) bind pre-mRNAs and facilitate their processing into mRNAs. Many of the hnRNPs undergo extensive posttranslational modifications including methylation on arginine residues. hnRNPs contain about 65% of the total NG,NG-dimethylarginine found in the cell nucleus. The role of this modification is not known. Here we identify the hnRNPs that are methylated in HeLa cells and demonstrate that most of the pre-mRNA-binding proteins receive this modification. Using recombinant human hnRNP A1 as a substrate, we have partially purified and characterized a protein-arginine N-methyltransferase specific for hnRNPs from HeLa cells. This methyltransferase can methylate the same subset of hnRNPs in vitro as are methylated in vivo. Furthermore, it can also methylate other RNA-binding proteins that contain the RGG motif RNA-binding domain. This activity is evolutionarily conserved from lower eukaryotes to mammals, suggesting that methylation has a significant role in the function of RNA-binding proteins. PMID:7739561

  1. RNA-binding proteins in pluripotency, differentiation, and reprogramming

    PubMed Central

    GUALLAR, Diana; WANG, Jianlong

    2014-01-01

    Embryonic stem cell maintenance, differentiation, and somatic cell reprogramming require the interplay of multiple pluripotency factors, epigenetic remodelers, and extracellular signaling pathways. RNA-binding proteins (RBPs) are involved in a wide range of regulatory pathways, from RNA metabolism to epigenetic modifications. In recent years we have witnessed more and more studies on the discovery of new RBPs and the assessment of their functions in a variety of biological systems, including stem cells. We review the current studies on RBPs and focus on those that have functional implications in pluripotency, differentiation, and/or reprogramming in both the human and mouse systems. PMID:25554730

  2. Determinants of affinity and specificity in RNA-binding proteins.

    PubMed

    Helder, Stephanie; Blythe, Amanda J; Bond, Charles S; Mackay, Joel P

    2016-06-01

    Emerging data suggest that the mechanisms by which RNA-binding proteins (RBPs) interact with RNA and the rules governing specificity might be substantially more complex than those underlying their DNA-binding counterparts. Even our knowledge of what constitutes the RNA-bound proteome is contentious; recent studies suggest that 10-30% of RBPs contain no known RNA-binding domain. Adding to this situation is a growing disconnect between the avalanche of identified interactions between proteins and long noncoding RNAs and the absence of biophysical data on these interactions. RNA-protein interactions are also at the centre of what might emerge as one of the biggest shifts in thinking about cell and molecular biology this century, following from recent reports of ribonucleoprotein complexes that drive reversible membrane-free phase separation events within the cell. Unexpectedly, low-complexity motifs are important in the formation of these structures. Here we briefly survey recent advances in our understanding of the specificity of RBPs. PMID:27315040

  3. UPF201 Archaeal Specific Family Members Reveal Structural Similarity to RNA-Binding Proteins but Low Likelyhood for RNA-Binding Function

    SciTech Connect

    Rao, K.; Burley, S; Swaminathan, S

    2008-01-01

    We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54) to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10-40%) and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel {beta}-sheet and five {alpha}-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation.

  4. UPF201 Archaeal Specific Family Members Reveals Structural Similarity to RNA-Binding Proteins but Low Likelihood for RNA-Binding Function

    SciTech Connect

    Rao, K.N.; Swaminathan, S.; Burley, S. K.

    2008-12-11

    We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54) to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10-40%) and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel {beta}-sheet and five {alpha}-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation.

  5. Function of RNA-binding protein Musashi-1 in stem cells

    SciTech Connect

    Okano, Hideyuki . E-mail: hidokano@sc.itc.keio.ac.jp; Kawahara, Hironori; Toriya, Masako; Nakao, Keio; Shibata, Shinsuke; Imai, Takao

    2005-06-10

    Musashi is an evolutionarily conserved family of RNA-binding proteins that is preferentially expressed in the nervous system. The first member of the Musashi family was identified in Drosophila. This protein plays an essential role in regulating the asymmetric cell division of ectodermal precursor cells known as sensory organ precursor cells through the translational regulation of target mRNA. In the CNS of Drosophila larvae, however, Musashi is expressed in proliferating neuroblasts and likely has a different function. Its probable mammalian homologue, Musashi-1, is a neural RNA-binding protein that is strongly expressed in fetal and adult neural stem cells (NSCs). Mammalian Musashi-1 augments Notch signaling through the translational repression of its target mRNA, m-Numb, thereby contributing to the self-renewal of NSCs. In addition to its functions in NSCs, the role of mammalian Musashi-1 protein in epithelial stem cells, including intestinal and mammary gland stem cells, is attracting increasing interest.

  6. Finding the target sites of RNA-binding proteins

    PubMed Central

    Li, Xiao; Kazan, Hilal; Lipshitz, Howard D; Morris, Quaid D

    2014-01-01

    RNA–protein interactions differ from DNA–protein interactions because of the central role of RNA secondary structure. Some RNA-binding domains (RBDs) recognize their target sites mainly by their shape and geometry and others are sequence-specific but are sensitive to secondary structure context. A number of small- and large-scale experimental approaches have been developed to measure RNAs associated in vitro and in vivo with RNA-binding proteins (RBPs). Generalizing outside of the experimental conditions tested by these assays requires computational motif finding. Often RBP motif finding is done by adapting DNA motif finding methods; but modeling secondary structure context leads to better recovery of RBP-binding preferences. Genome-wide assessment of mRNA secondary structure has recently become possible, but these data must be combined with computational predictions of secondary structure before they add value in predicting in vivo binding. There are two main approaches to incorporating structural information into motif models: supplementing primary sequence motif models with preferred secondary structure contexts (e.g., MEMERIS and RNAcontext) and directly modeling secondary structure recognized by the RBP using stochastic context-free grammars (e.g., CMfinder and RNApromo). The former better reconstruct known binding preferences for sequence-specific RBPs but are not suitable for modeling RBPs that recognize shape and geometry of RNAs. Future work in RBP motif finding should incorporate interactions between multiple RBDs and multiple RBPs in binding to RNA. WIREs RNA 2014, 5:111–130. doi: 10.1002/wrna.1201 PMID:24217996

  7. RNA-binding proteins in plants: the tip of an iceberg?

    NASA Technical Reports Server (NTRS)

    Fedoroff, Nina V.; Federoff, N. V. (Principal Investigator)

    2002-01-01

    RNA-binding proteins, which are involved in the synthesis, processing, transport, translation, and degradation of RNA, are emerging as important, often multifunctional, cellular regulatory proteins. Although relatively few RNA-binding proteins have been studied in plants, they are being identified with increasing frequency, both genetically and biochemically. RNA-binding proteins that regulate chloroplast mRNA stability and translation in response to light and that have been elegantly analyzed in Clamydomonas reinhardtii have counterparts with similar functions in higher plants. Several recent reports describe mutations in genes encoding RNA-binding proteins that affect plant development and hormone signaling.

  8. RNA Binding Proteins in the miRNA Pathway

    PubMed Central

    Connerty, Patrick; Ahadi, Alireza; Hutvagner, Gyorgy

    2015-01-01

    microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets. PMID:26712751

  9. RNA Binding Proteins in the miRNA Pathway.

    PubMed

    Connerty, Patrick; Ahadi, Alireza; Hutvagner, Gyorgy

    2016-01-01

    microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets. PMID:26712751

  10. Phosphorylation of the RNA-binding protein Dazl by MAPKAP kinase 2 regulates spermatogenesis

    PubMed Central

    Williams, Patrick A.; Krug, Michael S.; McMillan, Emily A.; Peake, Jasmine D.; Davis, Tara L.; Cocklin, Simon; Strochlic, Todd I.

    2016-01-01

    Developing male germ cells are exquisitely sensitive to environmental insults such as heat and oxidative stress. An additional characteristic of these cells is their unique dependence on RNA-binding proteins for regulating posttranscriptional gene expression and translational control. Here we provide a mechanistic link unifying these two features. We show that the germ cell–specific RNA-binding protein deleted in azoospermia-like (Dazl) is phosphorylated by MAPKAP kinase 2 (MK2), a stress-induced protein kinase activated downstream of p38 MAPK. We demonstrate that phosphorylation of Dazl by MK2 on an evolutionarily conserved serine residue inhibits its interaction with poly(A)-binding protein, resulting in reduced translation of Dazl-regulated target RNAs. We further show that transgenic expression of wild-type human Dazl but not a phosphomimetic form in the Drosophila male germline can restore fertility to flies deficient in boule, the Drosophila orthologue of human Dazl. These results illuminate a novel role for MK2 in spermatogenesis, expand the repertoire of RNA-binding proteins phosphorylated by this kinase, and suggest that signaling by the p38-MK2 pathway is a negative regulator of spermatogenesis via phosphorylation of Dazl. PMID:27280388

  11. Insights into activation and RNA binding of trp RNA-binding attenuation protein (TRAP) through all-atom simulations.

    PubMed

    Murtola, Teemu; Vattulainen, Ilpo; Falck, Emma

    2008-06-01

    Tryptophan biosynthesis in Bacillus stearothermophilus is regulated by a trp RNA binding attenuation protein (TRAP). It is a ring-shaped 11-mer of identical 74 residue subunits. Tryptophan binding pockets are located between adjacent subunits, and tryptophan binding activates TRAP to bind RNA. Here, we report results from all-atom molecular dynamics simulations of the system, complementing existing extensive experimental studies. We focus on two questions. First, we look at the activation mechanism, of which relatively little is known experimentally. We find that the absence of tryptophan allows larger motions close to the tryptophan binding site, and we see indication of a conformational change in the BC loop. However, complete deactivation seems to occur on much longer time scales than the 40 ns studied here. Second, we study the TRAP-RNA interactions. We look at the relative flexibilities of the different bases in the complex and analyze the hydrogen bonds between the protein and RNA. We also study the role of Lys37, Lys56, and Arg58, which have been experimentally identified as essential for RNA binding. Hydrophobic stacking of Lys37 with the nearby RNA base is confirmed, but we do not see direct hydrogen bonding between RNA and the other two residues, in contrast to the crystal structure. Rather, these residues seem to stabilize the RNA-binding surface, and their positive charge may also play a role in RNA binding. Simulations also indicate that TRAP is able to attract RNA nonspecifically, and the interactions are quantified in more detail using binding energy calculations. The formation of the final binding complex is a very slow process: within the simulation time scale of 40 ns, only two guanine bases become bound (and no others), indicating that the binding initiates at these positions. In general, our results are in good agreement with experimental studies, and provide atomic-scale insights into the processes. PMID:18186477

  12. RNA binding proteins, neural development and the addictions

    PubMed Central

    Bryant, Camron D.; Yazdani, Neema

    2016-01-01

    Transcriptional and post-transcriptional regulation of gene expression defines the neurobiological mechanisms that bridge genetic and environmental risk factors with neurobehavioral dysfunction underlying the addictions. More than 1000 genes in the eukaryotic genome code for multifunctional RNA binding proteins (RBPs) that can regulate all levels of RNA biogenesis. More than 50% of these RBPs are expressed in the brain where they regulate alternative splicing, transport, localization, stability, and translation of RNAs during development and adulthood. RBP dysfunction can exert global effects on their targetomes that underlie neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease as well as neurodevelopmental disorders, including autism and schizophrenia. Here, we consider the evidence that RBPs influence key molecular targets, neurodevelopment, synaptic plasticity, and neurobehavioral dysfunction underlying the addictions. Increasingly well-powered genome-wide association studies in humans and mammalian model organisms combined with ever more precise transcriptomic and proteomic approaches will continue to uncover novel and possibly selective roles for RBPs in the addictions. Key challenges include identifying the biological functions of the dynamic RBP targetomes from specific cell types throughout subcellular space (e.g., the nuclear spliceome versus the synaptic translatome) and time and manipulating RBP programs through post-transcriptional modifications to prevent or reverse aberrant neurodevelopment and plasticity underlying the addictions. PMID:26643147

  13. RNA-binding proteins, neural development and the addictions.

    PubMed

    Bryant, C D; Yazdani, N

    2016-01-01

    Transcriptional and post-transcriptional regulation of gene expression defines the neurobiological mechanisms that bridge genetic and environmental risk factors with neurobehavioral dysfunction underlying the addictions. More than 1000 genes in the eukaryotic genome code for multifunctional RNA-binding proteins (RBPs) that can regulate all levels of RNA biogenesis. More than 50% of these RBPs are expressed in the brain where they regulate alternative splicing, transport, localization, stability and translation of RNAs during development and adulthood. Dysfunction of RBPs can exert global effects on their targetomes that underlie neurodegenerative disorders such as Alzheimer's and Parkinson's diseases as well as neurodevelopmental disorders, including autism and schizophrenia. Here, we consider the evidence that RBPs influence key molecular targets, neurodevelopment, synaptic plasticity and neurobehavioral dysfunction underlying the addictions. Increasingly well-powered genome-wide association studies in humans and mammalian model organisms combined with ever more precise transcriptomic and proteomic approaches will continue to uncover novel and possibly selective roles for RBPs in the addictions. Key challenges include identifying the biological functions of the dynamic RBP targetomes from specific cell types throughout subcellular space (e.g. the nuclear spliceome vs. the synaptic translatome) and time and manipulating RBP programs through post-transcriptional modifications to prevent or reverse aberrant neurodevelopment and plasticity underlying the addictions.

  14. Roles of RNA-Binding Proteins in DNA Damage Response.

    PubMed

    Kai, Mihoko

    2016-01-01

    Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR)), and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR) pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, "sensor" proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM)'s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ) pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP) with low complexity domains, called intrinsically disordered proteins (IDPs), and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs) in a poly(ADP-ribose) (PAR)-dependent manner (unpublished data). DNA-dependent PARP1 (poly-(ADP) ribose polymerase 1) makes key contributions in the DNA damage response (DDR) network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as "liquid-demixing"). Among the

  15. A plant viral coat protein RNA binding consensus sequence contains a crucial arginine.

    PubMed Central

    Ansel-McKinney, P; Scott, S W; Swanson, M; Ge, X; Gehrke, L

    1996-01-01

    A defining feature of alfalfa mosaic virus (AMV) and ilarviruses [type virus: tobacco streak virus (TSV)] is that, in addition to genomic RNAs, viral coat protein is required to establish infection in plants. AMV and TSV coat proteins, which share little primary amino acid sequence identity, are functionally interchangeable in RNA binding and initiation of infection. The lysine-rich amino-terminal RNA binding domain of the AMV coat protein lacks previously identified RNA binding motifs. Here, the AMV coat protein RNA binding domain is shown to contain a single arginine whose specific side chain and position are crucial for RNA binding. In addition, the putative RNA binding domain of two ilarvirus coat proteins, TSV and citrus variegation virus, is identified and also shown to contain a crucial arginine. AMV and ilarvirus coat protein sequence alignment centering on the key arginine revealed a new RNA binding consensus sequence. This consensus may explain in part why heterologous viral RNA-coat protein mixtures are infectious. Images PMID:8890181

  16. Structural delineation of stem-loop RNA binding by human TAF15 protein.

    PubMed

    Kashyap, Maruthi; Ganguly, Akshay Kumar; Bhavesh, Neel Sarovar

    2015-01-01

    Human TATA binding protein associated factor 2 N (TAF15) and Fused in sarcoma (FUS) are nucleic acid binding proteins belonging to the conserved FET family of proteins. They are involved in diverse processes such as pre-mRNA splicing, mRNA transport, and DNA binding. The absence of information regarding the structural mechanism employed by the FET family in recognizing and discriminating their cognate and non-cognate RNA targets has hampered the attainment of consensus on modes of protein-RNA binding for this family. Our study provides a molecular basis of this RNA recognition using a combination of solution-state NMR spectroscopy, calorimetry, docking and molecular dynamics simulation. Analysis of TAF15-RRM solution structure and its binding with stem-loop RNA has yielded conclusive evidence of a non-canonical mode of RNA recognition. Rather than classical stacking interactions that occur across nitrogen bases and aromatic amino acids on ribonucleoprotein sites, moderate-affinity hydrogen bonding network between the nitrogen bases in the stem-loop RNA and a concave face on the RRM surface primarily mediate TAF15-RRM RNA interaction. We have compared the binding affinities across a set of single-stranded RNA oligonucleotides to conclusively establish that RNA binding is dependent upon structural elements in the RNA rather than sequence. PMID:26612539

  17. Structural delineation of stem-loop RNA binding by human TAF15 protein

    PubMed Central

    Kashyap, Maruthi; Ganguly, Akshay Kumar; Bhavesh, Neel Sarovar

    2015-01-01

    Human TATA binding protein associated factor 2 N (TAF15) and Fused in sarcoma (FUS) are nucleic acid binding proteins belonging to the conserved FET family of proteins. They are involved in diverse processes such as pre-mRNA splicing, mRNA transport, and DNA binding. The absence of information regarding the structural mechanism employed by the FET family in recognizing and discriminating their cognate and non-cognate RNA targets has hampered the attainment of consensus on modes of protein-RNA binding for this family. Our study provides a molecular basis of this RNA recognition using a combination of solution-state NMR spectroscopy, calorimetry, docking and molecular dynamics simulation. Analysis of TAF15-RRM solution structure and its binding with stem-loop RNA has yielded conclusive evidence of a non-canonical mode of RNA recognition. Rather than classical stacking interactions that occur across nitrogen bases and aromatic amino acids on ribonucleoprotein sites, moderate-affinity hydrogen bonding network between the nitrogen bases in the stem-loop RNA and a concave face on the RRM surface primarily mediate TAF15-RRM RNA interaction. We have compared the binding affinities across a set of single-stranded RNA oligonucleotides to conclusively establish that RNA binding is dependent upon structural elements in the RNA rather than sequence. PMID:26612539

  18. Structural delineation of stem-loop RNA binding by human TAF15 protein.

    PubMed

    Kashyap, Maruthi; Ganguly, Akshay Kumar; Bhavesh, Neel Sarovar

    2015-11-27

    Human TATA binding protein associated factor 2 N (TAF15) and Fused in sarcoma (FUS) are nucleic acid binding proteins belonging to the conserved FET family of proteins. They are involved in diverse processes such as pre-mRNA splicing, mRNA transport, and DNA binding. The absence of information regarding the structural mechanism employed by the FET family in recognizing and discriminating their cognate and non-cognate RNA targets has hampered the attainment of consensus on modes of protein-RNA binding for this family. Our study provides a molecular basis of this RNA recognition using a combination of solution-state NMR spectroscopy, calorimetry, docking and molecular dynamics simulation. Analysis of TAF15-RRM solution structure and its binding with stem-loop RNA has yielded conclusive evidence of a non-canonical mode of RNA recognition. Rather than classical stacking interactions that occur across nitrogen bases and aromatic amino acids on ribonucleoprotein sites, moderate-affinity hydrogen bonding network between the nitrogen bases in the stem-loop RNA and a concave face on the RRM surface primarily mediate TAF15-RRM RNA interaction. We have compared the binding affinities across a set of single-stranded RNA oligonucleotides to conclusively establish that RNA binding is dependent upon structural elements in the RNA rather than sequence.

  19. Crystal structure of prokaryotic ribosomal protein L9: a bi-lobed RNA-binding protein.

    PubMed Central

    Hoffman, D W; Davies, C; Gerchman, S E; Kycia, J H; Porter, S J; White, S W; Ramakrishnan, V

    1994-01-01

    The crystal structure of protein L9 from the Bacillus stearothermophilus ribosome has been determined at 2.8 A resolution using X-ray diffraction methods. This primary RNA-binding protein has a highly elongated and unusual structure consisting of two separated domains joined by a long exposed alpha-helix. Conserved, positively charged and aromatic amino acids on the surfaces of both domains probably represent the sites of specific interactions with 23S rRNA. Comparisons with other prokaryotic L9 sequences show that while the length of the connecting alpha-helix is invariant, the sequence within the exposed central region is not conserved. This suggests that the alpha-helix has an architectural role and serves to fix the relative separation and orientation of the N- and C-terminal domains within the ribosome. The N-terminal domain has structural homology to the smaller ribosomal proteins L7/L12 and L30, and the eukaryotic RNA recognition motif (RRM). Images PMID:8306963

  20. Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility.

    PubMed

    Zhang, Tuo; Zhang, Hua; Chen, Ke; Ruan, Jishou; Shen, Shiyi; Kurgan, Lukasz

    2010-11-01

    Identification and prediction of RNA-binding residues (RBRs) provides valuable insights into the mechanisms of protein-RNA interactions. We analyzed the contributions of a wide range of factors including amino acid sequence, evolutionary conservation, secondary structure and solvent accessibility, to the prediction/characterization of RBRs. Five feature sets were designed and feature selection was performed to find and investigate relevant features. We demonstrate that (1) interactions with positively charged amino acids Arg and Lys are preferred by the egatively charged nucleotides; (2) Gly provides flexibility for the RNA binding sites; (3) Glu with negatively charged side chain and several hydrophobic residues such as Leu, Val, Ala and Phe are disfavored in the RNA-binding sites; (4) coil residues, especially in long segments, are more flexible (than other secondary structures) and more likely to interact with RNA; (5) helical residues are more rigid and consequently they are less likely to bind RNA; and (6) residues partially exposed to the solvent are more likely to form RNA-binding sites. We introduce a novel sequence-based predictor of RBRs, RBRpred, which utilizes the selected features. RBRpred is comprehensively tested on three datasets with varied atom distance cutoffs by performing both five-fold cross validation and jackknife tests and achieves Matthew's correlation coefficient (MCC) of 0.51, 0.48 and 0.42, respectively. The quality is comparable to or better than that for state-of-the-art predictors that apply the distancebased cutoff definition. We show that the most important factor for RBRs prediction is evolutionary conservation, followed by the amino acid sequence, predicted secondary structure and predicted solvent accessibility. We also investigate the impact of using native vs. predicted secondary structure and solvent accessibility. The predictions are sufficient for the RBR prediction and the knowledge of the actual solvent accessibility

  1. Metabolic Enzymes Enjoying New Partnerships as RNA-Binding Proteins.

    PubMed

    Castello, Alfredo; Hentze, Matthias W; Preiss, Thomas

    2015-12-01

    In the past century, few areas of biology advanced as much as our understanding of the pathways of intermediary metabolism. Initially considered unimportant in terms of gene regulation, crucial cellular fate changes, cell differentiation, or malignant transformation are now known to involve 'metabolic remodeling' with profound changes in the expression of many metabolic enzyme genes. This review focuses on the recent identification of RNA-binding activity of numerous metabolic enzymes. We discuss possible roles of this unexpected second activity in feedback gene regulation ('moonlighting') and/or in the control of enzymatic function. We also consider how metabolism-driven post-translational modifications could regulate enzyme-RNA interactions. Thus, RNA emerges as a new partner of metabolic enzymes with far-reaching possible consequences to be unraveled in the future.

  2. Metabolic Enzymes Enjoying New Partnerships as RNA-Binding Proteins

    PubMed Central

    Castello, Alfredo; Hentze, Matthias W.; Preiss, Thomas

    2015-01-01

    In the past century, few areas of biology advanced as much as our understanding of the pathways of intermediary metabolism. Initially considered unimportant in terms of gene regulation, crucial cellular fate changes, cell differentiation, or malignant transformation are now known to involve ‘metabolic remodeling’ with profound changes in the expression of many metabolic enzyme genes. This review focuses on the recent identification of RNA-binding activity of numerous metabolic enzymes. We discuss possible roles of this unexpected second activity in feedback gene regulation (‘moonlighting’) and/or in the control of enzymatic function. We also consider how metabolism-driven post-translational modifications could regulate enzyme–RNA interactions. Thus, RNA emerges as a new partner of metabolic enzymes with far-reaching possible consequences to be unraveled in the future. PMID:26520658

  3. Characterization of RNA-Protein Interactions: Lessons from Two RNA-Binding Proteins, SRSF1 and SRSF2.

    PubMed

    Skrdlant, Lindsey; Lin, Ren-Jang

    2016-01-01

    SR proteins are a class of RNA-binding proteins whose RNA-binding ability is required for both constitutive and alternative splicing. While members of the SR protein family were once thought to have redundant functions, in-depth biochemical analysis of their RNA-binding abilities has revealed distinct binding profiles for each SR protein, that often lead to either synergistic or antagonistic functions. SR protein family members SRSF1 and SRSF2 are two of the most highly studied RNA-binding proteins. Here we examine the various methods used to differentiate SRSF1 and SRSF2 RNA-binding ability. We discuss the benefits and type of information that can be determined using each method. PMID:26965252

  4. Characterization of RNA-Protein Interactions: Lessons from Two RNA-Binding Proteins, SRSF1 and SRSF2.

    PubMed

    Skrdlant, Lindsey; Lin, Ren-Jang

    2016-01-01

    SR proteins are a class of RNA-binding proteins whose RNA-binding ability is required for both constitutive and alternative splicing. While members of the SR protein family were once thought to have redundant functions, in-depth biochemical analysis of their RNA-binding abilities has revealed distinct binding profiles for each SR protein, that often lead to either synergistic or antagonistic functions. SR protein family members SRSF1 and SRSF2 are two of the most highly studied RNA-binding proteins. Here we examine the various methods used to differentiate SRSF1 and SRSF2 RNA-binding ability. We discuss the benefits and type of information that can be determined using each method.

  5. The RNA Binding Specificity of Human APOBEC3 Proteins Resembles That of HIV-1 Nucleocapsid.

    PubMed

    York, Ashley; Kutluay, Sebla B; Errando, Manel; Bieniasz, Paul D

    2016-08-01

    The APOBEC3 (A3) cytidine deaminases are antiretroviral proteins, whose targets include human immunodeficiency virus type-1 (HIV-1). Their incorporation into viral particles is critical for antiviral activity and is driven by interactions with the RNA molecules that are packaged into virions. However, it is unclear whether A3 proteins preferentially target RNA molecules that are destined to be packaged and if so, how. Using cross-linking immunoprecipitation sequencing (CLIP-seq), we determined the RNA binding preferences of the A3F, A3G and A3H proteins. We found that A3 proteins bind preferentially to RNA segments with particular properties, both in cells and in virions. Specifically, A3 proteins target RNA sequences that are G-rich and/or A-rich and are not scanned by ribosomes during translation. Comparative analyses of HIV-1 Gag, nucleocapsid (NC) and A3 RNA binding to HIV-1 RNA in cells and virions revealed the striking finding that A3 proteins partially mimic the RNA binding specificity of the HIV-1 NC protein. These findings suggest a model for A3 incorporation into HIV-1 virions in which an NC-like RNA binding specificity is determined by nucleotide composition rather than sequence. This model reconciles the promiscuity of A3 RNA binding that has been observed in previous studies with a presumed advantage that would accompany selective binding to RNAs that are destined to be packaged into virions. PMID:27541140

  6. The RNA Binding Specificity of Human APOBEC3 Proteins Resembles That of HIV-1 Nucleocapsid

    PubMed Central

    Errando, Manel; Bieniasz, Paul D.

    2016-01-01

    The APOBEC3 (A3) cytidine deaminases are antiretroviral proteins, whose targets include human immunodeficiency virus type-1 (HIV-1). Their incorporation into viral particles is critical for antiviral activity and is driven by interactions with the RNA molecules that are packaged into virions. However, it is unclear whether A3 proteins preferentially target RNA molecules that are destined to be packaged and if so, how. Using cross-linking immunoprecipitation sequencing (CLIP-seq), we determined the RNA binding preferences of the A3F, A3G and A3H proteins. We found that A3 proteins bind preferentially to RNA segments with particular properties, both in cells and in virions. Specifically, A3 proteins target RNA sequences that are G-rich and/or A-rich and are not scanned by ribosomes during translation. Comparative analyses of HIV-1 Gag, nucleocapsid (NC) and A3 RNA binding to HIV-1 RNA in cells and virions revealed the striking finding that A3 proteins partially mimic the RNA binding specificity of the HIV-1 NC protein. These findings suggest a model for A3 incorporation into HIV-1 virions in which an NC-like RNA binding specificity is determined by nucleotide composition rather than sequence. This model reconciles the promiscuity of A3 RNA binding that has been observed in previous studies with a presumed advantage that would accompany selective binding to RNAs that are destined to be packaged into virions. PMID:27541140

  7. Functionally related transcripts have common RNA motifs for specific RNA-binding proteins in trypanosomes

    PubMed Central

    Noé, Griselda; De Gaudenzi, Javier G; Frasch, Alberto C

    2008-01-01

    Background Trypanosomes mostly control gene expression by post-transcriptional events such as modulation of mRNA stability and translational efficiency. These mechanisms involve RNA-binding proteins (RBPs), which associate with transcripts to form messenger ribonucleoprotein (mRNP) complexes. Results In this study, we report the identification of mRNA targets for Trypanosoma cruzi U-rich RBP 1 (TcUBP1) and T. cruzi RBP 3 (TcRBP3), two phylogenetically conserved proteins among Kinetoplastids. Co-immunoprecipitated RBP-associated RNAs were extracted from mRNP complexes and binding of RBPs to several targets was confirmed by independent experimental assays. Analysis of target transcript sequences allowed the identification of different signature RNA motifs for each protein. Cis-elements for RBP binding have a stem-loop structure of 30–35 bases and are more frequently represented in the 3'-untranslated region (UTR) of mRNAs. Insertion of the correctly folded RNA elements to a non-specific mRNA rendered it into a target transcript, whereas substitution of the RNA elements abolished RBP interaction. In addition, RBPs competed for RNA-binding sites in accordance with the distribution of different and overlapping motifs in the 3'-UTRs of common mRNAs. Conclusion Functionally related transcripts were preferentially associated with a given RBP; TcUBP1 targets were enriched in genes encoding proteins involved in metabolism, whereas ribosomal protein-encoding transcripts were the largest group within TcRBP3 targets. Together, these results suggest coordinated control of different mRNA subsets at the post-transcriptional level by specific RBPs. PMID:19063746

  8. Application of RNase in the purification of RNA-binding proteins

    PubMed Central

    Kang, Jonghoon; Lee, Myung Soog; Gorenstein, David G.

    2007-01-01

    Basic findings It was found that RNA-binding proteins can be contaminated with host RNA during purification. The contamination of purified RNA-binding protein with RNA was identified by gel electrophoresis and EtBr staining. Our data suggest that applications of appropriate enzymes (DNase or RNase) in the early stage of purification may remove the contaminating nucleic acids. Significance The concept introduced in this research can easily be extended to the purification of other RNA- or DNA-binding proteins by applying RNase or DNase directly to the cell extracts. PMID:17400170

  9. hnRNP G: sequence and characterization of a glycosylated RNA-binding protein.

    PubMed Central

    Soulard, M; Della Valle, V; Siomi, M C; Piñol-Roma, S; Codogno, P; Bauvy, C; Bellini, M; Lacroix, J C; Monod, G; Dreyfuss, G

    1993-01-01

    The autoantigen p43 is a nuclear protein initially identified with autoantibodies from dogs with a lupus-like syndrome. Here we show that p43 is an RNA-binding protein, and identify it as hnRNP G, a previously described component of heterogeneous nuclear ribonucleoprotein complexes. We demonstrate that p43/hnRNP G is glycosylated, and identify the modification as O-linked N-acetylglucosamine. A full-length cDNA clone for hnRNP G has been isolated and sequenced, and the predicted amino acid sequence for hnRNP G shows that it contains one RNP-consensus RNA binding domain (RBD) at the amino terminus and a carboxyl domain rich in serines, arginines and glycines. The RBD of human hnRNP G shows striking similarities with the RBDs of several plant RNA-binding proteins. Images PMID:7692398

  10. PUB1: a major yeast poly(A)+ RNA-binding protein.

    PubMed Central

    Matunis, M J; Matunis, E L; Dreyfuss, G

    1993-01-01

    The expression of RNA polymerase II transcripts can be regulated at the posttranscriptional level by RNA-binding proteins. Although extensively characterized in metazoans, relatively few RNA-binding proteins have been characterized in the yeast Saccharomyces cerevisiae. Three major proteins are cross-linked by UV light to poly(A)+ RNA in living S. cerevisiae cells. These are the 72-kDa poly(A)-binding protein and proteins of 60 and 50 kDa (S.A. Adam, T.Y. Nakagawa, M.S. Swanson, T. Woodruff, and G. Dreyfuss, Mol. Cell. Biol. 6:2932-2943, 1986). Here, we describe the 60-kDa protein, one of the major poly(A)+ RNA-binding proteins in S. cerevisiae. This protein, PUB1 [for poly(U)-binding protein 1], was purified by affinity chromatography on immobilized poly(rU), and specific monoclonal antibodies to it were produced. UV cross-linking demonstrated that PUB1 is bound to poly(A)+ RNA (mRNA or pre-mRNA) in living cells, and it was detected primarily in the cytoplasm by indirect immunofluorescence. The gene for PUB1 was cloned and sequenced, and the sequence was found to predict a 51-kDa protein with three ribonucleoprotein consensus RNA-binding domains and three glutamine- and asparagine-rich auxiliary domains. This overall structure is remarkably similar to the structures of the Drosophila melanogaster elav gene product, the human neuronal antigen HuD, and the cytolytic lymphocyte protein TIA-1. Each of these proteins has an important role in development and differentiation, potentially by affecting RNA processing. PUB1 was found to be nonessential in S. cerevisiae by gene replacement; however, further genetic analysis should reveal important features of this class of RNA-binding proteins. Images PMID:8413213

  11. A versatile assay for RNA-binding proteins in living cells.

    PubMed

    Strein, Claudia; Alleaume, Anne-Marie; Rothbauer, Ulrich; Hentze, Matthias W; Castello, Alfredo

    2014-05-01

    RNA-binding proteins (RBPs) control RNA fate from synthesis to decay. Since their cellular expression levels frequently do not reflect their in vivo activity, methods are needed to assess the steady state RNA-binding activity of RBPs as well as their responses to stimuli. While electrophoresis mobility shift assays (EMSA) have been used for such determinations, their results serve at best as proxies for the RBP activities in living cells. Here, we describe a quantitative dual fluorescence method to analyze protein-mRNA interactions in vivo. Known or candidate RBPs are fused to fluorescent proteins (eGFP, YFP), expressed in cells, cross-linked in vivo to RNA by ultraviolet light irradiation, and immunoprecipitated, after lysis, with a single chain antibody fragment directed against eGFP (GFP-binding protein, GBP). Polyadenylated RNA-binding activity of fusion proteins is assessed by hybridization with an oligo(DT) probe coupled with a red fluorophore. Since UV light is directly applied to living cells, the assay can be used to monitor dynamic changes in RNA-binding activities in response to biological or pharmacological stimuli. Notably, immunoprecipitation and hybridization can also be performed with commercially available GBP-coupled 96-well plates (GFP-multiTrap), allowing highly parallel RNA-binding measurements in a single experiment. Therefore, this method creates the possibility to conduct in vivo high-throughput RNA-binding assays. We believe that this fast and simple radioactivity-free method will find many useful applications in RNA biology.

  12. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.

    PubMed

    Kumar, Manish; Gromiha, M Michael; Raghava, Gajendra P S

    2011-01-01

    RNA-binding proteins (RBPs) play crucial role in transcription and gene-regulation. This paper describes a support vector machine (SVM) based method for discriminating and classifying RNA-binding and non-binding proteins using sequence features. With the threshold of 30% interacting residues, RNA-binding amino acid prediction method PPRINT achieved the Matthews correlation coefficient (MCC) of 0.32. BLAST and PSI-BLAST identified RBPs with the coverage of 32.63 and 33.16%, respectively, at the e-value of 1e-4. The SVM models developed with amino acid, dipeptide and four-part amino acid compositions showed the MCC of 0.60, 0.46, and 0.53, respectively. This is the first study in which evolutionary information in form of position specific scoring matrix (PSSM) profile has been successfully used for predicting RBPs. We achieved the maximum MCC of 0.62 using SVM model based on PSSM called PSSM-400. Finally, we developed different hybrid approaches and achieved maximum MCC of 0.66. We also developed a method for predicting three subclasses of RNA binding proteins (e.g., rRNA, tRNA, mRNA binding proteins). The performance of the method was also evaluated on an independent dataset of 69 RBPs and 100 non-RBPs (NBPs). An additional benchmarking was also performed using gene ontology (GO) based annotation. Based on the hybrid approach a web-server RNApred has been developed for predicting RNA binding proteins from amino acid sequences (http://www.imtech.res.in/raghava/rnapred/).

  13. RNA-binding protein QKI regulates Glial fibrillary acidic protein expression in human astrocytes.

    PubMed

    Radomska, Katarzyna J; Halvardson, Jonatan; Reinius, Björn; Lindholm Carlström, Eva; Emilsson, Lina; Feuk, Lars; Jazin, Elena

    2013-04-01

    Linkage, association and expression studies previously pointed to the human QKI, KH domain containing, RNA-binding (QKI) as a candidate gene for schizophrenia. Functional studies of the mouse orthologue Qk focused mainly on its role in oligodendrocyte development and myelination, while its function in astroglia remained unexplored. Here, we show that QKI is highly expressed in human primary astrocytes and that its splice forms encode proteins targeting different subcellular localizations. Uncovering the role of QKI in astrocytes is of interest in light of growing evidence implicating astrocyte dysfunction in the pathogenesis of several disorders of the central nervous system. We selectively silenced QKI splice variants in human primary astrocytes and used RNA sequencing to identify differential expression and splice variant composition at the genome-wide level. We found that an mRNA expression of Glial fibrillary acidic protein (GFAP), encoding a major component of astrocyte intermediate filaments, was down-regulated after QKI7 splice variant silencing. Moreover, we identified a potential QKI-binding site within the 3' untranslated region of human GFAP. This sequence was not conserved between mice and humans, raising the possibility that GFAP is a target for QKI in humans but not rodents. Haloperidol treatment of primary astrocytes resulted in coordinated increases in QKI7 and GFAP expression. Taken together, our results provide the first link between QKI and GFAP, two genes with alterations previously observed independently in schizophrenic patients. Our findings for QKI, together with its well-known role in myelination, suggest that QKI is a hub regulator of glia function in humans.

  14. The RNA binding of protein A from Wuhan nodavirus is mediated by mitochondrial membrane lipids.

    PubMed

    Qiu, Yang; Miao, Meng; Wang, Zhaowei; Liu, Yongxiang; Yang, Jie; Xia, Hongjie; Li, Xiao-Feng; Qin, Cheng-Feng; Hu, Yuanyang; Zhou, Xi

    2014-08-01

    RNA replication of positive-strand (+)RNA viruses requires the lipids present in intracellular membranes, the sites of which viral replicases associate with. However, the direct effects of membrane lipids on viral replicases are still poorly understood. Wuhan nodavirus (WhNV) protein A, which associates with mitochondrial membranes, is the sole replicase required for RNA replication. Here, we report that WhNV protein A binds to RNA1 in a cooperative manner. Moreover, mitochondrial membrane lipids (MMLs) stimulated the RNA binding activity and cooperativity of protein A, and such stimulations exhibited strong selectivity for distinct phospholipids. Interestingly, MMLs stimulated the RNA-binding cooperativity only at higher protein A concentrations. Further investigation showed that MMLs stimulate the RNA binding of protein A by promoting its self-interaction. Finally, manipulating MML metabolism affected the protein A-induced RNA1 recruitment in cells. Together, our findings reveal the direct effects of membrane lipids on the RNA binding activity of a nodaviral replicase. PMID:25092456

  15. RNA-binding proteins in mouse male germline stem cells: a mammalian perspective.

    PubMed

    Qi, Huayu

    2016-01-01

    Adult stem cells that reside in particular types of tissues are responsible for tissue homeostasis and regeneration. Cellular functions of adult stem cells are intricately related to the gene expression programs in those cells. Past research has demonstrated that regulation of gene expression at the transcriptional level can decisively alter cell fate of stem cells. However, cellular contents of mRNAs are sometimes not equivalent to proteins, the functional units of cells. It is increasingly realized that post-transcriptional and translational regulation of gene expression are also fundamental for stem cell functions. Compared to differentiated somatic cells, effects on cellular status manifested by varied expression of RNA-binding proteins and global protein synthesis have been demonstrated in several stem cell systems. Through the cooperation of both cis-elements of mRNAs and trans-acting RNA-binding proteins that are intimately associated with them, regulation of localization, stability, and translational status of mRNAs directly influences the self-renewal and differentiation of stem cells. Previous studies have uncovered some of the molecular mechanisms that underlie the functions of RNA-binding proteins in stem cells in invertebrate species. However, their roles in adult stem cells in mammals are just beginning to be unveiled. This review highlights some of the RNA-binding proteins that play important functions during the maintenance and differentiation of mouse male germline stem cells, the adult stem cells in the male reproductive organ.

  16. Role of V protein RNA binding in inhibition of measles virus minigenome replication.

    PubMed

    Parks, Christopher L; Witko, Susan E; Kotash, Cheryl; Lin, Shuo L; Sidhu, Mohinder S; Udem, Stephen A

    2006-04-25

    Measles virus V protein represses genome replication through a poorly understood mechanism, which led us to investigate whether V protein might be an RNA-binding modulatory factor. Recombinant V protein, expressed from transfected HEp-2 cells or E. coli, formed protein-RNA complexes with poly-guanosine (poly-G) or poly-U linked to agarose beads. RNA binding was not exclusive to ribonucleotide homopolymers as complex formation between V protein and an RNA molecule equivalent to the 3' terminal 107 bases of the measles virus genome was observed with an electrophoretic mobility shift assay (EMSA). The interaction with poly-G was used to further examine the RNA binding properties of V demonstrating that protein-RNA complex formation was dependent upon the unique Cys-rich carboxy terminus, a region also required to induce maximal repression of minireplicon-encoded reporter gene expression in transient assays. Surprisingly, two mutant proteins that contained Cys-to-Ala substitutions in the C-terminus were found to retain their ability to bind poly-G binding and repress minireplicon reporter gene expression indicating that neither activity was dependent on the integrity of all 7 C-terminal Cys residues. Additional genetic analysis revealed that amino acids 238-266 were necessary for efficient RNA binding and overlapped with residues (238-278) required for maximal repression induced by the C-terminal domain. In addition, a 10 amino acid deletion was identified (residues 238-247) that blocked RNA binding and repression indicating that these two activities were related.

  17. A Second RNA-Binding Site in the NS1 Protein of Influenza B Virus.

    PubMed

    Ma, Li-Chung; Guan, Rongjin; Hamilton, Keith; Aramini, James M; Mao, Lei; Wang, Shanshan; Krug, Robert M; Montelione, Gaetano T

    2016-09-01

    Influenza viruses cause a highly contagious respiratory disease in humans. The NS1 proteins of influenza A and B viruses (NS1A and NS1B proteins, respectively) are composed of two domains, a dimeric N-terminal domain and a C-terminal domain, connected by a flexible polypeptide linker. Here we report the 2.0-Å X-ray crystal structure and nuclear magnetic resonance studies of the NS1B C-terminal domain, which reveal a novel and unexpected basic RNA-binding site that is not present in the NS1A protein. We demonstrate that single-site alanine replacements of basic residues in this site lead to reduced RNA-binding activity, and that recombinant influenza B viruses expressing these mutant NS1B proteins are severely attenuated in replication. This novel RNA-binding site of NS1B is required for optimal influenza B virus replication. Most importantly, this study reveals an unexpected RNA-binding function in the C-terminal domain of NS1B, a novel function that distinguishes influenza B viruses from influenza A viruses.

  18. A Second RNA-Binding Site in the NS1 Protein of Influenza B Virus.

    PubMed

    Ma, Li-Chung; Guan, Rongjin; Hamilton, Keith; Aramini, James M; Mao, Lei; Wang, Shanshan; Krug, Robert M; Montelione, Gaetano T

    2016-09-01

    Influenza viruses cause a highly contagious respiratory disease in humans. The NS1 proteins of influenza A and B viruses (NS1A and NS1B proteins, respectively) are composed of two domains, a dimeric N-terminal domain and a C-terminal domain, connected by a flexible polypeptide linker. Here we report the 2.0-Å X-ray crystal structure and nuclear magnetic resonance studies of the NS1B C-terminal domain, which reveal a novel and unexpected basic RNA-binding site that is not present in the NS1A protein. We demonstrate that single-site alanine replacements of basic residues in this site lead to reduced RNA-binding activity, and that recombinant influenza B viruses expressing these mutant NS1B proteins are severely attenuated in replication. This novel RNA-binding site of NS1B is required for optimal influenza B virus replication. Most importantly, this study reveals an unexpected RNA-binding function in the C-terminal domain of NS1B, a novel function that distinguishes influenza B viruses from influenza A viruses. PMID:27545620

  19. FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation.

    PubMed

    Popow, Johannes; Alleaume, Anne-Marie; Curk, Tomaz; Schwarzl, Thomas; Sauer, Sven; Hentze, Matthias W

    2015-11-01

    Mitochondrial RNA processing is an essential step for the synthesis of the components of the electron transport chain in all eukaryotic organisms, yet several aspects of mitochondrial RNA biogenesis and regulation are not sufficiently understood. RNA interactome capture identified several disease-relevant RNA-binding proteins (RBPs) with noncanonical RNA-binding architectures, including all six members of the FASTK (FAS-activated serine/threonine kinase) family of proteins. A mutation within one of these newly assigned FASTK RBPs, FASTKD2, causes a rare form of Mendelian mitochondrial encephalomyopathy. To investigate whether RNA binding of FASTKD2 contributes to the disease phenotype, we identified the RNA targets of FASTKD2 by iCLIP. FASTKD2 interacts with a defined set of mitochondrial transcripts including 16S ribosomal RNA (RNR2) and NADH dehydrogenase subunit 6 (ND6) messenger RNA. CRISPR-mediated deletion of FASTKD2 leads to aberrant processing and expression of RNR2 and ND6 mRNA that encodes a subunit of the respiratory complex I. Metabolic phenotyping of FASTKD2-deficient cells reveals impaired cellular respiration with reduced activities of all respiratory complexes. This work identifies key aspects of the molecular network of a previously uncharacterized, disease-relevant RNA-binding protein, FASTKD2, by a combination of genomic, molecular, and metabolic analyses.

  20. Polysomes of Trypanosoma brucei: Association with Initiation Factors and RNA-Binding Proteins.

    PubMed

    Klein, Cornelia; Terrao, Monica; Inchaustegui Gil, Diana; Clayton, Christine

    2015-01-01

    We report here the results of experiments designed to identify RNA-binding proteins that might be associated with Trypanosoma brucei polysomes. After some preliminary mass spectrometry of polysomal fractions, we investigated the distributions of selected tagged proteins using sucrose gradients and immunofluorescence. As expected, the polysomal fractions contained nearly all annotated ribosomal proteins, the translation-associated protein folding complex, and many translation factors, but also many other abundant proteins. Results suggested that cap-binding proteins EIF4E3 and EIF4E4 were associated with both free and membrane-bound polysomes. The EIF4E binding partners EIF4G4 and EIF4G3 were present but the other EIF4E and EIF4G paralogues were not detected. The dominant EIF4E in the polysomal fraction is EIF4E4 and very few polysomal mRNAs are associated with EIF4G. Thirteen potential mRNA-binding proteins were detected in the polysomes, including the known polysome-associated protein RBP42. The locations of two of the other proteins were tested after epitope tagging: RBP29 was in the nucleus and ZC3H29 was in the cytoplasm. Quantitative analyses showed that specific association of an RNA-binding protein with the polysome fraction in sucrose gradients will not be detected if the protein is in more than 25-fold molar excess over its target binding sites.

  1. Polysomes of Trypanosoma brucei: Association with Initiation Factors and RNA-Binding Proteins

    PubMed Central

    Klein, Cornelia; Terrao, Monica; Inchaustegui Gil, Diana; Clayton, Christine

    2015-01-01

    We report here the results of experiments designed to identify RNA-binding proteins that might be associated with Trypanosoma brucei polysomes. After some preliminary mass spectrometry of polysomal fractions, we investigated the distributions of selected tagged proteins using sucrose gradients and immunofluorescence. As expected, the polysomal fractions contained nearly all annotated ribosomal proteins, the translation-associated protein folding complex, and many translation factors, but also many other abundant proteins. Results suggested that cap-binding proteins EIF4E3 and EIF4E4 were associated with both free and membrane-bound polysomes. The EIF4E binding partners EIF4G4 and EIF4G3 were present but the other EIF4E and EIF4G paralogues were not detected. The dominant EIF4E in the polysomal fraction is EIF4E4 and very few polysomal mRNAs are associated with EIF4G. Thirteen potential mRNA-binding proteins were detected in the polysomes, including the known polysome-associated protein RBP42. The locations of two of the other proteins were tested after epitope tagging: RBP29 was in the nucleus and ZC3H29 was in the cytoplasm. Quantitative analyses showed that specific association of an RNA-binding protein with the polysome fraction in sucrose gradients will not be detected if the protein is in more than 25-fold molar excess over its target binding sites. PMID:26287607

  2. Cbk1 regulation of the RNA binding protein Ssd1 integrates cell fate with translational control

    PubMed Central

    Jansen, Jaclyn M.; Wanless, Antony G.; Seidel, Christopher W.; Weiss, Eric L.

    2009-01-01

    Summary Spatial control of gene expression, at the level of both transcription and translation, is critical for cellular differentiation [1-4]. In budding yeast, the conserved Ndr/warts kinase Cbk1 localizes to the new daughter cell where it acts as a cell fate determinant. Cbk1 both induces a daughter-specific transcriptional program and promotes morphogenesis in a less well-defined role [5-8]. Cbk1 is essential in cells expressing functional Ssd1, an RNA binding protein of unknown function [9-11]. We show that Cbk1 inhibits Ssd1 in vivo. Loss of this regulation dramatically slows bud expansion, leading to highly aberrant cell wall organization at the site of cell growth. Ssd1 associates with specific mRNAs, a significant number of which encode cell wall remodeling proteins. Translation of these messages is rapidly and specifically suppressed when Cbk1 is inhibited; this suppression requires Ssd1. Transcription of several of these Ssd1-associated mRNAs is also regulated by Cbk1, indicating that the kinase controls both the transcription and translation of daughter-specific mRNAs. This work suggests a novel system by which cells coordinate localized expression of genes involved in processes critical for cell growth and division. PMID:19962308

  3. Targeted inhibition of oncogenic miR-21 maturation with designed RNA-binding proteins.

    PubMed

    Chen, Yu; Yang, Fan; Zubovic, Lorena; Pavelitz, Tom; Yang, Wen; Godin, Katherine; Walker, Matthew; Zheng, Suxin; Macchi, Paolo; Varani, Gabriele

    2016-09-01

    The RNA recognition motif (RRM) is the largest family of eukaryotic RNA-binding proteins. Engineered RRMs with well-defined specificity would provide valuable tools and an exacting test of the current understanding of specificity. We have redesigned the specificity of an RRM using rational methods and demonstrated retargeting of its activity in cells. We engineered the conserved RRM of human Rbfox proteins to specifically bind to the terminal loop of a microRNA precursor (pre-miR-21) with high affinity and inhibit its processing by Drosha and Dicer. We further engineered Giardia Dicer by replacing its PAZ domain with the designed RRM. The reprogrammed enzyme degrades pre-miR-21 specifically in vitro and suppresses mature miR-21 levels in cells, which results in increased expression of the tumor suppressor PDCD4 and significantly decreased viability for cancer cells. The results demonstrate the feasibility of rationally engineering the sequence-specificity of RRMs and of using this ubiquitous platform for diverse biological applications. PMID:27428511

  4. PUB1 is a major nuclear and cytoplasmic polyadenylated RNA-binding protein in Saccharomyces cerevisiae.

    PubMed Central

    Anderson, J T; Paddy, M R; Swanson, M S

    1993-01-01

    Proteins that directly associate with nuclear polyadenylated RNAs, or heterogeneous nuclear RNA-binding proteins (hnRNPs), and those that associate with cytoplasmic mRNAs, or mRNA-binding proteins (mRNPs), play important roles in regulating gene expression at the posttranscriptional level. Previous work with a variety of eukaryotic cells has demonstrated that hnRNPs are localized predominantly within the nucleus whereas mRNPs are cytoplasmic. While studying proteins associated with polyadenylated RNAs in Saccharomyces cerevisiae, we discovered an abundant polyuridylate-binding protein, PUB1, which appears to be both an hnRNP and an mRNP. PUB1 and PAB1, the polyadenylate tail-binding protein, are the two major proteins cross-linked by UV light to polyadenylated RNAs in vivo. The deduced primary structure of PUB1 indicates that it is a member of the ribonucleoprotein consensus sequence family of RNA-binding proteins and is structurally related to the human hnRNP M proteins. Even though the PUB1 protein is a major cellular polyadenylated RNA-binding protein, it is nonessential for cell growth. Indirect cellular immunofluorescence combined with digital image processing allowed a detailed comparison of the intracellular distributions of PUB1 and PAB1. While PAB1 is predominantly, and relatively uniformly, distributed within the cytoplasm, PUB1 is localized in a nonuniform pattern throughout both the nucleus and the cytoplasm. The cytoplasmic distribution of PUB1 is considerably more discontinuous than that of PAB1. Furthermore, sucrose gradient sedimentation analysis demonstrates that PAB1 cofractionates with polyribosomes whereas PUB1 does not. These results suggest that PUB1 is both an hnRNP and an mRNP and that it may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm. Images PMID:8413212

  5. Natural product (-)-gossypol inhibits colon cancer cell growth by targeting RNA-binding protein Musashi-1.

    PubMed

    Lan, Lan; Appelman, Carl; Smith, Amber R; Yu, Jia; Larsen, Sarah; Marquez, Rebecca T; Liu, Hao; Wu, Xiaoqing; Gao, Philip; Roy, Anuradha; Anbanandam, Asokan; Gowthaman, Ragul; Karanicolas, John; De Guzman, Roberto N; Rogers, Steven; Aubé, Jeffrey; Ji, Min; Cohen, Robert S; Neufeld, Kristi L; Xu, Liang

    2015-08-01

    Musashi-1 (MSI1) is an RNA-binding protein that acts as a translation activator or repressor of target mRNAs. The best-characterized MSI1 target is Numb mRNA, whose encoded protein negatively regulates Notch signaling. Additional MSI1 targets include the mRNAs for the tumor suppressor protein APC that regulates Wnt signaling and the cyclin-dependent kinase inhibitor P21(WAF-1). We hypothesized that increased expression of NUMB, P21 and APC, through inhibition of MSI1 RNA-binding activity might be an effective way to simultaneously downregulate Wnt and Notch signaling, thus blocking the growth of a broad range of cancer cells. We used a fluorescence polarization assay to screen for small molecules that disrupt the binding of MSI1 to its consensus RNA binding site. One of the top hits was (-)-gossypol (Ki = 476 ± 273 nM), a natural product from cottonseed, known to have potent anti-tumor activity and which has recently completed Phase IIb clinical trials for prostate cancer. Surface plasmon resonance and nuclear magnetic resonance studies demonstrate a direct interaction of (-)-gossypol with the RNA binding pocket of MSI1. We further showed that (-)-gossypol reduces Notch/Wnt signaling in several colon cancer cell lines having high levels of MSI1, with reduced SURVIVIN expression and increased apoptosis/autophagy. Finally, we showed that orally administered (-)-gossypol inhibits colon cancer growth in a mouse xenograft model. Our study identifies (-)-gossypol as a potential small molecule inhibitor of MSI1-RNA interaction, and suggests that inhibition of MSI1's RNA binding activity may be an effective anti-cancer strategy.

  6. Structural implications into dsRNA binding and RNA silencing suppression by NS3 protein of Rice Hoja Blanca Tenuivirus.

    PubMed

    Yang, Xia; Tan, Sook Hwa; Teh, Yee Jin; Yuan, Y Adam

    2011-05-01

    Rice Hoja Blanca Tenuivirus (RHBV), a negative strand RNA virus, has been identified to infect rice and is widely transmitted by the insect vector. NS3 protein encoded by RHBV RNA3 was reported to be a potent RNAi suppressor to counterdefense RNA silencing in plants, insect cells, and mammalian cells. Here, we report the crystal structure of the N-terminal domain of RHBV NS3 (residues 21-114) at 2.0 Å. RHBV NS3 N-terminal domain forms a dimer by two pairs of α-helices in an anti-parallel mode, with one surface harboring a shallow groove at the dimension of 20 Å × 30 Å for putative dsRNA binding. In vitro RNA binding assay and RNA silencing suppression assay have demonstrated that the structural conserved residues located along this shallow groove, such as Arg50, His51, Lys77, and His85, participate in dsRNA binding and RNA silencing suppression. Our results provide the initial structural implications in understanding the RNAi suppression mechanism by RHBV NS3.

  7. Structural implications into dsRNA binding and RNA silencing suppression by NS3 protein of Rice Hoja Blanca Tenuivirus.

    PubMed

    Yang, Xia; Tan, Sook Hwa; Teh, Yee Jin; Yuan, Y Adam

    2011-05-01

    Rice Hoja Blanca Tenuivirus (RHBV), a negative strand RNA virus, has been identified to infect rice and is widely transmitted by the insect vector. NS3 protein encoded by RHBV RNA3 was reported to be a potent RNAi suppressor to counterdefense RNA silencing in plants, insect cells, and mammalian cells. Here, we report the crystal structure of the N-terminal domain of RHBV NS3 (residues 21-114) at 2.0 Å. RHBV NS3 N-terminal domain forms a dimer by two pairs of α-helices in an anti-parallel mode, with one surface harboring a shallow groove at the dimension of 20 Å × 30 Å for putative dsRNA binding. In vitro RNA binding assay and RNA silencing suppression assay have demonstrated that the structural conserved residues located along this shallow groove, such as Arg50, His51, Lys77, and His85, participate in dsRNA binding and RNA silencing suppression. Our results provide the initial structural implications in understanding the RNAi suppression mechanism by RHBV NS3. PMID:21460234

  8. Regulatory roles of RNA binding proteins in the nervous system of C. elegans

    PubMed Central

    Sharifnia, Panid; Jin, Yishi

    2015-01-01

    Neurons have evolved to employ many factors involved in the regulation of RNA processing due to their complex cellular compartments. RNA binding proteins (RBPs) are key regulators in transcription, translation, and RNA degradation. Increasing studies have shown that regulatory RNA processing is critical for the establishment, functionality, and maintenance of neural circuits. Recent advances in high-throughput transcriptomics have rapidly expanded our knowledge of the landscape of RNA regulation, but also raised the challenge for mechanistic dissection of the specific roles of RBPs in complex tissues such as the nervous system. The C. elegans genome encodes many RBPs conserved throughout evolution. The rich analytic tools in molecular genetics and simple neural anatomy of C. elegans offer advantages to define functions of genes in vivo at the level of a single cell. Notably, the discovery of microRNAs has had transformative effects to the understanding of neuronal development, circuit plasticity, and neurological diseases. Here we review recent studies unraveling diverse roles of RBPs in the development, function, and plasticity of C. elegans nervous system. We first summarize the general technologies for studying RBPs in C. elegans. We then focus on the roles of several RBPs that control gene- and cell-type specific production of neuronal transcripts. PMID:25628531

  9. Nucleic acids encoding phloem small RNA-binding proteins and transgenic plants comprising them

    DOEpatents

    Lucas, William J.; Yoo, Byung-Chun; Lough, Tony J.; Varkonyi-Gasic, Erika

    2007-03-13

    The present invention provides a polynucleotide sequence encoding a component of the protein machinery involved in small RNA trafficking, Cucurbita maxima phloem small RNA-binding protein (CmPSRB 1), and the corresponding polypeptide sequence. The invention also provides genetic constructs and transgenic plants comprising the polynucleotide sequence encoding a phloem small RNA-binding protein to alter (e.g., prevent, reduce or elevate) non-cell autonomous signaling events in the plants involving small RNA metabolism. These signaling events are involved in a broad spectrum of plant physiological and biochemical processes, including, for example, systemic resistance to pathogens, responses to environmental stresses, e.g., heat, drought, salinity, and systemic gene silencing (e.g., viral infections).

  10. The Pseudomonas aeruginosa Catabolite Repression Control Protein Crc Is Devoid of RNA Binding Activity

    PubMed Central

    Djinovic-Carugo, Kristina; Bläsi, Udo

    2013-01-01

    The Crc protein has been shown to mediate catabolite repression control in Pseudomonas, leading to a preferential assimilation of carbon sources. It has been suggested that Crc acts as a translational repressor of mRNAs, encoding functions involved in uptake and breakdown of different carbon sources. Moreover, the regulatory RNA CrcZ, the level of which is increased in the presence of less preferred carbon sources, was suggested to bind to and sequester Crc, resulting in a relief of catabolite repression. Here, we determined the crystal structure of Pseudomonas aeruginosa Crc, a member of apurinic/apyrimidinic (AP) endonuclease family, at 1.8 Å. Although Crc displays high sequence similarity with its orthologs, there are amino acid alterations in the area corresponding to the active site in AP proteins. Unlike typical AP endonuclease family proteins, Crc has a reduced overall positive charge and the conserved positively charged amino-acid residues of the DNA-binding surface of AP proteins are partially substituted by negatively charged, polar and hydrophobic residues. Crc protein purified to homogeneity from P. aeruginosa did neither display DNase activity, nor did it bind to previously identified RNA substrates. Rather, the RNA chaperone Hfq was identified as a contaminant in His-tagged Crc preparations purified by one step Ni-affinity chromatography from Escherichia coli, and was shown to account for the RNA binding activity observed with the His-Crc preparations. Taken together, these data challenge a role of Crc as a direct translational repressor in carbon catabolite repression in P. aeruginosa. PMID:23717639

  11. The RNA-binding protein Rbfox1 regulates splicing required for skeletal muscle structure and function

    PubMed Central

    Pedrotti, Simona; Giudice, Jimena; Dagnino-Acosta, Adan; Knoblauch, Mark; Singh, Ravi K.; Hanna, Amy; Mo, Qianxing; Hicks, John; Hamilton, Susan; Cooper, Thomas A.

    2015-01-01

    The Rbfox family of RNA-binding proteins is highly conserved with established roles in alternative splicing (AS) regulation. High-throughput studies aimed at understanding transcriptome remodeling have revealed skeletal muscle as displaying one of the largest number of AS events. This finding is consistent with requirements for tissue-specific protein isoforms needed to sustain muscle-specific functions. Rbfox1 is abundant in vertebrate brain, heart and skeletal muscle. Genome-wide genetic approaches have linked the Rbfox1 gene to autism, and a brain-specific knockout mouse revealed a critical role for this splicing regulator in neuronal function. Moreover, a Caenorhabditis elegans Rbfox1 homolog regulates muscle-specific splicing. To determine the role of Rbfox1 in muscle function, we developed a conditional knockout mouse model to specifically delete Rbfox1 in adult tissue. We show that Rbfox1 is required for muscle function but a >70% loss of Rbfox1 in satellite cells does not disrupt muscle regeneration. Deep sequencing identified aberrant splicing of multiple genes including those encoding myofibrillar and cytoskeletal proteins, and proteins that regulate calcium handling. Ultrastructure analysis of Rbfox1−/− muscle by electron microscopy revealed abundant tubular aggregates. Immunostaining showed mislocalization of the sarcoplasmic reticulum proteins Serca1 and Ryr1 in a pattern indicative of colocalization with the tubular aggregates. Consistent with mislocalization of Serca1 and Ryr1, calcium handling was drastically altered in Rbfox1−/− muscle. Moreover, muscle function was significantly impaired in Rbfox1−/− muscle as indicated by decreased force generation. These results demonstrate that Rbfox1 regulates a network of AS events required to maintain multiple aspects of muscle physiology. PMID:25575511

  12. Constitutive patterns of gene expression regulated by RNA-binding proteins

    PubMed Central

    2014-01-01

    Background RNA-binding proteins regulate a number of cellular processes, including synthesis, folding, translocation, assembly and clearance of RNAs. Recent studies have reported that an unexpectedly large number of proteins are able to interact with RNA, but the partners of many RNA-binding proteins are still uncharacterized. Results We combined prediction of ribonucleoprotein interactions, based on catRAPID calculations, with analysis of protein and RNA expression profiles from human tissues. We found strong interaction propensities for both positively and negatively correlated expression patterns. Our integration of in silico and ex vivo data unraveled two major types of protein–RNA interactions, with positively correlated patterns related to cell cycle control and negatively correlated patterns related to survival, growth and differentiation. To facilitate the investigation of protein–RNA interactions and expression networks, we developed the catRAPID express web server. Conclusions Our analysis sheds light on the role of RNA-binding proteins in regulating proliferation and differentiation processes, and we provide a data exploration tool to aid future experimental studies. PMID:24401680

  13. Interactions between RNA-binding proteins and P32 homologues in trypanosomes and human cells.

    PubMed

    Polledo, Juan Manuel; Cervini, Gabriela; Romaniuk, María Albertina; Cassola, Alejandro

    2016-02-01

    RNA-binding proteins (RBPs) are involved in many aspects of mRNA metabolism such as splicing, nuclear export, translation, silencing, and decay. To cope with these tasks, these proteins use specialized domains such as the RNA recognition motif (RRM), the most abundant and widely spread RNA-binding domain. Although this domain was first described as a dedicated RNA-binding moiety, current evidence indicates these motifs can also engage in direct protein-protein interactions. Here, we discuss recent evidence describing the interaction between the RRM of the trypanosomatid RBP UBP1 and P22, the homolog of the human multifunctional protein P32/C1QBP. Human P32 was also identified while performing a similar interaction screening using both RRMs of TDP-43, an RBP involved in splicing regulation and Amyotrophic Lateral Sclerosis. Furthermore, we show that this interaction is mediated by RRM1. The relevance of this interaction is discussed in the context of recent TDP-43 interactomic approaches that identified P32, and the numerous evidences supporting interactions between P32 and RBPs. Finally, we discuss the vast universe of interactions involving P32, supporting its role as a molecular chaperone regulating the function of its ligands.

  14. A mammalian germ cell-specific RNA-binding protein interacts with ubiquitously expressed proteins involved in splice site selection

    NASA Astrophysics Data System (ADS)

    Elliott, David J.; Bourgeois, Cyril F.; Klink, Albrecht; Stévenin, James; Cooke, Howard J.

    2000-05-01

    RNA-binding motif (RBM) genes are found on all mammalian Y chromosomes and are implicated in spermatogenesis. Within human germ cells, RBM protein shows a similar nuclear distribution to components of the pre-mRNA splicing machinery. To address the function of RBM, we have used protein-protein interaction assays to test for possible physical interactions between these proteins. We find that RBM protein directly interacts with members of the SR family of splicing factors and, in addition, strongly interacts with itself. We have mapped the protein domains responsible for mediating these interactions and expressed the mouse RBM interaction region as a bacterial fusion protein. This fusion protein can pull-down several functionally active SR protein species from cell extracts. Depletion and add-back experiments indicate that these SR proteins are the only splicing factors bound by RBM which are required for the splicing of a panel of pre-mRNAs. Our results suggest that RBM protein is an evolutionarily conserved mammalian splicing regulator which operates as a germ cell-specific cofactor for more ubiquitously expressed pre-mRNA splicing activators.

  15. Probing the RNA binding surface of the HIV-1 nucleocapsid protein by site-directed mutagenesis.

    PubMed

    Ouyang, Wei; Okaine, Stephen; McPike, Mark P; Lin, Yong; Borer, Philip N

    2013-05-14

    The highly conserved nucleocapsid protein domain in HIV-1 recognizes and binds SL3 in genomic RNA. In this work, we used the structure of the NCp7-SL3 RNA complex to guide the construction of 16 NCp7 mutants to probe the RNA binding surface of the protein [De Guzman, R. N., et al. (1998) Science 279, 384-388]. Thirteen residues with functional or structural significance were mutated individually to Ala (Asn(5), Phe(6), Val(13), Phe(16), Asn(17), Gly(19), Glu(21), Ile(24), Gln(45), Met(46), Gly(22), Pro(31), and Gly(40)), and three salt bridge switch mutants exchanged Lys and Glu (Lys(14)-Glu(21), Lys(33)-Glu(42), and Lys(38)-Glu(51)). Dissociation constants (Kd) determined by fluorescence titration and isothermal titration calorimetry were used to compare affinities of SL3 for the variant proteins to that for the wild type. The F16A (Phe(16) to Ala) variant showed a 25-fold reduction in affinity, consistent with a loss of organized structure in f1, the protein's first zinc finger. I24A, Q45A, and M46A reduced affinity by 2-5-fold; these residues occupy nearly equivalent positions in f1 and f2. E21A increased affinity by 3-fold, perhaps because of the mutant's increased net positive charge. Among the salt bridge switch mutants, only K14E/E21K in f1 caused a substantial change in affinity (5-fold reduction), binding SL3 with a biphasic binding isotherm. Aside from these six variants, most of the mutations studied have relatively minor effects on the stability of the complex. We conclude that many side chain interactions in the wild-type complex contribute little to stability or can be compensated by new contacts in the mutants.

  16. Substrate recognition and specificity of double-stranded RNA binding proteins.

    PubMed

    Vuković, Lela; Koh, Hye Ran; Myong, Sua; Schulten, Klaus

    2014-06-01

    Recognition of double-stranded (ds) RNA is an important part of many cellular pathways, including RNA silencing, viral recognition, RNA editing, processing, and transport. dsRNA recognition is often achieved by dsRNA binding domains (dsRBDs). We use atomistic molecular dynamics simulations to examine the binding interface of the transactivation response RNA binding protein (TRBP) dsRBDs to dsRNA substrates. Our results explain the exclusive selectivity of dsRBDs toward dsRNA and against DNA-RNA hybrid and dsDNA duplexes. We also provide corresponding experimental evidence. The dsRNA duplex is recognized by dsRBDs through the A-form of three duplex grooves and by the chemical properties of RNA bases, which have 2'-hydroxyl groups on their sugar rings. Our simulations show that TRBP dsRBD discriminates dsRNA- from DNA-containing duplexes primarily through interactions at two duplex grooves. The simulations also reveal that the conformation of the DNA-RNA duplex can be altered by dsRBD proteins, resulting in a weak binding of dsRBDs to DNA-RNA hybrids. Our study reveals the structural and molecular basis of protein-RNA interaction that gives rise to the observed substrate specificity of dsRNA binding proteins. PMID:24801449

  17. Crystal structure of the single-stranded RNA binding protein HutP from Geobacillus thermodenitrificans.

    PubMed

    Thiruselvam, Viswanathan; Sivaraman, Padavattan; Kumarevel, Thirumananseri; Ponnuswamy, Mondikalipudur Nanjappagounder

    2014-04-18

    RNA binding proteins control gene expression by the attenuation/antitermination mechanism. HutP is an RNA binding antitermination protein. It regulates the expression of hut operon when it binds with RNA by modulating the secondary structure of single-stranded hut mRNA. HutP necessitates the presence of l-histidine and divalent metal ion to bind with RNA. Herein, we report the crystal structures of ternary complex (HutP-l-histidine-Mg(2+)) and EDTA (0.5 M) treated ternary complex (HutP-l-histidine-Mg(2+)), solved at 1.9 Å and 2.5 Å resolutions, respectively, from Geobacillus thermodenitrificans. The addition of 0.5 M EDTA does not affect the overall metal-ion mediated ternary complex structure and however, the metal ions at the non-specific binding sites are chelated, as evidenced from the results of structural features.

  18. Grad-seq guides the discovery of ProQ as a major small RNA-binding protein

    PubMed Central

    Otto, Andreas; Günster, Regina; Becher, Dörte; Reinhardt, Richard

    2016-01-01

    The functional annotation of transcriptomes and identification of noncoding RNA (ncRNA) classes has been greatly facilitated by the advent of next-generation RNA sequencing which, by reading the nucleotide order of transcripts, theoretically allows the rapid profiling of all transcripts in a cell. However, primary sequence per se is a poor predictor of function, as ncRNAs dramatically vary in length and structure and often lack identifiable motifs. Therefore, to visualize an informative RNA landscape of organisms with potentially new RNA biology that are emerging from microbiome and environmental studies requires the use of more functionally relevant criteria. One such criterion is the association of RNAs with functionally important cognate RNA-binding proteins. Here we analyze the full ensemble of cellular RNAs using gradient profiling by sequencing (Grad-seq) in the bacterial pathogen Salmonella enterica, partitioning its coding and noncoding transcripts based on their network of RNA–protein interactions. In addition to capturing established RNA classes based on their biochemical profiles, the Grad-seq approach enabled the discovery of an overlooked large collective of structured small RNAs that form stable complexes with the conserved protein ProQ. We show that ProQ is an abundant RNA-binding protein with a wide range of ligands and a global influence on Salmonella gene expression. Given its generic ability to chart a functional RNA landscape irrespective of transcript length and sequence diversity, Grad-seq promises to define functional RNA classes and major RNA-binding proteins in both model species and genetically intractable organisms. PMID:27671629

  19. RNA-binding protein hnRNPLL as a critical regulator of lymphocyte homeostasis and differentiation.

    PubMed

    Chang, Xing

    2016-05-01

    RNA-binding proteins orchestrate posttranscriptional regulation of gene expression, such as messenger RNA (mRNA) splicing, RNA stability regulation, and translation regulation. Heterogeneous nuclear RNA-binding proteins (hnRNPs) refer to a collection of unrelated RNA-binding proteins predominantly located in the nucleus (Han et al. Biochem J 2010, 430:379-392). Although canonical functions of hnRNPs are to promote pre-mRNA splicing, they are involved in all the processes of RNA metabolism through recognizing specific cis-elements on RNA (Dreyfuss et al. Annu Rev Biochem 1993, 62:289-321; Huelga et al. Cell Rep 2012, 1:167-178; Krecic and Swanson. Curr Opin Cell Biol 1999, 11:363-371). Heterogeneous nuclear RNA-binding protein L like (hnRNPLL) is a tissue-specific hnRNP, which was identified as a regulator of CD45RA to CD45RO switching during memory T-cell development (Oberdoerffer et al. Science 2008, 321:686-691; Topp et al. RNA 2008, 14:2038-2049; Wu et al. Immunity 2008, 29:863-875). Since then, hnRNPLL has emerged as a critical regulator of lymphocyte homeostasis and terminal differentiation, controlling alternative splicing or expression of critical genes for the lymphocytes development (Wu et al. Immunity 2008, 29:863-875; Chang et al. Proc Natl Acad Sci USA 2015, 112:E1888-E1897). This review will summarize recent advances in understanding the functions of hnRNPLL, focusing on its biochemical functions and physiological roles in lymphocyte differentiation and homeostasis. WIREs RNA 2016, 7:295-302. doi: 10.1002/wrna.1335 For further resources related to this article, please visit the WIREs website.

  20. RNA-binding protein hnRNPLL as a critical regulator of lymphocyte homeostasis and differentiation.

    PubMed

    Chang, Xing

    2016-05-01

    RNA-binding proteins orchestrate posttranscriptional regulation of gene expression, such as messenger RNA (mRNA) splicing, RNA stability regulation, and translation regulation. Heterogeneous nuclear RNA-binding proteins (hnRNPs) refer to a collection of unrelated RNA-binding proteins predominantly located in the nucleus (Han et al. Biochem J 2010, 430:379-392). Although canonical functions of hnRNPs are to promote pre-mRNA splicing, they are involved in all the processes of RNA metabolism through recognizing specific cis-elements on RNA (Dreyfuss et al. Annu Rev Biochem 1993, 62:289-321; Huelga et al. Cell Rep 2012, 1:167-178; Krecic and Swanson. Curr Opin Cell Biol 1999, 11:363-371). Heterogeneous nuclear RNA-binding protein L like (hnRNPLL) is a tissue-specific hnRNP, which was identified as a regulator of CD45RA to CD45RO switching during memory T-cell development (Oberdoerffer et al. Science 2008, 321:686-691; Topp et al. RNA 2008, 14:2038-2049; Wu et al. Immunity 2008, 29:863-875). Since then, hnRNPLL has emerged as a critical regulator of lymphocyte homeostasis and terminal differentiation, controlling alternative splicing or expression of critical genes for the lymphocytes development (Wu et al. Immunity 2008, 29:863-875; Chang et al. Proc Natl Acad Sci USA 2015, 112:E1888-E1897). This review will summarize recent advances in understanding the functions of hnRNPLL, focusing on its biochemical functions and physiological roles in lymphocyte differentiation and homeostasis. WIREs RNA 2016, 7:295-302. doi: 10.1002/wrna.1335 For further resources related to this article, please visit the WIREs website. PMID:26821996

  1. Regulation of gene expression by the RNA-binding protein Sam68 in cancer.

    PubMed

    Rajan, Prabhakar; Gaughan, Luke; Dalgliesh, Caroline; El-Sherif, Amira; Robson, Craig N; Leung, Hing Y; Elliott, David J

    2008-06-01

    Sam68 (Src-associated in mitosis 68 kDa) is the prototypical member of the STAR (signal transducer and activator of RNA) family of RNA-binding proteins. Sam68 is implicated in a number of cellular processes including signal transduction, transcription, RNA metabolism, cell cycle regulation and apoptosis. In the present review, we summarize the functions of Sam68 as a transcriptional and post-transcriptional regulator of gene expression, with particular relevance to cancer. PMID:18481990

  2. Identification of a Male-Specific RNA Binding Protein That Regulates Sex-Specific Splicing of Bmdsx by Increasing RNA Binding Activity of BmPSI▿ §

    PubMed Central

    Suzuki, Masataka G.; Imanishi, Shigeo; Dohmae, Naoshi; Asanuma, Miwako; Matsumoto, Shogo

    2010-01-01

    Bmdsx is a sex-determining gene in the silkworm and is alternatively spliced in males and females. CE1 is a splicing silencer element responsible for the sex-specific splicing of Bmdsx. To identify sex-specific factors implicated in the sex-specific splicing of Bmdsx, we performed RNA affinity chromatography using CE1 RNA as a ligand. We have identified BmIMP, a Bombyx homolog of IGF-II mRNA binding protein (IMP), as a male-specific factor that specifically binds to CE1. The gene encoding BmIMP is localized on the Z chromosome and is male-specifically expressed in various tissues. Antisense inhibition of BmIMP expression increased female-specific splicing of Bmdsx pre-mRNA. Coimmunoprecipitation and glutathione S-transferase (GST) pulldown analyses demonstrated that BmIMP physically interacts with BmPSI, which has been identified as a factor implicated in the sex-specific splicing of Bmdsx, through the KH domains of BmIMP. The functional consequence of this interaction was examined using RNA mobility shift analysis. BmIMP increased BmPSI-CE1 RNA binding activity by decreasing the rate of BmPSI dissociation from CE1 RNA. Truncation analysis of BmIMP suggested that the KH domains are responsible for enhancing BmPSI-CE1 RNA binding activity. These results suggest that BmIMP may enhance the male-specific splicing of Bmdsx pre-mRNA by increasing RNA binding activity of BmPSI. PMID:20956562

  3. Deletion mapping of the rotavirus metalloprotein NS53 (NSP1): the conserved cysteine-rich region is essential for virus-specific RNA binding.

    PubMed Central

    Hua, J; Chen, X; Patton, J T

    1994-01-01

    NS53 (NSP1), the gene 5 product of the group A rotaviruses, is a minor nonstructural protein of 486 to 495 amino acids which binds zinc and contains an amino-terminal highly conserved cysteine-rich region that may form one or two zinc fingers. To study the structure-function of the gene 5 product, wild-type and mutant forms of NS53 were produced by using a recombinant baculovirus expression system and a recombinant vaccinia virus/T7 (vTF7-3) expression system. Analysis of the RNA-binding activity of the wild-type NS53 immobilized onto protein A-Sepharose beads with NS53-specific antiserum showed that the protein exhibited specific affinity for all 11 rotavirus mRNAs. The use of short virus-specific RNA probes indicated that NS53 specifically recognizes an element located near the 5' ends of viral mRNAs. Analysis of the RNA-binding activity of deletion mutants of NS53 showed that the RNA-binding domain resides within the first 81 amino acids of the protein and that the highly conserved cysteine-rich region within this region of the protein is essential for the activity. Gel electrophoresis and Western immunoblot analyses of intracellular fractions derived from infected cells revealed that large amounts of NS53 were present in the cytosol and in association with the cytoskeletal matrix. Indirect immunofluorescence analysis of cells programmed to transiently express mutant forms of NS53 using vTF7-3 indicated that the intracellular localization domain resides between amino acids 84 and 176 of NS53. Together, these data show that the RNA-binding domain and the intracellular localization domain lie upstream from the region of NS53 previously determined not to be essential for replication of rotaviruses in cell culture (J. Hua and J. T. Patton, Virology 198:567-576, 1994). Images PMID:8189533

  4. Helical Defects in MicroRNA Influence Protein Binding by TAR RNA Binding Protein

    PubMed Central

    Acevedo, Roderico; Orench-Rivera, Nichole; Quarles, Kaycee A.; Showalter, Scott A.

    2015-01-01

    Background MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression. Their precursors have a globally A-form helical geometry, which prevents most proteins from identifying their nucleotide sequence. This suggests the hypothesis that local structural features (e.g., bulges, internal loops) play a central role in specific double-stranded RNA (dsRNA) selection from cellular RNA pools by dsRNA binding domain (dsRBD) containing proteins. Furthermore, the processing enzymes in the miRNA maturation pathway require tandem-dsRBD cofactor proteins for optimal function, suggesting that dsRBDs play a key role in the molecular mechanism for precise positioning of the RNA within these multi-protein complexes. Here, we focus on the tandem-dsRBDs of TRBP, which have been shown to bind dsRNA tightly. Methodology/Principal Findings We present a combination of dsRNA binding assays demonstrating that TRBP binds dsRNA in an RNA-length dependent manner. Moreover, circular dichroism data shows that the number of dsRBD moieties bound to RNA at saturation is different for a tandem-dsRBD construct than for constructs with only one dsRBD per polypeptide, revealing another reason for the selective pressure to maintain multiple domains within a polypeptide chain. Finally, we show that helical defects in precursor miRNA alter the apparent dsRNA size, demonstrating that imperfections in RNA structure influence the strength of TRBP binding. Conclusion/Significance We conclude that TRBP is responsible for recognizing structural imperfections in miRNA precursors, in the sense that TRBP is unable to bind imperfections efficiently and thus is positioned around them. We propose that once positioned around structural defects, TRBP assists Dicer and the rest of the RNA-induced silencing complex (RISC) in providing efficient and homogenous conversion of substrate precursor miRNA into mature miRNA downstream. PMID:25608000

  5. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding

    SciTech Connect

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka

    2015-07-31

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS{sup SV40}) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS{sup SV40} in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS{sup SV40} formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS{sup SV40} likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS{sup SV40} can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus.

  6. The RNA-binding properties and domain of Rice stripe virus nucleocapsid protein.

    PubMed

    Zhao, Shuling; Xue, Yanan; Hao, Jiahui; Liang, Changyong

    2015-10-01

    The nucleocapsid protein (NP) of rice stripe virus (RSV) encapsidates viral genomic RNAs to form virion. The binding of NP with RNA is essential for the formation of virus particle. In this study, the binding specificity of RSV NP to RNA and the domains within the NP that mediate this interaction were investigated by gel electrophoretic mobility shift assays and Northwestern blot analysis. The results demonstrated that RSV NP was able to bind to all synthetic RNAs and DNAs without sequence specificity. Using a series of truncated NPs expressed in E. coli and synthetic peptides, we mapped the RNA-binding domain of NP to the central region from amino acid residues 201-232. Further alanine substitution analysis revealed that Lys(206), Lys(207), Lys(220), and Tyr(221) in the RNA-binding domain were essential for NP to bind with RNA.

  7. Structure and RNA-binding properties of the bacterial LSm protein Hfq

    PubMed Central

    2013-01-01

    Over the past years, small non-coding RNAs (sRNAs) emerged as important modulators of gene expression in bacteria. Guided by partial sequence complementarity, these sRNAs interact with target mRNAs and eventually affect transcript stability and translation. The physiological function of sRNAs depends on the protein Hfq, which binds sRNAs in the cell and promotes the interaction with their mRNA targets. This important physiological function of Hfq as a central hub of sRNA-mediated regulation made it one of the most intensely studied proteins in bacteria. Recently, a new model for sRNA binding by Hfq has been proposed that involves the direct recognition of the sRNA 3′ end and interactions of the sRNA body with the lateral RNA-binding surface of Hfq. This review summarizes the current understanding of the RNA binding properties of Hfq and its (s)RNA complexes. Moreover, the implications of the new binding model for sRNA-mediated regulation are discussed. PMID:23535768

  8. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5.

    PubMed Central

    Bycroft, M; Grünert, S; Murzin, A G; Proctor, M; St Johnston, D

    1995-01-01

    The double-stranded RNA binding domain (dsRBD) is an approximately 65 amino acid motif that is found in a variety of proteins that interact with double-stranded (ds) RNA, such as Escherichia coli RNase III and the dsRNA-dependent kinase, PKR. Drosophila staufen protein contains five copies of this motif, and the third of these binds dsRNA in vitro. Using multinuclear/multidimensional NMR methods, we have determined that staufen dsRBD3 forms a compact protein domain with an alpha-beta-beta-beta-alpha structure in which the two alpha-helices lie on one face of a three-stranded anti-parallel beta-sheet. This structure is very similar to that of the N-terminal domain of a prokaryotic ribosomal protein S5. Furthermore, the consensus derived from all known S5p family sequences shares several conserved residues with the dsRBD consensus sequence, indicating that the two domains share a common evolutionary origin. Using in vitro mutagenesis, we have identified several surface residues which are important for the RNA binding of the dsRBD, and these all lie on the same side of the domain. Two residues that are essential for RNA binding, F32 and K50, are also conserved in the S5 protein family, suggesting that the two domains interact with RNA in a similar way. Images PMID:7628456

  9. RNA binding properties of the US11 protein from four primate simplexviruses

    PubMed Central

    2011-01-01

    Background The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. Methods We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. Results and Conclusions The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins. PMID:22054255

  10. The zinc finger RNA binding protein, ZFR, contributes to axon guidance in Caenorhabditis elegans.

    PubMed

    Kjærgaard, Tine; Desdorf, Rasmus; Heuck, Anders; Olsen, Anders; Lykke-Hartmann, Karin

    2015-02-15

    ZFR is an ancient and highly conserved chromosome-associated protein from nematodes to mammals, embryologically expressed in most species, with the exception of the nematode Caenorhabditis elegans. The ZFR encodes zinc and RNA binding protein, and in rat, the nuclear-cytoplasmic shuttling ZFR has been found with transport and translation-associated RNA granule-like structures in the somatodendritic compartments of hippocampal neurons. The majority of axons cross the midline before projecting to their contralateral synaptic target and this crossing decision is under tight control. Molecular factors contributing to these processes have been identified, although the mechanisms are not fully understood. In this study, we tested the role of ceZFR in axon guidance using ceZfr RNAi-treated animals to analyse axon midline crossing, axon fasciculation and cord commissures. In adult stages, RNAi-induced depletion of the ceZfr transcript leads to several phenotypes related to axon guidance. A midline crossing defect was observed in the ventral nerve cord (VNC) in axon type D, DD/VD motoneuron axons and axon type 1, interneuron axons. We further detected a dorsal nerve cord (DNC) axon fasciculation. Some ceZfr RNAi-treated animals revealed that cord commissures fail to reach their synaptic target. We provide evidence that ceZFR has a role in axon guidance. When Zfr was depleted by RNAi, the phenotypes are characterized by defects in axon midline crossing, axon defasciculation and cord commissures. Our results thus support the hypothesis that ZFR has essential roles during neurogenesis, and could support early steps of RNA transport and localization through RNA granule formation in the nucleus and/or to their nucleo-cytoplasmic shuttling.

  11. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks

    NASA Astrophysics Data System (ADS)

    Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra

    2016-05-01

    RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.

  12. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks

    PubMed Central

    Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra

    2016-01-01

    RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks. PMID:27161996

  13. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.

    PubMed

    Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra

    2016-01-01

    RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks. PMID:27161996

  14. Tethered Function Assays as Tools to Elucidate the Molecular Roles of RNA-Binding Proteins.

    PubMed

    Bos, Tomas J; Nussbacher, Julia K; Aigner, Stefan; Yeo, Gene W

    2016-01-01

    Dynamic regulation of RNA molecules is critical to the survival and development of cells. Messenger RNAs are transcribed in the nucleus as intron-containing pre-mRNAs and bound by RNA-binding proteins, which control their fate by regulating RNA stability, splicing, polyadenylation, translation, and cellular localization. Most RBPs have distinct mRNA-binding and functional domains; thus, the function of an RBP can be studied independently of RNA-binding by artificially recruiting the RBP to a reporter RNA and then measuring the effect of RBP recruitment on reporter splicing, stability, translational efficiency, or intracellular trafficking. These tethered function assays therefore do not require prior knowledge of the RBP's endogenous RNA targets or its binding sites within these RNAs. Here, we provide an overview of the experimental strategy and the strengths and limitations of common tethering systems. We illustrate specific examples of the application of the assay in elucidating the function of various classes of RBPs. We also discuss how classic tethering assay approaches and insights gained from them have been empowered by more recent technological advances, including efficient genome editing and high-throughput RNA-sequencing. PMID:27256382

  15. Tethered Function Assays as Tools to Elucidate the Molecular Roles of RNA-Binding Proteins.

    PubMed

    Bos, Tomas J; Nussbacher, Julia K; Aigner, Stefan; Yeo, Gene W

    2016-01-01

    Dynamic regulation of RNA molecules is critical to the survival and development of cells. Messenger RNAs are transcribed in the nucleus as intron-containing pre-mRNAs and bound by RNA-binding proteins, which control their fate by regulating RNA stability, splicing, polyadenylation, translation, and cellular localization. Most RBPs have distinct mRNA-binding and functional domains; thus, the function of an RBP can be studied independently of RNA-binding by artificially recruiting the RBP to a reporter RNA and then measuring the effect of RBP recruitment on reporter splicing, stability, translational efficiency, or intracellular trafficking. These tethered function assays therefore do not require prior knowledge of the RBP's endogenous RNA targets or its binding sites within these RNAs. Here, we provide an overview of the experimental strategy and the strengths and limitations of common tethering systems. We illustrate specific examples of the application of the assay in elucidating the function of various classes of RBPs. We also discuss how classic tethering assay approaches and insights gained from them have been empowered by more recent technological advances, including efficient genome editing and high-throughput RNA-sequencing.

  16. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements

    PubMed Central

    Viktorovskaya, Olga V.; Greco, Todd M.; Cristea, Ileana M.; Thompson, Sunnie R.

    2016-01-01

    Background There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses) replication. Methodology/Principal Findings Seventy-nine novel RNA binding proteins for dengue virus (DENV) were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated. Conclusions/Significance The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with

  17. StreptoTag: a novel method for the isolation of RNA-binding proteins.

    PubMed Central

    Bachler, M; Schroeder, R; von Ahsen, U

    1999-01-01

    We describe a fast and simple one-step affinity-purification method for the isolation of specific RNA-binding proteins. An in vitro-transcribed hybrid RNA consisting of an aptamer sequence with high binding specificity to the antibiotic streptomycin and a putative protein-binding RNA sequence is incubated with crude extract. After complex formation, the sample is applied to an affinity column containing streptomycin immobilized to Sepharose. The binding of the in vitro-assembled RNA-protein complex to streptomycin-Sepharose is mediated by the aptamer RNA and the specifically bound proteins are recovered from the affinity matrix by elution with the antibiotic. Employing two well-characterized RNA-protein interactions, we tested the performance of this new method. The spliceosomal U1A protein and the bacteriophage MS2 coat protein could be isolated via their appropriate RNA motif containing hybrid RNA from crude yeast extracts in high yield and purity after only one round of affinity purification. As the purification principle is independent of the extract source, this new affinity chromatography strategy that makes use of an in vitro-selected antibiotic-binding RNA as a tag, "StreptoTag," should be applicable to extracts from other organisms as well. Therefore, we propose StreptoTag to be a versatile tool for the isolation of unknown RNA-binding proteins. PMID:10580480

  18. Specific RNA binding by amino-terminal peptides of alfalfa mosaic virus coat protein.

    PubMed Central

    Baer, M L; Houser, F; Loesch-Fries, L S; Gehrke, L

    1994-01-01

    Specific RNA-protein interactions and ribonucleoprotein complexes are essential for many biological processes, but our understanding of how ribonucleoprotein particles form and accomplish their biological functions is rudimentary. This paper describes the interaction of alfalfa mosaic virus (A1MV) coat protein or peptides with viral RNA. A1MV coat protein is necessary both for virus particle formation and for the initiation of replication of the three genomic RNAs. We have examined protein determinants required for specific RNA binding and analyzed potential structural changes elicited by complex formation. The results indicate that the amino-terminus of the viral coat protein, which lacks primary sequence homology with recognized RNA binding motifs, is both necessary and sufficient for binding to RNA. Circular dichroism spectra and electrophoretic mobility shift experiments suggest that the RNA conformation is altered when amino-terminal coat protein peptides bind to the viral RNA. The peptide--RNA interaction is functionally significant because the peptides will substitute for A1MV coat protein in initiating RNA replication. The apparent conformational change that accompanies RNA--peptide complex formation may generate a structure which, unlike the viral RNA alone, can be recognized by the viral replicase. Images PMID:8313916

  19. Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control.

    PubMed

    Piñeiro, David; Fernandez-Chamorro, Javier; Francisco-Velilla, Rosario; Martinez-Salas, Encarna

    2015-01-01

    Gemin5 is a RNA-binding protein (RBP) that was first identified as a peripheral component of the survival of motor neurons (SMN) complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs) through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs). Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E). Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES) elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis.

  20. The RNA-binding protein Gemin5 binds directly to the ribosome and regulates global translation

    PubMed Central

    Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Ramajo, Jorge; Martinez-Salas, Encarnación

    2016-01-01

    RNA-binding proteins (RBPs) play crucial roles in all organisms. The protein Gemin5 harbors two functional domains. The N-terminal domain binds to snRNAs targeting them for snRNPs assembly, while the C-terminal domain binds to IRES elements through a non-canonical RNA-binding site. Here we report a comprehensive view of the Gemin5 interactome; most partners copurified with the N-terminal domain via RNA bridges. Notably, Gemin5 sediments with the subcellular ribosome fraction, and His-Gemin5 binds to ribosome particles via its N-terminal domain. The interaction with the ribosome was lost in F381A and Y474A Gemin5 mutants, but not in W14A and Y15A. Moreover, the ribosomal proteins L3 and L4 bind directly with Gemin5, and conversely, Gemin5 mutants impairing the binding to the ribosome are defective in the interaction with L3 and L4. The overall polysome profile was affected by Gemin5 depletion or overexpression, concomitant to an increase or a decrease, respectively, of global protein synthesis. Gemin5, and G5-Nter as well, were detected on the polysome fractions. These results reveal the ribosome-binding capacity of the N-ter moiety, enabling Gemin5 to control global protein synthesis. Our study uncovers a crosstalk between this protein and the ribosome, and provides support for the view that Gemin5 may control translation elongation. PMID:27507887

  1. The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions.

    PubMed

    Beckmann, Benedikt M; Castello, Alfredo; Medenbach, Jan

    2016-06-01

    Post-transcriptional regulation of gene expression plays a critical role in almost all cellular processes. Regulation occurs mostly by RNA-binding proteins (RBPs) that recognise RNA elements and form ribonucleoproteins (RNPs) to control RNA metabolism from synthesis to decay. Recently, the repertoire of RBPs was significantly expanded owing to methodological advances such as RNA interactome capture. The newly identified RNA binders are involved in diverse biological processes and belong to a broad spectrum of protein families, many of them exhibiting enzymatic activities. This suggests the existence of an extensive crosstalk between RNA biology and other, in principle unrelated, cell functions such as intermediary metabolism. Unexpectedly, hundreds of new RBPs do not contain identifiable RNA-binding domains (RBDs), raising the question of how they interact with RNA. Despite the many functions that have been attributed to RNA, our understanding of RNPs is still mostly governed by a rather protein-centric view, leading to the idea that proteins have evolved to bind to and regulate RNA and not vice versa. However, RNPs formed by an RNA-driven interaction mechanism (RNA-determined RNPs) are abundant and offer an alternative explanation for the surprising lack of classical RBDs in many RNA-interacting proteins. Moreover, RNAs can act as scaffolds to orchestrate and organise protein networks and directly control their activity, suggesting that nucleic acids might play an important regulatory role in many cellular processes, including metabolism.

  2. The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions.

    PubMed

    Beckmann, Benedikt M; Castello, Alfredo; Medenbach, Jan

    2016-06-01

    Post-transcriptional regulation of gene expression plays a critical role in almost all cellular processes. Regulation occurs mostly by RNA-binding proteins (RBPs) that recognise RNA elements and form ribonucleoproteins (RNPs) to control RNA metabolism from synthesis to decay. Recently, the repertoire of RBPs was significantly expanded owing to methodological advances such as RNA interactome capture. The newly identified RNA binders are involved in diverse biological processes and belong to a broad spectrum of protein families, many of them exhibiting enzymatic activities. This suggests the existence of an extensive crosstalk between RNA biology and other, in principle unrelated, cell functions such as intermediary metabolism. Unexpectedly, hundreds of new RBPs do not contain identifiable RNA-binding domains (RBDs), raising the question of how they interact with RNA. Despite the many functions that have been attributed to RNA, our understanding of RNPs is still mostly governed by a rather protein-centric view, leading to the idea that proteins have evolved to bind to and regulate RNA and not vice versa. However, RNPs formed by an RNA-driven interaction mechanism (RNA-determined RNPs) are abundant and offer an alternative explanation for the surprising lack of classical RBDs in many RNA-interacting proteins. Moreover, RNAs can act as scaffolds to orchestrate and organise protein networks and directly control their activity, suggesting that nucleic acids might play an important regulatory role in many cellular processes, including metabolism. PMID:27165283

  3. Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control

    PubMed Central

    Piñeiro, David; Fernandez-Chamorro, Javier; Francisco-Velilla, Rosario; Martinez-Salas, Encarna

    2015-01-01

    Gemin5 is a RNA-binding protein (RBP) that was first identified as a peripheral component of the survival of motor neurons (SMN) complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs) through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs). Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E). Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES) elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis. PMID:25898402

  4. Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control.

    PubMed

    Piñeiro, David; Fernandez-Chamorro, Javier; Francisco-Velilla, Rosario; Martinez-Salas, Encarna

    2015-01-01

    Gemin5 is a RNA-binding protein (RBP) that was first identified as a peripheral component of the survival of motor neurons (SMN) complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs) through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs). Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E). Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES) elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis. PMID:25898402

  5. Identification of in vivo, conserved, TAF15 RNA binding sites reveals the impact of TAF15 on the neuronal transcriptome.

    PubMed

    Ibrahim, Fadia; Maragkakis, Manolis; Alexiou, Panagiotis; Maronski, Margaret A; Dichter, Marc A; Mourelatos, Zissimos

    2013-02-21

    RNA binding proteins (RBPs) have emerged as major causative agents of amyotrophic lateral sclerosis (ALS). To investigate the function of TAF15, an RBP recently implicated in ALS, we explored its target RNA repertoire in normal human brain and mouse neurons. Coupling high-throughput sequencing of immunoprecipitated and crosslinked RNA with RNA sequencing and TAF15 knockdowns, we identified conserved TAF15 RNA targets and assessed the impact of TAF15 on the neuronal transcriptome. We describe a role of TAF15 in the regulation of splicing for a set of neuronal RNAs encoding proteins with essential roles in synaptic activities. We find that TAF15 is required for a critical alternative splicing event of the zeta-1 subunit of the glutamate N-methyl-D-aspartate receptor (Grin1) that controls the activity and trafficking of NR1. Our study uncovers neuronal RNA networks impacted by TAF15 and sets the stage for investigating the role of TAF15 in ALS pathogenesis.

  6. Classification and purification of proteins of heterogeneous nuclear ribonucleoprotein particles by RNA-binding specificities

    SciTech Connect

    Swanson, M.S.; Dreyfuss, G.

    1988-05-01

    Several proteins of heterogeneous nuclear ribonucleoprotein (hnRNP) particles display very high binding affinities for different ribonucleotide homopolymers. The specificity of some of these proteins at high salt concentrations and in the presence of heparin allows for their rapid one-step purification from HeLa nucleoplasm. The authors show that the hnRNP proteins are poly(U)-binding proteins and compare their specificity to that of the previously described cytoplasmic poly(A)-binding protein. These findings provide a useful tool for the classification and purification of hnRNP proteins from various tissues and organisms and indicate that different hnRNP proteins have different RNA-binding specificities.

  7. A novel methyltransferase (Hmt1p) modifies poly(A)+-RNA-binding proteins.

    PubMed Central

    Henry, M F; Silver, P A

    1996-01-01

    RNA-binding proteins play many essential roles in the metabolism of nuclear pre-mRNA. As such, they demonstrate a myriad of dynamic behaviors and modifications. In particular, heterogeneous nuclear ribonucleoproteins (hnRNPs) contain the bulk of methylated arginine residues in eukaryotic cells. We have identified the first eukaryotic hnRNP-specific methyltransferase via a genetic screen for proteins that interact with an abundant poly(A)+-RNA-binding protein termed Npl3p. We have previously shown that npl3-1 mutants are temperature sensitive for growth and defective for export of mRNA from the nucleus. New mutants in interacting genes were isolated by their failure to survive in the presence of the npl3-1 allele. Four alleles of the same gene were identified in this manner. Cloning of the cognate gene revealed an encoded protein with similarity to methyltransferases that was termed HMT1 for hnRNP methyltransferase. HMT1 is not required for normal cell viability except when NPL3 is also defective. The Hmt1 protein is located in the nucleus. We demonstrate that Npl3p is methylated by Hmt1p both in vivo and in vitro. These findings now allow further exploration of the function of this previously uncharacterized class of enzymes. PMID:8668183

  8. A testis cytoplasmic RNA-binding protein that has the properties of a translational repressor.

    PubMed Central

    Lee, K; Fajardo, M A; Braun, R E

    1996-01-01

    Translation of the mouse protamine 1 (Prm-1) mRNA is repressed for several days during male germ cell differentiation. With the hope of cloning genes that regulate the translational repression of Prm-1, we screened male germ cell cDNA expression libraries with the 3' untranslated region of the Prm-1 RNA. From this screen we obtained two independent clones that encode Prbp, a Prm-1 RNA-binding protein. Prbp contains two copies of a double-stranded-RNA-binding domain. In vitro, the protein binds to a portion of the Prm-1 3' untranslated region previously shown to be sufficient for translational repression in transgenic mice, as well as to poly(I). poly(C). Prbp protein is present in multiple forms in cytoplasmic extracts prepared from wild-type mouse testes and is absent from testes of germ cell-deficient mouse mutants, suggesting that Prbp is restricted to the germ cells of the testis. Immunocytochemical localization confirmed that Prbp is present in the cytoplasmic compartment of late-stage meiotic cells and haploid round spermatids. Recombinant Prbp protein inhibits the translation of multiple mRNAs in a wheat germ lysate, suggesting that Prbp acts to repress translation in round spermatids. While this protein lacks complete specificity for Prm-1-containing RNAs in vitro, the properties of Prbp are consistent with it acting as a general repressor of translation. PMID:8649414

  9. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation

    SciTech Connect

    Takanashi, Keisuke; Yamaguchi, Atsushi

    2014-09-26

    Highlights: • Aggregation of ALS-linked FUS mutant sequesters ALS-associated RNA-binding proteins (FUS wt, hnRNP A1, and hnRNP A2). • Aggregation of ALS-linked FUS mutant sequesters SMN1 in the detergent-insoluble fraction. • Aggregation of ALS-linked FUS mutant reduced the number of speckles in the nucleus. • Overproduced ALS-linked FUS mutant reduced the number of processing-bodies (PBs). - Abstract: Protein aggregate/inclusion is one of hallmarks for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). FUS/TLS, one of causative genes for familial ALS, encodes a multifunctional DNA/RNA binding protein predominantly localized in the nucleus. C-terminal mutations in FUS/TLS cause the retention and the inclusion of FUS/TLS mutants in the cytoplasm. In the present study, we examined the effects of ALS-linked FUS mutants on ALS-associated RNA binding proteins and RNA granules. FUS C-terminal mutants were diffusely mislocalized in the cytoplasm as small granules in transiently transfected SH-SY5Y cells, whereas large aggregates were spontaneously formed in ∼10% of those cells. hnRNP A1, hnRNP A2, and SMN1 as well as FUS wild type were assembled into stress granules under stress conditions, and these were also recruited to FUS mutant-derived spontaneous aggregates in the cytoplasm. These aggregates stalled poly(A) mRNAs and sequestered SMN1 in the detergent insoluble fraction, which also reduced the number of nuclear oligo(dT)-positive foci (speckles) in FISH (fluorescence in situ hybridization) assay. In addition, the number of P-bodies was decreased in cells harboring cytoplasmic granules of FUS P525L. These findings raise the possibility that ALS-linked C-terminal FUS mutants could sequester a variety of RNA binding proteins and mRNAs in the cytoplasmic aggregates, which could disrupt various aspects of RNA equilibrium and biogenesis.

  10. Functional characterization of two paralogs that are novel RNA binding proteins influencing mitochondrial transcripts of Trypanosoma brucei.

    PubMed

    Kafková, Lucie; Ammerman, Michelle L; Faktorová, Drahomíra; Fisk, John C; Zimmer, Sara L; Sobotka, Roman; Read, Laurie K; Lukes, Julius; Hashimi, Hassan

    2012-10-01

    A majority of Trypanosoma brucei proteins have unknown functions, a consequence of its independent evolutionary history within the order Kinetoplastida that allowed for the emergence of several unique biological properties. Among these is RNA editing, needed for expression of mitochondrial-encoded genes. The recently discovered mitochondrial RNA binding complex 1 (MRB1) is composed of proteins with several functions in processing organellar RNA. We characterize two MRB1 subunits, referred to herein as MRB8170 and MRB4160, which are paralogs arisen from a large chromosome duplication occurring only in T. brucei. As with many other MRB1 proteins, both have no recognizable domains, motifs, or orthologs outside the order. We show that they are both novel RNA binding proteins, possibly representing a new class of these proteins. They associate with a similar subset of MRB1 subunits but not directly with each other. We generated cell lines that either individually or simultaneously target the mRNAs encoding both proteins using RNAi. Their dual silencing results in a differential effect on moderately and pan-edited RNAs, suggesting a possible functional separation of the two proteins. Cell growth persists upon RNAi silencing of each protein individually in contrast to the dual knockdown. Yet, their apparent redundancy in terms of cell viability is at odds with the finding that only one of these knockdowns results in the general degradation of pan-edited RNAs. While MRB8170 and MRB4160 share a considerable degree of conservation, our results suggest that their recent sequence divergence has led to them influencing mitochondrial mRNAs to differing degrees.

  11. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    PubMed

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  12. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins

    PubMed Central

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements. PMID:21087992

  13. ATP-independent diffusion of double-stranded RNA binding proteins

    PubMed Central

    Koh, Hye Ran; Kidwell, Mary Anne; Ragunathan, Kaushik; Doudna, Jennifer A.; Myong, Sua

    2013-01-01

    The proteins harboring double-stranded RNA binding domains (dsRBDs) play diverse functional roles such as RNA localization, splicing, editing, export, and translation, yet mechanistic basis and functional significance of dsRBDs remain unclear. To unravel this enigma, we investigated transactivation response RNA binding protein (TRBP) consisting of three dsRBDs, which functions in HIV replication, protein kinase R(PKR)–mediated immune response, and RNA silencing. Here we report an ATP-independent diffusion activity of TRBP exclusively on dsRNA in a length-dependent manner. The first two dsRBDs of TRBP are essential for diffusion, whereas the third dsRBD is dispensable. Two homologs of TRBP, PKR activator and R3D1-L, displayed the same diffusion, implying a universality of the diffusion activity among this protein family. Furthermore, a Dicer–TRBP complex on dsRNA exhibited dynamic diffusion, which was correlated with Dicer’s catalytic activity. These results implicate the dsRNA-specific diffusion activity of TRBP that contributes to enhancing siRNA and miRNA processing by Dicer. PMID:23251028

  14. ATP-independent diffusion of double-stranded RNA binding proteins.

    PubMed

    Koh, Hye Ran; Kidwell, Mary Anne; Ragunathan, Kaushik; Doudna, Jennifer A; Myong, Sua

    2013-01-01

    The proteins harboring double-stranded RNA binding domains (dsRBDs) play diverse functional roles such as RNA localization, splicing, editing, export, and translation, yet mechanistic basis and functional significance of dsRBDs remain unclear. To unravel this enigma, we investigated transactivation response RNA binding protein (TRBP) consisting of three dsRBDs, which functions in HIV replication, protein kinase R(PKR)-mediated immune response, and RNA silencing. Here we report an ATP-independent diffusion activity of TRBP exclusively on dsRNA in a length-dependent manner. The first two dsRBDs of TRBP are essential for diffusion, whereas the third dsRBD is dispensable. Two homologs of TRBP, PKR activator and R3D1-L, displayed the same diffusion, implying a universality of the diffusion activity among this protein family. Furthermore, a Dicer-TRBP complex on dsRNA exhibited dynamic diffusion, which was correlated with Dicer's catalytic activity. These results implicate the dsRNA-specific diffusion activity of TRBP that contributes to enhancing siRNA and miRNA processing by Dicer. PMID:23251028

  15. Thermodynamics of tryptophan-mediated activation of the trp RNA-binding attenuation protein.

    PubMed

    McElroy, Craig A; Manfredo, Amanda; Gollnick, Paul; Foster, Mark P

    2006-06-27

    The trp RNA-binding attenuation protein (TRAP) functions in many bacilli to control the expression of the tryptophan biosynthesis genes. Transcription of the trp operon is controlled by TRAP through an attenuation mechanism, in which competition between two alternative secondary-structural elements in the 5' leader sequence of the nascent mRNA is influenced by tryptophan-dependent binding of TRAP to the RNA. Previously, NMR studies of the undecamer (11-mer) suggested that tryptophan-dependent control of RNA binding by TRAP is accomplished through ligand-induced changes in protein dynamics. We now present further insights into this ligand-coupled event from hydrogen/deuterium (H/D) exchange analysis, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC). Scanning calorimetry showed tryptophan dissociation to be independent of global protein unfolding, while analysis of the temperature dependence of the binding enthalpy by ITC revealed a negative heat capacity change larger than expected from surface burial, a hallmark of binding-coupled processes. Analysis of this excess heat capacity change using parameters derived from protein folding studies corresponds to the ordering of 17-24 residues per monomer of TRAP upon tryptophan binding. This result is in agreement with qualitative analysis of residue-specific broadening observed in TROSY NMR spectra of the 91 kDa oligomer. Implications for the mechanism of ligand-mediated TRAP activation through a shift in a preexisting conformational equilibrium and an induced-fit conformational change are discussed. PMID:16784236

  16. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins.

    PubMed

    Paz, Inbal; Kligun, Efrat; Bengad, Barak; Mandel-Gutfreund, Yael

    2016-07-01

    Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website http://bindup.technion.ac.il/, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner.

  17. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins

    PubMed Central

    Paz, Inbal; Kligun, Efrat; Bengad, Barak; Mandel-Gutfreund, Yael

    2016-01-01

    Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website http://bindup.technion.ac.il/, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner. PMID:27198220

  18. RNA and protein complexes of trp RNA-binding attenuation protein characterized by mass spectrometry.

    PubMed

    Akashi, Satoko; Watanabe, Masahiro; Heddle, Jonathan G; Unzai, Satoru; Park, Sam-Yong; Tame, Jeremy R H

    2009-03-15

    We have characterized both wild-type and mutant TRAP (trp RNA-binding attenuation protein) from Bacillus stearothermophilus , and their complexes with RNA or its regulator anti-TRAP protein (AT), by electrospray ionization mass spectrometry (ESI-MS). Wild-type TRAP mainly forms homo-11mer rings. The mutant used carries three copies of the TRAP monomer on a single polypeptide chain so that it associates to form a 12mer ring with four polypeptide molecules. Mass spectra showed that both the wild-type TRAP 11mer and the mutant TRAP 12mer can bind a cognate single-stranded RNA molecule with a molar ratio of 1:1. The crystal structure of wild-type TRAP complexed with AT shows a TRAP 12mer ring surrounded by six AT trimers. However, nanoESI-MS of wild-type TRAP mixed with AT shows four species with different binding stoichiometries, and the complex observed by crystallography represents only a minor species in solution; most of the TRAP remains in an 11mer ring form. Mass spectra of mutant TRAP showed only a single species, TRAP 12mer + six copies of AT trimer, which is observed by crystallography. These results suggest that crystallization selects only the most symmetrical TRAP-AT complex from the solution, whereas ESI-MS can take a "snapshot" of all the species in solution. PMID:19219981

  19. RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation

    PubMed Central

    Palanichamy, Jayanth Kumar; Tran, Tiffany M.; Howard, Jonathan M.; Contreras, Jorge R.; Fernando, Thilini R.; Sterne-Weiler, Timothy; Katzman, Sol; Toloue, Masoud; Yan, Weihong; Sanford, Jeremy R.; Rao, Dinesh S.

    2016-01-01

    Posttranscriptional control of gene expression is important for defining both normal and pathological cellular phenotypes. In vitro, RNA-binding proteins (RBPs) have recently been shown to play important roles in posttranscriptional regulation; however, the contribution of RBPs to cell specification is not well understood. Here, we determined that the RBP insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is specifically overexpressed in mixed lineage leukemia–rearranged (MLL-rearranged) B-acute lymphoblastic leukemia (B-ALL), which constitutes a subtype of this malignancy associated with poor prognosis and high risk of relapse. IGF2BP3 was required for the survival of B-ALL cell lines, as knockdown led to decreased proliferation and increased apoptosis. Enforced expression of IGF2BP3 provided murine BM cells with a strong survival advantage, led to proliferation of hematopoietic stem and progenitor cells, and skewed hematopoietic development to the B cell/myeloid lineage. Cross-link immunoprecipitation and high throughput sequencing uncovered the IGF2BP3-regulated transcriptome, which includes oncogenes MYC and CDK6 as direct targets. IGF2BP3 regulated transcripts via targeting elements within 3′ untranslated regions (3′UTR), and enforced IGF2BP3 expression in mice resulted in enhanced expression of Myc and Cdk6 in BM. Together, our data suggest that IGF2BP3-mediated targeting of oncogenic transcripts may represent a critical pathogenetic mechanism in MLL-rearranged B-ALL and support IGF2BP3 and its cognate RNA-binding partners as potential therapeutic targets in this disease. PMID:26974154

  20. RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation.

    PubMed

    Palanichamy, Jayanth Kumar; Tran, Tiffany M; Howard, Jonathan M; Contreras, Jorge R; Fernando, Thilini R; Sterne-Weiler, Timothy; Katzman, Sol; Toloue, Masoud; Yan, Weihong; Basso, Giuseppe; Pigazzi, Martina; Sanford, Jeremy R; Rao, Dinesh S

    2016-04-01

    Posttranscriptional control of gene expression is important for defining both normal and pathological cellular phenotypes. In vitro, RNA-binding proteins (RBPs) have recently been shown to play important roles in posttranscriptional regulation; however, the contribution of RBPs to cell specification is not well understood. Here, we determined that the RBP insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is specifically overexpressed in mixed lineage leukemia-rearranged (MLL-rearranged) B-acute lymphoblastic leukemia (B-ALL), which constitutes a subtype of this malignancy associated with poor prognosis and high risk of relapse. IGF2BP3 was required for the survival of B-ALL cell lines, as knockdown led to decreased proliferation and increased apoptosis. Enforced expression of IGF2BP3 provided murine BM cells with a strong survival advantage, led to proliferation of hematopoietic stem and progenitor cells, and skewed hematopoietic development to the B cell/myeloid lineage. Cross-link immunoprecipitation and high throughput sequencing uncovered the IGF2BP3-regulated transcriptome, which includes oncogenes MYC and CDK6 as direct targets. IGF2BP3 regulated transcripts via targeting elements within 3' untranslated regions (3'UTR), and enforced IGF2BP3 expression in mice resulted in enhanced expression of Myc and Cdk6 in BM. Together, our data suggest that IGF2BP3-mediated targeting of oncogenic transcripts may represent a critical pathogenetic mechanism in MLL-rearranged B-ALL and support IGF2BP3 and its cognate RNA-binding partners as potential therapeutic targets in this disease.

  1. Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins

    PubMed Central

    Stražar, Martin; Žitnik, Marinka; Zupan, Blaž; Ule, Jernej; Curk, Tomaž

    2016-01-01

    Motivation: RNA binding proteins (RBPs) play important roles in post-transcriptional control of gene expression, including splicing, transport, polyadenylation and RNA stability. To model protein–RNA interactions by considering all available sources of information, it is necessary to integrate the rapidly growing RBP experimental data with the latest genome annotation, gene function, RNA sequence and structure. Such integration is possible by matrix factorization, where current approaches have an undesired tendency to identify only a small number of the strongest patterns with overlapping features. Because protein–RNA interactions are orchestrated by multiple factors, methods that identify discriminative patterns of varying strengths are needed. Results: We have developed an integrative orthogonality-regularized nonnegative matrix factorization (iONMF) to integrate multiple data sources and discover non-overlapping, class-specific RNA binding patterns of varying strengths. The orthogonality constraint halves the effective size of the factor model and outperforms other NMF models in predicting RBP interaction sites on RNA. We have integrated the largest data compendium to date, which includes 31 CLIP experiments on 19 RBPs involved in splicing (such as hnRNPs, U2AF2, ELAVL1, TDP-43 and FUS) and processing of 3’UTR (Ago, IGF2BP). We show that the integration of multiple data sources improves the predictive accuracy of retrieval of RNA binding sites. In our study the key predictive factors of protein–RNA interactions were the position of RNA structure and sequence motifs, RBP co-binding and gene region type. We report on a number of protein-specific patterns, many of which are consistent with experimentally determined properties of RBPs. Availability and implementation: The iONMF implementation and example datasets are available at https://github.com/mstrazar/ionmf. Contact: tomaz.curk@fri.uni-lj.si Supplementary information: Supplementary data are available

  2. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins

    DOE PAGES

    Brooks, Angela N.; Duff, Michael O.; May, Gemma; Yang, Li; Bolisetty, Mohan; Landolin, Jane; Wan, Ken; Sandler, Jeremy; Booth, Benjamin W.; Celniker, Susan E.; et al

    2015-08-20

    Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected themore » splicing of pre-mRNAs encoding other splicing regulators. In conclusion, this large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.« less

  3. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins

    SciTech Connect

    Brooks, Angela N.; Duff, Michael O.; May, Gemma; Yang, Li; Bolisetty, Mohan; Landolin, Jane; Wan, Ken; Sandler, Jeremy; Booth, Benjamin W.; Celniker, Susan E.; Graveley, Brenton R.; Brenner, Steven E.

    2015-08-20

    Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected the splicing of pre-mRNAs encoding other splicing regulators. In conclusion, this large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.

  4. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins

    PubMed Central

    Brooks, Angela N.; Duff, Michael O.; May, Gemma; Yang, Li; Bolisetty, Mohan; Landolin, Jane; Wan, Ken; Sandler, Jeremy; Booth, Benjamin W.; Celniker, Susan E.; Graveley, Brenton R.; Brenner, Steven E.

    2015-01-01

    Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected the splicing of pre-mRNAs encoding other splicing regulators. This large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs. PMID:26294686

  5. Alternative Polyadenylation in Glioblastoma Multiforme and Changes in Predicted RNA Binding Protein Profiles

    PubMed Central

    Shao, Jiaofang; Zhang, Jing; Zhang, Zengming; Jiang, Huawei; Lou, Xiaoyan; Foltz, Gregory; Lan, Qing; Huang, Qiang

    2013-01-01

    Abstract Alternative polyadenylation (APA) is widely present in the human genome and plays a key role in carcinogenesis. We conducted a comprehensive analysis of the APA products in glioblastoma multiforme (GBM, one of the most lethal brain tumors) and normal brain tissues and further developed a computational pipeline, RNAelements (http://sysbio.zju.edu.cn/RNAelements/), using covariance model from known RNA binding protein (RBP) targets acquired by RNA Immunoprecipitation (RIP) analysis. We identified 4530 APA isoforms for 2733 genes in GBM, and found that 182 APA isoforms from 148 genes showed significant differential expression between normal and GBM brain tissues. We then focused on three genes with long and short APA isoforms that show inconsistent expression changes between normal and GBM brain tissues. These were myocyte enhancer factor 2D, heat shock factor binding protein 1, and polyhomeotic homolog 1 (Drosophila). Using the RNAelements program, we found that RBP binding sites were enriched in the alternative regions between the first and the last polyadenylation sites, which would result in the short APA forms escaping regulation from those RNA binding proteins. To the best of our knowledge, this report is the first comprehensive APA isoform dataset for GBM and normal brain tissues. Additionally, we demonstrated a putative novel APA-mediated mechanism for controlling RNA stability and translation for APA isoforms. These observations collectively lay a foundation for novel diagnostics and molecular mechanisms that can inform future therapeutic interventions for GBM. PMID:23421905

  6. Severe muscle wasting and denervation in mice lacking the RNA-binding protein ZFP106.

    PubMed

    Anderson, Douglas M; Cannavino, Jessica; Li, Hui; Anderson, Kelly M; Nelson, Benjamin R; McAnally, John; Bezprozvannaya, Svetlana; Liu, Yun; Lin, Weichun; Liu, Ning; Bassel-Duby, Rhonda; Olson, Eric N

    2016-08-01

    Innervation of skeletal muscle by motor neurons occurs through the neuromuscular junction, a cholinergic synapse essential for normal muscle growth and function. Defects in nerve-muscle signaling cause a variety of neuromuscular disorders with features of ataxia, paralysis, skeletal muscle wasting, and degeneration. Here we show that the nuclear zinc finger protein ZFP106 is highly enriched in skeletal muscle and is required for postnatal maintenance of myofiber innervation by motor neurons. Genetic disruption of Zfp106 in mice results in progressive ataxia and hindlimb paralysis associated with motor neuron degeneration, severe muscle wasting, and premature death by 6 mo of age. We show that ZFP106 is an RNA-binding protein that associates with the core splicing factor RNA binding motif protein 39 (RBM39) and localizes to nuclear speckles adjacent to spliceosomes. Upon inhibition of pre-mRNA synthesis, ZFP106 translocates with other splicing factors to the nucleolus. Muscle and spinal cord of Zfp106 knockout mice displayed a gene expression signature of neuromuscular degeneration. Strikingly, altered splicing of the Nogo (Rtn4) gene locus in skeletal muscle of Zfp106 knockout mice resulted in ectopic expression of NOGO-A, the neurite outgrowth factor that inhibits nerve regeneration and destabilizes neuromuscular junctions. These findings reveal a central role for Zfp106 in the maintenance of nerve-muscle signaling, and highlight the involvement of aberrant RNA processing in neuromuscular disease pathogenesis. PMID:27418600

  7. A method for in vivo identification of bacterial small RNA-binding proteins.

    PubMed

    Osborne, Jonathan; Djapgne, Louise; Tran, Bao Quoc; Goo, Young Ah; Oglesby-Sherrouse, Amanda G

    2014-12-01

    Small bacterial regulatory RNAs (sRNAs) have gained immense appreciation over the last decade for their roles in mediating posttranscriptional gene regulation of numerous physiological processes. Several proteins contribute to sRNA stability and regulation, most notably the Hfq RNA-binding protein. However, not all sRNAs rely on Hfq for their stability. It is therefore likely that other proteins contribute to the stability and function of certain bacterial sRNAs. Here, we describe a methodology for identifying in vivo-binding proteins of sRNAs, developed using the iron-responsive PrrF and PrrH sRNAs of Pseudomonas aeruginosa. RNA was isolated from iron-depleted cultures, which were irradiated to cross-link nucleoprotein complexes. Subsequently, PrrF- and PrrH-protein complexes were enriched using cDNA "bait", and enriched RNA-protein complexes were analyzed by tandem mass spectrometry to identify PrrF and PrrH associated proteins. This method identified Hfq as a potential PrrF- and PrrH-binding protein. Interestingly, Hfq was identified more often in samples probed with the PrrF cDNA "bait" as compared to the PrrH cDNA "bait", suggesting Hfq has a stronger binding affinity for the PrrF sRNAs in vivo. Hfq binding to the PrrF and PrrH sRNAs was validated by electrophoretic mobility shift assays with purified Hfq protein from P. aeruginosa. As such, this study demonstrates that in vivo cross-linking coupled with sequence-specific affinity chromatography and tandem mass spectrometry (SSAC-MS/MS) is an effective methodology for unbiased identification of bacterial sRNA-binding proteins.

  8. A method for in vivo identification of bacterial small RNA-binding proteins

    PubMed Central

    Osborne, Jonathan; Djapgne, Louise; Tran, Bao Quoc; Goo, Young Ah; Oglesby-Sherrouse, Amanda G

    2014-01-01

    Small bacterial regulatory RNAs (sRNAs) have gained immense appreciation over the last decade for their roles in mediating posttranscriptional gene regulation of numerous physiological processes. Several proteins contribute to sRNA stability and regulation, most notably the Hfq RNA-binding protein. However, not all sRNAs rely on Hfq for their stability. It is therefore likely that other proteins contribute to the stability and function of certain bacterial sRNAs. Here, we describe a methodology for identifying in vivo-binding proteins of sRNAs, developed using the iron-responsive PrrF and PrrH sRNAs of Pseudomonas aeruginosa. RNA was isolated from iron-depleted cultures, which were irradiated to cross-link nucleoprotein complexes. Subsequently, PrrF- and PrrH-protein complexes were enriched using cDNA “bait”, and enriched RNA-protein complexes were analyzed by tandem mass spectrometry to identify PrrF and PrrH associated proteins. This method identified Hfq as a potential PrrF- and PrrH-binding protein. Interestingly, Hfq was identified more often in samples probed with the PrrF cDNA “bait” as compared to the PrrH cDNA “bait”, suggesting Hfq has a stronger binding affinity for the PrrF sRNAs in vivo. Hfq binding to the PrrF and PrrH sRNAs was validated by electrophoretic mobility shift assays with purified Hfq protein from P. aeruginosa. As such, this study demonstrates that in vivo cross-linking coupled with sequence-specific affinity chromatography and tandem mass spectrometry (SSAC-MS/MS) is an effective methodology for unbiased identification of bacterial sRNA-binding proteins. PMID:25351924

  9. Imp (IGF-II mRNA-binding protein) is expressed during spermatogenesis in Drosophila melanogaster.

    PubMed

    Fabrizio, James J; Hickey, Christina A; Stabrawa, Cecylia; Meytes, Vadim; Hutter, Jessica A; Talbert, Caitlin; Regis, Nadine

    2008-01-01

    Drosophila spermatogenesis results in the production of sixty‑four ~2-mm spermatozoa from an individual founder cell. Little is known, however, about the elongation of spermatids to such an extraordinary length. In a partial screen of a GFP-tagged protein trap collection, four insertions were uncovered that exhibit expression toward the tail ends of spermatid cysts and within the apical tip of the testis, suggesting that these protein traps may represent genes involved in spermatid elongation and pre-meiotic spermatogenesis, respectively. Inverse PCR followed by cycle sequencing and BLAST revealed that all four protein traps represent insertions within Imp (IGF-IImRNA binding protein), a known translational regulator. Testis enhancer trap analysis also reveals Imp expression in the cells of the apical tip, suggesting transcription of Imp prior to the primary spermatocyte stage. Taken together, these results suggest a role for Imp in the male germline during both spermatid elongation and premeiotic spermatogenesis.

  10. The function of the RNA-binding protein TEL1 in moss reveals ancient regulatory mechanisms of shoot development.

    PubMed

    Vivancos, Julien; Spinner, Lara; Mazubert, Christelle; Charlot, Florence; Paquet, Nicolas; Thareau, Vincent; Dron, Michel; Nogué, Fabien; Charon, Céline

    2012-03-01

    The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16-18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.

  11. Neuroprotection requires the functions of the RNA-binding protein HuR.

    PubMed

    Skliris, A; Papadaki, O; Kafasla, P; Karakasiliotis, I; Hazapis, O; Reczko, M; Grammenoudi, S; Bauer, J; Kontoyiannis, D L

    2015-05-01

    Alterations in the functions of neuronal RNA-binding proteins (RBPs) can contribute to neurodegenerative diseases. However, neurons also express a set of widely distributed RBPs that may have developed specialized functions. Here, we show that the ubiquitous member of the otherwise neuronal Elavl/Hu family of RNA-binding proteins, Elavl1/HuR, has a neuroprotective role. Mice engineered to lack exclusively HuR in the hippocampal neurons of the central nervous system (CNS), maintain physiologic levels of neuronal Elavls and develop a partially diminished seizure response following strong glutamatergic excitation; however, they display an exacerbated neurodegenerative response subsequent to the initial excitotoxic event. This response was phenocopied in hippocampal cells devoid of ionotropic glutamate receptors in which the loss of HuR results in enhanced mitochondrial dysfunction, oxidative damage and programmed necrosis solely after glutamate challenge. The molecular dissection of HuR and nElavl mRNA targets revealed the existence of a HuR-restricted posttranscriptional regulon that failed in HuR-deficient neurons and is involved in cellular energetics and oxidation defense. Thus, HuR acts as a specialized controller of oxidative metabolism in neurons to confer protection from neurodegeneration.

  12. Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins.

    PubMed

    Lin, Yuan; Protter, David S W; Rosen, Michael K; Parker, Roy

    2015-10-15

    Eukaryotic cells possess numerous dynamic membrane-less organelles, RNP granules, enriched in RNA and RNA-binding proteins containing disordered regions. We demonstrate that the disordered regions of key RNP granule components and the full-length granule protein hnRNPA1 can phase separate in vitro, producing dynamic liquid droplets. Phase separation is promoted by low salt concentrations or RNA. Over time, the droplets mature to more stable states, as assessed by slowed fluorescence recovery after photobleaching and resistance to salt. Maturation often coincides with formation of fibrous structures. Different disordered domains can co-assemble into phase-separated droplets. These biophysical properties demonstrate a plausible mechanism by which interactions between disordered regions, coupled with RNA binding, could contribute to RNP granule assembly in vivo through promoting phase separation. Progression from dynamic liquids to stable fibers may be regulated to produce cellular structures with diverse physiochemical properties and functions. Misregulation could contribute to diseases involving aberrant RNA granules. PMID:26412307

  13. Expression of axolotl RNA-binding protein during development of the Mexican axolotl.

    PubMed

    Bhatia, R; Dube, D K; Gaur, A; Robertson, D R; Lemanski, S L; McLean, M D; Lemanski, L F

    1999-08-01

    Amphibians occupy a central position in phylogeny between aquatic and terrestrial vertebrates and are widely used as model systems for studying vertebrate development. We have undertaken a comprehensive molecular approach to understand the early events related to embryonic development in the Mexican axolotl, Ambystoma mexicanum, which is an exquisite animal model for such explorations. Axolotl RBP is a RNA-binding protein which was isolated from the embryonic Mexican axolotl by subtraction hybridization and was found to show highest similarity with human, mouse, and Xenopus cold-inducible RNA-binding protein (CIRP). The reverse transcriptase polymerase chain reaction (RT-PCR) analysis suggests that it is expressed in most of the axolotl tissues except liver; the expression level appears to be highest in adult brain. We have also determined the temporal and spatial pattern of its expression at various stages of development. RT-PCR and in situ hybridization analyses indicate that expression of the AxRBP gene starts at stage 10-12 (gastrula), reaches a maxima around stage 15-20 (early tailbud), and then gradually declines through stage 40 (hatching). In situ hybridization suggests that the expression is at a maximum in neural plate and neural fold at stage 15 (neurula) of embryonic development. PMID:10470498

  14. The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein.

    PubMed

    White, Michael R; Garcin, Elsa D

    2016-01-01

    The glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has a vast array of extraglycolytic cellular functions, including interactions with nucleic acids. GAPDH has been implicated in the translocation of transfer RNA (tRNA), the regulation of cellular messenger RNA (mRNA) stability and translation, as well as the regulation of replication and gene expression of many single-stranded RNA viruses. A growing body of evidence supports GAPDH-RNA interactions serving as part of a larger coordination between intermediary metabolism and RNA biogenesis. Despite the established role of GAPDH in nucleic acid regulation, it is still unclear how and where GAPDH binds to its RNA targets, highlighted by the absence of any conserved RNA-binding sequences. This review will summarize our current understanding of GAPDH-mediated regulation of RNA function. WIREs RNA 2016, 7:53-70. doi: 10.1002/wrna.1315 For further resources related to this article, please visit the WIREs website.

  15. Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues.

    PubMed

    Lewinski, Martin; Hallmann, Armin; Staiger, Dorothee

    2016-04-01

    This study focused on the identification and phylogenetic analysis of glycine-rich RNA binding proteins that contain an RNA recognition motif (RRM)-type RNA binding domain in addition to a region with contiguous glycine residues in representative plant species. In higher plants, glycine-rich proteins with an RRM have met considerable interest as they are responsive to environmental cues and play a role in cold tolerance, pathogen defense, flowering time control, and circadian timekeeping. To identify such RRM containing proteins in plant genomes we developed an RRM profile based on the known glycine-rich RRM containing proteins in the reference plant Arabidopsis thaliana. The application of this remodeled RRM profile that omitted sequences from non-plant species reduced the noise when searching plant genomes for RRM proteins compared to a search performed with the known RRM_1 profile. Furthermore, we developed an island scoring function to identify regions with contiguous glycine residues, using a sliding window approach. This approach tags regions in a protein sequence with a high content of the same amino acid, and repetitive structures score higher. This definition of repetitive structures in a fixed sequence length provided a new glance for characterizing patterns which cannot be easily described as regular expressions. By combining the profile-based domain search for well-conserved regions (the RRM) with a scoring technique for regions with repetitive residues we identified groups of proteins related to the A. thaliana glycine-rich RNA binding proteins in eight plant species. PMID:26589419

  16. Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues.

    PubMed

    Lewinski, Martin; Hallmann, Armin; Staiger, Dorothee

    2016-04-01

    This study focused on the identification and phylogenetic analysis of glycine-rich RNA binding proteins that contain an RNA recognition motif (RRM)-type RNA binding domain in addition to a region with contiguous glycine residues in representative plant species. In higher plants, glycine-rich proteins with an RRM have met considerable interest as they are responsive to environmental cues and play a role in cold tolerance, pathogen defense, flowering time control, and circadian timekeeping. To identify such RRM containing proteins in plant genomes we developed an RRM profile based on the known glycine-rich RRM containing proteins in the reference plant Arabidopsis thaliana. The application of this remodeled RRM profile that omitted sequences from non-plant species reduced the noise when searching plant genomes for RRM proteins compared to a search performed with the known RRM_1 profile. Furthermore, we developed an island scoring function to identify regions with contiguous glycine residues, using a sliding window approach. This approach tags regions in a protein sequence with a high content of the same amino acid, and repetitive structures score higher. This definition of repetitive structures in a fixed sequence length provided a new glance for characterizing patterns which cannot be easily described as regular expressions. By combining the profile-based domain search for well-conserved regions (the RRM) with a scoring technique for regions with repetitive residues we identified groups of proteins related to the A. thaliana glycine-rich RNA binding proteins in eight plant species.

  17. Solution structure of the antitermination protein NusB of Escherichia coli: a novel all-helical fold for an RNA-binding protein.

    PubMed Central

    Huenges, M; Rölz, C; Gschwind, R; Peteranderl, R; Berglechner, F; Richter, G; Bacher, A; Kessler, H; Gemmecker, G

    1998-01-01

    The NusB protein of Escherichia coli is involved in the regulation of rRNA biosynthesis by transcriptional antitermination. In cooperation with several other proteins, it binds to a dodecamer motif designated rrn boxA on the nascent rRNA. The antitermination proteins of E.coli are recruited in the replication cycle of bacteriophage lambda, where they play an important role in switching from the lysogenic to the lytic cycle. Multidimensional heteronuclear NMR experiments were performed with recombinant NusB protein labelled with 13C, 15N and 2H. The three-dimensional structure of the protein was solved from 1926 NMR-derived distances and 80 torsion angle restraints. The protein folds into an alpha/alpha-helical topology consisting of six helices; the arginine-rich N-terminus appears to be disordered. Complexation of the protein with an RNA dodecamer equivalent to the rrn boxA site results in chemical shift changes of numerous amide signals. The overall packing of the protein appears to be conserved, but the flexible N-terminus adopts a more rigid structure upon RNA binding, indicating that the N-terminus functions as an arginine-rich RNA-binding motif (ARM). PMID:9670024

  18. The zinc fingers of the SR-like protein ZRANB2 are single-stranded RNA-binding domains that recognize 5′ splice site-like sequences

    SciTech Connect

    Loughlin, Fionna E.; Mansfield, Robyn E.; Vaz, Paula M.; McGrath, Aaron P.; Setiyaputra, Surya; Gamsjaeger, Roland; Chen, Eva S.; Morris, Brian J.; Guss, J. Mitchell; Mackay, Joel P.

    2009-09-02

    The alternative splicing of mRNA is a critical process in higher eukaryotes that generates substantial proteomic diversity. Many of the proteins that are essential to this process contain arginine/serine-rich (RS) domains. ZRANB2 is a widely-expressed and highly-conserved RS-domain protein that can regulate alternative splicing but lacks canonical RNA-binding domains. Instead, it contains 2 RanBP2-type zinc finger (ZnF) domains. We demonstrate that these ZnFs recognize ssRNA with high affinity and specificity. Each ZnF binds to a single AGGUAA motif and the 2 domains combine to recognize AGGUAA(N{sub x})AGGUAA double sites, suggesting that ZRANB2 regulates alternative splicing via a direct interaction with pre-mRNA at sites that resemble the consensus 5{prime} splice site. We show using X-ray crystallography that recognition of an AGGUAA motif by a single ZnF is dominated by side-chain hydrogen bonds to the bases and formation of a guanine-tryptophan-guanine 'ladder.' A number of other human proteins that function in RNA processing also contain RanBP2 ZnFs in which the RNA-binding residues of ZRANB2 are conserved. The ZnFs of ZRANB2 therefore define another class of RNA-binding domain, advancing our understanding of RNA recognition and emphasizing the versatility of ZnF domains in molecular recognition.

  19. BORIS/CTCFL is an RNA-binding protein that associates with polysomes

    PubMed Central

    2013-01-01

    Background BORIS (CTCFL), a paralogue of the multifunctional and ubiquitously expressed transcription factor CTCF, is best known for its role in transcriptional regulation. In the nucleus, BORIS is particularly enriched in the nucleolus, a crucial compartment for ribosomal RNA and RNA metabolism. However, little is known about cytoplasmic BORIS, which represents the major pool of BORIS protein. Results We show, firstly, that BORIS has a putative nuclear export signal in the C-terminal domain. Furthermore, BORIS associates with mRNA in both neural stem cells and young neurons. The majority of the BORIS-associated transcripts are different in the two cell types. Finally, by using polysome profiling we show that BORIS is associated with actively translating ribosomes. Conclusion We have demonstrated the RNA binding properties of cellular BORIS and its association with actively translating ribosomes. We suggest that BORIS is involved in gene expression at both the transcriptional and post-transcriptional levels. PMID:24279897

  20. The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein.

    PubMed

    Roth, Braden M; Ishimaru, Daniella; Hennig, Mirko

    2013-09-13

    MicroRNA (miRNA) biogenesis follows a conserved succession of processing steps, beginning with the recognition and liberation of an miRNA-containing precursor miRNA hairpin from a large primary miRNA transcript (pri-miRNA) by the Microprocessor, which consists of the nuclear RNase III Drosha and the double-stranded RNA-binding domain protein DGCR8 (DiGeorge syndrome critical region protein 8). Current models suggest that specific recognition is driven by DGCR8 detection of single-stranded elements of the pri-miRNA stem-loop followed by Drosha recruitment and pri-miRNA cleavage. Because countless RNA transcripts feature single-stranded-dsRNA junctions and DGCR8 can bind hundreds of mRNAs, we explored correlations between RNA binding properties of DGCR8 and specific pri-miRNA substrate processing. We found that DGCR8 bound single-stranded, double-stranded, and random hairpin transcripts with similar affinity. Further investigation of DGCR8/pri-mir-16 interactions by NMR detected intermediate exchange regimes over a wide range of stoichiometric ratios. Diffusion analysis of DGCR8/pri-mir-16 interactions by pulsed field gradient NMR lent further support to dynamic complex formation involving free components in exchange with complexes of varying stoichiometry, although in vitro processing assays showed exclusive cleavage of pri-mir-16 variants bearing single-stranded flanking regions. Our results indicate that DGCR8 binds RNA nonspecifically. Therefore, a sequential model of DGCR8 recognition followed by Drosha recruitment is unlikely. Known RNA substrate requirements are broad and include 70-nucleotide hairpins with unpaired flanking regions. Thus, specific RNA processing is likely facilitated by preformed DGCR8-Drosha heterodimers that can discriminate between authentic substrates and other hairpins.

  1. Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS

    PubMed Central

    Teplova, Marianna; Farazi, Thalia A.; Tuschl, Thomas; Patel, Dinshaw J.

    2015-01-01

    RNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. These studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutations in vivo. PMID:26347403

  2. Host and viral RNA-binding proteins involved in membrane targeting, replication and intercellular movement of plant RNA virus genomes

    PubMed Central

    Hyodo, Kiwamu; Kaido, Masanori; Okuno, Tetsuro

    2014-01-01

    Many plant viruses have positive-strand RNA [(+)RNA] as their genome. Therefore, it is not surprising that RNA-binding proteins (RBPs) play important roles during (+)RNA virus infection in host plants. Increasing evidence demonstrates that viral and host RBPs play critical roles in multiple steps of the viral life cycle, including translation and replication of viral genomic RNAs, and their intra- and intercellular movement. Although studies focusing on the RNA-binding activities of viral and host proteins, and their associations with membrane targeting, and intercellular movement of viral genomes have been limited to a few viruses, these studies have provided important insights into the molecular mechanisms underlying the replication and movement of viral genomic RNAs. In this review, we briefly overview the currently defined roles of viral and host RBPs whose RNA-binding activity have been confirmed experimentally in association with their membrane targeting, and intercellular movement of plant RNA virus genomes. PMID:25071804

  3. An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis.

    PubMed Central

    Herschlag, D; Khosla, M; Tsuchihashi, Z; Karpel, R L

    1994-01-01

    We have previously shown that a protein derived from the p7 nucleocapsid (NC) protein of HIV type-1 increases kcat/Km and kcat for cleavage of a cognate substrate by a hammerhead ribozyme. Here we show directly that the increase in kcat/Km arises from catalysis of the annealing of the RNA substrate to the ribozyme and the increase in kcat arises from catalysis of dissociation of the RNA products from the ribozyme. A peptide polymer derived from the consensus sequence of the C-terminal domain of the hnRNP A1 protein (A1 CTD) provides similar enhancements. Although these effects apparently arise from non-specific interactions, not all non-specific binding interactions led to these enhancements. NC and A1 CTD exert their effects by accelerating attainment of the thermodynamically most stable species throughout the ribozyme catalytic cycle. In addition, NC protein is shown to resolve a misfolded ribozyme-RNA complex that is otherwise long lived. These in vitro results suggest that non-specific RNA binding proteins such as NC and hnRNP proteins may have a biological role as RNA chaperones that prevent misfolding of RNAs and resolve RNAs that have misfolded, thereby ensuring that RNA is accessible for its biological functions. Images PMID:8026476

  4. RNA-binding protein Musashi2 induced by RANKL is critical for osteoclast survival

    PubMed Central

    Fujiwara, T; Zhou, J; Ye, S; Zhao, H

    2016-01-01

    The Musashi family of RNA-binding proteins, Musashi1 and Musashi2, regulate self-renewal and differentiation of neuronal and hematopoietic stem cells by modulating protein translation. It has been recently reported that Musashi2, not Musashi1, regulates hematopoietic stem cells. Although osteoclasts are derived from hematopoietic cells, the expression and functions of Musashi proteins in osteoclast lineage cells remain unknown. In this study, we have uncovered that Musashi2 is the predominant isoform of Musashi proteins in osteoclast precursors and its expression is upregulated by receptor activator of NF-κB ligand (RANKL) during osteoclast differentiation. Knocking down the expression of Musashi2 in osteoclast lineage cells by shRNAs attenuates nuclear factor of activated T cells 1 (NFATc1) expression and osteoclast formation in vitro. Mechanistically, loss of Musashi2 inhibits Notch signaling during osteoclast differentiation and induces apoptosis in pre-osteoclasts. In contrast, depletion of Musashi2 has no effects on cell cycle progression and p21WAF-1 protein expression in macrophages. Furthermore, depletion of Notch2 and its downstream target Hes1 in osteoclast precursors by shRNAs abrogates osteoclastogenesis by inhibiting NFATc1. Finally, absence of Musashi2 in osteoclast precursors promotes apoptosis and inhibits RANKL-induced nuclear factor-κB (NF-κB) activation, which is essential for osteoclast survival, Thus, Musashi2 is required for cell survival and optimal osteoclastogenesis by affecting Notch signaling and NF-κB activation. PMID:27441652

  5. RNA-binding protein Musashi2 induced by RANKL is critical for osteoclast survival.

    PubMed

    Fujiwara, T; Zhou, J; Ye, S; Zhao, H

    2016-01-01

    The Musashi family of RNA-binding proteins, Musashi1 and Musashi2, regulate self-renewal and differentiation of neuronal and hematopoietic stem cells by modulating protein translation. It has been recently reported that Musashi2, not Musashi1, regulates hematopoietic stem cells. Although osteoclasts are derived from hematopoietic cells, the expression and functions of Musashi proteins in osteoclast lineage cells remain unknown. In this study, we have uncovered that Musashi2 is the predominant isoform of Musashi proteins in osteoclast precursors and its expression is upregulated by receptor activator of NF-κB ligand (RANKL) during osteoclast differentiation. Knocking down the expression of Musashi2 in osteoclast lineage cells by shRNAs attenuates nuclear factor of activated T cells 1 (NFATc1) expression and osteoclast formation in vitro. Mechanistically, loss of Musashi2 inhibits Notch signaling during osteoclast differentiation and induces apoptosis in pre-osteoclasts. In contrast, depletion of Musashi2 has no effects on cell cycle progression and p21(WAF-1) protein expression in macrophages. Furthermore, depletion of Notch2 and its downstream target Hes1 in osteoclast precursors by shRNAs abrogates osteoclastogenesis by inhibiting NFATc1. Finally, absence of Musashi2 in osteoclast precursors promotes apoptosis and inhibits RANKL-induced nuclear factor-κB (NF-κB) activation, which is essential for osteoclast survival, Thus, Musashi2 is required for cell survival and optimal osteoclastogenesis by affecting Notch signaling and NF-κB activation. PMID:27441652

  6. Proteostasis and RNA Binding Proteins in Synaptic Plasticity and in the Pathogenesis of Neuropsychiatric Disorders

    PubMed Central

    Klein, Matthew E.; Monday, Hannah; Jordan, Bryen A.

    2016-01-01

    Decades of research have demonstrated that rapid alterations in protein abundance are required for synaptic plasticity, a cellular correlate for learning and memory. Control of protein abundance, known as proteostasis, is achieved across a complex neuronal morphology that includes a tortuous axon as well as an extensive dendritic arbor supporting thousands of individual synaptic compartments. To regulate the spatiotemporal synthesis of proteins, neurons must efficiently coordinate the transport and metabolism of mRNAs. Among multiple levels of regulation, transacting RNA binding proteins (RBPs) control proteostasis by binding to mRNAs and mediating their transport and translation in response to synaptic activity. In addition to synthesis, protein degradation must be carefully balanced for optimal proteostasis, as deviations resulting in excess or insufficient abundance of key synaptic factors produce pathologies. As such, mutations in components of the proteasomal or translational machinery, including RBPs, have been linked to the pathogenesis of neurological disorders such as Fragile X Syndrome (FXS), Fragile X Tremor Ataxia Syndrome (FXTAS), and Autism Spectrum Disorders (ASD). In this review, we summarize recent scientific findings, highlight ongoing questions, and link basic molecular mechanisms to the pathogenesis of common neuropsychiatric disorders. PMID:26904297

  7. RNA-binding protein Musashi2 induced by RANKL is critical for osteoclast survival.

    PubMed

    Fujiwara, T; Zhou, J; Ye, S; Zhao, H

    2016-01-01

    The Musashi family of RNA-binding proteins, Musashi1 and Musashi2, regulate self-renewal and differentiation of neuronal and hematopoietic stem cells by modulating protein translation. It has been recently reported that Musashi2, not Musashi1, regulates hematopoietic stem cells. Although osteoclasts are derived from hematopoietic cells, the expression and functions of Musashi proteins in osteoclast lineage cells remain unknown. In this study, we have uncovered that Musashi2 is the predominant isoform of Musashi proteins in osteoclast precursors and its expression is upregulated by receptor activator of NF-κB ligand (RANKL) during osteoclast differentiation. Knocking down the expression of Musashi2 in osteoclast lineage cells by shRNAs attenuates nuclear factor of activated T cells 1 (NFATc1) expression and osteoclast formation in vitro. Mechanistically, loss of Musashi2 inhibits Notch signaling during osteoclast differentiation and induces apoptosis in pre-osteoclasts. In contrast, depletion of Musashi2 has no effects on cell cycle progression and p21(WAF-1) protein expression in macrophages. Furthermore, depletion of Notch2 and its downstream target Hes1 in osteoclast precursors by shRNAs abrogates osteoclastogenesis by inhibiting NFATc1. Finally, absence of Musashi2 in osteoclast precursors promotes apoptosis and inhibits RANKL-induced nuclear factor-κB (NF-κB) activation, which is essential for osteoclast survival, Thus, Musashi2 is required for cell survival and optimal osteoclastogenesis by affecting Notch signaling and NF-κB activation.

  8. Visualizing repetitive diffusion activity of double-strand RNA binding proteins by single molecule fluorescence assays.

    PubMed

    Koh, Hye Ran; Wang, Xinlei; Myong, Sua

    2016-08-01

    TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. PMID:27012177

  9. Metazoan Maelstrom is an RNA-binding protein that has evolved from an ancient nuclease active in protists

    PubMed Central

    Chen, Kuan-Ming; Campbell, Edgar; Pandey, Radha Raman; Yang, Zhaolin; McCarthy, Andrew A.; Pillai, Ramesh S.

    2015-01-01

    Piwi-interacting RNAs (piRNAs) guide Piwi argonautes to their transposon targets for silencing. The highly conserved protein Maelstrom is linked to both piRNA biogenesis and effector roles in this pathway. One defining feature of Maelstrom is the predicted MAEL domain of unknown molecular function. Here, we present the first crystal structure of the MAEL domain from Bombyx Maelstrom, which reveals a nuclease fold. The overall architecture resembles that found in Mg2+- or Mn2+-dependent DEDD nucleases, but a clear distinguishing feature is the presence of a structural Zn2+ ion coordinated by the conserved ECHC residues. Strikingly, metazoan Maelstrom orthologs across the animal kingdom lack the catalytic DEDD residues, and as we show for Bombyx Maelstrom are inactive as nucleases. However, a MAEL domain-containing protein from amoeba having both sequence motifs (DEDD and ECHC) is robustly active as an exoribonuclease. Finally, we show that the MAEL domain of Bombyx Maelstrom displays a strong affinity for single-stranded RNAs. Our studies suggest that the ancient MAEL nuclease domain evolved to function as an RNA-binding module in metazoan Maelstrom. PMID:25778731

  10. Metazoan Maelstrom is an RNA-binding protein that has evolved from an ancient nuclease active in protists.

    PubMed

    Chen, Kuan-Ming; Campbell, Edgar; Pandey, Radha Raman; Yang, Zhaolin; McCarthy, Andrew A; Pillai, Ramesh S

    2015-05-01

    Piwi-interacting RNAs (piRNAs) guide Piwi argonautes to their transposon targets for silencing. The highly conserved protein Maelstrom is linked to both piRNA biogenesis and effector roles in this pathway. One defining feature of Maelstrom is the predicted MAEL domain of unknown molecular function. Here, we present the first crystal structure of the MAEL domain from Bombyx Maelstrom, which reveals a nuclease fold. The overall architecture resembles that found in Mg(2+)- or Mn(2+)-dependent DEDD nucleases, but a clear distinguishing feature is the presence of a structural Zn(2+) ion coordinated by the conserved ECHC residues. Strikingly, metazoan Maelstrom orthologs across the animal kingdom lack the catalytic DEDD residues, and as we show for Bombyx Maelstrom are inactive as nucleases. However, a MAEL domain-containing protein from amoeba having both sequence motifs (DEDD and ECHC) is robustly active as an exoribonuclease. Finally, we show that the MAEL domain of Bombyx Maelstrom displays a strong affinity for single-stranded RNAs. Our studies suggest that the ancient MAEL nuclease domain evolved to function as an RNA-binding module in metazoan Maelstrom.

  11. Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency

    PubMed Central

    Puig, Sergi; Vergara, Sandra V.; Thiele, Dennis J.

    2008-01-01

    Summary Iron (Fe) is an essential co-factor for a wide range of cellular processes. We have previously demonstrated that during Fe-deficiency yeast Cth2 is expressed and promotes degradation of a battery of mRNAs leading to reprogramming of Fe-dependent metabolism and Fe-storage. We report that the Cth2-homologous protein, Cth1, is transiently expressed during Fe-deprivation and participates in the response to Fe-deficiency through the degradation of mRNAs primarily involved in mitochondrially-localized activities including respiration and amino acid biosynthesis. In parallel, wild type but not cth1Δ cth2Δ cells accumulate mRNAs encoding proteins that function in glucose import and storage and store high levels of glycogen. In addition, Fe-deficiency leads to Snf1 phosphorylation, a member of the AMP-activated protein kinase family required for the cellular response to glucose starvation. These studies demonstrate a metabolic reprogramming as a consequence of Fe-starvation that is dependent on the coordinated activities of two mRNA-binding proteins. PMID:18522836

  12. A new generation of proto-oncogenes: cold-inducible RNA binding proteins.

    PubMed

    Lleonart, M E

    2010-01-01

    This review focuses on the roles of two major cold-inducible RNA binding proteins known in human cells: CIRP and RBM3. Both proteins were discovered when they were shown to be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. Initially, it was suggested that these proteins have a suppressive rather stimulatory effect on proliferation; however, proliferative and/or proto-oncogenic functions have recently been assigned to CIRP and RBM3. In a high throughput genetic screen, we recently identified CIRP as an immortalized gene in murine primary cells. On the other hand, the role of RBM3 in transformation has already been demonstrated. Interestingly, both CIRP and RBM3 have been found to be up-regulated in human tumors. This article highlights the roles of CIRP and RBM3 in tumorigenesis, and proposes a model by which CIRP might contribute to senescence bypass by counteracting the deleterious effects of oxidative damage.

  13. ATtRACT-a database of RNA-binding proteins and associated motifs.

    PubMed

    Giudice, Girolamo; Sánchez-Cabo, Fátima; Torroja, Carlos; Lara-Pezzi, Enrique

    2016-01-01

    RNA-binding proteins (RBPs) play a crucial role in key cellular processes, including RNA transport, splicing, polyadenylation and stability. Understanding the interaction between RBPs and RNA is key to improve our knowledge of RNA processing, localization and regulation in a global manner. Despite advances in recent years, a unified non-redundant resource that includes information on experimentally validated motifs, RBPs and integrated tools to exploit this information is lacking. Here, we developed a database named ATtRACT (available athttp://attract.cnic.es) that compiles information on 370 RBPs and 1583 RBP consensus binding motifs, 192 of which are not present in any other database. To populate ATtRACT we (i) extracted and hand-curated experimentally validated data from CISBP-RNA, SpliceAid-F, RBPDB databases, (ii) integrated and updated the unavailable ASD database and (iii) extracted information from Protein-RNA complexes present in Protein Data Bank database through computational analyses. ATtRACT provides also efficient algorithms to search a specific motif and scan one or more RNA sequences at a time. It also allows discoveringde novomotifs enriched in a set of related sequences and compare them with the motifs included in the database.Database URL:http:// attract. cnic. es. PMID:27055826

  14. ATtRACT-a database of RNA-binding proteins and associated motifs.

    PubMed

    Giudice, Girolamo; Sánchez-Cabo, Fátima; Torroja, Carlos; Lara-Pezzi, Enrique

    2016-01-01

    RNA-binding proteins (RBPs) play a crucial role in key cellular processes, including RNA transport, splicing, polyadenylation and stability. Understanding the interaction between RBPs and RNA is key to improve our knowledge of RNA processing, localization and regulation in a global manner. Despite advances in recent years, a unified non-redundant resource that includes information on experimentally validated motifs, RBPs and integrated tools to exploit this information is lacking. Here, we developed a database named ATtRACT (available athttp://attract.cnic.es) that compiles information on 370 RBPs and 1583 RBP consensus binding motifs, 192 of which are not present in any other database. To populate ATtRACT we (i) extracted and hand-curated experimentally validated data from CISBP-RNA, SpliceAid-F, RBPDB databases, (ii) integrated and updated the unavailable ASD database and (iii) extracted information from Protein-RNA complexes present in Protein Data Bank database through computational analyses. ATtRACT provides also efficient algorithms to search a specific motif and scan one or more RNA sequences at a time. It also allows discoveringde novomotifs enriched in a set of related sequences and compare them with the motifs included in the database.Database URL:http:// attract. cnic. es.

  15. RNA binding proteins mediate the ability of a fungus to adapt to the cold.

    PubMed

    Fang, Weiguo; St Leger, Raymond J

    2010-03-01

    Little is known about how fungi adapt to chilling. In eubacteria, cold shock proteins (CSPs) facilitate translation by destabilizing RNA secondary structure. Animals and plants have homologous cold shock domains within proteins, and additional glycine-rich RNA binding proteins (GRPs), but their role in stress resistance is poorly understood. In this study, we identified GRP homologues in diverse fungi. However, only Aspergillus clavatus and Metarhizium anisopliae possessed cold shock domains. Both M. anisopliae's small eubacteria-like CSP (CRP1) and its GRP (CRP2) homologue were induced by cold. Disrupting either Crp1 or Crp2 greatly reduced metabolism and conidial germination rates at low temperatures, and decreased tolerance to freezing. However, while both Crp1 and Crp2 reduced freezing-induced production of reactive oxygen species, only Crp1 protected cells against H(2)O(2) and increased M. anisopliae's virulence to caterpillars. Unlike CRP2, CRP1 rescued the cold-sensitive growth defects of an Escherichia coli CSP deletion mutant, and CRP1 also demonstrated transcription anti-termination activity, so CRP1 can regulate transcription and translation at low temperature. Expressing either Crp1 or Crp2 in yeast increased metabolism at cold temperatures and Crp1 improved tolerance to freezing. Thus besides providing a model relevant to many biological systems, Crp1 and Crp2 have potential applications in biotechnology.

  16. ATtRACT—a database of RNA-binding proteins and associated motifs

    PubMed Central

    Giudice, Girolamo; Sánchez-Cabo, Fátima; Torroja, Carlos; Lara-Pezzi, Enrique

    2016-01-01

    RNA-binding proteins (RBPs) play a crucial role in key cellular processes, including RNA transport, splicing, polyadenylation and stability. Understanding the interaction between RBPs and RNA is key to improve our knowledge of RNA processing, localization and regulation in a global manner. Despite advances in recent years, a unified non-redundant resource that includes information on experimentally validated motifs, RBPs and integrated tools to exploit this information is lacking. Here, we developed a database named ATtRACT (available at http://attract.cnic.es) that compiles information on 370 RBPs and 1583 RBP consensus binding motifs, 192 of which are not present in any other database. To populate ATtRACT we (i) extracted and hand-curated experimentally validated data from CISBP-RNA, SpliceAid–F, RBPDB databases, (ii) integrated and updated the unavailable ASD database and (iii) extracted information from Protein-RNA complexes present in Protein Data Bank database through computational analyses. ATtRACT provides also efficient algorithms to search a specific motif and scan one or more RNA sequences at a time. It also allows discovering de novo motifs enriched in a set of related sequences and compare them with the motifs included in the database. Database URL: http:// attract. cnic. es PMID:27055826

  17. MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis.

    PubMed

    MacNair, Laura; Xiao, Shangxi; Miletic, Denise; Ghani, Mahdi; Julien, Jean-Pierre; Keith, Julia; Zinman, Lorne; Rogaeva, Ekaterina; Robertson, Janice

    2016-01-01

    Tar DNA-binding protein 43 (TDP-43) is an RNA-binding protein normally localized to the nucleus of cells, where it elicits functions related to RNA metabolism such as transcriptional regulation and alternative splicing. In amyotrophic lateral sclerosis, TDP-43 is mislocalized from the nucleus to the cytoplasm of diseased motor neurons, forming ubiquitinated inclusions. Although mutations in the gene encoding TDP-43, TARDBP, are found in amyotrophic lateral sclerosis, these are rare. However, TDP-43 pathology is common to over 95% of amyotrophic lateral sclerosis cases, suggesting that abnormalities of TDP-43 play an active role in disease pathogenesis. It is our hypothesis that a loss of TDP-43 from the nucleus of affected motor neurons in amyotrophic lateral sclerosis will lead to changes in RNA processing and expression. Identifying these changes could uncover molecular pathways that underpin motor neuron degeneration. Here we have used translating ribosome affinity purification coupled with microarray analysis to identify the mRNAs being actively translated in motor neurons of mutant TDP-43(A315T) mice compared to age-matched non-transgenic littermates. No significant changes were found at 5 months (presymptomatic) of age, but at 10 months (symptomatic) the translational profile revealed significant changes in genes involved in RNA metabolic process, immune response and cell cycle regulation. Of 28 differentially expressed genes, seven had a ≥ 2-fold change; four were validated by immunofluorescence labelling of motor neurons in TDP-43(A315T) mice, and two of these were confirmed by immunohistochemistry in amyotrophic lateral sclerosis cases. Both of these identified genes, DDX58 and MTHFSD, are RNA-binding proteins, and we show that TDP-43 binds to their respective mRNAs and we identify MTHFSD as a novel component of stress granules. This discovery-based approach has for the first time revealed translational changes in motor neurons of a TDP-43 mouse model

  18. The Puf family of RNA-binding proteins in plants: phylogeny, structural modeling, activity and subcellular localization

    PubMed Central

    2010-01-01

    Background Puf proteins have important roles in controlling gene expression at the post-transcriptional level by promoting RNA decay and repressing translation. The Pumilio homology domain (PUM-HD) is a conserved region within Puf proteins that binds to RNA with sequence specificity. Although Puf proteins have been well characterized in animal and fungal systems, little is known about the structural and functional characteristics of Puf-like proteins in plants. Results The Arabidopsis and rice genomes code for 26 and 19 Puf-like proteins, respectively, each possessing eight or fewer Puf repeats in their PUM-HD. Key amino acids in the PUM-HD of several of these proteins are conserved with those of animal and fungal homologs, whereas other plant Puf proteins demonstrate extensive variability in these amino acids. Three-dimensional modeling revealed that the predicted structure of this domain in plant Puf proteins provides a suitable surface for binding RNA. Electrophoretic gel mobility shift experiments showed that the Arabidopsis AtPum2 PUM-HD binds with high affinity to BoxB of the Drosophila Nanos Response Element I (NRE1) RNA, whereas a point mutation in the core of the NRE1 resulted in a significant reduction in binding affinity. Transient expression of several of the Arabidopsis Puf proteins as fluorescent protein fusions revealed a dynamic, punctate cytoplasmic pattern of localization for most of these proteins. The presence of predicted nuclear export signals and accumulation of AtPuf proteins in the nucleus after treatment of cells with leptomycin B demonstrated that shuttling of these proteins between the cytosol and nucleus is common among these proteins. In addition to the cytoplasmically enriched AtPum proteins, two AtPum proteins showed nuclear targeting with enrichment in the nucleolus. Conclusions The Puf family of RNA-binding proteins in plants consists of a greater number of members than any other model species studied to date. This, along with the

  19. Expression of Quaking RNA-Binding Protein in the Adult and Developing Mouse Retina

    PubMed Central

    Aono, Kentaro; Kawashima, Togo; Inoue, Kiyoshi; Ku, Li; Feng, Yue; Koike, Chieko

    2016-01-01

    Quaking (QKI), which belongs to the STAR family of KH domain-containing RNA-binding proteins, functions in pre-mRNA splicing, microRNA regulation, and formation of circular RNA. QKI plays critical roles in myelinogenesis in the central and peripheral nervous systems and has been implicated neuron-glia fate decision in the brain; however, neither the expression nor function of QKI in the neural retina is known. Here we report the expression of QKI RNA-binding protein in the developing and mature mouse retina. QKI was strongly expressed by Müller glial cells in both the developing and adult retina. Intriguingly, during development, QKI was expressed in early differentiating neurons, such as the horizontal and amacrine cells, and subsequently in later differentiating bipolar cells, but not in photoreceptors. Neuronal expression was uniformly weak in the adult. Among QKI isoforms (5, 6, and 7), QKI-5 was the predominantly expressed isoform in the adult retina. To study the function of QKI in the mouse retina, we examined quakingviable(qkv) mice, which have a dysmyelination phenotype that results from deficiency of QKI expression and reduced numbers of mature oligodendrocytes. In homozygous qkv mutant mice (qkv/qkv), the optic nerve expression levels of QKI-6 and 7, but not QKI-5 were reduced. In the retina of the mutant homozygote, QKI-5 levels were unchanged, and QKI-6 and 7 levels, already low, were also unaffected. We conclude that QKI is expressed in developing and adult Müller glia. QKI is additionally expressed in progenitors and in differentiating neurons during retinal development, but expression weakened or diminished during maturation. Among QKI isoforms, we found that QKI-5 predominated in the adult mouse retina. Since Müller glial cells are thought to share properties with retinal progenitor cells, our data suggest that QKI may contribute to maintaining retinal progenitors prior to differentiation into neurons. On the other hand, the expression of QKI in

  20. Cold-inducible RNA-binding protein causes endothelial dysfunction via activation of Nlrp3 inflammasome.

    PubMed

    Yang, Weng-Lang; Sharma, Archna; Wang, Zhimin; Li, Zhigang; Fan, Jie; Wang, Ping

    2016-01-01

    Cold-inducible RNA-binding protein (CIRP) is a damage-associated molecular pattern (DAMP) molecule which stimulates proinflammatory cytokine release in hemorrhage and sepsis. Under these medical conditions, disruption of endothelial homeostasis and barrier integrity, typically induced by proinflammatory cytokines, is an important factor contributing to morbidity and mortality. However, the role of CIRP in causing endothelial dysfunction has not been investigated. In this study, we show that intravenous injection of recombinant murine CIRP (rmCIRP) in C57BL/6 mice causes lung injury, evidenced by vascular leakage, edema, increased leukocyte infiltration and cytokine production in the lung tissue. The CIRP-induced lung damage is accompanied with endothelial cell (EC) activation marked by upregulation of cell-surface adhesion molecules E-selectin and ICAM-1. Using in vitro primary mouse lung vascular ECs (MLVECs), we demonstrate that rmCIRP treatment directly increases the ICAM-1 protein expression and activates NAD(P)H oxidase in MLVECs. Importantly, CIRP stimulates the assembly and activation of Nlrp3 inflammasome in MLVECs accompanied with caspase-1 activation, IL-1β release and induction of proinflammatory cell death pyroptosis. Finally, our study demonstrates CIRP-induced EC pyroptosis in the lungs of C57BL/6 mice for the first time. Taken together, the released CIRP in shock can directly activate ECs and induce EC pyroptosis to cause lung injury. PMID:27217302

  1. RNA-binding proteins related to stress response and differentiation in protozoa.

    PubMed

    Alves, Lysangela Ronalte; Goldenberg, Samuel

    2016-02-26

    RNA-binding proteins (RBPs) are key regulators of gene expression. There are several distinct families of RBPs and they are involved in the cellular response to environmental changes, cell differentiation and cell death. The RBPs can differentially combine with RNA molecules and form ribonucleoprotein (RNP) complexes, defining the function and fate of RNA molecules in the cell. RBPs display diverse domains that allow them to be categorized into distinct families. They play important roles in the cellular response to physiological stress, in cell differentiation, and, it is believed, in the cellular localization of certain mRNAs. In several protozoa, a physiological stress (nutritional, temperature or pH) triggers differentiation to a distinct developmental stage. Most of the RBPs characterized in protozoa arise from trypanosomatids. In these protozoa gene expression regulation is mostly post-transcriptional, which suggests that some RBPs might display regulatory functions distinct from those described for other eukaryotes. mRNA stability can be altered as a response to stress. Transcripts are sequestered to RNA granules that ultimately modulate their availability to the translation machinery, storage or degradation, depending on the associated proteins. These aggregates of mRNPs containing mRNAs that are not being translated colocalize in cytoplasmic foci, and their numbers and size vary according to cell conditions such as oxidative stress, nutritional status and treatment with drugs that inhibit translation.

  2. Negative regulation of RNA-binding protein HuR by tumor-suppressor ECRG2.

    PubMed

    Lucchesi, C; Sheikh, M S; Huang, Y

    2016-05-19

    Esophageal cancer-related gene 2 (ECRG2) is a newer tumor suppressor whose function in the regulation of cell growth and apoptosis remains to be elucidated. Here we show that ECRG2 expression was upregulated in response to DNA damage, and increased ECRG2 expression induced growth suppression in cancer cells but not in non-cancerous epithelial cells. ECRG2-mediated growth suppression was associated with activation of caspases and marked reduction in the levels of apoptosis inhibitor, X chromosome-linked inhibitor of apoptosis protein (XIAP). ECRG2, via RNA-binding protein human antigen R (HuR), regulated XIAP mRNA stability and expression. Furthermore, ECRG2 increased HuR ubiquitination and degradation but was unable to modulate the non-ubiquitinable mutant form of HuR. We also identified missense and frame-shift ECRG2 mutations in various human malignancies and noted that, unlike wild-type ECRG2, one cancer-derived ECRG2 mutant harboring glutamic acid instead of valine at position 30 (V30E) failed to induce cell death and activation of caspases. This naturally occurring V30E mutant also did not suppress XIAP and HuR. Importantly, the V30E mutant overexpressing cancer cells acquired resistance against multiple anticancer drugs, thus suggesting that ECRG2 mutations appear to have an important role in the acquisition of anticancer drug resistance in a subset of human malignancies.

  3. LncRNA OIP5-AS1/cyrano sponges RNA-binding protein HuR.

    PubMed

    Kim, Jiyoung; Abdelmohsen, Kotb; Yang, Xiaoling; De, Supriyo; Grammatikakis, Ioannis; Noh, Ji Heon; Gorospe, Myriam

    2016-03-18

    The function of the vast majority of mammalian long noncoding (lnc) RNAs remains unknown. Here, analysis of a highly abundant mammalian lncRNA, OIP5-AS1, known as cyrano in zebrafish, revealed that OIP5-AS1 reduces cell proliferation. In human cervical carcinoma HeLa cells, the RNA-binding protein HuR, which enhances cell proliferation, associated with OIP5-AS1 and stabilized it. Tagging OIP5-AS1 with MS2 hairpins to identify associated microRNAs revealed that miR-424 interacted with OIP5-AS1 and competed with HuR for binding to OIP5-AS1. We further identified a 'sponge' function for OIP5-AS1, as high levels of OIP5-AS1 increased HuR-OIP5-AS1 complexes and prevented HuR interaction with target mRNAs, including those that encoded proliferative proteins, while conversely, lowering OIP5-AS1 increased the abundance of HuR complexes with target mRNAs. We propose that OIP5-AS1 serves as a sponge or a competing endogenous (ce)RNA for HuR, restricting its availability to HuR target mRNAs and thereby repressing HuR-elicited proliferative phenotypes.

  4. Translating the genome in time and space: specialized ribosomes, RNA regulons, and RNA-binding proteins.

    PubMed

    Shi, Zhen; Barna, Maria

    2015-01-01

    A central question in cell and developmental biology is how the information encoded in the genome is differentially interpreted to generate a diverse array of cell types. A growing body of research on posttranscriptional gene regulation is revealing that both global protein synthesis rates and the translation of specific mRNAs are highly specialized in different cell types. How this exquisite translational regulation is achieved is the focus of this review. Two levels of regulation are discussed: the translation machinery and cis-acting elements within mRNAs. Recent evidence shows that the ribosome itself directs how the genome is translated in time and space and reveals surprising functional specificity in individual components of the core translation machinery. We are also just beginning to appreciate the rich regulatory information embedded in the untranslated regions of mRNAs, which direct the selective translation of transcripts. These hidden RNA regulons may interface with a myriad of RNA-binding proteins and specialized translation machinery to provide an additional layer of regulation to how transcripts are spatiotemporally expressed. Understanding this largely unexplored world of translational codes hardwired in the core translation machinery is an exciting new research frontier fundamental to our understanding of gene regulation, organismal development, and evolution.

  5. Exploring the RNA World in Hematopoietic Cells Through the Lens of RNA-Binding Proteins

    PubMed Central

    Yuan, Joan; Muljo, Stefan A.

    2013-01-01

    Summary The discovery of microRNAs has renewed interest in post-transcriptional modes of regulation, fueling an emerging view of a rich RNA world within our cells that deserves further exploration. Much work has gone into elucidating genetic regulatory networks that orchestrate gene expression programs and direct cell fate decisions in the hematopoietic system. However, the focus has been to elucidate signaling pathways and transcriptional programs. To bring us one step closer to reverse engineering the molecular logic of cellular differentiation, it will be necessary to map post-transcriptional circuits as well and integrate them in the context of existing network models. In this regard, RNA-binding proteins (RBPs) may rival transcription factors as important regulators of cell fates and represent a tractable opportunity to connect the RNA world to the proteome. ChIP-seq has greatly facilitated genome-wide localization of DNA-binding proteins, helping us to understand genomic regulation at a systems level. Similarly, technological advances such as CLIP-seq allow transcriptome-wide mapping of RBP binding sites, aiding us to unravel post-transcriptional networks. Here, we review RBP-mediated post-transcriptional regulation, paying special attention to findings relevant to the immune system. As a prime example, we highlight the RBP Lin28B, which acts as a heterochronic switch between fetal and adult lymphopoiesis. PMID:23550653

  6. Cold-inducible RNA-binding protein causes endothelial dysfunction via activation of Nlrp3 inflammasome

    PubMed Central

    Yang, Weng-Lang; Sharma, Archna; Wang, Zhimin; Li, Zhigang; Fan, Jie; Wang, Ping

    2016-01-01

    Cold-inducible RNA-binding protein (CIRP) is a damage-associated molecular pattern (DAMP) molecule which stimulates proinflammatory cytokine release in hemorrhage and sepsis. Under these medical conditions, disruption of endothelial homeostasis and barrier integrity, typically induced by proinflammatory cytokines, is an important factor contributing to morbidity and mortality. However, the role of CIRP in causing endothelial dysfunction has not been investigated. In this study, we show that intravenous injection of recombinant murine CIRP (rmCIRP) in C57BL/6 mice causes lung injury, evidenced by vascular leakage, edema, increased leukocyte infiltration and cytokine production in the lung tissue. The CIRP-induced lung damage is accompanied with endothelial cell (EC) activation marked by upregulation of cell-surface adhesion molecules E-selectin and ICAM-1. Using in vitro primary mouse lung vascular ECs (MLVECs), we demonstrate that rmCIRP treatment directly increases the ICAM-1 protein expression and activates NAD(P)H oxidase in MLVECs. Importantly, CIRP stimulates the assembly and activation of Nlrp3 inflammasome in MLVECs accompanied with caspase-1 activation, IL-1β release and induction of proinflammatory cell death pyroptosis. Finally, our study demonstrates CIRP-induced EC pyroptosis in the lungs of C57BL/6 mice for the first time. Taken together, the released CIRP in shock can directly activate ECs and induce EC pyroptosis to cause lung injury. PMID:27217302

  7. Identification of RNA-binding surfaces in iron regulatory protein-1.

    PubMed

    Kaldy, P; Menotti, E; Moret, R; Kühn, L C

    1999-11-01

    Post-transcriptional regulation of mRNA translation and stability in iron metabolism involves the interaction between the trans-acting cytoplasmic iron regulatory proteins (IRP-1 and IRP-2) and cis-acting iron-responsive elements (IREs) in mRNA 5'- or 3'-untranslated regions. IRP-1 can adopt two conformations: one with a [4Fe-4S]-cluster, unable to bind IREs, which functions as a cytoplasmic aconitase; one lacking this cluster, which accumulates in iron-deprived cells and binds mRNA firmly. We investigated which surfaces of IRP-1 interact with IREs. Surface areas were predicted on the basis of the crystallized porcine mitochondrial aconitase structure. We selected nine sequences absent or different in mitochondrial and Escherichia coli aconitases, both being devoid of RNA-binding properties. Mutations in two regions of domain 4 of IRP-1 lowered the affinity for a wild-type IRE up to 7-fold in vitro, whereas the aconitase activity, a control for structural integrity, was not affected. Scatchard plot analysis with mutant IREs indicated that domain 4 is involved in the binding specificity. This conclusion was confirmed with hybrid proteins in which IRP-1 surface loops were grafted into IRP-2. The results indicate that arginines 728 and 732 contact the IRE bulge, whereas region 685-689 is necessary for recognition of the IRE loop. PMID:10545118

  8. Npl3, a new link between RNA-binding proteins and the maintenance of genome integrity

    PubMed Central

    Santos-Pereira, José M; Herrero, Ana B; Moreno, Sergio; Aguilera, Andrés

    2014-01-01

    The mRNA is co-transcriptionally bound by a number of RNA-binding proteins (RBPs) that contribute to its processing and formation of an export-competent messenger ribonucleoprotein particle (mRNP). In the last few years, increasing evidence suggests that RBPs play a key role in preventing transcription-associated genome instability. Part of this instability is mediated by the accumulation of co-transcriptional R loops, which may impair replication fork (RF) progression due to collisions between transcription and replication machineries. In addition, some RBPs have been implicated in DNA repair and/or the DNA damage response (DDR). Recently, the Npl3 protein, one of the most abundant heterogeneous nuclear ribonucleoproteins (hnRNPs) in yeast, has been shown to prevent transcription-associated genome instability and accumulation of RF obstacles, partially associated with R-loop formation. Interestingly, Npl3 seems to have additional functions in DNA repair, and npl3∆ mutants are highly sensitive to genotoxic agents, such as the antitumor drug trabectedin. Here we discuss the role of Npl3 in particular, and RBPs in general, in the connection of transcription with replication and genome instability, and its effect on the DDR. PMID:24694687

  9. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp

    PubMed Central

    Gotic, Ivana; Omidi, Saeed; Fleury-Olela, Fabienne; Molina, Nacho; Naef, Felix; Schibler, Ueli

    2016-01-01

    In mammals, body temperature fluctuates diurnally around a mean value of 36°C–37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach to steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. PMID:27633015

  10. Post-Transcriptional Regulation by Poly(ADP-ribosyl)ation of the RNA-Binding Proteins

    PubMed Central

    Ji, Yingbiao; Tulin, Alexei V.

    2013-01-01

    Gene expression is intricately regulated at the post-transcriptional level by RNA-binding proteins (RBPs) via their interactions with pre-messenger RNA (pre-mRNA) and mRNA during development. However, very little is known about the mechanism regulating RBP activities in RNA metabolism. During the past few years, a large body of evidence has suggested that many RBPs, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), undergo post-translational modification through poly(ADP-ribosyl)ation to modulate RNA processing, including splicing, polyadenylation, translation, miRNA biogenesis and rRNA processing. Accordingly, RBP poly(ADP-ribosyl)ation has been shown to be involved in stress responses, stem cell differentiation and retinal morphogenesis. Here, we summarize recent advances in understanding the biological roles of RBP poly(ADP-ribosyl)ation, as controlled by Poly(ADP-ribose) Polymerases (PARPs) and Poly(ADP-ribose) Glycohydrolase (PARG). In addition, we discuss the potential of PARP and PARG inhibitors for the treatment of RBP-related human diseases, including cancer and neurodegenerative disorders. PMID:23921685

  11. Emerging Roles of RNA-Binding Proteins in Plant Growth, Development, and Stress Responses.

    PubMed

    Lee, Kwanuk; Kang, Hunseung

    2016-03-01

    Posttranscriptional regulation of RNA metabolism, including RNA processing, intron splicing, editing, RNA export, and decay, is increasingly regarded as an essential step for fine-tuning the regulation of gene expression in eukaryotes. RNA-binding proteins (RBPs) are central regulatory factors controlling posttranscriptional RNA metabolism during plant growth, development, and stress responses. Although functional roles of diverse RBPs in living organisms have been determined during the last decades, our understanding of the functional roles of RBPs in plants is lagging far behind our understanding of those in other organisms, including animals, bacteria, and viruses. However, recent functional analysis of multiple RBP family members involved in plant RNA metabolism and elucidation of the mechanistic roles of RBPs shed light on the cellular roles of diverse RBPs in growth, development, and stress responses of plants. In this review, we will discuss recent studies demonstrating the emerging roles of multiple RBP family members that play essential roles in RNA metabolism during plant growth, development, and stress responses. PMID:26831454

  12. Comparative sequence analysis of double stranded RNA binding protein encoding gene of parapoxviruses from Indian camels.

    PubMed

    Nagarajan, G; Swami, Shelesh Kumar; Dahiya, Shyam Singh; Sivakumar, G; Tuteja, F C; Narnaware, S D; Mehta, S C; Singh, Raghvendar; Patil, N V

    2014-03-01

    The dsRNA binding protein (RBP) encoding gene of parapoxviruses (PPVs) from the Dromedary camels, inhabitating different geographical region of Rajasthan, India were amplified by polymerase chain reaction using the primers of pseudocowpoxvirus (PCPV) from Finnish reindeer and cloned into pGEM-T for sequence analysis. Analysis of RBP encoding gene revealed that PPV DNA from Bikaner shared 98.3% and 76.6% sequence identity at the amino acid level, with Pali and Udaipur PPV DNA, respectively. Reference strains of Bovine papular stomatitis virus (BPSV) and PCPV (reindeer PCPV and human PCPV) shared 52.8% and 86.9% amino acid identity with RBP gene of camel PPVs from Bikaner, respectively. But different strains of orf virus (ORFV) from different geographical areas of the world shared 69.5-71.7% amino acid identity with RBP gene of camel PPVs from Bikaner. These findings indicate that the camel PPVs described are closely related to bovine PPV (PCPV) in comparison to caprine and ovine PPV (ORFV). PMID:25685494

  13. Emerging Roles of RNA-Binding Proteins in Plant Growth, Development, and Stress Responses

    PubMed Central

    Lee, Kwanuk; Kang, Hunseung

    2016-01-01

    Posttranscriptional regulation of RNA metabolism, including RNA processing, intron splicing, editing, RNA export, and decay, is increasingly regarded as an essential step for fine-tuning the regulation of gene expression in eukaryotes. RNA-binding proteins (RBPs) are central regulatory factors controlling posttranscriptional RNA metabolism during plant growth, development, and stress responses. Although functional roles of diverse RBPs in living organisms have been determined during the last decades, our understanding of the functional roles of RBPs in plants is lagging far behind our understanding of those in other organisms, including animals, bacteria, and viruses. However, recent functional analysis of multiple RBP family members involved in plant RNA metabolism and elucidation of the mechanistic roles of RBPs shed light on the cellular roles of diverse RBPs in growth, development, and stress responses of plants. In this review, we will discuss recent studies demonstrating the emerging roles of multiple RBP family members that play essential roles in RNA metabolism during plant growth, development, and stress responses. PMID:26831454

  14. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp.

    PubMed

    Gotic, Ivana; Omidi, Saeed; Fleury-Olela, Fabienne; Molina, Nacho; Naef, Felix; Schibler, Ueli

    2016-09-01

    In mammals, body temperature fluctuates diurnally around a mean value of 36°C-37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells' circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide "approach to steady-state" kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. PMID:27633015

  15. RNA binding protein Caprin-2 is a pivotal regulator of the central osmotic defense response

    PubMed Central

    Konopacka, Agnieszka; Greenwood, Mingkwan; Loh, Su-Yi; Paton, Julian; Murphy, David

    2015-01-01

    In response to an osmotic challenge, the synthesis of the antidiuretic hormone arginine vasopressin (AVP) increases in the hypothalamus, and this is accompanied by extension of the 3′ poly(A) tail of the AVP mRNA, and the up-regulation of the expression of RNA binding protein Caprin-2. Here we show that Caprin-2 binds to AVP mRNAs, and that lentiviral mediated shRNA knockdown of Caprin-2 in the osmotically stimulated hypothalamus shortens the AVP mRNA poly(A) tail at the same time as reducing transcript abundance. In a recapitulated in vitro system, we confirm that Caprin-2 over-expression enhances AVP mRNA abundance and poly(A) tail length. Importantly, we show that Caprin-2 knockdown in the hypothalamus decreases urine output and fluid intake, and increases urine osmolality, urine sodium concentration, and plasma AVP levels. Thus Caprin-2 controls physiological mechanisms that are essential for the body's response to osmotic stress. DOI: http://dx.doi.org/10.7554/eLife.09656.001 PMID:26559902

  16. MicroRNA binding to the HIV-1 Gag protein inhibits Gag assembly and virus production

    PubMed Central

    Chen, Antony K.; Sengupta, Prabuddha; Waki, Kayoko; Van Engelenburg, Schuyler B.; Ochiya, Takahiro; Ablan, Sherimay D.; Freed, Eric O.; Lippincott-Schwartz, Jennifer

    2014-01-01

    MicroRNAs (miRNAs) are small, 18–22 nt long, noncoding RNAs that act as potent negative gene regulators in a variety of physiological and pathological processes. To repress gene expression, miRNAs are packaged into RNA-induced silencing complexes (RISCs) that target mRNAs for degradation and/or translational repression in a sequence-specific manner. Recently, miRNAs have been shown to also interact with proteins outside RISCs, impacting cellular processes through mechanisms not involving gene silencing. Here, we define a previously unappreciated activity of miRNAs in inhibiting RNA–protein interactions that in the context of HIV-1 biology blocks HIV virus budding and reduces virus infectivity. This occurs by miRNA binding to the nucleocapsid domain of the Gag protein, the main structural component of HIV-1 virions. The resulting miRNA–Gag complexes interfere with viral–RNA-mediated Gag assembly and viral budding at the plasma membrane, with imperfectly assembled Gag complexes endocytosed and delivered to lysosomes. The blockade of virus production by miRNA is reversed by adding the miRNA’s target mRNA and stimulated by depleting Argonaute-2, suggesting that when miRNAs are not mediating gene silencing, they can block HIV-1 production through disruption of Gag assembly on membranes. Overall, our findings have significant implications for understanding how cells modulate HIV-1 infection by miRNA expression and raise the possibility that miRNAs can function to disrupt RNA-mediated protein assembly processes in other cellular contexts. PMID:24938790

  17. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease.

    PubMed

    King, Oliver D; Gitler, Aaron D; Shorter, James

    2012-06-26

    Prions are self-templating protein conformers that are naturally transmitted between individuals and promote phenotypic change. In yeast, prion-encoded phenotypes can be beneficial, neutral or deleterious depending upon genetic background and environmental conditions. A distinctive and portable 'prion domain' enriched in asparagine, glutamine, tyrosine and glycine residues unifies the majority of yeast prion proteins. Deletion of this domain precludes prionogenesis and appending this domain to reporter proteins can confer prionogenicity. An algorithm designed to detect prion domains has successfully identified 19 domains that can confer prion behavior. Scouring the human genome with this algorithm enriches a select group of RNA-binding proteins harboring a canonical RNA recognition motif (RRM) and a putative prion domain. Indeed, of 210 human RRM-bearing proteins, 29 have a putative prion domain, and 12 of these are in the top 60 prion candidates in the entire genome. Startlingly, these RNA-binding prion candidates are inexorably emerging, one by one, in the pathology and genetics of devastating neurodegenerative disorders, including: amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), Alzheimer's disease and Huntington's disease. For example, FUS and TDP-43, which rank 1st and 10th among RRM-bearing prion candidates, form cytoplasmic inclusions in the degenerating motor neurons of ALS patients and mutations in TDP-43 and FUS cause familial ALS. Recently, perturbed RNA-binding proteostasis of TAF15, which is the 2nd ranked RRM-bearing prion candidate, has been connected with ALS and FTLD-U. We strongly suspect that we have now merely reached the tip of the iceberg. We predict that additional RNA-binding prion candidates identified by our algorithm will soon surface as genetic modifiers or causes of diverse neurodegenerative conditions. Indeed, simple prion-like transfer mechanisms involving the prion

  18. The STAR RNA binding proteins GLD-1, QKI, SAM68 and SLM-2 bind bipartite RNA motifs

    PubMed Central

    Galarneau, André; Richard, Stéphane

    2009-01-01

    Background SAM68, SAM68-like mammalian protein 1 (SLM-1) and 2 (SLM-2) are members of the K homology (KH) and STAR (signal transduction activator of RNA metabolism) protein family. The function of these RNA binding proteins has been difficult to elucidate mainly because of lack of genetic data providing insights about their physiological RNA targets. In comparison, genetic studies in mice and C. elegans have provided evidence as to the physiological mRNA targets of QUAKING and GLD-1 proteins, two other members of the STAR protein family. The GLD-1 binding site is defined as a hexanucleotide sequence (NACUCA) that is found in many, but not all, physiological GLD-1 mRNA targets. Previously by using Systematic Evolution of Ligands by EXponential enrichment (SELEX), we defined the QUAKING binding site as a hexanucleotide sequence with an additional half-site (UAAY). This sequence was identified in QKI mRNA targets including the mRNAs for myelin basic proteins. Results Herein we report using SELEX the identification of the SLM-2 RNA binding site as direct U(U/A)AA repeats. The bipartite nature of the consensus sequence was essential for SLM-2 high affinity RNA binding. The identification of a bipartite mRNA binding site for QKI and now SLM-2 prompted us to determine whether SAM68 and GLD-1 also bind bipartite direct repeats. Indeed SAM68 bound the SLM-2 consensus and required both U(U/A)AA motifs. We also confirmed that GLD-1 also binds a bipartite RNA sequence in vitro with a short RNA sequence from its tra-2 physiological mRNA target. Conclusion These data demonstrate that the STAR proteins QKI, GLD-1, SAM68 and SLM-2 recognize RNA with direct repeats as bipartite motifs. This information should help identify binding sites within physiological RNA targets. PMID:19457263

  19. CELF RNA binding proteins promote axon regeneration in C. elegans and mammals through alternative splicing of Syntaxins

    PubMed Central

    Chen, Lizhen; Liu, Zhijie; Zhou, Bing; Wei, Chaoliang; Zhou, Yu; Rosenfeld, Michael G; Fu, Xiang-Dong; Chisholm, Andrew D; Jin, Yishi

    2016-01-01

    Axon injury triggers dramatic changes in gene expression. While transcriptional regulation of injury-induced gene expression is widely studied, less is known about the roles of RNA binding proteins (RBPs) in post-transcriptional regulation during axon regeneration. In C. elegans the CELF (CUGBP and Etr-3 Like Factor) family RBP UNC-75 is required for axon regeneration. Using crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq) we identify a set of genes involved in synaptic transmission as mRNA targets of UNC-75. In particular, we show that UNC-75 regulates alternative splicing of two mRNA isoforms of the SNARE Syntaxin/unc-64. In C. elegans mutants lacking unc-75 or its targets, regenerating axons form growth cones, yet are deficient in extension. Extending these findings to mammalian axon regeneration, we show that mouse Celf2 expression is upregulated after peripheral nerve injury and that Celf2 mutant mice are defective in axon regeneration. Further, mRNAs for several Syntaxins show CELF2 dependent regulation. Our data delineate a post-transcriptional regulatory pathway with a conserved role in regenerative axon extension. DOI: http://dx.doi.org/10.7554/eLife.16072.001 PMID:27253061

  20. Drosophila Shep and C. elegans SUP-26 are RNA-binding proteins that play diverse roles in nervous system development.

    PubMed

    Schachtner, Logan T; Sola, Ismail E; Forand, Daniel; Antonacci, Simona; Postovit, Adam J; Mortimer, Nathan T; Killian, Darrell J; Olesnicky, Eugenia C

    2015-11-01

    The Caenorhabditis elegans gene sup-26 encodes a well-conserved RNA-recognition motif-containing RNA-binding protein (RBP) that functions in dendrite morphogenesis of the PVD sensory neuron. The Drosophila ortholog of sup-26, alan shepard (shep), is expressed throughout the nervous system and has been shown to regulate neuronal remodeling during metamorphosis. Here, we extend these studies to show that sup-26 and shep are required for the development of diverse cell types within the nematode and fly nervous systems during embryonic and larval stages. We ascribe roles for sup-26 in regulating dendrite number and the expression of genes involved in mechanosensation within the nematode peripheral nervous system. We also find that in Drosophila, shep regulates dendrite length and branch order of nociceptive neurons, regulates the organization of neuronal clusters of the peripheral nervous system and the organization of axons within the ventral nerve cord. Taken together, our results suggest that shep/sup-26 orthologs play diverse roles in neural development across animal species. Moreover, we discuss potential roles for shep/sup-26 orthologs in the human nervous system.

  1. Drosophila Shep and C. elegans SUP-26 are RNA-binding proteins that play diverse roles in nervous system development.

    PubMed

    Schachtner, Logan T; Sola, Ismail E; Forand, Daniel; Antonacci, Simona; Postovit, Adam J; Mortimer, Nathan T; Killian, Darrell J; Olesnicky, Eugenia C

    2015-11-01

    The Caenorhabditis elegans gene sup-26 encodes a well-conserved RNA-recognition motif-containing RNA-binding protein (RBP) that functions in dendrite morphogenesis of the PVD sensory neuron. The Drosophila ortholog of sup-26, alan shepard (shep), is expressed throughout the nervous system and has been shown to regulate neuronal remodeling during metamorphosis. Here, we extend these studies to show that sup-26 and shep are required for the development of diverse cell types within the nematode and fly nervous systems during embryonic and larval stages. We ascribe roles for sup-26 in regulating dendrite number and the expression of genes involved in mechanosensation within the nematode peripheral nervous system. We also find that in Drosophila, shep regulates dendrite length and branch order of nociceptive neurons, regulates the organization of neuronal clusters of the peripheral nervous system and the organization of axons within the ventral nerve cord. Taken together, our results suggest that shep/sup-26 orthologs play diverse roles in neural development across animal species. Moreover, we discuss potential roles for shep/sup-26 orthologs in the human nervous system. PMID:26271810

  2. A deep learning framework for modeling structural features of RNA-binding protein targets

    PubMed Central

    Zhang, Sai; Zhou, Jingtian; Hu, Hailin; Gong, Haipeng; Chen, Ligong; Cheng, Chao; Zeng, Jianyang

    2016-01-01

    RNA-binding proteins (RBPs) play important roles in the post-transcriptional control of RNAs. Identifying RBP binding sites and characterizing RBP binding preferences are key steps toward understanding the basic mechanisms of the post-transcriptional gene regulation. Though numerous computational methods have been developed for modeling RBP binding preferences, discovering a complete structural representation of the RBP targets by integrating their available structural features in all three dimensions is still a challenging task. In this paper, we develop a general and flexible deep learning framework for modeling structural binding preferences and predicting binding sites of RBPs, which takes (predicted) RNA tertiary structural information into account for the first time. Our framework constructs a unified representation that characterizes the structural specificities of RBP targets in all three dimensions, which can be further used to predict novel candidate binding sites and discover potential binding motifs. Through testing on the real CLIP-seq datasets, we have demonstrated that our deep learning framework can automatically extract effective hidden structural features from the encoded raw sequence and structural profiles, and predict accurate RBP binding sites. In addition, we have conducted the first study to show that integrating the additional RNA tertiary structural features can improve the model performance in predicting RBP binding sites, especially for the polypyrimidine tract-binding protein (PTB), which also provides a new evidence to support the view that RBPs may own specific tertiary structural binding preferences. In particular, the tests on the internal ribosome entry site (IRES) segments yield satisfiable results with experimental support from the literature and further demonstrate the necessity of incorporating RNA tertiary structural information into the prediction model. The source code of our approach can be found in https

  3. Arabidopsis RNA-binding Protein FCA Regulates MicroRNA172 Processing in Thermosensory Flowering*

    PubMed Central

    Jung, Jae-Hoon; Seo, Pil Joon; Ahn, Ji Hoon; Park, Chung-Mo

    2012-01-01

    Ambient temperature fluctuates diurnally and seasonally. It profoundly influences the timing of flowering in plants. The floral integrator FLOWERING LOCUS T (FT) mediates ambient temperature signals via the thermosensory pathway in Arabidopsis flowering. microRNA172 (miR172), which promotes flowering by inducing FT, also responds to changes in ambient temperature. However, it is largely unknown how miR172 integrates ambient temperature signals into the flowering genetic network. Here, we show that Arabidopsis RNA-binding protein FCA promotes the processing of primary microRNA172 transcripts (pri-miR172) in response to changes in ambient temperature. Ambient temperature regulates miR172 biogenesis primarily at the pri-miR172 processing step. miR172 abundance is elevated at 23 °C but not at 16 °C. miR172 accumulation at 23 °C requires functional FCA. FCA binds to the flanking sequences of the stem-loop within the pri-miR172 transcripts via the RNA recognition motif. FCA also binds to the primary transcripts of other temperature-responsive miRNAs, such as miR398 and miR399. Notably, levels of FCA mRNAs and proteins increase at 23 °C but remain low at 16 °C, supporting the role of FCA in temperature perception. Our data show that FCA regulation of miR172 processing is an early event in the thermosensory flowering pathway. We propose that the FCA-miR172 regulon provides an adaptive strategy that fine tunes the onset of flowering under fluctuating ambient temperature conditions. PMID:22431732

  4. Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis.

    PubMed

    Zhang, Hai-Tao; Xue, Jing-Hui; Zhang, Zhi-Wen; Kong, Hai-Bo; Liu, Ai-Jun; Li, Shou-Chun; Xu, Dong-Gang

    2015-10-01

    Cold-inducible RNA-binding protein (CIRP) is induced by mild hypothermia in several mammals, but the precise mechanism by which CIRP mediates hypothermia-induced neuroprotection remains unknown. We aimed to investigate the molecular mechanisms by which CIRP protects the nervous system during mild hypothermia. Rat cortical neurons were isolated and cultured in vitro under mild hypothermia (32°C). Apoptosis was measured by annexin V and propidium iodide staining, visualized by flow cytometry. Neuron ultrastructure was visualized by transmission electron microscopy. CIRP overexpression and knockdown were achieved via infection with pL/IRES/GFP-CIRP and pL/shRNA/F-CIRP-A lentivirus. RT(2) Profiler PCR Array Pathway Analysis and western blotting were used to evaluate the effects of CIRP overexpresion/knockdown on the neurons׳ transcriptome. Neuron late apoptosis was significantly reduced at day 7 of culture by 12h hypothermia, but neuron ultrastructure remained relatively intact. RT(2) Profiler PCR Array Pathway Analysis of 84 apoptosis pathway-associated factors revealed that mild hypothermia and CIRP overexpression induce similar gene expression profiles, specifically alterations of genes implicated in the mitochondrial apoptosis pathway. Mild hypothermia-treated neurons up-regulated 12 and down-regulated 38 apoptosis pathway-associated genes. CIRP-overexpressing neurons up-regulated 15 and down-regulated 46 genes. CIRP-knocked-down hypothermia-treated cells up-regulated 9 and down-regulated 40 genes. Similar results were obtained at the protein level. In conclusion, CIRP may inhibit neuron apoptosis through the suppression of the mitochondria apoptosis pathway during mild hypothermia.

  5. TRIBE: Hijacking an RNA-Editing Enzyme to Identify Cell-Specific Targets of RNA-Binding Proteins.

    PubMed

    McMahon, Aoife C; Rahman, Reazur; Jin, Hua; Shen, James L; Fieldsend, Allegra; Luo, Weifei; Rosbash, Michael

    2016-04-21

    RNA transcripts are bound and regulated by RNA-binding proteins (RBPs). Current methods for identifying in vivo targets of an RBP are imperfect and not amenable to examining small numbers of cells. To address these issues, we developed TRIBE (targets of RNA-binding proteins identified by editing), a technique that couples an RBP to the catalytic domain of the Drosophila RNA-editing enzyme ADAR and expresses the fusion protein in vivo. RBP targets are marked with novel RNA editing events and identified by sequencing RNA. We have used TRIBE to identify the targets of three RBPs (Hrp48, dFMR1, and NonA). TRIBE compares favorably to other methods, including CLIP, and we have identified RBP targets from as little as 150 specific fly neurons. TRIBE can be performed without an antibody and in small numbers of specific cells.

  6. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans

    PubMed Central

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S.; Greenstein, David; Navarro, Rosa E.

    2016-01-01

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. PMID:26865701

  7. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans.

    PubMed

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E

    2016-01-01

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. PMID:26865701

  8. Straightening of bulged RNA by the double-stranded RNA-binding domain from the protein kinase PKR

    PubMed Central

    Zheng, Xiaofeng; Bevilacqua, Philip C.

    2000-01-01

    The human interferon-induced protein kinase, PKR, is an antiviral agent that is activated by long stretches of double-stranded (ds)RNA. PKR has an N-terminal dsRNA-binding domain that contains two tandem copies of the dsRNA-binding motif and interacts with dsRNA in a nonsequence-specific fashion. Surprisingly, PKR can be regulated by certain viral and cellular RNAs containing non-Watson–Crick features. We found that RNAs containing bulges in the middle of a helix can bind to p20, a C-terminal truncated PKR containing the dsRNA-binding domain. Bulges are known to change the global geometry of RNA by bending the helical axis; therefore, we investigated the conformational changes of bulged RNA caused by PKR binding. A 66-mer DNA-RNA(+/− A3 bulge)-DNA chimera was constructed and annealed to a complementary RNA strand. This duplex forces the protein to bind in the middle. A 66-mer duplex with a top strand composed of DNA-DNA(+/−A3 bulge)-RNA was used as a control. Gel mobility-shift changes among the RNA-protein complexes are consistent with straightening of bulged RNA on protein binding. In addition, a van't Hoff analysis of p20 binding to bulged RNA reveals a favorable ΔΔH° and an unfavorable ΔΔS° relative to binding to straight dsRNA. These thermodynamic parameters are in good agreement with predictions from a nearest-neighbor analysis for RNA straightening and support a model in which the helical junction flanking the bulge stacks on protein binding. The ability of dsRNA-binding motif proteins to recognize and straighten bent RNA has implications for modulating the topology of RNAs in vivo. PMID:11114159

  9. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina

    PubMed Central

    Rodriguez, Allen R.; de Sevilla Müller, Luis Pérez; Brecha, Nicholas C.

    2014-01-01

    There are few neurochemical markers that reliably identify retinal ganglion cells (RGCs), which are a heterogeneous population of cells that integrate and transmit the visual signal from the retina to the central visual nuclei. We have developed and characterized a new set of affinity purified guinea pig and rabbit antibodies against RNA-binding protein with multiple splicing (RBPMS). On Western blots these antibodies recognize a single band at ~24 kDa, corresponding to RBPMS, and they strongly label RGC and displaced RGC (dRGC) somata in mouse, rat, guinea pig, rabbit and monkey retina. RBPMS immunoreactive cells and RGCs identified by other techniques have a similar range of somal diameters and areas. The density of RBPMS cells in mouse and rat retina is comparable to earlier semi-quantitative estimates of RGCs. RBPMS is mainly expressed in medium and large DAPI-, DRAQ5-, NeuroTrace- and NeuN-stained cells in the ganglion cell layer (GCL), and RBPMS is not expressed in syntaxin (HPC-1) immunoreactive cells in the inner nuclear layer (INL) and GCL, consistent with their identity as RGCs, and not displaced amacrine cells. In mouse and rat retina, most RBPMS cells are lost following optic nerve crush or transection at three weeks, and all Brn3a, SMI-32 and melanopsin immunoreactive RGCs also express RBPMS immunoreactivity. RBPMS immunoreactivity is localized to CFP-fluorescent RGCs in the B6.Cg-Tg(Thy1-CFP)23Jrs/J mouse line. These findings show that antibodies against RBPMS are robust reagents that exclusively identify RGCs and dRGCs in multiple mammalian species, and they will be especially useful for quantification of RGCs. PMID:24318667

  10. The RNA-binding protein LIN28B regulates developmental timing in the mammalian cochlea

    PubMed Central

    Golden, Erin J.; Benito-Gonzalez, Ana; Doetzlhofer, Angelika

    2015-01-01

    Proper tissue development requires strict coordination of proliferation, growth, and differentiation. Strict coordination is particularly important for the auditory sensory epithelium, where deviations from the normal spatial and temporal pattern of auditory progenitor cell (prosensory cell) proliferation and differentiation result in abnormal cellular organization and, thus, auditory dysfunction. The molecular mechanisms involved in the timing and coordination of auditory prosensory proliferation and differentiation are poorly understood. Here we identify the RNA-binding protein LIN28B as a critical regulator of developmental timing in the murine cochlea. We show that Lin28b and its opposing let-7 miRNAs are differentially expressed in the auditory sensory lineage, with Lin28b being highly expressed in undifferentiated prosensory cells and let-7 miRNAs being highly expressed in their progeny—hair cells (HCs) and supporting cells (SCs). Using recently developed transgenic mouse models for LIN28B and let-7g, we demonstrate that prolonged LIN28B expression delays prosensory cell cycle withdrawal and differentiation, resulting in HC and SC patterning and maturation defects. Surprisingly, let-7g overexpression, although capable of inducing premature prosensory cell cycle exit, failed to induce premature HC differentiation, suggesting that LIN28B’s functional role in the timing of differentiation uses let-7 independent mechanisms. Finally, we demonstrate that overexpression of LIN28B or let-7g can significantly alter the postnatal production of HCs in response to Notch inhibition; LIN28B has a positive effect on HC production, whereas let-7 antagonizes this process. Together, these results implicate a key role for the LIN28B/let-7 axis in regulating postnatal SC plasticity. PMID:26139524

  11. Expression Profile of Six RNA-Binding Proteins in Pulmonary Sarcoidosis

    PubMed Central

    Novosadova, Eva; Hagemann-Jensen, Michael; Kullberg, Susanna; Kolek, Vitezslav; Grunewald, Johan; Petrek, Martin

    2016-01-01

    Background Sarcoidosis is characterised by up-regulation of cytokines and chemokine ligands/receptors and proteolytic enzymes. This pro-inflammatory profile is regulated post-transcriptionally by RNA-binding proteins (RBPs). We investigated in vivo expression of six RBPs (AUF1, HuR, NCL, TIA, TIAR, PCBP2) and two inhibitors of proteolytic enzymes (RECK, PTEN) in pulmonary sarcoidosis and compared it to the expression in four control groups of healthy individuals and patients with other respiratory diseases: chronic obstructive pulmonary disease (COPD), asthma and idiopathic interstitial pneumonias (IIPs). Methods RT-PCR was used to quantify the mRNAs in bronchoalveolar (BA) cells obtained from 50 sarcoidosis patients, 23 healthy controls, 30 COPD, 19 asthmatic and 19 IIPs patients. Flow cytometry was used to assess intracellular protein expression of AUF1 and HuR in peripheral blood T lymphocytes (PBTLs) obtained from 9 sarcoidosis patients and 6 healthy controls. Results Taking the stringent conditions for multiple comparisons into consideration, we consistently observed in the primary analysis including all patients regardless of smoking status as well as in the subsequent sub-analysis limited for never smokers that the BA mRNA expression of AUF1 (p<0.001), TIA (p<0.001), NCL (p<0.01) and RECK (p<0.05) was decreased in sarcoidosis compared to healthy controls. TIA mRNA was also decreased in sarcoidosis compared to both obstructive pulmonary diseases (COPD and asthma; p<0.001) but not compared to IIPs. There were several positive correlations between RECK mRNA and RBP mRNAs in BA cells. Also sarcoidosis CD3+, CD4+ and CD8+ PBTLs displayed lower mean fluorescence intensity of AUF1 (p≤0.02) and HuR (p≤0.03) proteins than control healthy PBTLs. Conclusion mRNA expressions of three RBPs (AUF1, TIA and NCL) and their potential target mRNA encoding RECK in BA cells and additionally protein expression of AUF1 and HuR in PBTLs were down-regulated in our sarcoidosis

  12. Membrane Topology and Predicted RNA-Binding Function of the ‘Early Responsive to Dehydration (ERD4)’ Plant Protein

    PubMed Central

    Rai, Archana; Suprasanna, Penna; D'Souza, Stanislaus F.; Kumar, Vinay

    2012-01-01

    Functional annotation of uncharacterized genes is the main focus of computational methods in the post genomic era. These tools search for similarity between proteins on the premise that those sharing sequence or structural motifs usually perform related functions, and are thus particularly useful for membrane proteins. Early responsive to dehydration (ERD) genes are rapidly induced in response to dehydration stress in a variety of plant species. In the present work we characterized function of Brassica juncea ERD4 gene using computational approaches. The ERD4 protein of unknown function possesses ubiquitous DUF221 domain (residues 312–634) and is conserved in all plant species. We suggest that the protein is localized in chloroplast membrane with at least nine transmembrane helices. We detected a globular domain of 165 amino acid residues (183–347) in plant ERD4 proteins and expect this to be posited inside the chloroplast. The structural-functional annotation of the globular domain was arrived at using fold recognition methods, which suggested in its sequence presence of two tandem RNA-recognition motif (RRM) domains each folded into βαββαβ topology. The structure based sequence alignment with the known RNA-binding proteins revealed conservation of two non-canonical ribonucleoprotein sub-motifs in both the putative RNA-recognition domains of the ERD4 protein. The function of highly conserved ERD4 protein may thus be associated with its RNA-binding ability during the stress response. This is the first functional annotation of ERD4 family of proteins that can be useful in designing experiments to unravel crucial aspects of stress tolerance mechanism. PMID:22431979

  13. Identification and characterization of RNA-binding activity in the ORF1-encoded replicase protein of Pelargonium flower break virus.

    PubMed

    Martínez-Turiño, Sandra; Hernández, Carmen

    2010-12-01

    Pelargonium flower break virus (PFBV) belongs to the genus Carmovirus (family Tombusviridae) and, as with the remaining members of the group, possesses a monopartite genome of single-stranded, positive-sense RNA that contains five ORFs. The two 5'-proximal ORFs (ORFs 1 and 2) encode two polypeptides of 27 and 86 kDa (p27 and p86), respectively, that show homology with replication proteins. The p27 does not present any motif to explain its presumed involvement in replication, while p86 has the motifs conserved in RNA-dependent RNA polymerases. In this work, we have confirmed the necessity of p27 and p86 for PFBV replication. To gain insights into the function(s) of p27, we have expressed and purified the protein from Escherichia coli and tested its ability to bind RNA in vitro. The results have shown that p27 is able to bind ssRNA with high affinity and in a cooperative fashion and that it is also capable of binding other types of nucleic acids, though to a lesser extent. Additionally, competition experiments suggest that p27 has a preference for PFBV-derived ssRNAs. Using truncated forms of p27, it can be concluded that several regions of the protein contribute to its RNA-binding properties and that this contribution is additive. This study is the first to show nucleic acid-binding ability of the ORF1 product of a carmovirus and the data obtained suggest that this product plays an essential role in selection and recruitment of viral RNA replication templates. PMID:20826617

  14. Identification and characterization of RNA-binding activity in the ORF1-encoded replicase protein of Pelargonium flower break virus.

    PubMed

    Martínez-Turiño, Sandra; Hernández, Carmen

    2010-12-01

    Pelargonium flower break virus (PFBV) belongs to the genus Carmovirus (family Tombusviridae) and, as with the remaining members of the group, possesses a monopartite genome of single-stranded, positive-sense RNA that contains five ORFs. The two 5'-proximal ORFs (ORFs 1 and 2) encode two polypeptides of 27 and 86 kDa (p27 and p86), respectively, that show homology with replication proteins. The p27 does not present any motif to explain its presumed involvement in replication, while p86 has the motifs conserved in RNA-dependent RNA polymerases. In this work, we have confirmed the necessity of p27 and p86 for PFBV replication. To gain insights into the function(s) of p27, we have expressed and purified the protein from Escherichia coli and tested its ability to bind RNA in vitro. The results have shown that p27 is able to bind ssRNA with high affinity and in a cooperative fashion and that it is also capable of binding other types of nucleic acids, though to a lesser extent. Additionally, competition experiments suggest that p27 has a preference for PFBV-derived ssRNAs. Using truncated forms of p27, it can be concluded that several regions of the protein contribute to its RNA-binding properties and that this contribution is additive. This study is the first to show nucleic acid-binding ability of the ORF1 product of a carmovirus and the data obtained suggest that this product plays an essential role in selection and recruitment of viral RNA replication templates.

  15. Identification of Rift Valley Fever Virus Nucleocapsid Protein-RNA Binding Inhibitors Using a High-Throughput Screening Assay

    PubMed Central

    Ellenbecker, Mary; Lanchy, Jean-Marc; Lodmell, J. Stephen

    2012-01-01

    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no proven effective treatment for RVFV infection and there is no licensed vaccine. Inhibition of RNA binding to the essential viral nucleocapsid (N) protein represents a potential anti-viral therapeutic strategy because all of the functions performed by N during infection involve RNA binding. To target this interaction, we developed a fluorescence polarization-based high-throughput drug screening assay and tested 26,424 chemical compounds for their ability to disrupt an N-RNA complex. From libraries of FDA approved drugs, drug-like molecules and natural products extracts we identified several lead compounds that are promising candidates for medicinal chemistry. PMID:22644268

  16. Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets.

    PubMed

    Farazi, Thalia A; Leonhardt, Carl S; Mukherjee, Neelanjan; Mihailovic, Aleksandra; Li, Song; Max, Klaas E A; Meyer, Cindy; Yamaji, Masashi; Cekan, Pavol; Jacobs, Nicholas C; Gerstberger, Stefanie; Bognanni, Claudia; Larsson, Erik; Ohler, Uwe; Tuschl, Thomas

    2014-07-01

    Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed.

  17. EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression.

    PubMed

    Lee, Nara; Yario, Therese A; Gao, Jessica S; Steitz, Joan A

    2016-03-22

    Epstein-Barr virus (EBV) produces a highly abundant noncoding RNA called EBV-encoded RNA 2 (EBER2) that interacts indirectly with the host transcription factor paired box protein 5 (PAX5) to regulate viral latent membrane protein 1/2 (LMP1/2) gene expression as well as EBV lytic replication. To identify intermediary proteins, we isolated EBER2-PAX5-containing complexes and analyzed the protein components by mass spectrometry. The top candidates include three host proteins splicing factor proline and glutamine rich (SFPQ), non-POU domain-containing octamer-binding protein (NONO), and RNA binding motif protein 14 (RBM14), all reported to be components of nuclear bodies called paraspeckles. In vivo RNA-protein crosslinking indicates that SFPQ and RBM14 contact EBER2 directly. Binding studies using recombinant proteins demonstrate that SFPQ and NONO associate with PAX5, potentially bridging its interaction with EBER2. Similar to EBER2 or PAX5 depletion, knockdown of any of the three host RNA-binding proteins results in the up-regulation of viral LMP2A mRNA levels, supporting a physiologically relevant interaction of these newly identified factors with EBER2 and PAX5. Identification of these EBER2-interacting proteins enables the search for cellular noncoding RNAs that regulate host gene expression in a manner similar to EBER2. PMID:26951683

  18. EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression.

    PubMed

    Lee, Nara; Yario, Therese A; Gao, Jessica S; Steitz, Joan A

    2016-03-22

    Epstein-Barr virus (EBV) produces a highly abundant noncoding RNA called EBV-encoded RNA 2 (EBER2) that interacts indirectly with the host transcription factor paired box protein 5 (PAX5) to regulate viral latent membrane protein 1/2 (LMP1/2) gene expression as well as EBV lytic replication. To identify intermediary proteins, we isolated EBER2-PAX5-containing complexes and analyzed the protein components by mass spectrometry. The top candidates include three host proteins splicing factor proline and glutamine rich (SFPQ), non-POU domain-containing octamer-binding protein (NONO), and RNA binding motif protein 14 (RBM14), all reported to be components of nuclear bodies called paraspeckles. In vivo RNA-protein crosslinking indicates that SFPQ and RBM14 contact EBER2 directly. Binding studies using recombinant proteins demonstrate that SFPQ and NONO associate with PAX5, potentially bridging its interaction with EBER2. Similar to EBER2 or PAX5 depletion, knockdown of any of the three host RNA-binding proteins results in the up-regulation of viral LMP2A mRNA levels, supporting a physiologically relevant interaction of these newly identified factors with EBER2 and PAX5. Identification of these EBER2-interacting proteins enables the search for cellular noncoding RNAs that regulate host gene expression in a manner similar to EBER2.

  19. Structure of the second RRM domain of Nrd1, a fission yeast MAPK target RNA binding protein, and implication for its RNA recognition and regulation

    SciTech Connect

    Kobayashi, Ayaho; Kanaba, Teppei; Satoh, Ryosuke; Fujiwara, Toshinobu; Ito, Yutaka; Sugiura, Reiko; Mishima, Masaki

    2013-07-19

    Highlights: •Solution structure of the second RRM of Nrd1 was determined. •RNA binding site of the second RRM was estimated. •Regulatory mechanism of RNA binding by phosphorylation is discussed. -- Abstract: Negative regulator of differentiation 1 (Nrd1) is known as a negative regulator of sexual differentiation in fission yeast. Recently, it has been revealed that Nrd1 also regulates cytokinesis, in which physical separation of the cell is achieved by a contractile ring comprising many proteins including actin and myosin. Cdc4, a myosin II light chain, is known to be required for cytokinesis. Nrd1 binds and stabilizes Cdc4 mRNA, and thereby suppressing the cytokinesis defects of the cdc4 mutants. Interestingly, Pmk1 MAPK phosphorylates Nrd1, resulting in markedly reduced RNA binding activity. Furthermore, Nrd1 localizes to stress granules in response to various stresses, and Pmk1 phosphorylation enhances the localization. Nrd1 consists of four RRM domains, although the mechanism by which Pmk1 regulates the RNA binding activity of Nrd1 is unknown. In an effort to delineate the relationship between Nrd1 structure and function, we prepared each RNA binding domain of Nrd1 and examined RNA binding to chemically synthesized oligo RNA using NMR. The structure of the second RRM domain of Nrd1 was determined and the RNA binding site on the second RRM domain was mapped by NMR. A plausible mechanism pertaining to the regulation of RNA binding activity by phosphorylation is also discussed.

  20. The RNA-binding protein ELAV regulates Hox RNA processing, expression and function within the Drosophila nervous system

    PubMed Central

    Rogulja-Ortmann, Ana; Picao-Osorio, Joao; Villava, Casandra; Patraquim, Pedro; Lafuente, Elvira; Aspden, Julie; Thomsen, Stefan; Technau, Gerhard M.; Alonso, Claudio R.

    2014-01-01

    The regulated head-to-tail expression of Hox genes provides a coordinate system for the activation of specific programmes of cell differentiation according to axial level. Recent work indicates that Hox expression can be regulated via RNA processing but the underlying mechanisms and biological significance of this form of regulation remain poorly understood. Here we explore these issues within the developing Drosophila central nervous system (CNS). We show that the pan-neural RNA-binding protein (RBP) ELAV (Hu antigen) regulates the RNA processing patterns of the Hox gene Ultrabithorax (Ubx) within the embryonic CNS. Using a combination of biochemical, genetic and imaging approaches we demonstrate that ELAV binds to discrete elements within Ubx RNAs and that its genetic removal reduces Ubx protein expression in the CNS leading to the respecification of cellular subroutines under Ubx control, thus defining for the first time a specific cellular role of ELAV within the developing CNS. Artificial provision of ELAV in glial cells (a cell type that lacks ELAV) promotes Ubx expression, suggesting that ELAV-dependent regulation might contribute to cell type-specific Hox expression patterns within the CNS. Finally, we note that expression of abdominal A and Abdominal B is reduced in elav mutant embryos, whereas other Hox genes (Antennapedia) are not affected. Based on these results and the evolutionary conservation of ELAV and Hox genes we propose that the modulation of Hox RNA processing by ELAV serves to adapt the morphogenesis of the CNS to axial level by regulating Hox expression and consequently activating local programmes of neural differentiation. PMID:24803653

  1. Extensive Association of Functionally and Cytotopically Related mRNAs with Puf Family RNA-Binding Proteins in Yeast

    PubMed Central

    2004-01-01

    Genes encoding RNA-binding proteins are diverse and abundant in eukaryotic genomes. Although some have been shown to have roles in post-transcriptional regulation of the expression of specific genes, few of these proteins have been studied systematically. We have used an affinity tag to isolate each of the five members of the Puf family of RNA-binding proteins in Saccharomyces cerevisiae and DNA microarrays to comprehensively identify the associated mRNAs. Distinct groups of 40–220 different mRNAs with striking common themes in the functions and subcellular localization of the proteins they encode are associated with each of the five Puf proteins: Puf3p binds nearly exclusively to cytoplasmic mRNAs that encode mitochondrial proteins; Puf1p and Puf2p interact preferentially with mRNAs encoding membrane-associated proteins; Puf4p preferentially binds mRNAs encoding nucleolar ribosomal RNA-processing factors; and Puf5p is associated with mRNAs encoding chromatin modifiers and components of the spindle pole body. We identified distinct sequence motifs in the 3′-untranslated regions of the mRNAs bound by Puf3p, Puf4p, and Puf5p. Three-hybrid assays confirmed the role of these motifs in specific RNA–protein interactions in vivo. The results suggest that combinatorial tagging of transcripts by specific RNA-binding proteins may be a general mechanism for coordinated control of the localization, translation, and decay of mRNAs and thus an integral part of the global gene expression program. PMID:15024427

  2. A Conserved Three-nucleotide Core Motif Defines Musashi RNA Binding Specificity*

    PubMed Central

    Zearfoss, N. Ruth; Deveau, Laura M.; Clingman, Carina C.; Schmidt, Eric; Johnson, Emily S.; Massi, Francesca; Ryder, Sean P.

    2014-01-01

    Musashi (MSI) family proteins control cell proliferation and differentiation in many biological systems. They are overexpressed in tumors of several origins, and their expression level correlates with poor prognosis. MSI proteins control gene expression by binding RNA and regulating its translation. They contain two RNA recognition motif (RRM) domains, which recognize a defined sequence element. The relative contribution of each nucleotide to the binding affinity and specificity is unknown. We analyzed the binding specificity of three MSI family RRM domains using a quantitative fluorescence anisotropy assay. We found that the core element driving recognition is the sequence UAG. Nucleotides outside of this motif have a limited contribution to binding free energy. For mouse MSI1, recognition is determined by the first of the two RRM domains. The second RRM adds affinity but does not contribute to binding specificity. In contrast, the recognition element for Drosophila MSI is more extensive than the mouse homolog, suggesting functional divergence. The short nature of the binding determinant suggests that protein-RNA affinity alone is insufficient to drive target selection by MSI family proteins. PMID:25368328

  3. Non-protein-coding RNAs and their interacting RNA-binding proteins in the plant cell nucleus.

    PubMed

    Charon, Celine; Moreno, Ana Beatriz; Bardou, Florian; Crespi, Martin

    2010-07-01

    The complex responses of eukaryotic cells to external factors are governed by several transcriptional and post-transcriptional processes. Several of them occur in the nucleus and have been linked to the action of non-protein-coding RNAs (or npcRNAs), both long and small npcRNAs, that recently emerged as major regulators of gene expression. Regulatory npcRNAs acting in the nucleus include silencing-related RNAs, intergenic npcRNAs, natural antisense RNAs, and other aberrant RNAs resulting from the interplay between global transcription and RNA processing activities (such as Dicers and RNA-dependent polymerases). Generally, the resulting npcRNAs exert their regulatory effects through interactions with RNA-binding proteins (or RBPs) within ribonucleoprotein particles (or RNPs). A large group of RBPs are implicated in the silencing machinery through small interfering RNAs (siRNAs) and their localization suggests that several act in the nucleus to trigger epigenetic and chromatin changes at a whole-genome scale. Other nuclear RBPs interact with npcRNAs and change their localization. In the fission yeast, the RNA-binding Mei2p protein, playing pivotal roles in meiosis, interact with a meiotic npcRNA involved in its nuclear re-localization. Related processes have been identified in plants and the ENOD40 npcRNA was shown to re-localize a nuclear-speckle RBP from the nucleus to the cytoplasm in Medicago truncatula. Plant RBPs have been also implicated in RNA-mediated chromatin silencing in the FLC locus through interaction with specific antisense transcripts. In this review, we discuss the interactions between RBPs and npcRNAs in the context of nuclear-related processes and their implication in plant development and stress responses. We propose that these interactions may add a regulatory layer that modulates the interactions between the nuclear genome and the environment and, consequently, control plant developmental plasticity.

  4. A novel RNA-binding protein from Triturus carnifex identified by RNA-ligand screening with the newt hammerhead ribozyme

    PubMed Central

    Denti, Michela A.; Alba, A. Emilio Martínez de; Sägesser, Rudolf; Tsagris, Mina; Tabler, Martin

    2000-01-01

    The newt hammerhead ribozyme is transcribed from Satellite 2 DNA, which consists of tandemly repeated units of 330 bp. However, different transcripts are synthesized in different tissues. In all somatic tissues and in testes, dimeric and multimeric RNA transcripts are generated which, to some extent, self-cleave into monomers at the hammerhead domain. In ovaries, primarily a distinct monomeric unit is formed by transcription, which retains an intact hammerhead self-cleavage site. The ovarian monomeric RNA associates to form a 12S complex with proteins that are poorly characterised so far. In this work we identified NORA, a protein that binds the ovarian form of the newt ribozyme. We show that the newt ribozyme binds to the Escherichia coli-expressed protein, as well as to a protein of identical size that is found exclusively in newt ovaries. Also NORA mRNA was detectable only in ovary, but in neither somatic tissues nor testes. The tissue-specific expression of NORA is analogous to the ovary-specific transcription of the newt ribozyme. Although NORA was identified by its ability to bind to the newt ribozyme in the presence of a vast excess of carrier RNA, it was able to interact with certain other RNA probes. This novel RNA-binding protein does not contain any motif characteristic for RNA-binding proteins or any other known protein domain, but it shares a striking similarity with a rat resiniferatoxin-binding protein. PMID:10666442

  5. A Plasmodium yoelii Mei2-Like RNA Binding Protein Is Essential for Completion of Liver Stage Schizogony

    PubMed Central

    Dankwa, Dorender A.; Davis, Marshall J.

    2016-01-01

    Plasmodium parasites employ posttranscriptional regulatory mechanisms as their life cycle transitions between host cell invasion and replication within both the mosquito vector and mammalian host. RNA binding proteins (RBPs) provide one mechanism for modulation of RNA function. To explore the role of Plasmodium RBPs during parasite replication, we searched for RBPs that might play a role during liver stage development, the parasite stage that exhibits the most extensive growth and replication. We identified a parasite ortholog of the Mei2 (Meiosis inhibited 2) RBP that is conserved among Plasmodium species (PlasMei2) and exclusively transcribed in liver stage parasites. Epitope-tagged Plasmodium yoelii PlasMei2 was expressed only during liver stage schizogony and showed an apparent granular cytoplasmic location. Knockout of PlasMei2 (plasmei2−) in P. yoelii only affected late liver stage development. The P. yoelii plasmei2− liver stage size increased progressively until late in development, similar to wild-type parasite development. However, P. yoelii plasmei2− liver stage schizonts exhibited an abnormal DNA segregation phenotype and failed to form exoerythrocytic merozoites. Consequently the cellular integrity of P. yoelii plasmei2− liver stages became increasingly compromised late in development and the majority of P. yoelii plasmei2− underwent cell death by the time wild-type liver stages mature and release merozoites. This resulted in a complete block of P. yoelii plasmei2− transition from liver stage to blood stage infection in mice. Our results show for the first time the importance of a Plasmodium RBP in the coordinated progression of late liver stage schizogony and maturation of new invasive forms. PMID:26883588

  6. Erythromycin and 5S rRNA binding properties of the spinach chloroplast ribosomal protein CL22.

    PubMed Central

    Carol, P; Rozier, C; Lazaro, E; Ballesta, J P; Mache, R

    1993-01-01

    The spinach chloroplast ribosomal protein (r-protein) CL22 contains a central region homologous to the Escherichia coli r-protein L22 plus long N- and C-terminal extensions. We show in this study that the CL22 combines two properties which in E. coli ribosome are split between two separate proteins. The CL22 which binds to the 5S rRNA can also be linked to an erythromycin derivative added to the 50S ribosomal subunit. This latter property is similar to that of the E. coli L22 and suggests a similar localization in the 50S subunit. We have overproduced the r-protein CL22 and deleted forms of this protein in E. coli. We show that the overproduced CL22 binds to the chloroplast 5S rRNA and that the deleted protein containing the N- and C-terminal extensions only has lost the 5S rRNA binding property. We suggest that the central homologous regions of the CL22 contains the RNA binding domain. Images PMID:8441674

  7. The SBP2 and 15.5 kD/Snu13p proteins share the same RNA binding domain: identification of SBP2 amino acids important to SECIS RNA binding.

    PubMed Central

    Allmang, Christine; Carbon, Philippe; Krol, Alain

    2002-01-01

    Selenoprotein synthesis in eukaryotes requires the selenocysteine insertion sequence (SECIS) RNA, a hairpin in the 3' untranslated region of selenoprotein mRNAs. The SECIS RNA is recognized by the SECIS-binding protein 2 (SBP2), which is a key player in this specialized translation machinery. The objective of this work was to obtain structural insight into the SBP2-SECIS RNA complex. Multiple sequence alignment revealed that SBP2 and the U4 snRNA-binding protein 15.5 kD/Snu13p share the same RNA binding domain of the L7A/L30 family, also found in the box H/ACA snoRNP protein Nhp2p and several ribosomal proteins. In corollary, we have detected a similar secondary structure motif in the SECIS and U4 RNAs. Combining the data of the crystal structure of the 15.5 kD-U4 snRNA complex, and the SBP2/15.5 kD sequence similarities, we designed a structure-guided strategy predicting 12 SBP2 amino acids that should be critical for SECIS RNA binding. Alanine substitution of these amino acids followed by gel shift assays of the SBP2 mutant proteins identified four residues whose mutation severely diminished or abolished SECIS RNA binding, the other eight provoking intermediate down effects. In addition to identifying key amino acids for SECIS recognition by SBP2, our findings led to the proposal that some of the recognition principles governing the 15.5 kD-U4 snRNA interaction must be similar in the SBP2-SECIS RNA complex. PMID:12403468

  8. Evolutionary history of double-stranded RNA binding proteins in plants: identification of new cofactors involved in easiRNA biogenesis.

    PubMed

    Clavel, Marion; Pélissier, Thierry; Montavon, Thomas; Tschopp, Marie-Aude; Pouch-Pélissier, Marie-Noëlle; Descombin, Julie; Jean, Viviane; Dunoyer, Patrice; Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2016-05-01

    In this work, we retrace the evolutionary history of plant double-stranded RNA binding proteins (DRBs), a group of non-catalytic factors containing one or more double-stranded RNA binding motif (dsRBM) that play important roles in small RNA biogenesis and functions. Using a phylogenetic approach, we show that multiple dsRBM DRBs are systematically composed of two different types of dsRBMs evolving under different constraints and likely fulfilling complementary functions. In vascular plants, four distinct clades of multiple dsRBM DRBs are always present with the exception of Brassicaceae species, that do not possess member of the newly identified clade we named DRB6. We also identified a second new and highly conserved DRB family (we named DRB7) whose members possess a single dsRBM that shows concerted evolution with the most C-terminal dsRBM domain of the Dicer-like 4 (DCL4) proteins. Using a BiFC approach, we observed that Arabidopsis thaliana DRB7.2 (AtDRB7.2) can directly interact with AtDRB4 but not with AtDCL4 and we provide evidence that both AtDRB7.2 and AtDRB4 participate in the epigenetically activated siRNAs pathway.

  9. Evolutionary history of double-stranded RNA binding proteins in plants: identification of new cofactors involved in easiRNA biogenesis.

    PubMed

    Clavel, Marion; Pélissier, Thierry; Montavon, Thomas; Tschopp, Marie-Aude; Pouch-Pélissier, Marie-Noëlle; Descombin, Julie; Jean, Viviane; Dunoyer, Patrice; Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2016-05-01

    In this work, we retrace the evolutionary history of plant double-stranded RNA binding proteins (DRBs), a group of non-catalytic factors containing one or more double-stranded RNA binding motif (dsRBM) that play important roles in small RNA biogenesis and functions. Using a phylogenetic approach, we show that multiple dsRBM DRBs are systematically composed of two different types of dsRBMs evolving under different constraints and likely fulfilling complementary functions. In vascular plants, four distinct clades of multiple dsRBM DRBs are always present with the exception of Brassicaceae species, that do not possess member of the newly identified clade we named DRB6. We also identified a second new and highly conserved DRB family (we named DRB7) whose members possess a single dsRBM that shows concerted evolution with the most C-terminal dsRBM domain of the Dicer-like 4 (DCL4) proteins. Using a BiFC approach, we observed that Arabidopsis thaliana DRB7.2 (AtDRB7.2) can directly interact with AtDRB4 but not with AtDCL4 and we provide evidence that both AtDRB7.2 and AtDRB4 participate in the epigenetically activated siRNAs pathway. PMID:26858002

  10. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    PubMed Central

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  11. Post-Transcriptional Control of the Hypoxic Response by RNA-Binding Proteins and MicroRNAs.

    PubMed

    Gorospe, Myriam; Tominaga, Kumiko; Wu, Xue; Fähling, Michael; Ivan, Mircea

    2011-01-01

    Mammalian gene expression patterns change profoundly in response to low oxygen levels. These changes in gene expression programs are strongly influenced by post-transcriptional mechanisms mediated by mRNA-binding factors: RNA-binding proteins (RBPs) and microRNAs (miRNAs). Here, we review the RBPs and miRNAs that modulate mRNA turnover and translation in response to hypoxic challenge. RBPs such as HuR (human antigen R), PTB (polypyrimidine tract-binding protein), heterogeneous nuclear ribonucleoproteins (hnRNPs), tristetraprolin, nucleolin, iron-response element-binding proteins (IRPs), and cytoplasmic polyadenylation-element-binding proteins (CPEBs), selectively bind to numerous hypoxia-regulated transcripts and play a major role in establishing hypoxic gene expression patterns. MiRNAs including miR-210, miR-373, and miR-21 associate with hypoxia-regulated transcripts and further modulate the levels of the encoded proteins to implement the hypoxic gene expression profile. We discuss the potent regulation of hypoxic gene expression by RBPs and miRNAs and their integrated actions in the cellular hypoxic response.

  12. HuR/ELAVL1 RNA binding protein modulates interleukin-8 induction by muco-active ribotoxin deoxynivalenol

    SciTech Connect

    Choi, Hye Jin; Yang, Hyun; Park, Seong Hwan; Moon, Yuseok

    2009-10-01

    HuR/Elav-like RNA binding protein 1 (ELAVL1) positively regulates mRNA stability of AU-rich elements (ARE)-containing transcript such as pro-inflammatory cytokines. Ribotoxic stresses can trigger the production of pro-inflammatory mediators by enhancing mRNA stability and the transcriptional activity. We investigated the effects of ribotoxin deoxynivalenol (DON) on HuR translocation and its involvement in the regulation of the pro-inflammatory interleukin-8 (IL-8) mRNA stability. Exposure to the muco-active DON induced nuclear export of both endogenous and exogenous HuR RNA binding protein in human intestinal epithelial cells. Moreover, the interference with HuR protein production suppressed ribotoxic DON-induced IL-8 secretion and its mRNA stability. Cytoplasmic HuR protein interacted with IL-8 mRNA and the complex stabilization was due to the presence of 3'-untranslated region of the transcript. Partly in terms of IL-8-modulating transcription factors, HuR protein was demonstrated to be positively and negatively associated with DON-induced early growth response gene 1 (EGR-1) and activating transcription factor 3 (ATF3), respectively. HuR was a critical mechanistic link between ribotoxic stress and the pro-inflammatory cytokine production, and may have a broader functional significance with regard to mucosal insults since ribotoxic stress responses are also produced upon interactions with the diverse environment of gut.

  13. Known Turnover and Translation Regulatory RNA-Binding Proteins Interact with the 3’ UTR of SECIS-Binding Protein 2

    PubMed Central

    Bubenik, Jodi; Ladd, Andrea; Gerber, Carri A.; Budiman, Michael; Driscoll, Donna

    2008-01-01

    The human selenoproteome is composed of ~25 selenoproteins, which cotranslationally incorporate selenocysteine, the 21st amino acid. Selenoprotein expression requires an unusual translation mechanism, as selenocysteine is encoded by the UGA stop codon. SECIS-binding protein 2 (SBP2) is an essential component of the selenocysteine insertion machinery. SBP2 is also the only factor known to differentiate among selenoprotein mRNAs, thereby modulating the relative expression of the individual selenoproteins. Here, we show that expression of SBP2 protein varies widely across tissues and cell types examined, despite previous observations of only modest variation in SBP2 mRNA levels. This discrepancy between SBP2 mRNA and protein levels implies translational regulation, which is often mediated via untranslated regions (UTRs) in regulated transcripts. We have identified multiple sequences in the SBP2 3’ UTR that are highly conserved. The proximal short conserved region is GU rich and was subsequently shown to be a binding site for CUG-BP1. The distal half of the 3’ UTR is largely conserved, and multiple proteins interact with this region. One of these proteins was identified as HuR. Both CUG-BP1 and HuR are members of the Turnover and Translation Regulatory RNA-Binding Protein family (TTR-RBP). Members of this protein family are linked by the common ability to rapidly effect gene expression through alterations in the stability and translatability of target mRNAs. The identification of CUG-BP1 and HuR as factors that bind to the SBP2 3’ UTR suggests that TTR-RBPs play a role in the regulation of SBP2, which then dictates the expression of the selenoproteome. PMID:19106619

  14. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    PubMed Central

    Meyer, Katja; Koester, Tino; Staiger, Dorothee

    2015-01-01

    Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance. PMID:26213982

  15. RNA-Binding Proteins in the Regulation of miRNA Activity: A Focus on Neuronal Functions

    PubMed Central

    Loffreda, Alessia; Rigamonti, Aurora; Barabino, Silvia M. L.; Lenzken, Silvia C.

    2015-01-01

    Posttranscriptional modifications of messenger RNAs (mRNAs) are key processes in the fine-tuning of cellular homeostasis. Two major actors in this scenario are RNA binding proteins (RBPs) and microRNAs (miRNAs) that together play important roles in the biogenesis, turnover, translation and localization of mRNAs. This review will highlight recent advances in the understanding of the role of RBPs in the regulation of the maturation and the function of miRNAs. The interplay between miRNAs and RBPs is discussed specifically in the context of neuronal development and function. PMID:26437437

  16. Nuclear Factor 90, a cellular dsRNA binding protein inhibits the HIV Rev-export function

    PubMed Central

    Urcuqui-Inchima, Silvio; Castaño, Maria Eugenia; Hernandez-Verdun, Danièle; St-Laurent, Georges; Kumar, Ajit

    2006-01-01

    Background The HIV Rev protein is known to facilitate export of incompletely spliced and unspliced viral transcripts to the cytoplasm, a necessary step in virus life cycle. The Rev-mediated nucleo-cytoplasmic transport of nascent viral transcripts, dependents on interaction of Rev with the RRE RNA structural element present in the target RNAs. The C-terminal variant of dsRNA-binding nuclear protein 90 (NF90ctv) has been shown to markedly attenuate viral replication in stably transduced HIV-1 target cell line. Here we examined a mechanism of interference of viral life cycle involving Rev-NF90ctv interaction. Results Since Rev:RRE complex formations depend on protein:RNA and protein:protein interactions, we investigated whether the expression of NF90ctv might interfere with Rev-mediated export of RRE-containing transcripts. When HeLa cells expressed both NF90ctv and Rev protein, we observed that NF90ctv inhibited the Rev-mediated RNA transport. In particular, three regions of NF90ctv protein are involved in blocking Rev function. Moreover, interaction of NF90ctv with the RRE RNA resulted in the expression of a reporter protein coding sequences linked to the RRE structure. Moreover, Rev influenced the subcellular localization of NF90ctv, and this process is leptomycin B sensitive. Conclusion The dsRNA binding protein, NF90ctv competes with HIV Rev function at two levels, by competitive protein:protein interaction involving Rev binding to specific domains of NF90ctv, as well as by its binding to the RRE-RNA structure. Our results are consistent with a model of Rev-mediated HIV-1 RNA export that envisions Rev-multimerization, a process interrupted by NF90ctv. PMID:17125513

  17. PiRaNhA: a server for the computational prediction of RNA-binding residues in protein sequences

    PubMed Central

    Murakami, Yoichi; Spriggs, Ruth V.; Nakamura, Haruki; Jones, Susan

    2010-01-01

    The PiRaNhA web server is a publicly available online resource that automatically predicts the location of RNA-binding residues (RBRs) in protein sequences. The goal of functional annotation of sequences in the field of RNA binding is to provide predictions of high accuracy that require only small numbers of targeted mutations for verification. The PiRaNhA server uses a support vector machine (SVM), with position-specific scoring matrices, residue interface propensity, predicted residue accessibility and residue hydrophobicity as features. The server allows the submission of up to 10 protein sequences, and the predictions for each sequence are provided on a web page and via email. The prediction results are provided in sequence format with predicted RBRs highlighted, in text format with the SVM threshold score indicated and as a graph which enables users to quickly identify those residues above any specific SVM threshold. The graph effectively enables the increase or decrease of the false positive rate. When tested on a non-redundant data set of 42 protein sequences not used in training, the PiRaNhA server achieved an accuracy of 85%, specificity of 90% and a Matthews correlation coefficient of 0.41 and outperformed other publicly available servers. The PiRaNhA prediction server is freely available at http://www.bioinformatics.sussex.ac.uk/PIRANHA. PMID:20507911

  18. RNA-binding motif protein 47 inhibits Nrf2 activity to suppress tumor growth in lung adenocarcinoma

    PubMed Central

    Sakurai, T; Isogaya, K; Sakai, S; Morikawa, M; Morishita, Y; Ehata, S; Miyazono, K; Koinuma, D

    2016-01-01

    RNA-binding proteins provide a new layer of posttranscriptional regulation of RNA during cancer progression. We identified RNA-binding motif protein 47 (RBM47) as a target gene of transforming growth factor (TGF)-β in mammary gland epithelial cells (NMuMG cells) that have undergone the epithelial-to-mesenchymal transition. TGF-β repressed RBM47 expression in NMuMG cells and lung cancer cell lines. Expression of RBM47 correlated with good prognosis in patients with lung, breast and gastric cancer. RBM47 suppressed the expression of cell metabolism-related genes, which were the direct targets of nuclear factor erythroid 2-related factor 2 (Nrf2; also known as NFE2L2). RBM47 bound to KEAP1 and Cullin 3 mRNAs, and knockdown of RBM47 inhibited their protein expression, which led to enhanced binding of Nrf2 to target genomic regions. Knockdown of RBM47 also enhanced the expression of some Nrf2 activators, p21/CDKN1A and MafK induced by TGF-β. Both mitochondrial respiration rates and the side population cells in lung cancer cells increased in the absence of RBM47. Our findings, together with the enhanced tumor formation and metastasis of xenografted mice by knockdown of the RBM47 expression, suggested tumor-suppressive roles for RBM47 through the inhibition of Nrf2 activity. PMID:26923328

  19. RNA-binding protein DUS16 plays an essential role in primary miRNA processing in the unicellular alga Chlamydomonas reinhardtii.

    PubMed

    Yamasaki, Tomohito; Onishi, Masayuki; Kim, Eun-Jeong; Cerutti, Heriberto; Ohama, Takeshi

    2016-09-20

    Canonical microRNAs (miRNAs) are embedded in duplexed stem-loops in long precursor transcripts and are excised by sequential cleavage by DICER nuclease(s). In this miRNA biogenesis pathway, dsRNA-binding proteins play important roles in animals and plants by assisting DICER. However, these RNA-binding proteins are poorly characterized in unicellular organisms. Here we report that a unique RNA-binding protein, Dull slicer-16 (DUS16), plays an essential role in processing of primary-miRNA (pri-miRNA) transcripts in the unicellular green alga Chlamydomonas reinhardtii In animals and plants, dsRNA-binding proteins involved in miRNA biogenesis harbor two or three dsRNA-binding domains (dsRBDs), whereas DUS16 contains one dsRBD and also an ssRNA-binding domain (RRM). The null mutant of DUS16 showed a drastic reduction in most miRNA species. Production of these miRNAs was complemented by expression of full-length DUS16, but the expression of RRM- or dsRBD-truncated DUS16 did not restore miRNA production. Furthermore, DUS16 is predominantly localized to the nucleus and associated with nascent (unspliced form) pri-miRNAs and the DICER-LIKE 3 protein. These results suggest that DUS16 recognizes pri-miRNA transcripts cotranscriptionally and promotes their processing into mature miRNAs as a component of a microprocessor complex. We propose that DUS16 is an essential factor for miRNA production in Chlamydomonas and, because DUS16 is functionally similar to the dsRNA-binding proteins involved in miRNA biogenesis in animals and land plants, our report provides insight into this mechanism in unicellular eukaryotes. PMID:27582463

  20. Molecular cloning, expression pattern, and 3D structural prediction of the cold inducible RNA-binding protein (CIRP) in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Gao, Jinning; Ma, Liman; Li, Zan; Wang, Wenji; Wang, Zhongkai; Yu, Haiyang; Qi, Jie; Wang, Xubo; Wang, Zhigang; Zhang, Quanqi

    2015-02-01

    Cold-inducible RNA-binding protein (CIRP) is a kind of RNA binding proteins that plays important roles in many physiological processes. The CIRP has been widely studied in mammals and amphibians since it was first cloned from mammals. On the contrary, there are little reports in teleosts. In this study, the Po CIRP gene of the Japanese flounder was cloned and sequenced. The genomic sequence consists of seven exons and six introns. The putative PoCIRP protein of flounder was 198 amino acid residues long containing the RNA recognition motif (RRM). Phylogenetic analysis showed that the flounder PoCIRP is highly conserved with other teleost CIRPs. The 5' flanking sequence was cloned by genome walking and many transcription factor binding sites were identified. There is a CpGs region located in promoter and exon I region and the methylation state is low. Quantitative real-time PCR analysis uncovered that Po CIRP gene was widely expressed in adult tissues with the highest expression level in the ovary. The mRNA of the Po CIRP was maternally deposited and the expression level of the gene was regulated up during the gastrula and neurula stages. In order to gain the information how the protein interacts with mRNA, we performed the modeling of the 3D structure of the flounder PoCIRP. The results showed a cleft existing the surface of the molecular. Taken together, the results indicate that the CIRP is a multifunctional molecular in teleosts and the findings about the structure provide valuable information for understanding the basis of this protein's function.

  1. Neuroprotective effects of cold-inducible RNA-binding protein during mild hypothermia on traumatic brain injury

    PubMed Central

    Wang, Guan; Zhang, Jian-ning; Guo, Jia-kui; Cai, Ying; Sun, Hong-sheng; Dong, Kun; Wu, Cheng-gang

    2016-01-01

    Cold-inducible RNA-binding protein (CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5°C on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP mRNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury. PMID:27335561

  2. The prosomal RNA-binding protein p27K is a member of the alpha-type human prosomal gene family.

    PubMed

    Bey, F; Silva Pereira, I; Coux, O; Viegas-Péquignot, E; Recillas Targa, F; Nothwang, H G; Dutrillaux, B; Scherrer, K

    1993-02-01

    Monoclonal antibodies demonstrated high conservation during evolution of a prosomal protein of M(r) 27,000 and differentiation--specific expression of the epitope. More than 90% of the reacting antigen was found as a p27K protein in the free messenger ribonucleoprotein (mRNP) fraction but another protein of M(r) 38,000, which shared protease fingerprint patterns with the p27K polypeptide, was also labelled in the nuclear and polyribosomal fractions. Sequencing of cDNA recombinant clones encoding the p27/38K protein and comparison with another prosomal protein, p30-33K, demonstrated the existence of a common characteristic sequence pattern containing three highly conserved segments. The genes Hs PROS-27 and Hs PROS-30 were mapped to chromosomes 14 (14q13) and 11 (11p15.1), respectively. The structure of the p27K protein shows multiple potential phosphorylation sites, an NTP-binding fold and an RNA-binding consensus sequence. The Hs PROS-27/beta-galactosidase fusion protein binds a single RNA of about 120 nucleotides from total HeLa cell RNA. Sequence comparisons show that the Hs PROS-27 and Hs PROS-30 genes belong to the gene family that encodes the prosome--MCP (multicatalytic proteinase)--proteasome proteins. Comparison with other members of the family from various species allowed us to show that the tripartite consensus sequence characteristic of the alpha-type sub-family is conserved from archeobacteria to man. The members of this gene family are characterised by very high evolutionary conservation of amino acid sequences of homologous genes and 20%-35% sequence similarity, between different family member within the same species and are clearly distinct from the beta-type family. PMID:7681138

  3. The RNA-binding protein TTP is a global post-transcriptional regulator of feedback control in inflammation

    PubMed Central

    Tiedje, Christopher; Diaz-Muñoz, Manuel D.; Trulley, Philipp; Ahlfors, Helena; Laaß, Kathrin; Blackshear, Perry J.; Turner, Martin; Gaestel, Matthias

    2016-01-01

    RNA-binding proteins (RBPs) facilitate post-transcriptional control of eukaryotic gene expression at multiple levels. The RBP tristetraprolin (TTP/Zfp36) is a signal-induced phosphorylated anti-inflammatory protein guiding unstable mRNAs of pro-inflammatory proteins for degradation and preventing translation. Using iCLIP, we have identified numerous mRNA targets bound by wild-type TTP and by a non-MK2-phosphorylatable TTP mutant (TTP-AA) in 1 h LPS-stimulated macrophages and correlated their interaction with TTP to changes at the level of mRNA abundance and translation in a transcriptome-wide manner. The close similarity of the transcriptomes of TTP-deficient and TTP-expressing macrophages upon short LPS stimulation suggested an effective inactivation of TTP by MK2, whereas retained RNA-binding capacity of TTP-AA to 3′UTRs caused profound changes in the transcriptome and translatome, altered NF-κB-activation and induced cell death. Increased TTP binding to the 3′UTR of feedback inhibitor mRNAs, such as Ier3, Dusp1 or Tnfaip3, in the absence of MK2-dependent TTP neutralization resulted in a strong reduction of their protein synthesis contributing to the deregulation of the NF-κB-signaling pathway. Taken together, our study uncovers a role of TTP as a suppressor of feedback inhibitors of inflammation and highlights the importance of fine-tuned TTP activity-regulation by MK2 in order to control the pro-inflammatory response. PMID:27220464

  4. The RNA-Binding Protein Whi3 Is a Key Regulator of Developmental Signaling and Ploidy in Saccharomyces cerevisiae

    PubMed Central

    Schladebeck, Sarah; Mösch, Hans-Ulrich

    2013-01-01

    In Saccharomyces cerevisiae, the RNA-binding protein Whi3 controls cell cycle progression, biofilm formation, and stress response by post-transcriptional regulation of the Cdc28-Cln3 cyclin-dependent protein kinase and the dual-specificity protein kinase Yak1. Previous work has indicated that Whi3 might govern these processes by additional, yet unknown mechanisms. In this study, we have identified additional effectors of Whi3 that include the G1 cyclins Cln1/Cln2 and two known regulators of biofilm formation, the catalytic PKA subunit Tpk1 and the transcriptional activator Tec1. We also provide evidence that Whi3 regulates production of these factors by post-transcriptional control and might exert this function by affecting translational elongation. Unexpectedly, we also discovered that Whi3 is a key regulator of cellular ploidy, because haploid whi3Δ mutant strains exhibit a significant increase-in-ploidy phenotype that depends on environmental conditions. Our data further suggest that Whi3 might control stability of ploidy by affecting the expression of many key genes involved in sister chromatid cohesion and of NIP100 that encodes a component of the yeast dynactin complex for chromosome distribution. Finally, we show that absence of Whi3 induces a transcriptional stress response in haploid cells that is relieved by whole-genome duplication. In summary, our study suggests that the RNA-binding protein Whi3 acts as a central regulator of cell division and development by post-transcriptional control of key genes involved in chromosome distribution and cell signaling. PMID:23770701

  5. Target discrimination by RNA-binding proteins: role of the ancillary protein U2A' and a critical leucine residue in differentiating the RNA-binding specificity of spliceosomal proteins U1A and U2B".

    PubMed Central

    Rimmele, M E; Belasco, J G

    1998-01-01

    The spliceosomal proteins U1A and U2B" each use a homologous RRM domain to bind specifically to their respective snRNA targets, U1hpll and U2hpIV, two stem-loops that are similar yet distinct in sequence. Previous studies have shown that binding of U2B" to U2hpIV is facilitated by the ancillary protein U2A', whereas specific binding of U1A to U1hpll requires no cofactor. Here we report that U2A' enables U2B" to distinguish the loop sequence of U2hpIV from that of U1hpll but plays no role in stem sequence discrimination. Although U2A' can also promote heterospecific binding of U1A to U2hpIV, a much higher concentration of the ancillary protein is required due to the approximately 500-fold greater affinity of U2A' for U2B". Additional experiments have identified a single leucine residue in U1A(Leu-44) that is critical for the intrinsic specificity of this protein for the loop sequence of U1 hpll in preference to that of U2hpIV. Our data suggest that most of the difference in RNA-binding specificity between U1A and U2B" can be accounted for by this leucine residue and by the contribution of the ancillary protein U2A' to the specificity of U2B". PMID:9814759

  6. Different forms of soluble cytoplasmic mRNA binding proteins and particles in Xenopus laevis oocytes and embryos

    SciTech Connect

    Murray, M.T.; Krohne, G.; Franke, W.W. )

    1991-01-01

    To gain insight into the mechanisms involved in the formation of maternally stored mRNPs during Xenopus laevis development, we searched for soluble cytoplasmic proteins of the oocyte that are able to selectively bind mRNAs, using as substrate radiolabeled mRNA. In vitro mRNP assembly in solution was followed by UV-cross-linking and RNase digestion, resulting in covalent tagging of polypeptides by nucleotide transfer. Five polypeptides of approximately 54, 56 60, 70, and 100 kD (p54, p56, p60, p70, and p100) have been found to selectively bind mRNA and assemble into mRNPs. These polypeptides, which correspond to previously described native mRNP components, occur in three different particle classes of approximately 4.5S, approximately 6S, and approximately 15S, as also determined by their reactions with antibodies against p54 and p56. Whereas the approximately 4.5S class contains p42, p60, and p70, probably each in the form of individual molecules or small complexes, the approximately 6S particles appears to consist only of p54 and p56, which occur in a near-stoichiometric ratio suggestive of a heterodimer complex. The approximately 15S particles contain, in addition to p54 and p56, p60 and p100 and this is the single occurring form of RNA-binding p100. We have also observed changes in the in vitro mRNA binding properties of these polypeptides during oogenesis and early embryonic development, in relation to their phosphorylation state and to the activity of an approximately 15S particle-associated protein kinase, suggesting that these proteins are involved in the developmental translational regulation of maternal mRNAs.

  7. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress1[OPEN

    PubMed Central

    Ambrosone, Alfredo; Batelli, Giorgia; Nurcato, Roberta; Aurilia, Vincenzo; Punzo, Paola; Bangarusamy, Dhinoth Kumar; Ruberti, Ida; Sassi, Massimiliano; Leone, Antonietta; Costa, Antonello; Grillo, Stefania

    2015-01-01

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress. PMID:25783413

  8. Drosophila TDP-43 RNA-Binding Protein Facilitates Association of Sister Chromatid Cohesion Proteins with Genes, Enhancers and Polycomb Response Elements

    PubMed Central

    Misulovin, Ziva; Gause, Maria; Rickels, Ryan A; Shilatifard, Ali

    2016-01-01

    The cohesin protein complex mediates sister chromatid cohesion and participates in transcriptional control of genes that regulate growth and development. Substantial reduction of cohesin activity alters transcription of many genes without disrupting chromosome segregation. Drosophila Nipped-B protein loads cohesin onto chromosomes, and together Nipped-B and cohesin occupy essentially all active transcriptional enhancers and a large fraction of active genes. It is unknown why some active genes bind high levels of cohesin and some do not. Here we show that the TBPH and Lark RNA-binding proteins influence association of Nipped-B and cohesin with genes and gene regulatory sequences. In vitro, TBPH and Lark proteins specifically bind RNAs produced by genes occupied by Nipped-B and cohesin. By genomic chromatin immunoprecipitation these RNA-binding proteins also bind to chromosomes at cohesin-binding genes, enhancers, and Polycomb response elements (PREs). RNAi depletion reveals that TBPH facilitates association of Nipped-B and cohesin with genes and regulatory sequences. Lark reduces binding of Nipped-B and cohesin at many promoters and aids their association with several large enhancers. Conversely, Nipped-B facilitates TBPH and Lark association with genes and regulatory sequences, and interacts with TBPH and Lark in affinity chromatography and immunoprecipitation experiments. Blocking transcription does not ablate binding of Nipped-B and the RNA-binding proteins to chromosomes, indicating transcription is not required to maintain binding once established. These findings demonstrate that RNA-binding proteins help govern association of sister chromatid cohesion proteins with genes and enhancers. PMID:27662615

  9. Two Putative RNA-Binding Proteins Function with Unequal Genetic Redundancy in the MOS4-Associated Complex1[C][W][OA

    PubMed Central

    Monaghan, Jacqueline; Xu, Fang; Xu, Shaohua; Zhang, Yuelin; Li, Xin

    2010-01-01

    The MOS4-associated complex (MAC) is a highly conserved nuclear protein complex associated with the spliceosome. We recently purified the MAC from Arabidopsis (Arabidopsis thaliana) nuclei, identified its potential components by mass spectrometry, and showed that at least five core proteins in the MAC are required for defense responses in plants. Here, we report the characterization of a putative RNA-binding protein identified in the MAC named MAC5A and its close homolog MAC5B. We confirmed that MAC5A is a component of the MAC through coimmunoprecipitation with the previously described MAC protein CELL DIVISION CYCLE5 from Arabidopsis. In addition, like all other characterized MAC proteins, MAC5A fused to the Green Fluorescent Protein localizes to the nucleus. Double mutant analysis revealed that MAC5A and MAC5B are unequally redundant and that a double mac5a mac5b mutant results in lethality. Probably due to this partial redundancy, mac5a and mac5b single mutants do not exhibit enhanced susceptibility to virulent or avirulent pathogen infection. However, like other MAC mutations, mac5a-1 partially suppresses the autoimmune phenotypes of suppressor of npr1-1, constitutive1 (snc1), a gain-of-function mutant that expresses a deregulated Resistance protein. Our results suggest that MAC5A is a component of the MAC that contributes to snc1- mediated autoimmunity. PMID:20943852

  10. The tissue-specific RNA binding protein T-STAR controls regional splicing patterns of neurexin pre-mRNAs in the brain.

    PubMed

    Ehrmann, Ingrid; Dalgliesh, Caroline; Liu, Yilei; Danilenko, Marina; Crosier, Moira; Overman, Lynn; Arthur, Helen M; Lindsay, Susan; Clowry, Gavin J; Venables, Julian P; Fort, Philippe; Elliott, David J

    2013-04-01

    The RNA binding protein T-STAR was created following a gene triplication 520-610 million years ago, which also produced its two parologs Sam68 and SLM-1. Here we have created a T-STAR null mouse to identify the endogenous functions of this RNA binding protein. Mice null for T-STAR developed normally and were fertile, surprisingly, given the high expression of T-STAR in the testis and the brain, and the known infertility and pleiotropic defects of Sam68 null mice. Using a transcriptome-wide search for splicing targets in the adult brain, we identified T-STAR protein as a potent splicing repressor of the alternatively spliced segment 4 (AS4) exons from each of the Neurexin1-3 genes, and exon 23 of the Stxbp5l gene. T-STAR protein was most highly concentrated in forebrain-derived structures like the hippocampus, which also showed maximal Neurexin1-3 AS4 splicing repression. In the absence of endogenous T-STAR protein, Nrxn1-3 AS4 splicing repression dramatically decreased, despite physiological co-expression of Sam68. In transfected cells Neurexin3 AS4 alternative splicing was regulated by either T-STAR or Sam68 proteins. In contrast, Neurexin2 AS4 splicing was only regulated by T-STAR, through a UWAA-rich response element immediately downstream of the regulated exon conserved since the radiation of bony vertebrates. The AS4 exons in the Nrxn1 and Nrxn3 genes were also associated with distinct patterns of conserved UWAA repeats. Consistent with an ancient mechanism of splicing control, human T-STAR protein was able to repress splicing inclusion of the zebrafish Nrxn3 AS4 exon. Although Neurexin1-3 and Stxbp5l encode critical synaptic proteins, T-STAR null mice had no detectable spatial memory deficits, despite an almost complete absence of AS4 splicing repression in the hippocampus. Our work identifies T-STAR as an ancient and potent tissue-specific splicing regulator that uses a concentration-dependent mechanism to co-ordinately regulate regional splicing patterns of

  11. Potential RNA Binding Proteins in Saccharomyces Cerevisiae Identified as Suppressors of Temperature-Sensitive Mutations in Npl3

    PubMed Central

    Henry, M.; Borland, C. Z.; Bossie, M.; Silver, P. A.

    1996-01-01

    The NPL3 gene of the yeast Saccharomyces cerevisiae encodes a protein with similarity to heterogeneous nuclear ribonucleoproteins (hnRNPs). Npl3p has been implicated in many nuclear-related events including RNA export, protein import, and rRNA processing. Several temperature-sensitive alleles of NPL3 have been isolated. We now report the sequence of these alleles. For one allele, npl3-1, four complementation groups of suppressors have been isolated. The cognate genes for the two recessive mutants were cloned. One of these is the previously known RNA15, which, like NPL3, also encodes a protein with similarity to the vertebrate hnRNP A/B protein family. The other suppressor corresponds to a newly defined gene we term HRP1, which also encodes a protein with similarity to the hnRNP A/B proteins of vertebrates. Mutations in HRP1 suppress all npl3 temperature-sensitive alleles but do not bypass an npl3 null allele. We show that HRP1 is essential for cell growth and that the corresponding protein is located in the nucleus. The discovery of two hnRNP homologues that can partially suppress the function of Np13p, also an RNA binding protein, will be discussed in terms of the possible roles for Npl3p in RNA metabolism. PMID:8770588

  12. The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain

    SciTech Connect

    Keryer-Bibens, Cecile; Legagneux, Vincent; Namanda-Vanderbeken, Allen; Cosson, Bertrand; Paillard, Luc; Poncet, Didier; Osborne, H. Beverley

    2009-12-11

    The non-structural protein 3 (NSP3) of rotaviruses is an RNA-binding protein that specifically recognises a 4 nucleotide sequence at the 3' extremity of the non-polyadenylated viral mRNAs. NSP3 also has a high affinity for eIF4G. These two functions are clearly delimited in separate domains the structures of which have been determined. They are joined by a central domain implicated in the dimerisation of the full length protein. The bridging function of NSP3 between the 3' end of the viral mRNA and eIF4G has been proposed to enhance the synthesis of viral proteins. However, this role has been questioned as knock-down of NSP3 did not impair viral protein synthesis. We show here using a MS2/MS2-CP tethering assay that a C-terminal fragment of NSP3 containing the eIF4G binding domain and the dimerisation domain can increase the expression of a protein encoded by a target reporter mRNA in HEK 293 cells. The amount of reporter mRNA in the cells is not significantly affected by the presence of the NSP3 derived fusion protein showing that the enhanced protein expression is due to increased translation. These results show that NSP3 can act as a translational enhancer even on a polyadenylated mRNA that should be a substrate for PABP1.

  13. Cold inducible RNA binding protein upregulation in pituitary corticotroph adenoma induces corticotroph cell proliferation via Erk signaling pathway

    PubMed Central

    Fu, Wei; Tang, Hao; Chen, Xiao; Zhao, Yao; Zheng, Lili; Pan, Sijian; Wang, Weiqing; Bian, Liuguan; Sun, Qingfang

    2016-01-01

    Cushing's disease is caused by pituitary corticotroph adenoma, and the pathogenesis of it has remained obscure. Here, we showed that cold inducible RNA binding protein (CIRP) was markedly elevated in corticotroph tumors. Forced overexpression of CIRP in murine AtT20 pituitary corticotroph cell line increased corticotroph precursor hormone proopiomelanocortin (POMC) transcription, ACTH secretion and cellular proliferation. In vivo, CIRP overexpression promotes murine corticotroph tumor growth and enhances ACTH production. Mechanistically, we show that CIRP could promote AtT20 cells proliferation by inducing cyclinD1 and decreasing p27 expression via Erk1/2 signaling pathway. Clinically, CIRP overexpression is significantly correlated with Cushing's disease recurrence. CIRP appears to play a critical tumorigenesis function in Cushing's disease and its expression might be a useful biomarker for tumor recurrence. PMID:26824322

  14. OsDEG10 encoding a small RNA-binding protein is involved in abiotic stress signaling.

    PubMed

    Park, Hee-Yeon; Kang, In Soon; Han, Ji-Sung; Lee, Choon-Hwan; An, Gynheung; Moon, Yong-Hwan

    2009-03-13

    Excessive light can be harmful to photosynthetic apparatus since it causes photoinhibition and photooxidation, and plants often encounter hypoxic or anoxic environments when they become submerged by heavy rain or an ensuing flood. In this study, Oryza sativa Differentially Expressed Genes (OsDEGs) from rice under photooxidation and anoxia conditions were isolated using DD-PCR. Among them, OsDEG10 is predicted to encode a small RNA-binding protein (RBP) and the transcript levels of OsDEG10 strongly increased under most of abiotic stress treatments such as high light, anoxia, NaCl, ABA, MV and cold. However, the transcript levels of two rice OsDEG10 homologs were not changed under those treatments. OsDEG10 RNAi transgenic plants were more sensitive to high light and cold stresses compared to wild-type plants. Our results suggest that OsDEG10 is a small RBP involved in the response to various abiotic stresses.

  15. Functional requirements of AID’s higher order structures and their interaction with RNA-binding proteins

    PubMed Central

    Mondal, Samiran; Begum, Nasim A.; Hu, Wenjun; Honjo, Tasuku

    2016-01-01

    Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID’s structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions. PMID:26929374

  16. Association of guide RNA binding protein gBP21 with active RNA editing complexes in Trypanosoma brucei.

    PubMed

    Allen, T E; Heidmann, S; Reed, R; Myler, P J; Göringer, H U; Stuart, K D

    1998-10-01

    RNA editing in Trypanosoma brucei mitochondria produces mature mRNAs by a series of enzyme-catalyzed reactions that specifically insert or delete uridylates in association with a macromolecular complex. Using a mitochondrial fraction enriched for in vitro RNA editing activity, we produced several monoclonal antibodies that are specific for a 21-kDa guide RNA (gRNA) binding protein initially identified by UV cross-linking. Immunofluorescence studies localize the protein to the mitochondrion, with a preference for the kinetoplast. The antibodies cause a supershift of previously identified gRNA-specific ribonucleoprotein complexes and immunoprecipitate in vitro RNA editing activities that insert and delete uridylates. The immunoprecipitated material also contains gRNA-specific endoribonuclease, terminal uridylyltransferase, and RNA ligase activities as well as gRNA and both edited and unedited mRNA. The immunoprecipitate contains numerous proteins, of which the 21-kDa protein, a 90-kDa protein, and novel 55- and 16-kDa proteins can be UV cross-linked to gRNA. These studies indicate that the 21-kDa protein associates with the ribonucleoprotein complex (or complexes) that catalyze RNA editing.

  17. The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster.

    PubMed

    Baumgartner, Roland; Stocker, Hugo; Hafen, Ernst

    2013-01-01

    Appropriate expression of growth-regulatory genes is essential to ensure normal animal development and to prevent diseases like cancer. Gene regulation at the levels of transcription and translational initiation mediated by the Hippo and Insulin signaling pathways and by the TORC1 complex, respectively, has been well documented. Whether translational control mediated by RNA-binding proteins contributes to the regulation of cellular growth is less clear. Here, we identify Lingerer (Lig), an UBA domain-containing protein, as growth suppressor that associates with the RNA-binding proteins Fragile X mental retardation protein 1 (FMR1) and Caprin (Capr) and directly interacts with and regulates the RNA-binding protein Rasputin (Rin) in Drosophila melanogaster. lig mutant organs overgrow due to increased proliferation, and a reporter for the JAK/STAT signaling pathway is upregulated in a lig mutant situation. rin, Capr or FMR1 in combination as double mutants, but not the respective single mutants, display lig like phenotypes, implicating a redundant function of Rin, Capr and FMR1 in growth control in epithelial tissues. Thus, Lig regulates cell proliferation during development in concert with Rin, Capr and FMR1.

  18. The RNA-binding Proteins FMR1, Rasputin and Caprin Act Together with the UBA Protein Lingerer to Restrict Tissue Growth in Drosophila melanogaster

    PubMed Central

    Baumgartner, Roland; Stocker, Hugo; Hafen, Ernst

    2013-01-01

    Appropriate expression of growth-regulatory genes is essential to ensure normal animal development and to prevent diseases like cancer. Gene regulation at the levels of transcription and translational initiation mediated by the Hippo and Insulin signaling pathways and by the TORC1 complex, respectively, has been well documented. Whether translational control mediated by RNA-binding proteins contributes to the regulation of cellular growth is less clear. Here, we identify Lingerer (Lig), an UBA domain-containing protein, as growth suppressor that associates with the RNA-binding proteins Fragile X mental retardation protein 1 (FMR1) and Caprin (Capr) and directly interacts with and regulates the RNA-binding protein Rasputin (Rin) in Drosophila melanogaster. lig mutant organs overgrow due to increased proliferation, and a reporter for the JAK/STAT signaling pathway is upregulated in a lig mutant situation. rin, Capr or FMR1 in combination as double mutants, but not the respective single mutants, display lig like phenotypes, implicating a redundant function of Rin, Capr and FMR1 in growth control in epithelial tissues. Thus, Lig regulates cell proliferation during development in concert with Rin, Capr and FMR1. PMID:23874212

  19. The RNA binding protein HuR determines the differential translation of autism-associated FoxP subfamily members in the developing neocortex

    PubMed Central

    Popovitchenko, T.; Thompson, K.; Viljetic, B.; Jiao, X.; Kontonyiannis, D. L.; Kiledjian, M.; Hart, R. P.; Rasin, M. R.

    2016-01-01

    Forkhead-box domain (Fox) containing family members are known to play a role in neocorticogenesis and have also been associated with disorders on the autism spectrum. Here we show that a single RNA-binding protein, Hu antigen R (HuR), dictates translation specificity of bound mRNAs and is sufficient to define distinct Foxp-characterized subpopulations of neocortical projection neurons. Furthermore, distinct phosphorylation states of HuR differentially regulate translation of Foxp mRNAs in vitro. This demonstrates the importance of RNA binding proteins within the framework of the developing brain and further confirms the role of mRNA translation in autism pathogenesis. PMID:27383233

  20. The RNA binding protein HuR determines the differential translation of autism-associated FoxP subfamily members in the developing neocortex.

    PubMed

    Popovitchenko, T; Thompson, K; Viljetic, B; Jiao, X; Kontonyiannis, D L; Kiledjian, M; Hart, R P; Rasin, M R

    2016-01-01

    Forkhead-box domain (Fox) containing family members are known to play a role in neocorticogenesis and have also been associated with disorders on the autism spectrum. Here we show that a single RNA-binding protein, Hu antigen R (HuR), dictates translation specificity of bound mRNAs and is sufficient to define distinct Foxp-characterized subpopulations of neocortical projection neurons. Furthermore, distinct phosphorylation states of HuR differentially regulate translation of Foxp mRNAs in vitro. This demonstrates the importance of RNA binding proteins within the framework of the developing brain and further confirms the role of mRNA translation in autism pathogenesis. PMID:27383233

  1. Regulation of transcription attenuation and translation initiation by allosteric control of an RNA-binding protein: the Bacillus subtilis TRAP protein.

    PubMed

    Babitzke, Paul

    2004-04-01

    Tryptophan allosterically controls the 11-subunit trp RNA-binding attenuation protein (TRAP) of Bacillus subtilis. When activated by tryptophan, TRAP binds to multiple trinucleotide repeats in target transcripts. TRAP is responsible for the decision to terminate transcription in the leader region of the trpEDCFBA operon or to allow transcription to proceed into the structural genes. TRAP also regulates translation of trpE by promoting formation of an RNA structure that prevents ribosome binding. In addition, bound TRAP regulates translation initiation of pabA, trpP and ycbK by directly blocking ribosome binding. The anti-TRAP protein inhibits TRAP activity by competing with RNA for the RNA binding surface of TRAP. PMID:15063849

  2. APC/C-Mediated Degradation of dsRNA-Binding Protein 4 (DRB4) Involved in RNA Silencing

    PubMed Central

    Marrocco, Katia; Criqui, Marie-Claire; Zervudacki, Jérôme; Schott, Gregory; Eisler, Herfried; Parnet, Aude; Dunoyer, Patrice; Genschik, Pascal

    2012-01-01

    Background Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome) is a master ubiquitin protein ligase (E3) that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized. Methodology/Principal Findings In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA). This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2) of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed. Conclusions/Significance Our work identified a first plant substrate of the APC/C, which is not a regulator of the cell cycle. Though we cannot exclude that APC/C-dependent degradation of DRB4 has some regulatory roles under specific growth conditions, our work rather points to a housekeeping function of APC/C in maintaining precise cellular-protein

  3. Activity-dependent expression of RNA binding protein HuD and its association with mRNAs in neurons.

    PubMed

    Tiruchinapalli, Dhanrajan M; Ehlers, Michael D; Keene, Jack D

    2008-01-01

    The dendritic trafficking of RNA binding proteins (RBPs) is an important posttranscriptional process involved in the regulation of synaptic plasticity. For example, HuD RBP binds to AU-rich elements (AREs) in the 3' untranslated regions (3'UTR) of immediate-early gene (IEG) transcripts, whose protein products directly affect synaptic plasticity. However, the subcellular localization of HuD RBPs and associated mRNAs has not been investigated following neuronal stimulation. Immunofluorescence analysis revealed activity-dependent dendritic localization of HuD RBPs following KCl stimulation in hippocampal neurons, while immunoprecipitation demonstrated the association of HuD RBP with neuronal mRNAs encoding neuritin, Homer1a, GAP-43, Neuroligins, Verge and CAMKIIalpha. Activity-dependent expression of HuD involves activation of NMDAR as NMDA receptor 1 knockout mice (Nr1(neo-/-)) exhibited decreased expression of HuD. Moreover, translational regulation of HuD-associated transcripts was suggested by its co-localization with poly-A-binding protein (PABP) as well as the cap-binding protein (eIF4E). We propose that post-transcriptional regulation of neuronal mRNAs by HuD RBPs mediates protein synthesis-dependent changes in synaptic plasticity. PMID:18769135

  4. Phosphorylation status of human RNA-binding protein 8A in cells and its inhibitory regulation by Magoh

    PubMed Central

    Nakamura, Yuka; Tatsuno, Takanori; Ma, Shaofu; Tomosugi, Naohisa

    2015-01-01

    The RNA-binding protein 8A (RBM8A)–mago-nashi homolog, proliferation-associated (Magoh) complex is a component of the exon junction complex (EJC) required for mRNA metabolism involving nonsense-mediated mRNA decay (NMD). RBM8A is a phosphorylated protein that plays some roles in NMD. However, the detailed status and mechanism of the phosphorylation of RBM8A is not completely understood. Therefore, in this study, we analyzed in detail RBM8A phosphorylation in human cells. Accordingly, analysis of the phosphorylation status of RBM8A protein in whole-cell lysates by using Phos-tag gels revealed that the majority of endogenous RBM8A was phosphorylated throughout the cell-cycle progression. Nuclear and cytoplasmic RBM8A and RBM8A in the EJC were also found to be mostly phosphorylated. We also screened the phosphorylated serine by mutational analysis using Phos-tag gels to reveal modifications of serine residues 166 and 168. A single substitution at position 168 that concomitantly abolished the phosphorylation of serine 166 suggested the priority of kinase reaction between these sites. Furthermore, analysis of the role of the binding protein Magoh in RBM8A phosphorylation revealed its inhibitory effect in vitro and in vivo. Thus, we conclude that almost all synthesized RBM8A proteins are rapidly phosphorylated in cells and that phosphorylation occurs before the complex formation with Magoh. PMID:25349214

  5. Crystallization of the avian reovirus double-stranded RNA-binding and core protein σA

    SciTech Connect

    Hermo-Parrado, X. Lois; Guardado-Calvo, Pablo; Llamas-Saiz, Antonio L.; Fox, Gavin C.; Vazquez-Iglesias, Lorena; Martínez-Costas, José; Benavente, Javier; Raaij, Mark J. van

    2007-05-01

    The avian reovirus double-stranded RNA-binding and core protein σA has been crystallized in space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2°. A complete data set has been collected to 2.3 Å resolution and analyzed. The avian reovirus protein σA plays a dual role: it is a structural protein forming part of the transcriptionally active core, but it has also been implicated in the resistance of the virus to interferon by strongly binding double-stranded RNA and thus inhibiting the double-stranded RNA-dependent protein kinase. The σA protein has been crystallized from solutions containing ammonium sulfate at pH values around 6. Crystals belonging to space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2° were grown and a complete data set has been collected to 2.3 Å resolution. The self-rotation function suggests that σA may form symmetric arrangements in the crystals.

  6. The TRIM-NHL Protein LIN-41 and the OMA RNA-Binding Proteins Antagonistically Control the Prophase-to-Metaphase Transition and Growth of Caenorhabditis elegans Oocytes

    PubMed Central

    Spike, Caroline A.; Coetzee, Donna; Eichten, Carly; Wang, Xin; Hansen, Dave; Greenstein, David

    2014-01-01

    In many animals, oocytes enter meiosis early in their development but arrest in meiotic prophase I. Oocyte growth, which occurs during this arrest period, enables the acquisition of meiotic competence and the capacity to produce healthy progeny. Meiotic resumption, or meiotic maturation, involves the transition to metaphase I (M phase) and is regulated by intercellular signaling and cyclin-dependent kinase activation. Premature meiotic maturation would be predicted to diminish fertility as the timing of this event, which normally occurs after oocyte growth is complete, is crucial. In the accompanying article in this issue, we identify the highly conserved TRIM-NHL protein LIN-41 as a translational repressor that copurifies with OMA-1 and OMA-2, RNA-binding proteins redundantly required for normal oocyte growth and meiotic maturation. In this article, we show that LIN-41 enables the production of high-quality oocytes and plays an essential role in controlling and coordinating oocyte growth and meiotic maturation. lin-41 null mutants display a striking defect that is specific to oogenesis: pachytene-stage cells cellularize prematurely and fail to progress to diplotene. Instead, these cells activate CDK-1, enter M phase, assemble spindles, and attempt to segregate chromosomes. Translational derepression of the CDK-1 activator CDC-25.3 appears to contribute to premature M-phase entry in lin-41 mutant oocytes. Genetic and phenotypic analyses indicate that LIN-41 and OMA-1/2 exhibit an antagonistic relationship, and we suggest that translational regulation by these proteins could be important for controlling and coordinating oocyte growth and meiotic maturation. PMID:25261698

  7. The TRIM-NHL protein LIN-41 and the OMA RNA-binding proteins antagonistically control the prophase-to-metaphase transition and growth of Caenorhabditis elegans oocytes.

    PubMed

    Spike, Caroline A; Coetzee, Donna; Eichten, Carly; Wang, Xin; Hansen, Dave; Greenstein, David

    2014-12-01

    In many animals, oocytes enter meiosis early in their development but arrest in meiotic prophase I. Oocyte growth, which occurs during this arrest period, enables the acquisition of meiotic competence and the capacity to produce healthy progeny. Meiotic resumption, or meiotic maturation, involves the transition to metaphase I (M phase) and is regulated by intercellular signaling and cyclin-dependent kinase activation. Premature meiotic maturation would be predicted to diminish fertility as the timing of this event, which normally occurs after oocyte growth is complete, is crucial. In the accompanying article in this issue, we identify the highly conserved TRIM-NHL protein LIN-41 as a translational repressor that copurifies with OMA-1 and OMA-2, RNA-binding proteins redundantly required for normal oocyte growth and meiotic maturation. In this article, we show that LIN-41 enables the production of high-quality oocytes and plays an essential role in controlling and coordinating oocyte growth and meiotic maturation. lin-41 null mutants display a striking defect that is specific to oogenesis: pachytene-stage cells cellularize prematurely and fail to progress to diplotene. Instead, these cells activate CDK-1, enter M phase, assemble spindles, and attempt to segregate chromosomes. Translational derepression of the CDK-1 activator CDC-25.3 appears to contribute to premature M-phase entry in lin-41 mutant oocytes. Genetic and phenotypic analyses indicate that LIN-41 and OMA-1/2 exhibit an antagonistic relationship, and we suggest that translational regulation by these proteins could be important for controlling and coordinating oocyte growth and meiotic maturation.

  8. The TRIM-NHL protein LIN-41 and the OMA RNA-binding proteins antagonistically control the prophase-to-metaphase transition and growth of Caenorhabditis elegans oocytes.

    PubMed

    Spike, Caroline A; Coetzee, Donna; Eichten, Carly; Wang, Xin; Hansen, Dave; Greenstein, David

    2014-12-01

    In many animals, oocytes enter meiosis early in their development but arrest in meiotic prophase I. Oocyte growth, which occurs during this arrest period, enables the acquisition of meiotic competence and the capacity to produce healthy progeny. Meiotic resumption, or meiotic maturation, involves the transition to metaphase I (M phase) and is regulated by intercellular signaling and cyclin-dependent kinase activation. Premature meiotic maturation would be predicted to diminish fertility as the timing of this event, which normally occurs after oocyte growth is complete, is crucial. In the accompanying article in this issue, we identify the highly conserved TRIM-NHL protein LIN-41 as a translational repressor that copurifies with OMA-1 and OMA-2, RNA-binding proteins redundantly required for normal oocyte growth and meiotic maturation. In this article, we show that LIN-41 enables the production of high-quality oocytes and plays an essential role in controlling and coordinating oocyte growth and meiotic maturation. lin-41 null mutants display a striking defect that is specific to oogenesis: pachytene-stage cells cellularize prematurely and fail to progress to diplotene. Instead, these cells activate CDK-1, enter M phase, assemble spindles, and attempt to segregate chromosomes. Translational derepression of the CDK-1 activator CDC-25.3 appears to contribute to premature M-phase entry in lin-41 mutant oocytes. Genetic and phenotypic analyses indicate that LIN-41 and OMA-1/2 exhibit an antagonistic relationship, and we suggest that translational regulation by these proteins could be important for controlling and coordinating oocyte growth and meiotic maturation. PMID:25261698

  9. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis

    PubMed Central

    Yang, Leiyun; Yang, Fen; Wang, Yi; Zhu, Jian-Kang; Hua, Jian

    2016-01-01

    Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. PMID:27138552

  10. Temporally defined neocortical translation and polysome assembly are determined by the RNA-binding protein Hu antigen R.

    PubMed

    Kraushar, Matthew L; Thompson, Kevin; Wijeratne, H R Sagara; Viljetic, Barbara; Sakers, Kristina; Marson, Justin W; Kontoyiannis, Dimitris L; Buyske, Steven; Hart, Ronald P; Rasin, Mladen-Roko

    2014-09-01

    Precise spatiotemporal control of mRNA translation machinery is essential to the development of highly complex systems like the neocortex. However, spatiotemporal regulation of translation machinery in the developing neocortex remains poorly understood. Here, we show that an RNA-binding protein, Hu antigen R (HuR), regulates both neocorticogenesis and specificity of neocortical translation machinery in a developmental stage-dependent manner in mice. Neocortical absence of HuR alters the phosphorylation states of initiation and elongation factors in the core translation machinery. In addition, HuR regulates the temporally specific positioning of functionally related mRNAs into the active translation sites, the polysomes. HuR also determines the specificity of neocortical polysomes by defining their combinatorial composition of ribosomal proteins and initiation and elongation factors. For some HuR-dependent proteins, the association with polysomes likewise depends on the eukaryotic initiation factor 2 alpha kinase 4, which associates with HuR in prenatal developing neocortices. Finally, we found that deletion of HuR before embryonic day 10 disrupts both neocortical lamination and formation of the main neocortical commissure, the corpus callosum. Our study identifies a crucial role for HuR in neocortical development as a translational gatekeeper for functionally related mRNA subgroups and polysomal protein specificity.

  11. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis.

    PubMed

    Wang, Shuai; Bai, Ge; Wang, Shu; Yang, Leiyun; Yang, Fen; Wang, Yi; Zhu, Jian-Kang; Hua, Jian

    2016-05-01

    Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. PMID:27138552

  12. Zcchc8 is a glycogen synthase kinase-3 substrate that interacts with RNA-binding proteins

    SciTech Connect

    Gustafson, Michael P.; Welcker, Markus; Hwang, Harry C.; Clurman, Bruce E. . E-mail: bclurman@fhcrc.org

    2005-12-23

    Phosphorylation of c-Myc on threonine 58 (T58) stimulates its degradation by the Fbw7-SCF ubiquitin ligase. We used a phosphorylation-specific antibody raised against the c-Myc T58 region to attempt to identify other proteins regulated by the Fbw7 pathway. We identified two predominant proteins recognized by this antibody. The first is Ebna1 binding protein 2, a nucleolar protein that, in contrast with a previous report, is likely responsible for the nucleolar staining exhibited by this antibody. The second is Zcchc8, a nuclear protein that is highly phosphorylated in cells treated with nocodazole. We show that Zcchc8 is directly phosphorylated by GSK-3 in vitro and that GSK-3 inhibition prevents Zcchc8 phosphorylation in vivo. Moreover, we found that Zcchc8 interacts with proteins involved in RNA processing/degradation. We suggest that Zcchc8 is a GSK-3 substrate with a role in RNA metabolism.

  13. Interactions among rsmX ncRNAs and Rsm RNA-binding proteins in the plant pathogen Pseudomonas syringae DC3000

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In response to changing environmental stimuli, many bacterial species utilize the Csr/Rsm system of posttranscriptional gene expression regulation to control metabolism, motility, biofilm formation, and quorum sensing. Most Csr/Rsm RNA binding proteins are thought to bind near the 5’ end of mRNA tra...

  14. The RNA-binding protein vigilin regulates VLDL secretion through modulation of Apob mRNA translation

    PubMed Central

    Mobin, Mehrpouya B.; Gerstberger, Stefanie; Teupser, Daniel; Campana, Benedetta; Charisse, Klaus; Heim, Markus H.; Manoharan, Muthiah; Tuschl, Thomas; Stoffel, Markus

    2016-01-01

    The liver is essential for the synthesis of plasma proteins and integration of lipid metabolism. While the role of transcriptional networks in these processes is increasingly understood, less is known about post-transcriptional control of gene expression by RNA-binding proteins (RBPs). Here, we show that the RBP vigilin is upregulated in livers of obese mice and in patients with fatty liver disease. By using in vivo, biochemical and genomic approaches, we demonstrate that vigilin controls very-low-density lipoprotein (VLDL) secretion through the modulation of apolipoproteinB/Apob mRNA translation. Crosslinking studies reveal that vigilin binds to CU-rich regions in the mRNA coding sequence of Apob and other proatherogenic secreted proteins, including apolipoproteinC-III/Apoc3 and fibronectin/Fn1. Consequently, hepatic vigilin knockdown decreases VLDL/low-density lipoprotein (LDL) levels and formation of atherosclerotic plaques in Ldlr−/− mice. These studies uncover a role for vigilin as a key regulator of hepatic Apob translation and demonstrate the therapeutic potential of inhibiting vigilin for cardiovascular diseases. PMID:27665711

  15. Analysis of the Microprocessor in Dictyostelium: The Role of RbdB, a dsRNA Binding Protein.

    PubMed

    Meier, Doreen; Kruse, Janis; Buttlar, Jann; Friedrich, Michael; Zenk, Fides; Boesler, Benjamin; Förstner, Konrad U; Hammann, Christian; Nellen, Wolfgang

    2016-06-01

    We identified the dsRNA binding protein RbdB as an essential component in miRNA processing in Dictyostelium discoideum. RbdB is a nuclear protein that accumulates, together with Dicer B, in nucleolar foci reminiscent of plant dicing bodies. Disruption of rbdB results in loss of miRNAs and accumulation of primary miRNAs. The phenotype can be rescued by ectopic expression of RbdB thus allowing for a detailed analysis of domain function. The lack of cytoplasmic dsRBD proteins involved in miRNA processing, suggests that both processing steps take place in the nucleus thus resembling the plant pathway. However, we also find features e.g. in the domain structure of Dicer which suggest similarities to animals. Reduction of miRNAs in the rbdB- strain and their increase in the Argonaute A knock out allowed the definition of new miRNAs one of which appears to belong to a new non-canonical class.

  16. Analysis of the Microprocessor in Dictyostelium: The Role of RbdB, a dsRNA Binding Protein.

    PubMed

    Meier, Doreen; Kruse, Janis; Buttlar, Jann; Friedrich, Michael; Zenk, Fides; Boesler, Benjamin; Förstner, Konrad U; Hammann, Christian; Nellen, Wolfgang

    2016-06-01

    We identified the dsRNA binding protein RbdB as an essential component in miRNA processing in Dictyostelium discoideum. RbdB is a nuclear protein that accumulates, together with Dicer B, in nucleolar foci reminiscent of plant dicing bodies. Disruption of rbdB results in loss of miRNAs and accumulation of primary miRNAs. The phenotype can be rescued by ectopic expression of RbdB thus allowing for a detailed analysis of domain function. The lack of cytoplasmic dsRBD proteins involved in miRNA processing, suggests that both processing steps take place in the nucleus thus resembling the plant pathway. However, we also find features e.g. in the domain structure of Dicer which suggest similarities to animals. Reduction of miRNAs in the rbdB- strain and their increase in the Argonaute A knock out allowed the definition of new miRNAs one of which appears to belong to a new non-canonical class. PMID:27272207

  17. Expression of Cold-Inducible RNA-Binding Protein (CIRP) in Pituitary Adenoma and its Relationships with Tumor Recurrence

    PubMed Central

    Wang, Mingguang; Zhang, Huan; Heng, Xueyuan; Pang, Qi; Sun, Aigang

    2015-01-01

    Background The aim of this study was to detect the expression of cold-inducible RNA-binding protein in pituitary adenoma and to determine its effects on tumor recurrence. Material/Methods We collected a total of 60 post-op samples collected from pituitary adenoma patients (including 20 cases of invasive pituitary adenoma, 20 cases of non-invasive adenoma, and 20 cases of non-invasive recurrent adenoma) admitted in our hospital. Both protein and mRNA levels of CIRP in 3 types of pituitary adenoma samples were quantified by Western blotting and real-time PCR, respectively. Results Western blotting revealed significantly elevated CIRP expression levels in invasive pituitary adenoma compared to non-invasive tumors, with statistical significance (p<0.05). Recurrent pituitary adenoma expressed significantly higher CIRP levels compared to non-recurrent tumors (p<0.05). Real-time PCR for CIRP mRNA obtained consistent results: transcript levels were significantly higher in invasive pituitary adenoma compared to non-invasive adenoma (p<0.05); recurrent adenoma also had significantly higher CIRP mRNA levels compared to non-recurrent tumors (p<0.05). Among all 3 types of pituitary adenoma, recurrent tumors had the highest levels of CIRP mRNA and protein. Conclusions The expression of CIRP in pituitary adenoma is closely related with tumor proliferation and invasion, and its significantly elevated expression level indicates post-op recurrence. PMID:25934796

  18. Analysis of the Microprocessor in Dictyostelium: The Role of RbdB, a dsRNA Binding Protein

    PubMed Central

    Buttlar, Jann; Friedrich, Michael; Zenk, Fides; Boesler, Benjamin; Hammann, Christian; Nellen, Wolfgang

    2016-01-01

    We identified the dsRNA binding protein RbdB as an essential component in miRNA processing in Dictyostelium discoideum. RbdB is a nuclear protein that accumulates, together with Dicer B, in nucleolar foci reminiscent of plant dicing bodies. Disruption of rbdB results in loss of miRNAs and accumulation of primary miRNAs. The phenotype can be rescued by ectopic expression of RbdB thus allowing for a detailed analysis of domain function. The lack of cytoplasmic dsRBD proteins involved in miRNA processing, suggests that both processing steps take place in the nucleus thus resembling the plant pathway. However, we also find features e.g. in the domain structure of Dicer which suggest similarities to animals. Reduction of miRNAs in the rbdB- strain and their increase in the Argonaute A knock out allowed the definition of new miRNAs one of which appears to belong to a new non-canonical class. PMID:27272207

  19. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.

    PubMed

    Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A

    2013-01-01

    Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.

  20. A novel RNA binding protein that interacts with NMDA R1 mRNA: regulation by ethanol.

    PubMed

    Anji, Antje; Kumari, Meena

    2006-05-01

    Excitatory NMDA receptors are an important target of ethanol. Chronic ethanol exposure, in vivo and in vitro, increases polypeptide levels of NR1 subunit, the key subunit of functional NMDA receptors. In vitro, chronic ethanol treatment increases the half-life of NR1 mRNA and this observation is dependent on new protein synthesis. The present study was undertaken to locate cis-acting region(s) within the NR1 3'-untranslated region (UTR) and identify NR1 3'-UTR binding trans-acting proteins expressed in mouse fetal cortical neurons. Utilizing RNA gel shift assays we identified a 156-nt cis-acting region that binds to polysomal trans-acting proteins. This binding was highly specific as inclusion of cyclophilin RNA or tRNA did not interfere with cis-trans interactions. Importantly, the 3'-UTR binding activity was significantly up-regulated in the presence of ethanol. UV cross-link analysis detected three NR1 3'-UTR binding proteins and their molecular mass calculated by Northwestern analysis was approximately 88, 60 and 47 kDa, respectively. Northwestern analysis showed a significant up-regulation of the 88-kDa protein after chronic ethanol treatment. The 88-kDa protein was purified and identified by tandem mass spectrometry as the beta subunit of alpha glucosidase II (GIIbeta). That GIIbeta is indeed a trans-acting protein and binds specifically to 3'-UTR of NR1 mRNA was confirmed by RNA gel mobility supershift assays and immuno RT-PCR. Western blotting data established a significant increase of GIIbeta polypeptide in chronic ethanol-exposed fetal cortical neurons. We hypothesize that the identified cis-acting region and the associated RNA-binding proteins are important regulators of NR1 subunit gene expression.

  1. Structural Rearrangement in an RsmA/CsrA Ortholog of Pseudomonas aeruginosa Creates a Dimeric RNA-Binding Protein, RsmN

    PubMed Central

    Morris, Elizabeth R.; Hall, Gareth; Li, Chan; Heeb, Stephan; Kulkarni, Rahul V.; Lovelock, Laura; Silistre, Hazel; Messina, Marco; Cámara, Miguel; Emsley, Jonas; Williams, Paul; Searle, Mark S.

    2013-01-01

    Summary In bacteria, the highly conserved RsmA/CsrA family of RNA-binding proteins functions as global posttranscriptional regulators acting on mRNA translation and stability. Through phenotypic complementation of an rsmA mutant in Pseudomonas aeruginosa, we discovered a family member, termed RsmN. Elucidation of the RsmN crystal structure and that of the complex with a hairpin from the sRNA, RsmZ, reveals a uniquely inserted α helix, which redirects the polypeptide chain to form a distinctly different protein fold to the domain-swapped dimeric structure of RsmA homologs. The overall β sheet structure required for RNA recognition is, however, preserved with compensatory sequence and structure differences, allowing the RsmN dimer to target binding motifs in both structured hairpin loops and flexible disordered RNAs. Phylogenetic analysis indicates that, although RsmN appears unique to P. aeruginosa, homologous proteins with the inserted α helix are more widespread and arose as a consequence of a gene duplication event. PMID:23954502

  2. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  3. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  4. TRIP: a novel double stranded RNA binding protein which interacts with the leucine rich repeat of flightless I.

    PubMed Central

    Wilson, S A; Brown, E C; Kingsman, A J; Kingsman, S M

    1998-01-01

    A northwestern screen of a CHO-K1 cell line cDNA library with radiolabelled HIV-1 TAR RNA identified a novel TAR RNA interacting protein, TRIP. The human trip cDNA was also cloned and its expression is induced by phorbol esters. The N-terminus of TRIP shows high homology to the coiled coil domain of FLAP, a protein which binds the leucine-rich repeat (LRR) of Flightless I (FLI) and the interaction of TRIP with the FLI LRR has been confirmed in vitro . TRIP does not bind single stranded DNA or RNA significantly and binds double stranded DNA weakly. In contrast, TRIP binds double stranded RNA with high affinity and two molecules of TRIP bind the TAR stem. The RNA binding domain has been identified and encompasses a lysine-rich motif. A TRIP-GFP fusion is localised in the cytoplasm and excluded from the nucleus. FLI has a C-terminal gelsolin-like domain which binds actin and therefore the association of TRIP with the FLI LRR may provide a link between the actin cytoskeleton and RNA in mammalian cells. PMID:9671805

  5. Protection of p27(Kip1) mRNA by quaking RNA binding proteins promotes oligodendrocyte differentiation.

    PubMed

    Larocque, Daniel; Galarneau, André; Liu, Hsueh-Ning; Scott, Michelle; Almazan, Guillermina; Richard, Stéphane

    2005-01-01

    The quaking (Qk) locus expresses a family of RNA binding proteins, and the expression of several alternatively spliced isoforms coincides with the development of oligodendrocytes and the onset of myelination. Quaking viable (Qk(v)) mice harboring an autosomal recessive mutation in this locus have uncompacted myelin in the central nervous system owing to the inability of oligodendrocytes to properly mature. Here we show that the expression of two QKI isoforms, absent from oligodendrocytes of Qk(v) mice, induces cell cycle arrest of primary rat oligodendrocyte progenitor cells and differentiation into oligodendrocytes. Injection of retroviruses expressing QKI into the telencephalon of mouse embryos induced differentiation and migration of multipotential neural progenitor cells into mature oligodendrocytes localized in the corpus callosum. The mRNA encoding the cyclin-dependent kinase (CDK)-inhibitor p27(Kip1) was bound and stabilized by QKI, leading to an increased accumulation of p27(Kip1) protein in oligodendrocytes. Our findings demonstrate that QKI is upstream of p27(Kip1) during oligodendrocyte differentiation.

  6. Competing Interactions of RNA-Binding Proteins, MicroRNAs, and Their Targets Control Neuronal Development and Function

    PubMed Central

    Gardiner, Amy S.; Twiss, Jeffery L.; Perrone-Bizzozero, Nora I.

    2015-01-01

    Post-transcriptional mechanisms play critical roles in the control of gene expression during neuronal development and maturation as they allow for faster responses to environmental cues and provide spatially-restricted compartments for local control of protein expression. These mechanisms depend on the interaction of cis-acting elements present in the mRNA sequence and trans-acting factors, such as RNA-binding proteins (RBPs) and microRNAs (miRNAs) that bind to those cis-elements and regulate mRNA stability, subcellular localization, and translation. Recent studies have uncovered an unexpected complexity in these interactions, where coding and non-coding RNAs, termed competing endogenous RNAs (ceRNAs), compete for binding to miRNAs. This competition can, thereby, control a larger number of miRNA target transcripts. However, competing RNA networks also extend to competition between target mRNAs for binding to limited amounts of RBPs. In this review, we present evidence that competitions between target mRNAs for binding to RBPs also occur in neurons, where they affect transcript stability and transport into axons and dendrites as well as translation. In addition, we illustrate the complexity of these mechanisms by demonstrating that RBPs and miRNAs also compete for target binding and regulation. PMID:26512708

  7. RNA-binding protein HuR promotes growth of small intestinal mucosa by activating the Wnt signaling pathway.

    PubMed

    Liu, Lan; Christodoulou-Vafeiadou, Eleni; Rao, Jaladanki N; Zou, Tongtong; Xiao, Lan; Chung, Hee Kyoung; Yang, Hong; Gorospe, Myriam; Kontoyiannis, Dimitris; Wang, Jian-Ying

    2014-11-01

    Inhibition of growth of the intestinal epithelium, a rapidly self-renewing tissue, is commonly found in various critical disorders. The RNA-binding protein HuR is highly expressed in the gut mucosa and modulates the stability and translation of target mRNAs, but its exact biological function in the intestinal epithelium remains unclear. Here, we investigated the role of HuR in intestinal homeostasis using a genetic model and further defined its target mRNAs. Targeted deletion of HuR in intestinal epithelial cells caused significant mucosal atrophy in the small intestine, as indicated by decreased cell proliferation within the crypts and subsequent shrinkages of crypts and villi. In addition, the HuR-deficient intestinal epithelium also displayed decreased regenerative potential of crypt progenitors after exposure to irradiation. HuR deficiency decreased expression of the Wnt coreceptor LDL receptor-related protein 6 (LRP6) in the mucosal tissues. At the molecular level, HuR was found to bind the Lrp6 mRNA via its 3'-untranslated region and enhanced LRP6 expression by stabilizing Lrp6 mRNA and stimulating its translation. These results indicate that HuR is essential for normal mucosal growth in the small intestine by altering Wnt signals through up-regulation of LRP6 expression and highlight a novel role of HuR deficiency in the pathogenesis of intestinal mucosal atrophy under pathological conditions.

  8. SimiRa: A tool to identify coregulation between microRNAs and RNA-binding proteins

    PubMed Central

    Preusse, Martin; Marr, Carsten; Saunders, Sita; Maticzka, Daniel; Lickert, Heiko; Backofen, Rolf; Theis, Fabian

    2015-01-01

    microRNAs and microRNA-independent RNA-binding proteins are 2 classes of post-transcriptional regulators that have been shown to cooperate in gene-expression regulation. We compared the genome-wide target sets of microRNAs and RBPs identified by recent CLIP-Seq technologies, finding that RBPs have distinct target sets and favor gene interaction network hubs. To identify microRNAs and RBPs with a similar functional context, we developed simiRa, a tool that compares enriched functional categories such as pathways and GO terms. We applied simiRa to the known functional cooperation between Pumilio family proteins and miR-221/222 in the regulation of tumor supressor gene p27 and show that the cooperation is reflected by similar enriched categories but not by target genes. SimiRa also predicts possible cooperation of microRNAs and RBPs beyond direct interaction on the target mRNA for the nuclear RBP TAF15. To further facilitate research into cooperation of microRNAs and RBPs, we made simiRa available as a web tool that displays the functional neighborhood and similarity of microRNAs and RBPs: http://vsicb-simira.helmholtz-muenchen.de. PMID:26383775

  9. The cleverSuite approach for protein characterization: predictions of structural properties, solubility, chaperone requirements and RNA-binding abilities

    PubMed Central

    Klus, Petr; Bolognesi, Benedetta; Agostini, Federico; Marchese, Domenica; Zanzoni, Andreas; Tartaglia, Gian Gaetano

    2014-01-01

    Motivation: The recent shift towards high-throughput screening is posing new challenges for the interpretation of experimental results. Here we propose the cleverSuite approach for large-scale characterization of protein groups. Description: The central part of the cleverSuite is the cleverMachine (CM), an algorithm that performs statistics on protein sequences by comparing their physico-chemical propensities. The second element is called cleverClassifier and builds on top of the models generated by the CM to allow classification of new datasets. Results: We applied the cleverSuite to predict secondary structure properties, solubility, chaperone requirements and RNA-binding abilities. Using cross-validation and independent datasets, the cleverSuite reproduces experimental findings with great accuracy and provides models that can be used for future investigations. Availability: The intuitive interface for dataset exploration, analysis and prediction is available at http://s.tartaglialab.com/clever_suite. Contact: gian.tartaglia@crg.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24493033

  10. RNA binding protein Pub1p regulates glycerol production and stress tolerance by controlling Gpd1p activity during winemaking.

    PubMed

    Orozco, Helena; Sepúlveda, Ana; Picazo, Cecilia; Matallana, Emilia; Aranda, Agustín

    2016-06-01

    Glycerol is a key yeast metabolite in winemaking because it contributes to improve the organoleptic properties of wine. It is also a cellular protective molecule that enhances the tolerance of yeasts to osmotic stress and promotes longevity. Thus, its production increases by genetic manipulation, which is of biotechnological and basic interest. Glycerol is produced by diverting glycolytic glyceraldehyde-3-phosphate through the action of glycerol-3-phosphate dehydrogenase (coded by genes GPD1 and GPD2). Here, we demonstrate that RNA-binding protein Pub1p regulates glycerol production by controlling Gpd1p activity. Its deletion does not alter GPD1 mRNA levels, but protein levels and enzymatic activity increase, which explains the higher intracellular glycerol concentration and greater tolerance to osmotic stress of the pub1∆ mutant. PUB1 deletion also enhances the activity of nicotinamidase, a longevity-promoting enzyme. Both enzymatic activities are partially located in peroxisomes, and we detected peroxisome formation during wine fermentation. The role of Pub1p in life span control depends on nutrient conditions and is related with the TOR pathway, and a major connection between RNA metabolism and the nutrient signaling response is established.

  11. The RNA-binding protein LARP1 is a post-transcriptional regulator of survival and tumorigenesis in ovarian cancer

    PubMed Central

    Hopkins, Thomas G.; Mura, Manuela; Al-Ashtal, Hiba A.; Lahr, Roni M.; Abd-Latip, Normala; Sweeney, Katrina; Lu, Haonan; Weir, Justin; El-Bahrawy, Mona; Steel, Jennifer H.; Ghaem-Maghami, Sadaf; Aboagye, Eric O.; Berman, Andrea J.; Blagden, Sarah P.

    2016-01-01

    RNA-binding proteins (RBPs) are increasingly identified as post-transcriptional drivers of cancer progression. The RBP LARP1 is an mRNA stability regulator, and elevated expression of the protein in hepatocellular and lung cancers is correlated with adverse prognosis. LARP1 associates with an mRNA interactome that is enriched for oncogenic transcripts. Here we explore the role of LARP1 in epithelial ovarian cancer, a disease characterized by the rapid acquisition of resistance to chemotherapy through the induction of pro-survival signalling. We show, using ovarian cell lines and xenografts, that LARP1 is required for cancer cell survival and chemotherapy resistance. LARP1 promotes tumour formation in vivo and maintains cancer stem cell-like populations. Using transcriptomic analysis following LARP1 knockdown, cross-referenced against the LARP1 interactome, we identify BCL2 and BIK as LARP1 mRNA targets. We demonstrate that, through an interaction with the 3′ untranslated regions (3′ UTRs) of BCL2 and BIK, LARP1 stabilizes BCL2 but destabilizes BIK with the net effect of resisting apoptosis. Together, our data indicate that by differentially regulating the stability of a selection of mRNAs, LARP1 promotes ovarian cancer progression and chemotherapy resistance. PMID:26717985

  12. The RNA-binding protein Spo5 promotes meiosis II by regulating cyclin Cdc13 in fission yeast.

    PubMed

    Arata, Mayumi; Sato, Masamitsu; Yamashita, Akira; Yamamoto, Masayuki

    2014-03-01

    Meiosis comprises two consecutive nuclear divisions, meiosis I and II. Despite this unique progression through the cell cycle, little is known about the mechanisms controlling the sequential divisions. In this study, we carried out a genetic screen to identify factors that regulate the initiation of meiosis II in the fission yeast Schizosaccharomyces pombe. We identified mutants deficient in meiosis II progression and repeatedly isolated mutants defective in spo5, which encodes an RNA-binding protein. Using fluorescence microscopy to visualize YFP-tagged protein, we found that spo5 mutant cells precociously lost Cdc13, the major B-type cyclin in fission yeast, before meiosis II. Importantly, the defect in meiosis II was rescued by increasing CDK activity. In wild-type cells, cdc13 transcripts increased during meiosis II, but this increase in cdc13 expression was weaker in spo5 mutants. Thus, Spo5 is a novel regulator of meiosis II that controls the level of cdc13 expression and promotes de novo synthesis of Cdc13. We previously reported that inhibition of Cdc13 degradation is necessary to initiate meiosis II; together with the previous information, the current findings indicate that the dual control of Cdc13 by de novo synthesis and suppression of proteolysis ensures the progression of meiosis II.

  13. Involvement of RNA binding proteins AUF1 in mammary gland differentiation

    SciTech Connect

    Nagaoka, Kentaro . E-mail: akenaga@mail.ecc.u-tokyo.ac.jp; Tanaka, Tetsuya; Imakawa, Kazuhiko; Sakai, Senkiti

    2007-08-01

    The expression of many genes, such as {beta}-casein, c-myc, and cyclin D1, is altered by lactogenic hormone stimulation during mammary epithelial cell differentiation. Here, we demonstrate that post-transcriptional regulation plays an important role to establish gene expression required to initiate milk production as well as transcriptional control. AUF1 protein, a member of the AU-rich element (ARE)-binding protein family, plays a role in ARE-mRNA turnover by regulating mRNA stability and/or translational control. Cytoplasmic localization of AUF1 protein is critically linked to function. We show that as the mammary gland differentiates, AUF1 protein moves from the cytoplasm to the nucleus. Moreover, in mammary gland epithelial cells (HC11), stimulation by lactogenic hormone decreased cytoplasmic and increased nuclear AUF1 levels. Direct binding of AUF1 protein was observed on c-myc mRNA, but not {beta}-casein or cyclin D1 mRNA. AUF1 downregulation in HC11 cells increased the expression of {beta}-casein mRNA and decreased the expression of c-myc mRNA by lactogenic hormone. Conversely, overexpression of AUF1 inhibited these effects of lactogenic hormone stimulation in HC11 cells. These results suggest that AUF1 participates in mammary gland differentiation processes under the control of lactogenic hormone signals.

  14. Estimation of Relative Protein-RNA Binding Strengths from Fluctuations in the Bound State.

    PubMed

    Ghaemi, Zhaleh; Guzman, Irisbel; Baek, Jung-Un Julia; Gruebele, Martin; Luthey-Schulten, Zaida

    2016-09-13

    Protein-RNA complexes are increasingly important in our understanding of cell signaling, metabolism, and transcription. Electrostatic interactions play dominant role in stabilizing such complexes. Using conventional computational approaches, very long simulations of both bound and unbound states are required to obtain accurate estimates of complex dissociation constants (Kd). Here, we derive a simple formula that offers an alternative approach based on the theory of fluctuations. Our method extracts a strong correlate to experimental Kd values using short molecular dynamics simulations of the bound complex only. To test our method, we compared the computed relative Kd values to our experimentally measured values for the U1A-Stem Loop 2 (SL2) RNA complex, which is one of the most-studied protein-RNA complexes. Additionally we also included several experimental values from the literature, to enlarge the data set. We obtain a correlation of r = 0.93 between theoretical and measured estimates of Kd values of the mutated U1A protein-RNA complexes relative to the wild type dissociation constant. The proposed method increases the efficiency of relative Kd values estimation for multiple protein mutants, allowing its applicability to protein engineering projects. PMID:27529183

  15. The intranuclear mobility of messenger RNA binding proteins is ATP dependent and temperature sensitive.

    PubMed

    Calapez, Alexandre; Pereira, Henrique M; Calado, Angelo; Braga, José; Rino, José; Carvalho, Célia; Tavanez, João Paulo; Wahle, Elmar; Rosa, Agostinho C; Carmo-Fonseca, Maria

    2002-12-01

    After being released from transcription sites, messenger ribonucleoprotein particles (mRNPs) must reach the nuclear pore complexes in order to be translocated to the cytoplasm. Whether the intranuclear movement of mRNPs results largely from Brownian motion or involves molecular motors remains unknown. Here we have used quantitative photobleaching techniques to monitor the intranuclear mobility of protein components of mRNPs tagged with GFP. The results show that the diffusion coefficients of the poly(A)-binding protein II (PABP2) and the export factor TAP are significantly reduced when these proteins are bound to mRNP complexes, as compared with nonbound proteins. The data further show that the mobility of wild-type PABP2 and TAP, but not of a point mutant variant of PABP2 that fails to bind to RNA, is significantly reduced when cells are ATP depleted or incubated at 22 degrees C. Energy depletion has only minor effects on the intranuclear mobility of a 2,000-kD dextran (which corresponds approximately in size to 40S mRNP particles), suggesting that the reduced mobility of PABP2 and TAP is not caused by a general alteration of the nuclear environment. Taken together, the data suggest that the mobility of mRNPs in the living cell nucleus involves a combination of passive diffusion and ATP-dependent processes.

  16. The RNA-binding protein RNP29 is an unusual Toc159 transport substrate.

    PubMed

    Grimmer, Julia; Rödiger, Anja; Hoehenwarter, Wolfgang; Helm, Stefan; Baginsky, Sacha

    2014-01-01

    The precursors of RNP29 and Ferredoxin (Fd2) were previously identified in the cytosol of ppi2 plant cells with their N-terminal amino acid acetylated. Here, we explore whether precursor accumulation in ppi2 is characteristic for Toc159 client proteins, by characterizing the import properties of the RNP29 precursor in comparison to Fd2 and other Toc159-dependent or independent substrates. We find specific accumulation of the RNP29 precursor in ppi2 but not in wild type or ppi1 protoplasts. With the exception of Lhcb4, precursor accumulation is also detected with all other tested constructs in ppi2. However, RNP29 is clearly different from the other proteins because only precursor but almost no mature protein is detectable in protoplast extracts. Co-transformation of RNP29 with Toc159 complements its plastid import, supporting the hypothesis that RNP29 is a Toc159-dependent substrate. Exchange of the second amino acid in the RNP29 transit peptide to Glu or Asn prevents methionine excision but not N-terminal acetylation, suggesting that different N-acetyltransferases may act on chloroplast precursor proteins in vivo. All different RNP29 constructs are efficiently imported into wild type but not into ppi2 plastids, arguing for a minor impact of the N-terminal amino acid on the import process. PMID:24982663

  17. The intranuclear mobility of messenger RNA binding proteins is ATP dependent and temperature sensitive

    PubMed Central

    Calapez, Alexandre; Pereira, Henrique M.; Calado, Angelo; Braga, José; Rino, José; Carvalho, Célia; Tavanez, João Paulo; Wahle, Elmar; Rosa, Agostinho C.; Carmo-Fonseca, Maria

    2002-01-01

    fAter being released from transcription sites, messenger ribonucleoprotein particles (mRNPs) must reach the nuclear pore complexes in order to be translocated to the cytoplasm. Whether the intranuclear movement of mRNPs results largely from Brownian motion or involves molecular motors remains unknown. Here we have used quantitative photobleaching techniques to monitor the intranuclear mobility of protein components of mRNPs tagged with GFP. The results show that the diffusion coefficients of the poly(A)-binding protein II (PABP2) and the export factor TAP are significantly reduced when these proteins are bound to mRNP complexes, as compared with nonbound proteins. The data further show that the mobility of wild-type PABP2 and TAP, but not of a point mutant variant of PABP2 that fails to bind to RNA, is significantly reduced when cells are ATP depleted or incubated at 22°C. Energy depletion has only minor effects on the intranuclear mobility of a 2,000-kD dextran (which corresponds approximately in size to 40S mRNP particles), suggesting that the reduced mobility of PABP2 and TAP is not caused by a general alteration of the nuclear environment. Taken together, the data suggest that the mobility of mRNPs in the living cell nucleus involves a combination of passive diffusion and ATP-dependent processes. PMID:12473688

  18. Cold-inducible RNA-binding protein is an important mediator of alcohol-induced brain inflammation.

    PubMed

    Rajayer, Salil R; Jacob, Asha; Yang, Weng-Lang; Zhou, Mian; Chaung, Wayne; Wang, Ping

    2013-01-01

    Binge drinking has been associated with cerebral dysfunction. Ethanol induced microglial activation initiates an inflammatory process that causes upregulation of proinflammatory cytokines which in turn creates neuronal inflammation and damage. However, the molecular mechanism is not fully understood. We postulate that cold-inducible RNA-binding protein (CIRP), a novel proinflammatory molecule, can contribute to alcohol-induced neuroinflammation. To test this theory male wild-type (WT) mice were exposed to alcohol at concentrations consistent to binge drinking and blood and brain tissues were collected. At 5 h after alcohol, a significant increase of 53% in the brain of CIRP mRNA was observed and its expression remained elevated at 10 h and 15 h. Brain CIRP protein levels were increased by 184% at 10 h and remained high at 15 h. We then exposed male WT and CIRP knockout (CIRP(-/-)) mice to alcohol, and blood and brain tissues were collected at 15 h post-alcohol infusion. Serum levels of tissue injury markers (AST, ALT and LDH) were significantly elevated in alcohol-exposed WT mice while they were less increased in the CIRP(-/-) mice. Brain TNF-α mRNA and protein expressions along with IL-1β protein levels were significantly increased in WT mice, which was not seen in the CIRP(-/-) mice. In cultured BV2 cells (mouse microglia), ethanol at 100 mM showed an increase of CIRP mRNA by 274% and 408% at 24 h and 48 h respectively. Corresponding increases in TNF-α and IL-1β were also observed. CIRP protein levels were markedly increased in the medium, suggesting that CIRP was secreted by the BV2 cells. From this we conclude that alcohol exposure activates microglia to produce and secrete CIRP and possibly induce pro-inflammatory response and thereby causing neuroinflammation. CIRP could be a novel mediator of alcohol-induced brain inflammation.

  19. Nuclear localization of a double-stranded RNA-binding protein encoded by the vaccinia virus E3L gene.

    PubMed

    Yuwen, H; Cox, J H; Yewdell, J W; Bennink, J R; Moss, B

    1993-08-01

    We produced a B cell hybridoma (TW2.3) from vaccinia virus-infected mice that secreted a monoclonal antibody (MAb) reactive with a 25-kDA early viral protein that was localized by laser scanning confocal microscopy to the nucleus and cytoplasmic viral factory regions of infected cells. By cell-free translation of mRNA selected by hybridization to a complete library of vaccinia virus DNA fragments, the immunoreactive polypeptide was mapped to open reading frame E3L. The RNA start site of an early promoter was located 26 nucleotides upstream of the first methionine codon of E3L. Evidence was obtained that translation initiation occurs in vivo and in vitro at both the first and second methionine codons to produce major and minor polypeptides of 25 and 19 kDa, respectively. Both polypeptides bound double-stranded RNA, confirming the recent report of H.-W. Chang, J. C. Watson, and B. L. Jacobs (Proc. Natl. Acad. Sci. USA 89, 4825-4829, 1992). Other vaccinia virus proteins were not required for the nuclear localization of the E3L protein, since MAb TW2.3 bound to the nuclei of uninfected cells that were transfected with the E3L gene under the control of the SV40 early promoter. We also demonstrated that the E3L protein can bind to nuclei of aldehyde fixed and detergent permeabilized uninfected cells. This binding was abrogated by treatment of the cells with RNase but not DNase. The nuclear and cytoplasmic locations of the double-stranded RNA binding protein are consistent with multiple functions in the vaccinia virus infectious cycle.

  20. Topological Regulation of Synaptic AMPA Receptor Expression by the RNA-Binding Protein CPEB3.

    PubMed

    Savtchouk, Iaroslav; Sun, Lu; Bender, Crhistian L; Yang, Qian; Szabó, Gábor; Gasparini, Sonia; Liu, Siqiong June

    2016-09-27

    Synaptic receptors gate the neuronal response to incoming signals, but they are not homogeneously distributed on dendrites. A spatially defined receptor distribution can preferentially amplify certain synaptic inputs, resize receptive fields of neurons, and optimize information processing within a neuronal circuit. Thus, a longstanding question is how the spatial organization of synaptic receptors is achieved. Here, we find that action potentials provide local signals that influence the distribution of synaptic AMPA receptors along dendrites in mouse cerebellar stellate cells. Graded dendritic depolarizations elevate CPEB3 protein at proximal dendrites, where we suggest that CPEB3 binds to GluA2 mRNA, suppressing GluA2 protein synthesis leading to a distance-dependent increase in synaptic GluA2 AMPARs. The activity-induced expression of CPEB3 requires increased Ca(2+) and PKC activation. Our results suggest a cell-autonomous mechanism where sustained postsynaptic firing drives graded local protein synthesis, thus directing the spatial organization of synaptic AMPARs. PMID:27681423

  1. Transcriptome-Wide Identification of RNA Targets of Arabidopsis SERINE/ARGININE-RICH45 Uncovers the Unexpected Roles of This RNA Binding Protein in RNA Processing[OPEN

    PubMed Central

    Wang, Yajun; Hamilton, Michael; Ben-Hur, Asa; Reddy, Anireddy S.N.

    2015-01-01

    Plant SR45 and its metazoan ortholog RNPS1 are serine/arginine-rich (SR)-like RNA binding proteins that function in splicing/postsplicing events and regulate diverse processes in eukaryotes. Interactions of SR45 with both RNAs and proteins are crucial for regulating RNA processing. However, in vivo RNA targets of SR45 are currently unclear. Using RNA immunoprecipitation followed by high-throughput sequencing, we identified over 4000 Arabidopsis thaliana RNAs that directly or indirectly associate with SR45, designated as SR45-associated RNAs (SARs). Comprehensive analyses of these SARs revealed several roles for SR45. First, SR45 associates with and regulates the expression of 30% of abscisic acid (ABA) signaling genes at the postsplicing level. Second, although most SARs are derived from intron-containing genes, surprisingly, 340 SARs are derived from intronless genes. Expression analysis of the SARs suggests that SR45 differentially regulates intronless and intron-containing SARs. Finally, we identified four overrepresented RNA motifs in SARs that likely mediate SR45’s recognition of its targets. Therefore, SR45 plays an unexpected role in mRNA processing of intronless genes, and numerous ABA signaling genes are targeted for regulation at the posttranscriptional level. The diverse molecular functions of SR45 uncovered in this study are likely applicable to other species in view of its conservation across eukaryotes. PMID:26603559

  2. Transcriptome-Wide Identification of RNA Targets of Arabidopsis SERINE/ARGININE-RICH45 Uncovers the Unexpected Roles of This RNA Binding Protein in RNA Processing.

    PubMed

    Xing, Denghui; Wang, Yajun; Hamilton, Michael; Ben-Hur, Asa; Reddy, Anireddy S N

    2015-12-01

    Plant SR45 and its metazoan ortholog RNPS1 are serine/arginine-rich (SR)-like RNA binding proteins that function in splicing/postsplicing events and regulate diverse processes in eukaryotes. Interactions of SR45 with both RNAs and proteins are crucial for regulating RNA processing. However, in vivo RNA targets of SR45 are currently unclear. Using RNA immunoprecipitation followed by high-throughput sequencing, we identified over 4000 Arabidopsis thaliana RNAs that directly or indirectly associate with SR45, designated as SR45-associated RNAs (SARs). Comprehensive analyses of these SARs revealed several roles for SR45. First, SR45 associates with and regulates the expression of 30% of abscisic acid (ABA) signaling genes at the postsplicing level. Second, although most SARs are derived from intron-containing genes, surprisingly, 340 SARs are derived from intronless genes. Expression analysis of the SARs suggests that SR45 differentially regulates intronless and intron-containing SARs. Finally, we identified four overrepresented RNA motifs in SARs that likely mediate SR45's recognition of its targets. Therefore, SR45 plays an unexpected role in mRNA processing of intronless genes, and numerous ABA signaling genes are targeted for regulation at the posttranscriptional level. The diverse molecular functions of SR45 uncovered in this study are likely applicable to other species in view of its conservation across eukaryotes. PMID:26603559

  3. RBP-Var: a database of functional variants involved in regulation mediated by RNA-binding proteins

    PubMed Central

    Mao, Fengbiao; Xiao, Luoyuan; Li, Xianfeng; Liang, Jialong; Teng, Huajing; Cai, Wanshi; Sun, Zhong Sheng

    2016-01-01

    Transcription factors bind to the genome by forming specific contacts with the primary DNA sequence; however, RNA-binding proteins (RBPs) have greater scope to achieve binding specificity through the RNA secondary structure. It has been revealed that single nucleotide variants (SNVs) that alter RNA structure, also known as RiboSNitches, exhibit 3-fold greater local structure changes than replicates of the same DNA sequence, demonstrated by the fact that depletion of RiboSNitches could result in the alteration of specific RNA shapes at thousands of sites, including 3′ UTRs, binding sites of microRNAs and RBPs. However, the network between SNVs and post-transcriptional regulation remains unclear. Here, we developed RBP-Var, a database freely available at http://www.rbp-var.biols.ac.cn/, which provides annotation of functional variants involved in post-transcriptional interaction and regulation. RBP-Var provides an easy-to-use web interface that allows users to rapidly find whether SNVs of interest can transform the secondary structure of RNA and identify RBPs whose binding may be subsequently disrupted. RBP-Var integrates DNA and RNA biology to understand how various genetic variants and post-transcriptional mechanisms cooperate to orchestrate gene expression. In summary, RBP-Var is useful in selecting candidate SNVs for further functional studies and exploring causal SNVs underlying human diseases. PMID:26635394

  4. HIV-1 and two avian retroviral 5' untranslated regions bind orthologous human and chicken RNA binding proteins.

    PubMed

    Stake, Matthew; Singh, Deepali; Singh, Gatikrushna; Marcela Hernandez, J; Kaddis Maldonado, Rebecca; Parent, Leslie J; Boris-Lawrie, Kathleen

    2015-12-01

    Essential host cofactors in retrovirus replication bind cis-acting sequences in the 5'untranslated region (UTR). Although host RBPs are crucial to all aspects of virus biology, elucidating their roles in replication remains a challenge to the field. Here RNA affinity-coupled-proteomics generated a comprehensive, unbiased inventory of human and avian RNA binding proteins (RBPs) co-isolating with 5'UTRs of HIV-1, spleen necrosis virus and Rous sarcoma virus. Applying stringent biochemical and statistical criteria, we identified 185 RBP; 122 were previously implicated in retrovirus biology and 63 are new to the 5'UTR proteome. RNA electrophoretic mobility assays investigated paralogs present in the common ancestor of vertebrates and one hnRNP was identified as a central node to the biological process-anchored networks of HIV-1, SNV, and RSV 5' UTR-proteomes. This comprehensive view of the host constituents of retroviral RNPs is broadly applicable to investigation of viral replication and antiviral response in both human and avian cell lineages.

  5. RNA binding protein RBM14 promotes radio-resistance in glioblastoma by regulating DNA repair and cell differentiation

    PubMed Central

    Yuan, Ming; Eberhart, Charles G.; Kai, Mihoko

    2014-01-01

    Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Standard treatment for GBM patients is surgery followed by radiotherapy and/or chemotherapy, but tumors always recur. Traditional therapies seem to fail because they eliminate only the bulk of the tumors and spare a population of stem-like cells termed tumor-initiating cells. The stem-like state and preferential activation of DNA damage response in the GBM tumor-initiating cells contribute to their radio-resistance and recurrence. The molecular mechanisms underlying this efficient activation of damage response and maintenance of stem-like state remain elusive. Here we show that RBM14 controls DNA repair pathways and also prevents cell differentiation in GBM spheres, causing radio-resistance. Knockdown of RBM14 affects GBM sphere maintenance and sensitizes radio-resistant GBM cells at the cellular level. We demonstrate that RBM14 knockdown blocks GBM regrowth after irradiation in vivo. In addition, RBM14 stimulates DNA repair by controlling the DNA-PK-dependent non-homologous end-joining (NHEJ) pathway. These results reveal unexpected functions of the RNA-binding protein RBM14 in control of DNA repair and maintenance of tumor-initiating cells. Targeting the RBM14-dependent pathway may prevent recurrence of tumors and eradicate the deadly disease completely. PMID:24811242

  6. Splicing Machinery Facilitates Post-Transcriptional Regulation by FBFs and Other RNA-Binding Proteins in Caenorhabditis elegans Germline.

    PubMed

    Novak, Preston; Wang, Xiaobo; Ellenbecker, Mary; Feilzer, Sara; Voronina, Ekaterina

    2015-08-11

    Genetic interaction screens are an important approach for understanding complex regulatory networks governing development. We used a genetic interaction screen to identify cofactors of FBF-1 and FBF-2, RNA-binding proteins that regulate germline stem cell proliferation in Caenorhabditis elegans. We found that components of splicing machinery contribute to FBF activity as splicing factor knockdowns enhance sterility of fbf-1 and fbf-2 single mutants. This sterility phenocopied multiple aspects of loss of fbf function, suggesting that splicing factors contribute to stem cell maintenance. However, previous reports indicate that splicing factors instead promote the opposite cell fate, namely, differentiation. We explain this discrepancy by proposing that splicing factors facilitate overall RNA regulation in the germline. Indeed, we find that loss of splicing factors produces synthetic phenotypes with a mutation in another RNA regulator, FOG-1, but not with a mutation in a gene unrelated to posttranscriptional regulation (dhc-1). We conclude that inefficient pre-mRNA splicing may interfere with multiple posttranscriptional regulatory events, which has to be considered when interpreting results of genetic interaction screens.

  7. Targeting the mRNA-binding protein HuR impairs malignant characteristics of pancreatic ductal adenocarcinoma cells

    PubMed Central

    Jimbo, Masaya; Blanco, Fernando F.; Screnci, Brad A.; Cosma, Gabriela L.; Alexeev, Vitali; Gonye, Gregory E.; Yeo, Charles J.; Sawicki, Janet A.; Winter, Jordan M.; Brody, Jonathan R.

    2015-01-01

    Post-transcriptional regulation is a powerful mediator of gene expression, and can rapidly alter the expression of numerous transcripts involved in tumorigenesis. We have previously shown that the mRNA-binding protein HuR (ELAVL1) is elevated in human pancreatic ductal adenocarcinoma (PDA) specimens compared to normal pancreatic tissues, and its cytoplasmic localization is associated with increased tumor stage. To gain a better insight into HuR’s role in PDA biology and to assess it as a candidate therapeutic target, we altered HuR expression in PDA cell lines and characterized the resulting phenotype in preclinical models. HuR silencing by short hairpin and small interfering RNAs significantly decreased cell proliferation and anchorage-independent growth, as well as impaired migration and invasion. In comparison, HuR overexpression increased migration and invasion, but had no significant effects on cell proliferation and anchorage-independent growth. Importantly, two distinct targeted approaches to HuR silencing showed marked impairment in tumor growth in mouse xenografts. NanoString nCounter® analyses demonstrated that HuR regulates core biological processes, highlighting that HuR inhibition likely thwarts PDA viability through post-transcriptional regulation of diverse signaling pathways (e.g. cell cycle, apoptosis, DNA repair). Taken together, our study suggests that targeted inhibition of HuR may be a novel, promising approach to the treatment of PDA. PMID:26314962

  8. siRNA targeting vaccinia virus double-stranded RNA binding protein [E3L] exerts potent antiviral effects.

    PubMed

    Dave, Rajnish S; McGettigan, James P; Qureshi, Tazeen; Schnell, Matthias J; Nunnari, Giuseppe; Pomerantz, Roger J

    2006-05-10

    The Vaccinia virus gene, E3L, encodes a double-stranded RNA [dsRNA]-binding protein. We hypothesized that, owing to the critical nature of dsRNA in triggering host innate antiviral responses, E3L-specific small-interfering RNAs [siRNAs] should be effective antiviral agents against pox viruses, for which Vaccinia virus is an appropriate surrogate. In this study, we have utilized two human cell types, namely, HeLa and 293T, one which responds to interferon [IFN]-beta and the other produces and responds to IFN-beta, respectively. The antiviral effects were equally robust in HeLa and 293T cells. However, in the case of 293T cells, several distinct features were observed, when IFN-beta is activated in these cells. Vaccinia virus replication was inhibited by 97% and 98% as compared to control infection in HeLa and 293T cells transfected with E3L-specific siRNAs, respectively. These studies demonstrate the utility of E3L-specific siRNAs as potent antiviral agents for small pox and related pox viruses.

  9. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice

    PubMed Central

    Richman, Tara R.; Spåhr, Henrik; Ermer, Judith A.; Davies, Stefan M. K.; Viola, Helena M.; Bates, Kristyn A.; Papadimitriou, John; Hool, Livia C.; Rodger, Jennifer; Larsson, Nils-Göran; Rackham, Oliver; Filipovska, Aleksandra

    2016-01-01

    The recognition and translation of mammalian mitochondrial mRNAs are poorly understood. To gain further insights into these processes in vivo, we characterized mice with a missense mutation that causes loss of the translational activator of cytochrome oxidase subunit I (TACO1). We report that TACO1 is not required for embryonic survival, although the mutant mice have substantially reduced COXI protein, causing an isolated complex IV deficiency. We show that TACO1 specifically binds the mt-Co1 mRNA and is required for translation of COXI through its association with the mitochondrial ribosome. We determined the atomic structure of TACO1, revealing three domains in the shape of a hook with a tunnel between domains 1 and 3. Mutations in the positively charged domain 1 reduce RNA binding by TACO1. The Taco1 mutant mice develop a late-onset visual impairment, motor dysfunction and cardiac hypertrophy and thus provide a useful model for future treatment trials for mitochondrial disease. PMID:27319982

  10. Targeting the mRNA-binding protein HuR impairs malignant characteristics of pancreatic ductal adenocarcinoma cells.

    PubMed

    Jimbo, Masaya; Blanco, Fernando F; Huang, Yu-Hung; Telonis, Aristeidis G; Screnci, Brad A; Cosma, Gabriela L; Alexeev, Vitali; Gonye, Gregory E; Yeo, Charles J; Sawicki, Janet A; Winter, Jordan M; Brody, Jonathan R

    2015-09-29

    Post-transcriptional regulation is a powerful mediator of gene expression, and can rapidly alter the expression of numerous transcripts involved in tumorigenesis. We have previously shown that the mRNA-binding protein HuR (ELAVL1) is elevated in human pancreatic ductal adenocarcinoma (PDA) specimens compared to normal pancreatic tissues, and its cytoplasmic localization is associated with increased tumor stage. To gain a better insight into HuR's role in PDA biology and to assess it as a candidate therapeutic target, we altered HuR expression in PDA cell lines and characterized the resulting phenotype in preclinical models. HuR silencing by short hairpin and small interfering RNAs significantly decreased cell proliferation and anchorage-independent growth, as well as impaired migration and invasion. In comparison, HuR overexpression increased migration and invasion, but had no significant effects on cell proliferation and anchorage-independent growth. Importantly, two distinct targeted approaches to HuR silencing showed marked impairment in tumor growth in mouse xenografts. NanoString nCounter® analyses demonstrated that HuR regulates core biological processes, highlighting that HuR inhibition likely thwarts PDA viability through post-transcriptional regulation of diverse signaling pathways (e.g. cell cycle, apoptosis, DNA repair). Taken together, our study suggests that targeted inhibition of HuR may be a novel, promising approach to the treatment of PDA.

  11. Robust transcriptome-wide discovery of RNA binding protein binding sites with enhanced CLIP (eCLIP)

    PubMed Central

    Van Nostrand, Eric L.; Pratt, Gabriel A.; Shishkin, Alexander A.; Gelboin-Burkhart, Chelsea; Fang, Mark Y.; Sundararaman, Balaji; Blue, Steven M.; Nguyen, Thai B.; Surka, Christine; Elkins, Keri; Stanton, Rebecca; Rigo, Frank; Guttman, Mitchell; Yeo, Gene W.

    2016-01-01

    As RNA binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNAs, binding site identification by UV-crosslinking and immunoprecipitation (CLIP) of ribonucleoprotein complexes is critical to understanding RBP function. However, current CLIP protocols are technically demanding and yield low complexity libraries with high experimental failure rates. We have developed an enhanced CLIP (eCLIP) protocol that decreases requisite amplification by ~1,000-fold, decreasing discarded PCR duplicate reads by ~60% while maintaining single-nucleotide binding resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP improves specificity in discovery of authentic binding sites. We generated 102 eCLIP experiments for 73 diverse RBPs in HepG2 and K562 cells (available at https://www.encodeproject.org), demonstrating that eCLIP enables large-scale and robust profiling, with amplification and sample requirements similar to ChIP-seq. eCLIP enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP and RNA-centric perspectives of RBP activity. PMID:27018577

  12. Rapid and systemic accumulation of chloroplast mRNA-binding protein transcripts after flame stimulus in tomato

    NASA Technical Reports Server (NTRS)

    Vian, A.; Henry-Vian, C.; Davies, E.

    1999-01-01

    It has been shown that tomato (Lycopersicon esculentum) plants respond to flame wounding and electrical stimulation by a rapid (15 min) and systemic up-regulation of proteinase inhibitor (pin) genes. To find other genes having a similar expression pattern, we used subtractive cDNA screening between flamed and control plants to select clones up-regulated by flame wounding. We report the characterization of one of them, a chloroplast mRNA-binding protein encoded by a single gene and expressed preferentially in the leaves. Systemic gene expression in response to flaming in the youngest terminal leaf exhibited three distinct phases: a rapid and transient increase (5-15 min) in transcript accumulation, a decline to basal levels (15-45 min), and then a second, more prolonged increase (60-90 min). In contrast, after a mechanical wound the rapid, transient increase (5 min) was followed by a rapid decline to basal levels but no later, prolonged accumulation. In the petiole, the initial flame-wound-evoked transient increase (15 min) was followed by a continuous decline for 3 h. The nature of the wound signal(s) causing such rapid changes in transcript abundance is discussed in relation to electrical signaling, which has recently been implicated in plant responses to wounding.

  13. The RNA-binding protein Musashi-1 regulates proteasome subunit expression in breast cancer- and glioma-initiating cells

    PubMed Central

    Lagadec, Chann; Vlashi, Erina; Frohnen, Patricia; Alhiyari, Yazeed; Chan, Mabel; Pajonk, Frank

    2014-01-01

    Cancer stem cells (CSCs) or tumor-initiating cells, similar to normal tissue stem cells, rely on developmental pathways, such as the Notch pathway, to maintain their stem cell state. One of the regulators of the Notch pathway is Musashi-1, a mRNA-binding protein. Musashi-1 promotes Notch signaling by binding to the mRNA of Numb, the negative regulator of Notch signaling, thus preventing its translation. Cancer stem cells have also been shown to down-regulate their 26S proteasome activity in several types of solid tumors, thus making them resistant to proteasome-inhibitors used as anti-cancer agents in the clinic. Interestingly, the Notch pathway can be inhibited by proteasomal degradation of the Notch intracellular domain (Notch-ICD), therefore down-regulation of the 26S proteasome activity can lead to stabilization of Notch-ICD. Here we present evidence that the down-regulation of the 26S proteasome in CSCs constitutes another level of control by which Musashi-1 promotes signaling through the Notch pathway and maintenance of the stem cell phenotype of this subpopulation of cancer cells. We demonstrate that Musashi-1 mediates the down-regulation of the 26S proteasome by binding to the mRNA of NF-YA, the transcriptional factor regulating 26S proteasome subunit expression, thus providing an additional route by which the degradation of Notch-ICD is prevented, and Notch signaling is sustained. PMID:24022895

  14. HIV-1 and two avian retroviral 5' untranslated regions bind orthologous human and chicken RNA binding proteins.

    PubMed

    Stake, Matthew; Singh, Deepali; Singh, Gatikrushna; Marcela Hernandez, J; Kaddis Maldonado, Rebecca; Parent, Leslie J; Boris-Lawrie, Kathleen

    2015-12-01

    Essential host cofactors in retrovirus replication bind cis-acting sequences in the 5'untranslated region (UTR). Although host RBPs are crucial to all aspects of virus biology, elucidating their roles in replication remains a challenge to the field. Here RNA affinity-coupled-proteomics generated a comprehensive, unbiased inventory of human and avian RNA binding proteins (RBPs) co-isolating with 5'UTRs of HIV-1, spleen necrosis virus and Rous sarcoma virus. Applying stringent biochemical and statistical criteria, we identified 185 RBP; 122 were previously implicated in retrovirus biology and 63 are new to the 5'UTR proteome. RNA electrophoretic mobility assays investigated paralogs present in the common ancestor of vertebrates and one hnRNP was identified as a central node to the biological process-anchored networks of HIV-1, SNV, and RSV 5' UTR-proteomes. This comprehensive view of the host constituents of retroviral RNPs is broadly applicable to investigation of viral replication and antiviral response in both human and avian cell lineages. PMID:26584240

  15. RNA binding by a novel helical fold of b2 protein from wuhan nodavirus mediates the suppression of RNA interference and promotes b2 dimerization.

    PubMed

    Qi, Nan; Cai, Dawei; Qiu, Yang; Xie, Jiazheng; Wang, Zhaowei; Si, Jie; Zhang, Jiamin; Zhou, Xi; Hu, Yuanyang

    2011-09-01

    Wuhan nodavirus (WhNV) is a newly identified member of the Nodaviridae family with a bipartite genome of positive-sense RNAs. A nonstructural protein encoded by subgenomic RNA3 of nodaviruses, B2, serves as a potent RNA silencing suppressor (RSS) by sequestering RNA duplexes. We have previously demonstrated that WhNV B2 blocks RNA silencing in cultured Drosophila cells. However, the molecular mechanism by which WhNV B2 functions remains unknown. Here, we successfully established an RNA silencing system in cells derived from Pieris rapae, a natural host of WhNV, by introducing into these cells double-stranded RNA (dsRNA)-expressing plasmids or chemically synthesized small interfering RNAs (siRNAs). Using this system, we revealed that the WhNV B2 protein inhibited Dicer-mediated dsRNA cleavage and the incorporation of siRNA into the RNA-induced silencing complex (RISC) by sequestering dsRNA and siRNA. Based on the modeled B2 3-dimensional structure, serial single alanine replacement mutations and N-terminal deletion analyses showed that the RNA-binding domain of B2 is formed by its helices α2 and α3, while helix α1 mediates B2 dimerization. Furthermore, positive feedback between RNA binding and B2 dimerization was uncovered by gel shift assay and far-Western blotting, revealing that B2 dimerization is required for its binding to RNA, whereas RNA binding to B2 in turn promotes its dimerization. All together, our findings uncovered a novel RNA-binding mode of WhNV B2 and provided evidence that the promotion effect of RNA binding on dimerization exists in a viral RSS protein. PMID:21734038

  16. RNA Binding by a Novel Helical Fold of B2 Protein from Wuhan Nodavirus Mediates the Suppression of RNA Interference and Promotes B2 Dimerization ▿

    PubMed Central

    Qi, Nan; Cai, Dawei; Qiu, Yang; Xie, Jiazheng; Wang, Zhaowei; Si, Jie; Zhang, Jiamin; Zhou, Xi; Hu, Yuanyang

    2011-01-01

    Wuhan nodavirus (WhNV) is a newly identified member of the Nodaviridae family with a bipartite genome of positive-sense RNAs. A nonstructural protein encoded by subgenomic RNA3 of nodaviruses, B2, serves as a potent RNA silencing suppressor (RSS) by sequestering RNA duplexes. We have previously demonstrated that WhNV B2 blocks RNA silencing in cultured Drosophila cells. However, the molecular mechanism by which WhNV B2 functions remains unknown. Here, we successfully established an RNA silencing system in cells derived from Pieris rapae, a natural host of WhNV, by introducing into these cells double-stranded RNA (dsRNA)-expressing plasmids or chemically synthesized small interfering RNAs (siRNAs). Using this system, we revealed that the WhNV B2 protein inhibited Dicer-mediated dsRNA cleavage and the incorporation of siRNA into the RNA-induced silencing complex (RISC) by sequestering dsRNA and siRNA. Based on the modeled B2 3-dimensional structure, serial single alanine replacement mutations and N-terminal deletion analyses showed that the RNA-binding domain of B2 is formed by its helices α2 and α3, while helix α1 mediates B2 dimerization. Furthermore, positive feedback between RNA binding and B2 dimerization was uncovered by gel shift assay and far-Western blotting, revealing that B2 dimerization is required for its binding to RNA, whereas RNA binding to B2 in turn promotes its dimerization. All together, our findings uncovered a novel RNA-binding mode of WhNV B2 and provided evidence that the promotion effect of RNA binding on dimerization exists in a viral RSS protein. PMID:21734038

  17. The RNA-binding protein PCBP2 facilitates gastric carcinoma growth by targeting miR-34a

    SciTech Connect

    Hu, Cheng-En; Liu, Yong-Chao; Zhang, Hui-Dong; Huang, Guang-Jian

    2014-06-13

    Highlights: • PCBP2 is overexpressed in human gastric cancer. • PCBP2 high expression predicts poor survival. • PCBP2 regulates gastric cancer growth in vitro and in vivo. • PCBP2 regulates gastric cancer apoptosis by targeting miR-34a. - Abstract: Gastric carcinoma is the fourth most common cancer worldwide, with a high rate of death and low 5-year survival rate. However, the mechanism underling gastric cancer is still not fully understood. Here in the present study, we identify the RNA-binding protein PCBP2 as an oncogenic protein in human gastric carcinoma. Our results show that PCBP2 is up-regulated in human gastric cancer tissues compared to adjacent normal tissues, and that high level of PCBP2 predicts poor overall and disease-free survival. Knockdown of PCBP2 in gastric cancer cells inhibits cell proliferation and colony formation in vitro, whereas opposing results are obtained when PCBP2 is overexpressed. Our in vivo subcutaneous xenograft results also show that PCBP2 can critically regulate gastric cancer cell growth. In addition, we find that PCBP2-depletion induces apoptosis in gastric cancer cells via up-regulating expression of pro-apoptotic proteins and down-regulating anti-apoptotic proteins. Mechanically, we identify that miR-34a as a target of PCBP2, and that miR-34a is critically essential for the function of PCBP2. In summary, PCBP2 promotes gastric carcinoma development by regulating the level of miR-34a.

  18. The Cell Cycle Regulator CCDC6 Is a Key Target of RNA-Binding Protein EWS

    PubMed Central

    Duggimpudi, Sujitha; Larsson, Erik; Nabhani, Schafiq; Borkhardt, Arndt; Hoell, Jessica I

    2015-01-01

    Genetic translocation of EWSR1 to ETS transcription factor coding region is considered as primary cause for Ewing sarcoma. Previous studies focused on the biology of chimeric transcription factors formed due to this translocation. However, the physiological consequences of heterozygous EWSR1 loss in these tumors have largely remained elusive. Previously, we have identified various mRNAs bound to EWS using PAR-CLIP. In this study, we demonstrate CCDC6, a known cell cycle regulator protein, as a novel target regulated by EWS. siRNA mediated down regulation of EWS caused an elevated apoptosis in cells in a CCDC6-dependant manner. This effect was rescued upon re-expression of CCDC6. This study provides evidence for a novel functional link through which wild-type EWS operates in a target-dependant manner in Ewing sarcoma. PMID:25751255

  19. Staufen1 dimerizes through a conserved motif and a degenerate dsRNA-binding domain to promote mRNA decay.

    PubMed

    Gleghorn, Michael L; Gong, Chenguang; Kielkopf, Clara L; Maquat, Lynne E

    2013-04-01

    Staufen1 (STAU1)-mediated mRNA decay (SMD) degrades mammalian-cell mRNAs that bind the double-stranded RNA (dsRNA)-binding protein STAU1 in their 3' untranslated region. We report a new motif, which typifies STAU homologs from all vertebrate classes, that is responsible for human STAU1 (hSTAU1) homodimerization. Our crystal structure and mutagenesis analyses reveal that this motif, which we named the Staufen-swapping motif (SSM), and the dsRNA-binding domain 5 ('RBD'5) mediate protein dimerization: the two SSM α-helices of one molecule interact primarily through a hydrophobic patch with the two 'RBD'5 α-helices of a second molecule. 'RBD'5 adopts the canonical α-β-β-β-α fold of a functional RBD, but it lacks residues and features required to bind duplex RNA. In cells, SSM-mediated hSTAU1 dimerization increases the efficiency of SMD by augmenting hSTAU1 binding to the ATP-dependent RNA helicase hUPF1. Dimerization regulates keratinocyte-mediated wound healing and many other cellular processes.

  20. Staufen1 dimerizes through a conserved motif and a degenerate dsRNA-binding domain to promote mRNA decay.

    PubMed

    Gleghorn, Michael L; Gong, Chenguang; Kielkopf, Clara L; Maquat, Lynne E

    2013-04-01

    Staufen1 (STAU1)-mediated mRNA decay (SMD) degrades mammalian-cell mRNAs that bind the double-stranded RNA (dsRNA)-binding protein STAU1 in their 3' untranslated region. We report a new motif, which typifies STAU homologs from all vertebrate classes, that is responsible for human STAU1 (hSTAU1) homodimerization. Our crystal structure and mutagenesis analyses reveal that this motif, which we named the Staufen-swapping motif (SSM), and the dsRNA-binding domain 5 ('RBD'5) mediate protein dimerization: the two SSM α-helices of one molecule interact primarily through a hydrophobic patch with the two 'RBD'5 α-helices of a second molecule. 'RBD'5 adopts the canonical α-β-β-β-α fold of a functional RBD, but it lacks residues and features required to bind duplex RNA. In cells, SSM-mediated hSTAU1 dimerization increases the efficiency of SMD by augmenting hSTAU1 binding to the ATP-dependent RNA helicase hUPF1. Dimerization regulates keratinocyte-mediated wound healing and many other cellular processes. PMID:23524536

  1. The RNA-binding protein Puf1 functions in the maintenance of gametocytes in Plasmodium falciparum.

    PubMed

    Shrestha, Sony; Li, Xiaolian; Ning, Gang; Miao, Jun; Cui, Liwang

    2016-08-15

    Translation control plays an important role in the regulation of gene expression in the malaria parasite Plasmodium falciparum, especially in transition stages between the vertebrate host and mosquito vector. Here, we determined the function of the Puf-family member Puf1 (denoted as PfPuf1 for the P. falciparum protein) during P. falciparum sexual development. We show that PfPuf1 was expressed in all gametocyte stages and at higher levels in female gametocytes. PfPuf1 disruption did not interfere with the asexual erythrocyte cycle of the parasite but resulted in an approximately tenfold decrease of mature gametocytes. In the PfPuf1-disrupted lines, gametocytes appeared normal before stage III but subsequently exhibited a sharp decline in gametocytemia. This was accompanied by a concomitant accumulation of dead and dying late-stage gametocytes, which retained normal gross morphology. In addition, significantly more female gametocytes were lost in the PfPuf1-disrupted lines during development, resulting in a reversed male-to-female sex ratio. These results indicate that PfPuf1 is important for the differentiation and maintenance of gametocytes, especially female gametocytes. PMID:27383769

  2. RNA-binding proteins regulate cell respiration and coenzyme Q biosynthesis by post-transcriptional regulation of COQ7.

    PubMed

    Cascajo, María V; Abdelmohsen, Kotb; Noh, Ji Heon; Fernández-Ayala, Daniel J M; Willers, Imke M; Brea, Gloria; López-Lluch, Guillermo; Valenzuela-Villatoro, Marina; Cuezva, José M; Gorospe, Myriam; Siendones, Emilio; Navas, Plácido

    2016-07-01

    Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3'-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.

  3. RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis.

    PubMed

    Wu, Zhe; Zhu, Danling; Lin, Xiaoya; Miao, Jin; Gu, Lianfeng; Deng, Xian; Yang, Qian; Sun, Kangtai; Zhu, Danmeng; Cao, Xiaofeng; Tsuge, Tomohiko; Dean, Caroline; Aoyama, Takashi; Gu, Hongya; Qu, Li-Jia

    2016-01-01

    Nuclear-localized RNA binding proteins are involved in various aspects of RNA metabolism, which in turn modulates gene expression. However, the functions of nuclear-localized RNA binding proteins in plants are poorly understood. Here, we report the functions of two proteins containing RNA recognition motifs, RZ-1B and RZ-1C, in Arabidopsis thaliana. RZ-1B and RZ-1C were localized to nuclear speckles and interacted with a spectrum of serine/arginine-rich (SR) proteins through their C termini. RZ-1C preferentially bound to purine-rich RNA sequences in vitro through its N-terminal RNA recognition motif. Disrupting the RNA binding activity of RZ-1C with SR proteins through overexpression of the C terminus of RZ-1C conferred defective phenotypes similar to those observed in rz-1b rz-1c double mutants, including delayed seed germination, reduced stature, and serrated leaves. Loss of function of RZ-1B and RZ-1C was accompanied by defective splicing of many genes and global perturbation of gene expression. In addition, we found that RZ-1C directly targeted FLOWERING LOCUS C (FLC), promoting efficient splicing of FLC introns and likely also repressing FLC transcription. Our findings highlight the critical role of RZ-1B/1C in regulating RNA splicing, gene expression, and many key aspects of plant development via interaction with proteins including SR proteins.

  4. Cellular RNA Binding Proteins NS1-BP and hnRNP K Regulate Influenza A Virus RNA Splicing

    PubMed Central

    Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W.; Fontoura, Beatriz M. A.

    2013-01-01

    Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression. PMID:23825951

  5. The essential polysome-associated RNA-binding protein RBP42 targets mRNAs involved in Trypanosoma brucei energy metabolism.

    PubMed

    Das, Anish; Morales, Rachel; Banday, Mahrukh; Garcia, Stacey; Hao, Li; Cross, George A M; Estevez, Antonio M; Bellofatto, Vivian

    2012-11-01

    RNA-binding proteins that target mRNA coding regions are emerging as regulators of post-transcriptional processes in eukaryotes. Here we describe a newly identified RNA-binding protein, RBP42, which targets the coding region of mRNAs in the insect form of the African trypanosome, Trypanosoma brucei. RBP42 is an essential protein and associates with polysome-bound mRNAs in the cytoplasm. A global survey of RBP42-bound mRNAs was performed by applying HITS-CLIP technology, which captures protein-RNA interactions in vivo using UV light. Specific RBP42-mRNA interactions, as well as mRNA interactions with a known RNA-binding protein, were purified using specific antibodies. Target RNA sequences were identified and quantified using high-throughput RNA sequencing. Analysis revealed that RBP42 bound mainly within the coding region of mRNAs that encode proteins involved in cellular energy metabolism. Although the mechanism of RBP42's function is unclear at present, we speculate that RBP42 plays a critical role in modulating T. brucei energy metabolism.

  6. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    PubMed

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development. PMID:26711633

  7. REF2 encodes an RNA-binding protein directly involved in yeast mRNA 3'-end formation.

    PubMed Central

    Russnak, R; Nehrke, K W; Platt, T

    1995-01-01

    The Saccharomyces cerevisiae mutant ref2-1 (REF = RNA end formation) was originally identified by a genetic strategy predicted to detect decreases in the use of a CYC1 poly(A) site interposed within the intron of an ACT1-HIS4 fusion reporter gene. Direct RNA analysis now proves this effect and also demonstrates the trans action of the REF2 gene product on cryptic poly(A) sites located within the coding region of a plasmid-borne ACT1-lacZ gene. Despite impaired growth of ref2 strains, possibly because of a general defect in the efficiency of mRNA 3'-end processing, the steady-state characteristics of a variety of normal cellular mRNAs remain unaffected. Sequencing of the complementing gene predicts the Ref2p product to be a novel, basic protein of 429 amino acids (M(r), 48,000) with a high-level lysine/serine content and some unusual features. Analysis in vitro, with a number of defined RNA substrates, confirms that efficient use of weak poly(A) sites requires Ref2p: endonucleolytic cleavage is carried out accurately but at significantly lower rates in extracts prepared from delta ref2 cells. The addition of purified, epitope-tagged Ref2p (Ref2pF) reestablishes wild-type levels of activity in these extracts, demonstrating direct involvement of this protein in the cleavage step of 3' mRNA processing. Together with the RNA-binding characteristics of Ref2pF in vitro, our results support an important contributing role for the REF2 locus in 3'-end processing. As the first gene genetically identified to participate in mRNA 3'-end maturation prior to the final polyadenylation step, REF2 provides an ideal starting point for identifying related genes in this event. PMID:7862160

  8. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    PubMed

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development.

  9. Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles.

    PubMed Central

    Wurtz-T; Kiseleva, E; Nacheva, G; Alzhanova-Ericcson, A; Rosén, A; Daneholt, B

    1996-01-01

    Balbiani ring (BR) granules are premessenger ribonucleoprotein particles (RNPs) generated in giant chromosomal puffs, the BRs, in the larval salivary glands of the dipteran chironomus tentans. Monoclonal antibodies were raised against nuclear proteins collected on a single-stranded-DNA-agarose affinity column, and two of them were used to identify RNA-binding proteins in BR granules. First, in Western blots (immunoblots), one of the antibodies recognized a 36-kDa protein and the other recognized a 45-KDa protein. Second, both antibodies bound to the BRs in immunocytological experiments. It was shown in cross-linking experiments that the two proteins are associated with heterogeneous nuclear RNP (hnRNP) complexes extracted from C. tentans nuclei. By immunoelectron microscopy of isolated and partly unfolded BR RNPs, it was specifically demonstrated that the BR granules contain the two proteins and, in addition, that both proteins are distributed frequently along the RNP fiber of the particles. Thus, the 36- and 45-KDa proteins are likely to be abundant, RNA-binding proteins in the BR particles. To elucidate to what extent the two proteins are also present in other hnRNPs, we studied the binding of the antibodies to chromosomal puffs in general. It was observed that many puffs in addition to the BRs harbor the two proteins, but there are also puffs containing only one of the components, either the 36- or the 45-kDa protein. We conclude that the two proteins are not randomly bound to all hnRNPs but that each of them seems to be linked to a specific subset of the particles. PMID:8657116

  10. The essential polysome-associated RNA-binding protein RBP42 targets mRNAs involved in Trypanosoma brucei energy metabolism

    PubMed Central

    Das, Anish; Morales, Rachel; Banday, Mahrukh; Garcia, Stacey; Hao, Li; Cross, George A.M.; Estevez, Antonio M.; Bellofatto, Vivian

    2012-01-01

    RNA-binding proteins that target mRNA coding regions are emerging as regulators of post-transcriptional processes in eukaryotes. Here we describe a newly identified RNA-binding protein, RBP42, which targets the coding region of mRNAs in the insect form of the African trypanosome, Trypanosoma brucei. RBP42 is an essential protein and associates with polysome-bound mRNAs in the cytoplasm. A global survey of RBP42-bound mRNAs was performed by applying HITS-CLIP technology, which captures protein–RNA interactions in vivo using UV light. Specific RBP42–mRNA interactions, as well as mRNA interactions with a known RNA-binding protein, were purified using specific antibodies. Target RNA sequences were identified and quantified using high-throughput RNA sequencing. Analysis revealed that RBP42 bound mainly within the coding region of mRNAs that encode proteins involved in cellular energy metabolism. Although the mechanism of RBP42's function is unclear at present, we speculate that RBP42 plays a critical role in modulating T. brucei energy metabolism. PMID:22966087

  11. The RNA-binding protein Sam68 regulates expression and transcription function of the androgen receptor splice variant AR-V7.

    PubMed

    Stockley, Jacqueline; Markert, Elke; Zhou, Yan; Robson, Craig N; Elliott, David J; Lindberg, Johan; Leung, Hing Y; Rajan, Prabhakar

    2015-01-01

    Castration-resistant (CR) prostate cancer (PCa) partly arises due to persistence of androgen receptor (AR) transcriptional activity in the absence of cognate ligand. An emerging mechanism underlying the CRPCa phenotype and predicting response to therapy is the expression of the constitutively-active AR-V7 splice variant generated by AR cryptic exon 3b inclusion. Here, we explore the role of the RNA-binding protein (RBP) Sam68 (encoded by KHDRBS1), which is over-expressed in clinical PCa, on AR-V7 expression and transcription function. Using a minigene reporter, we show that Sam68 controls expression of exon 3b resulting in an increase in endogenous AR-V7 mRNA and protein expression in RNA-binding-dependent manner. We identify a novel protein-protein interaction between Sam68 and AR-V7 mediated by a common domain shared with full-length AR, and observe these proteins in the cell nucleoplasm. Using a luciferase reporter, we demonstrate that Sam68 co-activates ligand-independent AR-V7 transcriptional activity in an RNA-binding-independent manner, and controls expression of the endogenous AR-V7-specific gene target UBE2C. Our data suggest that Sam68 has separable effects on the regulation of AR-V7 expression and transcriptional activity, through its RNA-binding capacity. Sam68 and other RBPs may control expression of AR-V7 and other splice variants as well as their downstream functions in CRPCa. PMID:26310125

  12. The RNA-binding protein Sam68 regulates expression and transcription function of the androgen receptor splice variant AR-V7.

    PubMed

    Stockley, Jacqueline; Markert, Elke; Zhou, Yan; Robson, Craig N; Elliott, David J; Lindberg, Johan; Leung, Hing Y; Rajan, Prabhakar

    2015-08-27

    Castration-resistant (CR) prostate cancer (PCa) partly arises due to persistence of androgen receptor (AR) transcriptional activity in the absence of cognate ligand. An emerging mechanism underlying the CRPCa phenotype and predicting response to therapy is the expression of the constitutively-active AR-V7 splice variant generated by AR cryptic exon 3b inclusion. Here, we explore the role of the RNA-binding protein (RBP) Sam68 (encoded by KHDRBS1), which is over-expressed in clinical PCa, on AR-V7 expression and transcription function. Using a minigene reporter, we show that Sam68 controls expression of exon 3b resulting in an increase in endogenous AR-V7 mRNA and protein expression in RNA-binding-dependent manner. We identify a novel protein-protein interaction between Sam68 and AR-V7 mediated by a common domain shared with full-length AR, and observe these proteins in the cell nucleoplasm. Using a luciferase reporter, we demonstrate that Sam68 co-activates ligand-independent AR-V7 transcriptional activity in an RNA-binding-independent manner, and controls expression of the endogenous AR-V7-specific gene target UBE2C. Our data suggest that Sam68 has separable effects on the regulation of AR-V7 expression and transcriptional activity, through its RNA-binding capacity. Sam68 and other RBPs may control expression of AR-V7 and other splice variants as well as their downstream functions in CRPCa.

  13. SPOT-Seq-RNA: predicting protein-RNA complex structure and RNA-binding function by fold recognition and binding affinity prediction.

    PubMed

    Yang, Yuedong; Zhao, Huiying; Wang, Jihua; Zhou, Yaoqi

    2014-01-01

    RNA-binding proteins (RBPs) play key roles in RNA metabolism and post-transcriptional regulation. Computational methods have been developed separately for prediction of RBPs and RNA-binding residues by machine-learning techniques and prediction of protein-RNA complex structures by rigid or semiflexible structure-to-structure docking. Here, we describe a template-based technique called SPOT-Seq-RNA that integrates prediction of RBPs, RNA-binding residues, and protein-RNA complex structures into a single package. This integration is achieved by combining template-based structure-prediction software, SPARKS X, with binding affinity prediction software, DRNA. This tool yields reasonable sensitivity (46 %) and high precision (84 %) for an independent test set of 215 RBPs and 5,766 non-RBPs. SPOT-Seq-RNA is computationally efficient for genome-scale prediction of RBPs and protein-RNA complex structures. Its application to human genome study has revealed a similar sensitivity and ability to uncover hundreds of novel RBPs beyond simple homology. The online server and downloadable version of SPOT-Seq-RNA are available at http://sparks-lab.org/server/SPOT-Seq-RNA/.

  14. Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis

    PubMed Central

    Moore, Michael; Zhang, Chaolin; Gantman, Emily Conn; Mele, Aldo; Darnell, Jennifer C.; Darnell, Robert B.

    2014-01-01

    Summary Identifying sites where RNA binding proteins (RNABPs) interact with target RNAs opens the door to understanding the vast complexity of RNA regulation. UV-crosslinking and immunoprecipitation (CLIP) is a transformative technology in which RNAs purified from in vivo cross-linked RNA-protein complexes are sequenced to reveal footprints of RNABP:RNA contacts. CLIP combined with high throughput sequencing (HITS-CLIP) is a generalizable strategy to produce transcriptome-wide RNA binding maps with higher accuracy and resolution than standard RNA immunoprecipitation (RIP) profiling or purely computational approaches. Applying CLIP to Argonaute proteins has expanded the utility of this approach to mapping binding sites for microRNAs and other small regulatory RNAs. Finally, recent advances in data analysis take advantage of crosslinked-induced mutation sites (CIMS) to refine RNA-binding maps to single-nucleotide resolution. Once IP conditions are established, HITS-CLIP takes approximately eight days to prepare RNA for sequencing. Established pipelines for data analysis, including for CIMS, take 3-4 days. PMID:24407355

  15. Sequence-specific binding of a hormonally regulated mRNA binding protein to cytidine-rich sequences in the lutropin receptor open reading frame.

    PubMed

    Kash, J C; Menon, K M

    1999-12-21

    In previous studies, a lutropin receptor mRNA binding protein implicated in the hormonal regulation of lutropin receptor mRNA stability was identified. This protein, termed LRBP-1, was shown by RNA gel electrophoretic mobility shift assay to specifically interact with lutropin receptor RNA sequences. The present studies have examined the specificity of lutropin receptor mRNA recognition by LRBP-1 and mapped the contact site by RNA footprinting and by site-directed mutagenesis. LRBP-1 was partially purified by cation-exchange chromatography, and the mRNA binding properties of the partially purified LRBP-1 were examined by RNA gel electrophoretic mobility shift assay and hydroxyl-radical RNA footprinting. These data showed that the LRBP-1 binding site is located between nucleotides 203 and 220 of the receptor open reading frame, and consists of the bipartite polypyrimidine sequence 5'-UCUC-X(7)-UCUCCCU-3'. Competition RNA gel electrophoretic mobility shift assays demonstrated that homoribopolymers of poly(rC) were effective RNA binding competitors, while poly(rA), poly(rG), and poly(rU) showed no effect. Mutagenesis of the cytidine residues contained within the LRBP-1 binding site demonstrated that all the cytidines in the bipartite sequence contribute to LRBP-1 binding specificity. Additionally, RNA gel electrophoretic mobility supershift analysis showed that LRBP-1 was not recognized by antibodies against two well-characterized poly(rC) RNA binding proteins, alphaCP-1 and alphaCP-2, implicated in the regulation of RNA stability of alpha-globin and tyrosine hydroxylase mRNAs. In summary, we show that partially purified LRBP-1 binds to a polypyrimidine sequence within nucleotides 203 and 220 of lutropin receptor mRNA with a high degree of specificity which is indicative of its role in posttranscriptional control of lutropin receptor expression.

  16. In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces.

    PubMed

    Wu, Zhonghua; Hu, Gang; Yang, Jianyi; Peng, Zhenling; Uversky, Vladimir N; Kurgan, Lukasz

    2015-09-14

    We provide first large scale analysis of the peculiarities of surface areas of 5658 dissimilar (below 50% sequence similarity) proteins with known 3D-structures that bind to proteins, DNA or RNAs. We show here that area of the protein surface is highly correlated with the protein length. The size of the interface surface is only modestly correlated with the protein size, except for RNA-binding proteins where larger proteins are characterized by larger interfaces. Disordered proteins with disordered interfaces are characterized by significantly larger per-residue areas of their surfaces and interfaces when compared to the structured proteins. These result are applicable for proteins involved in interaction with DNA, RNA, and proteins and suggest that disordered proteins and binding regions are less compact and more likely to assume extended shape. We demonstrate that disordered protein binding residues in the interfaces of disordered proteins drive the increase in the per residue area of these interfaces. Our results can be used to predict in silico whether a given protomer from the DNA, RNA or protein complex is likely to be disordered in its unbound form.

  17. Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons

    PubMed Central

    Fallini, Claudia; Guo, Peng; Zhang, Honglai; Singer, Robert H.; Rossoll, Wilfried; Bassell, Gary J.

    2013-01-01

    Spinal muscular atrophy (SMA) is a lethal neurodegenerative disease specifically affecting spinal motor neurons. SMA is caused by the homozygous deletion or mutation of the survival of motor neuron 1 (SMN1) gene. The SMN protein plays an essential role in the assembly of spliceosomal ribonucleoproteins. However, it is still unclear how low levels of the ubiquitously expressed SMN protein lead to the selective degeneration of motor neurons. An additional role for SMN in the regulation of the axonal transport of mRNA-binding proteins (mRBPs) and their target mRNAs has been proposed. Indeed, several mRBPs have been shown to interact with SMN, and the axonal levels of few mRNAs, such as the β-actin mRNA, are reduced in SMA motor neurons. In this study we have identified the β-actin mRNA-binding protein IMP1/ZBP1 as a novel SMN-interacting protein. Using a combination of biochemical assays and quantitative imaging techniques in primary motor neurons, we show that IMP1 associates with SMN in individual granules that are actively transported in motor neuron axons. Furthermore, we demonstrate that IMP1 axonal localization depends on SMN levels, and that SMN deficiency in SMA motor neurons leads to a dramatic reduction of IMP1 protein levels. In contrast, no difference in IMP1 protein levels was detected in whole brain lysates from SMA mice, further suggesting neuron specific roles of SMN in IMP1 expression and localization. Taken together, our data support a role for SMN in the regulation of mRNA localization and axonal transport through its interaction with mRBPs such as IMP1. PMID:23897586

  18. An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana

    PubMed Central

    Streitner, Corinna; Köster, Tino; Simpson, Craig G.; Shaw, Paul; Danisman, Selahattin; Brown, John W. S.; Staiger, Dorothee

    2012-01-01

    Alternative splicing (AS) of pre-mRNAs is an important regulatory mechanism shaping the transcriptome. In plants, only few RNA-binding proteins are known to affect AS. Here, we show that the glycine-rich RNA-binding protein AtGRP7 influences AS in Arabidopsis thaliana. Using a high-resolution RT–PCR-based AS panel, we found significant changes in the ratios of AS isoforms for 59 of 288 analyzed AS events upon ectopic AtGRP7 expression. In particular, AtGRP7 affected the choice of alternative 5′ splice sites preferentially. About half of the events are also influenced by the paralog AtGRP8, indicating that AtGRP7 and AtGRP8 share a network of downstream targets. For 10 events, the AS patterns were altered in opposite directions in plants with elevated AtGRP7 level or lacking AtGRP7. Importantly, RNA immunoprecipitation from plant extracts showed that several transcripts are bound by AtGRP7 in vivo and indeed represent direct targets. Furthermore, the effect of AtGRP7 on these AS events was abrogated by mutation of a single arginine that is required for its RNA-binding activity. This indicates that AtGRP7 impacts AS of these transcripts via direct interaction. As several of the AS events are also controlled by other splicing regulators, our data begin to provide insights into an AS network in Arabidopsis. PMID:23042250

  19. The Zea mays glycine-rich RNA-binding protein MA16 is bound to a ribonucleotide(s) by a stable linkage.

    PubMed

    Freire, Miguel Angel

    2012-09-01

    Expression of the gene encoding the maize glycine-rich RNA-binding protein MA16 is developmentally regulated and it is involved in environmental stress responses. The MA16 protein shows a wide spectrum of RNA-binding activities. On the basis of in vivo labelling, where a [³²P]phosphate label was linked to the MA16 protein, Freire and Pages (Plant Mol Biol 29:797-807, 1995) suggested that the protein may be post-translationally modified by phosphorylation. However, further analysis showed that the [³²P]phosphate label was sensitive to different treatments, suggesting that modification distinct from protein phosphorylation might occur in the MA16 protein. Biochemical analysis revealed that this [³²P]phosphate labelling was resistant to phenol extraction and denaturing SDS-PAGE but sensitive to micrococcal nuclease, RNase A and RNase T1 treatments. The mobility of [³⁵S] labelled MA16 protein on SDS-PAGE did not significantly changed after the nuclease treatments suggesting that the [³²P]phosphate label associated to MA16 protein could be a ribonucleotide or a very short ribonucleotide chain. In addition, immunoprecipitation of labelled extracts showed that the ribonucleotide(s) linked to the MA16 protein was removed by phosphorolytic activity. This activity could be catalysed by a phosphate-dependent ribonuclease. The C-terminus of MA16 protein harbouring a glycine-rich domain was predicted to be an intrinsically disordered region.

  20. A composite double-/single-stranded RNA-binding region in protein Prp3 supports tri-snRNP stability and splicing

    PubMed Central

    Liu, Sunbin; Mozaffari-Jovin, Sina; Wollenhaupt, Jan; Santos, Karine F; Theuser, Matthias; Dunin-Horkawicz, Stanislaw; Fabrizio, Patrizia; Bujnicki, Janusz M; Lührmann, Reinhard; Wahl, Markus C

    2015-01-01

    Prp3 is an essential U4/U6 di-snRNP-associated protein whose functions and molecular mechanisms in pre-mRNA splicing are presently poorly understood. We show by structural and biochemical analyses that Prp3 contains a bipartite U4/U6 di-snRNA-binding region comprising an expanded ferredoxin-like fold, which recognizes a 3′-overhang of U6 snRNA, and a preceding peptide, which binds U4/U6 stem II. Phylogenetic analyses revealed that the single-stranded RNA-binding domain is exclusively found in Prp3 orthologs, thus qualifying as a spliceosome-specific RNA interaction module. The composite double-stranded/single-stranded RNA-binding region assembles cooperatively with Snu13 and Prp31 on U4/U6 di-snRNAs and inhibits Brr2-mediated U4/U6 di-snRNA unwinding in vitro. RNP-disrupting mutations in Prp3 lead to U4/U6•U5 tri-snRNP assembly and splicing defects in vivo. Our results reveal how Prp3 acts as an important bridge between U4/U6 and U5 in the tri-snRNP and comparison with a Prp24-U6 snRNA recycling complex suggests how Prp3 may be involved in U4/U6 reassembly after splicing. DOI: http://dx.doi.org/10.7554/eLife.07320.001 PMID:26161500

  1. The RNA-Binding Protein, Polypyrimidine Tract-Binding Protein 1 (PTBP1) Is a Key Regulator of CD4 T Cell Activation

    PubMed Central

    Valentín-Acevedo, Aníbal

    2016-01-01

    We have previously shown that the RNA binding protein, polypyrimidine tract-binding protein (PTBP1) plays a critical role in regulating the expression of CD40L in activated CD4 T cells. This is achieved mechanistically through message stabilization at late times of activation as well as by altered distribution of CD40L mRNA within distinct cellular compartments. PTBP1 has been implicated in many different processes, however whether PTBP1 plays a broader role in CD4 T cell activation is not known. To examine this question, experiments were designed to introduce shRNA into primary human CD4 T cells to achieve decreased, but not complete ablation of PTBP1 expression. Analyses of shPTB-expressing CD4 T cells revealed multiple processes including cell proliferation, activation-induced cell death and expression of activation markers and cytokines that were regulated in part by PTBP1 expression. Although there was an overall decrease in the steady-state level of several activation genes, only IL-2 and CD40L appeared to be regulated by PTBP1 at the level of RNA decay suggesting that PTBP1 is critical at different regulatory steps of expression that is gene-specific. Importantly, even though the IL-2 protein levels were reduced in cells with lowered PTBP1, the steady-state level of IL-2 mRNA was significantly higher in these cells suggesting a block at the translational level. Evaluation of T cell activation in shPTB-expressing T cells revealed that PTBP1 was linked primarily to the activation of the PLCγ1/ERK1/2 and the NF-κB pathways. Overall, our results reveal the importance of this critical RNA binding protein in multiple steps of T cell activation. PMID:27513449

  2. Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster.

    PubMed

    Haile, D J; Rouault, T A; Tang, C K; Chin, J; Harford, J B; Klausner, R D

    1992-08-15

    Several mechanisms of posttranscriptional gene regulation are involved in regulation of the expression of essential proteins of iron metabolism. Coordinate regulation of ferritin and transferrin receptor expression is produced by binding of a cytosolic protein, the iron-responsive element binding protein (IRE-BP) to specific stem-loop structures present in target RNAs. The affinity of this protein for its cognate RNA is regulated by the cell in response to changes in iron availability. The IRE-BP demonstrates a striking level of amino acid sequence identity to the iron-sulfur (Fe-S) protein mitochondrial aconitase. Moreover, the recombinant IRE-BP has aconitase function. The lability of the Fe-S cluster in mitochondrial aconitase has led us to propose that the mechanism by which iron levels are sensed by the IRE-BP involves changes in an Fe-S cluster in the IRE-BP. In this study, we demonstrate that procedures aimed at altering the IRE-BP Fe-S cluster in vitro reciprocally alter the RNA binding and aconitase activity of the IRE-BP. The changes in the RNA binding of the protein produced in vitro appear to match the previously described alterations of the protein in response to iron availability in the cell. Furthermore, iron manipulation of cells correlates with the activation or inactivation of the IRE-BP aconitase activity. The results are consistent with a model for the posttranslational regulation of the IRE-BP in which the Fe-S cluster is altered in response to the availability of intracellular iron and this, in turn, regulates the RNA-binding activity. PMID:1502165

  3. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    PubMed

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation.

  4. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin

    NASA Technical Reports Server (NTRS)

    Lu, C.; Fedoroff, N.

    2000-01-01

    Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419-amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein-protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.

  5. Tandem Phosphorylation of Serines 221 and 318 by Protein Kinase Cδ Coordinates mRNA Binding and Nucleocytoplasmic Shuttling of HuR▿

    PubMed Central

    Doller, Anke; Schlepckow, Kai; Schwalbe, Harald; Pfeilschifter, Josef; Eberhardt, Wolfgang

    2010-01-01

    Stabilization of mRNA by the ubiquitous RNA binding protein human antigen R (HuR), a member of the embryonic lethal abnormal vision (ELAV) protein family, requires canonical binding to AU-rich element (ARE)-bearing target mRNA and export of nuclear HuR-mRNA complexes to the cytoplasm. In human mesangial cells (HMC) both processes are induced by angiotensin II (AngII) via protein kinase Cδ (PKCδ)-triggered serine phosphorylation of HuR. By testing different point-mutated Flag-tagged HuR proteins, we found that Ser 318 within RNA recognition motif 3 (RRM3) is essential for AngII-induced binding to ARE-bearing mRNA but irrelevant for nucleocytoplasmic HuR shuttling. Conversely, mutation at Ser 221 within the HuR hinge region prevents AngII-triggered HuR export without affecting mRNA binding of HuR. Using phosphorylation state-specific antibodies, we found a transient increase in HuR phosphorylation at both serines by AngII. Functionally, PKCδ mediates the AngII-induced stabilization of prominent HuR target mRNAs, including those of cyclin A, cyclin D1, and cyclooxygenase-2 (COX-2), and is indispensable for AngII-triggered migration and wound healing of HMC. Our data suggest a regulatory paradigm wherein a simultaneous phosphorylation at different domains by PKCδ coordinates mRNA binding and nucleocytoplasmic shuttling of HuR, both of which events are essentially involved in the stabilization of HuR target mRNAs and relevant cell functions. PMID:20086103

  6. Selecting rRNA binding sites for the ribosomal proteins L4 and L6 from randomly fragmented rRNA: application of a method called SERF.

    PubMed

    Stelzl, U; Spahn, C M; Nierhaus, K H

    2000-04-25

    Two-thirds of the 54 proteins of the Escherichia coli ribosome interact directly with the rRNAs, but the rRNA binding sites of only a very few proteins are known. We present a method (selection of random RNA fragments; SERF) that can identify the minimal binding region for proteins within ribonucleo-protein complexes such as the ribosome. The power of the method is exemplified with the ribosomal proteins L4 and L6. Binding sequences are identified for both proteins and characterized by phosphorothioate footprinting. Surprisingly, the binding region of L4, a 53-nt rRNA fragment of domain I of 23S rRNA, can simultaneously and independently bind L24, one of the two assembly initiator proteins of the large subunit.

  7. The RNA-binding protein hnRNPLL induces a T cell alternative splicing program delineated by differential intron retention in polyadenylated RNA

    PubMed Central

    2014-01-01

    Background Retention of a subset of introns in spliced polyadenylated mRNA is emerging as a frequent, unexplained finding from RNA deep sequencing in mammalian cells. Results Here we analyze intron retention in T lymphocytes by deep sequencing polyadenylated RNA. We show a developmentally regulated RNA-binding protein, hnRNPLL, induces retention of specific introns by sequencing RNA from T cells with an inactivating Hnrpll mutation and from B lymphocytes that physiologically downregulate Hnrpll during their differentiation. In Ptprc mRNA encoding the tyrosine phosphatase CD45, hnRNPLL induces selective retention of introns flanking exons 4 to 6; these correspond to the cassette exons containing hnRNPLL binding sites that are skipped in cells with normal, but not mutant or low, hnRNPLL. We identify similar patterns of hnRNPLL-induced differential intron retention flanking alternative exons in 14 other genes, representing novel elements of the hnRNPLL-induced splicing program in T cells. Retroviral expression of a normally spliced cDNA for one of these targets, Senp2, partially corrects the survival defect of Hnrpll-mutant T cells. We find that integrating a number of computational methods to detect genes with differentially retained introns provides a strategy to enrich for alternatively spliced exons in mammalian RNA-seq data, when complemented by RNA-seq analysis of purified cells with experimentally perturbed RNA-binding proteins. Conclusions Our findings demonstrate that intron retention in mRNA is induced by specific RNA-binding proteins and suggest a biological significance for this process in marking exons that are poised for alternative splicing. PMID:24476532

  8. Transcriptome-wide identification of in vivo interactions between RNAs and RNA-binding proteins by RIP and PAR-CLIP assays.

    PubMed

    González-Buendía, Edgar; Saldaña-Meyer, Ricardo; Meier, Karin; Recillas-Targa, Félix

    2015-01-01

    Comprehensive genomic and computational studies in the era of high-throughput sequencing revealed that the major proportion of the human genome is transcribed. This novel insight confronted the scientific community with new questions concerning the expanded role of RNA, especially noncoding RNA (ncRNA), in cellular pathways. In recent years, there has been mounting evidence that ncRNAs and RNA binding proteins (RBPs) are involved in a wide range of biological processes, such as developmental transitions, cell differentiation, stress response, genome organization, and regulation of gene expression. In particular, in the chromatin field long noncoding RNAs (lncRNAs) have drawn increasing attention to their function in epigenetic regulation due to the fact that they were found to interact with multiple chromatin regulators and modifiers. Recently, techniques to study the extent of RNA-protein interactions have been developed in many research laboratories. Here we describe protocols for RNA Immunoprecipitation-Sequencing (RIP-Seq) and Photoactivatable-Ribonucleoside-Enhanced Cross-linking and Immunoprecipitation combined with deep sequencing (PAR-CLIP-Seq) to identify RNA targets of RNA-binding proteins (RBPs) on a transcriptome-wide level, discussing advantages and drawbacks.

  9. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2'-5' oligo (A) synthetase/RNase L pathway.

    PubMed

    Min, Ji-Young; Krug, Robert M

    2006-05-01

    The NS1 protein of influenza A virus (NS1A protein) is a multifunctional protein that counters cellular antiviral activities and is a virulence factor. Its N-terminal RNA-binding domain binds dsRNA. The only amino acid absolutely required for dsRNA binding is the R at position 38. To identify the role of this dsRNA-binding activity during influenza A virus infection, we generated a recombinant influenza A/Udorn/72 virus expressing an NS1A protein containing an RNA-binding domain in which R38 is mutated to A. This R38A mutant virus is highly attenuated, and the mutant NS1A protein, like the WT protein, is localized in the nucleus. Using the R38A mutant virus, we establish that dsRNA binding by the NS1A protein does not inhibit production of IFN-beta mRNA. Rather, we demonstrate that the primary role of this dsRNA-binding activity is to protect the virus against the antiviral state induced by IFN-beta. Pretreatment of A549 cells with IFN-beta for 6 h did not inhibit replication of WT Udorn virus, whereas replication of R38A mutant virus was inhibited 1,000-fold. Using both RNA interference in A549 cells and mouse knockout cells, we show that this enhanced sensitivity to IFN-beta-induced antiviral activity is due predominantly to the activation of RNase L. Because activation of RNase L is totally dependent on dsRNA activation of 2'-5' oligo (A) synthetase (OAS), it is likely that the primary role of dsRNA binding by the NS1A protein in virus-infected cells is to sequester dsRNA away from 2'-5' OAS.

  10. Posttranscriptional Regulation of the Inflammatory Marker C-Reactive Protein by the RNA-Binding Protein HuR and MicroRNA 637.

    PubMed

    Kim, Yoonseo; Noren Hooten, Nicole; Dluzen, Douglas F; Martindale, Jennifer L; Gorospe, Myriam; Evans, Michele K

    2015-12-01

    C-reactive protein (CRP), an acute-phase plasma protein, is a major component of inflammatory reactions functioning as a mediator of innate immunity. It has been widely used as a validated clinical biomarker of the inflammatory state in trauma, infection, and age-associated chronic diseases, including cancer and cardiovascular disease (CVD). Despite this, the molecular mechanisms that regulate CRP expression are not well understood. Given that the CRP 3' untranslated region (UTR) is long and AU rich, we hypothesized that CRP may be regulated posttranscriptionally by RNA-binding proteins (RBPs) and by microRNAs. Here, we found that the RBP HuR bound directly to the CRP 3' UTR and affected CRP mRNA levels. Through this interaction, HuR selectively increased CRP mRNA stability and promoted CRP translation. Interestingly, treatment with the age-associated inflammatory cytokine interleukin-6 (IL-6) increased binding of HuR to CRP mRNA, and conversely, HuR was required for IL-6-mediated upregulation of CRP expression. In addition, we identified microRNA 637 (miR-637) as a microRNA that potently inhibited CRP expression in competition with HuR. Taken together, we have uncovered an important posttranscriptional mechanism that modulates the expression of the inflammatory marker CRP, which may be utilized in the development of treatments for inflammatory processes that cause CVD and age-related diseases.

  11. Insulin-Like Growth Factor II mRNA-Binding Protein 3 Expression Correlates with Poor Prognosis in Acral Lentiginous Melanoma

    PubMed Central

    Sheen, Yi-Shuan; Liao, Yi-Hua; Lin, Ming-Hsien; Chiu, Hsien-Ching; Jee, Shiou-Hwa; Liau, Jau-Yu

    2016-01-01

    Insulin-like growth factor-II mRNA-binding protein 3 (IMP-3) is an RNA-binding protein expressed in multiple cancers, including melanomas. However, the expression of IMP-3 has not been investigated in acral lentiginous melanoma (ALM). This study sought to elucidate its prognostic value in ALMs. IMP-3 expression was studied in 93 patients diagnosed with ALM via immunohistochemistry. Univariate and multivariate analyses for survival were performed, according to clinical and histologic parameters, using the Cox proportional hazard model. Survival curves were graphed using the Kaplan-Meier method. IMP-3 was over-expressed in 70 out of 93 tumors (75.3%). IMP-3 expression correlated with thick and high-stage tumor and predicted poorer overall, melanoma-specific, recurrence-free and distant metastasis-free survivals (P = 0.002, 0.006, 0.008 and 0.012, respectively). Further analysis showed that patients with tumor thickness ≤ 4.0 mm and positive IMP-3 expression had a significantly worse melanoma-specific survival than those without IMP-3 expression (P = 0.048). IMP-3 (hazard ratio 3.67, 95% confidence intervals 1.35–9.97, P = 0.011) was confirmed to be an independent prognostic factor for melanoma-specific survival in multivariate survival analysis. Positive IMP-3 expression was an important prognostic factor for ALMs. PMID:26796627

  12. RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation

    PubMed Central

    Chang, Xing; Li, Bin; Rao, Anjana

    2015-01-01

    Posttranscriptional regulation is a major mechanism to rewire transcriptomes during differentiation. Heterogeneous nuclear RNA-binding protein LL (hnRNPLL) is specifically induced in terminally differentiated lymphocytes, including effector T cells and plasma cells. To study the molecular functions of hnRNPLL at a genome-wide level, we identified hnRNPLL RNA targets and binding sites in plasma cells through integrated Photoactivatable-Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) and RNA sequencing. hnRNPLL preferentially recognizes CA dinucleotide-containing sequences in introns and 3′ untranslated regions (UTRs), promotes exon inclusion or exclusion in a context-dependent manner, and stabilizes mRNA when associated with 3′ UTRs. During differentiation of primary B cells to plasma cells, hnRNPLL mediates a genome-wide switch of RNA processing, resulting in loss of B-cell lymphoma 6 (Bcl6) expression and increased Ig production—both hallmarks of plasma-cell maturation. Our data identify previously unknown functions of hnRNPLL in B-cell to plasma-cell differentiation and demonstrate that the RNA-binding protein hnRNPLL has a critical role in tuning transcriptomes of terminally differentiating B lymphocytes. PMID:25825742

  13. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    SciTech Connect

    Carmen Herranz, Ma; Mingarro, Ismael; Pallas, Vicente . E-mail: vpallas@ibmcp.upv.es

    2005-08-15

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.

  14. Extremophilic 50S Ribosomal RNA-Binding Protein L35Ae as a Basis for Engineering of an Alternative Protein Scaffold.

    PubMed

    Lomonosova, Anna V; Ovchinnikova, Elena V; Kazakov, Alexei S; Denesyuk, Alexander I; Sofin, Alexander D; Mikhailov, Roman V; Ulitin, Andrei B; Mirzabekov, Tajib A; Permyakov, Eugene A; Permyakov, Sergei E

    2015-01-01

    Due to their remarkably high structural stability, proteins from extremophiles are particularly useful in numerous biological applications. Their utility as alternative protein scaffolds could be especially valuable in small antibody mimetic engineering. These artificial binding proteins occupy a specific niche between antibodies and low molecular weight substances, paving the way for development of innovative approaches in therapeutics, diagnostics, and reagent use. Here, the 50S ribosomal RNA-binding protein L35Ae from the extremophilic archaea Pyrococcus horikoshii has been probed for its potential to serve as a backbone in alternative scaffold engineering. The recombinant wild type L35Ae has a native-like secondary structure, extreme thermal stability (mid-transition temperature of 90°C) and a moderate resistance to the denaturation by guanidine hydrochloride (half-transition at 2.6 M). Chemical crosslinking and dynamic light scattering data revealed that the wild type L35Ae protein has a propensity for multimerization and aggregation correlating with its non-specific binding to a model cell surface of HEK293 cells, as evidenced by flow cytometry. To suppress these negative features, a 10-amino acid mutant (called L35Ae 10X) was designed, which lacks the interaction with HEK293 cells, is less susceptible to aggregation, and maintains native-like secondary structure and thermal stability. However, L35Ae 10X also shows lowered resistance to guanidine hydrochloride (half-transition at 2.0M) and is more prone to oligomerization. This investigation of an extremophile protein's scaffolding potential demonstrates that lowered resistance to charged chemical denaturants and increased propensity to multimerization may limit the utility of extremophile proteins as alternative scaffolds. PMID:26247602

  15. A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif.

    PubMed

    Martínez-Turiño, Sandra; Hernández, Carmen

    2011-05-10

    Two small viral proteins (DGBp1 and DGBp2) have been proposed to act in a concerted manner to aid intra- and intercellular trafficking of carmoviruses though the distribution of functions and mode of action of each protein partner are not yet clear. Here we have confirmed the requirement of the DGBps of Pelargonium flower break virus (PFBV), p7 and p12, for pathogen movement. Studies focused on p12 have shown that it associates to cellular membranes, which is in accordance to its hydrophobic profile and to that reported for several homologs. However, peculiarities that distinguish p12 from other DGBps2 have been found. Firstly, it contains a leucine zipper-like motif which is essential for virus infectivity in plants. Secondly, it has an unusually long and basic N-terminal region that confers RNA binding activity. The results suggest that PFBV p12 may differ mechanistically from related proteins and possible roles of PFBV DGBps are discussed.

  16. Extremophilic 50S Ribosomal RNA-Binding Protein L35Ae as a Basis for Engineering of an Alternative Protein Scaffold

    PubMed Central

    Lomonosova, Anna V.; Ovchinnikova, Elena V.; Kazakov, Alexei S.; Denesyuk, Alexander I.; Sofin, Alexander D.; Mikhailov, Roman V.; Ulitin, Andrei B.; Mirzabekov, Tajib A.; Permyakov, Eugene A.; Permyakov, Sergei E.

    2015-01-01

    Due to their remarkably high structural stability, proteins from extremophiles are particularly useful in numerous biological applications. Their utility as alternative protein scaffolds could be especially valuable in small antibody mimetic engineering. These artificial binding proteins occupy a specific niche between antibodies and low molecular weight substances, paving the way for development of innovative approaches in therapeutics, diagnostics, and reagent use. Here, the 50S ribosomal RNA-binding protein L35Ae from the extremophilic archaea Pyrococcus horikoshii has been probed for its potential to serve as a backbone in alternative scaffold engineering. The recombinant wild type L35Ae has a native-like secondary structure, extreme thermal stability (mid-transition temperature of 90°C) and a moderate resistance to the denaturation by guanidine hydrochloride (half-transition at 2.6 M). Chemical crosslinking and dynamic light scattering data revealed that the wild type L35Ae protein has a propensity for multimerization and aggregation correlating with its non-specific binding to a model cell surface of HEK293 cells, as evidenced by flow cytometry. To suppress these negative features, a 10-amino acid mutant (called L35Ae 10X) was designed, which lacks the interaction with HEK293 cells, is less susceptible to aggregation, and maintains native-like secondary structure and thermal stability. However, L35Ae 10X also shows lowered resistance to guanidine hydrochloride (half-transition at 2.0M) and is more prone to oligomerization. This investigation of an extremophile protein’s scaffolding potential demonstrates that lowered resistance to charged chemical denaturants and increased propensity to multimerization may limit the utility of extremophile proteins as alternative scaffolds. PMID:26247602

  17. Two basic (hydrophilic) regions in the movement protein of Parietaria mottle virus have RNA binding activity and are required for cell-to-cell transport.

    PubMed

    Martínez, Carolina; Coll-Bonfill, Nuria; Aramburu, Jose; Pallás, Vicente; Aparicio, Frederic; Galipienso, Luis

    2014-05-12

    The movement protein (MP) of parietaria mottle virus (PMoV) is required for virus cell-to-cell movement. Bioinformatics analysis identified two hydrophilic non-contiguous regions (R1 and R2) rich in the basic amino acids lysine and arginine and with the predicted secondary structure of an α-helix. Different approaches were used to determine the implication of the R1 and R2 regions in RNA binding, plasmodesmata (PD) targeting and cell-to-cell movement. EMSA (Electrophoretic Mobility Shift Assay) showed that both regions have RNA-binding activity whereas that mutational analysis reported that either deletion of any of these regions, or loss of the basic amino acids, interfered with the viral intercellular movement. Subcellular localization studies showed that PMoV MP locates at PD. Mutants designed to impeded cell-to-cell movement failed to accumulate at PD indicating that basic residues in both R1 and R2 are critical for binding the MP at PD.

  18. Localized Bicaudal-C RNA encodes a protein containing a KH domain, the RNA binding motif of FMR1.

    PubMed Central

    Mahone, M; Saffman, E E; Lasko, P F

    1995-01-01

    The Bicaudal-C (Bic-C) gene of Drosophila melanogaster is required for correct targeting of the migrating anterior follicle cells and for specifying anterior position. Females lacking any wild type copies of Bic-C produce only eggshells open at the anterior end, because of the failure of the columnar follicle cells to migrate in the correct position at the nurse cell--oocyte boundary. Embryos which develop from eggs produced in females with only one wild type copy of Bic-C show defects in anterior patterning and an abnormal persistence of oskar RNA in anterior regions. We cloned Bic-C and found that, in ovaries, Bic-C RNA is expressed only in germline cells. Bic-C RNA is localized to the oocyte in early oogenesis, and later concentrates at its anterior cortex. The Bic-C protein includes five KH domains similar to those found in the human fragile-X protein FMR1. Alteration of a highly conserved KH domain codon by mutation abrogates in vivo Bic-C function. These results suggest roles for the Bic-C protein in localizing RNAs and in intercellular signaling. Images PMID:7538070

  19. The RNA Binding Protein Tudor-SN Is Essential for Stress Tolerance and Stabilizes Levels of Stress-Responsive mRNAs Encoding Secreted Proteins in Arabidopsis[C][W][OA

    PubMed Central

    dit Frey, Nicolas Frei; Muller, Philippe; Jammes, Fabien; Kizis, Dimosthenis; Leung, Jeffrey; Perrot-Rechenmann, Catherine; Bianchi, Michele Wolfe

    2010-01-01

    Tudor-SN (TSN) copurifies with the RNA-induced silencing complex in animal cells where, among other functions, it is thought to act on mRNA stability via the degradation of specific dsRNA templates. In plants, TSN has been identified biochemically as a cytoskeleton-associated RNA binding activity. In eukaryotes, it has recently been identified as a conserved primary target of programmed cell death–associated proteolysis. We have investigated the physiological role of TSN by isolating null mutations for two homologous genes in Arabidopsis thaliana. The double mutant tsn1 tsn2 displays only mild growth phenotypes under nonstress conditions, but germination, growth, and survival are severely affected under high salinity stress. Either TSN1 or TSN2 alone can complement the double mutant, indicating their functional redundancy. TSN accumulates heterogeneously in the cytosol and relocates transiently to a diffuse pattern in response to salt stress. Unexpectedly, stress-regulated mRNAs encoding secreted proteins are significantly enriched among the transcripts that are underrepresented in tsn1 tsn2. Our data also reveal that TSN is important for RNA stability of its targets. These findings show that TSN is essential for stress tolerance in plants and implicate TSN in new, potentially conserved mechanisms acting on mRNAs entering the secretory pathway. PMID:20484005

  20. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world

    PubMed Central

    Egloff, Marie-Pierre; Ferron, François; Campanacci, Valérie; Longhi, Sonia; Rancurel, Corinne; Dutartre, Hélène; Snijder, Eric J.; Gorbalenya, Alexander E.; Cambillau, Christian; Canard, Bruno

    2004-01-01

    The recently identified etiological agent of the severe acute respiratory syndrome (SARS) belongs to Coronaviridae (CoV), a family of viruses replicating by a poorly understood mechanism. Here, we report the crystal structure at 2.7-Å resolution of nsp9, a hitherto uncharacterized subunit of the SARS-CoV replicative polyproteins. We show that SARS-CoV nsp9 is a single-stranded RNA-binding protein displaying a previously unreported, oligosaccharide/oligonucleotide fold-like fold. The presence of this type of protein has not been detected in the replicative complexes of RNA viruses, and its presence may reflect the unique and complex CoV viral replication/transcription machinery. PMID:15007178

  1. Differential RNA-binding activity of the hnRNP G protein correlated with the sex genotype in the amphibian oocyte

    PubMed Central

    Kanhoush, Rasha; Praseuth, Danièle; Perrin, Caroline; Chardard, Dominique; Vinh, Joëlle; Penrad-Mobayed, May

    2011-01-01

    A proteomic approach has enabled the identification of an orthologue of the splicing factor hnRNP G in the amphibians Xenopus tropicalis, Ambystoma mexicanum, Notophthalmus viridescens and Pleurodeles walt, which shows a specific RNA-binding affinity similar to that of the human hnRN G protein. Three isoforms of this protein with a differential binding affinity for a specific RNA probe were identified in the P. walt oocyte. In situ hybridization to lampbrush chromosomes of P. waltl revealed the presence of a family of hnRNP G genes, which were mapped on the Z and W chromosomes and one autosome. This indicates that the isoforms identified in this study are possibly encoded by a gene family linked to the evolution of sex chromosomes similarly to the hnRNP G/RBMX gene family in mammals. PMID:21278421

  2. Inhibition of Rev-mediated HIV-1 expression by an RNA binding protein encoded by the interferon-inducible 9-27 gene

    SciTech Connect

    Constantoulakis, P.; Campbell, M.; Felber, B.K.; Nasioulas, G.; Afonina, E.; Pavlakis, G.N. )

    1993-02-26

    Interferon inhibits expression of human immunodeficiency virus type-1 (HIV-1) through unknown mechanisms. A gene inducible by interferon-[alpha] (IFN-[alpha]) and interferon-[gamma] (IFN-[gamma]) was isolated by screening of a human complementary DNA library for proteins binding to the Rev-responsive element (RRE) of HIV-1. The product of this gene, RBP9-27, was shown to bind RNA in vitro and to inhibit HIV-1 expression after transfection into human cells. RBP9-27 primarily inhibited Rev-dependent posttransscriptional steps of viral gene expression. Thus, RBP9-27 is a cellular factor that antagonizes Rev function. These results suggest an inteferon-induced antiviral mechanism operating through the induction of RNA binding proteins such as RBP9-27. Elucidation of RBP9-27 function may lead to a better understanding of the mechanism of interferon action during HIV-1 infection. 29 refs., 4 figs.

  3. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression.

    PubMed

    de Bruin, Ruben G; van der Veer, Eric P; Prins, Jurriën; Lee, Dae Hyun; Dane, Martijn J C; Zhang, Huayu; Roeten, Marko K; Bijkerk, Roel; de Boer, Hetty C; Rabelink, Ton J; van Zonneveld, Anton Jan; van Gils, Janine M

    2016-02-24

    Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3'UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity.

  4. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression

    PubMed Central

    de Bruin, Ruben G.; van der Veer, Eric P.; Prins, Jurriën; Lee, Dae Hyun; Dane, Martijn J. C.; Zhang, Huayu; Roeten, Marko K.; Bijkerk, Roel; de Boer, Hetty C.; Rabelink, Ton J.; van Zonneveld, Anton Jan; van Gils, Janine M.

    2016-01-01

    Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3′UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity. PMID:26905650

  5. The mRNA-binding protein Zfp36 is upregulated by β-adrenergic stimulation and represses IL-6 production in 3T3-L1 adipocytes.

    PubMed

    Brahma, Pavna K; Zhang, Huanchun; Murray, Betsy S; Shu, Feng-jue; Sidell, Neil; Seli, Emre; Kallen, Caleb B

    2012-01-01

    Obesity produces a chronic inflammatory state that contributes to the development of diabetes and atherosclerosis. In obese humans, fat depot adipocytes and macrophages produce inflammatory cytokines and other factors which exert unfavorable local and systemic immune responses. The expression of many cytokines is modulated at the post-transcriptional level by mRNA-binding proteins which recognize AU-rich elements (AREs) in the 3'-untranslated regions (3'-UTR) of these transcripts. One such protein, zinc finger protein 36 (Zfp36), is known to destabilize target mRNAs leading to decreased cytokine expression. Few regulators of Zfp36 expression in adipocytes have been described and mRNA targets of Zfp36 in adipocytes are largely unknown. We found that macrophage-derived inflammatory stimuli enhanced endogenous Zfp36 expression in 3T3-L1 adipocytes. Furthermore, the β-adrenergic receptor agonist isoproterenol (Iso) and the glucocorticoid dexamethasone (Dex) each enhanced Zfp36 expression in adipocytes, the former most likely via a cyclic adenosine monophosphate (cAMP)-dependent pathway. By contrast, Zfp36 expression in murine macrophages (RAW 264.7) was not enhanced by exposure to Dex but was stimulated by retinoic acid (RA). Zfp36 inhibited basal and lipopolysaccharide (LPS)-stimulated interleukin-6 (IL-6) expression in adipocytes. These data reveal important and cell type-specific modulators of Zfp36 expression in adipocytes and macrophages and identify Zfp36 as a potent repressor of adipocyte-derived IL-6. Furthermore, this work identifies new factors that stimulate adipocyte Zfp36 expression that are neither classically inflammatory nor mitogenic. Upregulating an mRNA-binding protein for therapeutic purposes may provide a novel mechanistic approach with which to treat diverse inflammatory disorders including common conditions associated with obesity.

  6. Disordered nucleiome: Abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea.

    PubMed

    Wang, Chen; Uversky, Vladimir N; Kurgan, Lukasz

    2016-05-01

    Intrinsically disordered proteins (IDPs) are abundant in various proteomes, where they play numerous important roles and complement biological activities of ordered proteins. Among functions assigned to IDPs are interactions with nucleic acids. However, often, such assignments are made based on the guilty-by-association principle. The validity of the extension of these correlations to all nucleic acid binding proteins has never been analyzed on a large scale across all domains of life. To fill this gap, we perform a comprehensive computational analysis of the abundance of intrinsic disorder and intrinsically disordered domains in nucleiomes (∼548 000 nucleic acid binding proteins) of 1121 species from Archaea, Bacteria and Eukaryota. Nucleiome is a whole complement of proteins involved in interactions with nucleic acids. We show that relative to other proteins in the corresponding proteomes, the DNA-binding proteins have significantly increased disorder content and are significantly enriched in disordered domains in Eukaryotes but not in Archaea and Bacteria. The RNA-binding proteins are significantly enriched in the disordered domains in Bacteria, Archaea and Eukaryota, while the overall abundance of disorder in these proteins is significantly increased in Bacteria, Archaea, animals and fungi. The high abundance of disorder in nucleiomes supports the notion that the nucleic acid binding proteins often require intrinsic disorder for their functions and regulation.

  7. Disordered nucleiome: Abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea.

    PubMed

    Wang, Chen; Uversky, Vladimir N; Kurgan, Lukasz

    2016-05-01

    Intrinsically disordered proteins (IDPs) are abundant in various proteomes, where they play numerous important roles and complement biological activities of ordered proteins. Among functions assigned to IDPs are interactions with nucleic acids. However, often, such assignments are made based on the guilty-by-association principle. The validity of the extension of these correlations to all nucleic acid binding proteins has never been analyzed on a large scale across all domains of life. To fill this gap, we perform a comprehensive computational analysis of the abundance of intrinsic disorder and intrinsically disordered domains in nucleiomes (∼548 000 nucleic acid binding proteins) of 1121 species from Archaea, Bacteria and Eukaryota. Nucleiome is a whole complement of proteins involved in interactions with nucleic acids. We show that relative to other proteins in the corresponding proteomes, the DNA-binding proteins have significantly increased disorder content and are significantly enriched in disordered domains in Eukaryotes but not in Archaea and Bacteria. The RNA-binding proteins are significantly enriched in the disordered domains in Bacteria, Archaea and Eukaryota, while the overall abundance of disorder in these proteins is significantly increased in Bacteria, Archaea, animals and fungi. The high abundance of disorder in nucleiomes supports the notion that the nucleic acid binding proteins often require intrinsic disorder for their functions and regulation. PMID:27037624

  8. Motif III in superfamily 2 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1.

    PubMed

    Banroques, Josette; Doère, Monique; Dreyfus, Marc; Linder, Patrick; Tanner, N Kyle

    2010-03-01

    Motif III in the putative helicases of superfamily 2 is highly conserved in both its sequence and its structural context. It typically consists of the sequence alcohol-alanine-alcohol (S/T-A-S/T). Historically, it was thought to link ATPase activity with a "helicase" strand displacement activity that disrupts RNA or DNA duplexes. DEAD-box proteins constitute the largest family of superfamily 2; they are RNA-dependent ATPases and ATP-dependent RNA binding proteins that, in some cases, are able to disrupt short RNA duplexes. We made mutations of motif III (S-A-T) in the yeast DEAD-box protein Ded1 and analyzed in vivo phenotypes and in vitro properties. Moreover, we made a tertiary model of Ded1 based on the solved structure of Vasa. We used Ded1 because it has relatively high ATPase and RNA binding activities; it is able to displace moderately stable duplexes at a large excess of substrate. We find that the alanine and the threonine in the second and third positions of motif III are more important than the serine, but that mutations of all three residues have strong phenotypes. We purified the wild-type and various mutants expressed in Escherichia coli. We found that motif III mutations affect the RNA-dependent hydrolysis of ATP (k(cat)), but not the affinity for ATP (K(m)). Moreover, mutations alter and reduce the affinity for single-stranded RNA and subsequently reduce the ability to disrupt duplexes. We obtained intragenic suppressors of the S-A-C mutant that compensate for the mutation by enhancing the affinity for ATP and RNA. We conclude that motif III and the binding energy of gamma-PO(4) of ATP are used to coordinate motifs I, II, and VI and the two RecA-like domains to create a high-affinity single-stranded RNA binding site. It also may help activate the beta,gamma-phosphoanhydride bond of ATP.

  9. Generation of mice deficient in RNA-binding motif protein 3 (RBM3) and characterization of its role in innate immune responses and cell growth

    SciTech Connect

    Matsuda, Atsushi; Ogawa, Masahiro; Yanai, Hideyuki; Naka, Daiji; Goto, Ayana; Ao, Tomoka; Tanno, Yuji; Takeda, Kiyoshi; Watanabe, Yoshinori; Honda, Kenya; Taniguchi, Tadatsugu

    2011-07-22

    Highlights: {yields} We identified RNA-binding motif protein 3 (RBM3) as CpG-B DNA-binding protein. {yields} RBM3 translocates from the nucleus to the cytoplasm and co-localized with CpG-B DNA. {yields} We newly generated Rbm3-deficient (Rbm3{sup -/-}) mice. {yields} DNA-mediated cytokine gene induction was normally occured in Rbm3{sup -/-} cells. {yields}Rbm3{sup -/-} MEFs showed poorer proliferation rate and increased number of G2-phase cells. -- Abstract: The activation of innate immune responses is critical to host defense against microbial infections, wherein nucleic acid-sensing pattern recognition receptors recognize DNA or RNA from viruses or bacteria and activate downstream signaling pathways. In a search for new DNA-sensing molecules that regulate innate immune responses, we identified RNA-binding motif protein 3 (RBM3), whose role has been implicated in the regulation of cell growth. In this study, we generated Rbm3-deficient (Rbm3{sup -/-}) mice to study the role of RBM3 in immune responses and cell growth. Despite evidence for its interaction with immunogenic DNA in a cell, no overt phenotypic abnormalities were found in cells from Rbm3{sup -/-} mice for the DNA-mediated induction of cytokine genes. Interestingly, however, Rbm3{sup -/-} mouse embryonic fibroblasts (MEFs) showed poorer proliferation rates as compared to control MEFs. Further cell cycle analysis revealed that Rbm3{sup -/-} MEFs have markedly increased number of G2-phase cells, suggesting a hitherto unknown role of RBM3 in the G2-phase control. Thus, these mutant mice and cells may provide new tools with which to study the mechanisms underlying the regulation of cell cycle and oncogenesis.

  10. Assembly of Functional Ribonucleoprotein Complexes by AU-rich Element RNA-binding Protein 1 (AUF1) Requires Base-dependent and -independent RNA Contacts*

    PubMed Central

    Zucconi, Beth E.; Wilson, Gerald M.

    2013-01-01

    AU-rich element RNA-binding protein 1 (AUF1) regulates the stability and/or translational efficiency of diverse mRNA targets, including many encoding products controlling the cell cycle, apoptosis, and inflammation by associating with AU-rich elements residing in their 3′-untranslated regions. Previous biochemical studies showed that optimal AUF1 binding requires 33–34 nucleotides with a strong preference for U-rich RNA despite observations that few AUF1-associated cellular mRNAs contain such extended U-rich domains. Using the smallest AUF1 isoform (p37AUF1) as a model, we employed fluorescence anisotropy-based approaches to define thermodynamic parameters describing AUF1 ribonucleoprotein (RNP) complex formation across a panel of RNA substrates. These data demonstrated that 15 nucleotides of AU-rich sequence were sufficient to nucleate high affinity p37AUF1 RNP complexes within a larger RNA context. In particular, p37AUF1 binding to short AU-rich RNA targets was significantly stabilized by interactions with a 3′-purine residue and largely base-independent but non-ionic contacts 5′ of the AU-rich site. RNP stabilization by the upstream RNA domain was associated with an enhanced negative change in heat capacity consistent with conformational changes in protein and/or RNA components, and fluorescence resonance energy transfer-based assays demonstrated that these contacts were required for p37AUF1 to remodel local RNA structure. Finally, reporter mRNAs containing minimal high affinity p37AUF1 target sequences associated with AUF1 and were destabilized in a p37AUF1-dependent manner in cells. These findings provide a mechanistic explanation for the diverse population of AUF1 target mRNAs but also suggest how AUF1 binding could regulate protein and/or microRNA binding events at adjacent sites. PMID:23940053

  11. Overexpression of a LAM domain containing RNA-binding protein LARP1c induces precocious leaf senescence in Arabidopsis.

    PubMed

    Zhang, Bangyue; Jia, Jianheng; Yang, Min; Yan, Chunxia; Han, Yuzhen

    2012-10-01

    Leaf senescence is the final stage of leaf life history, and it can be regulated by multiple internal and external cues. La-related proteins (LARPs), which contain a well-conserved La motif (LAM) domain and normally a canonical RNA recognition motif (RRM) or noncanonical RRM-like motif, are widely present in eukaryotes. Six LARP genes (LARP1a-1c and LARP6a-6c) are present in Arabidopsis, but their biological functions have not been studied previously. In this study, we investigated the biological roles of LARP1c from the LARP1 family. Constitutive or inducible overexpression of LARP1c caused premature leaf senescence. Expression levels of several senescence-associated genes and defense-related genes were elevated upon overexpression of LARP1c. The LARP1c null mutant 1c-1 impaired ABA-, SA-, and MeJA-induced leaf senescence in detached leaves. Gene expression profiles of LARP1c showed age-dependent expression in rosette leaves. Taken together, our results suggest LARP1c is involved in regulation of leaf senescence. PMID:22965746

  12. Hu Antigen R (HuR) Is a Positive Regulator of the RNA-binding Proteins TDP-43 and FUS/TLS

    PubMed Central

    Lu, Liang; Zheng, Lei; Si, Ying; Luo, Wenyi; Dujardin, Gwendal; Kwan, Thaddaeus; Potochick, Nicholas R.; Thompson, Sunnie R.; Schneider, David A.; King, Peter H.

    2014-01-01

    Posttranscriptional gene regulation is governed by a network of RNA-binding proteins (RBPs) that interact with regulatory elements in the mRNA to modulate multiple molecular processes, including splicing, RNA transport, RNA stability, and translation. Mounting evidence indicates that there is a hierarchy within this network whereby certain RBPs cross-regulate other RBPs to coordinate gene expression. HuR, an RNA-binding protein we linked previously to aberrant VEGF mRNA metabolism in models of SOD1-associated amyotrophic lateral sclerosis, has been identified as being high up in this hierarchy, serving as a regulator of RNA regulators. Here we investigated the role of HuR in regulating two RBPs, TDP-43 and FUS/TLS, that have been linked genetically to amyotrophic lateral sclerosis. We found that HuR promotes the expression of both RBPs in primary astrocytes and U251 cells under normal and stressed (hypoxic) conditions. For TDP-43, we found that HuR binds to the 3′ untranslated region (UTR) and regulates its expression through translational efficiency rather than RNA stability. With HuR knockdown, there was a shift of TDP-43 and FUS mRNAs away from polysomes, consistent with translational silencing. The TDP-43 splicing function was attenuated upon HuR knockdown and could be rescued by ectopic TDP-43 lacking the 3′ UTR regulatory elements. Finally, conditioned medium from astrocytes in which HuR or TDP-43 was knocked down produced significant motor neuron and cortical neuron toxicity in vitro. These findings indicate that HuR regulates TDP-43 and FUS/TLS expression and that loss of HuR-mediated RNA processing in astrocytes can alter the molecular and cellular landscape to produce a toxic phenotype. PMID:25239623

  13. Delivery of Therapeutics Targeting the mRNA-Binding Protein HuR Using 3DNA Nanocarriers Suppresses Ovarian Tumor Growth.

    PubMed

    Huang, Yu-Hung; Peng, Weidan; Furuuchi, Narumi; Gerhart, Jacquelyn; Rhodes, Kelly; Mukherjee, Neelanjan; Jimbo, Masaya; Gonye, Gregory E; Brody, Jonathan R; Getts, Robert C; Sawicki, Janet A

    2016-03-15

    Growing evidence shows that cancer cells use mRNA-binding proteins and miRNAs to posttranscriptionally regulate signaling pathways to adapt to harsh tumor microenvironments. In ovarian cancer, cytoplasmic accumulation of mRNA-binding protein HuR (ELAVL1) is associated with poor prognosis. In this study, we observed high HuR expression in ovarian cancer cells compared with ovarian primary cells, providing a rationale for targeting HuR. RNAi-mediated silencing of HuR in ovarian cancer cells significantly decreased cell proliferation and anchorage-independent growth, and impaired migration and invasion. In addition, HuR-depleted human ovarian xenografts were smaller than control tumors. A biodistribution study showed effective tumor-targeting by a novel Cy3-labeled folic acid (FA)-derivatized DNA dendrimer nanocarrier (3DNA). We combined siRNAs against HuR with FA-3DNA and found that systemic administration of the resultant FA-3DNA-siHuR conjugates to ovarian tumor-bearing mice suppressed tumor growth and ascites development, significantly prolonging lifespan. NanoString gene expression analysis identified multiple HuR-regulated genes that function in many essential cellular and molecular pathways, an attractive feature of candidate therapeutic targets. Taken together, these results are the first to demonstrate the versatility of the 3DNA nanocarrier for in vivo-targeted delivery of a cancer therapeutic and support further preclinical investigation of this system adapted to siHuR-targeted therapy for ovarian cancer.

  14. Hu antigen R (HuR) is a positive regulator of the RNA-binding proteins TDP-43 and FUS/TLS: implications for amyotrophic lateral sclerosis.

    PubMed

    Lu, Liang; Zheng, Lei; Si, Ying; Luo, Wenyi; Dujardin, Gwendal; Kwan, Thaddaeus; Potochick, Nicholas R; Thompson, Sunnie R; Schneider, David A; King, Peter H

    2014-11-14

    Posttranscriptional gene regulation is governed by a network of RNA-binding proteins (RBPs) that interact with regulatory elements in the mRNA to modulate multiple molecular processes, including splicing, RNA transport, RNA stability, and translation. Mounting evidence indicates that there is a hierarchy within this network whereby certain RBPs cross-regulate other RBPs to coordinate gene expression. HuR, an RNA-binding protein we linked previously to aberrant VEGF mRNA metabolism in models of SOD1-associated amyotrophic lateral sclerosis, has been identified as being high up in this hierarchy, serving as a regulator of RNA regulators. Here we investigated the role of HuR in regulating two RBPs, TDP-43 and FUS/TLS, that have been linked genetically to amyotrophic lateral sclerosis. We found that HuR promotes the expression of both RBPs in primary astrocytes and U251 cells under normal and stressed (hypoxic) conditions. For TDP-43, we found that HuR binds to the 3' untranslated region (UTR) and regulates its expression through translational efficiency rather than RNA stability. With HuR knockdown, there was a shift of TDP-43 and FUS mRNAs away from polysomes, consistent with translational silencing. The TDP-43 splicing function was attenuated upon HuR knockdown and could be rescued by ectopic TDP-43 lacking the 3' UTR regulatory elements. Finally, conditioned medium from astrocytes in which HuR or TDP-43 was knocked down produced significant motor neuron and cortical neuron toxicity in vitro. These findings indicate that HuR regulates TDP-43 and FUS/TLS expression and that loss of HuR-mediated RNA processing in astrocytes can alter the molecular and cellular landscape to produce a toxic phenotype.

  15. She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p

    PubMed Central

    Böhl, Florian; Kruse, Claudia; Frank, Andrea; Ferring, Dunja; Jansen, Ralf-Peter

    2000-01-01

    RNA localization is a widespread mechanism to achieve localized protein synthesis. In budding yeast, localization of ASH1 mRNA controls daughter cell-specific accumulation of the transcriptional regulator Ash1p, which determines mating type switching. ASH1 mRNA localization depends on four independently acting sequences (‘zipcodes’) within the mRNA. In addition, the class V myosin Myo4p and a set of She proteins with as yet unknown function are essential for ASH1 localization. Here we show that She2p is a novel RNA-binding protein that binds specifically to ASH1 mRNA in vivo and to ASH1 RNA zip codes in vitro. She2p can interact with She3 protein via She3p’s C-terminus and becomes localized to the daughter cell tip upon ASH1 expression. The N-terminal coiled-coil domain of She3p is required to form an RNA-independent complex with the heavy chain of the myosin motor protein Myo4p. She2p and She3p are the first examples of adapters for tethering a localized mRNA to the motor protein and might serve as prototypes for RNA–motor protein adapters. PMID:11032818

  16. Characterization of the Expression of the RNA Binding Protein eIF4G1 and Its Clinicopathological Correlation with Serous Ovarian Cancer

    PubMed Central

    Xie, Zhe; Li, Guiqin; Mao, Chengyi; Liu, Yi; Wen, Xin; Yin, Na; Cao, Jianzhong; Wang, Jing; Li, Li; Yu, Jianhua; Wang, Fang; Yi, Ping

    2016-01-01

    Background Ovarian cancer is the most lethal type of malignant tumor in gynecological cancers and is associated with a high percentage of late diagnosis and chemotherapy resistance. Thus, it is urgent to identify a tumor marker or a molecular target that allows early detection and effective treatment. RNA-binding proteins (RBPs) are crucial in various cellular processes at the post-transcriptional level. The eukaryotic translation initiation factor 4 gamma, 1(eIF4G1), an RNA-binding protein, facilitates the recruitment of mRNA to the ribosome, which is a rate-limiting step during the initiation phase of protein synthesis. However, little is known regarding the characteristics of eIF4G1 expression and its clinical significance in ovarian cancer. Therefore, we propose to investigate the expression and clinicopathological significance of eIF4G1 in ovarian cancer patients. Methods We performed Real-time PCR in 40 fresh serous ovarian cancer tissues and 27 normal ovarian surface epithelial cell specimens to assess eIF4G1mRNA expression. Immunohistochemistry (IHC) was used to examine the expression of eIF4G1 at the protein level in 134 patients with serous ovarian cancer and 18 normal ovarian tissues. Statistical analysis was conducted to determine the correlation of the eIF4G1 protein levels with the clinicopathological characteristics and prognosis in ovarian cancer. Results The expression of eIF4G1 was upregulated in serous ovarian cancer tissues at both the mRNA (P = 0.0375) and the protein (P = 0.0007) levels. The eIF4G1 expression was significantly correlated with the clinical tumor stage (P = 0.0004) and omentum metastasis (P = 0.024). Moreover, patients with low eIF4G1 protein expression had a longer overall survival time (P = 0.026). Conclusions These data revealed that eIF4G1 is markedly expressed in serous ovarian cancer and that upregulation of the eIF4G1 protein expression is significantly associated with an advanced tumor stage. Besides, the patients with

  17. Human papillomavirus type 16 E2 and E6 are RNA-binding proteins and inhibit in vitro splicing of pre-mRNAs with suboptimal splice sites

    SciTech Connect

    Bodaghi, Sohrab; Jia Rong; Zheng Zhiming

    2009-03-30

    Human papillomavirus type 16 (HPV16) genome expresses six regulatory proteins (E1, E2, E4, E5, E6, and E7) which regulate viral DNA replication, gene expression, and cell function. We expressed HPV16 E2, E4, E6, and E7 from bacteria as GST fusion proteins and examined their possible functions in RNA splicing. Both HPV16 E2, a viral transactivator protein, and E6, a viral oncoprotein, inhibited splicing of pre-mRNAs containing an intron with suboptimal splice sites, whereas HPV5 E2 did not. The N-terminal half and the hinge region of HPV16 E2 as well as the N-terminal and central portions of HPV16 E6 are responsible for the suppression. HPV16 E2 interacts with pre-mRNAs through its C-terminal DNA-binding domain. HPV16 E6 binds pre-mRNAs via nuclear localization signal (NLS3) in its C-terminal half. Low-risk HPV6 E6, a cytoplasmic protein, does not bind RNA. Notably, both HPV16 E2 and E6 selectively bind to the intron region of pre-mRNAs and interact with a subset of cellular SR proteins. Together, these findings suggest that HPV16 E2 and E6 are RNA binding proteins and might play roles in posttranscriptional regulation during virus infection.

  18. The RNA-binding protein xCIRP2 is involved in apoptotic tail regression during metamorphosis in Xenopus laevis tadpoles.

    PubMed

    Eto, Ko; Iwama, Tomoyuki; Tajima, Tatsuya; Abe, Shin-ichi

    2012-10-01

    Frog metamorphosis induced by thyroid hormone (TH) involves not only cell proliferation and differentiation in reconstituted organs such as limbs, but also apoptotic cell death in degenerated organs such as tails. However, the molecular mechanisms directing the TH-dependent cell fate determination remain unclear. We have previously identified from newts an RNA-binding protein (nRBP) acting as the regulator governing survival and death in germ cells during spermatogenesis. To investigate the molecular events leading the tail resorption during metamorphosis, we analyzed the expression, the functional role in apoptosis, and the regulation of xCIRP2, a frog homolog of nRBP, in tails of Xenopus laevis tadpoles. At the prometamorphic stage, xCIRP2 protein is expressed in fibroblast, epidermal, nerve, and muscular cells and localized in their cytoplasm. When spontaneous metamorphosis progressed, the level of xCIRP2 mRNA remained unchanged but the amount of the protein decreased. In organ cultures of tails at the prometamorphic stage, xCIRP2 protein decreased before their lengths shortened during TH-dependent metamorphosis. The inhibition of calpain or proteasome attenuated the TH-induced decrease of xCIRP2 protein in tails, impairing their regression. These results suggest that xCIRP2 protein is downregulated through calpain- and proteasome-mediated proteolysis in response to TH at the onset of metamorphosis, inducing apoptosis in tails and thereby degenerating them.

  19. α -Actinin TvACTN3 of Trichomonas vaginalis is an RNA-binding protein that could participate in its posttranscriptional iron regulatory mechanism.

    PubMed

    Calla-Choque, Jaeson Santos; Figueroa-Angulo, Elisa Elvira; Ávila-González, Leticia; Arroyo, Rossana

    2014-01-01

    Trichomonas vaginalis is a sexually transmitted flagellated protist parasite responsible for trichomoniasis. This parasite is dependent on high levels of iron, favoring its growth and multiplication. Iron also differentially regulates some trichomonad virulence properties by unknown mechanisms. However, there is evidence to support the existence of gene regulatory mechanisms at the transcriptional and posttranscriptional levels that are mediated by iron concentration in T. vaginalis. Thus, the goal of this study was to identify an RNA-binding protein in T. vaginalis that interacts with the tvcp4 RNA stem-loop structure, which may participate in a posttranscriptional iron regulatory mechanism mediated by RNA-protein interactions. We performed RNA electrophoretic mobility shift assay (REMSA) and supershift, UV cross-linking, Northwestern blot, and western blot (WB) assays using cytoplasmic protein extracts from T. vaginalis with the tvcp4 RNA hairpin structure as a probe. We identified a 135-kDa protein isolated by the UV cross-linking assays as α-actinin 3 (TvACTN3) by MALDI-TOF-MS that was confirmed by LS-MS/MS and de novo sequencing. TvACTN3 is a cytoplasmic protein that specifically binds to hairpin RNA structures from trichomonads and humans when the parasites are grown under iron-depleted conditions. Thus, TvACTN3 could participate in the regulation of gene expression by iron in T. vaginalis through a parallel posttranscriptional mechanism similar to that of the IRE/IRP system. PMID:24719864

  20. α -Actinin TvACTN3 of Trichomonas vaginalis is an RNA-binding protein that could participate in its posttranscriptional iron regulatory mechanism.

    PubMed

    Calla-Choque, Jaeson Santos; Figueroa-Angulo, Elisa Elvira; Ávila-González, Leticia; Arroyo, Rossana

    2014-01-01

    Trichomonas vaginalis is a sexually transmitted flagellated protist parasite responsible for trichomoniasis. This parasite is dependent on high levels of iron, favoring its growth and multiplication. Iron also differentially regulates some trichomonad virulence properties by unknown mechanisms. However, there is evidence to support the existence of gene regulatory mechanisms at the transcriptional and posttranscriptional levels that are mediated by iron concentration in T. vaginalis. Thus, the goal of this study was to identify an RNA-binding protein in T. vaginalis that interacts with the tvcp4 RNA stem-loop structure, which may participate in a posttranscriptional iron regulatory mechanism mediated by RNA-protein interactions. We performed RNA electrophoretic mobility shift assay (REMSA) and supershift, UV cross-linking, Northwestern blot, and western blot (WB) assays using cytoplasmic protein extracts from T. vaginalis with the tvcp4 RNA hairpin structure as a probe. We identified a 135-kDa protein isolated by the UV cross-linking assays as α-actinin 3 (TvACTN3) by MALDI-TOF-MS that was confirmed by LS-MS/MS and de novo sequencing. TvACTN3 is a cytoplasmic protein that specifically binds to hairpin RNA structures from trichomonads and humans when the parasites are grown under iron-depleted conditions. Thus, TvACTN3 could participate in the regulation of gene expression by iron in T. vaginalis through a parallel posttranscriptional mechanism similar to that of the IRE/IRP system.

  1. α-Actinin TvACTN3 of Trichomonas vaginalis Is an RNA-Binding Protein That Could Participate in Its Posttranscriptional Iron Regulatory Mechanism

    PubMed Central

    Calla-Choque, Jaeson Santos; Figueroa-Angulo, Elisa Elvira; Ávila-González, Leticia; Arroyo, Rossana

    2014-01-01

    Trichomonas vaginalis is a sexually transmitted flagellated protist parasite responsible for trichomoniasis. This parasite is dependent on high levels of iron, favoring its growth and multiplication. Iron also differentially regulates some trichomonad virulence properties by unknown mechanisms. However, there is evidence to support the existence of gene regulatory mechanisms at the transcriptional and posttranscriptional levels that are mediated by iron concentration in T. vaginalis. Thus, the goal of this study was to identify an RNA-binding protein in T. vaginalis that interacts with the tvcp4 RNA stem-loop structure, which may participate in a posttranscriptional iron regulatory mechanism mediated by RNA-protein interactions. We performed RNA electrophoretic mobility shift assay (REMSA) and supershift, UV cross-linking, Northwestern blot, and western blot (WB) assays using cytoplasmic protein extracts from T. vaginalis with the tvcp4 RNA hairpin structure as a probe. We identified a 135-kDa protein isolated by the UV cross-linking assays as α-actinin 3 (TvACTN3) by MALDI-TOF-MS that was confirmed by LS-MS/MS and de novo sequencing. TvACTN3 is a cytoplasmic protein that specifically binds to hairpin RNA structures from trichomonads and humans when the parasites are grown under iron-depleted conditions. Thus, TvACTN3 could participate in the regulation of gene expression by iron in T. vaginalis through a parallel posttranscriptional mechanism similar to that of the IRE/IRP system. PMID:24719864

  2. Mapping the RNA binding sites for human immunodeficiency virus type-1 gag and NC proteins within the complete HIV-1 and -2 untranslated leader regions.

    PubMed Central

    Damgaard, C K; Dyhr-Mikkelsen, H; Kjems, J

    1998-01-01

    Encapsidation of HIV-1 genomic RNA is mediated by specific interactions between the RNA packaging signal and the Gag protein. During maturation of the virion, the Gag protein is processed into smaller fragments, including the nucleocapsid (NC) domain which remains associated with the viral genomic RNA. We have investigated the binding of glutathione- S -transferase (GST) Gag and NC fusion proteins from HIV-1, to the entire HIV-1 and -2 leader RNAencompassing the packaging signal. We have mapped the binding sites at conditions where only about two complexes are formed and find that GST-Gag and GST-NC fusion proteins bind specifically to discrete sites within the leader. Analysis of the HIV-1 leader indicated that GST-Gag strongly associates with the PSI stem-loop and to a lesser extent with regions near the primer binding site. GST-NC binds the same regions but with reversed preferences. The HIV-1 proteins also interact specifically with the 5'-leader of HIV-2 and the major site of interaction mapped to a stem-loop, with homology to the HIV-1 PSI stem-loop structure. The different specificities of Gag and NC may reflect functionally distinct roles in the viral replication, and suggest that the RNA binding specificity of NC is modulated by its structural context. PMID:9685481

  3. Extracellular vesicles shed by melanoma cells contain a modified form of H1.0 linker histone and H1.0 mRNA-binding proteins

    PubMed Central

    Schiera, Gabriella; Di Liegro, Carlo Maria; Puleo, Veronica; Colletta, Oriana; Fricano, Anna; Cancemi, Patrizia; Di Cara, Gianluca; Di Liegro, Italia

    2016-01-01

    Extracellular vesicles (EVs) are now recognized as a fundamental way for cell-to-cell horizontal transfer of properties, in both physiological and pathological conditions. Most of EV-mediated cross-talk among cells depend on the exchange of proteins, and nucleic acids, among which mRNAs, and non-coding RNAs such as different species of miRNAs. Cancer cells, in particular, use EVs to discard molecules which could be dangerous to them (for example differentiation-inducing proteins such as histone H1.0, or antitumor drugs), to transfer molecules which, after entering the surrounding cells, are able to transform their phenotype, and even to secrete factors, which allow escaping from immune surveillance. Herein we report that melanoma cells not only secrete EVs which contain a modified form of H1.0 histone, but also transport the corresponding mRNA. Given the already known role in tumorigenesis of some RNA binding proteins (RBPs), we also searched for proteins of this class in EVs. This study revealed the presence in A375 melanoma cells of at least three RBPs, with apparent MW of about 65, 45 and 38 kDa, which are able to bind H1.0 mRNA. Moreover, we purified one of these proteins, which by MALDI-TOF mass spectrometry was identified as the already known transcription factor MYEF2. PMID:27633859

  4. The RNA-binding Protein TDP-43 Selectively Disrupts MicroRNA-1/206 Incorporation into the RNA-induced Silencing Complex*♦

    PubMed Central

    King, Isabelle N.; Yartseva, Valeria; Salas, Donaldo; Kumar, Abhishek; Heidersbach, Amy; Ando, D. Michael; Stallings, Nancy R.; Elliott, Jeffrey L.; Srivastava, Deepak; Ivey, Kathryn N.

    2014-01-01

    MicroRNA (miRNA) maturation is regulated by interaction of particular miRNA precursors with specific RNA-binding proteins. Following their biogenesis, mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) where they interact with mRNAs to negatively regulate protein production. However, little is known about how mature miRNAs are regulated at the level of their activity. To address this, we screened for proteins differentially bound to the mature form of the miR-1 or miR-133 miRNA families. These muscle-enriched, co-transcribed miRNA pairs cooperate to suppress smooth muscle gene expression in the heart. However, they also have opposing roles, with the miR-1 family, composed of miR-1 and miR-206, promoting myogenic differentiation, whereas miR-133 maintains the progenitor state. Here, we describe a physical interaction between TDP-43, an RNA-binding protein that forms aggregates in the neuromuscular disease, amyotrophic lateral sclerosis, and the miR-1, but not miR-133, family. Deficiency of the TDP-43 Drosophila ortholog enhanced dmiR-1 activity in vivo. In mammalian cells, TDP-43 limited the activity of both miR-1 and miR-206, but not the miR-133 family, by disrupting their RISC association. Consistent with TDP-43 dampening miR-1/206 activity, protein levels of the miR-1/206 targets, IGF-1 and HDAC4, were elevated in TDP-43 transgenic mouse muscle. This occurred without corresponding Igf-1 or Hdac4 mRNA increases and despite higher miR-1 and miR-206 expression. Our findings reveal that TDP-43 negatively regulates the activity of the miR-1 family of miRNAs by limiting their bioavailability for RISC loading and suggest a processing-independent mechanism for differential regulation of miRNA activity. PMID:24719334

  5. Possible Involvement of the Double-Stranded RNA-Binding Core Protein ςA in the Resistance of Avian Reovirus to Interferon

    PubMed Central

    Martínez-Costas, José; González-López, Claudia; Vakharia, Vikram N.; Benavente, Javier

    2000-01-01

    Treatment of primary cultures of chicken embryo fibroblasts with a recombinant chicken alpha/beta interferon (rcIFN) induces an antiviral state that causes a strong inhibition of vaccinia virus and vesicular stomatitis virus replication but has no effect on avian reovirus S1133 replication. The fact that avian reovirus polypeptides are synthesized normally in rcIFN-treated cells prompted us to investigate whether this virus expresses factors that interfere with the activation and/or the activity of the IFN-induced, double-stranded RNA (dsRNA)-dependent enzymes. Our results demonstrate that extracts of avian-reovirus-infected cells, but not those of uninfected cells, are able to relieve the translation-inhibitory activity of dsRNA in reticulocyte lysates, by blocking the activation of the dsRNA-dependent enzymes. In addition, our results show that protein ςA, an S1133 core polypeptide, binds to dsRNA in an irreversible manner and that clearing this protein from extracts of infected cells abolishes their protranslational capacity. Taken together, our results raise the interesting possibility that protein ςA antagonizes the IFN-induced cellular response against avian reovirus by blocking the intracellular activation of enzyme pathways dependent on dsRNA, as has been suggested for several other viral dsRNA-binding proteins. PMID:10627522

  6. Cold-inducible RNA-binding protein mediates airway inflammation and mucus hypersecretion through a post-transcriptional regulatory mechanism under cold stress.

    PubMed

    Juan, Yang; Haiqiao, Wu; Xie, Wenyao; Huaping, Huang; Zhong, Han; Xiangdong, Zhou; Kolosov, Victor P; Perelman, Juliy M

    2016-09-01

    Acute or chronic cold exposure exacerbates chronic inflammatory airway diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. Cold-inducible RNA-binding protein (CIRP) is a cold-shock protein and is induced by various environmental stressors, such as hypothermia and hypoxia. In this study, we showed that CIRP gene and protein levels were significantly increased in patients with COPD and in rats with chronic airway inflammation compared with healthy subjects. Similarly, inflammatory cytokine production and MUC5AC secretion were up-regulated in rats following cigarette smoke inhalation. Cold temperature-induced CIRP overexpression and translocation were shown to be dependent on arginine methylation in vitro. CIRP overexpression promoted stress granule (SG) assembly. In the cytoplasm, the stability of pro-inflammatory cytokine mRNAs was increased through specific interactions between CIRP and mediator mRNA 3'-UTRs; these interactions increased the mRNA translation, resulting in MUC5AC overproduction in response to cold stress. Conversely, CIRP silencing and a methyltransferase inhibitor (adenosine dialdehyde) promoted cytokine mRNA degradation and inhibited the inflammatory response and mucus hypersecretion. These findings indicate that cold temperature can induce an airway inflammatory response and excess mucus production via a CIRP-mediated increase in mRNA stability and protein translation. PMID:27477308

  7. Cold-Inducible RNA-Binding Protein Bypasses Replicative Senescence in Primary Cells through Extracellular Signal-Regulated Kinase 1 and 2 Activation▿ †

    PubMed Central

    Artero-Castro, Ana; Callejas, Francisco B.; Castellvi, Josep; Kondoh, Hiroshi; Carnero, Amancio; Fernández-Marcos, Pablo J.; Serrano, Manuel; Ramón y Cajal, Santiago; Lleonart, Matilde E.

    2009-01-01

    Embryonic stem cells are immortalized cells whose proliferation rate is comparable to that of carcinogenic cells. To study the expression of embryonic stem cell genes in primary cells, genetic screening was performed by infecting mouse embryonic fibroblasts (MEFs) with a cDNA library from embryonic stem cells. Cold-inducible RNA-binding protein (CIRP) was identified due to its ability to bypass replicative senescence in primary cells. CIRP enhanced extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation, and treatment with an MEK inhibitor decreased the proliferation caused by CIRP. In contrast to CIRP upregulation, CIRP downregulation decreased cell proliferation and resulted in inhibition of phosphorylated ERK1/2 inhibition. This is the first evidence that ERK1/2 activation, through the same mechanism as that described for a Val12 mutant K-ras to induce premature senescence, is able to bypass senescence in the absence of p16INK4a, p21WAF1, and p19ARF upregulation. Moreover, these results show that CIRP functions by stimulating general protein synthesis with the involvement of the S6 and 4E-BP1 proteins. The overall effect is an increase in kinase activity of the cyclin D1-CDK4 complex, which is in accordance with the proliferative capacity of CIRP MEFs. Interestingly, CIRP mRNA and protein were upregulated in a subgroup of cancer patients, a finding that may be of relevance for cancer research. PMID:19158277

  8. Posttranscriptional repression of the cel gene of the ColE7 operon by the RNA-binding protein CsrA of Escherichia coli

    PubMed Central

    Yang, Tsung-Yeh; Sung, Yun-Min; Lei, Guang-Sheng; Romeo, Tony; Chak, Kin-Fu

    2010-01-01

    Carbon storage regulator (CsrA) is a eubacterial RNA-binding protein that acts as a global regulator of many functionally diverse chromosomal genes. Here, we reveal that CsrA represses expression from an extrachromosomal element of Escherichia coli, the lysis gene (cel) of the ColE7 operon (cea-cei-cel). This operon and colicin expression are activated upon SOS response. Disruption of csrA caused ∼5-fold increase of the lysis protein. Gel mobility shift assays established that both the single-stranded loop of the T1 stem–loop distal to cei, and the putative CsrA binding site overlapping the Shine–Dalgarno sequence (SD) of the cel gene are important for CsrA binding. Substitution mutations at SD relieved CsrA-dependent repression of the cel gene in vivo. Steady-state levels and half-life of the cel mRNA were not affected by CsrA, implying that regulation is mediated at the translational level. Levels of CsrB and CsrC sRNAs, which bind to and antagonize CsrA, were drastically reduced upon induction of the SOS response, while the CsrA protein itself remained unaffected. Thus, CsrA is a trans-acting modulator that downregulates the expression of lysis protein, which may confer a survival advantage on colicinogenic E. coli under environment stress conditions. PMID:20378712

  9. OsSRO1a Interacts with RNA Binding Domain-Containing Protein (OsRBD1) and Functions in Abiotic Stress Tolerance in Yeast

    PubMed Central

    Sharma, Shweta; Kaur, Charanpreet; Singla-Pareek, Sneh L.; Sopory, Sudhir K.

    2016-01-01

    SRO1 is an important regulator of stress and hormonal response in plants and functions by interacting with transcription factors and several other proteins involved in abiotic stress response. In the present study, we report OsRBD1, an RNA binding domain 1- containing protein as a novel interacting partner of OsSRO1a from rice. The interaction of OsSRO1a with OsRBD1 was shown in yeast as well as in planta. Domain–domain interaction study revealed that C-terminal RST domain of OsSRO1a interacts with the N-terminal RRM1 domain of OsRBD1 protein. Both the proteins were found to co-localize in nucleus. Transcript profiling under different stress conditions revealed co-regulation of OsSRO1a and OsRBD1 expression under some abiotic stress conditions. Further, co-transformation of both OsSRO1a and OsRBD1 in yeast conferred enhanced tolerance toward salinity, osmotic, and methylglyoxal treatments. Our study suggests that the interaction of OsSRO1a with OsRBD1 confers enhanced stress tolerance in yeast and may play an important role under abiotic stress responses in plants. PMID:26870074

  10. Posttranscriptional regulation of 14-3-3ζ by RNA-binding protein HuR modulating intestinal epithelial restitution after wounding.

    PubMed

    Hansraj, Natasha Z; Xiao, Lan; Wu, Jing; Chen, Gang; Turner, Douglas J; Wang, Jian-Ying; Rao, Jaladanki N

    2016-07-01

    The 14-3-3ζ is a member of the family of 14-3-3 proteins and participates in many aspects of cellular processes, but its regulation and involvement in gut mucosal homeostasis remain unknown. Here, we report that 14-3-3ζ expression is tightly regulated at the posttranscription level by RNA-binding protein HuR and plays an important role in early intestinal epithelial restitution after wounding. The 14-3-3ζ was highly expressed in the mucosa of gastrointestinal tract and in cultured intestinal epithelial cells (IECs). The 3' untranslated region (UTR) of the 14-3-3ζ mRNA was bound to HuR, and this association enhanced 14-3-3ζ translation without effect on its mRNA content. Conditional target deletion of HuR in IECs decreased the level of 14-3-3ζ protein in the intestinal mucosa. Silencing 14-3-3ζ by transfection with specific siRNA targeting the 14-3-3ζ mRNA suppressed intestinal epithelial restitution as indicated by a decrease in IEC migration after wounding, whereas ectopic overexpression of the wild-type 14-3-3ζ promoted cell migration. These results indicate that HuR induces 14-3-3ζ translation via interaction with its 3' UTR and that 14-3-3ζ is necessary for stimulation of IEC migration after wounding. PMID:27401462

  11. RNA-Binding Protein FXR1 Regulates p21 and TERC RNA to Bypass p53-Mediated Cellular Senescence in OSCC.

    PubMed

    Majumder, Mrinmoyee; House, Reniqua; Palanisamy, Nallasivam; Qie, Shuo; Day, Terrence A; Neskey, David; Diehl, J Alan; Palanisamy, Viswanathan

    2016-09-01

    RNA-binding proteins (RBP) regulate numerous aspects of co- and post-transcriptional gene expression in cancer cells. Here, we demonstrate that RBP, fragile X-related protein 1 (FXR1), plays an essential role in cellular senescence by utilizing mRNA turnover pathway. We report that overexpressed FXR1 in head and neck squamous cell carcinoma targets (G-quadruplex (G4) RNA structure within) both mRNA encoding p21 (Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A, Cip1) and the non-coding RNA Telomerase RNA Component (TERC), and regulates their turnover to avoid senescence. Silencing of FXR1 in cancer cells triggers the activation of Cyclin-Dependent Kinase Inhibitors, p53, increases DNA damage, and ultimately, cellular senescence. Overexpressed FXR1 binds and destabilizes p21 mRNA, subsequently reduces p21 protein expression in oral cancer cells. In addition, FXR1 also binds and stabilizes TERC RNA and suppresses the cellular senescence possibly through telomerase activity. Finally, we report that FXR1-regulated senescence is irreversible and FXR1-depleted cells fail to form colonies to re-enter cellular proliferation. Collectively, FXR1 displays a novel mechanism of controlling the expression of p21 through p53-dependent manner to bypass cellular senescence in oral cancer cells. PMID:27606879

  12. The RNA-binding protein PCBP2 inhibits Ang II-induced hypertrophy of cardiomyocytes though promoting GPR56 mRNA degeneration.

    PubMed

    Zhang, Yunjiao; Si, Yi; Ma, Nan; Mei, Ju

    2015-08-28

    Poly(C)-binding proteins (PCBPs) are known as RNA-binding proteins that interact in a sequence-specific fashion with single-stranded poly(C). This family can be divided into two groups: hnRNP K and PCBP1-4. PCBPs are expressed broadly in human and mouse tissues and all members of the PCBP family are related evolutionarily. However, their physiological or pathological functions in the hearts remain unknown. Here we reported that PCBP2 is an anti-hypertrophic factor by inhibiting GPR56 mRNA stability. We found the downregulation of PCBP2 in human failing hearts and mouse hypertrophic hearts. PCBP2 knockdown promoted angiotensin II (Ang II)-induced hypertrophy (increase in cell size, protein synthesis and activation of fetal genes) of neonatal cardiomyocytes and H9C2 cells, while PCBP2 overexpression obtained oppose effects. Furthermore, PCBP2 was shown to inhibit GPR56 expression by promoting its mRNA degeneration in cardiomyocytes. Finally, we knocked down GPR56 in cardiomyocytes and found that GPR56 promoted Ang II-induced cardiomyocyte hypertrophy and it contributed to PCBP2 effects on cardiomyocyte hypertrophy. PMID:26116532

  13. Posttranscriptional regulation of 14-3-3ζ by RNA-binding protein HuR modulating intestinal epithelial restitution after wounding.

    PubMed

    Hansraj, Natasha Z; Xiao, Lan; Wu, Jing; Chen, Gang; Turner, Douglas J; Wang, Jian-Ying; Rao, Jaladanki N

    2016-07-01

    The 14-3-3ζ is a member of the family of 14-3-3 proteins and participates in many aspects of cellular processes, but its regulation and involvement in gut mucosal homeostasis remain unknown. Here, we report that 14-3-3ζ expression is tightly regulated at the posttranscription level by RNA-binding protein HuR and plays an important role in early intestinal epithelial restitution after wounding. The 14-3-3ζ was highly expressed in the mucosa of gastrointestinal tract and in cultured intestinal epithelial cells (IECs). The 3' untranslated region (UTR) of the 14-3-3ζ mRNA was bound to HuR, and this association enhanced 14-3-3ζ translation without effect on its mRNA content. Conditional target deletion of HuR in IECs decreased the level of 14-3-3ζ protein in the intestinal mucosa. Silencing 14-3-3ζ by transfection with specific siRNA targeting the 14-3-3ζ mRNA suppressed intestinal epithelial restitution as indicated by a decrease in IEC migration after wounding, whereas ectopic overexpression of the wild-type 14-3-3ζ promoted cell migration. These results indicate that HuR induces 14-3-3ζ translation via interaction with its 3' UTR and that 14-3-3ζ is necessary for stimulation of IEC migration after wounding.

  14. RNA-Binding Protein FXR1 Regulates p21 and TERC RNA to Bypass p53-Mediated Cellular Senescence in OSCC

    PubMed Central

    Majumder, Mrinmoyee; House, Reniqua; Palanisamy, Nallasivam; Qie, Shuo; Day, Terrence A.; Neskey, David; Diehl, J. Alan

    2016-01-01

    RNA-binding proteins (RBP) regulate numerous aspects of co- and post-transcriptional gene expression in cancer cells. Here, we demonstrate that RBP, fragile X-related protein 1 (FXR1), plays an essential role in cellular senescence by utilizing mRNA turnover pathway. We report that overexpressed FXR1 in head and neck squamous cell carcinoma targets (G-quadruplex (G4) RNA structure within) both mRNA encoding p21 (Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A, Cip1) and the non-coding RNA Telomerase RNA Component (TERC), and regulates their turnover to avoid senescence. Silencing of FXR1 in cancer cells triggers the activation of Cyclin-Dependent Kinase Inhibitors, p53, increases DNA damage, and ultimately, cellular senescence. Overexpressed FXR1 binds and destabilizes p21 mRNA, subsequently reduces p21 protein expression in oral cancer cells. In addition, FXR1 also binds and stabilizes TERC RNA and suppresses the cellular senescence possibly through telomerase activity. Finally, we report that FXR1-regulated senescence is irreversible and FXR1-depleted cells fail to form colonies to re-enter cellular proliferation. Collectively, FXR1 displays a novel mechanism of controlling the expression of p21 through p53-dependent manner to bypass cellular senescence in oral cancer cells. PMID:27606879

  15. Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA-binding protein.

    PubMed Central

    Citovsky, V; Knorr, D; Zambryski, P

    1991-01-01

    Cauliflower mosaic virus (CaMV) is a double-stranded DNA (dsDNA) pararetrovirus capable of cell-to-cell movement presumably through intercellular connections, the plasmodesmata, of the infected plant. This movement is likely mediated by a specific viral protein encoded by the gene I locus. Here we report that the purified gene I protein binds RNA and single-stranded DNA (ssDNA) but not dsDNA regardless of nucleotide sequence specificity. The binding is highly cooperative, and the affinity of the gene I protein for RNA is 10-fold higher than for ssDNA. CaMV replicates by reverse transcription of a 358 RNA that is homologous to the entire genome. We propose that the 35S RNA may be involved in cell-to-cell movement of CaMV as an intermediate that is transported through plasmodesmata as an RNA-gene I protein complex. Images PMID:11607169

  16. Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA-binding protein

    SciTech Connect

    Citovsky, V.; Knorr, D.; Zambryski, P. )

    1991-03-15

    Cauliflower mosaic virus (CaMV) is a double-stranded DNA (dsDNA) pararetrovirus capable of cell-to-cell movement presumably through intercellular connections, the plasmodesmata, of the infected plant. This movement is likely mediated by a specific viral protein encoded by the gene I locus. Here we report that the purified gene I protein binds RNA and single-stranded DNA (ssDNA) but not dsDNA regardless of nucleotide sequence specificity. The binding is highly cooperative, and the affinity of the gene I protein for RNA is 10-fold higher than for ssDNA. CaMV replicates by reverse transcription of a 35S RNA that is homologous to the entire genome. The authors propose that the 35S RNA may be involved in cell-to-cell movement of CaMV as an intermediate that is transported through plasmodesmata as an RNA-gene I protein complex.

  17. Crystallization of the avian reovirus double-stranded RNA-binding and core protein σA

    PubMed Central

    Hermo-Parrado, X. Lois; Guardado-Calvo, Pablo; Llamas-Saiz, Antonio L.; Fox, Gavin C.; Vazquez-Iglesias, Lorena; Martínez-Costas, José; Benavente, Javier; van Raaij, Mark J.

    2007-01-01

    The avian reovirus protein σA plays a dual role: it is a structural protein forming part of the transcriptionally active core, but it has also been implicated in the resistance of the virus to interferon by strongly binding double-stranded RNA and thus inhibiting the double-stranded RNA-dependent protein kinase. The σA protein has been crystallized from solutions containing ammonium sulfate at pH values around 6. Crystals belonging to space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2° were grown and a complete data set has been collected to 2.3 Å resolution. The self-rotation function suggests that σA may form symmetric arrangements in the crystals. PMID:17565188

  18. CERKL, a Retinal Disease Gene, Encodes an mRNA-Binding Protein That Localizes in Compact and Untranslated mRNPs Associated with Microtubules

    PubMed Central

    Riera, Marina; Knecht, Erwin; Gonzàlez-Duarte, Roser

    2014-01-01

    The function of CERKL (CERamide Kinase Like), a causative gene of retinitis pigmentosa and cone-rod dystrophy, still awaits characterization. To approach its cellular role we have investigated the subcellular localization and interaction partners of the full length CERKL isoform, CERKLa of 532 amino acids, in different cell lines, including a photoreceptor-derived cell line. We demonstrate that CERKLa is a main component of compact and untranslated mRNPs and that associates with other RNP complexes such as stress granules, P-bodies and polysomes. CERKLa is a protein that binds through its N-terminus to mRNAs and interacts with other mRNA-binding proteins like eIF3B, PABP, HSP70 and RPS3. Except for eIF3B, these interactions depend on the integrity of mRNAs but not of ribosomes. Interestingly, the C125W CERKLa pathological mutant does not interact with eIF3B and is absent from these complexes. Compact mRNPs containing CERKLa also associate with microtubules and are found in neurites of neural differentiated cells. These localizations had not been reported previously for any member of the retinal disorders gene family and should be considered when investigating the pathogenic mechanisms and therapeutical approaches in these diseases. PMID:24498393

  19. H19 Long Noncoding RNA Regulates Intestinal Epithelial Barrier Function via MicroRNA 675 by Interacting with RNA-Binding Protein HuR.

    PubMed

    Zou, Tongtong; Jaladanki, Suraj K; Liu, Lan; Xiao, Lan; Chung, Hee Kyoung; Wang, Jun-Yao; Xu, Yan; Gorospe, Myriam; Wang, Jian-Ying

    2016-05-01

    The disruption of the intestinal epithelial barrier function occurs commonly in various pathologies, but the exact mechanisms responsible are unclear. The H19 long noncoding RNA (lncRNA) regulates the expression of different genes and has been implicated in human genetic disorders and cancer. Here, we report that H19 plays an important role in controlling the intestinal epithelial barrier function by serving as a precursor for microRNA 675 (miR-675). H19 overexpression increased the cellular abundance of miR-675, which in turn destabilized and repressed the translation of mRNAs encoding tight junction protein ZO-1 and adherens junction E-cadherin, resulting in the dysfunction of the epithelial barrier. Increasing the level of the RNA-binding protein HuR in cells overexpressing H19 prevented the stimulation of miR-675 processing from H19, promoted ZO-1 and E-cadherin expression, and restored the epithelial barrier function to a nearly normal level. In contrast, the targeted deletion of HuR in intestinal epithelial cells enhanced miR-675 production in the mucosa and delayed the recovery of the gut barrier function after exposure to mesenteric ischemia/reperfusion. These results indicate that H19 interacts with HuR and regulates the intestinal epithelial barrier function via the H19-encoded miR-675 by altering ZO-1 and E-cadherin expression posttranscriptionally.

  20. Spo5/Mug12, a Putative Meiosis-Specific RNA-Binding Protein, Is Essential for Meiotic Progression and Forms Mei2 Dot-Like Nuclear Foci†

    PubMed Central

    Kasama, Takashi; Shigehisa, Akira; Hirata, Aiko; Saito, Takamune T.; Tougan, Takahiro; Okuzaki, Daisuke; Nojima, Hiroshi

    2006-01-01

    We report here a functional analysis of spo5+(mug12+) of Schizosaccharomyces pombe, which encodes a putative RNA-binding protein. The disruption of spo5+ caused abnormal sporulation, generating inviable spores due to failed forespore membrane formation and the absence of a spore wall, as determined by electron microscopy. Spo5 regulates the progression of meiosis I because spo5 mutant cells display normal premeiotic DNA synthesis and the timely initiation of meiosis I but they show a delay in the peaking of cells with two nuclei, abnormal tyrosine 15 dephosphorylation of Cdc2, incomplete degradation of Cdc13, retarded formation and repair of double strand breaks, and a reduced frequency of intragenic recombination. Immunostaining showed that Spo5-green fluorescent protein (GFP) appeared in the cytoplasm at the horsetail phase, peaked around the metaphase I to anaphase I transition, and suddenly disappeared after anaphase II. Images of Spo5-GFP in living cells revealed that Spo5 forms a dot in the nucleus at prophase I that colocalized with the Mei2 dot. Unlike the Mei2 dot, however, the Spo5 dot was observed even in sme2Δ cells. Taken together, we conclude that Spo5 is a novel regulator of meiosis I and that it may function in the vicinity of the Mei2 dot. PMID:16896214

  1. Spo5/Mug12, a putative meiosis-specific RNA-binding protein, is essential for meiotic progression and forms Mei2 dot-like nuclear foci.

    PubMed

    Kasama, Takashi; Shigehisa, Akira; Hirata, Aiko; Saito, Takamune T; Tougan, Takahiro; Okuzaki, Daisuke; Nojima, Hiroshi

    2006-08-01

    We report here a functional analysis of spo5(+)(mug12(+)) of Schizosaccharomyces pombe, which encodes a putative RNA-binding protein. The disruption of spo5(+) caused abnormal sporulation, generating inviable spores due to failed forespore membrane formation and the absence of a spore wall, as determined by electron microscopy. Spo5 regulates the progression of meiosis I because spo5 mutant cells display normal premeiotic DNA synthesis and the timely initiation of meiosis I but they show a delay in the peaking of cells with two nuclei, abnormal tyrosine 15 dephosphorylation of Cdc2, incomplete degradation of Cdc13, retarded formation and repair of double strand breaks, and a reduced frequency of intragenic recombination. Immunostaining showed that Spo5-green fluorescent protein (GFP) appeared in the cytoplasm at the horsetail phase, peaked around the metaphase I to anaphase I transition, and suddenly disappeared after anaphase II. Images of Spo5-GFP in living cells revealed that Spo5 forms a dot in the nucleus at prophase I that colocalized with the Mei2 dot. Unlike the Mei2 dot, however, the Spo5 dot was observed even in sme2Delta cells. Taken together, we conclude that Spo5 is a novel regulator of meiosis I and that it may function in the vicinity of the Mei2 dot. PMID:16896214

  2. Interconnection of post-transcriptional regulation: The RNA-binding protein Hfq is a novel target of the Lon protease in Pseudomonas aeruginosa.

    PubMed

    Fernández, Lucía; Breidenstein, Elena B M; Taylor, Patrick K; Bains, Manjeet; de la Fuente-Núñez, César; Fang, Yuan; Foster, Leonard J; Hancock, Robert E W

    2016-05-27

    Besides being a major opportunistic human pathogen, Pseudomonas aeruginosa can be found in a wide range of environments. This versatility is linked to complex regulation, which is achieved through the action of transcriptional regulators, and post-transcriptional regulation by intracellular proteases including Lon. Indeed, lon mutants in this species show defects in motility, biofilm formation, pathogenicity and fluoroquinolone resistance. Here, the proteomic approach stable isotope labeling by amino acids in cell culture (SILAC) was used to search for novel proteolytic targets. One of the proteins that accumulated in the lon mutant was the RNA-binding protein Hfq. Further experiments demonstrated the ability of Lon to degrade Hfq in vitro. Also, overexpression of the hfq gene in the wild-type strain led to partial inhibition of swarming, swimming and twitching motilities, indicating that Hfq accumulation could contribute to the phenotypes displayed by Lon mutants. Hfq overexpression also led to the upregulation of the small regulatory RNA PhrS. Analysis of the phenotypes of strains lacking or overexpressing this sRNA indicated that the Lon protease might be indirectly regulating the levels and activity of sRNAs via Hfq. Overall, this study revealed new links in the complex regulatory chain that controls multicellular behaviours in P. aeruginosa.

  3. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing.

    PubMed

    Melo, Sonia; Villanueva, Alberto; Moutinho, Catia; Davalos, Veronica; Spizzo, Riccardo; Ivan, Cristina; Rossi, Simona; Setien, Fernando; Casanovas, Oriol; Simo-Riudalbas, Laia; Carmona, Javier; Carrere, Jordi; Vidal, August; Aytes, Alvaro; Puertas, Sara; Ropero, Santiago; Kalluri, Raghu; Croce, Carlo M; Calin, George A; Esteller, Manel

    2011-03-15

    MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression at the posttranscriptional level and are critical for many cellular pathways. The disruption of miRNAs and their processing machineries also contributes to the development of human tumors. A common scenario for miRNA expression in carcinogenesis is emerging that shows that impaired miRNA production and/or down-regulation of these transcripts occurs in many neoplasms. Several of these lost miRNAs have tumor-suppressor features, so strategies to restore their expression globally in malignancies would be a welcome addition to the current therapeutic arsenal against cancer. Herein, we show that the small molecule enoxacin, a fluoroquinolone used as an antibacterial compound, enhances the production of miRNAs with tumor suppressor functions by binding to the miRNA biosynthesis protein TAR RNA-binding protein 2 (TRBP). The use of enoxacin in human cell cultures and xenografted, orthotopic, and metastatic mouse models reveals a TRBP-dependent and cancer-specific growth-inhibitory effect of the drug. These results highlight the key role of disrupted miRNA expression patterns in tumorigenesis, and suggest a unique strategy for restoring the distorted microRNAome of cancer cells to a more physiological setting.

  4. H19 Long Noncoding RNA Regulates Intestinal Epithelial Barrier Function via MicroRNA 675 by Interacting with RNA-Binding Protein HuR

    PubMed Central

    Zou, Tongtong; Jaladanki, Suraj K.; Liu, Lan; Xiao, Lan; Chung, Hee Kyoung; Wang, Jun-Yao; Xu, Yan; Gorospe, Myriam

    2016-01-01

    The disruption of the intestinal epithelial barrier function occurs commonly in various pathologies, but the exact mechanisms responsible are unclear. The H19 long noncoding RNA (lncRNA) regulates the expression of different genes and has been implicated in human genetic disorders and cancer. Here, we report that H19 plays an important role in controlling the intestinal epithelial barrier function by serving as a precursor for microRNA 675 (miR-675). H19 overexpression increased the cellular abundance of miR-675, which in turn destabilized and repressed the translation of mRNAs encoding tight junction protein ZO-1 and adherens junction E-cadherin, resulting in the dysfunction of the epithelial barrier. Increasing the level of the RNA-binding protein HuR in cells overexpressing H19 prevented the stimulation of miR-675 processing from H19, promoted ZO-1 and E-cadherin expression, and restored the epithelial barrier function to a nearly normal level. In contrast, the targeted deletion of HuR in intestinal epithelial cells enhanced miR-675 production in the mucosa and delayed the recovery of the gut barrier function after exposure to mesenteric ischemia/reperfusion. These results indicate that H19 interacts with HuR and regulates the intestinal epithelial barrier function via the H19-encoded miR-675 by altering ZO-1 and E-cadherin expression posttranscriptionally. PMID:26884465

  5. Dendritic targeting of short and long 3′ UTR BDNF mRNA is regulated by BDNF or NT-3 and distinct sets of RNA-binding proteins

    PubMed Central

    Vicario, Annalisa; Colliva, Andrea; Ratti, Antonia; Davidovic, Laetitia; Baj, Gabriele; Gricman, Łukasz; Colombrita, Claudia; Pallavicini, Alberto; Jones, Kevin R.; Bardoni, Barbara; Tongiorgi, Enrico

    2015-01-01

    Sorting of mRNAs in neuronal dendrites relies upon inducible transport mechanisms whose molecular bases are poorly understood. We investigated here the mechanism of inducible dendritic targeting of rat brain-derived neurotrophic factor (BDNF) mRNAs as a paradigmatic example. BDNF encodes multiple mRNAs with either short or long 3′ UTR, both hypothesized to harbor inducible dendritic targeting signals. However, the mechanisms of sorting of the two 3′ UTR isoforms are controversial. We found that dendritic localization of BDNF mRNAs with short 3′ UTR was induced by depolarization and NT3 in vitro or by seizures in vivo and required CPEB-1, -2 and ELAV-2, -4. Dendritic targeting of long 3′ UTR was induced by activity or BDNF and required CPEB-1 and the relief of soma-retention signals mediated by ELAV-1, -3, -4, and FXR proteins. Thus, long and short 3′ UTRs, by using different sets of RNA-binding proteins provide a mechanism of selective targeting in response to different stimuli which may underlay distinct roles of BDNF variants in neuronal development and plasticity. PMID:26578876

  6. Interconnection of post-transcriptional regulation: The RNA-binding protein Hfq is a novel target of the Lon protease in Pseudomonas aeruginosa

    PubMed Central

    Fernández, Lucía; Breidenstein, Elena B. M.; Taylor, Patrick K.; Bains, Manjeet; de la Fuente-Núñez, César; Fang, Yuan; Foster, Leonard J.; Hancock, Robert E. W.

    2016-01-01

    Besides being a major opportunistic human pathogen, Pseudomonas aeruginosa can be found in a wide range of environments. This versatility is linked to complex regulation, which is achieved through the action of transcriptional regulators, and post-transcriptional regulation by intracellular proteases including Lon. Indeed, lon mutants in this species show defects in motility, biofilm formation, pathogenicity and fluoroquinolone resistance. Here, the proteomic approach stable isotope labeling by amino acids in cell culture (SILAC) was used to search for novel proteolytic targets. One of the proteins that accumulated in the lon mutant was the RNA-binding protein Hfq. Further experiments demonstrated the ability of Lon to degrade Hfq in vitro. Also, overexpression of the hfq gene in the wild-type strain led to partial inhibition of swarming, swimming and twitching motilities, indicating that Hfq accumulation could contribute to the phenotypes displayed by Lon mutants. Hfq overexpression also led to the upregulation of the small regulatory RNA PhrS. Analysis of the phenotypes of strains lacking or overexpressing this sRNA indicated that the Lon protease might be indirectly regulating the levels and activity of sRNAs via Hfq. Overall, this study revealed new links in the complex regulatory chain that controls multicellular behaviours in P. aeruginosa. PMID:27229357

  7. PPM1D phosphatase, a target of p53 and RBM38 RNA-binding protein, inhibits p53 mRNA translation via dephosphorylation of RBM38.

    PubMed

    Zhang, M; Xu, E; Zhang, J; Chen, X

    2015-11-26

    PPM1D phosphatase, also called wild-type p53-induced phosphatase 1, promotes tumor development by inactivating the p53 tumor suppressor pathway. RBM38 RNA-binding protein, also called RNPC1 and a target of p53, inhibits p53 messenger RNA (mRNA) translation, which can be reversed by GSK3 protein kinase via phosphorylation of RBM38 at serine 195. Here we showed that ectopic expression of RBM38 increases, whereas knockdown of RBM38 inhibits, PPM1D mRNA translation. Consistent with this, we found that RBM38 directly binds to PPM1D 3'-untranslated region (3'-UTR) and promotes expression of a heterologous reporter gene that carries PPM1D 3'-UTR in a dose-dependent manner. Interestingly, we showed that PPM1D directly interacts with and dephosphorylates RBM38 at serine 195. Furthermore, we showed that PPM1D modulates p53 mRNA translation and p53-dependent growth suppression through dephosphorylation of RBM38. These findings provide evidence that the crosstalk between PPM1D and RBM38, both of which are targets and modulators of p53, has a critical role in p53 expression and activity.

  8. Structural analyses of the CRISPR protein Csc2 reveal the RNA-binding interface of the type I-D Cas7 family.

    PubMed

    Hrle, Ajla; Maier, Lisa-Katharina; Sharma, Kundan; Ebert, Judith; Basquin, Claire; Urlaub, Henning; Marchfelder, Anita; Conti, Elena

    2014-01-01

    Upon pathogen invasion, bacteria and archaea activate an RNA-interference-like mechanism termed CRISPR (clustered regularly interspaced short palindromic repeats). A large family of Cas (CRISPR-associated) proteins mediates the different stages of this sophisticated immune response. Bioinformatic studies have classified the Cas proteins into families, according to their sequences and respective functions. These range from the insertion of the foreign genetic elements into the host genome to the activation of the interference machinery as well as target degradation upon attack. Cas7 family proteins are central to the type I and type III interference machineries as they constitute the backbone of the large interference complexes. Here we report the crystal structure of Thermofilum pendens Csc2, a Cas7 family protein of type I-D. We found that Csc2 forms a core RRM-like domain, flanked by three peripheral insertion domains: a lid domain, a Zinc-binding domain and a helical domain. Comparison with other Cas7 family proteins reveals a set of similar structural features both in the core and in the peripheral domains, despite the absence of significant sequence similarity. T. pendens Csc2 binds single-stranded RNA in vitro in a sequence-independent manner. Using a crosslinking - mass-spectrometry approach, we mapped the RNA-binding surface to a positively charged surface patch on T. pendens Csc2. Thus our analysis of the key structural and functional features of T. pendens Csc2 highlights recurring themes and evolutionary relationships in type I and type III Cas proteins.

  9. A protein with simultaneous capsid scaffolding and dsRNA-binding activities enhances the birnavirus capsid mechanical stability

    PubMed Central

    Mertens, Johann; Casado, Santiago; Mata, Carlos P.; Hernando-Pérez, Mercedes; de Pablo, Pedro J.; Carrascosa, José L.; Castón, José R.

    2015-01-01

    Viral capsids are metastable structures that perform many essential processes; they also act as robust cages during the extracellular phase. Viruses can use multifunctional proteins to optimize resources (e.g., VP3 in avian infectious bursal disease virus, IBDV). The IBDV genome is organized as ribonucleoproteins (RNP) of dsRNA with VP3, which also acts as a scaffold during capsid assembly. We characterized mechanical properties of IBDV populations with different RNP content (ranging from none to four RNP). The IBDV population with the greatest RNP number (and best fitness) showed greatest capsid rigidity. When bound to dsRNA, VP3 reinforces virus stiffness. These contacts involve interactions with capsid structural subunits that differ from the initial interactions during capsid assembly. Our results suggest that RNP dimers are the basic stabilization units of the virion, provide better understanding of multifunctional proteins, and highlight the duality of RNP as capsid-stabilizing and genetic information platforms. PMID:26336920

  10. CED-4 is an mRNA-binding protein that delivers ced-3 mRNA to ribosomes.

    PubMed

    Wang, Miao-xing; Itoh, Masanori; Li, Shimo; Hida, Yoko; Ohta, Kazunori; Hayakawa, Miki; Nishida, Emika; Ueda, Masashi; Islam, Saiful; Tana; Nakagawa, Toshiyuki

    2016-01-29

    Cell death abnormal (ced)-3 and ced-4 genes regulate apoptosis to maintain tissue homeostasis in Caenorhabditis elegans. Apoptosome formation and CED-4 translocation drive CED-3 activation. However, the precise role of CED-4 translocation is not yet fully understood. In this study, using a combination of immunoprecipitation and reverse transcription-polymerase chain reaction methods in cells and a glutathione-S-transferase pull down assay in a cell-free system, we show that CED-4 binds ced-3 mRNA. In the presence of ced-3 mRNA, CED-4 protein is enriched in the microsomal fraction and interacts with ribosomal protein L10a in mammalian cells, increasing the levels of CED-3. These results suggest that CED-4 forms a complex with ced-3 mRNA and delivers it to ribosomes for translation.

  11. NH125 reduces the level of CPEB3, an RNA binding protein, to promote synaptic GluA2 expression.

    PubMed

    Bender, Crhistian L; Yang, Qian; Sun, Lu; Liu, Siqiong June

    2016-02-01

    Neuronal activity can alter the phosphorylation state of eukaryotic elongation factor 2 (eEF2) and thereby regulates protein synthesis. This is thought to be the underlying mechanism for a form of synaptic plasticity that involves changes in the expression of synaptic AMPA type glutamate receptors. Phosphorylation of eEF2 by Ca/calmodulin-dependent eEF2 kinase reduces the activity of eEF2, and this is prevented by a commonly used eEF2 kinase inhibitor, NH125. Here we show that 10 μM NH125 increased the expression of synaptic GluA2-containing receptors in mouse cerebellar stellate cells and this was prevented by a protein synthesis inhibitor. However NH125 at 10 μM also reduced the level of CPEB3, a protein that is known to bind to GluA2 mRNA and suppress GluA2 (also known as GluR2) synthesis. In contrast, a low concentration of NH125 lowered the peEF2 level, but did not alter CPEB3 expression and also failed to increase synaptic GluA2 receptors. A selective eEF2 kinase inhibitor, A-484954, decreased the level of peEF2, without changing the expression of CPEB3. This suggests that reducing peEF2 does not lead to a decrease in CPEB3 levels and is not sufficient to increase GluA2 synthesis. Thus NH125 at 10 μM reduced the level of CPEB3, and promoted GluA2 translation via a mechanism independent of inhibition of eEF2 kinase. Therefore NH125 does not always alter protein synthesis via selective inhibition of eEF2 kinase and the effects of NH125 on translation of mRNAs should be interpreted with caution.

  12. Targeting polyIC to EGFR over-expressing cells using a dsRNA binding protein domain tethered to EGF.

    PubMed

    Edinger, Nufar; Lebendiker, Mario; Klein, Shoshana; Zigler, Maya; Langut, Yael; Levitzki, Alexander

    2016-01-01

    Selective delivery of drugs to tumor cells can increase potency and reduce toxicity. In this study, we describe a novel recombinant chimeric protein, dsRBEC, which can bind polyIC and deliver it selectively into EGFR over-expressing tumor cells. dsRBEC, comprises the dsRNA binding domain (dsRBD) of human PKR (hPKR), which serves as the polyIC binding moiety, fused to human EGF (hEGF), the targeting moiety. dsRBEC shows high affinity towards EGFR and triggers ligand-induced endocytosis of the receptor, thus leading to the selective internalization of polyIC into EGFR over-expressing tumor cells. The targeted delivery of polyIC by dsRBEC induced cellular apoptosis and the secretion of IFN-β and other pro-inflammatory cytokines. dsRBEC-delivered polyIC is much more potent than naked polyIC and is expected to reduce the toxicity caused by systemic delivery of polyIC. PMID:27598772

  13. Targeting polyIC to EGFR over-expressing cells using a dsRNA binding protein domain tethered to EGF

    PubMed Central

    Edinger, Nufar; Lebendiker, Mario; Klein, Shoshana; Zigler, Maya; Langut, Yael; Levitzki, Alexander

    2016-01-01

    Selective delivery of drugs to tumor cells can increase potency and reduce toxicity. In this study, we describe a novel recombinant chimeric protein, dsRBEC, which can bind polyIC and deliver it selectively into EGFR over-expressing tumor cells. dsRBEC, comprises the dsRNA binding domain (dsRBD) of human PKR (hPKR), which serves as the polyIC binding moiety, fused to human EGF (hEGF), the targeting moiety. dsRBEC shows high affinity towards EGFR and triggers ligand-induced endocytosis of the receptor, thus leading to the selective internalization of polyIC into EGFR over-expressing tumor cells. The targeted delivery of polyIC by dsRBEC induced cellular apoptosis and the secretion of IFN-β and other pro-inflammatory cytokines. dsRBEC-delivered polyIC is much more potent than naked polyIC and is expected to reduce the toxicity caused by systemic delivery of polyIC. PMID:27598772

  14. Hibernation-specific alternative splicing of the mRNA encoding cold-inducible RNA-binding protein in the hearts of hamsters.

    PubMed

    Sano, Yuuki; Shiina, Takahiko; Naitou, Kiyotada; Nakamori, Hiroyuki; Shimizu, Yasutake

    2015-07-10

    The hearts of hibernating animals are capable of maintaining constant beating despite a decrease in body temperature to less than 10 °C during hibernation, suggesting that the hearts of hibernators are highly tolerant to a cold temperature. In the present study, we examined the expression pattern of cold-inducible RNA-binding protein (CIRP) in the hearts of hibernating hamsters, since CIRP plays important roles in protection of various types of cells against harmful effects of cold temperature. RT-PCR analysis revealed that CIRP mRNA is constitutively expressed in the heart of a non-hibernating euthermic hamster with several different forms probably due to alternative splicing. The short product contained the complete open reading frame for full-length CIRP. On the other hand, the long product had inserted sequences containing a stop codon, suggesting production of a C-terminal deletion isoform of CIRP. In contrast to non-hibernating hamsters, only the short product was amplified in hibernating animals. Induction of artificial hypothermia in non-hibernating hamsters did not completely mimic the splicing patterns observed in hibernating animals, although a partial shift from long form mRNA to short form was observed. Our results indicate that CIRP expression in the hamster heart is regulated at the level of alternative splicing, which would permit a rapid increment of functional CIRP when entering hibernation.

  15. Reduced function of the RNA-binding protein FPA rescues a T-DNA insertion mutant in the Arabidopsis ZHOUPI gene by promoting transcriptional read-through.

    PubMed

    Zhang, Yaohua; Li, Xin; Goodrich, Justin; Wu, Chunxia; Wei, Haichao; Yang, Suxin; Feng, Xianzhong

    2016-07-01

    T-DNA insertion mutants have been widely used to investigate plant gene functions. Unexpectedly, in several reported cases, the phenotype of T-DNA insertion mutations can be suppressed because of trans T-DNA interactions associated with epigenetic modification, which indicates that caution is needed when T-DNA mutants are used. In the present study, we characterized a novel process suppressing a T-DNA mutation. The spz2 (suppressor of zou 2) mutant was isolated as a suppressor of the phenotype of the zou-4 mutant caused by a T-DNA insertion in the first intron. The spz2 mutation partially recovered the native ZOU gene expression in the zou-4 background, but not in two other zou alleles, zou-2 and zou-3, with T-DNAs inserted in the exon and intron, respectively. The suppressed phenotype was inherited in a Mendelian fashion and is not associated with epigenetic modification. The recovery of the native ZOU gene expression in the spz2 zou-4 double mutant is caused by transcriptional read-through of the intronic T-DNA as a result of decreased proximal polyadenylation. SPZ2 encodes an RNA-binding protein, FPA, which is known to regulate polyadenylation site selection. This is the first example of FPA rescuing a T-DNA insertion mutation by affecting the polyadenylation site selection. PMID:27164978

  16. Insulin-like growth factor II messenger RNA-binding protein-3 is an indicator of malignant phyllodes tumor of the breast.

    PubMed

    Takizawa, Katsumi; Yamamoto, Hidetaka; Taguchi, Kenichi; Ohno, Shinji; Tokunaga, Eriko; Yamashita, Nami; Kubo, Makoto; Nakamura, Masafumi; Oda, Yoshinao

    2016-09-01

    The aim of this study was to elucidate the clinicopathological and prognostic significance of the expressions of insulin-like growth factor II mRNA-binding protein-3 (IMP3) and epidermal growth factor receptor (EGFR) in phyllodes tumors (PTs). Immunohistochemical staining for IMP3 and EGFR was performed in 130 cases of primary PTs (83 benign, 28 borderline, 19 malignant), 34 recurrent/metastatic PTs, and 26 fibroadenomas (FAs). Among the primary tumors, a high expression of IMP3 was significantly more frequently present in malignant PTs (17/19, 89%) than in the FAs (0/26, 0%), benign PTs (0/83, 0%) and borderline PTs (3/28, 11%). The recurrent and metastatic lesions of malignant PTs also showed high IMP3 expression (3/5 [60%] and 6/6 [100%], respectively). Most malignant PTs showed strong IMP3 expression at the interductal area or more diffusely, whereas weak and focal (low) expression of IMP3 was limited to the periductal area in FAs and benign PTs. EGFR overexpression was significantly correlated with tumor grade and high IMP3 expression. Overexpressions of IMP3 and EGFR were significantly associated with shorter periods of metastasis-free and disease-free survival. The results suggest that high expressions of IMP3 and EGFR with a characteristic staining pattern may be helpful for both identifying malignant PT and predicting the prognosis of these tumors. PMID:27137988

  17. The RNA binding protein IMP3 facilitates tumor immune escape by downregulating the stress-induced ligands ULPB2 and MICB

    PubMed Central

    Schmiedel, Dominik; Tai, Julie; Yamin, Rachel; Berhani, Orit; Bauman, Yoav; Mandelboim, Ofer

    2016-01-01

    Expression of the stress-induced ligands MICA, MICB and ULBP 1–6 are up-regulated as a cellular response to DNA damage, excessive proliferation or viral infection; thereby, they enable recognition and annihilation by immune cells that express the powerful activating receptor NKG2D. This receptor is present not exclusively, but primarily on NK cells. Knowledge about the regulatory mechanisms controlling ULBP expression is still vague. In this study, we report a direct interaction of the oncogenic RNA binding protein (RBP) IMP3 with ULBP2 mRNA, leading to ULBP2 transcript destabilization and reduced ULBP2 surface expression in several human cell lines. We also discovered that IMP3 indirectly targets MICB with a mechanism functionally distinct from that of ULBP2. Importantly, IMP3-mediated regulation of stress-ligands leads to impaired NK cell recognition of transformed cells. Our findings shed new light on the regulation of NKG2D ligands and on the mechanism of action of a powerful oncogenic RBP, IMP3. DOI: http://dx.doi.org/10.7554/eLife.13426.001 PMID:26982091

  18. A dsRNA-binding protein of a complex invertebrate DNA virus suppresses the Drosophila RNAi response

    PubMed Central

    Bronkhorst, Alfred W.; van Cleef, Koen W.R.; Venselaar, Hanka; van Rij, Ronald P.

    2014-01-01

    Invertebrate RNA viruses are targets of the host RNA interference (RNAi) pathway, which limits virus infection by degrading viral RNA substrates. Several insect RNA viruses encode suppressor proteins to counteract this antiviral response. We recently demonstrated that the dsDNA virus Invertebrate iridescent virus 6 (IIV-6) induces an RNAi response in Drosophila. Here, we show that RNAi is suppressed in IIV-6-infected cells and we mapped RNAi suppressor activity to the viral protein 340R. Using biochemical assays, we reveal that 340R binds long dsRNA and prevents Dicer-2-mediated processing of long dsRNA into small interfering RNAs (siRNAs). We demonstrate that 340R additionally binds siRNAs and inhibits siRNA loading into the RNA-induced silencing complex. Finally, we show that 340R is able to rescue a Flock House virus replicon that lacks its viral suppressor of RNAi. Together, our findings indicate that, in analogy to RNA viruses, DNA viruses antagonize the antiviral RNAi response. PMID:25274730

  19. A Host KH RNA-Binding Protein Is a Susceptibility Factor Targeted by an RXLR Effector to Promote Late Blight Disease☆

    PubMed Central

    Wang, Xiaodan; Boevink, Petra; McLellan, Hazel; Armstrong, Miles; Bukharova, Tatyana; Qin, Zhiwei; Birch, Paul R.J.

    2015-01-01

    Plant pathogens deliver effector proteins that alter host processes to create an environment conducive to colonization. Attention has focused on identifying the targets of effectors and how their manipulation facilitates disease. RXLR effector Pi04089 from the potato blight pathogen Phytophthora infestans accumulates in the host nucleus and enhances colonization when transiently expressed in planta. Its nuclear localization is required for enhanced P. infestans colonization. Pi04089 interacts in yeast and in planta with a putative potato K-homology (KH) RNA-binding protein, StKRBP1. Co-localization of Pi04089 and StKRBP1, and bimolecular fluorescence complementation between them, indicate they associate at nuclear speckles. StKRBP1 protein levels increased when it was co-expressed with Pi04089. Indeed, such accumulation of StKRBP1 was observed also on the first day of leaf colonization by the pathogen. Remarkably, overexpression of StKRBP1 significantly enhances P. infestans infection. Mutation of the nucleotide-binding motif GxxG to GDDG in all three KH domains of StKRBP1 abolishes its interaction with Pi04089, its localization to nuclear speckles, and its increased accumulation when co-expressed with the effector. Moreover, the mutant StKRBP1 protein no longer enhances leaf colonization by P. infestans, implying that nucleotide binding is likely required for this activity. We thus argue that StKRBP1 can be regarded as a susceptibility factor, as its activity is beneficial to the pathogen. PMID:25936676

  20. Identification of an RNA-binding protein that is phosphorylated by PTH and potentially mediates PTH-induced destabilization of Npt2a mRNA.

    PubMed

    Murray, Rebecca D; Merchant, Michael L; Hardin, Ericka; Clark, Barbara; Khundmiri, Syed J; Lederer, Eleanor D

    2016-02-01

    Parathyroid hormone (PTH) is a key regulator of the expression and function of the type IIa sodium-phosphate cotransporter (Npt2a), the protein responsible for regulated renal phosphate reabsorption. We previously showed that PTH induces rapid decay of Npt2a mRNA through posttranscriptional mechanisms. We hypothesized that PTH-induced changes in RNA-binding protein (RBP) activity mediate the degradation of Npt2a mRNA. To address this aim, we treated opossum kidney (OK) cells, a PTH-sensitive proximal tubule cell culture model, with 100 nM PTH for 30 min and 2 h, followed by mass spectrometry characterization of the PTH-stimulated phosphoproteome. We identified 1,182 proteins differentially phosphorylated in response to PTH, including 68 RBPs. Preliminary analysis identified a phospho-RBP, hnRNPK-homology-type-splicing regulatory protein (KSRP), with predicted binding sites for the 3'-untranslated region (UTR) of Npt2a mRNA. Western blot analysis confirmed expression of KSRP in OK cells and showed PTH-dependent translocation to the nucleus. Immunoprecipitation of KSRP from control and PTH-treated cells followed by RNA isolation and RT-quantitative PCR analysis identified Npt2a mRNA from both control and PTH-treated KSRP pulldowns. Knockdown of KSRP followed by PTH treatment showed that KSRP is required for mediating PTH-stimulated reduction in sodium/hydrogen exchanger 3 mRNA, but not Npt2a mRNA. We conclude that 1) PTH is a major regulator of both transcription and translation, and 2) KSRP binds Npt2a mRNA but its role in PTH regulation of Npt2a mRNA is not clear. PMID:26834145

  1. Identification of an RNA-binding protein that is phosphorylated by PTH and potentially mediates PTH-induced destabilization of Npt2a mRNA.

    PubMed

    Murray, Rebecca D; Merchant, Michael L; Hardin, Ericka; Clark, Barbara; Khundmiri, Syed J; Lederer, Eleanor D

    2016-02-01

    Parathyroid hormone (PTH) is a key regulator of the expression and function of the type IIa sodium-phosphate cotransporter (Npt2a), the protein responsible for regulated renal phosphate reabsorption. We previously showed that PTH induces rapid decay of Npt2a mRNA through posttranscriptional mechanisms. We hypothesized that PTH-induced changes in RNA-binding protein (RBP) activity mediate the degradation of Npt2a mRNA. To address this aim, we treated opossum kidney (OK) cells, a PTH-sensitive proximal tubule cell culture model, with 100 nM PTH for 30 min and 2 h, followed by mass spectrometry characterization of the PTH-stimulated phosphoproteome. We identified 1,182 proteins differentially phosphorylated in response to PTH, including 68 RBPs. Preliminary analysis identified a phospho-RBP, hnRNPK-homology-type-splicing regulatory protein (KSRP), with predicted binding sites for the 3'-untranslated region (UTR) of Npt2a mRNA. Western blot analysis confirmed expression of KSRP in OK cells and showed PTH-dependent translocation to the nucleus. Immunoprecipitation of KSRP from control and PTH-treated cells followed by RNA isolation and RT-quantitative PCR analysis identified Npt2a mRNA from both control and PTH-treated KSRP pulldowns. Knockdown of KSRP followed by PTH treatment showed that KSRP is required for mediating PTH-stimulated reduction in sodium/hydrogen exchanger 3 mRNA, but not Npt2a mRNA. We conclude that 1) PTH is a major regulator of both transcription and translation, and 2) KSRP binds Npt2a mRNA but its role in PTH regulation of Npt2a mRNA is not clear.

  2. DNA sequence analysis of a 10 624 bp fragment of the left arm of chromosome XV from Saccharomyces cerevisiae reveals a RNA binding protein, a mitochondrial protein, two ribosomal proteins and two new open reading frames.

    PubMed

    Lafuente, M J; Gamo, F J; Gancedo, C

    1996-09-01

    We have determined the sequence of a 10624 bp DNA segment located in the left arm of chromosome XV of Saccharomyces cerevisiae. The sequence contains eight open reading frames (ORFs) longer than 100 amino acids. Two of them do not present significant homology with sequences found in the databases. The product of ORF o0553 is identical to the protein encoded by the gene SMF1. Internal to it there is another ORF, o0555 that is apparently expressed. The proteins encoded by ORFs o0559 and o0565 are identical to ribosomal proteins S19.e and L18 respectively. ORF o0550 encodes a protein with an RNA binding signature including RNP motifs and stretches rich in asparagine, glutamine and arginine.

  3. Knockout of RNA Binding Protein MSI2 Impairs Follicle Development in the Mouse Ovary: Characterization of MSI1 and MSI2 during Folliculogenesis

    PubMed Central

    Sutherland, Jessie M.; Sobinoff, Alexander P.; Gunter, Kara M.; Fraser, Barbara A.; Pye, Victoria; Bernstein, Ilana R.; Boon, Evan; Siddall, Nicole A.; De Andres, Luisa I.; Hime, Gary R.; Holt, Janet E.; Graf, Thomas; McLaughlin, Eileen A.

    2015-01-01

    Characterizing the mechanisms underlying follicle development in the ovary is crucial to understanding female fertility and is an area of increasing research interest. The RNA binding protein Musashi is essential for post-transcriptional regulation of oocyte maturation in Xenopus and is expressed during ovarian development in Drosophila. In mammals Musashi is important for spermatogenesis and male fertility, but its role in the ovary has yet to be characterized. In this study we determined the expression of mammalian Musashi proteins MSI1 and MSI2 during mouse folliculogenesis, and through the use of a MSI2-specific knockout mouse model we identified that MSI2 is essential for normal follicle development. Time-course characterization of MSI1 and MSI2 revealed distinct differences in steady-state mRNA levels and protein expression/localization at important developmental time-points during folliculogenesis. Using a gene-trap mouse model that inactivates Msi2, we observed a significant decrease in ovarian mass, and change in follicle-stage composition due to developmental blocking of antral stage follicles and pre-antral follicle loss through atresia. We also confirmed that hormonally stimulated Msi2-deficient mice produce significantly fewer MII oocytes (60.9% less than controls, p < 0.05). Furthermore, the majority of these oocytes are of poor viability (62.2% non-viable/apoptotic, p < 0.05), which causes a reduction in female fertility evidenced by decreased litter size in Msi2-deficient animals (33.1% reduction to controls, p < 0.05). Our findings indicate that MSI1 and MSI2 display distinct expression profiles during mammalian folliculogenesis and that MSI2 is required for pre-antral follicle development. PMID:26131972

  4. Cold-inducible RNA-binding protein mediates cold air inducible airway mucin production through TLR4/NF-κB signaling pathway.

    PubMed

    Chen, Lingxiu; Ran, Danhua; Xie, Wenyue; Xu, Qing; Zhou, Xiangdong

    2016-10-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases and cold air stimulation has been shown to be associated with the severity of these diseases. However, the regulatory mechanisms that mediate excessive mucin production under cold stress remain elusive. Recently, the cold-inducible RNA-binding protein (CIRP) has been shown to be markedly induced after exposure to cold air. In this study, we sought to explore the expression of CIRP within bronchial biopsy specimens, the effect on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in cold air stimulation process. We found that CIRP protein expression was significantly increased in patients with COPD and in mice treated with cold air. Moreover, cold air stimulation induced MUC5AC expression in wild-type mice but not in CIRP(-/-) mice. In vitro, cold air stress significantly elevated the transcriptional and protein expression levels of MUC5AC in human bronchial epithelial cells. CIRP, toll-like receptor 4 (TLR4) and phosphorylated NF-κB p65 (p-p65) increased significantly in response to cold stress and CIRP siRNA, TLR4 - neutralizing Ab and a specific inhibitor of NF-κB could attenuated cold stress inducible MUC5AC expression. In addition, CIRP siRNA could hindered the expression levels of TLR4 and p-p65 both induced by cold stress. Taken together, these results suggest that airway epithelial cells constitutively express CIRP in vitro and in vivo. CIRP is responsible for cold-inducible MUC5AC expression by activating TLR4/NF-κB signaling pathway. PMID:27423012

  5. Cold-inducible RNA-binding protein mediates cold air inducible airway mucin production through TLR4/NF-κB signaling pathway.

    PubMed

    Chen, Lingxiu; Ran, Danhua; Xie, Wenyue; Xu, Qing; Zhou, Xiangdong

    2016-10-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases and cold air stimulation has been shown to be associated with the severity of these diseases. However, the regulatory mechanisms that mediate excessive mucin production under cold stress remain elusive. Recently, the cold-inducible RNA-binding protein (CIRP) has been shown to be markedly induced after exposure to cold air. In this study, we sought to explore the expression of CIRP within bronchial biopsy specimens, the effect on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in cold air stimulation process. We found that CIRP protein expression was significantly increased in patients with COPD and in mice treated with cold air. Moreover, cold air stimulation induced MUC5AC expression in wild-type mice but not in CIRP(-/-) mice. In vitro, cold air stress significantly elevated the transcriptional and protein expression levels of MUC5AC in human bronchial epithelial cells. CIRP, toll-like receptor 4 (TLR4) and phosphorylated NF-κB p65 (p-p65) increased significantly in response to cold stress and CIRP siRNA, TLR4 - neutralizing Ab and a specific inhibitor of NF-κB could attenuated cold stress inducible MUC5AC expression. In addition, CIRP siRNA could hindered the expression levels of TLR4 and p-p65 both induced by cold stress. Taken together, these results suggest that airway epithelial cells constitutively express CIRP in vitro and in vivo. CIRP is responsible for cold-inducible MUC5AC expression by activating TLR4/NF-κB signaling pathway.

  6. Co-aggregation of RNA binding proteins in ALS spinal motor neurons: evidence of a common pathogenic mechanism.

    PubMed

    Keller, Brian A; Volkening, Kathryn; Droppelmann, Cristian A; Ang, Lee Cyn; Rademakers, Rosa; Strong, Michael J

    2012-11-01

    While the pathogenesis of amyotrophic lateral sclerosis (ALS) remains to be clearly delineated, there is mounting evidence that altered RNA metabolism is a commonality amongst several of the known genetic variants of the disease. In this study, we evaluated the expression of 10 ALS-associated proteins in spinal motor neurons (MNs) in ALS patients with mutations in C9orf72 (C9orf72(GGGGCC)-ALS; n = 5), SOD1 (mtSOD1-ALS; n = 9), FUS/TLS (mtFUS/TLS-ALS; n = 2), or TARDBP (mtTDP-43-ALS; n = 2) and contrasted these to cases of sporadic ALS (sALS; n = 4) and familial ALS without known mutations (fALS; n = 2). We performed colorimetric immunohistochemistry (IHC) using antibodies against TDP-43, FUS/TLS, SOD1, C9orf72, ubiquitin, sequestosome 1 (p62), optineurin, phosphorylated high molecular weight neurofilament, peripherin, and Rho-guanine nucleotide exchange factor (RGNEF). We observed that RGNEF-immunoreactive neuronal cytoplasmic inclusions (NCIs) can co-localize with TDP-43, FUS/TLS and p62 within spinal MNs. We confirmed their capacity to interact by co-immunoprecipitations. We also found that mtSOD1-ALS cases possess a unique IHC signature, including the presence of C9orf72-immunoreactive diffuse NCIs, which allows them to be distinguished from other variants of ALS at the level of light microscopy. These findings support the hypothesis that alterations in RNA metabolism are a core pathogenic pathway in ALS. We also conclude that routine IHC-based analysis of spinal MNs may aid in the identification of families not previously suspected to harbor SOD1 mutations. PMID:22941224

  7. The Conserved FRNK Box in HC-Pro, a Plant Viral Suppressor of Gene Silencing, Is Required for Small RNA Binding and Mediates Symptom Development▿ †

    PubMed Central

    Shiboleth, Yoel Moshe; Haronsky, Elina; Leibman, Diana; Arazi, Tzahi; Wassenegger, Michael; Whitham, Steven A.; Gaba, Victor; Gal-On, Amit

    2007-01-01

    The helper component-proteinase (HC-Pro) protein of potyviruses is a suppressor of gene silencing and has been shown to elicit plant developmental-defect-like symptoms. In Zucchini yellow mosaic virus (ZYMV), a mutation in the highly conserved FR180NK box of HC-Pro to FI180NK causes attenuation of these symptoms. At 5 days postinoculation and before symptoms appear, virus accumulation, HC-Pro protein levels, and viral short interfering RNA (siRNA) levels are similar for the severe (FRNK) and attenuated (FINK) strains. At this stage, ZYMVFRNK caused greater accumulation of most microRNAs (miRNAs), and especially of their complementary miRNA “passenger” strands (miRNA*s), in systemically infected leaves than the attenuated ZYMVFINK did. HC-ProFRNK specifically bound artificial siRNA and miRNA/miRNA* duplexes with a much higher affinity than the mutated HC-ProFINK. Further analysis of the mutant and wild-type HC-Pro proteins revealed that suppressor activity of the ZYMV HCFINK mutant was not diminished. However, the FINK mutation caused a loss of HC-Pro suppressor function in other potyviruses. Replacement of the second positively charged amino acid in the ZYMV FRNK box to result in FRNA also caused symptom attenuation and reduced small RNA duplex-binding affinity without loss of suppressor activity. Our data suggest that the highly conserved FRNK box in the HC-Pro of potyviruses is a probable point of contact with siRNA and miRNA duplexes. The interaction of the FRNK box with populations of miRNAs directly influences their accumulation levels and regulatory functions, resulting in symptom development. PMID:17898058

  8. The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor

    SciTech Connect

    Leeuw, Frederic de; Zhang Tong; Wauquier, Corinne; Huez, Georges; Kruys, Veronique; Gueydan, Cyril

    2007-12-10

    The cold-inducible RNA-binding protein (CIRP) is a nuclear 18-kDa protein consisting of an amino-terminal RNA Recognition Motif (RRM) and a carboxyl-terminal domain containing several RGG motifs. First characterized for its overexpression upon cold shock, CIRP is also induced by stresses such as UV irradiation and hypoxia. Here, we investigated the expression as well as the subcellular localization of CIRP in response to other stress conditions. We demonstrate that oxidative stress leads to the migration of CIRP to stress granules (SGs) without alteration of expression. Stress granules are dynamic cytoplasmic foci at which stalled translation initiation complexes accumulate in cells subjected to environmental stress. Relocalization of CIRP into SGs also occurs upon other cytoplasmic stresses (osmotic pressure or heat shock) as well as in response to stresses of the endoplasmic reticulum. CIRP migration into SGs is independent from TIA-1 which has been previously reported to be a general mediator of SG formation, thereby suggesting the existence of multiple pathways leading to SG formation. Moreover, deletion mutants revealed that both RGG and RRM domains can independently promote CIRP migration into SGs. However, the methylation of arginine residues in the RGG domain is necessary for CIRP to exit the nucleus to be further recruited into SGs. By RNA-tethering experiments, we also show that CIRP down-regulates mRNA translation and that this activity is carried by the carboxyl-terminal RG-enriched domain. Altogether, our findings further reveal the diversity of mechanisms by which CIRP is regulated by environmental stresses and provide new insights into CIRP cytoplasmic function.

  9. The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress

    PubMed Central

    Thatcher, Louise F.; Kamphuis, Lars G.; Hane, James K.; Oñate-Sánchez, Luis; Singh, Karam B.

    2015-01-01

    Glutathione S-transferases (GSTs) play important roles in the protection of cells against toxins and oxidative damage where one Arabidopsis member, GSTF8, has become a commonly used marker gene for early stress and defense responses. A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (enhanced stress response 1) mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to encode a KH-domain containing RNA-binding protein (At5g53060). Whole transcriptome sequencing of esr1-1 identified altered expression of genes involved in responses to biotic and abiotic stimuli, hormone signaling pathways and developmental processes. In particular was an overall significant enrichment for jasmonic acid (JA) mediated processes in the esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility and we found the expression of some but not all were reduced in esr1-1. The esr1-1 mutant was not impaired in other aspects of JA-signalling such as JA- sensitivity or development, suggesting ESR1 functions in specific components of the JA-signaling pathway. Examination of salicylic acid (SA) regulated marker genes in esr1-1 showed no increase in basal or SA induced expression suggesting repression of JA-regulated genes is not due to antagonistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins with ESR1 unlinking JA-mediated growth and defense responses. PMID:25985302

  10. MKP-1 mRNA Stabilization and Translational Control by RNA-Binding Proteins HuR and NF90▿ †

    PubMed Central

    Kuwano, Yuki; Kim, Hyeon Ho; Abdelmohsen, Kotb; Pullmann, Rudolf; Martindale, Jennifer L.; Yang, Xiaoling; Gorospe, Myriam

    2008-01-01

    The mitogen-activated protein (MAP) kinase phosphatase 1 (MKP-1) plays a major role in dephosphorylating and thereby inactivating the MAP kinases extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. Here, we examine the posttranscriptional events underlying the robust MKP-1 induction by oxidants in HeLa cells. H2O2 treatment potently stabilized the MKP-1 mRNA and increased the association of MKP-1 mRNA with the translation machinery. Four RNA-binding proteins (RNA-BPs) that influence mRNA turnover and/or translation (HuR, NF90, TIAR, and TIA-1) were found to bind to biotinylated transcripts spanning the MKP-1 AU-rich 3′ untranslated region. By using ribonucleoprotein immunoprecipitation analysis, we showed that H2O2 treatment increased the association of MKP-1 mRNA with HuR and NF90 and decreased its association with the translational repressors TIAR and TIA-1. HuR or NF90 silencing significantly diminished the H2O2-stimulated MKP-1 mRNA stability; HuR silencing also markedly decreased MKP-1 translation. In turn, lowering MKP-1 expression in HuR-silenced cultures resulted in substantially elevated phosphorylation of JNK and p38 after H2O2 treatment. Collectively, MKP-1 upregulation by oxidative stress is potently influenced by increased mRNA stability and translation, mediated at least in part by the RNA-BPs HuR and NF90. PMID:18490444

  11. The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress.

    PubMed

    Thatcher, Louise F; Kamphuis, Lars G; Hane, James K; Oñate-Sánchez, Luis; Singh, Karam B

    2015-01-01

    Glutathione S-transferases (GSTs) play important roles in the protection of cells against toxins and oxidative damage where one Arabidopsis member, GSTF8, has become a commonly used marker gene for early stress and defense responses. A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (enhanced stress response 1) mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to encode a KH-domain containing RNA-binding protein (At5g53060). Whole transcriptome sequencing of esr1-1 identified altered expression of genes involved in responses to biotic and abiotic stimuli, hormone signaling pathways and developmental processes. In particular was an overall significant enrichment for jasmonic acid (JA) mediated processes in the esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility and we found the expression of some but not all were reduced in esr1-1. The esr1-1 mutant was not impaired in other aspects of JA-signalling such as JA- sensitivity or development, suggesting ESR1 functions in specific components of the JA-signaling pathway. Examination of salicylic acid (SA) regulated marker genes in esr1-1 showed no increase in basal or SA induced expression suggesting repression of JA-regulated genes is not due to antagonistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins with ESR1 unlinking JA-mediated growth and defense responses.

  12. Mechanism for pH-dependent gene regulation by amino-terminus-mediated homooligomerization of Bacillus subtilis anti-trp RNA-binding attenuation protein.

    PubMed

    Sachleben, Joseph R; McElroy, Craig A; Gollnick, Paul; Foster, Mark P

    2010-08-31

    Anti-TRAP (AT) is a small zinc-binding protein that regulates tryptophan biosynthesis in Bacillus subtilis by binding to tryptophan-bound trp RNA-binding attenuation protein (TRAP), thereby preventing it from binding RNA, and allowing transcription and translation of the trpEDCFBA operon. Crystallographic and sedimentation studies have shown that AT can homooligomerize to form a dodecamer, AT(12), composed of a tetramer of trimers, AT(3). Structural and biochemical studies suggest that only trimeric AT is active for binding to TRAP. Our chromatographic and spectroscopic data revealed that a large fraction of recombinantly overexpressed AT retains the N-formyl group (fAT), presumably due to incomplete N-formyl-methionine processing by peptide deformylase. Hydrodynamic parameters from NMR relaxation and diffusion measurements showed that fAT is exclusively trimeric (AT(3)), while (deformylated) AT exhibits slow exchange between both trimeric and dodecameric forms. We examined this equilibrium using NMR spectroscopy and found that oligomerization of active AT(3) to form inactive AT(12) is linked to protonation of the amino terminus. Global analysis of the pH dependence of the trimer-dodecamer equilibrium revealed a near physiological pK(a) for the N-terminal amine of AT and yielded a pH-dependent oligomerization equilibrium constant. Estimates of excluded volume effects due to molecular crowding suggest the oligomerization equilibrium may be physiologically important. Because deprotonation favors "active" trimeric AT and protonation favors "inactive" dodecameric AT, our findings illuminate a possible mechanism for sensing and responding to changes in cellular pH. PMID:20713740

  13. Insulin-like growth factor II mRNA binding protein 3 (IMP3) is overexpressed in prostate cancer and correlates with higher Gleason scores

    PubMed Central

    2010-01-01

    Background The oncofetal protein insulin-like growth factor II mRNA binding protein 3 (IMP3) is an important factor for cell-migration and adhesion in malignancies. Recent studies have shown a remarkable overexpression of IMP3 in different human malignant neoplasms and also revealed it as an important prognostic marker in some tumor entities. To our knowledge, IMP3 expression has not been investigated in prostate carcinomas so far. Methods Immunohistochemical stainings for IMP3 were performed on tissue microarray (TMA) organized samples from 507 patients: 31 normal prostate tissues, 425 primary carcinomas and 51 prostate cancer metastases or castration-resistant prostate cancers (CRPC). IMP3 immunoreactivity was semiquantitatively scored and correlated with clinical-pathologic parameters including survival. Results IMP3 is significantly stronger expressed in prostate carcinomas compared to normal prostate tissues (p < 0.0001), but did not show significant correlation with the pT-stage, the proliferation index (MIB1), preoperative serum PSA level and the margin status. Only a weak and slightly significant correlation was found with the Gleason score and IMP3 expression failed to show prognostic significance in clinico-pathological correlation-analyses. Conclusions Although IMP3 is overexpressed in a significant proportion of prostate cancer cases, which might be of importance for novel therapeutic approaches, it does not appear to possess any immediate diagnostic or prognostic value, limiting its potential as a tissue biomarker for prostate cancer. These results might be corroborated by the fact, that two independent tumor cohorts were separately reviewed. PMID:20591150

  14. RNA-binding protein HuD reduces triglyceride production in pancreatic β cells by enhancing the expression of insulin-induced gene 1.

    PubMed

    Kim, Chongtae; Lee, Heejin; Kang, Hoin; Shin, Jung Jae; Tak, Hyosun; Kim, Wook; Gorospe, Myriam; Lee, Eun Kyung

    2016-04-01

    Although triglyceride (TG) accumulation in the pancreas leads to β-cell dysfunction and raises the chance to develop metabolic disorders such as type 2 diabetes (T2DM), the molecular mechanisms whereby intracellular TG levels are regulated in pancreatic β cells have not been fully elucidated. Here, we present evidence that the RNA-binding protein HuD regulates TG production in pancreatic β cells. Mouse insulinoma βTC6 cells stably expressing a small hairpin RNA targeting HuD (shHuD) (βTC6-shHuD) contained higher TG levels compared to control cells. Moreover, downregulation of HuD resulted in a decrease in insulin-induced gene 1 (INSIG1) levels but not in the levels of sterol regulatory element-binding protein 1c (SREBP1c), a key transcription factor for lipid production. We identified Insig1 mRNA as a direct target of HuD by using ribonucleoprotein immunoprecipitation (RIP) and biotin pulldown analyses. By associating with the 3'-untranslated region (3'UTR) of Insig1 mRNA, HuD promoted INSIG1 translation; accordingly, HuD downregulation reduced while ectopic HuD expression increased INSIG1 levels. We further observed that HuD downregulation facilitated the nuclear localization of SREBP1c, thereby increasing the transcriptional activity of SREBP1c and the expression of target genes involved in lipogenesis; likewise, we observed lower INSIG1 levels in the pancreatic islets of HuD-null mice. Taken together, our results indicate that HuD functions as a novel repressor of lipid synthesis in pancreatic β cells.

  15. Conserved amino acids in each subunit of the heteroligomeric tRNA m1A58 Mtase from Saccharomyces cerevisiae contribute to tRNA binding

    PubMed Central

    Ozanick, Sarah G.; Bujnicki, Janusz M.; Sem, Daniel S.; Anderson, James T.

    2007-01-01

    In Saccharomyces cerevisiae, a two-subunit methyltransferase (Mtase) encoded by the essential genes TRM6 and TRM61 is responsible for the formation of 1-methyladenosine, a modified nucleoside found at position 58 in tRNA that is critical for the stability of tRNAiMet. The crystal structure of the homotetrameric m1A58 tRNA Mtase from Mycobacterium tuberculosis, TrmI, has been solved and was used as a template to build a model of the yeast m1A58 tRNA Mtase heterotetramer. We altered amino acids in TRM6 and TRM61 that were predicted to be important for the stability of the heteroligomer based on this model. Yeast strains expressing trm6 and trm61 mutants exhibited growth phenotypes indicative of reduced m1A formation. In addition, recombinant mutant enzymes had reduced in vitro Mtase activity. We demonstrate that the mutations introduced do not prevent heteroligomer formation and do not disrupt binding of the cofactor S-adenosyl-l-methionine. Instead, amino acid substitutions in either Trm6p or Trm61p destroy the ability of the yeast m1A58 tRNA Mtase to bind tRNAiMet, indicating that each subunit contributes to tRNA binding and suggesting a structural alteration of the substrate-binding pocket occurs when these mutations are present. PMID:17932071

  16. Novel RNA-binding protein P311 binds eukaryotic translation initiation factor 3 subunit b (eIF3b) to promote translation of transforming growth factor β1-3 (TGF-β1-3).

    PubMed

    Yue, Michael M; Lv, Kaosheng; Meredith, Stephen C; Martindale, Jennifer L; Gorospe, Myriam; Schuger, Lucia

    2014-12-01

    P311, a conserved 8-kDa intracellular protein expressed in brain, smooth muscle, regenerating tissues, and malignant glioblastomas, represents the first documented stimulator of TGF-β1-3 translation in vitro and in vivo. Here we initiated efforts to define the mechanism underlying P311 function. PONDR® (Predictor Of Naturally Disordered Regions) analysis suggested and CD confirmed that P311 is an intrinsically disordered protein, therefore requiring an interacting partner to acquire tertiary structure and function. Immunoprecipitation coupled with mass spectroscopy identified eIF3 subunit b (eIF3b) as a novel P311 binding partner. Immunohistochemical colocalization, GST pulldown, and surface plasmon resonance studies revealed that P311-eIF3b interaction is direct and has a Kd of 1.26 μm. Binding sites were mapped to the non-canonical RNA recognition motif of eIF3b and a central 11-amino acid-long region of P311, here referred to as eIF3b binding motif. Disruption of P311-eIF3b binding inhibited translation of TGF-β1, 2, and 3, as indicated by luciferase reporter assays, polysome fractionation studies, and Western blot analysis. RNA precipitation assays after UV cross-linking and RNA-protein EMSA demonstrated that P311 binds directly to TGF-β 5'UTRs mRNAs through a previously unidentified RNA recognition motif-like motif. Our results demonstrate that P311 is a novel RNA-binding protein that, by interacting with TGF-βs 5'UTRs and eIF3b, stimulates the translation of TGF-β1, 2, and 3.

  17. Essential Roles of RNA-binding Protein HuR in Activation of Hepatic Stellate Cells Induced by Transforming Growth Factor-β1

    PubMed Central

    Ge, Jingjing; Chang, Na; Zhao, Zhongxin; Tian, Lei; Duan, Xianghui; Yang, Lin; Li, Liying

    2016-01-01

    RNA-binding protein HuR mediates transforming growth factor (TGF)-β1-induced profibrogenic actions. Up-regulation of Sphingosine kinase 1 (SphK1) is involved in TGF-β1-induced activation of hepatic stellate cells (HSCs) in liver fibrogenesis. However, the molecular mechanism of TGF-β1 regulates SphK1 remains unclear. This study was designed to investigate the role of HuR in TGF-β1-induced SphK1 expression and identify a new molecular mechanism in liver fibrogenensis. In vivo, HuR expression was increased, translocated to cytoplasm, and bound to SphK1 mRNA in carbon tetrachloride- and bile duct ligation-induced mouse fibrotic liver. HuR mRNA expression had a positive correlation with mRNA expressions of SphK1 and fibrotic markers, α-smooth muscle actin (α-SMA) and Collagen α1(I), respectively. In vitro, up-regulation of SphK1 and activation of HSCs stimulated by TGF-β1 depended on HuR cytoplasmic accumulation. The effects of TGF-β1 were diminished when HuR was silenced or HuR cytoplasmic translocation was blocked. Meanwhile, overexpression of HuR mimicked the effects of TGF-β1. Furthermore, TGF-β1 prolonged half-life of SphK1 mRNA by promoting its binding to HuR. Pharmacological or siRNA-induced SphK1 inhibition abrogated HuR-mediated HSC activation. In conclusion, our data suggested that HuR bound to SphK1 mRNA and played a crucial role in TGF-β1-induced HSC activation. PMID:26912347

  18. The NDR Kinase Cbk1 Downregulates the Transcriptional Repressor Nrg1 through the mRNA-Binding Protein Ssd1 in Candida albicans.

    PubMed

    Lee, Hye-Jeong; Kim, Jong-Myeong; Kang, Woo Kyu; Yang, Heebum; Kim, Jeong-Yoon

    2015-07-01

    NDR (nuclear Dbf2-related) kinases are essential components for polarized morphogenesis, cytokinesis, cell proliferation, and apoptosis. The NDR kinase Cbk1 is required for the hyphal growth of Candida albicans; however, the molecular functions of Cbk1 in hyphal morphogenesis are largely unknown. Here, we report that Cbk1 downregulates the transcriptional repressor Nrg1 through the mRNA-binding protein Ssd1, which has nine Cbk1 phosphorylation consensus motifs. We found that deletion of SSD1 partially suppressed the defective hyphal growth of the C. albicans cbk1Δ/Δ mutant and that Ssd1 physically interacts with Cbk1. Cbk1 was required for Ssd1 localization to polarized growth sites. The phosphomimetic SSD1 allele (ssd1-9E) allowed the cbk1Δ/Δ mutant to form short hyphae, and the phosphodeficient SSD1 allele (ssd1-9A) resulted in shorter hyphae than did the wild-type SSD1 allele, indicating that Ssd1 phosphorylation by Cbk1 is important for hyphal morphogenesis. Furthermore, we show that the transcriptional repressor Nrg1 does not disappear during hyphal initiation in the cbk1Δ/Δ mutant but is completely absent in the cbk1Δ/Δ ssd1Δ/Δ double mutant. Deletion of SSD1 also increased Als3 expression and internalization of the cbk1Δ/Δ mutant in the human embryonic kidney cell line HEK293T. Collectively, our results suggest that one of the functions of Cbk1 in the hyphal morphogenesis of C. albicans is to downregulate Nrg1 through Ssd1.

  19. Essential Roles of RNA-binding Protein HuR in Activation of Hepatic Stellate Cells Induced by Transforming Growth Factor-β1.

    PubMed

    Ge, Jingjing; Chang, Na; Zhao, Zhongxin; Tian, Lei; Duan, Xianghui; Yang, Lin; Li, Liying

    2016-02-25

    RNA-binding protein HuR mediates transforming growth factor (TGF)-β1-induced profibrogenic actions. Up-regulation of Sphingosine kinase 1 (SphK1) is involved in TGF-β1-induced activation of hepatic stellate cells (HSCs) in liver fibrogenesis. However, the molecular mechanism of TGF-β1 regulates SphK1 remains unclear. This study was designed to investigate the role of HuR in TGF-β1-induced SphK1 expression and identify a new molecular mechanism in liver fibrogenensis. In vivo, HuR expression was increased, translocated to cytoplasm, and bound to SphK1 mRNA in carbon tetrachloride- and bile duct ligation-induced mouse fibrotic liver. HuR mRNA expression had a positive correlation with mRNA expressions of SphK1 and fibrotic markers, α-smooth muscle actin (α-SMA) and Collagen α1(I), respectively. In vitro, up-regulation of SphK1 and activation of HSCs stimulated by TGF-β1 depended on HuR cytoplasmic accumulation. The effects of TGF-β1 were diminished when HuR was silenced or HuR cytoplasmic translocation was blocked. Meanwhile, overexpression of HuR mimicked the effects of TGF-β1. Furthermore, TGF-β1 prolonged half-life of SphK1 mRNA by promoting its binding to HuR. Pharmacological or siRNA-induced SphK1 inhibition abrogated HuR-mediated HSC activation. In conclusion, our data suggested that HuR bound to SphK1 mRNA and played a crucial role in TGF-β1-induced HSC activation.

  20. B Cell-Intrinsic Expression of the HuR RNA-Binding Protein Is Required for the T Cell-Dependent Immune Response In Vivo.

    PubMed

    DeMicco, Amy; Naradikian, Martin S; Sindhava, Vishal J; Yoon, Je-Hyun; Gorospe, Myriam; Wertheim, Gerald B; Cancro, Michael P; Bassing, Craig H

    2015-10-01

    The HuR RNA-binding protein posttranscriptionally controls expression of genes involved in cellular survival, proliferation, and differentiation. To determine roles of HuR in B cell development and function, we analyzed mice with B lineage-specific deletion of the HuR gene. These HuRΔ/Δ mice have reduced numbers of immature bone marrow and mature splenic B cells, with only the former rescued by p53 inactivation, indicating that HuR supports B lineage cells through developmental stage-specific mechanisms. Upon in vitro activation, HuRΔ/Δ B cells have a mild proliferation defect and impaired ability to produce mRNAs that encode IgH chains of secreted Abs, but no deficiencies in survival, isotype switching, or expression of germinal center (GC) markers. In contrast, HuRΔ/Δ mice have minimal serum titers of all Ab isotypes, decreased numbers of GC and plasma B cells, and few peritoneal B-1 B cells. Moreover, HuRΔ/Δ mice have severely decreased GCs, T follicular helper cells, and high-affinity Abs after immunization with a T cell-dependent Ag. This failure of HuRΔ/Δ mice to mount a T cell-dependent Ab response contrasts with the ability of HuRΔ/Δ B cells to become GC-like in vitro, indicating that HuR is essential for aspects of B cell activation unique to the in vivo environment. Consistent with this notion, we find in vitro stimulated HuRΔ/Δ B cells exhibit modestly reduced surface expression of costimulatory molecules whose expression is similarly decreased in humans with common variable immunodeficiency. HuRΔ/Δ mice provide a model to identify B cell-intrinsic factors that promote T cell-dependent immune responses in vivo.

  1. B Cell-Intrinsic Expression of the HuR RNA-Binding Protein Is Required for the T Cell-Dependent Immune Response In Vivo.

    PubMed

    DeMicco, Amy; Naradikian, Martin S; Sindhava, Vishal J; Yoon, Je-Hyun; Gorospe, Myriam; Wertheim, Gerald B; Cancro, Michael P; Bassing, Craig H

    2015-10-01

    The HuR RNA-binding protein posttranscriptionally controls expression of genes involved in cellular survival, proliferation, and differentiation. To determine roles of HuR in B cell development and function, we analyzed mice with B lineage-specific deletion of the HuR gene. These HuRΔ/Δ mice have reduced numbers of immature bone marrow and mature splenic B cells, with only the former rescued by p53 inactivation, indicating that HuR supports B lineage cells through developmental stage-specific mechanisms. Upon in vitro activation, HuRΔ/Δ B cells have a mild proliferation defect and impaired ability to produce mRNAs that encode IgH chains of secreted Abs, but no deficiencies in survival, isotype switching, or expression of germinal center (GC) markers. In contrast, HuRΔ/Δ mice have minimal serum titers of all Ab isotypes, decreased numbers of GC and plasma B cells, and few peritoneal B-1 B cells. Moreover, HuRΔ/Δ mice have severely decreased GCs, T follicular helper cells, and high-affinity Abs after immunization with a T cell-dependent Ag. This failure of HuRΔ/Δ mice to mount a T cell-dependent Ab response contrasts with the ability of HuRΔ/Δ B cells to become GC-like in vitro, indicating that HuR is essential for aspects of B cell activation unique to the in vivo environment. Consistent with this notion, we find in vitro stimulated HuRΔ/Δ B cells exhibit modestly reduced surface expression of costimulatory molecules whose expression is similarly decreased in humans with common variable immunodeficiency. HuRΔ/Δ mice provide a model to identify B cell-intrinsic factors that promote T cell-dependent immune responses in vivo. PMID:26320247

  2. The trp RNA-binding attenuation protein of Bacillus subtilis regulates translation of the tryptophan transport gene trpP (yhaG) by blocking ribosome binding.

    PubMed

    Yakhnin, Helen; Zhang, Hong; Yakhnin, Alexander V; Babitzke, Paul

    2004-01-01

    Expression of the Bacillus subtilis tryptophan biosynthetic genes (trpEDCFBA and pabA [trpG]) is regulated in response to tryptophan by TRAP, the trp RNA-binding attenuation protein. TRAP-mediated regulation of the tryptophan biosynthetic genes includes a transcription attenuation and two distinct translation control mechanisms. TRAP also regulates translation of trpP (yhaG), a single-gene operon that encodes a putative tryptophan transporter. Its translation initiation region contains triplet repeats typical of TRAP-regulated mRNAs. We found that regulation of trpP and pabA is unaltered in a rho mutant strain. Results from filter binding and gel mobility shift assays demonstrated that TRAP binds specifically to a segment of the trpP transcript that includes the untranslated leader and translation initiation region. While the affinities of TRAP for the trpP and pabA transcripts are similar, TRAP-mediated translation control of trpP is much more extensive than for pabA. RNA footprinting revealed that the trpP TRAP binding site consists of nine triplet repeats (five GAG, three UAG, and one AAG) that surround and overlap the trpP Shine-Dalgarno (S-D) sequence and translation start codon. Results from toeprint and RNA-directed cell-free translation experiments indicated that tryptophan-activated TRAP inhibits TrpP synthesis by preventing binding of a 30S ribosomal subunit. Taken together, our results establish that TRAP regulates translation of trpP by blocking ribosome binding. Thus, TRAP coordinately regulates tryptophan synthesis and transport by three distinct mechanisms: attenuation transcription of the trpEDCFBA operon, promoting formation of the trpE S-D blocking hairpin, and blocking ribosome binding to the pabA and trpP transcripts. PMID:14702295

  3. Architecture and RNA binding of the human negative elongation factor

    PubMed Central

    Vos, Seychelle M; Pöllmann, David; Caizzi, Livia; Hofmann, Katharina B; Rombaut, Pascaline; Zimniak, Tomasz; Herzog, Franz; Cramer, Patrick

    2016-01-01

    Transcription regulation in metazoans often involves promoter-proximal pausing of RNA polymerase (Pol) II, which requires the 4-subunit negative elongation factor (NELF). Here we discern the functional architecture of human NELF through X-ray crystallography, protein crosslinking, biochemical assays, and RNA crosslinking in cells. We identify a NELF core subcomplex formed by conserved regions in subunits NELF-A and NELF-C, and resolve its crystal structure. The NELF-AC subcomplex binds single-stranded nucleic acids in vitro, and NELF-C associates with RNA in vivo. A positively charged face of NELF-AC is involved in RNA binding, whereas the opposite face of the NELF-AC subcomplex binds NELF-B. NELF-B is predicted to form a HEAT repeat fold, also binds RNA in vivo, and anchors the subunit NELF-E, which is confirmed to bind RNA in vivo. These results reveal the three-dimensional architecture and three RNA-binding faces of NELF. DOI: http://dx.doi.org/10.7554/eLife.14981.001 PMID:27282391

  4. Insulin-like growth factor 2 mRNA-binding protein-3 as a marker for distinguishing between cutaneous squamous cell carcinoma and keratoacanthoma

    PubMed Central

    KANZAKI, AKIKO; KUDO, MITSUHIRO; ANSAI, SHIN-ICHI; PENG, WEI-XIA; ISHINO, KOUSUKE; YAMAMOTO, TETSUSHI; WADA, RYUICHI; FUJII, TAKENORI; TEDUKA, KIYOSHI; KAWAHARA, KIYOKO; KAWAMOTO, YOKO; KITAMURA, TAEKO; KAWANA, SEIJI; SAEKI, HIDEHISA; NAITO, ZENYA

    2016-01-01

    In the histopathological diagnosis of cutaneous tumors, the differential diagnosis of squamous cell carcinoma (SCC) with crateriform architecture and keratoacanthoma (KA) is often difficult so an accurate understanding of the biological features and the identification of reliable markers of SCC and KA are crucial issues. Insulin-like growth factor 2 mRNA-binding protein-3 (IGF2BP3, also known as IMP3) is thought of as a bona fide oncofetal protein, which is overexpressed and is involved in cell proliferation, migration, and invasion in several kinds of tumors. However, the role of IMP3 in cutaneous SCC and KA has not been well studied. Therefore, we focused on studying the biological functions of IMP3 in SCC and KA. In human skin SCC cell lines, HSC-1 and HSC-5, and the human keratinocyte cell line, HaCaT, IMP3 mRNA levels were significantly higher than that of normal human skin. The knockdown of IMP3 expression reduced the proliferation of HSC-1, and significantly reduced invasion by HSC-1 and HSC-5. In contrast, the knockdown of IMP3 did not significantly affect invasion by HaCaT cells. In immunohistochemical studies of SCC and KA tissues, the Ki-67 labeling index (LI) of the suprabasal cell layer was significantly higher in SCC, compared with KA tissues and the tumor-free margin (TFM) adjacent to SCC and KA. Most SCC tissues stained strongly positive for IMP3, but KA tissues and TFM were mostly negative for IMP3. The Ki-67 LI of the IMP3-positive group was significantly higher than that of the IMP3-negative group in the suprabasal cell layer of SCC. These results suggest that IMP3 plays an important role in proliferation and, more significantly, in the invasion of SCC, and may be a suitable marker for the histopathological diagnosis of SCC with a crateriform architecture and KA. Furthermore, IMP3 may potentially be a new therapeutic target for SCC. PMID:26782292

  5. Structural and Biochemical Analysis of the Hordeum vulgare L. HvGR-RBP1 Protein, a Glycine-Rich RNA-Binding Protein Involved in the Regulation of Barley Plant Development and Stress Response

    PubMed Central

    2015-01-01

    The timing of whole-plant senescence influences important agricultural traits such as yield and grain protein content. Post-transcriptional regulation by plant RNA-binding proteins is essential for proper control of gene expression, development, and stress responses. Here, we report the three-dimensional solution NMR structure and nucleic acid-binding properties of the barley glycine-rich RNA-binding protein HvGR-RBP1, whose transcript has been identified as being >45-fold up-regulated in early—as compared to late—senescing near-isogenic barley germplasm. NMR analysis reveals that HvGR-RBP1 is a multidomain protein comprising a well-folded N-terminal RNA Recognition Motif (RRM) and a structurally disordered C-terminal glycine-rich domain. Chemical shift differences observed in 2D 1H–15N correlation (HSQC) NMR spectra of full-length HvGR-RBP1 and N-HvGR-RBP1 (RRM domain only) suggest that the two domains can interact both in-trans and intramolecularly, similar to what is observed in the tobacco NtGR-RBP1 protein. Further, we show that the RRM domain of HvGR-RBP1 binds single-stranded DNA nucleotide fragments containing the consensus nucleotide sequence 5′-TTCTGX-3′ with low micromolar affinity in vitro. We also demonstrate that the C-terminal glycine-rich (HvGR) domain of Hv-GR-RBP1 can interact nonspecifically with ssRNA in vitro. Structural similarities with other plant glycine-rich RNA-binding proteins suggest that HvGR-RBP1 may be multifunctional. Based on gene expression analysis following cold stress in barley and E. coli growth studies following cold shock treatment, we conclude that HvGR-RBP1 functions in a manner similar to cold-shock proteins and harbors RNA chaperone activity. HvGR-RBP1 is therefore not only involved in the regulation of barley development including senescence, but also functions in plant responses to environmental stress. PMID:25495582

  6. Structural and biochemical analysis of the Hordeum vulgare L. HvGR-RBP1 protein, a glycine-rich RNA-binding protein involved in the regulation of barley plant development and stress response.

    PubMed

    Tripet, Brian P; Mason, Katelyn E; Eilers, Brian J; Burns, Jennifer; Powell, Paul; Fischer, Andreas M; Copié, Valérie

    2014-12-23

    The timing of whole-plant senescence influences important agricultural traits such as yield and grain protein content. Post-transcriptional regulation by plant RNA-binding proteins is essential for proper control of gene expression, development, and stress responses. Here, we report the three-dimensional solution NMR structure and nucleic acid-binding properties of the barley glycine-rich RNA-binding protein HvGR-RBP1, whose transcript has been identified as being >45-fold up-regulated in early-as compared to late-senescing near-isogenic barley germplasm. NMR analysis reveals that HvGR-RBP1 is a multidomain protein comprising a well-folded N-terminal RNA Recognition Motif (RRM) and a structurally disordered C-terminal glycine-rich domain. Chemical shift differences observed in 2D (1)H-(15)N correlation (HSQC) NMR spectra of full-length HvGR-RBP1 and N-HvGR-RBP1 (RRM domain only) suggest that the two domains can interact both in-trans and intramolecularly, similar to what is observed in the tobacco NtGR-RBP1 protein. Further, we show that the RRM domain of HvGR-RBP1 binds single-stranded DNA nucleotide fragments containing the consensus nucleotide sequence 5'-TTCTGX-3' with low micromolar affinity in vitro. We also demonstrate that the C-terminal glycine-rich (HvGR) domain of Hv-GR-RBP1 can interact nonspecifically with ssRNA in vitro. Structural similarities with other plant glycine-rich RNA-binding proteins suggest that HvGR-RBP1 may be multifunctional. Based on gene expression analysis following cold stress in barley and E. coli growth studies following cold shock treatment, we conclude that HvGR-RBP1 functions in a manner similar to cold-shock proteins and harbors RNA chaperone activity. HvGR-RBP1 is therefore not only involved in the regulation of barley development including senescence, but also functions in plant responses to environmental stress.

  7. Bases in 16S rRNA important for subunit association, tRNA binding, and translocation.

    PubMed

    Shi, Xinying; Chiu, Katie; Ghosh, Srikanta; Joseph, Simpson

    2009-07-28

    Ribosomes are the cellular machinery responsible for protein synthesis. A well-orchestrated step in the elongation cycle of protein synthesis is the precise translocation of the tRNA-mRNA complex within the ribosome. Here we report the application of a new in vitro modification-interference method for the identification of bases in 16S rRNA that are essential for translocation. Our results suggest that conserved bases U56, U723, A1306, A1319, and A1468 in 16S rRNA are important for translocation. These five bases were deleted or mutated so their role in translation could be studied. Depending on the type of mutation, we observed inhibition of growth rate, subunit association, tRNA binding, and/or translocation. Interestingly, deletion of U56 or A1319 or mutation of A1319 to C showed a lethal phenotype and were defective in protein synthesis in vitro. Further analysis showed that deletion of U56 or A1319 caused defects in 30S subunit assembly, subunit association, and tRNA binding. In contrast, the A1319C mutation showed no defects in subunit association; however, the extent of tRNA binding and translocation was significantly reduced. These results show that conserved bases located as far as 100 A from the tRNA binding sites can be important for translation.

  8. The RNA-binding motif 45 (RBM45) protein accumulates in inclusion bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) patients.

    PubMed

    Collins, Mahlon; Riascos, David; Kovalik, Tina; An, Jiyan; Krupa, Kelly; Krupa, Kristin; Hood, Brian L; Conrads, Thomas P; Renton, Alan E; Traynor, Bryan J; Bowser, Robert

    2012-11-01

    RNA-binding protein pathology now represents one of the best characterized pathologic features of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration patients with TDP-43 or FUS pathology (FTLD-TDP and FTLD-FUS). Using liquid chromatography tandem mass spectrometry, we identified altered levels of the RNA-binding motif 45 (RBM45) protein in the cerebrospinal fluid (CSF) of ALS patients. This protein contains sequence similarities to TAR DNA-binding protein 43 (TDP-43) and fused-in-sarcoma (FUS) that are contained in cytoplasmic inclusions of ALS and FTLD-TDP or FTLD-FUS patients. To further characterize RBM45, we first verified the presence of RBM45 in CSF and spinal cord tissue extracts of ALS patients by immunoblot. We next used immunohistochemistry to examine the subcellular distribution of RBM45 and observed in a punctate staining pattern within nuclei of neurons and glia in the brain and spinal cord. We also detected RBM45 cytoplasmic inclusions in 91 % of ALS, 100 % of FTLD-TDP and 75 % of Alzheimer's disease (AD) cases. The most extensive RBM45 pathology was observed in patients that harbor the C9ORF72 hexanucleotide repeat expansion. These RBM45 inclusions were observed in spinal cord motor neurons, glia and neurons of the dentate gyrus. By confocal microscopy, RBM45 co-localizes with ubiquitin and TDP-43 in inclusion bodies. In neurons containing RBM45 cytoplasmic inclusions we often detected the protein in a punctate pattern within the nucleus that lacked either TDP-43 or ubiquitin. We identified RBM45 using a proteomic screen of CSF from ALS and control subjects for candidate biomarkers, and link this RNA-binding protein to inclusion pathology in ALS, FTLD-TDP and AD.

  9. JACALIN-LECTIN LIKE1 Regulates the Nuclear Accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, Influencing the RNA Processing of FLOWERING LOCUS C Antisense Transcripts and Flowering Time in Arabidopsis1[OPEN

    PubMed Central

    Xiao, Jun; Li, Chunhua; Xu, Shujuan; Xing, Lijing; Xu, Yunyuan; Chong, Kang

    2015-01-01

    Lectins selectively recognize sugars or glycans for defense in living cells, but less is known about their roles in the development process and the functional network with other factors. Here, we show that Arabidopsis (Arabidopsis thaliana) JACALIN-LECTIN LIKE1 (AtJAC1) functions in flowering time control. Loss of function of AtJAC1 leads to precocious flowering, whereas overexpression of AtJAC1 causes delayed flowering. AtJAC1 influences flowering through regulation of the key flowering repressor gene FLOWERING LOCUS C (FLC). Genetic analysis revealed that AtJAC1’s function is mostly dependent on GLYCINE-RICH RNA-BINDING PROTEIN7 (GRP7), an upstream regulator of FLC. Biochemical and cell biological data indicated that AtJAC1 interacted physically with GRP7 specifically in the cytoplasm. AtJAC1 influences the nucleocytoplasmic distribution of GRP7, with predominant nuclear localization of GRP7 when AtJAC1 function is lost but retention of GRP7 in the cytoplasm when AtJAC1 is overexpressed. A temporal inducible assay suggested that AtJAC1’s regulation of flowering could be compromised by the nuclear accumulation of GRP7. In addition, GRP7 binds to the antisense precursor messenger RNA of FLC through a conserved RNA motif. Loss of GRP7 function leads to the elevation of total FLC antisense transcripts and reduced proximal-distal polyadenylation ratio, as well as histone methylation changes in the FLC gene body region and increased total functional sense FLC transcript. Attenuating the direct binding of GRP7 with competing artificial RNAs leads to changes of FLC antisense precursor messenger RNA processing and flowering transition. Taken together, our study indicates that AtJAC1 coordinates with GRP7 in shaping plant development through the regulation of RNA processing in Arabidopsis. PMID:26392261

  10. Post-transcriptional regulation of programmed cell death 4 (PDCD4) mRNA by the RNA-binding proteins human antigen R (HuR) and T-cell intracellular antigen 1 (TIA1).

    PubMed

    Wigington, Callie P; Jung, Jeenah; Rye, Emily A; Belauret, Sara L; Philpot, Akahne M; Feng, Yue; Santangelo, Philip J; Corbett, Anita H

    2015-02-01

    Post-transcriptional processing of mRNA transcripts plays a critical role in establishing the gene expression profile of a cell. Such processing events are mediated by a host of factors, including RNA-binding proteins and microRNAs. A number of critical cellular pathways are subject to regulation at multiple levels that allow fine-tuning of key biological responses. Programmed cell death 4 (PDCD4) is a tumor suppressor and an important modulator of mRNA translation that is regulated by a number of mechanisms, most notably as a target of the oncomiR, miR-21. Here, we provide evidence for post-transcriptional regulation of PDCD4 by the RNA-binding proteins, HuR and TIA1. Complementary approaches reveal binding of both HuR and TIA1 to the PDCD4 transcript. Consistent with a model where RNA-binding proteins modulate the PDCD4 transcript, knockdown of HuR and/or TIA1 results in a significant decrease in steady-state PDCD4 mRNA and protein levels. However, fractionation experiments suggest that the mode of regulation of the PDCD4 transcript likely differs in the cytoplasm and the nucleus as the pool of PDCD4 mRNA present in the cytoplasm is more stable than the nuclear pool of PDCD4 transcript. We observe a competitive mode of binding between HuR and TIA1 on the PDCD4 transcript in the cytoplasm, suggesting that these two factors dynamically interact with one another as well as the PDCD4 transcript to maintain tight control of PDCD4 levels. Overall, this study reveals an additional set of regulatory interactions that modulate the expression of PDCD4, a key pro-apoptotic factor, and also reveals new insights into how HuR and TIA1 functions are integrated to achieve such regulation.

  11. THUMP--a predicted RNA-binding domain shared by 4-thiouridine, pseudouridine synthases and RNA methylases.

    PubMed

    Aravind, L; Koonin, E V

    2001-04-01

    Sequence profile searches were used to identify an ancient domain in ThiI-like thiouridine synthases, conserved RNA methylases, archaeal pseudouridine synthases and several uncharacterized proteins. We predict that this domain is an RNA-binding domain that adopts an alpha/beta fold similar to that found in the C-terminal domain of translation initiation factor 3 and ribosomal protein S8.

  12. Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions.

    PubMed

    Maravić, Gordana; Bujnicki, Janusz M; Feder, Marcin; Pongor, Sándor; Flögel, Mirna

    2003-08-15

    The Erm family of adenine-N(6) methyltransferases (MTases) is responsible for the development of resistance to macrolide-lincosamide-streptogramin B antibiotics through the methylation of 23S ribosomal RNA. Hence, these proteins are important potential drug targets. Despite the availability of the NMR and crystal structures of two members of the family (ErmAM and ErmC', respectively) and extensive studies on the RNA substrate, the substrate-binding site and the amino acids involved in RNA recognition by the Erm MTases remain unknown. It has been proposed that the small C-terminal domain functions as a target-binding module, but this prediction has not been tested experimentally. We have undertaken structure-based mutational analysis of 13 charged or polar residues located on the predicted rRNA-binding surface of ErmC' with the aim to identify the area of protein-RNA interactions. The results of in vivo and in vitro analyses of mutant protein suggest that the key RNA-binding residues are located not in the small domain, but in the large catalytic domain, facing the cleft between the two domains. Based on the mutagenesis data, a preliminary three-dimensional model of ErmC' complexed with the minimal substrate was constructed. The identification of the RNA-binding site of ErmC' may be useful for structure-based design of novel drugs that do not necessarily bind to the cofactor-binding site common to many S-adenosyl-L- methionine-dependent MTases, but specifically block the substrate-binding site of MTases from the Erm family. PMID:12907737

  13. A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis.

    PubMed

    Chen, Tao; Cui, Peng; Chen, Hao; Ali, Shahjahan; Zhang, Shoudong; Xiong, Liming

    2013-01-01

    Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also sugg