Science.gov

Sample records for robot automaatne vi

  1. VI.3. Rehabilitation robotics.

    PubMed

    Munih, Marko; Bajd, Tadej

    2010-01-01

    The paper presents the background, main achievements and components of rehabilitation robotics in a simple way, using non-technical terms. The introductory part looks at the development of robotic approaches in the rehabilitation of neurological patients and outlines the principles of robotic device interactions with patients. There follows a section on virtual reality in rehabilitation. Hapticity and interaction between robot and human are presented in order to understand the added value of robotics that cannot be exploited in other devices. The importance of passive exercise and active tasks is then discussed using the results of various clinical trials, followed by the place of upper and lower extremity robotic devices in rehabilitation practice. The closing section refers to the general importance of measurements in this area and stresses quantitative measurements as one of the advantages in using robotic devices.

  2. Clinical evaluation of complete solo surgery with the "ViKY(®)" robotic laparoscope manipulator.

    PubMed

    Takahashi, Masahiro; Takahashi, Masanori; Nishinari, Naoto; Matsuya, Hideki; Tosha, Tsutomu; Minagawa, Yukihiro; Shimooki, Osamu; Abe, Tadashi

    2017-02-01

    Advancement in both surgical technique and medical equipment has enabled solo surgery. ViKY(®) Endoscope Positioning System (ViKY(®)) is a robotic system that remotely controls an endoscope and provides direct vision control to the surgeon. Here, we report our experience with ViKY(®)-assisted solo surgery. We retrospectively examined 25 cases of solo surgery TAPP with ViKY(®). ViKY(®) was setup by the surgeon alone, and the setup duration was determined as the time at which the side rail was positioned and that when the endoscope was installed. For assessing the control unit, the number of false movements was counted. We compared the operative results between ViKY(®)-assisted solo surgery TAPP and the conventional method with an assistant. The average time to set up ViKY(®) was 7.9 min. The average number of commands for ViKY(®) during surgery was 98.3, and the average number of errors and no response of control unit was 7.9. The mean duration of surgery was 136 min for the ViKY(®) group, including the setup time, and 117 min for the conventional method. No case required an assistant during the operation. There was also no difference between the two groups with regard to postoperative complications and the rate of recurrence. ViKY(®) proved reliable in recognizing orders with very few failures, and the operations were performed safely and were comparable to the conventional operations with assistants. Solo surgery with ViKY(®) was beneficial in this clinical evaluation.

  3. Enhanced control & sensing for the REMOTEC ANDROS Mk VI robot. Final report

    SciTech Connect

    Spelt, P.F.; Harvey, H.W.

    1997-08-01

    This Cooperative Research and Development Agreement (CRADA) between Lockheed Marietta Energy Systems, Inc., and REMOTEC, Inc., explored methods of providing operator feedback for various work actions of the ANDROS Mk VI teleoperated robot. In a hazardous environment, an extremely heavy workload seriously degrades the productivity of teleoperated robot operators. This CRADA involved the addition of computer power to the robot along with a variety of sensors and encoders to provide information about the robot`s performance in and relationship to its environment. Software was developed to integrate the sensor and encoder information and provide control input to the robot. ANDROS Mk VI robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as in a variety of other hazardous environments. Further, this platform has potential for use in a number of environmental restoration tasks, such as site survey and detection of hazardous waste materials. The addition of sensors and encoders serves to make the robot easier to manage and permits tasks to be done more safely and inexpensively (due to time saved in the completion of complex remote tasks). Prior research on the automation of mobile platforms with manipulators at Oak Ridge National Laboratory`s Center for Engineering Systems Advanced Research (CESAR, B&R code KC0401030) Laboratory, a BES-supported facility, indicated that this type of enhancement is effective. This CRADA provided such enhancements to a successful working teleoperated robot for the first time. Performance of this CRADA used the CESAR laboratory facilities and expertise developed under BES funding.

  4. Enhanced control and sensing for the REMOTEC ANDROS Mk VI robot. CRADA final report

    SciTech Connect

    Spelt, P.F.; Harvey, H.W.

    1998-08-01

    This Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc., and REMOTEC, Inc., explored methods of providing operator feedback for various work actions of the ANDROS Mk VI teleoperated robot. In a hazardous environment, an extremely heavy workload seriously degrades the productivity of teleoperated robot operators. This CRADA involved the addition of computer power to the robot along with a variety of sensors and encoders to provide information about the robot`s performance in and relationship to its environment. Software was developed to integrate the sensor and encoder information and provide control input to the robot. ANDROS Mk VI robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as in a variety of other hazardous environments. Further, this platform has potential for use in a number of environmental restoration tasks, such as site survey and detection of hazardous waste materials. The addition of sensors and encoders serves to make the robot easier to manage and permits tasks to be done more safely and inexpensively (due to time saved in the completion of complex remote tasks). Prior research on the automation of mobile platforms with manipulators at Oak Ridge National Laboratory`s Center for Engineering Systems Advanced Research (CESAR, B&R code KC0401030) Laboratory, a BES-supported facility, indicated that this type of enhancement is effective. This CRADA provided such enhancements to a successful working teleoperated robot for the first time. Performance of this CRADA used the CESAR laboratory facilities and expertise developed under BES funding.

  5. Modified robotic lightweight endoscope (ViKY) validation in vivo in a porcine model.

    PubMed

    Gumbs, Andrew A; Crovari, Fernando; Vidal, Clement; Henri, Patrick; Gayet, Brice

    2007-12-01

    The added precision and steadiness of a robotically held camera enables the performance of more complex procedures laparoscopically. In contrast to typical laparoscope holders, the modified lightweight robotic endoscope, the ViKY system is particularly compact, simple to set up and use, and occupies no floor space. Ease and safety of setup was confirmed in a porcine model and several common general surgical procedures were performed. The sterilizable endoscope manipulator is sufficiently small to be placed directly on the operating room table without interfering with other handheld instruments during minimally invasive surgery. The endoscope manipulator and its user interface were tested and evaluated by several surgeons during a series of 5 minimally invasive surgical training procedures in a porcine model. The endoscope manipulator described has been shown to be a practical device with performance and functionality equivalent to those of commercially available models, yet with greatly reduced size, weight, and cost.

  6. Concurrent use of a robotic uterine manipulator and a robotic laparoscope holder to achieve assistant-less solo laparoscopy: the double ViKY.

    PubMed

    Maheshwari, Manish; Ind, Thomas

    2015-09-01

    Three patients requiring gynecological surgery had uterine manipulation using a VCare(®) controlled by a ViKY(®) at the same time as having a ViKY(®) robotic arm controlling the laparoscope. The setup time for each varied from 6-9 min for the uterine manipulator and 3-5 min for the laparoscope holder. In all cases (one endometriosis and two dermoid cysts) the operative field was good. Two patients were discharged within 24 h of surgery. One patient required an extra day in hospital after she went into acute urinary retention once the catheter was removed. This work demonstrated that assistant-less solo gynecological surgery is feasible using two ViKY robotic arms for both uterine manipulation and laparoscope holding.

  7. PRoViDE: Planetary Robotics Vision Data Processing and Fusion

    NASA Astrophysics Data System (ADS)

    Paar, G.; Muller, J.-P.; Tao, Y.; Pajdla, T.; Giordano, M.; Tasdelen, E.; Karachevtseva, I.; Traxler, C.; Hesina, G.; Tyler, L.; Barnes, R.; Gupta, S.; Willner, K.

    2015-10-01

    The international planetary science community has launched, landed and operated dozens of human and robotic missions to the planets and the Moon. They have collected various surface imagery that has only been partially utilized for further scientific purposes. The FP7 project PRoViDE (Planetary Robotics Vision Data Exploitation) has assembled a major portion of the imaging data gathered so far from planetary surface missions into a unique database, bringing them into a spatial context and providing access to a complete set of 3D vision products. The processing chain is exploited by a multi-resolution visualization engine that combines various levels of detail for a seamless and immersive real-time access to dynamically rendered 3D scenes. Latest results of 3D fusion between HiRISE and MER/MSL 3D stereo vision products are shown, as well as combined 3D vision processing results from multiple rover stations such as available for MER at Victoria Crater and for MSL at the Shaler site.

  8. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  9. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  10. Robotics

    SciTech Connect

    Scheide, A.W.

    1983-11-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS.

  11. Intelligent robots. Proceedings of the Third International Conference on Robot Vision and Sensory Controls RoViSeC3, Cambridge, MA, November 7-10, 1983. Parts 1 and 2

    SciTech Connect

    Casasent, D.P.; Hall, E.L.

    1984-01-01

    Aspects of pattern recognition for intelligent robots are discussed, taking into account linear algebra based object recognition algorithms for computer vision, planar object recognition by the computer vision method, real time textured-image segmentation based on noncausal Markovian random field models, model driven vision to control a surface finishing robot, robotic acquisition of jumbled parts from bins by visual and tactile guidance, and imaging using eddy current sensors. Other subjects explored are related to curved object recognition for robot vision, robot image understanding, robot applications, three-dimensional measurements for robot vision, robot vision, tactile and multirobot sensors, and precision robot vision measurements. Attention is given to mode locked lasers in modulation rangefinders, advanced architectures for factory vision, hierarchical contour coding and generalization of shape, problems in three-dimensional imaging, a vision system to identify car body types for a spray painting robot, and an adaptive gas metal arc welder.

  12. Intelligent robots; Proceedings of the Third International Conference on Robot Vision and Sensory Controls RoViSeC3, Cambridge, MA, November 7-10, 1983. Parts 1 & 2

    NASA Astrophysics Data System (ADS)

    Casasent, D. P.; Hall, E. L.

    1984-01-01

    Aspects of pattern recognition for intelligent robots are discussed, taking into account linear algebra based object recognition algorithms for computer vision, planar object recognition by the computer vision method, real time textured-image segmentation based on noncausal Markovian random field models, model driven vision to control a surface finishing robot, robotic acquisition of jumbled parts from bins by visual and tactile guidance, and imaging using eddy current sensors. Other subjects explored are related to curved object recognition for robot vision, robot image understanding, robot applications, three-dimensional measurements for robot vision, robot vision, tactile and multirobot sensors, and precision robot vision measurements. Attention is given to mode locked lasers in modulation rangefinders, advanced architectures for factory vision, hierarchical contour coding and generalization of shape, problems in three-dimensional imaging, a vision system to identify car body types for a spray painting robot, and an adaptive gas metal arc welder.

  13. Robotics

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  14. Robotics

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  15. Towards Pervasive Robotics

    DTIC Science & Technology

    2003-01-01

    Towards Pervasive Robotics Artur M. Arsenio Artificial Intelligence Lab - Massachusetts Institute of Technology 545 Technology Square, Room NE43-936...MA 02139 arsenio@ai.mit.edu Abstract Pervasive robotics will require, in a near future, small, light and cheap robots that exhibit complex behaviors...These demands led to the development of the M2-M4 Macaco project - a robotic active vi- sion head. Macaco is a portable system, capable of emulating

  16. Robotics

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2012-01-01

    Earth's upper atmosphere is an extreme environment: dry, cold, and irradiated. It is unknown whether our aerobiosphere is limited to the transport of life, or there exist organisms that grow and reproduce while airborne (aerophiles); the microenvironments of suspended particles may harbor life at otherwise uninhabited altitudes[2]. The existence of aerophiles would significantly expand the range of planets considered candidates for life by, for example, including the cooler clouds of a hot Venus-like planet. The X project is an effort to engineer a robotic exploration and biosampling payload for a comprehensive survey of Earth's aerobiology. While many one-shot samples have been retrieved from above 15 km, their results are primarily qualitative; variations in method confound comparisons, leaving such major gaps in our knowledge of aerobiology as quantification of populations at different strata and relative species counts[1]. These challenges and X's preliminary solutions are explicated below. X's primary balloon payload is undergoing a series of calibrations before beginning flights in Spring 2012. A suborbital launch is currently planned for Summer 2012. A series of ground samples taken in Winter 2011 is being used to establish baseline counts and identify likely background contaminants.

  17. Multi-Robot Systems in Military Domains (Les Systemes Multi-Robots Dans les Domaines Militaires)

    DTIC Science & Technology

    2008-12-01

    Interaction with Multi-Robot Systems David Kortenkamp, Debra Schreckenghost, and Cheryl Martin Human-Robot Interactions in Robot-Assisted Urban Search...RTO-TR-IST-032 On Dynamic Reconfiguration of Multi-Robot Formations Rafael Fierro , Aveek K. Das Distributed Multi-Robot Mapping Dieter Fox...Robot Testbed for Biologically-Inspired Cooperative Control Rafael Fierro , Justin Clark, Dean Hougen, and Sesh Commuri Part VI – Human-Robot Interaction

  18. Mucopolysaccharidosis VI

    PubMed Central

    2010-01-01

    Mucopolysaccharidosis VI (MPS VI) is a lysosomal storage disease with progressive multisystem involvement, associated with a deficiency of arylsulfatase B leading to the accumulation of dermatan sulfate. Birth prevalence is between 1 in 43,261 and 1 in 1,505,160 live births. The disorder shows a wide spectrum of symptoms from slowly to rapidly progressing forms. The characteristic skeletal dysplasia includes short stature, dysostosis multiplex and degenerative joint disease. Rapidly progressing forms may have onset from birth, elevated urinary glycosaminoglycans (generally >100 μg/mg creatinine), severe dysostosis multiplex, short stature, and death before the 2nd or 3rd decades. A more slowly progressing form has been described as having later onset, mildly elevated glycosaminoglycans (generally <100 μg/mg creatinine), mild dysostosis multiplex, with death in the 4th or 5th decades. Other clinical findings may include cardiac valve disease, reduced pulmonary function, hepatosplenomegaly, sinusitis, otitis media, hearing loss, sleep apnea, corneal clouding, carpal tunnel disease, and inguinal or umbilical hernia. Although intellectual deficit is generally absent in MPS VI, central nervous system findings may include cervical cord compression caused by cervical spinal instability, meningeal thickening and/or bony stenosis, communicating hydrocephalus, optic nerve atrophy and blindness. The disorder is transmitted in an autosomal recessive manner and is caused by mutations in the ARSB gene, located in chromosome 5 (5q13-5q14). Over 130 ARSB mutations have been reported, causing absent or reduced arylsulfatase B (N-acetylgalactosamine 4-sulfatase) activity and interrupted dermatan sulfate and chondroitin sulfate degradation. Diagnosis generally requires evidence of clinical phenotype, arylsulfatase B enzyme activity <10% of the lower limit of normal in cultured fibroblasts or isolated leukocytes, and demonstration of a normal activity of a different sulfatase enzyme

  19. Mucopolysaccharidosis VI.

    PubMed

    Valayannopoulos, Vassili; Nicely, Helen; Harmatz, Paul; Turbeville, Sean

    2010-04-12

    Mucopolysaccharidosis VI (MPS VI) is a lysosomal storage disease with progressive multisystem involvement, associated with a deficiency of arylsulfatase B leading to the accumulation of dermatan sulfate. Birth prevalence is between 1 in 43,261 and 1 in 1,505,160 live births. The disorder shows a wide spectrum of symptoms from slowly to rapidly progressing forms. The characteristic skeletal dysplasia includes short stature, dysostosis multiplex and degenerative joint disease. Rapidly progressing forms may have onset from birth, elevated urinary glycosaminoglycans (generally >100 microg/mg creatinine), severe dysostosis multiplex, short stature, and death before the 2nd or 3rd decades. A more slowly progressing form has been described as having later onset, mildly elevated glycosaminoglycans (generally <100 microg/mg creatinine), mild dysostosis multiplex, with death in the 4th or 5th decades. Other clinical findings may include cardiac valve disease, reduced pulmonary function, hepatosplenomegaly, sinusitis, otitis media, hearing loss, sleep apnea, corneal clouding, carpal tunnel disease, and inguinal or umbilical hernia. Although intellectual deficit is generally absent in MPS VI, central nervous system findings may include cervical cord compression caused by cervical spinal instability, meningeal thickening and/or bony stenosis, communicating hydrocephalus, optic nerve atrophy and blindness. The disorder is transmitted in an autosomal recessive manner and is caused by mutations in the ARSB gene, located in chromosome 5 (5q13-5q14). Over 130 ARSB mutations have been reported, causing absent or reduced arylsulfatase B (N-acetylgalactosamine 4-sulfatase) activity and interrupted dermatan sulfate and chondroitin sulfate degradation. Diagnosis generally requires evidence of clinical phenotype, arylsulfatase B enzyme activity <10% of the lower limit of normal in cultured fibroblasts or isolated leukocytes, and demonstration of a normal activity of a different sulfatase

  20. Exploratorium: Robots.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  1. Exploratorium: Robots.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  2. Robotic surgery

    MedlinePlus

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... Robotic surgery is similar to laparoscopic surgery. It can be performed through smaller cuts than open surgery. ...

  3. Robot and robot system

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  4. Robot vision and sensory controls, V

    SciTech Connect

    Zimmermann, N.J.

    1985-01-01

    This book covers the expanding and important subjects of robot vision and sensory controls. These advanced industrial techniques are now solving real application problems and improving productivity, quality, reliability and product cost. RoViSeC embraces the whole spectrum of sensing and measurement, including the technologies of machine vision, pattern recognition, artificial intelligence, tactile and other sensing, speech recognition, voice synthesis, sensor based robots, hardware and software. All aspects of the latest research are included while retaining an essentially practical outlook.

  5. Robotic transrectal ultrasonography during robot-assisted radical prostatectomy.

    PubMed

    Hung, Andrew J; Abreu, André Luís De Castro; Shoji, Sunao; Goh, Alvin C; Berger, Andre K; Desai, Mihir M; Aron, Monish; Gill, Inderbir S; Ukimura, Osamu

    2012-08-01

    We evaluate the use of robotically manipulated transrectal ultrasound (TRUS) for real-time monitoring of prostate and periprostatic anatomy during robot-assisted prostatectomy (RAP). Ten patients with clinically organ-confined prostate cancer undergoing RAP underwent preoperative and real-time intraoperative biplanar TRUS evaluation using a robotically manipulated TRUS device (ViKY System; EndoControl Medical, Grenoble, France). Median patient age was 66 yr (range: 54-88), baseline prostate-specific antigen (PSA) was 5.3 (range: 1.3-17.9), and four patients (40%) had clinical high-grade and high-stage disease. Bilateral or unilateral nerve sparing was performed in nine patients (90%). Median time for ViKY System setup to insertion of the TRUS probe was 7 min (range: 4-12). Complete robotic TRUS evaluation was successful in all patients. Five patients (50%) had TRUS-visible hypoechoic lesions, confirmed cancerous on preoperative biopsy. Relevant intraoperative TRUS findings were relayed in real time to the robotic surgeon, particularly during dissection of the bladder neck and prostatic apex, during neurovascular bundle preservation, and when hypoechoic prostate lesions approximated nerve-preserving dissection. Negative margins were achieved in nine patients (90%), including cases where significant intraprostatic lesions abutted or extended through the prostate capsule. No complications occurred. We concluded that real-time robotic TRUS guidance during RAP is feasible and safe. Robotic TRUS can provide the console surgeon with valuable anatomic information, thus maximizing functional preservation and oncologic success. Copyright © 2012 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  6. Engineering Test Satellite VI (ETS-VI)

    NASA Technical Reports Server (NTRS)

    Horii, M.; Funakawa, K.

    1991-01-01

    The Engineering Test Satellite-VI (ETS-VI) is being developed as the third Japanese three-axis stabilized engineering test satellite to establish the 2-ton geostationary operational satellite bus system and to demonstrate the high performance satellite communication technology for future operational satellites. The satellite is expected to be stationed at 154 deg east latitude. It will be launched from the Tanegashima Space Center in Japan by a type H-II launch vehicle. The Deep Space Network (DSN) will support the prelaunch compatibility test, data interface verification testing, and launch rehersals. The DSN primary support period is from launch through the final AEF plus 1 hour. Contingency support is from final AEF plus 1 hour until launch plus 1 month. The coverage will consist of all the 26-m antennas as prime and the 34-m antennas at Madrid and Canberra as backup. Maximum support will consist of two 8-hour tracks per station for a 7-day period, plus the contingency support, if required. Information is given in tabular form for DSN support, telemetry, command, and tracking support responsibility.

  7. CASSY Robot

    NASA Astrophysics Data System (ADS)

    Pittman, Anna; Wright, Ann; Rice, Aaron; Shyaka, Claude

    2014-03-01

    The CASSY Robot project involved two square robots coded in RobotC. The goal was to code a robot to do a certain set of tasks autonomously. To begin with, our task was to code the robot so that it would roam a certain area, marked off by black tape. When the robot hit the black tape, it knew to back up and turn around. It was able to do this thanks to the light sensor that was attached to the bottom of the robot. Also, whenever the robot hit an obstacle, it knew to stop, back up, and turn around. This was primarily to prevent the robot from hurting itself if it hit an obstacle. This was accomplished by using touch sensors set up as bumpers. Once that was accomplished, we attached sonar sensors and created code so that one robot was able to find and track the other robot in a sort of intruder/police scenario. The overall goal of this project was to code the robot so that we can test it against a robot coded exactly the same, but using Layered Mode Selection Logic. Professor.

  8. Army Robotics

    DTIC Science & Technology

    2009-10-07

    Army Robotics 07 October 2009 Dr. Grant Gerhart, Senior Research Scientist Bernard Theisen, Joint Center for Robotics DISTRIBUTION STATEMENT A... Robots 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Grant Gerhart; Bernard Theisen 5d. PROJECT NUMBER 5e. TASK...CBRNE • IED Defeat Systems • Disarm / Disrupt • Reconnaissance • Investigation • Explosive Sniffer • Common Robotic Kit • EOD • Convoy • Log

  9. Space Robotics

    DTIC Science & Technology

    1982-08-01

    ACCESSION NO 3. RECIPIENTS CATALOG NUIA3.R CMU-RI-TR-82-10 I4 1 (. 4. ;,;-LL (and Sublitle) S. TYPE OF REPORT & PERIOD CovEREO SPACE ROBOTICS Interim... Robotics Institute Pittsburgh, PA. 15213 It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Office of Naval Research -August 1982 Arlington, VA 22217...SXnet.eE . Space Robotics Richard E. Korf Department of Computer Science and The Robotics Institute Carnegie-Mellon University Pittsburgh, Oetusylvania

  10. TARDEC Robotics

    DTIC Science & Technology

    2010-01-12

    unclassified TARDEC Robotics Dr. James L. Overholt Director, Joint Center for Robotics US Army TARDEC Report Documentation Page Form ApprovedOMB No...COVERED - 4. TITLE AND SUBTITLE TARDEC Robotics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) James L. Overholt... Robotics , Network and Control Components with a Focus on Customer Driven Requirements to Provide Full System Solutions to the War Fighter Technology

  11. Industrial Robots.

    ERIC Educational Resources Information Center

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  12. Basic Robotics.

    ERIC Educational Resources Information Center

    Mullen, Frank

    This curriculum outline consists of instructional materials and information concerning resources for use in teaching a course in robotics. Addressed in the individual sections of the outline are the following topics: the nature of an industrial robot; the parts of an industrial robot (the manipulator, the power structure, and the control system);…

  13. (Robotic hands)

    SciTech Connect

    Mann, R.C.

    1988-09-23

    The traveler attended the International Workshop on Robot Hands at the Palace Hotel in Dubrovnik, Yugoslavia. The traveler presented a lecture on An integrated sensor system for the ORNL mobile robot.'' The traveler obtained important information on current R D efforts in multi-fingered robot hands and object recognition using touch sensing.

  14. Basic Robotics.

    ERIC Educational Resources Information Center

    Mullen, Frank

    This curriculum outline consists of instructional materials and information concerning resources for use in teaching a course in robotics. Addressed in the individual sections of the outline are the following topics: the nature of an industrial robot; the parts of an industrial robot (the manipulator, the power structure, and the control system);…

  15. Industrial Robots.

    ERIC Educational Resources Information Center

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  16. Division Vi: Interstellar Matter

    NASA Astrophysics Data System (ADS)

    Millar, Tom; Chu, You-Hua; Dyson, John; Breitschwerdt, Dieter; Burton, Mike; Cabrit, Sylvie; Caselli, Paola; de Gouveia Dal Pino, Elisabete; Ferland, Gary; Juvela, Mika; Koo, Bon-Chul; Kwok, Sun; Lizano, Susana; Rozyczka, Michal; Tóth, Viktor; Tsuboi, Masato; Yang, Ji

    2010-05-01

    The business meeting of Division VI was held on Monday 10 October 2009. Apologies had been received in advance from D Breitschwerdt, P Caselli, G Ferland, M Juvela, S Lizano, M Rozyczka, V Tóth, M Tsuboi, J Yang and B-C Koo.

  17. Rehabilitation robotics.

    PubMed

    Munih, Marko; Bajd, Tadej

    2011-01-01

    The paper presents the background, main achievements and components of rehabilitation robotics in a simple way, using non-technical terms. The introductory part looks at the development of robotic approaches in the rehabilitation of neurological patients and outlines the principles of robotic device interactions with patients. There follows a section on virtual reality in rehabilitation. Hapticity and interaction between robot and human are presented in order to understand the added value of robotics that cannot be exploited in other devices. The importance of passive exercise and active tasks is then discussed using the results of various clinical trials, followed by the place of upper and lower extremity robotic devices in rehabilitation practice. The closing section refers to the general importance of measurements in this area and stresses quantitative measurements as one of the advantages in using robotic devices.

  18. Robotic surgery.

    PubMed

    Diana, M; Marescaux, J

    2015-01-01

    Proficiency in minimally invasive surgery requires intensive and continuous training, as it is technically challenging for unnatural visual and haptic perceptions. Robotic and computer sciences are producing innovations to augment the surgeon's skills to achieve accuracy and high precision during complex surgery. This article reviews the current use of robotically assisted surgery, focusing on technology as well as main applications in digestive surgery, and future perspectives. The PubMed database was interrogated to retrieve evidence-based data on surgical applications. Internal and external consulting with key opinion leaders, renowned robotics laboratories and robotic platform manufacturers was used to produce state-of-the art business intelligence around robotically assisted surgery. Selected digestive procedures (oesophagectomy, gastric bypass, pancreatic and liver resections, rectal resection for cancer) might benefit from robotic assistance, although the current level of evidence is insufficient to support widespread adoption. The surgical robotic market is growing, and a variety of projects have recently been launched at both academic and corporate levels to develop lightweight, miniaturized surgical robotic prototypes. The magnified view, and improved ergonomics and dexterity offered by robotic platforms, might facilitate the uptake of minimally invasive procedures. Image guidance to complement robotically assisted procedures, through the concepts of augmented reality, could well represent a major revolution to increase safety and deal with difficulties associated with the new minimally invasive approaches. © 2015 BJS Society Ltd. Published by John Wiley & Sons Ltd.

  19. TARDEC Robotics

    DTIC Science & Technology

    2011-03-01

    TARDEC Robotics Dr. Greg Hudas Greg.hudas@us.army.mil UNCLASSIFIED: Dist A. Approved for public release Report Documentation Page Form ApprovedOMB...COVERED - 4. TITLE AND SUBTITLE TARDEC Robotics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Greg Hudas...ANSI Std Z39-18 Excellence in Robotics Outreach & University Shaping Requirements Building Modeling & Simulation Component Development International

  20. ROBOT WRITING,

    DTIC Science & Technology

    Technical writers who are hypnotized by the mechanical metaphor inevitably produce robot writing - a separate language, distantly related to the...prose of Darwin, Huxley, Jeans, and Einstein. Where they were clear, fresh, and graceful, the robot writer is hard, dull, and clumsy. Where they were...merely human, the robot writer is infallible, prefabricated, impersonal, and irresponsible. These four characteristics are interlinked. An example of one usually illustrates the other three.

  1. Robot Programming.

    DTIC Science & Technology

    1982-12-01

    34natural" behavior . They are each suitable to some applications more than others. Robot systems should support a wide repertoire of such motion regimes... behavior at a kinematic singularity. Some applications, such as arc-welding or spray-painting, can require very fine control of the robot’s speed...for specifying the behavior of systems more complex than a single robot. Another example of the need of this kind of coordination is in the

  2. Hopping robot

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Martinez, Michael A.; Kuehl, Michael A.; Feddema, John T.

    2001-01-01

    The present invention provides a hopping robot that includes a misfire tolerant linear actuator suitable for long trips, low energy steering and control, reliable low energy righting, miniature low energy fuel control. The present invention provides a robot with hopping mobility, capable of traversing obstacles significant in size relative to the robot and capable of operation on unpredictable terrain over long range. The present invention further provides a hopping robot with misfire-tolerant combustion actuation, and with combustion actuation suitable for use in oxygen-poor environments.

  3. Robotics research

    SciTech Connect

    Brady, M.; Paul, R.

    1984-01-01

    Organized around a view of robotics as ''the intelligent connection of perception to action,'' the fifty-three contributions collected in this book present leading current research in one of the fastest moving fields of artificial intelligence. Readings Include: Hand-Eye Coordination in Rope Handling; 3-D Balance Using 2-D algorithms. A Model Driven Visual Inspection Module: Stereo Vision: Complexity and Constraints; Interpretation of Contact Geometers from Force Measurement; The Utah MIT Dextrous Hand: Work in Progress; Hierarchical Nonlinear Control for Robots; VAL-11; A Robot Programming Language and Control System; Technological Barriers in Robotics: A Perspective from Industry.

  4. Team ViGIR

    DTIC Science & Technology

    2015-10-01

    Darmstadt (Darmstadt, Germany) TU Darmstadt, and specifically the Simulation, Systems Optimization and Robotics Group at the Department of Computer Science ...www.hci.vt.edu/ ) at the Center for Human- Computer Interaction (CHCI) in the Department of Computer Science , served as OCS lead. CHCI is a world-class...interactive technologies on the user experience. Housed in the Department of Computer Science , CHCI has 29 faculty affiliates across the university

  5. Cosmic Dust VI

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroshi; Kolokolova, Ludmilla; Li, Aigen; Inoue, Akio K.; Jäger, Cornelia

    2014-10-01

    This special issue is primarily devoted to the 6th meeting on Cosmic Dust (COSMIC DUST VI), which was held at CPS (Center for Planetary Science) in Kobe, Japan, on August 5-9, 2013. This meeting was coordinated in an order where a friendly and welcoming atmosphere persuaded the participants of the meeting to develop human relations and interactions among themselves. This has been our interdisciplinary approach to answering the question of where dust comes from and where dust goes. We briefly review some of the exciting papers presented at the meeting and provide perspectives for the development of cosmic dust research.

  6. Robotics 101

    ERIC Educational Resources Information Center

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  7. Robotic system

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O. (Inventor)

    2003-01-01

    A robot having a plurality of interconnected sections is disclosed. Each of the sections includes components which are moveable relative to components of an adjacent section. A plurality of electric motors are operably connected to at least two of said relatively moveable components to effect relative movement. A fitted, removable protective covering surrounds the sections to protect the robot.

  8. Robotics 101

    ERIC Educational Resources Information Center

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  9. Robotic Surgery

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Automated Endoscopic System for Optimal Positioning, or AESOP, was developed by Computer Motion, Inc. under a SBIR contract from the Jet Propulsion Lab. AESOP is a robotic endoscopic positioning system used to control the motion of a camera during endoscopic surgery. The camera, which is mounted at the end of a robotic arm, previously had to be held in place by the surgical staff. With AESOP the robotic arm can make more precise and consistent movements. AESOP is also voice controlled by the surgeon. It is hoped that this technology can be used in space repair missions which require precision beyond human dexterity. A new generation of the same technology entitled the ZEUS Robotic Surgical System can make endoscopic procedures even more successful. ZEUS allows the surgeon control various instruments in its robotic arms, allowing for the precision the procedure requires.

  10. Robot Design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Martin Marietta Aero and Naval Systems has advanced the CAD art to a very high level at its Robotics Laboratory. One of the company's major projects is construction of a huge Field Material Handling Robot for the Army's Human Engineering Lab. Design of FMR, intended to move heavy and dangerous material such as ammunition, was a triumph in CAD Engineering. Separate computer problems modeled the robot's kinematics and dynamics, yielding such parameters as the strength of materials required for each component, the length of the arms, their degree of freedom and power of hydraulic system needed. The Robotics Lab went a step further and added data enabling computer simulation and animation of the robot's total operational capability under various loading and unloading conditions. NASA computer program (IAC), integrated Analysis Capability Engineering Database was used. Program contains a series of modules that can stand alone or be integrated with data from sensors or software tools.

  11. Robotic transportation.

    PubMed

    Lob, W S

    1990-09-01

    Mobile robots perform fetch-and-carry tasks autonomously. An intelligent, sensor-equipped mobile robot does not require dedicated pathways or extensive facility modification. In the hospital, mobile robots can be used to carry specimens, pharmaceuticals, meals, etc. between supply centers, patient areas, and laboratories. The HelpMate (Transitions Research Corp.) mobile robot was developed specifically for hospital environments. To reach a desired destination, Help-Mate navigates with an on-board computer that continuously polls a suite of sensors, matches the sensor data against a pre-programmed map of the environment, and issues drive commands and path corrections. A sender operates the robot with a user-friendly menu that prompts for payload insertion and desired destination(s). Upon arrival at its selected destination, the robot prompts the recipient for a security code or physical key and awaits acknowledgement of payload removal. In the future, the integration of HelpMate with robot manipulators, test equipment, and central institutional information systems will open new applications in more localized areas and should help overcome difficulties in filling transport staff positions.

  12. Subsumption Robotics

    DTIC Science & Technology

    1998-01-01

    Subsumption Robotics Christopher K. DeBolt Naval EOD Technology Division 2008 Stump Neck Road Indian Head, MD 20640-5070 phone: (301) 744-6850, Ext...eodmgate.navsea.navy.mil; nguyent.eodtc@eodmgate.navsea.navy.mil Helen Greiner and Polly K. Pook I.S. Robotics phone: (617) 629-0055 e-mail: helen@isr.com , pook...408) 656-3462 e-mail: healey@me.nps.navy.mil LONG-TERM GOALS Through the use of subsumption architectures, low cost, simple robots can be developed

  13. [Robotic surgery].

    PubMed

    Sándor, József; Haidegger, Tamás; Kormos, Katalin; Ferencz, Andrea; Csukás, Domokos; Bráth, Endre; Szabó, Györgyi; Wéber, György

    2013-10-01

    Due to the fast spread of laparoscopic cholecystectomy, surgical procedures have been changed essentially. The new techniques applied for both abdominal and thoracic procedures provided the possibility for minimally invasive access with all its advantages. Robots - originally developed for industrial applications - were retrofitted for laparoscopic procedures. The currently prevailing robot-assisted surgery is ergonomically more advantageous for the surgeon, as well as for the patient through the more precise preparative activity thanks to the regained 3D vision. The gradual decrease of costs of robotic surgical systems and development of new generations of minimally invasive devices may lead to substantial changes in routine surgical procedures.

  14. Robotic thyroidectomy.

    PubMed

    Holsinger, F Christopher; Chung, Woong Youn

    2014-06-01

    Robotic thyroidectomy is ideal for patients with indeterminate, likely benign lesions less than 3 cm, and a body mass index less than 35 kg/mg(2). Proper arm position and padding are important to facilitate exposure and development of the working space from axilla to thyroid bed. The working space is developed using headlight and retractors without robotic assistance, establishing exposure of the thyroid bed from a 5-cm incision in the axilla. Three robotic instruments and a stereoscopic endoscope provide excellent visualization of the associated thyroid neurovasculature anatomy. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. From training to robot behavior: towards custom scenarios for robotics in training programs for ASD.

    PubMed

    Gillesen, J C C; Barakova, E I; Huskens, B E B M; Feijs, L M G

    2011-01-01

    Successful results have been booked with using robotics in therapy interventions for autism spectrum disorders (ASD). However, to make the best use of robots, the behavior of the robot needs to be tailored to the learning objectives and personal characteristics of each unique individual with ASD. Currently training practices include adaptation of the training programs to the condition of each individual client, based on the particular learning goals or the mood of the client. To include robots in such training will imply that the trainers are enabled to control a robot through an intuitive interface. For this purpose we use a visual programming environment called TiViPE as an interface between robot and trainer, where scenarios for specific learning objectives can easily be put together as if they were graphical LEGO-like building blocks. This programming platform is linked to the NAO robot from Aldebaran Robotics. A process flow for converting trainers' scenarios was developed to make sure the gist of the original scenarios was kept intact. We give an example of how a scenario is processed, and implemented into the clinical setting, and how detailed parts of a scenario can be developed.

  16. Surrogate Robot

    NASA Image and Video Library

    2014-08-21

    The Surrogate robot Surge, built at NASA Jet Propulsion Laboratory in Pasadena, CA., is being developed in order to extend humanity reach into hazardous environments to perform tasks such as using environmental test equipment.

  17. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  18. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  19. Robotic arm

    DOEpatents

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  20. Robotic vehicle

    SciTech Connect

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  1. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  2. Rolling Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.

    1990-01-01

    Proposed rolling robot routinely traverses rough terrain, clearing rocks as high as 1 m. Climbs steps 1 m high and spans ditches 2.3 m wide. Simple but rugged semiautonomous rover has large wheels and articulated body. With combined yaw, roll, and four-wheel drive, robot crawls slowly to pass over soft or sandy terrain. Senses terrain along corridor, chooses path to avoid insurmountable obstacles, and monitors state of vehicle for unexpected hazards.

  3. Robot Rescue

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Tests with robots and the high-fidelity Hubble Space Telescope mockup astronauts use to train for servicing missions have convinced NASA managers it may be possible to maintain and upgrade the orbiting observatory without sending a space shuttle to do the job. In a formal request last week, the agency gave bidders until July 16 to sub-mit proposals for a robotic mission to the space telescope before the end of 2007. At a minimum, the mission would attach a rocket motor to deorbit the telescope safely when its service life ends. In the best case, it would use state-of-the- art robotics to prolong its life on orbit and install new instruments. With the space shuttle off-limits for the job under strict post-Columbia safety policies set by Administrator Sean O'Keefe, NASA has designed a "straw- man" robotic mission that would use an Atlas V or Delta N to launch a 20,ooO-lb. "Hubble Robotic Vehicle" to service the telescope. There, a robotic arm would grapple it, much as the shuttle does.

  4. Handbook of industrial robotics

    SciTech Connect

    Nof, S.Y.

    1985-01-01

    This book presents papers on the application of artificial intelligence to robots used in industrial plants. Topics considered include vision systems, elements of industrial robot software, robot teaching, the off-line programming of robots, a structured programming robot language, task-level manipulator programming, expert systems, and the role of the computer in robot intelligence.

  5. Tutorial on robotics

    SciTech Connect

    Lee, C.S.G.; Gonzalez, R.C.; Fu, K.S.

    1986-01-01

    Basic fundamentals in robotics are presented in this tutorial. Topics covered are as follows: robot arm kinematics; robot arm dynamics; planning or manipulator trajectories; servo control for manipulators; force sensing and control; robot vision systems; robot programming languages; and machine intelligence and robot planning.

  6. Rehabilitation robotics.

    PubMed

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Medical robotics.

    PubMed

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.

  8. Rehabilitation robotics

    PubMed Central

    KREBS, H.I.; VOLPE, B.T.

    2015-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician’s toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual’s functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We will provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we will then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We will present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. PMID:23312648

  9. Generic robot architecture

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  10. Cooperating mobile robots

    DOEpatents

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  11. Robot Swarms

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Engineers and interns at this NASA field center are building the prototype of a robotic rover that could go where no wheeled rover has gone before-into the dark cold craters at the lunar poles and across the Moon s rugged highlands-like a walking tetrahedron. With NASA pushing to meet President Bush's new exploration objectives, the robots taking shape here today could be on the Moon in a decade. In the longer term, the concept could lead to shape-shifting robot swarms designed to explore distant planetary surfaces in advance of humans. "If you look at all of NASA s projections of the future, anyone s projections of the space program, they re all rigid-body architecture," says Steven Curtis, principal investigator on the effort. "This is not rigid-body. The whole key here is flexibility and reconfigurability with a capital R."

  12. Robot Manipulators

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Space Shuttle's Remote Manipulator System (Canadarm) is a 50 foot robot arm used to deploy, retrieve or repair satellites in orbit. Initial spinoff version is designed to remove, inspect and replace large components of Ontario Hydro's CANDU nuclear reactors, which supply 50 percent of Ontario Hydro's total power reduction. CANDU robot is the first of SPAR's Remote Manipulator Systems intended for remote materials handling operations in nuclear servicing, chemical processing, smelting and manufacturing. Inco Limited used remote manipulator for remote control mining equipment to enhance safety and productivity of Inco's hardrock mining operations. System not only improves safety in a hazardous operation that costs more than a score of lives annually, it also increases productivity fourfold. Remote Manipulator System Division is also manufacturing a line of industrial robots and developing additional system for nuclear servicing, mining, defense and space operations.

  13. Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A commercially available ANDROS Mark V-A robot was used by Jet Propulsion Laboratory (JPL) as the departure point in the development of the HAZBOT III, a prototype teleoperated mobile robot designed for response to emergencies. Teleoperated robots contribute significantly to reducing human injury levels by performing tasks too hazardous for humans. ANDROS' manufacturer, REMOTEC, Inc., in turn, adopted some of the JPL concepts, particularly the control panel. HAZBOT III has exceptional mobility, employs solid state electronics and brushless DC motors for safer operation, and is designed so combustible gases cannot penetrate areas containing electronics and motors. Other features include the six-degree-of-freedom manipulator, the 30-pound squeeze force parallel jaw gripper and two video cameras, one for general viewing and navigation and the other for manipulation/grasping.

  14. Robot Swarms

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Engineers and interns at this NASA field center are building the prototype of a robotic rover that could go where no wheeled rover has gone before-into the dark cold craters at the lunar poles and across the Moon s rugged highlands-like a walking tetrahedron. With NASA pushing to meet President Bush's new exploration objectives, the robots taking shape here today could be on the Moon in a decade. In the longer term, the concept could lead to shape-shifting robot swarms designed to explore distant planetary surfaces in advance of humans. "If you look at all of NASA s projections of the future, anyone s projections of the space program, they re all rigid-body architecture," says Steven Curtis, principal investigator on the effort. "This is not rigid-body. The whole key here is flexibility and reconfigurability with a capital R."

  15. Robot Tools

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Mecanotron, now division of Robotics and Automation Corporation, developed a quick-change welding method called the Automatic Robotics Tool-change System (ARTS) under Marshall Space Flight Center and Rockwell International contracts. The ARTS system has six tool positions ranging from coarse sanding disks and abrasive wheels to cloth polishing wheels with motors of various horsepower. The system is used by fabricators of plastic body parts for the auto industry, by Texas Instruments for making radar domes, and for advanced composites at Aerospatiale in France.

  16. Robot Hand

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Robots are limited only by the dexterity of the hand. Dr. Salisbury, in conjunction with Stanford, Caltech and Jet Propulsion Laboratory, developed the Salisbury Hand which has three, three-jointed human-like fingers. The tips are covered with a resilient, high friction material for gripping. The robot hand can manipulate objects by finger motion, and adapts to different aims. Advanced software allows the hand to interpret information from fingertip sensors. Further development is expected. A company has been formed to reproduce the device; copies have been delivered to several laboratories.

  17. Robot gripper

    NASA Technical Reports Server (NTRS)

    Webb, Winston S. (Inventor)

    1987-01-01

    An electronic force-detecting robot gripper for gripping objects and attaching to an external robot arm is disclosed. The gripper comprises motor apparatus, gripper jaws, and electrical circuits for driving the gripper motor and sensing the amount of force applied by the jaws. The force applied by the jaws is proportional to a threshold value of the motor current. When the motor current exceeds the threshold value, the electrical circuits supply a feedback signal to the electrical control circuit which, in turn, stops the gripper motor.

  18. On VI at intermediate redshift

    NASA Astrophysics Data System (ADS)

    Simcoe, R.; Sargent, W.; Rauch, M.

    2001-05-01

    Recent observations using the FUSE satellite and HST/STIS have emphasized the contribution of shock-heated O VI to the local baryon budget. Also, photoionized O VI is well known to be an excellent tracer of metal enrichment in the lowest density regions of the IGM. Searches for oxygen at higher redshift from the ground have been limited by severe bending of the doublet with lines in the lyman-alpha and lyman-beta forests. However, there exists a growing body of both direct (at high column density) and statistical (at low column density) evidence that suggests the presence of O VI at a wide range of associated H I column densities, even at large lookback times. We will discuss progress on a systematic, large pathlength search for O VI absorption in the spectra of a sample of quasars observed with the Keck I telescope and HIRES spectrograph, and we will describe our strategy for dealing with the blending problem. Where O VI is unambiguously detected, we compare its abundance and kinematics with those of other highly ionized species. We will also discuss the initial results of statistcial searches for oxygen at the weakest levels of absorption.

  19. Robotics in Construction.

    DTIC Science & Technology

    1986-01-01

    MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A 0 ROBOTICS IN CONSTRUCTIONt 10 BY MICHAEL R. BROZZO A REPORT PRESENTED TO THE GRADUATE... ROBOTS AND ROBOTICS ---------------------------- 3 2.1 HISTORY ------------------------------------------- 3 CHAPTER THREE - BASIC ROBOT MOVEMENTS...CHAPTER FOUR - BASIC ROBOT COMPONENTS ------------------------ 8 4.1 GENERAL ------------------------------------------- 8 4.1.1 Manipulator

  20. Robotic Surgery

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2007-01-01

    The medical field has many uses for automated and remote-controlled technology. For example, if a tissue sample is only handled in the laboratory by a robotic handling system, then it will never come into contact with a human. Such a system not only helps to automate the medical testing process, but it also helps to reduce the chances of…

  1. Robotic Surgery

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2007-01-01

    The medical field has many uses for automated and remote-controlled technology. For example, if a tissue sample is only handled in the laboratory by a robotic handling system, then it will never come into contact with a human. Such a system not only helps to automate the medical testing process, but it also helps to reduce the chances of…

  2. Beyond Robotics

    ERIC Educational Resources Information Center

    Tally, Beth; Laverdure, Nate

    2006-01-01

    Chantilly High School Academy Robotics Team Number 612 from Chantilly, Virginia, is an award-winning team of high school students actively involved with FIRST (For Inspiration and Recognition of Science and Technology), a multinational nonprofit organization that inspires students to transform culture--making science, math, engineering and…

  3. Beyond Robotics

    ERIC Educational Resources Information Center

    Tally, Beth; Laverdure, Nate

    2006-01-01

    Chantilly High School Academy Robotics Team Number 612 from Chantilly, Virginia, is an award-winning team of high school students actively involved with FIRST (For Inspiration and Recognition of Science and Technology), a multinational nonprofit organization that inspires students to transform culture--making science, math, engineering and…

  4. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  5. Robotics Education and Employment.

    ERIC Educational Resources Information Center

    Linnell, Charles C.

    1993-01-01

    Describes characteristics of robots, provides a glossary of related terms, and discusses available careers in the field of robotics. Includes a list of postsecondary institutions with robotics programs. (JOW)

  6. Protostars and Planets VI

    NASA Astrophysics Data System (ADS)

    Beuther, Henrik; Klessen, Ralf S.; Dullemond, Cornelis P.; Henning, Thomas

    star and planet formation. They are used by students to dive into new topics, and they are much valued by experienced researchers as a comprehensive overview of the field with all its interactions. We hope that you will enjoy reading (and learning from) this book as much as we do. The organization of the Protostars and Planets conference was carried out in close collaboration between the Max Planck Institute for Astronomy and the Center for Astronomy of the University Heidelberg, with generous support from the German Science Foundation. This volume is a product of effort and care by many people. First and foremost, we want to acknowledge the 250 contributing authors, as it is only due to their expertise and knowledge that such a comprehensive review compendium in all its depth and breadth is possible. The Protostars and Planets VI conference and this volume was a major undertaking, with support and contributions by many people and institutions. We like to thank the members of the Scientific Advisory Committee who selected the 38 teams and chapters out of more than 120 submitted proposals. Similarly, we are grateful to the reviewers, who provided valuable input and help to the chapter authors. The book would also not have been possible without the great support of Renée Dotson and other staff from USRA’s Lunar and Planetary Institute, who handled the detailed processing of all manuscripts and the production of the book, and of Allyson Carter and other staff from the University of Arizona Press. We are also grateful to Richard Binzel, the General Editor of the Space Science Series, for his constant support during the long process, from the original concept to this final product. Finally, we would like to express a very special thank you to the entire conference local organizing committee, and in particular, Carmen Cuevas and Natali Jurina, for their great commitment to the project and for a very fruitful and enjoyable collaboration.

  7. Climbing robot

    NASA Astrophysics Data System (ADS)

    Kerley, James J.; May, Edward L.; Ecklund, Wayne D.

    1993-11-01

    A mobile robot for traversing any surface consisting of a number of interconnected segments, each interconnected segment having an upper 'U' frame member, a lower 'U' frame member, a compliant joint between the upper 'U' frame member and the lower 'U' frame member, a number of linear actuators between the two frame members acting to provide relative displacement between the frame members, a foot attached to the lower 'U' frame member for adherence of the segment to the surface, an inter-segment attachment attached to the upper 'U' frame member for interconnecting the segments, a power source connected to the linear actuator, and a computer/controller for independently controlling each linear actuator in each interconnected segment such that the mobile robot moves in a caterpillar like fashion.

  8. Robotic System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A complicated design project, successfully carried out by New York manufacturing consultant with help from NERAC, Inc., resulted in new type robotic system being marketed for industrial use. Consultant Robert Price, operating at E.S.I, Inc. in Albany, NY, sought help from NERAC to develop an automated tool for deburring the inside of 8 inch breech ring assemblies for howitzers produced by Watervliet Arsenal. NERAC conducted a search of the NASA data base and six others. From information supplied, Price designed a system consisting of a standard industrial robot arm, with a specially engineered six-axis deburring tool fitted to it. A microcomputer and computer program direct the tool on its path through the breech ring. E.S.I. markets the system to aerospace and metal cutting industries for deburring, drilling, routing and refining machined parts.

  9. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025030 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  10. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025012 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  11. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025017 (26 July 2013) --- In the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, speaks in a microphone as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  12. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025034 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  13. Robotics and regional anesthesia.

    PubMed

    Wehbe, Mohamad; Giacalone, Marilu; Hemmerling, Thomas M

    2014-10-01

    Robots in regional anesthesia are used as a tool to automate the performance of regional techniques reducing the anesthesiologist's workload and improving patient care. The purpose of this review is to show the latest findings in robotic regional anesthesia. The literature separates robots in anesthesia into two groups: pharmacological robots and manual robots. Pharmacological robots are mainly closed-loop systems that help in the titration of anesthetic drugs to patients undergoing surgery. Manual robots are mechanical robots that are used to support or replace the manual gestures performed by anesthesiologists. Although in the last decade researchers have focused on the development of decision support systems and closed-loop systems, more recent evidence supports the concept that robots can also be useful in performing regional anesthesia techniques. Robots can improve the performance and safety in regional anesthesia. In this review, we present the developments made in robotic and automated regional anesthesia, and discuss the current state of research in this field.

  14. Robotics Challenge: Cognitive Robot for General Missions

    DTIC Science & Technology

    2015-01-01

    5 Figure 2: Screenshots of the IHC- Controlled ATLAS Robot Walking ...mean time, people at KU assumed that 1) the IHC¹s low-level control is perfect ‹ meaning that the robot can perform basic maneuvers like walking ...side even after the VRC event, IHC successfully controlled the robot to walk on a variety of surfaces. Figure 2 shows a simulated ATLAS robot with

  15. Robot environment expert system

    NASA Technical Reports Server (NTRS)

    Potter, J. L.

    1985-01-01

    The Robot Environment Expert System uses a hexidecimal tree data structure to model a complex robot environment where not only the robot arm moves, but also the robot itself and other objects may move. The hextree model allows dynamic updating, collision avoidance and path planning over time, to avoid moving objects.

  16. Educational Robotics as Mindtools

    ERIC Educational Resources Information Center

    Mikropoulos, Tassos A.; Bellou, Ioanna

    2013-01-01

    Although there are many studies on the constructionist use of educational robotics, they have certain limitations. Some of them refer to robotics education, rather than educational robotics. Others follow a constructionist approach, but give emphasis only to design skills, creativity and collaboration. Some studies use robotics as an educational…

  17. Summary report of session VI

    SciTech Connect

    Weiren Chou et al.

    2002-08-19

    This report gives a brief review of the presentations in Session VI of the Ecloud'02 Workshop and summarizes the major points during the discussions. Some points (e.g., the critical mass phenomenon) are not conclusive and even controversial. But it has been agreed that further investigations are warranted. The topic of Session VI in the Ecloud'02 workshop is ''Discussions of future studies, collaborations and possible solutions.'' Half of the session is devoted to presentations, another half to discussions. This report will focus on the latter. There are six presentations: (1) R. Macek, Possible cures to the e-cloud problem; (2) G. Rumolo, Driving the electron-cloud instability by an electron cooler; (3) U. Iriso Ariz, RF test benches for electron-cloud studies; (4) F. Caspers, Stealth clearing electrodes; (5) F. Ruggiero, Future electron-cloud studies at CERN; and (6) E. Perevedentsev, Beam-beam and transverse impedance model.

  18. Directional Mechanosensing in Myosin VI

    NASA Astrophysics Data System (ADS)

    Yang, Yubo; Tehver, Riina

    2013-03-01

    Myosin is a family of versatile motor proteins that perform various tasks, such as organelle transport, anchoring and cell deformation. Although the general mechanism of the motors has been fairly well established, details on dynamic aspects like force response of the motor, and force propagation are yet to be fully understood. In this poster, we present the response of the ATP binding region to force exerted on the tail domain in order to test the proposed tension-dependent gating mechanism of myosin VI processive motion. We employed the Self-Organized Polymer model in a computer simulation to explore the effect. Current results show that the ATP binding domain of myosin VI indeed exhibits tension dependence - both structurally and dynamically.

  19. Robotic Hand

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Omni-Hand was developed by Ross-Hime Designs, Inc. for Marshall Space Flight Center (MSFC) under a Small Business Innovation Research (SBIR) contract. The multiple digit hand has an opposable thumb and a flexible wrist. Electric muscles called Minnacs power wrist joints and the interchangeable digits. Two hands have been delivered to NASA for evaluation for potential use on space missions and the unit is commercially available for applications like hazardous materials handling and manufacturing automation. Previous SBIR contracts resulted in the Omni-Wrist and Omni-Wrist II robotic systems, which are commercially available for spray painting, sealing, ultrasonic testing, as well as other uses.

  20. Robotic Stripping

    NASA Technical Reports Server (NTRS)

    2000-01-01

    UltraStrip Systems, Inc.'s M-200 removes paint from the hulls of ships faster than traditional grit-blasting methods. And, it does so without producing toxic airborne particles common to traditional methods. The M-2000 magnetically attaches itself to the hull of the ship. Its water jets generate 40,000 pounds of pressure per square inch, blasting away paint down to the ships steel substrate. The only by product is water and dried paint chips and these are captured by a vacuum system so no toxic residue can escape. It was built out of a partnership between the Jet Propulsion Laboratory and the National Robotics Engineering Consortium.

  1. Robots and manipulators

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1981-01-01

    Robots are defined and described for various applications. The key feature of robots is programmability, which allows teleoperation, repair work in hazardous situations, and unsupervised operation in industrial functions. Two types of robots now exist: special purpose, with equipment for a specific task; and general purpose, which include nonservo-controlled robots, servo-controlled robots, and sensory control robots. Sensory robots are the most sophisticated, and are equipped with both internal control sensors and external sensors such as TV cameras, pressure detectors, laser range finders, etc. Sensory feedback to a central computer enables the robots to make appropriate modifications to the control program to adapt to new situations. Pattern recognition and scans for size are features of the TV sensors, and programs to develop a universal effector (hand) are outlined. Finally, robot programming in terms of manual, walkthrough, and textual methods are described, and the potential uses of robots for space and undersea construction and repair are discussed.

  2. Collaborative Robotics Design Considerations

    DTIC Science & Technology

    2004-05-06

    I~D~·L Paper Number Collaborative Robotics Design Considerations ABSTRACT As research advances individual robot capabilities, a logical...progression is the use of multiple robots to complete a task more effectively. Mission performance can be improved by the ability to allocate robots with...diverse capabilities to perform different parts of a complex task. To paraphrase [[10], there are many advantages to enabling robotic collaborative

  3. Robotic Vision for Welding

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1986-01-01

    Vision system for robotic welder looks at weld along axis of welding electrode. Gives robot view of most of weld area, including yet-unwelded joint, weld pool, and completed weld bead. Protected within welding-torch body, lens and fiber bundle give robot closeup view of weld in progress. Relayed to video camera on robot manipulator frame, weld image provides data for automatic control of robot motion and welding parameters.

  4. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students from Hagerty High School in Oviedo, Fla., participants in FIRST Robotics, show off their robots' capabilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  5. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A miniature humanoid robot known as DARwin-OP, from Virginia Tech Robotics, plays soccer with a red tennis ball for a crowd of students at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  6. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students gather to watch as a DARwin-OP miniature humanoid robot from Virginia Tech Robotics demonstrates its soccer abilities at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  7. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A child gets an up-close look at Charli, an autonomous walking robot developed by Virginia Tech Robotics, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  8. Robotic vehicle

    DOEpatents

    Box, W.D.

    1994-03-15

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

  9. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1996-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  10. Robotic vehicle

    DOEpatents

    Box, W.D.

    1996-03-12

    A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

  11. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1994-01-01

    A robotic vehicle (10) for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle (10) comprises forward and rear housings (32 and 12) each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings (32 and 12) are selectively held in a stationary position within the conduit. The vehicle (10) also includes at least three selectively extendable members (46), each of which defines a cavity (56) therein. The forward end portion (50) of each extendable member (46) is secured to the forward housing (32) and the rear end portion (48) of each housing is secured to the rear housing (12). Each of the extendable members (46) is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity (56) of the extendable member such that the distance between the forward housing (32 ) and the rear housing (12) can be selectively increased. Further, each of the extendable members (46) is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity (56) of the extendable member (46) such that the distance between the forward housing (32) and the rear housing (12) can be selectively decreased.

  12. Hexapod Robot

    NASA Technical Reports Server (NTRS)

    Begody, Ericka

    2016-01-01

    The project I am working on at NASA-Johnson Space Center in Houston, TX is a hexapod robot. This project was started by various engineers at the Trick Lab. The goal of this project is to have the hexapod track a yellow ball or possibly another object from left to right and up/down. The purpose is to have it track an object like a real creature. The project will consist of using software and hardware. This project started with a hexapod robot which uses a senor bar to track a yellow ball but with a limited field of vision. The sensor bar acts as the robots "head." Two servos will be added to the hexapod to create flexion and extension of the head. The neck and head servos will have to be programmed to be added to the original memory map of the existing servos. I will be using preexisting code. The main programming language that will be used to add to the preexisting code is C++. The trick modeling and simulation software will also be used in the process to improve its tracking and movement. This project will use a trial and error approach, basically seeing what works and what does not. The first step is to initially understand how the hexapod works. To get a general understanding of how the hexapod maneuvers and plan on how to had a neck and head servo which works with the rest of the body. The second step would be configuring the head and neck servos with the leg servos. During this step, limits will be programmed specifically for the each servo. By doing this, the servo is limited to how far it can rotate both clockwise and counterclockwise and this is to prevent hardware damage. The hexapod will have two modes in which it works in. The first mode will be if the sensor bar does not detect an object. If the object it is programmed to look for is not in its view it will automatically scan from left to right 3 times then up and down once. The second mode will be if the sensor bar does detect the object. In this mode the hexapod will track the object from left to

  13. DOE/NE robotics for advanced reactors

    SciTech Connect

    Not Available

    1991-01-01

    This document details activities during this reporting period. The Michigan group has developed, built, and tested a general purpose interface circuit for DC motors and encoders. This interface is based on an advanced microchip, the HCTL 1100 manufactured by Hewlett Packard. The HCTL 1100 can be programmed by a host computer in real-time, allowing sophisticated motion control for DC motors. At the University of Florida, work on modeling the details of the seismic isolators and the jack mechanism has been completed. A separate 3D solid view of the seismic isolator floor, with the full set of isolators shown in detail, has been constructed within IGRIP. ORNL led the robotics team at the ALMR review meeting. Discussions were held with General Electric (GE) engineers and contractors on the robotic needs for the ALMR program. The Tennessee group has completed geometric modeling of the Andros Mark VI mobile platform with two fixed tracks and for articulated tracks, the give degree-of-freedom manipulator and its end-effector, and two cameras. A graphical control of panel was developed which allow the user to operate the simulated robot. The University of Texas team visited ORNL to complete the implementation of computed-torque controller on the CESARm manipulator. This controller was previously developed and computer simulations were carried out specifically for the CESARm robot.

  14. PRoViScout: a planetary scouting rover demonstrator

    NASA Astrophysics Data System (ADS)

    Paar, Gerhard; Woods, Mark; Gimkiewicz, Christiane; Labrosse, Frédéric; Medina, Alberto; Tyler, Laurence; Barnes, David P.; Fritz, Gerald; Kapellos, Konstantinos

    2012-01-01

    Mobile systems exploring Planetary surfaces in future will require more autonomy than today. The EU FP7-SPACE Project ProViScout (2010-2012) establishes the building blocks of such autonomous exploration systems in terms of robotics vision by a decision-based combination of navigation and scientific target selection, and integrates them into a framework ready for and exposed to field demonstration. The PRoViScout on-board system consists of mission management components such as an Executive, a Mars Mission On-Board Planner and Scheduler, a Science Assessment Module, and Navigation & Vision Processing modules. The platform hardware consists of the rover with the sensors and pointing devices. We report on the major building blocks and their functions & interfaces, emphasizing on the computer vision parts such as image acquisition (using a novel zoomed 3D-Time-of-Flight & RGB camera), mapping from 3D-TOF data, panoramic image & stereo reconstruction, hazard and slope maps, visual odometry and the recognition of potential scientifically interesting targets.

  15. Robotic intelligence kernel

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  16. Intelligent robots and computer vision

    SciTech Connect

    Casasent, D.P.

    1985-01-01

    This book presents the papers given at a conference which examined artificial intelligence and image processing in relation to robotics. Topics considered at the conference included feature extraction and pattern recognition for computer vision, image processing for intelligent robotics, robot sensors, image understanding and artificial intelligence, optical processing techniques in robotic applications, robot languages and programming, processor architectures for computer vision, mobile robots, multisensor fusion, three-dimensional modeling and recognition, intelligent robots applications, and intelligent robot systems.

  17. Mucopolysaccharidosis VI: pathophysiology, diagnosis and treatment.

    PubMed

    Harmatz, Paul; Shediac, Renee

    2017-01-01

    Mucopolysaccharidosis VI (MPS VI), or Maroteaux-Lamy syndrome, is an autosomal recessive lysosomal storage disorder caused by deficient activity of the enzyme arylsulfatase B (ASB). Progressive accumulation of glycosaminoglycans (GAGs) in organs and tissues leads to the development of multisystem clinical manifestations. The presentation of MPS VI is genotypically and phenotypically diverse, with a large number of potential disease-causing mutations and a phenotypic spectrum ranging from very slowly to very rapidly progressing disease. Diagnosis of MPS VI relies on presence of clinical features, increased GAG levels in urine or low ASB activity in dried blood spots, and measurement of enzyme activity levels in leukocytes or fibroblasts. The management of MPS VI involves enzyme replacement therapy and medical and surgical treatment of disease manifestations. Liquid chromatography/tandem mass spectrometry of GAG-derived disaccharides in blood or urine is emerging as a valuable method in the diagnosis, prognosis and assessment of therapeutic efficacy in MPS VI.

  18. Humanoid Robot

    NASA Technical Reports Server (NTRS)

    Linn, Douglas M. (Inventor); Ambrose, Robert O. (Inventor); Diftler, Myron A. (Inventor); Askew, Scott R. (Inventor); Platt, Robert (Inventor); Mehling, Joshua S. (Inventor); Radford, Nicolaus A. (Inventor); Strawser, Phillip A. (Inventor); Bridgwater, Lyndon (Inventor); Wampler, II, Charles W. (Inventor); hide

    2013-01-01

    A humanoid robot includes a torso, a pair of arms, two hands, a neck, and a head. The torso extends along a primary axis and presents a pair of shoulders. The pair of arms movably extend from a respective one of the pair of shoulders. Each of the arms has a plurality of arm joints. The neck movably extends from the torso along the primary axis. The neck has at least one neck joint. The head movably extends from the neck along the primary axis. The head has at least one head joint. The shoulders are canted toward one another at a shrug angle that is defined between each of the shoulders such that a workspace is defined between the shoulders.

  19. Unmanned Systems: A Lab-Based Robotic Arm for Grasping

    DTIC Science & Technology

    2015-06-01

    normal hand movements were completed and were successful. 14. SUBJECT TERMS robotic arm, glove controller, dynamics, DH parameters 15...Experiments with flex sensors on the glove for normal hand movements were completed and were successful. vi THIS PAGE INTENTIONALLY LEFT BLANK vii TABLE...was to integrate the JACO arm into an efficient, real-time and humanlike system where the trajectory motion emulates natural human arm movement

  20. Robotics for Human Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Deans, Mathew; Bualat, Maria

    2013-01-01

    Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.

  1. History of robotic surgery.

    PubMed

    Kalan, Satyam; Chauhan, Sanket; Coelho, Rafael F; Orvieto, Marcelo A; Camacho, Ignacio R; Palmer, Kenneth J; Patel, Vipul R

    2010-09-01

    Robotic surgery is one of the most advanced forms of Minimally Invasive Surgery. Although the application of robotic technology to surgical robotics started some 20 years ago, the earliest work in robotics and automation can be traced back to 400 BC. Some of the early pioneers include Archytas of Arentum, Leonardo da Vinci, Gianello Toriano, and Pierre Jaquet-Droz, and we owe to these philosophers and scientists the fact that we can offer the benefit of minimal invasion in surgery. The purpose of this review is to give a brief description of the evolution of robotic surgery from its early history to present-day surgical robotics.

  2. Phase VI Glove Durability Testing

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2011-01-01

    The current state-of-the-art space suit gloves, the Phase VI gloves, have an operational life of 25 -- 8 hour Extravehicular Activities (EVAs) in a dust free, manufactured microgravity EVA environment. Future planetary outpost missions create the need for space suit gloves which can endure up to 90 -- 8 hour traditional EVAs or 576 -- 45 minute suit port-based EVAs in a dirty, uncontrolled planetary environment. Prior to developing improved space suit gloves for use in planetary environments, it is necessary to understand how the current state-of-the-art performs in these environments. The Phase VI glove operational life has traditionally been certified through cycle testing consisting of International Space Station (ISS)-based EVA tasks in a clean environment, and glove durability while performing planetary EVA tasks in a dirty environment has not previously been characterized. Testing was performed in the spring of 2010 by the NASA Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD) to characterize the durability of the Phase VI Glove and identify areas of the glove design which need improvement to meet the requirements of future NASA missions. Lunar simulant was used in this test to help replicate the dirty lunar environment, and generic planetary surface EVA tasks were performed during testing. A total of 50 manned, pressurized test sessions were completed in the Extravehicular Mobility Unit (EMU) using one pair of Phase VI gloves as the test article. The 50 test sessions were designed to mimic the total amount of pressurized cycling the gloves would experience over a 6 month planetary outpost mission. The gloves were inspected periodically throughout testing, to assess their condition at various stages in the test and to monitor the gloves for failures. Additionally, motion capture and force data were collected during 18 of the 50 test sessions to assess the accuracy of the cycle model predictions used in testing and to feed into the

  3. Phase VI Glove Durability Testing

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    The current state-of-the-art space suit gloves, the Phase VI gloves, have an operational life of 25 - 8 hour Extravehicular Activities (EVAs) in a clean, controlled ISS environment. Future planetary outpost missions create the need for space suit gloves which can endure up to 90 - 8 hour traditional EVAs or 576 - 45 minute suit port-based EVAs in a dirty, uncontrolled planetary environment. Prior to developing improved space suit gloves for use in planetary environments, it is necessary to understand how the current state-of-the-art performs in these environments. The Phase VI glove operational life has traditionally been certified through cycle testing consisting of ISS-based tasks in a clean environment, and glove durability while performing planetary EVA tasks in a dirty environment has not previously been characterized. Testing was performed in the spring of 2010 by the NASA Johnson Space Center Crew and Thermal Systems Division to characterize the durability of the Phase VI Glove and identify areas of the glove design which need improvement to meet the requirements of future NASA missions. Lunar simulant was used in this test to help replicate the dirty lunar environment, and generic planetary surface EVA tasks were performed during testing. A total of 50 manned, pressurized test sessions were completed in the Extravehicular Mobility Unit (EMU) using one pair of Phase VI gloves as the test article. The 50 test sessions were designed to mimic the total amount of pressurized cycling the gloves would experience over a 6 month planetary outpost mission. The gloves were inspected at periodic intervals throughout testing, to assess their condition at various stages in the test and to monitor the gloves for failures. Additionally, motion capture and force data were collected during 18 of the 50 test sessions to assess the accuracy of the cycle model predictions used in testing and to feed into the development of improved cycle model tables. This paper provides a

  4. Shotcrete for underground support VI

    SciTech Connect

    Not Available

    1993-01-01

    This proceedings consists of papers presented at the Shotcrete for Underground Support VI Conference held in Niagara-on-the-Lake, Ontario, Canada, May 2-6, 1993. It covers three broad themes concerning shotcrete - engineering, research, and applications. Specifically, the proceedings presents papers on: (1) materials engineering; (2) shotcrete research; (3) engineering design; and (4) tunneling, soil nailing, and mining applications. The book concludes by presenting an international compilation of guidelines and recommendations on shotcrete. Papers have been processed separately for inclusion on the data base.

  5. Competencies Identification for Robotics Training.

    ERIC Educational Resources Information Center

    Tang, Le D.

    A study focused on the task of identifying competencies for robotics training. The level of robotics training was limited to that of robot technicians. Study objectives were to obtain a list of occupational competencies; to rank their order of importance; and to compare opinions from robot manufacturers, robot users, and robotics educators…

  6. Robot strings: Long, thin continuum robots

    NASA Astrophysics Data System (ADS)

    Walker, I. D.

    We describe and discuss the development of long, thin, continuous “ string-like” robots aimed at Space exploration missions. These continuous backbone “ continuum” robots are inspired by numerous biological structures, particularly vines, worms, and the tongues of animals such as the anteater. The key novelty is the high length-to-diameter ratio of the robots. This morphology offers penetration into, and exploration of, significantly narrower and deeper environments than accessible using current robot technology. In this paper, we introduce new design alternatives for long thin continuum robots, based on an analysis and extension of three core existing continuum robot design types. The designs are evaluated based on their mechanical feasibility, structural properties, kinematic simplicity, and degrees of freedom.

  7. Soft robotics: a bioinspired evolution in robotics.

    PubMed

    Kim, Sangbae; Laschi, Cecilia; Trimmer, Barry

    2013-05-01

    Animals exploit soft structures to move effectively in complex natural environments. These capabilities have inspired robotic engineers to incorporate soft technologies into their designs. The goal is to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments. Here, we review emerging soft-bodied robotic systems, and in particular recent developments inspired by soft-bodied animals. Incorporating soft technologies can potentially reduce the mechanical and algorithmic complexity involved in robot design. Incorporating soft technologies will also expedite the evolution of robots that can safely interact with humans and natural environments. Finally, soft robotics technology can be combined with tissue engineering to create hybrid systems for medical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Stable suspension for Vi-agglutination tests

    PubMed Central

    Ando, Koji; Shimojo, Hiroto

    1953-01-01

    Two methods of preparing a stable suspension for Vi-agglutination tests are discussed. Both maintain Vi-agglutinability and O-inagglutinability after storage at 37°C for 6 months, and the second also maintains the Vi-capsule-staining property. The first method involves the addition of 0.5% CaCl2 to a heavy saline Vi-suspension, while in the second a similar suspension is treated with an 0.2% solution of chrome alum. PMID:20603972

  9. Immune suppression induced by Vi capsular polysaccharide is overcome by Vi-DT conjugate vaccine.

    PubMed

    An, So Jung; Yoon, Yeon Kyung; Kothari, Sudeep; Kim, Deok Ryun; Kim, Jeong Ah; Kothari, Neha; Lee, Eugene; Park, Tai Hyun; Carbis, Rodney

    2012-02-01

    The influence pre-exposure of mice to Vi capsular polysaccharide, purified from Salmonella enterica Serovar Typhi, on the subsequent immune response induced by a Vi-diphtheria toxoid (Vi-DT) conjugate was evaluated. Vi induced low anti Vi IgG titers with the dominant subclass being IgG3. The Vi-DT conjugate induced high titers of anti Vi IgG with the dominant subclass being IgG1 but with considerable quantities of IgG2a, IgG2b and IgG3. Priming of mice with Vi suppressed the response to a subsequent dose of conjugate and the suppression was overcome by a second dose of conjugate. Priming with conjugate prevented suppression of the anti Vi response and subsequent dosing with Vi raised titers back to previous levels but did not boost to new higher levels. The anti DT IgG response to one dose of conjugate was relatively strong and protracted and continued to rise for 12 weeks, compared to the response to one dose of DT which was poor and peaked at two weeks. The prolonged anti DT response was most likely due to the slow release of DT from the conjugate lattice as it degrades within the mouse resulting in a continuous stimulation of the immune response. The presence of increasing amounts of un-conjugated Vi, up to 50%, administered with the conjugate resulted in increasingly higher levels of both anti Vi and anti DT. Larger amounts of un-conjugated Vi inhibited the anti Vi response. These findings have implications for vaccine quality and a limit for un-conjugated polysaccharide should not exceed 50% and from a vaccine program perspective if the results presented here translate to humans then a Vi conjugate, once it becomes available, should replace Vi polysaccharide vaccines. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Neptunium(vi) chain and neptunium(vi/v) mixed valence cluster complexes.

    PubMed

    Cornet, Stéphanie M; Häller, L Jonas L; Sarsfield, Mark J; Collison, David; Helliwell, Madeleine; May, Iain; Kaltsoyannis, Nikolas

    2009-02-28

    The synthesis of [Np(VI)O(2)Cl(2)(thf)](n) offers the potential for more detailed exploration of neptunyl(vi) chemistry, while the synthesis of the mixed valence cluster complex [{Np(VI)O(2)Cl(2)}{Np(V)O(2)Cl(thf)(3)}(2)] allows molecular neptunyl(v) 'cation-cation' interactions to be probed.

  11. Robots and the Economy.

    ERIC Educational Resources Information Center

    Albus, James S.

    1984-01-01

    Spectacular advances in microcomputers are forging new technological frontiers in robotics. For example, many factories will be totally automated. Economic implications of the new technology of robotics for the future are examined. (RM)

  12. Robotic Intelligence Kernel: Communications

    SciTech Connect

    Walton, Mike C.

    2009-09-16

    The INL Robotic Intelligence Kernel-Comms is the communication server that transmits information between one or more robots using the RIK and one or more user interfaces. It supports event handling and multiple hardware communication protocols.

  13. Robotic Lander Development Project

    NASA Image and Video Library

    The Robotic Lander Development Project at the Marshall Center is testing a prototype lander that will aid in the design and development of a new generation of small, smart, versatile robotic lander...

  14. Robotic space colonies

    NASA Technical Reports Server (NTRS)

    Schenker, P.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper reviews recent advances in these technologies, with a particular focus on experimental state-of-the-art robot work crew system demonstrations at JPL, that are being conducted now to begin to realize the futuristic robotic colony vision.

  15. Robotic Lander Prototype

    NASA Image and Video Library

    NASA engineers successfully integrated and completed system testing on a new robotic lander recently at Teledyne Brown Engineering’s facility in Huntsville in support of the Robotic Lunar Lander ...

  16. Robots and the Economy.

    ERIC Educational Resources Information Center

    Albus, James S.

    1984-01-01

    Spectacular advances in microcomputers are forging new technological frontiers in robotics. For example, many factories will be totally automated. Economic implications of the new technology of robotics for the future are examined. (RM)

  17. ROBOTS TO ROCKET CITY

    NASA Image and Video Library

    2016-03-06

    HIGH SCHOOL STUDENTS FROM NORTH ALABAMA GATHER AT THE U.S. SPACE AND ROCKET CENTER'S DAVIDSON CENTER FOR THE "ROBOTS TO ROCKET CITY" EVENT SHOWCASING THEIR INDIVIDUAL ROBOTS PRIOR TO LATER COMPETITIONS.

  18. Robotic Surveying

    SciTech Connect

    Suzy Cantor-McKinney; Michael Kruzic

    2007-03-01

    ZAPATA ENGINEERING challenged our engineers and scientists, which included robotics expertise from Carnegie Mellon University, to design a solution to meet our client's requirements for rapid digital geophysical and radiological data collection of a munitions test range with no down-range personnel. A prime concern of the project was to minimize exposure of personnel to unexploded ordnance and radiation. The field season was limited by extreme heat, cold and snow. Geographical Information System (GIS) tools were used throughout this project to accurately define the limits of mapped areas, build a common mapping platform from various client products, track production progress, allocate resources and relate subsurface geophysical information to geographical features for use in rapidly reacquiring targets for investigation. We were hopeful that our platform could meet the proposed 35 acres per day, towing both a geophysical package and a radiological monitoring trailer. We held our breath and crossed our fingers as the autonomous Speedrower began to crawl across the playa lakebed. We met our proposed production rate, and we averaged just less than 50 acres per 12-hour day using the autonomous platform with a path tracking error of less than +/- 4 inches. Our project team mapped over 1,800 acres in an 8-week (4 days per week) timeframe. The expertise of our partner, Carnegie Mellon University, was recently demonstrated when their two autonomous vehicle entries finished second and third at the 2005 Defense Advanced Research Projects Agency (DARPA) Grand Challenge. 'The Grand Challenge program was established to help foster the development of autonomous vehicle technology that will some day help save the lives of Americans who are protecting our country on the battlefield', said DARPA Grand Challenge Program Manager, Ron Kurjanowicz. Our autonomous remote-controlled vehicle (ARCV) was a modified New Holland 2550 Speedrower retrofitted to allow the machine

  19. Robotics Research for Cybersecurity

    DTIC Science & Technology

    2012-01-24

    Wei-Min Shen 1/24/12 Page 1 of 3 Robotics Research for Cybersecurity Wei-Min Shen Polymorphic Robotics Laboratory USC/ISI, 4676 Admiralty Way...Marina del Rey, CA 90292 Phone: 310-448-8710, Fax: 310-822-0751 Email: shen@isi.edu, Web: http://www.isi.edu/ robots / Executive Summary This...project is to conduct a comprehensive study of robotics research in the context of cybersecurity. Specifically, 1) Create a realistic cybersecurity test

  20. Ground Vehicle Robotics

    DTIC Science & Technology

    2013-08-20

    Ground Vehicle Robotics Jim Parker Associate Director, Ground Vehicle Robotics UNCLASSIFIED: Distribution Statement A. Approved for public...DATE 20 AUG 2013 2. REPORT TYPE Briefing Charts 3. DATES COVERED 09-05-2013 to 15-08-2013 4. TITLE AND SUBTITLE Ground Vehicle Robotics 5a...Willing to take Risk on technology -User Evaluated -Contested Environments -Operational Data Applied Robotics for Installation & Base Ops -Low Risk

  1. Telepresence and Intervention Robotics

    DTIC Science & Technology

    2000-11-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO10628 TITLE: Telepresence and Intervention Robotics DISTRIBUTION...comprise the compilation report: ADPO10609 thru ADP010633 UNCLASSIFIED 20-1 TELEPRESENCE AND INTERVENTION ROBOTICS Nathalie Cislo Laboratoire de...Robotique de Paris 10-12, Avenue de 1’Europe 78140 VWlizy-Villacoublay, FRANCE cislo@robot.uvsq.fr ABSTRACT In the field of Mobile Robotics applications

  2. Tool Changer For Robot

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.

    1992-01-01

    Mechanism enables robot to change tools on end of arm. Actuated by motion of robot: requires no additional electrical or pneumatic energy to make or break connection between tool and wrist at end of arm. Includes three basic subassemblies: wrist interface plate attached to robot arm at wrist, tool interface plate attached to tool, and holster. Separate tool interface plate and holster provided for each tool robot uses.

  3. RHOBOT: Radiation hardened robotics

    SciTech Connect

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  4. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A visitor to the Robot Rocket Rally takes an up-close look at RASSOR, a robotic miner developed by NASA Kennedy Space Center's Swamp Works. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  5. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Students observe as Otherlab shows off a life-size, inflatable robot from its "" program. The demonstration was one of several provided during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  6. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Andrew Nick of Kennedy Space Center's Swamp Works shows off RASSOR, a robotic miner, at the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  7. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A visitor to the Robot Rocket Rally tries his hand at virtual reality in a demonstration of the Oculus Rift technology, provided by the Open Source Robotics Foundation. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  8. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  9. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  10. Robotic Intelligence Kernel: Visualization

    SciTech Connect

    2009-09-16

    The INL Robotic Intelligence Kernel-Visualization is the software that supports the user interface. It uses the RIK-C software to communicate information to and from the robot. The RIK-V illustrates the data in a 3D display and provides an operating picture wherein the user can task the robot.

  11. Inertially Aided Robotics

    DTIC Science & Technology

    1989-12-31

    0031 dis~bti:,1 is uitsnjt( Deczmllcr 31: 1989 92-05530 2:.-: 3o : T >VE?-A ~ : Inertially Aided Robotics FINAL REPORT for Contract No. DAAHO1 -88-D-0057...1 2 Advantages of Inertially Aided Robotics ...86 iii List of Figures Figure 1 - Robot Manipulator having Joint Sensor Based Control ..................... 2

  12. NASA's Intelligent Robotics Group

    NASA Image and Video Library

    2017-01-06

    Shareable video highlighting the Intelligent Robotics Group's 25 years of experience developing tools to allow humans and robots to work as teammates. Highlights the VERVE software, which allows researchers to see a 3D representation of the robot's world and mentions how Nissan is using a version of VERVE in the autonomous vehicle research.

  13. Robotic hand and fingers

    DOEpatents

    Salisbury, Curt Michael; Dullea, Kevin J.

    2017-06-06

    Technologies pertaining to a robotic hand are described herein. The robotic hand includes one or more fingers releasably attached to a robotic hand frame. The fingers can abduct and adduct as well as flex and tense. The fingers are releasably attached to the frame by magnets that allow for the fingers to detach from the frame when excess force is applied to the fingers.

  14. Total portal robotic pneumonectomy.

    PubMed

    Rodriguez, Jose R

    2013-09-01

    Robotic pulmonary lobectomies have been reported to be technically and oncologically achievable; however, only three robotic pneumonectomy cases have been described. Two of them used a mini thoracotomy. We describe one case of a total portal robotic pneumonectomy without utility incision. We describe the step-by-step process.

  15. Building a Better Robot

    ERIC Educational Resources Information Center

    Navah, Jan

    2012-01-01

    Kids love to build robots, letting their imaginations run wild with thoughts of what they might look like and what they could be programmed to do. Yet when students use cereal boxes and found objects to make robots, often the projects look too similar and tend to fall apart. This alternative allows students to "build" robots in a different way,…

  16. Mobile robot knowledge base

    NASA Astrophysics Data System (ADS)

    Heath Pastore, Tracy; Barnes, Mitchell; Hallman, Rory

    2005-05-01

    Robot technology is developing at a rapid rate for both commercial and Department of Defense (DOD) applications. As a result, the task of managing both technology and experience information is growing. In the not-to-distant past, tracking development efforts of robot platforms, subsystems and components was not too difficult, expensive, or time consuming. To do the same today is a significant undertaking. The Mobile Robot Knowledge Base (MRKB) provides the robotics community with a web-accessible, centralized resource for sharing information, experience, and technology to more efficiently and effectively meet the needs of the robot system user. The resource includes searchable information on robot components, subsystems, mission payloads, platforms, and DOD robotics programs. In addition, the MRKB website provides a forum for technology and information transfer within the DOD robotics community and an interface for the Robotic Systems Pool (RSP). The RSP manages a collection of small teleoperated and semi-autonomous robotic platforms, available for loan to DOD and other qualified entities. The objective is to put robots in the hands of users and use the test data and fielding experience to improve robot systems.

  17. Robotics development programs overview

    SciTech Connect

    Heckendorn, F.M.

    1990-11-01

    This paper discusses the applications of robotics at the Westinghouse Savannah River Site. The Savannah River Laboratory (SRL) continues to provide support to the Savannah River Site (SRS) in many areas of Robotics and Remote Vision. An overview of the current and near term future developments are presented. The driving forces for Robotics and Vision developments at SRS include the classic reasons for industrial robotics installation (i.e. repetitive and undesirable jobs) and those reasons related to radioactive environments. Protection of personnel from both radiation and radioactive contamination benefit greatly from both Robotics and Telerobotics. Additionally, the quality of information available from remote locations benefits greatly from the ability to visually monitor and remotely sense. The systems discussed include a glovebox waste handling and bagout robot, a shielded cells robot for radioactive waste sample transfer, waste handling gantry robots, a two armed master/slave manipulator as an attachment to a gantry robot, navigation robot research/testing, demonstration of the mobile underwater remote cleaning and inspection device, a camera deployment robot to support remote crane operations and for deployment of radiation sensors directly over a hazardous site, and demonstration of a large mobile robot for high radiation environments. Development of specialized and limited life vision/viewing systems for hazardous environments is also discussed.

  18. Networking a mobile robot

    NASA Astrophysics Data System (ADS)

    McKee, Gerard T.

    1994-10-01

    Conventional mobile robotic systems are `stand alone'. Program development involves loading programs into the mobile, via an umbilical. Autonomous operation, in this context, means `isolation': the user cannot interact with the program as the robot is moving around. Recent research in `swarm robotics' has exploited wireless networks as a means of providing inter- robot communication, but the population is still isolated from the human user. In this paper we report on research we are conducting into the provision of mobile robots as resources on a local area computer network, and thus breaking the isolation barrier. We are making use of new multimedia workstation and wireless networking technology to link the robots to the network in order to provide a new type of resource for the user. We model the robot as a set of resources and propose a client-server architecture as the basis for providing user access to the robots. We describe the types of resources each robot can provide and we outline the potential for cooperative robotics, human-robot cooperation, and teleoperation and autonomous robot behavior within this context.

  19. Tooling For Robotic Welder

    NASA Technical Reports Server (NTRS)

    Weeks, Jack L.

    1989-01-01

    Robot obtains welding tool and position reference quickly and automatically. Multiple tools and stands in workspace give robot access to variety of welding torches and reference positions. Feature saves time and makes it unnecessary for operator to enter within outer limit of motion of robot arm.

  20. Robotics of human movements.

    PubMed

    van der Smagt, Patrick; Grebenstein, Markus; Urbanek, Holger; Fligge, Nadine; Strohmayr, Michael; Stillfried, Georg; Parrish, Jonathon; Gustus, Agneta

    2009-01-01

    The construction of robotic systems that can move the way humans do, with respect to agility, stability and precision, is a necessary prerequisite for the successful integration of robotic systems in human environments. We explain human-centered views on robotics, based on the three basic ingredients (1) actuation; (2) sensing; and (3) control, and formulate detailed examples thereof.

  1. Building a Better Robot

    ERIC Educational Resources Information Center

    Navah, Jan

    2012-01-01

    Kids love to build robots, letting their imaginations run wild with thoughts of what they might look like and what they could be programmed to do. Yet when students use cereal boxes and found objects to make robots, often the projects look too similar and tend to fall apart. This alternative allows students to "build" robots in a different way,…

  2. Robotic Follow Algorithm

    SciTech Connect

    2005-03-30

    The Robotic Follow Algorithm enables allows any robotic vehicle to follow a moving target while reactively choosing a route around nearby obstacles. The robotic follow behavior can be used with different camera systems and can be used with thermal or visual tracking as well as other tracking methods such as radio frequency tags.

  3. 29 CFR 1910.1026 - Chromium (VI).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... by employees in the immediate release area, or by maintenance personnel, it is not an emergency. Employee exposure means the exposure to airborne chromium (VI) that would occur if the employee were not... employee exposure to chromium (VI) associated with a particular product or material or a specific process...

  4. [Occupational exposure to chromium(VI) compounds].

    PubMed

    Skowroń, Jolanta; Konieczko, Katarzyna

    2015-01-01

    This article discusses the effect of chromium(VI) (Cr(VI)) on human health under conditions of acute and chronic exposure in the workplace. Chromium(VI) compounds as carcinogens and/or mutagens pose a direct danger to people exposed to them. If carcinogens cannot be eliminated from the work and living environments, their exposure should be reduced to a minimum. In the European Union the proposed binding occupational exposure limit value (BOELV) for chromium(VI) of 0.025 mg/m³ is still associated with high cancer risk. Based on the Scientific Commitee of Occupational Exposure Limits (SCOEL) document chromium(VI) concentrations at 0.025 mg/m³ increases the risk of lung cancer in 2-14 cases per 1000 exposed workers. Exposure to chromium(VI) compounds expressed in Cr(VI) of 0.01 mg Cr(VI)/m3; is responsible for the increased number of lung cancer cases in 1-6 per 1000 people employed in this condition for the whole period of professional activity.

  5. The Radiolysis of AmVI Solutions

    SciTech Connect

    Bruce J. Mincher

    2013-06-01

    The reduction of bismuthate-produced AmVI by 60Co gamma-rays was measured using post-irradiation UV/Vis spectroscopy. The reduction of AmVI by radiolysis was rapid, producing AmV as the sole product. Relatively low absorbed doses in the ~0.3 kGy range quantitatively reduced a solution of 2.5 x 10-4 M AmVI. The addition of bismuthate to samples during irradiation did not appear to protect AmVI from radiolytic reduction during these experiments. It was also shown here that AmV is very stable toward radiation. The quantitative reduction of the AmVI concentration here corresponds to 1.4 hours of exposure to a process solution, however the actual americium concentrations will be higher and the expected contact times short when using centrifugal contactors. Thus, the reduction rate found in these initial experiments may not be excessive.

  6. Intelligent robots and computer vision

    SciTech Connect

    Casasent, D.P.

    1986-01-01

    This book presents the papers given at a conference on artificial intelligence and robot vision. Topics considered at the conference included pattern recognition, image processing for intelligent robotics, three-dimensional vision (depth and motion), vision modeling and shape estimation, spatial reasoning, the symbolic processing visual information, robotic sensors and applications, intelligent control architectures for robot systems, robot languages and programming, human-machine interfaces, robotics applications, and architectures of robotics.

  7. Intelsat VI - A continuing evolution

    NASA Astrophysics Data System (ADS)

    Bennett, S. B.; Braverman, D. J.

    1984-11-01

    Design, launch, and performance features of the Intelsat VI satellite scheduled for 1986 launch are described. The spacecraft will operated with SS/TDMA techniques and six antenna beams, weigh 23 kg at the beginning of life, carry 80,000 half-circuits, and will be borne aloft by either the STS or Ariane 4. The communications equipment will include Cand K-band receivers, 14/11 GHz upconverters, traveling wave tube amplifiers, and 50 input and output filters. Total interconnectivity will be present for all uplinks and downlinks, which will issue spot and shaped beam coverage of the hemisphere. Satellite power is to be supplied by solar panels furnishing 2 kW continuously and eclipse power is to be drawn from two 44 Ah NiH batteries. Orbit maintenance and attitude control are assigned to six 22 N thrusters.

  8. Robotics Technical Note 102.

    DTIC Science & Technology

    1981-06-01

    IAfl-AIBZ 4U2 AIR FORCE BUSINESS RESEARCH MANAGEMENT CENTER WRIGHT-ETC F/6 13/8 I ROBOTICS TECHNIICAL NOTE 102.(U) JUN Al B M BLABIERSALL UNCLASSIFE...CATALOG uME 1T4.T7- Subtitle S. TYPE OF REPOR & PERIOO COVERED Technical Note 102 Robotics 𔄁 FInal r ---- 6. PERFORMING O1G. REPORT NUMBER C 7. A tNORa B...Identify by block number) Robotics Manufacturing Industrial Robots Robot Technology SRobotics Application BQ~.STRACT (Continue on revere* side It

  9. Miniaturized autonomous robot

    NASA Astrophysics Data System (ADS)

    Ishihara, Hidenori; Fukuda, Toshio

    1998-01-01

    Many projects developing the miniaturized autonomous robot have been carried out in the whole world. This paper deals with our challenges developing a miniaturized autonomous robot. The miniaturized autonomous robot is defined as the miniaturized closed-loop system with micro processor, microactuators and microsensors. We have developed the micro autonomous robotic system (MARS) consisting of the microprocessor, microsensors, microactuators, communication units and batteries. The MARS controls itself by the downloaded program supplied through the IR communication system. In this paper, we demonstrate several performance of the MARS, and discuss the properties of the miniaturized autonomous robot.

  10. Robotics for challenging environments

    SciTech Connect

    Demsetz, L.A.

    1996-12-31

    This is the proceedings of the second specialty conference on Robotics for Challenging Environments (RCE-II), held in Albuquerque, NM, June 1-6, 1996. The conference was motivated by the recognition that the use of robotic, automated, and teleoperated equipment in hazardous, unstructured field operations poses challenges different from those faced in more controlled manufacturing environments. Papers were presented in areas including, path planning, operator interfaces, supervisory control, control of robots and manipulators, space applications, standards for space robots, infrastructure applications, robotic excavation, safety in nuclear facilities, mobile systems, and educational applications. Separate abstracts for some papers have been indexed into the energy database.

  11. Robotic technology in urology

    PubMed Central

    Murphy, D; Challacombe, B; Khan, M S; Dasgupta, P

    2006-01-01

    Urology has increasingly become a technology‐driven specialty. The advent of robotic surgical systems in the past 10 years has led to urologists becoming the world leaders in the use of such technology. In this paper, we review the history and current status of robotic technology in urology. From the earliest uses of robots for transurethral resection of the prostate, to robotic devices for manipulating laparoscopes and to the current crop of master–slave devices for robotic‐assisted laparoscopic surgery, the evolution of robotics in the urology operating theatre is presented. Future possibilities, including the prospects for nanotechnology in urology, are awaited. PMID:17099094

  12. [Robotics in pediatric surgery].

    PubMed

    Camps, J I

    2011-10-01

    Despite the extensive use of robotics in the adult population, the use of robotics in pediatrics has not been well accepted. There is still a lack of awareness from pediatric surgeons on how to use the robotic equipment, its advantages and indications. Benefit is still controversial. Dexterity and better visualization of the surgical field are one of the strong values. Conversely, cost and a lack of small instruments prevent the use of robotics in the smaller patients. The aim of this manuscript is to present the controversies about the use of robotics in pediatric surgery.

  13. Space robotics in Japan

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Lowrie, James W.; Mccain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-01-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  14. Space robotics in Japan

    NASA Astrophysics Data System (ADS)

    Whittaker, William; Lowrie, James W.; McCain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-03-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  15. Fundamentals of soft robot locomotion

    PubMed Central

    2017-01-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human–robot interaction and locomotion. Although field applications have emerged for soft manipulation and human–robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. PMID:28539483

  16. Immunohistochemical localization of collagen VI in arthrofibrosis.

    PubMed

    Zeichen, J; van Griensven, M; Albers, I; Lobenhoffer, P; Bosch, U

    1999-01-01

    Arthrofibrosis is a disabling complication after knee trauma and surgery. Clinically, it is characterized by pain and joint stiffness due to massive connective tissue proliferation. In similar pathological conditions with fibrotic transformation such as lung fibrosis or superficial fibromatoses, an increased expression of collagen type VI has been reported. Collagen VI, which forms a filamentous network, is thought to serve as an anchoring element between collagen I/III fibrils and basement membranes and as a cell binding structure. Collagen VI may also play a contributing role in the pathogenesis of arthrofibrosis. The aim of the present study was therefore to demonstrate the localization and distribution of type VI collagen in arthrofibrotic tissue. Tissue samples from the infrapatellar fat pad and intercondylar synovia of 13 patients suffering from arthrofibrosis were taken at surgery. The expression of type VI collagen was studied immunohistochemically using an immunoperoxidase method for light microscopic visualization. Histologic analysis showed a synovial hyperplasia with inflammatory cell infiltration and vascular proliferation. Compared with normal synovial tissue, type VI collagen was widely distributed as a network subsynovially and around the capillary walls. The results of the present study suggest that dysregulation of collagen VI synthesis could be an important contributing factor in the complex mechanisms of disordered matrix protein deposition leading to arthrofibrosis.

  17. Emissions of chromium (VI) from arc welding.

    PubMed

    Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris

    2007-02-01

    The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used.

  18. Anaerobic bio-removal of uranium (VI) and chromium (VI): comparison of microbial community structure.

    PubMed

    Martins, Mónica; Faleiro, Maria Leonor; Chaves, Sandra; Tenreiro, Rogério; Santos, Erika; Costa, Maria Clara

    2010-04-15

    Several microbial communities, obtained from uranium contaminated and non-contaminated samples, were investigated for their ability to remove uranium (VI) and the cultures capable for this removal were further assessed on their efficiency for chromium (VI) removal. The highest efficiency for removal of both metals was observed on a consortium from a non-contaminated soil collected in Monchique thermal place, which was capable to remove 91% of 22 mg L(-1) U(VI) and 99% of 13 mg L(-1) Cr(VI). This study revealed that uranium (VI) removing communities have also ability to remove chromium (VI), but when uranium (VI) was replaced by chromium (VI) several differences in the structure of all bacterial communities were observed. TGGE and phylogenetic analysis of 16S rRNA gene showed that the uranium (VI) removing bacterial consortia are mainly composed by members of Rhodocyclaceae family and Clostridium genus. On the other hand, bacteria from Enterobacteriaceae family were detected in the community with ability for chromium (VI) removal. The existence of members of Enterobacteriaceae and Rhodocyclaceae families never reported as chromium or uranium removing bacteria, respectively, is also a relevant finding, encouraging the exploitation of microorganisms with new abilities that can be useful for bioremediation.

  19. Robust Method For Robotic Mapping

    NASA Technical Reports Server (NTRS)

    Kuipers, Benjamin J.; Byun, Yung-Tai

    1992-01-01

    Robot constructs map from experience. Topological model consists of nodes and arcs corresponding to distinctive places and local travel edges linking nearby distinctive places. Model created by linking places and edges. Enables accumulation of metrical information with reduced vulnerability to metrical errors. Applications include robotic sentires, robotic delivery trucks, robotic floor cleaners, and robotic lawnmowers.

  20. Marsupial robots for law enforcement

    NASA Astrophysics Data System (ADS)

    Murphy, Robin R.

    2001-02-01

    Marsupial robots are a type of heterogeneous mobile robot team. A mother robot transports, supports, and recovers one or more daughter robots. This paper will cover the marsupial robot concept, the application of law enforcement, and recent results in collaborative teleoperation for the related task of urban search and rescue.

  1. Robotic endovascular surgery.

    PubMed

    Au, Stephanie; Ko, Koel; Tsang, Josephine; Chan, Yiu Che

    2014-01-01

    The purpose of this review is to compare conventional endovascular procedures and the robotic endovascular approach in aortic aneurysm repair. Despite advantages over open surgery, conventional endovascular surgery has limitations. To develop an alternative, efforts have been focused on robotic endovascular systems. Two of the 3 studies comparing procedure times demonstrated reduced procedure time in the robotic group, by 6 times (p < 0.05). One study demonstrated that robotic procedures reduced fluoroscopic exposure time by 12 minute (p < 0.001). Three in-vitro studies showed that the number of movements required in robotic surgery was reduced up to 10 times (p < 0.05). One of 2 studies measuring robotic performance score showed a better performance score in the robotic endovascular group (p = 0.007). These results demonstrate that the robotic technique has multiple advantages over the conventional procedure, including improved catheter stability, a shorter learning curve, reduced procedure time, and better performance in cannulating tortuous vessels. However, robotic endovascular technology may be limited by the cost of the system, the size of the catheter, and the setup time required preoperatively. Further comparative studies between conventional and robotic approaches regarding cost-effectiveness, safety, and performance in cases involving complex anatomy and fenestrated stent grafts are essential. Nevertheless, this revolutionary technology is increasingly popular and may be the next milestone in endovascular surgery.

  2. Evolution of robotic arms.

    PubMed

    Moran, Michael E

    2007-01-01

    The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond the human arm. da Vinci designed the first sophisticated robotic arm in 1495 with four degrees-of-freedom and an analog on-board controller supplying power and programmability. von Kemplen's chess-playing automaton left arm was quite sophisticated. Unimate introduced the first industrial robotic arm in 1961, it has subsequently evolved into the PUMA arm. In 1963 the Rancho arm was designed; Minsky's Tentacle arm appeared in 1968, Scheinman's Stanford arm in 1969, and MIT's Silver arm in 1974. Aird became the first cyborg human with a robotic arm in 1993. In 2000 Miguel Nicolalis redefined possible man-machine capacity in his work on cerebral implantation in owl-monkeys directly interfacing with robotic arms both locally and at a distance. The robotic arm is the end-effector of robotic systems and currently is the hallmark feature of the da Vinci Surgical System making its entrance into surgical application. But, despite the potential advantages of this computer-controlled master-slave system, robotic arms have definite limitations. Ongoing work in robotics has many potential solutions to the drawbacks of current robotic surgical systems.

  3. GRACE and GEORGE: Autonomous Robots for the AAAI Robot Challenge

    DTIC Science & Technology

    2004-01-01

    GRACE and GEORGE: Autonomous Robots for the AAAI Robot Challenge Reid Simmons, Allison Bruce, Dani Goldberg, Adam Goode, Michael Montemerlo, Nicholas...2004 2. REPORT TYPE 3. DATES COVERED - 4. TITLE AND SUBTITLE GRACE and GEORGE: Autonomous Robots for the AAAI Robot Challenge 5a. CONTRACT...Simmons. “A Social Robot that Stands in Line.” Autonomous Robots , 12:3 pp.313-324, May 2002. [Ortony, 1988] A. Ortony, G. L. Clore, and A. Collins

  4. Extended Analysis of Mo VI

    NASA Astrophysics Data System (ADS)

    Edlén, B.; Rahimullah, K.; Tauheed, A.; Chaghtai, M. S. Z.

    1985-09-01

    The analysis of the RbI-like spectrum Mo VI has been extended to include a total of some 110 classified lines and 44 energy levels belonging to the one-electron configurations 4s24p6(1S) nl with n ranging up to 9 and l up to 7. The analysis is based on recordings of vacuum spark spectra made at Lund in the region 230-2350 Å, complemented by a list of lines from 2193 to 6336 Å observed and identified by Romanov and Striganov in a Penning type arc discharge. The one-electron level system is partly mixed with core-excited configurations, not treated in the present paper. Especially the nf series is strongly perturbed by 4s24p54d2, and an anomalous behaviour of the ng series is explained by interaction with the 2G term of 4s4p64d2. The ionization limit, derived from 6h, 7i and 8k by means of the polarization formula, is found to be 555 132 ± 2 cm-1.

  5. II-VI widegap superlattices

    NASA Astrophysics Data System (ADS)

    Taguchi, T.; Yamada, Y.; Endoh, Y.; Nozue, Y.; Mullins, J. T.; Ohno, T.; Masumoto, Y.; Takeda, S.

    We review our recent results of the excitonic properties in ZnSeZnS and Cd xZn 1-xSZnS strained-layer superlattices (SLSs). The most important physical insights in the II-VI widegap superlattices are to understand the relationship between the optical properties of quasi-two-dimensional exciton and strain because the well layer frequently receives biaxial compression or tension. The strain thus causes the significant shifts of the bandgap and splitting of the valence band. Semi-quantative calculations lead to an expectation that ZnSeZnS SLS always exhibits a type I band lineup within 100 Å thicknesses of the ZnSe well at a constant ZnS barrier width of several tens angstrom. This is in good agreement with the experimental results of exciton absorption and its luminescence excitation spectra. The Cd 0.3Zn 0.7SZnS SLSs with a range of well widths can produce intense excitonic emissions around 3.4 eV at room temperature due to the quantum confinement of excitons in the ternary CdZnS well. In order to elucidate localisation and relaxation processes of excitons, we have for the first time reported a multiple-LO-phonon emission process in the excitation spectra. The electric-field studies suggest that the concomitant decrease in intensity and the energy downshift of the exciton line may originate from the quantum confined Stark effect.

  6. Humanlike Robots - The Upcoming Revolution in Robotics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2009-01-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  7. Humanlike Robots - The Upcoming Revolution in Robotics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2009-01-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  8. Humanlike robots: the upcoming revolution in robotics

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2009-08-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  9. XAS investigations of Fe(VI).

    SciTech Connect

    Kemner, K. M.; Kelly, S. D.; Orlandini, K. A.; Tsapin, A. I.; Goldfeld, M. G.; Perfiliev, Y. D.; Nealson, K. H.; Environmental Research; APS-USR; Jet Propulsion Lab.; Moscow State Univ.

    2001-03-01

    Recent attention has been given to a reexamination of results from the early Viking missions to Mars that suggested the presence of one or more strong oxidants in Martian soil. Since Fe is one of the main constituents of the Martian surface and Fe(VI) is known to be a highly reactive, strong oxidant, we have made XANES and EXAFS measurements of Fe(II), Fe(III), Fe(IV), and Fe(VI) in solid and solution forms. Results from these studies indicate a pre-edge XANES feature from Fe(VI) samples similar to that commonly seen from Cr(VI) samples. Results of first shell analysis indicate a linear relationship between the Fe-O bond length and Fe valence state.

  10. Rheology of water ices V and VI

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    1996-01-01

    We have measured the mechanical strength (??) of pure water ices V and VI under steady state deformation conditions. Constant displacement rate compressional tests were conducted in a gas apparatus at confining pressures from 400 250 K. Ices V and VI are thus Theologically distinct but by coincidence have approximately the same strength under the conditions chosen for these experiments. To avoid misidentification, these tests are therefore accompanied by careful observations of the occurrences and characteristics of phase changes. One sample each of ice V and VI was quenched at pressure to metastably retain the high-pressure phase and the acquired deformation microstructures; X ray diffraction analysis of these samples confirmed the phase identification. Surface replicas of the deformed and quenched samples suggest that ice V probably deforms largely by dislocation creep, while ice VI deforms by a more complicated process involving substantial grain size reduction through recrystallization.

  11. INL Multi-Robot Control Interface

    SciTech Connect

    2005-03-30

    The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robot’s condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.

  12. 19 CFR Annex Vi to Part 351 - Countervailing Investigations Timeline

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Countervailing Investigations Timeline VI Annex VI to Part 351 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Pt. 351, Annex VI Annex VI to Part 351—Countervailing Investigations Timeline ER19MY97.000 ...

  13. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  14. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  15. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  16. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  17. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise Flow rate (m3/s) Exhaust Temperature...

  18. 40 CFR 144.18 - Requirements for Class VI wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Requirements for Class VI wells. 144.18 Section 144.18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Requirements for Class VI wells. Owners or operators of Class VI wells must obtain a permit. Class VI...

  19. ROBOTIC SURGERY: BIOETHICAL ASPECTS

    PubMed Central

    SIQUEIRA-BATISTA, Rodrigo; SOUZA, Camila Ribeiro; MAIA, Polyana Mendes; SIQUEIRA, Sávio Lana

    2016-01-01

    ABSTRACT Introduction: The use of robots in surgery has been increasingly common today, allowing the emergence of numerous bioethical issues in this area. Objective: To present review of the ethical aspects of robot use in surgery. Method: Search in Pubmed, SciELO and Lilacs crossing the headings "bioethics", "surgery", "ethics", "laparoscopy" and "robotic". Results: Of the citations obtained, were selected 17 articles, which were used for the preparation of the article. It contains brief presentation on robotics, its inclusion in health and bioethical aspects, and the use of robots in surgery. Conclusion: Robotic surgery is a reality today in many hospitals, which makes essential bioethical reflection on the relationship between health professionals, automata and patients. PMID:28076489

  20. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  1. Robots in modern industry

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1981-01-01

    A survey is presented of robotic device types and capabilities, and an assessment is made of the relative benefits they confer in present and planned numbers on such industrial countries as Japan, the U.S., and West Germany. Attention is also given to possible social impacts of large-scale implementation, and the need for close consultation between management and labor is stressed. It is reported that, while the hourly cost of robot labor remained at between $4.00 and $4.60 over the period 1960-present, human hourly labor costs (including fringe benefits) have risen from less than $4.00 to nearly $17.00. Among the types of devices described are: (1) remotely controlled manipulator vehicles; (2) undersea robotic craft; (3) servo-controlled robots; and (4) articulated robots. Also covered are robot programming languages derived from such standard languages as ALGOL, FORTRAN, and BASIC.

  2. Multigait soft robot

    PubMed Central

    Shepherd, Robert F.; Ilievski, Filip; Choi, Wonjae; Morin, Stephen A.; Stokes, Adam A.; Mazzeo, Aaron D.; Chen, Xin; Wang, Michael; Whitesides, George M.

    2011-01-01

    This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion. PMID:22123978

  3. Robotic surgical simulation.

    PubMed

    Liss, Michael A; McDougall, Elspeth M

    2013-01-01

    Robotic surgery has undergone exponential growth and has ever developing utilization. The explosion of new technologies and regulation have led to challenges in training surgeons who desire this skill set. We review the current state of robotic simulation and incorporation of simulation into surgical training curricula. In addition to the literature review, results of a questionnaire survey study of 21 expert and novice surgeons attending a Urologic Robotic Oncology conference using 3 different robotic skill simulation devices are discussed. An increasing number of robotic surgery simulators have had some degree of validation study of their use in surgical education curricula and proficiency testing. Although simulators are advantageous, confirmation of construct and predictive validity of robotic simulators and their reliability as a training tool will be necessary before they are integrated into the surgical credentialing process.

  4. Applying robotics to HAZMAT

    NASA Technical Reports Server (NTRS)

    Welch, Richard V.; Edmonds, Gary O.

    1994-01-01

    The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.

  5. Roboter in der Raumfahrt

    NASA Astrophysics Data System (ADS)

    Hirzinger, G.

    (Robots in space)—The paper emphasizes the enormous automation impact in industry caused by microelectronics, a "byproduct" of space-technology. The evolutionary stages of robotic are outlined and it is shown that there are a lot of reasons for more automation, artificial intelligence and robotic in space, too. The telemanipulator concept is compared with the industrial robot concept, both showing up an increasing degree of similarity. The state of the art in sensory systems is discussed. By hand of the typical operations needed in space as rendezvous, assembly and docking the required robot skill is indicated. As a conclusion it is stated that the basic technologies available with industrial robots today could solve a lot of space problems. What remains to do—apart of course from ongoing research—is better integration and adaption of industrial techniques to the need of space technology.

  6. Survival of falling robots

    NASA Astrophysics Data System (ADS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  7. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  8. 2005 Non-Lethal Defense VI Symposium

    DTIC Science & Technology

    2005-03-16

    Untitled Document 2005 Non Lethal Defense VI Symposium.html[8/22/2016 9:24:13 AM] Non- Lethal Defense "VI" Symposium “Non- Lethal Weapon Options in...Current and Desired Capabilities Forum Army Non- Lethal Requirements, Brigadier General Coker, USA, TRADOC Successful Non- Lethal Illegal Alien...Interdiction Case, Rear Admiral Kunkle, USCG, Non Lethal IPT Member Luncheon Keynote Speaker, by Lieutenant General Jan Huly, USMC, Deputy Commandant for Plans

  9. ORNL fission product release tests VI-6

    SciTech Connect

    Osborne, M.F.; Lorenz, R.A.; Collins, J.L.; Lee, C.S.

    1991-01-01

    The ORNL fission product release tests investigate release and transport of the major fission products from high-burnup fuel under LWR accident conditions. The two most recent tests (VI-4 and VI-5) were conducted in hydrogen. In three previous tests in this series (VI-1, VI-2, and VI-3), which had been conducted in steam, the oxidized Zircaloy cladding remained largely intact and acted as a barrier to steam reaction with the UO{sub 2}. Test VI-6 was designed to insure significant oxidation of the UO{sub 2} fuel, which has been shown to enhance release of certain fission products, especially molybdenum and ruthenium. The BR3 fuel specimen used in test VI-6 will be heated in hydrogen to 2300 K; the Zircaloy cladding is expected to melt and runoff at {approximately}2150 K. Upon reaching the 2300 K test temperature, the test atmosphere will be changed to steam, and that temperature will be maintained for 60 min, with the three collection trains being operated for 2-, 18-, and 40-min periods. The releases of {sup 85}Kr and {sup 137}Cs will be monitored continuously throughout the test. Posttest analyses of the material collected on the three trains will provide results on the release and transport of Mo, Ru, Sb, Te, Ba, Ce, and Eu as a function of time at 2300 K. Continuous monitoring of the hydrogen produced during the steam atmosphere period at high temperature will provide a measure of the oxidation rate of the cladding and fuel. Following delays in approval of the safety documentation and in decontamination of the hot cell and test apparatus, test VI-6 will be conducted in late May.

  10. Ferrate(VI) oxidation of aqueous cyanide

    SciTech Connect

    Sharma, V.K.; Rivera, W.; Smith, J.O.; O`Brien, B.

    1998-09-01

    The rates of oxidation of cyanide with Fe(VI) were measured as a function of pH and temperature. The reaction was found to be first order for each reactant. The rates decrease with increasing pH. The energy of activation was found to be 38.9 {+-} 1.0 kJ mol{sup {minus}1} at pH 9.0. The removal of cyanide by oxidation with Fe(VI) was studied at pH 7.5, 9.0, and 12.0. Fe(VI) removal efficiency was greater at pH 9.0 than at pH 7.5 and 12.0. At pH 9.0, Fe(VI) molar consumption was nearly equal to that of oxidized cyanide. Cyanate and nitrite ions were identified as the products of the reaction at pH 7.5. The experiments indicated 1:1 stoichiometric conversion of cyanide to nitrite ion at pH 9.0 and 12.0. Experiments were conducted to test the Fe(VI) removal efficiency of cyanide in electroplating rinsewater. The results indicate that Fe(VI) has the potential to serve as a reliable and safe oxidative treatment for removing cyanide in wastewater effluent.

  11. Structure of the human annexin VI gene

    SciTech Connect

    Smith, P.D.; Moss, S.E.; Davies, A.; Crumpton, M.J.

    1994-03-29

    The authors report the structure of the human annexin VI gene and compare the intron-exon organization with the known structures of the human annexin I and II genes. The gene is {approximately}60 kbp long and contains 26 exons. Consistent with the published annexin VI cDNA sequence, the genomic sequence at the 3{prime} end does not contain a canonical polyadenylation signal. The genomic sequence upstream of the transcription start site contains TATAA and CAAT motifs. The spatial organization of the exons does not reveal any obvious similarities between the two halves of the annexin VI gene. Comparison of the intron-exon boundary positions of the annexin VI gene with those of annexins I and II reveals that within the repeated domains the break points are perfectly conserved except for exon 8, which is one codon smaller in annexin II. The corresponding point in the second half of annexin VI is represented by two exons, exons 20 and 21. The latter exon is alternatively spliced, giving rise to two annexin VI isoforms that differ with respect to a 6-amino acid insertion at the start of repeat 7. 32 refs., 6 figs.

  12. NASA Robot Brain Surgeon

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mechanical Engineer Michael Guerrero works on the Robot Brain Surgeon testbed in the NeuroEngineering Group at the Ames Research Center, Moffett Field, California. Principal investigator Dr. Robert W. Mah states that potentially the simple robot will be able to feel brain structures better than any human surgeon, making slow, very precise movements during an operation. The brain surgery robot that may give surgeons finer control of surgical instruments during delicate brain operations is still under development.

  13. A Modular Robotic Architecture

    DTIC Science & Technology

    1990-11-01

    DATES COVERED AD-A232 007 Januar 1991 professional paper5 FUNOING NUMBERS A MODULAR ROBOTIC ARCHITECTURE PR: ZE92 WU: DN300029 PE: 0602936N - S. AUTHOR...mobile robots will help alleviate these problems, and, if made widely available, will promote standardization and compatibility among systems throughout...the industry. The Modular Robotic Architecture (MRA) is a generic control system that meets the above needs by providing developers with a standard set

  14. Ground Vehicle Robotics Presentation

    DTIC Science & Technology

    2012-08-14

    Mr. Jim Parker Associate Director Ground Vehicle Robotics Distribution Statement A. Approved for public release Report Documentation Page...Briefing 3. DATES COVERED 01-07-2012 to 01-08-2012 4. TITLE AND SUBTITLE Ground Vehicle Robotics Presentation 5a. CONTRACT NUMBER 5b. GRANT...ABSTRACT Provide Transition-Ready, Cost-Effective, and Innovative Robotics and Control System Solutions for Manned, Optionally-Manned, and Unmanned

  15. Robotic Security Systems

    DTIC Science & Technology

    2003-12-01

    robotic security platforms that automatically respond in an adaptive fashion to potential disturbances reported by a broad-area field of fixed unattended...sensors represents a powerful new defensive tool for mitigating the terrorist threat. Background The primary purpose of any robotic system is to...mobile robots , the predominant challenge is one of perception, in that the very nature of mobility introduces a never-ending sequence of dynamically

  16. Army Medical Robotics Research

    DTIC Science & Technology

    2007-01-01

    Army Medical Robotics Research Gary Gilbert, Ph.D., U.S. Army TATRC, Ph: (301) 619-4043, Fax: (301) 619-2518 gilbert@tatrc.org, www.tatrc.org...politically sensitive low intensity combat in urban terrain. Research progress has been made in the areas of robotics ; artificial intelligence...institutions have demonstrated intelligent robots that execute functions ranging from performing mechanical repairs to playing soccer. The military has

  17. Robotics Strategy White Paper

    DTIC Science & Technology

    2009-03-19

    VIRGINIA 23651-1087 REPlY TO A1Tl!NTlON OF ATFC-DS 19 MEMORANDUM FOR SEE DISTRIBUTION SUBJECT: Robotics Strategy White Paper 1. The enclosed... Robotics Strategy White Paper is the result of a collaborative effort between the U.S. Anny Training and Doctrine Command (TRADOC) and the Tank-Automotive...Research, Development and Engineering Center (TARDEC). This paper builds on a confederated Anny robotics "strategy" that is described by senior leader

  18. AMAS Robotics Seminar Brief

    DTIC Science & Technology

    2011-07-19

    Unclassified Unclassified 19 July 2011 AMAS ROBOTICS SEMINAR BRIEF Aaron Hart, Product Integrator, RS JPO DISTRIBUTION STATEMENT A. Approved for...19-07-2011 to 19-07-2011 4. TITLE AND SUBTITLE robotics seminar brief 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES AMAS ROBOTICS SEMINAR BRIEF 14

  19. Artificial Intelligence and Robotics.

    DTIC Science & Technology

    1984-02-01

    D-Ai42 488 ARTIFICIAL INEELLIGENCE AND ROBOTICS (U) MASSACHUSETTS i/1 INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB M BRADY FEB 84 AI-M-756...Subtile) S. TYPE OF REPORT A PERIOD COVERED Artificial Intelligence and Robotics 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER...Identify by block niiniber) -. Since Robotics is the field concerned with the connection of perception to action, Artificial Intelligence must have a

  20. Robotic liver surgery

    PubMed Central

    Leung, Universe

    2014-01-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  1. Robotics in neurosurgery.

    PubMed

    McBeth, Paul B; Louw, Deon F; Rizun, Peter R; Sutherland, Garnette R

    2004-10-01

    Technological developments in imaging guidance, intraoperative imaging, and microscopy have pushed neurosurgeons to the limits of their dexterity and stamina. The introduction of robotically assisted surgery has provided surgeons with improved ergonomics and enhanced visualization, dexterity, and haptic capabilities. This article provides a historical perspective on neurosurgical robots, including image-guided stereotactic and microsurgery systems. The future of robot-assisted neurosurgery, including the use of surgical simulation tools and methods to evaluate surgeon performance, is discussed.

  2. Robotics and expert systems

    SciTech Connect

    Not Available

    1986-01-01

    This volume contains papers presented at ROBEXS' 86, the Second Annual Workshop on Robotics and Expert Systems. Many diverse perspectives on automation problems, and on the merging of robotics and expert systems technology with conventional systems, are contained in this book. The contents include: Integrated Expert Systems Applications; Expert Systems Theory and Applications, Robotics, Intelligent Control, CAD/CAE/CAM, AI Tools, Human Factors, and intelligent Interfaces.

  3. Robotics in reproductive medicine.

    PubMed

    Dharia, Sejal P; Falcone, Tommaso

    2005-07-01

    To review the history, development, current applications, and future of robotic technology. The MEDLINE database was reviewed for all publications on robotic technology in medicine, surgery, reproductive endocrinology, its role in surgical education, and telepresence surgery. University medical center. Robotic-assisted surgery is an emerging technology, which provides an alternative to traditional surgical techniques in reproductive medicine and may have a role in surgical education and telepresence surgery.

  4. Compliant Robotic Structures

    DTIC Science & Technology

    1985-08-01

    robotic structure is one or more continuously flexible arms -hat can be controlled to manipulate objects. A typical arm is comprised of ... of ideas for the design of versatile, strong robotic manipulators. In this paper a mathematical model of an elephant trunk lifting a weight is...Results may be used for the design of robotic actuators driven by internal pressure. I,g or 67 I* .,.. INTRODUCTION Improvement in the

  5. Industrial robots: Handbook

    NASA Astrophysics Data System (ADS)

    Kozyrev, Iu. G.

    Topics covered include terms, definitions, and classification; operator-directed manipulators; autooperators as used in automated pressure casting; construction and application of industrial robots; and the operating bases of automated systems. Attention is given to adaptive and interactive robots; gripping mechanisms; applications to foundary production, press-forging plants, heat treatment, welding, and assembly operations. A review of design recommendations includes a determination of fundamental structural and technological indicators for industrial robots and a consideration of drive mechanisms.

  6. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Ron Diftler of NASA's Johnson Space Center in Houston demonstrates the leg movements of Robonaut 2 during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  7. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Bruce Yost of NASA's Ames Research Center discusses a small satellite, known as PhoneSat, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  8. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Two young visitors get an up-close look at an engineering model of Robonaut 2, complete with a set of legs, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  9. Asteroid Redirect Mission: Robotic Segment

    NASA Image and Video Library

    This concept animation illustrates the robotic segment of NASA's Asteroid Redirect Mission. The Asteroid Redirect Vehicle, powered by solar electric propulsion, travels to a large asteroid to robot...

  10. Children's Perception and Interpretation of Robots and Robot Behaviour

    NASA Astrophysics Data System (ADS)

    Bhamjee, Sajida; Griffiths, Frances; Palmer, Julie

    Technology is advancing rapidly; especially in the field of robotics. The purpose of this study was to examine children's perception and interpretation of robots and robot behaviour. The study was divided into two phases: phase one involved 144 children (aged 7-8) from two primary schools drawing a picture of a robot and then writing a story about the robot that they had drawn. In phase two, in small groups, 90 children observed four e-puck robots interacting within an arena. The children were asked three questions during the observation: 'What do you think the robots are doing?', 'Why are they doing these things?' and 'What is going on inside the robot?' The results indicated that children can hold multiple understandings of robots simultaneously. Children tend to attribute animate characteristics to robots. Although this may be explained by their stage of development, it may also influence how their generation integrates robots into society.

  11. Experiments in autonomous robotics

    SciTech Connect

    Hamel, W.R.

    1987-01-01

    The Center for Engineering Systems Advanced Research (CESAR) is performing basic research in autonomous robotics for energy-related applications in hazardous environments. The CESAR research agenda includes a strong experimental component to assure practical evaluation of new concepts and theories. An evolutionary sequence of mobile research robots has been planned to support research in robot navigation, world sensing, and object manipulation. A number of experiments have been performed in studying robot navigation and path planning with planar sonar sensing. Future experiments will address more complex tasks involving three-dimensional sensing, dexterous manipulation, and human-scale operations.

  12. Hopping Robot with Wheels

    NASA Technical Reports Server (NTRS)

    Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve

    2003-01-01

    A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.

  13. Hazardous Environment Robotics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.

  14. Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  15. Robotics for welding research

    SciTech Connect

    Braun, G.; Jones, J.

    1984-09-01

    The welding metallurgy research and education program at Colorado School of Mines (CSM) is helping industries make the transition toward automation by training students in robotics. Industry's interest is primarily in pick and place operations, although robotics can increase efficiency in areas other than production. Training students to develop fully automated robotic welding systems will usher in new curriculum requirements in the area of computers and microprocessors. The Puma 560 robot is CSM's newest acquisition for welding research 5 references, 2 figures, 1 table.

  16. [Robotic surgery in gynecology].

    PubMed

    Csorba, Roland

    2012-06-24

    Minimally invasive surgery has revolutionized gynecological interventions over the past 30 years. The introduction of the da Vinci robotic surgery in 2005 has resulted in large changes in surgical management. The robotic platform allows less experienced laparoscopic surgeons to perform more complex procedures. It can be utilized mainly in general gynecology and reproductive gynecology. The robot is being increasingly used for procedures such as hysterectomy, myomectomy, adnexal surgery, and tubal anastomosis. In urogynecology, the robot is being utilized for sacrocolopexy as well. In the field of gynecologic oncology, the robot is being increasingly used for hysterectomy and lymphadenectomy in oncologic diseases. Despite the rapid and widespread adaption of robotic surgery in gynecology, there are no randomized trials comparing its efficacy and safety to other traditional surgical approaches. This article presents the development, technical aspects and indications of robotic surgery in gynecology, based on the previously published reviews. Robotic surgery can be highly advantageous with the right amount of training, along with appropriate patient selection. Patients will have less blood loss, less post-operative pain, faster recovery, and fewer complications compared to open surgery and laparoscopy. However, until larger randomized control trials are completed which report long-term outcomes, robotic surgery cannot be stated to have priority over other surgical methods.

  17. Robotic Thumb Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Goza, S. Michael (Inventor)

    2013-01-01

    An improved robotic thumb for a robotic hand assembly is provided. According to one aspect of the disclosure, improved tendon routing in the robotic thumb provides control of four degrees of freedom with only five tendons. According to another aspect of the disclosure, one of the five degrees of freedom of a human thumb is replaced in the robotic thumb with a permanent twist in the shape of a phalange. According to yet another aspect of the disclosure, a position sensor includes a magnet having two portions shaped as circle segments with different center points. The magnet provides a linearized output from a Hall effect sensor.

  18. Robotics in reproductive medicine.

    PubMed

    Sroga, Julie; Patel, Sejal Dharia; Falcone, Tommaso

    2008-01-01

    In the past decade, robotic technology has been increasingly incorporated into various industries, including surgery and medicine. This chapter will review the history, development, current applications, and future of robotic technology in reproductive medicine. A literature search was performed for all publications regarding robotic technology in medicine, surgery, reproductive endocrinology, and its role in both surgical education and telepresence surgery. As robotic assisted surgery has emerged, this technology provides a feasible option for minimally invasive surgery, impacts surgical education, and plays a role in telepresence surgery.

  19. Advanced robot locomotion.

    SciTech Connect

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  20. [Robots and intellectual property].

    PubMed

    Larrieu, Jacques

    2013-12-01

    This topic is part of the global issue concerning the necessity to adapt intellectual property law to constant changes in technology. The relationship between robots and IP is dual. On one hand, the robots may be regarded as objects of intellectual property. A robot, like any new machine, could qualify for a protection by a patent. A copyright may protect its appearance if it is original. Its memory, like a database, could be covered by a sui generis right. On the other hand, the question of the protection of the outputs of the robot must be raised. The robots, as the physical embodiment of artificial intelligence, are becoming more and more autonomous. Robot-generated works include less and less human inputs. Are these objects created or invented by a robot copyrightable or patentable? To whom the ownership of these IP rights will be allocated? To the person who manufactured the machine ? To the user of the robot? To the robot itself? All these questions are worth discussing.

  1. The robotics review 1

    SciTech Connect

    Khatib, O.; Craig, J.J.; Lozano-Perez, T.

    1989-01-01

    Theoretical and implementation issues in robotics are discussed in reviews of recent investigations. Sections are devoted to programming, planning, and learning; sensing and perception; kinematics, dynamics, and design; and motion and force control. Particular attention is given to a robust layered control system for a mobile robot, camera calibration for three-dimensional machine vision, walking vehicles, design and control of direct-drive vehicles, an efficient parallel algorithm for robot inverse dynamics, stability problems in contact tasks, and kinematics and reaction-moment compensation for satellite-mounted robot manipulators.

  2. Robotic benign esophageal procedures.

    PubMed

    Hanna, Jennifer M; Onaitis, Mark W

    2014-05-01

    Robotic master-slave devices can assist surgeons to perform minimally invasive esophageal operations with approaches that have already been demonstrated using laparoscopy and thoracoscopy. Robotic-assisted surgery for benign esophageal disease is described for the treatment of achalasia, epiphrenic diverticula, refractory reflux, paraesophageal hernias, duplication cysts, and benign esophageal masses, such as leiomyomas. Indications and contraindications for robotic surgery in benign esophageal disease should closely approximate the indications for laparoscopic and thoracoscopic procedures. Given the early application of the technology and paucity of clinical evidence, there are currently no procedures for which robotic esophageal surgery is the clinically proven preferred approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Multi-robot control interface

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID

    2011-12-06

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  4. Canadian space robotic activities

    NASA Astrophysics Data System (ADS)

    Sallaberger, Christian; Space Plan Task Force, Canadian Space Agency

    The Canadian Space Agency has chosen space robotics as one of its key niche areas, and is currently preparing to deliver the first flight elements for the main robotic system of the international space station. The Mobile Servicing System (MSS) is the Canadian contribution to the international space station. It consists of three main elements. The Space Station Remote Manipulator System (SSRMS) is a 7-metre, 7-dof, robotic arm. The Special Purpose Dextrous Manipulator (SPDM), a smaller 2-metre, 7-dof, robotic arm can be used independently, or attached to the end of the SSRMS. The Mobile Base System (MBS) will be used as a support platform and will also provide power and data links for both the SSRMS and the SPDM. A Space Vision System (SVS) has been tested on Shuttle flights, and is being further developed to enhance the autonomous capabilities of the MSS. The CSA also has a Strategic Technologies in Automation and Robotics Program which is developing new technologies to fulfill future robotic space mission needs. This program is currently developing in industry technological capabilities in the areas of automation of operations, autonomous robotics, vision systems, trajectory planning and object avoidance, tactile and proximity sensors, and ground control of space robots. Within the CSA, a robotic testbed and several research programs are also advancing technologies such as haptic devices, control via head-mounted displays, predictive and preview displays, and the dynamic characterization of robotic arms. Canada is also now developing its next Long Term Space Plan. In this context, a planetary exploration program is being considered, which would utilize Canadian space robotic technologies in this new arena.

  5. Characterization of Amoeba proteus myosin VI immunoanalog.

    PubMed

    Dominik, Magdalena; Kłopocka, Wanda; Pomorski, Paweł; Kocik, Elzbieta; Redowicz, Maria Jolanta

    2005-07-01

    Amoeba proteus, the highly motile free-living unicellular organism, has been widely used as a model to study cell motility. However, molecular mechanisms underlying its unique locomotion and intracellular actin-based-only trafficking remain poorly understood. A search for myosin motors responsible for vesicular transport in these giant cells resulted in detection of 130-kDa protein interacting with several polyclonal antibodies against different tail regions of human and chicken myosin VI. This protein was binding to actin in the ATP-dependent manner, and immunoprecipitated with anti-myosin VI antibodies. In order to characterize its possible functions in vivo, its cellular distribution and colocalization with actin filaments and dynamin II during migration and pinocytosis were examined. In migrating amoebae, myosin VI immunoanalog localized to vesicular structures, particularly within the perinuclear and sub-plasma membrane areas, and colocalized with dynamin II immunoanalog and actin filaments. The colocalization was even more evident in pinocytotic cells as proteins concentrated within pinocytotic pseudopodia. Moreover, dynamin II and myosin VI immunoanalogs cosedimented with actin filaments, and were found on the same isolated vesicles. Blocking endogenous myosin VI immunoanalog with anti-myosin VI antibodies inhibited the rate of pseudopodia protrusion (about 19% decrease) and uroidal retraction (about 28% decrease) but did not affect cell morphology and the manner of cell migration. Treatment with anti-human dynamin II antibodies led to changes in directionality of amebae migration and affected the rate of only uroidal translocation (about 30% inhibition). These results indicate that myosin VI immunoanalog is expressed in protist Amoeba proteus and may be involved in vesicle translocation and cell locomotion.

  6. Robotics and Industrial Arts.

    ERIC Educational Resources Information Center

    Edmison, Glenn A.; And Others

    Robots are becoming increasingly common in American industry. By l990, they will revolutionize the way industry functions, replacing hundreds of workers and doing hot, dirty jobs better and more quickly than the workers could have done them. Robotics should be taught in high school industrial arts programs as a major curriculum component. The…

  7. Education by Robot!

    ERIC Educational Resources Information Center

    Cobb, Cheryl

    2004-01-01

    This article describes BEST (Boosting Engineering, Science, and Technology), a hands-on robotics program founded by Texas Instruments engineers Ted Mahler and Steve Marum. BEST links educators with industry to provide middle and high school students with a peek into the exciting world of robotics, with the goal of inspiring and interesting…

  8. The Uranus Mobile Robot

    DTIC Science & Technology

    1990-09-01

    Schematics 26 Wi List of Figures 1 Neptune and Pluto .. .. .. .. .. ... .. ... ... ... ... .... 2 2 Uranus...began building our first mobile robot, Pluto (see Figure 1 a). We envisioned Pluto as the ultimate indoor robot within the grasp of current technology...smooth arced trajectory while rotating about its center. This omni-directionality combined with very precise positioning would allow Pluto to easily

  9. INL Generic Robot Architecture

    SciTech Connect

    2005-03-30

    The INL Generic Robot Architecture is a generic, extensible software framework that can be applied across a variety of different robot geometries, sensor suites and low-level proprietary control application programming interfaces (e.g. mobility, aria, aware, player, etc.).

  10. Motivating Students with Robotics

    ERIC Educational Resources Information Center

    Brand, Brenda; Collver, Michael; Kasarda, Mary

    2008-01-01

    In recent years, the need to advance the number of individuals pursuing science, technology, engineering, and mathematics fields has gained much attention. The Montgomery County/Virginia Tech Robotics Collaborative (MCVTRC), a yearlong high school robotics program housed in an educational shop facility in Montgomery County, Virginia, seeks to…

  11. Robotic Intelligence Kernel: Architecture

    SciTech Connect

    2009-09-16

    The INL Robotic Intelligence Kernel Architecture (RIK-A) is a multi-level architecture that supports a dynamic autonomy structure. The RIK-A is used to coalesce hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a framework that can be used to create behaviors for humans to interact with the robot.

  12. Going Green Robots

    ERIC Educational Resources Information Center

    Nelson, Jacqueline M.

    2011-01-01

    In looking at the interesting shapes and sizes of old computer parts, creating robots quickly came to the author's mind. In this article, she describes how computer parts can be used creatively. Students will surely enjoy creating their very own robots while learning about the importance of recycling in the society. (Contains 1 online resource.)

  13. Robotic ocular surgery.

    PubMed

    Tsirbas, A; Mango, C; Dutson, E

    2007-01-01

    Bimanual, three-dimensional robotic surgery has proved valuable for a variety of surgical procedures. To examine the use of a commercially available surgical robot for ocular microsurgery. Using a da Vinci surgical robot, ocular microsurgery was performed with repair of a corneal laceration in a porcine model. The experiments were performed on harvested porcine eyes placed in an anatomical position using a foam head on a standard operating room table. A video scope and two, 360 degrees -rotating, 8-mm, wrested-end effector instruments were placed over the eye with three robotic arms. The surgeon performed the actual procedures while positioned at a robotic system console that was located across the operating room suite. Each surgeon placed three 10-0 sutures, and this was documented with still and video photography. Ocular microsurgery was successfully performed using the da Vinci surgical robot. The robotic system provided excellent visualisation, as well as controlled and delicate placement of the sutures at the corneal level. Robotic ocular microsurgery is technically feasible in the porcine model and warrants consideration for evaluation in controlled human trials to deploy functioning remote surgical centres in areas without access to state-of-the-art surgical skill and technology.

  14. Robotics in medicine

    NASA Astrophysics Data System (ADS)

    Kuznetsov, D. N.; Syryamkin, V. I.

    2015-11-01

    Modern technologies play a very important role in our lives. It is hard to imagine how people can get along without personal computers, and companies - without powerful computer centers. Nowadays, many devices make modern medicine more effective. Medicine is developing constantly, so introduction of robots in this sector is a very promising activity. Advances in technology have influenced medicine greatly. Robotic surgery is now actively developing worldwide. Scientists have been carrying out research and practical attempts to create robotic surgeons for more than 20 years, since the mid-80s of the last century. Robotic assistants play an important role in modern medicine. This industry is new enough and is at the early stage of development; despite this, some developments already have worldwide application; they function successfully and bring invaluable help to employees of medical institutions. Today, doctors can perform operations that seemed impossible a few years ago. Such progress in medicine is due to many factors. First, modern operating rooms are equipped with up-to-date equipment, allowing doctors to make operations more accurately and with less risk to the patient. Second, technology has enabled to improve the quality of doctors' training. Various types of robots exist now: assistants, military robots, space, household and medical, of course. Further, we should make a detailed analysis of existing types of robots and their application. The purpose of the article is to illustrate the most popular types of robots used in medicine.

  15. Concurrent programming and robotics

    SciTech Connect

    Cox, I.J.; Gehani, N.H.

    1989-04-01

    Many current robot systems exhibit a significant degree of concurrency, doing many activities in parallel. Future sensor-based robots are expected to exhibit even more concurrency. Programs to control such robots are characterized by the need to wait for external events and/or handle interrupts, deal with concurrent activities, synchronize actions with external events, and communicate with other robots and processes. In this paper, the authors focus on the advantages of concurrent programming for robotics and suggest that a general-purpose language with the right facilities is a good vehicle for robot programming. In this context they discuss Concurrent C, an upward-compatible extension of the C language that provides high-level concurrent programming facilities. They give an historical perspective of concurrent programming followed by a brief description of Concurrent C and how Concurrent C programs communicate with robots and devices. They show by examples how Concurrent C simplifies writing robot programs. Of specific interest are the process interaction and related interrupt handling facilities.

  16. Robotics technology discipline

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.

  17. Real World Robotics.

    ERIC Educational Resources Information Center

    Clark, Lisa J.

    2002-01-01

    Introduces a project for elementary school students in which students build a robot by following instructions and then write a computer program to run their robot by using LabView graphical development software. Uses ROBOLAB curriculum which is designed for grade levels K-12. (YDS)

  18. Robot Rodeo 2013

    ScienceCinema

    Deuel, Jake

    2016-07-12

    Sandia National Laboratories hosted the seventh annual Western National Robot Rodeo and Capability Exercise in June 2013. The five-day event is a lively and challenging competition that draws civilian and military bomb squad teams from across the country to see who can most effectively defuse dangerous situations with the help of robots.

  19. Mechanochemically Active Soft Robots.

    PubMed

    Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L

    2015-10-14

    The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality.

  20. Next generation space robot

    NASA Technical Reports Server (NTRS)

    Iwata, Tsutomu; Oda, Mitsushige; Imai, Ryoichi

    1989-01-01

    The recent research effort on the next generation space robots is presented. The goals of this research are to develop the fundamental technologies and to acquire the design parameters of the next generation space robot. Visual sensing and perception, dexterous manipulation, man machine interface and artificial intelligence techniques such as task planning are identified as the key technologies.

  1. Motivating Students with Robotics

    ERIC Educational Resources Information Center

    Brand, Brenda; Collver, Michael; Kasarda, Mary

    2008-01-01

    In recent years, the need to advance the number of individuals pursuing science, technology, engineering, and mathematics fields has gained much attention. The Montgomery County/Virginia Tech Robotics Collaborative (MCVTRC), a yearlong high school robotics program housed in an educational shop facility in Montgomery County, Virginia, seeks to…

  2. Neurotechnology for Biomimetic Robots

    DTIC Science & Technology

    2007-11-02

    This award funded in part, the travel of three investigators to the international conference on Neurotechnology for Biomimetic Robots. The three...investigators participated in a conference held at Northeastern University May 14-16 on the subject of ’ Neurotechnology for Biomimetic Robots’. Each

  3. Robotics: Generation soft

    NASA Astrophysics Data System (ADS)

    Mazzolai, Barbara; Mattoli, Virgilio

    2016-08-01

    Meet the octobot, the first robot to be made entirely from soft materials. Powered by a chemical reaction and controlled by a fluidic logic circuit, it heralds a generation of soft robots that might surpass conventional machines. See Letter p.451

  4. The 50-Minute Robot.

    ERIC Educational Resources Information Center

    Buckland, Miram R.

    1985-01-01

    Sixth graders built working "robots" (or grasping bars) for remote control use during a unit on simple mechanics. Steps for making a robot are presented, including: cutting the wood, drilling and nailing, assembling the jaws, and making them work. The "jaws," used to pick up objects, illustrate principles of levers. (DH)

  5. Going Green Robots

    ERIC Educational Resources Information Center

    Nelson, Jacqueline M.

    2011-01-01

    In looking at the interesting shapes and sizes of old computer parts, creating robots quickly came to the author's mind. In this article, she describes how computer parts can be used creatively. Students will surely enjoy creating their very own robots while learning about the importance of recycling in the society. (Contains 1 online resource.)

  6. Robotic ocular surgery

    PubMed Central

    Tsirbas, A; Mango, C; Dutson, E

    2007-01-01

    Background Bimanual, three‐dimensional robotic surgery has proved valuable for a variety of surgical procedures. Aims To examine the use of a commercially available surgical robot for ocular microsurgery. Methods Using a da Vinci surgical robot, ocular microsurgery was performed with repair of a corneal laceration in a porcine model. The experiments were performed on harvested porcine eyes placed in an anatomical position using a foam head on a standard operating room table. A video scope and two, 360°‐rotating, 8‐mm, wrested‐end effector instruments were placed over the eye with three robotic arms. The surgeon performed the actual procedures while positioned at a robotic system console that was located across the operating room suite. Each surgeon placed three 10‐0 sutures, and this was documented with still and video photography. Results Ocular microsurgery was successfully performed using the da Vinci surgical robot. The robotic system provided excellent visualisation, as well as controlled and delicate placement of the sutures at the corneal level. Conclusions Robotic ocular microsurgery is technically feasible in the porcine model and warrants consideration for evaluation in controlled human trials to deploy functioning remote surgical centres in areas without access to state‐of‐the‐art surgical skill and technology. PMID:17020903

  7. Robot Vision Library

    NASA Technical Reports Server (NTRS)

    Howard, Andrew B.; Ansar, Adnan I.; Litwin, Todd E.; Goldberg, Steven B.

    2009-01-01

    The JPL Robot Vision Library (JPLV) provides real-time robot vision algorithms for developers who are not vision specialists. The package includes algorithms for stereo ranging, visual odometry and unsurveyed camera calibration, and has unique support for very wideangle lenses

  8. Robotics in endoscopy.

    PubMed

    Klibansky, David; Rothstein, Richard I

    2012-09-01

    The increasing complexity of intralumenal and emerging translumenal endoscopic procedures has created an opportunity to apply robotics in endoscopy. Computer-assisted or direct-drive robotic technology allows the triangulation of flexible tools through telemanipulation. The creation of new flexible operative platforms, along with other emerging technology such as nanobots and steerable capsules, can be transformational for endoscopic procedures. In this review, we cover some background information on the use of robotics in surgery and endoscopy, and review the emerging literature on platforms, capsules, and mini-robotic units. The development of techniques in advanced intralumenal endoscopy (endoscopic mucosal resection and endoscopic submucosal dissection) and translumenal endoscopic procedures (NOTES) has generated a number of novel platforms, flexible tools, and devices that can apply robotic principles to endoscopy. The development of a fully flexible endoscopic surgical toolkit will enable increasingly advanced procedures to be performed through natural orifices. The application of platforms and new flexible tools to the areas of advanced endoscopy and NOTES heralds the opportunity to employ useful robotic technology. Following the examples of the utility of robotics from the field of laparoscopic surgery, we can anticipate the emerging role of robotic technology in endoscopy.

  9. Robot Rodeo 2013

    SciTech Connect

    Deuel, Jake

    2013-08-27

    Sandia National Laboratories hosted the seventh annual Western National Robot Rodeo and Capability Exercise in June 2013. The five-day event is a lively and challenging competition that draws civilian and military bomb squad teams from across the country to see who can most effectively defuse dangerous situations with the help of robots.

  10. 2012 FIRST Robotics

    NASA Image and Video Library

    2012-03-08

    Spectators crew on teams during the 2012 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Bayou Regional Competition March 15-17, 2012, in Kenner, La. Students from 49 high school teams in six states participated in the annual robotics tournament.

  11. [The robotic surgeon training].

    PubMed

    Crestani, Alessandro; Rossanese, Marta; Abbinante, Maria; Calandriello, Mattia; Kungulli, Afrovita; Giannarini, Gianluca; Ficarra, Vincenzo

    2015-10-01

    The widespread robotic surgery in the world highlighted the relevance of the training programs for young urologists and residents. In the last years, urologic societies and some independent robotic surgeons strongly worked to standardize some general and specific training modules. Theoretical and practical sections of robotic training programs have been recently specified. The role of simulators, dry and wet laboratories, bedside assistance, and modular (step-by-step) training at console represent the most relevant elements of robotic surgeon training. Ideally, these didactic tools should be available in modern training centers. The development of structured robotic training programs should be considered as one of the priorities that the urologic community must take into account in the near future.

  12. Evidence for robots.

    PubMed

    Shenoy, Ravikiran; Nathwani, Dinesh

    2017-01-01

    Robots have been successfully used in commercial industry and have enabled humans to perform tasks which are repetitive, dangerous and requiring extreme force. Their role has evolved and now includes many aspects of surgery to improve safety and precision. Orthopaedic surgery is largely performed on bones which are rigid immobile structures which can easily be performed by robots with great precision. Robots have been designed for use in orthopaedic surgery including joint arthroplasty and spine surgery. Experimental studies have been published evaluating the role of robots in arthroscopy and trauma surgery. In this article, we will review the incorporation of robots in orthopaedic surgery looking into the evidence in their use. © The Authors, published by EDP Sciences, 2017.

  13. Dictionary of robotics

    SciTech Connect

    Waldman, H.

    1985-01-01

    The idea of using robots to perform repetitious tasks quickly, cheaply and efficiently has intrigued humans since the Industrial Revolution. Growth has occurred geometrically from the introduction of the first industrial robot in 1955, and continues, unabated, as industry sales are expected to increase 20-fold with applications in both high technology and industry. The Dictionary defines not only those terms standard to robotics but also those used in areas that are just beginning to be involved. The book offers concise, readable descriptions of robot systems, actions, hardware (including applications), communications, computer control, dynamics, cost justification, feedback, kinematics, man-machine interface, sensors and software. There are references to all major robots and manufacturers in the US, Europe and Japan.

  14. Intelligent Articulated Robot

    NASA Astrophysics Data System (ADS)

    Nyein, Aung Kyaw; Thu, Theint Theint

    2008-10-01

    In this paper, an articulated type of industrial used robot is discussed. The robot is mainly intended to be used in pick and place operation. It will sense the object at the specified place and move it to a desired location. A peripheral interface controller (PIC16F84A) is used as the main controller of the robot. Infrared LED and IR receiver unit for object detection and 4-bit bidirectional universal shift registers (74LS194) and high current and high voltage Darlington transistors arrays (ULN2003) for driving the arms' motors are used in this robot. The amount of rotation for each arm is regulated by the limit switches. The operation of the robot is very simple but it has the ability of to overcome resetting position after power failure. It can continue its work from the last position before the power is failed without needing to come back to home position.

  15. Robotics: The next step?

    PubMed

    Broeders, Ivo A M J

    2014-02-01

    Robotic systems were introduced 15 years ago to support complex endoscopic procedures. The technology is increasingly used in gastro-intestinal surgery. In this article, literature on experimental- and clinical research is reviewed and ergonomic issues are discussed. literature review was based on Medline search using a large variety of search terms, including e.g. robot(ic), randomized, rectal, oesophageal, ergonomics. Review articles on relevant topics are discussed with preference. There is abundant evidence of supremacy in performing complex endoscopic surgery tasks when using the robot in an experimental setting. There is little high-level evidence so far on translation of these merits to clinical practice. Robotic systems may appear helpful in complex gastro-intestinal surgery. Moreover, dedicated computer based technology integrated in telepresence systems opens the way to integration of planning, diagnostics and therapy. The first high tech add-ons such as near infrared technology are under clinical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Honda humanoid robots development.

    PubMed

    Hirose, Masato; Ogawa, Kenichi

    2007-01-15

    Honda has been doing research on robotics since 1986 with a focus upon bipedal walking technology. The research started with straight and static walking of the first prototype two-legged robot. Now, the continuous transition from walking in a straight line to making a turn has been achieved with the latest humanoid robot ASIMO. ASIMO is the most advanced robot of Honda so far in the mechanism and the control system. ASIMO's configuration allows it to operate freely in the human living space. It could be of practical help to humans with its ability of five-finger arms as well as its walking function. The target of further development of ASIMO is to develop a robot to improve life in human society. Much development work will be continued both mechanically and electronically, staying true to Honda's 'challenging spirit'.

  17. ViA: a perceptual visualization assistant

    NASA Astrophysics Data System (ADS)

    Healey, Chris G.; St. Amant, Robert; Elhaddad, Mahmoud S.

    2000-05-01

    This paper describes an automated visualized assistant called ViA. ViA is designed to help users construct perceptually optical visualizations to represent, explore, and analyze large, complex, multidimensional datasets. We have approached this problem by studying what is known about the control of human visual attention. By harnessing the low-level human visual system, we can support our dual goals of rapid and accurate visualization. Perceptual guidelines that we have built using psychophysical experiments form the basis for ViA. ViA uses modified mixed-initiative planning algorithms from artificial intelligence to search of perceptually optical data attribute to visual feature mappings. Our perceptual guidelines are integrated into evaluation engines that provide evaluation weights for a given data-feature mapping, and hints on how that mapping might be improved. ViA begins by asking users a set of simple questions about their dataset and the analysis tasks they want to perform. Answers to these questions are used in combination with the evaluation engines to identify and intelligently pursue promising data-feature mappings. The result is an automatically-generated set of mappings that are perceptually salient, but that also respect the context of the dataset and users' preferences about how they want to visualize their data.

  18. [Application of robots in stomatology].

    PubMed

    Zhou, Meng-Qi; Zhang, Jin-Ning; Hong, Jin

    2016-10-01

    Recently, the robot technology has been developed rapidly and the medical robot has been used in many clinical areas, especially in the field of stomatology. The application of robot in stomatology will break the traditional mode of treatment and bring a new technological revolution. This paper introduced the advantages, the current situation and the development prospect of applying robot in stomatology.

  19. Expanding Frontiers of Humanoid Robotics

    DTIC Science & Technology

    2000-08-01

    From the IEEE Intelligent Systems Special Issue on Humanoid Robotics , July/August 2000 GUEST EDITORS’ Expanding Frontiers of Humanoid Robotics ...Mark L. Swinson, DARPA David J. Bruemmer, Strategic Analysis Mobile robots pose a unique set of challenges to artificial intelligence researchers...the constraints of logical correctness but also some assortment of crosscutting, physical constraints. Particularly interesting among these robots

  20. Robots in Space -Psychological Aspects

    NASA Technical Reports Server (NTRS)

    Sipes, Walter E.

    2006-01-01

    A viewgraph presentation on the psychological aspects of developing robots to perform routine operations associated with monitoring, inspection, maintenance and repair in space is shown. The topics include: 1) Purpose; 2) Vision; 3) Current Robots in Space; 4) Ground Based Robots; 5) AERCam; 6) Rotating Bladder Robot (ROBLR); 7) DART; 8) Robonaut; 9) Full Immersion Telepresence Testbed; 10) ERA; and 11) Psychological Aspects

  1. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    A judge for the NASA-WPI Sample Return Robot Centennial Challenge follows a robot on the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  2. Laboratory robotics and artificial intelligence.

    PubMed

    Isenhour, T L; Marshall, J C

    1990-09-01

    Intelligent robots, which incorporate artificial intelligence in their controlling software, are the next step in bringing the laboratory robot to its full potential. The areas currently under study in our laboratory are improved user interfaces for laboratory robotics, the integration of object-oriented databases into robot control programs, and strategies to optimize multi-step procedures. The ultimate goal of this work is the Standard Robotics Method. The Standard Robotics Method we envision would allow a robotic method to be transferred from one laboratory to another.

  3. A Survey of Space Robotics

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)

    2003-01-01

    In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.

  4. Robotic Surgery for Thoracic Disease.

    PubMed

    Yamashita, Shin-Ichi; Yoshida, Yasuhiro; Iwasaki, Akinori

    2016-01-01

    Robotic surgeries have developed in the general thoracic field over the past decade, and publications on robotic surgery outcomes have accumulated. However, controversy remains about the application of robotic surgery, with a lack of well-established evidence. Robotic surgery has several advantages such as natural movement of the surgeon's hands when manipulating the robotic arms and instruments controlled by computer-assisted systems. Most studies have reported the feasibility and safety of robotic surgery based on acceptable morbidity and mortality compared to open or video-assisted thoracic surgery (VATS). Furthermore, there are accumulated data to indicate longer operation times and shorter hospital stay in robotic surgery. However, randomized controlled trials between robotic and open or VATS procedures are needed to clarify the advantage of robotic surgery. In this review, we focused the literature about robotic surgery used to treat lung cancer and mediastinal tumor.

  5. Singular Instantons and Painlevé VI

    NASA Astrophysics Data System (ADS)

    Muñiz Manasliski, Richard

    2016-06-01

    We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU_2 on S^4, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé VI equations (P_VI}) and we will give an explicit expression of the map between instantons and solutions to P_{VI}. The solutions are algebraic only for that values of the parameters which correspond to the instantons that can be extended to all of S^4. This work is a generalization of [Muñiz Manasliski R., Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215-222] and [Muñiz Manasliski R., J. Geom. Phys. 59 (2009), 1036-1047, arXiv:1602.07221], where instantons without singularities are studied.

  6. Partner Ballroom Dance Robot -PBDR-

    NASA Astrophysics Data System (ADS)

    Kosuge, Kazuhiro; Takeda, Takahiro; Hirata, Yasuhisa; Endo, Mitsuru; Nomura, Minoru; Sakai, Kazuhisa; Koizumi, Mizuo; Oconogi, Tatsuya

    In this research, we have developed a dance partner robot, which has been developed as a platform for realizing the effective human-robot coordination with physical interaction. The robot could estimate the next dance step intended by a human and dance the step with the human. This paper introduce the robot referred to as PBDR (Partner Ballroom Dance Robot), which has performed graceful dancing with the human in EXPO 2005, Aichi, Japan.

  7. Guarded Motion for Mobile Robots

    SciTech Connect

    2005-03-30

    The Idaho National Laboratory (INL) has created codes that ensure that a robot will come to a stop at a precise, specified distance from any obstacle regardless of the robot's initial speed, its physical characteristics, and the responsiveness of the low-level motor control schema. This Guarded Motion for Mobile Robots system iteratively adjusts the robot's action in response to information about the robot's environment.

  8. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-14

    A University of Waterloo Robotics Team member tests their robot on the practice field two days prior to the NASA-WPI Sample Return Robot Centennial Challenge, Thursday, June 14, 2012 at the Worcester Polytechnic Institute in Worcester, Mass. Teams will compete for a $1.5 million NASA prize to build an autonomous robot that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  9. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    University of Waterloo (Canada) Robotics Team members test their robot on the practice field one day prior to the NASA-WPI Sample Return Robot Centennial Challenge, Friday, June 15, 2012 at the Worcester Polytechnic Institute in Worcester, Mass. Teams will compete for a $1.5 million NASA prize to build an autonomous robot that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  10. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Deputy Administrator Lori Garver, left, listens as Worcester Polytechnic Institute (WPI) Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford points out how the robots navigate the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  11. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Deputy Administrator Lori Garver, right, listens as Worcester Polytechnic Institute (WPI) Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford points out how the robots navigate the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  12. Future of robotic surgery.

    PubMed

    Lendvay, Thomas Sean; Hannaford, Blake; Satava, Richard M

    2013-01-01

    In just over a decade, robotic surgery has penetrated almost every surgical subspecialty and has even replaced some of the most commonly performed open oncologic procedures. The initial reports on patient outcomes yielded mixed results, but as more medical centers develop high-volume robotics programs, outcomes appear comparable if not improved for some applications. There are limitations to the current commercially available system, and new robotic platforms, some designed to compete in the current market and some to address niche surgical considerations, are being developed that will change the robotic landscape in the next decade. Adoption of these new systems will be dependent on overcoming barriers to true telesurgery that range from legal to logistical. As additional surgical disciplines embrace robotics and open surgery continues to be replaced by robotic approaches, it will be imperative that adequate education and training keep pace with technology. Methods to enhance surgical performance in robotics through the use of simulation and telementoring promise to accelerate learning curves and perhaps even improve surgical readiness through brief virtual-reality warm-ups and presurgical rehearsal. All these advances will need to be carefully and rigorously validated through not only patient outcomes, but also cost efficiency.

  13. Autonomous mobile robot

    SciTech Connect

    Mattaboni, P.J.

    1987-01-20

    This patent describes a mobile robot of the type having (a) a vision system, (b) memory means for storing data derived from the robot vision system, and (c) a computer for processing data derived from the robot's vision system, the improvement wherein the robot's vision system comprises (i) a first array of ranging transducers for obtaining data on the position and distance of far objects in a volume of space, the transducers of the first array being symmetrically disposed on the mobile robot with respect to an axis of symmetry within the mobile robot. Each transducer of the first array is fixed in position with respect to that axis of symmetry and sees a portion of the volume of space seen by its entire array; (ii) a second array of ranging transducers for obtaining data of the position and distance of near objects in the same or an overlapping volume of space, the transducers of the second array being symmetrically disposed on the mobile robot with respect to the axis of symmetry. Each transducer of the second array is fixed in position with respect to the axis of symmetry and sees a portion of the volume of space seen by its entire array, the angle of view of the transducers of the second array being different from the angle of view of the transducers of the first array with respect to the same object in space; and (iii) means for polling the ranging transducers in sequences determined by the computer.

  14. Robotic comfort zones

    NASA Astrophysics Data System (ADS)

    Likhachev, Maxim; Arkin, Ronald C.

    2000-10-01

    The paper investigates how the psychological notion of comfort can be useful in the design of robotic systems. A review of the existing study of human comfort, especially regarding its presence in infants, is conducted with the goal being to determine the relevant characteristics for mapping it onto the robotics domain. Focus is place on the identification of the salient features in the environment that affect the comfort level. Factors involved include current state familiarity, working conditions, the amount and location of available resources, etc. As part of our newly developed comfort function theory, the notion of an object as a psychological attachment for a robot is also introduced, as espoused in Bowlby's theory of attachment. The output space of the comfort function and its dependency on the comfort level are analyzed. The results of the derivation of this comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function are then presented in terms of the impact they have on robotic behavior. Justification for the use of the comfort function in the domain of robotics is presented with relevance for real-world operations. Also, a transformation of the theoretical discussion into a mathematical framework suitable for implementation within a behavior-based control system is presented. The paper concludes with results of simulation studies and real robot experiments using the derived comfort function.

  15. Micro autonomous robotic system

    NASA Astrophysics Data System (ADS)

    Ishihara, Hidenori; Fukuda, Toshio

    1995-12-01

    This paper deals with the structural proposal of the micro autonomous robotic system, and shows the design of the prototype. We aim at developing the micro robot, which autonomously acts based on its detection, in order to propose a solution to constitute the micro autonomous robotic system. However, as miniaturizing the size, the number of the sensors gets restricted and the information from them becomes lack. Lack of the information makes it difficult to realize an intelligence of quality. Because of that, the micro robotic system needs to develop the simple algorithm. In this paper, we propose the simply logical algorithms to control the actuator, and show the performance of the micro robot controlled by them, and design the Micro Line Trace Robot, which dimension is about 1 cm cube and which moves along the black line on the white-colored ground, and the programmable micro autonomous robot, which dimension is about 2 cm cube and which performs according to the program optionally.

  16. Toward cognitive robotics

    NASA Astrophysics Data System (ADS)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  17. Door breaching robotic manipulator

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Erik; Parrington, Lawrence; von Muehlen, Stephan

    2008-04-01

    As unmanned systems become more commonplace in military, police, and other security forces, they are tasked to perform missions that the original hardware was not designed for. Current military robots are built for rough outdoor conditions and have strong inflexible manipulators designed to handle a wide range of operations. However, these manipulators are not well suited for some essential indoor tasks, including opening doors. This is a complicated kinematic task that places prohibitively difficult control challenges on the robot and the operator. Honeybee and iRobot have designed a modular door-breaching manipulator that mechanically simplifies the demands upon operator and robot. The manipulator connects to the existing robotic arm of the iRobot PackBot EOD. The gripper is optimized for grasping a variety of door knobs, levers, and car-door handles. It works in conjunction with a compliant wrist and magnetic lock-out mechanism that allows the wrist to remain rigid until the gripper has a firm grasp of the handle and then bend with its rotation and the swing of the door. Once the door is unlatched, the operator simply drives the robot through the doorway while the wrist compensates for the complex, multiple degree-of-freedom motion of the door. Once in the doorway the operator releases the handle, the wrist pops back into place, and the robot is ready for the next door. The new manipulator dramatically improves a robot's ability to non-destructively breach doors and perform an inspection of a room's content, a capability that was previously out of reach of unmanned systems.

  18. Cervical cord compression in mucopolysaccharidosis VI (MPS VI): Findings from the MPS VI Clinical Surveillance Program (CSP).

    PubMed

    Solanki, Guirish A; Sun, Peter P; Martin, Kenneth W; Hendriksz, Christian J; Lampe, Christina; Guffon, Nathalie; Hung, Annie; Sisic, Zlatko; Shediac, Renée; Harmatz, Paul R

    2016-08-01

    To gain insight into the frequency, age of onset, and management of cervical cord compression in mucopolysaccharidosis VI (MPS VI). Cervical spine magnetic resonance imaging (MRI) data and/or cervical decompression surgery data collected between 30 June 2005 and 1 September 2015 were analyzed from subjects enrolled in the MPS VI Clinical Surveillance Program (CSP) (ClinicalTrials.gov: NCT00214773), an ongoing multicenter, observational, retrospective and prospective registry. Of 213 subjects enrolled in the CSP, 134 (62.9%) had at least one documented cervical spine MRI assessment. An additional four subjects were identified through surgery records alone to yield a study population comprising 138 subjects (mean age at enrollment =15.1years; age range=0.80-65.0years). Cervical cord compression was documented in 101 (75.4%) of the 134 subjects with ≥1 MRI assessment, the majority (95.0%) by the time of the first recorded MRI. In general, subjects with cervical cord compression had significantly lower height Z-scores compared to those without cervical cord compression (p<0.0001); nevertheless, a few subjects of taller stature had documented cervical cord compression at a young age. Most subjects >20years of age (31/33, 93.9%) presented with cervical cord compression. There was an insufficient number of subjects with both pre- and post-enzyme replacement therapy (ERT) MRI data to determine any association between ERT and cervical cord compression. Surgical decompression was performed on 58 subjects (42.0%), with mean age at first surgery of 13.1years. Decompression plus stabilization procedures accounted for 12.1% of surgeries. Eight subjects (13.8%) underwent reoperation. Complications during or following surgery were reported in 3 subjects, with anesthesia-related complications resulting in two deaths. All individuals with MPS VI are at high risk of developing cervical cord compression at an early age. Routine MRI assessments should be initiated from the time of

  19. Soft Robotics: New Perspectives for Robot Bodyware and Control.

    PubMed

    Laschi, Cecilia; Cianchetti, Matteo

    2014-01-01

    The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments.

  20. Soft Robotics: New Perspectives for Robot Bodyware and Control

    PubMed Central

    Laschi, Cecilia; Cianchetti, Matteo

    2014-01-01

    The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259

  1. Robotics in shoulder rehabilitation

    PubMed Central

    Sicuri, Chiara; Porcellini, Giuseppe; Merolla, Giovanni

    2014-01-01

    Summary In the last few decades, several researches have been conducted in the field of robotic rehabilitation to meet the intensive, repetitive and task-oriented training, with the goal to recover the motor function. Up to now, robotic rehabilitation studies of the upper extremity have generally focused on stroke survivors leaving less explored the field of orthopaedic shoulder rehabilitation. In this review we analyse the present status of robotic technologies, in order to understand which are the current indications and which may be the future perspective for their application in both neurological and orthopaedic shoulder rehabilitation. PMID:25332937

  2. MVACS Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bonitz, R.; Slostad, J.; Bon, B.; Braun, D.; Brill, R.; Buck, C.; Fleischner, R.; Haldeman, A.; Herman, J.; Hertzel, M.; Noon, D.; Pixler, G.; Schenker, P.; Ton, T.; Tucker, C.; Zimmerman, W.

    2000-01-01

    The primary purpose of the Mars Volatiles and Climate Surveyor (MVACS) Robotic Arm is to support to the other MVACS science instruments by digging trenches in the Martian soil; acquiring and dumping soil samples into the thermal evolved gas analyzer (TEGA); positioning the Soil Temperature Probe (STP) in the soil: positioning the Robotic Arm Air Temperature Sensor (RAATS) at various heights above the surface, and positioning the Robotic Arm Camera (RAC) for taking images of the surface, trench, soil samples, magnetic targets and other objects of scientific interest within its workspace.

  3. Agile Walking Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.; Waldron, Kenneth J.

    1990-01-01

    Proposed agile walking robot operates over rocky, sandy, and sloping terrain. Offers stability and climbing ability superior to other conceptual mobile robots. Equipped with six articulated legs like those of insect, continually feels ground under leg before applying weight to it. If leg sensed unexpected object or failed to make contact with ground at expected point, seeks alternative position within radius of 20 cm. Failing that, robot halts, examines area around foot in detail with laser ranging imager, and replans entire cycle of steps for all legs before proceeding.

  4. Modelling robot construction systems

    NASA Technical Reports Server (NTRS)

    Grasso, Chris

    1990-01-01

    TROTER's are small, inexpensive robots that can work together to accomplish sophisticated construction tasks. To understand the issues involved in designing and operating a team of TROTER's, the robots and their components are being modeled. A TROTER system that features standardized component behavior is introduced. An object-oriented model implemented in the Smalltalk programming language is described and the advantages of the object-oriented approach for simulating robot and component interactions are discussed. The presentation includes preliminary results and a discussion of outstanding issues.

  5. Advanced mechanisms for robotics

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1991-01-01

    An overview of applied research and development at the Goddard Space Flight Center (GSFC) on mechanisms and collision avoidance skin for robots is presented. The work on robot end effectors is outlined, followed by a brief discussion of robot-friendly payload latching mechanisms and compliant joints. This is followed by discussions of the collision avoidance/management skin and the GSFC research on magnetorestrictive direct drive motors. A new project, the artificial muscle, is introduced. Each of the devices is described sufficiently to permit a basic understanding of its purpose, capabilities, and operating fundamentals. The implications for commercialization are discussed.

  6. Autonomous mobile robot teams

    NASA Technical Reports Server (NTRS)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  7. Artificial Intelligence and Robotics.

    DTIC Science & Technology

    1982-09-20

    8217’AD-A122 414 ARTIFICIAL INTELLIGENCE AND ROBOTICS (.) ARMY SCIENCE 1/j 13OARD WA SH INGTON Od I C PEDEN ET AL. 20 SEP 82 UNCLASSIFIED F/G 15/3 NL LEE...AND ACQUISITION WASHINGTON, D. C. 20310 A RMY CIENCE BOARD AD HOC SUBGROUP REPORT ON ARTIFICIAL INTELLIGENCE AND ROBOTICS SEPTEMBER 1982 DTIC DEC 1 5...TITLE (aid Subtitle) S TYPE OF REPORT & PERIOD COVERED Army Science Board AHSG Report Final Artificial Intelligence and Robotics S. PERFORMING ORG

  8. Robotics: An introduction

    SciTech Connect

    Mc Cloy, D.; Harris, D.

    1986-01-01

    This book is an account encompassing the entire range of disciplines involved in robotics: mechanical, electrical, electronic, and software design, as well as the related technologies of pick-and-place devices, walking machines, teleoperators, and prosthetics. The book explores the evolution of robotics and major trends in the field, and covers an array of robot configurations and mechanisms. It also looks at fundamentals such as actuation, control, measurement, computers, sensing and interaction with the environment, and pattern recognition. Important economic and financial aspects as well as safety and social implications are detailed.

  9. Overview of robotic thyroidectomy

    PubMed Central

    Kim, Hoon Yub; Koh, Yoon Woo; Chung, Woong Youn

    2017-01-01

    With the advancement and adaptation of technology, there has been a tremendous evolution in the surgical approaches for thyroidectomy. Robotic thyroidectomy has become increasingly popular worldwide attracting both surgeons and patients searching for new and innovative techniques for thyroidectomy with a superior cosmetic result when compared to the conventional open procedures. In this review, we describe the following surgical approaches for robotic thyroidectomy: transaxillary, retroauricular (facelift) and transoral. The advantages and disadvantages as well as limitations of each approach are examined, and future directions of robotic thyroidectomy are discussed. PMID:28713692

  10. Robots in astronomy

    NASA Astrophysics Data System (ADS)

    Baruch, John E. F.

    A development history and a development trends evaluation are presented for the growth of automation and robotics in industry and in observational astronomy, with a view to the distinctive problems of each field of application. Recent concepts concerning the astronomical use of robots as personal assistants are noted, and an effort is made to discern ways in which technology guides both methods and perceptions. Current programs for robotic and automated telescope development are noted, and it is argued that international standards should soon be formulated for this technology.

  11. Robotic devices in surgery.

    PubMed

    Davies

    2003-03-01

    Robotic devices are defined wich can be used as an aid to surgery. A classification system is proposed that reflects the manner of use and the safety of the systems. Typical benefits and problems of using robots are discussed, and a number of applications are reviewed. These cover "autonomous" systems, that involve no intervention from the surgeon; "hands-on" systems, that require the direct involvement of the surgeon; and "Master/Slave" (or Telemanipulator) systems, that are somewhere between these two and involve some degree of indirect surgeon activity. A number of predictions for the future of medical robotics are provided.

  12. Architecture for robot intelligence

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard Alan (Inventor)

    2004-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  13. MVACS Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bonitz, R.; Slostad, J.; Bon, B.; Braun, D.; Brill, R.; Buck, C.; Fleischner, R.; Haldeman, A.; Herman, J.; Hertzel, M.; hide

    2000-01-01

    The primary purpose of the Mars Volatiles and Climate Surveyor (MVACS) Robotic Arm is to support to the other MVACS science instruments by digging trenches in the Martian soil; acquiring and dumping soil samples into the thermal evolved gas analyzer (TEGA); positioning the Soil Temperature Probe (STP) in the soil: positioning the Robotic Arm Air Temperature Sensor (RAATS) at various heights above the surface, and positioning the Robotic Arm Camera (RAC) for taking images of the surface, trench, soil samples, magnetic targets and other objects of scientific interest within its workspace.

  14. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A torso model of Robonaut 2, identical to R2 already on the International Space Station, is introduced to a crowd of onlookers by Ron Diftler of NASA's Johnson Space Center in Houston. The demonstration was one of several provided during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  15. Position versus force control: using the 2-DOF robotic ankle trainer to assess ankle's motor control.

    PubMed

    Farjadian, Amir B; Nabian, Mohsen; Hartman, Amber; Corsino, Johnathan; Mavroidis, Constantinos; Holden, Maureen K

    2014-01-01

    An estimated of 2,000,000 acute ankle sprains occur annually in the United States. Furthermore, ankle disabilities are caused by neurological impairments such as traumatic brain injury, cerebral palsy and stroke. The virtually interfaced robotic ankle and balance trainer (vi-RABT) was introduced as a cost-effective platform-based rehabilitation robot to improve overall ankle/balance strength, mobility and control. The system is equipped with 2 degrees of freedom (2-DOF) controlled actuation along with complete means of angle and torque measurement mechanisms. Vi-RABT was used to assess ankle strength, flexibility and motor control in healthy human subjects, while playing interactive virtual reality games on the screen. The results suggest that in the task with 2-DOF, subjects have better control over ankle's position vs. force.

  16. Software Architecture for Planetary and Lunar Robotics

    NASA Technical Reports Server (NTRS)

    Utz, Hans; Fong, Teny; Nesnas, Iasa A. D.

    2006-01-01

    A viewgraph presentation on the role that software architecture plays in space and lunar robotics is shown. The topics include: 1) The Intelligent Robotics Group; 2) The Lunar Mission; 3) Lunar Robotics; and 4) Software Architecture for Space Robotics.

  17. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... action level for 30 or more days a year; (B) Experiencing signs or symptoms of the adverse health effects...) Whenever an employee shows signs or symptoms of the adverse health effects associated with chromium (VI... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  18. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of the adverse health effects associated with chromium (VI) exposure; or (C) Exposed in an emergency... additional examination; (iv) Whenever an employee shows signs or symptoms of the adverse health effects... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  19. 29 CFR 1910.1026 - Chromium (VI).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or more days a year; (B) Experiencing signs or symptoms of the adverse health effects associated with... symptoms of the adverse health effects associated with chromium (VI) exposure; (v) Within 30 days after... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  20. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of the adverse health effects associated with chromium (VI) exposure; or (C) Exposed in an emergency... additional examination; (iv) Whenever an employee shows signs or symptoms of the adverse health effects... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  1. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of the adverse health effects associated with chromium (VI) exposure; or (C) Exposed in an emergency... additional examination; (iv) Whenever an employee shows signs or symptoms of the adverse health effects... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  2. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... action level for 30 or more days a year; (B) Experiencing signs or symptoms of the adverse health effects...) Whenever an employee shows signs or symptoms of the adverse health effects associated with chromium (VI... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  3. 29 CFR 1910.1026 - Chromium (VI).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or more days a year; (B) Experiencing signs or symptoms of the adverse health effects associated with... symptoms of the adverse health effects associated with chromium (VI) exposure; (v) Within 30 days after... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED...

  4. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of the adverse health effects associated with chromium (VI) exposure; or (C) Exposed in an emergency... additional examination; (iv) Whenever an employee shows signs or symptoms of the adverse health effects... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  5. 29 CFR 1910.1026 - Chromium (VI).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or more days a year; (B) Experiencing signs or symptoms of the adverse health effects associated with... symptoms of the adverse health effects associated with chromium (VI) exposure; (v) Within 30 days after... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  6. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... action level for 30 or more days a year; (B) Experiencing signs or symptoms of the adverse health effects...) Whenever an employee shows signs or symptoms of the adverse health effects associated with chromium (VI... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  7. 29 CFR 1910.1026 - Chromium (VI).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... days a year; (B) Experiencing signs or symptoms of the adverse health effects associated with chromium... symptoms of the adverse health effects associated with chromium (VI) exposure; (v) Within 30 days after... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  8. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... action level for 30 or more days a year; (B) Experiencing signs or symptoms of the adverse health effects...) Whenever an employee shows signs or symptoms of the adverse health effects associated with chromium (VI... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  9. 29 CFR 1926.1126 - Chromium (VI).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the adverse health effects associated with chromium (VI) exposure; or (C) Exposed in an emergency... additional examination; (iv) Whenever an employee shows signs or symptoms of the adverse health effects... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  10. 29 CFR 1915.1026 - Chromium (VI).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the adverse health effects associated with chromium (VI) exposure; or (C) Exposed in an emergency... additional examination; (iv) Whenever an employee shows signs or symptoms of the adverse health effects... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...

  11. Data testing of ENDF/B-VI

    SciTech Connect

    MacFarlane, R.E.

    1994-06-01

    A number of the fast reactor and thermal reactor benchmarks have been analyzed using nuclear data from ENDF/B-VI Release 2. Data were prepared with the NJOY nuclear data processing system in MATXS and ACE formats. Transport calculations were preformed with ONEDANT and TWODANT using transport tables prepared by the TRANSX code and with the MCNP Monte Carlo code.

  12. 76 FR 60593 - Title VI; Proposed Circular

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... Federal Transit Administration Title VI; Proposed Circular AGENCY: Federal Transit Administration (FTA... Federal Transit Administration (FTA) has placed in the docket and on its Web site, proposed guidance in... locations will be ADA- and transit-accessible. For details about the exact location of each...

  13. ViSC Social Competence Program

    ERIC Educational Resources Information Center

    Strohmeier, Dagmar; Hoffmann, Christine; Schiller, Eva-Maria; Stefanek, Elisabeth; Spiel, Christiane

    2012-01-01

    The ViSC Social Competence Program has been implemented in Austrian schools within the scope of a national strategy plan, Together Against Violence. The program is a primary preventive program designed for grades 5 to 8. The prevention of aggression and bullying is defined as a school development task, and the initial implementation of the program…

  14. Chromium(VI) bioremediation by probiotics.

    PubMed

    Younan, Soraia; Sakita, Gabriel Z; Albuquerque, Talita R; Keller, Rogéria; Bremer-Neto, Hermann

    2016-09-01

    Chromium is a common mineral in the earth's crust and can be released into the environment from anthropogenic sources. Intake of hexavalent chromium (Cr(VI)) through drinking water and food causes toxic effects, leading to serious diseases, and is a commonly reported environmental problem. Microorganisms can mitigate or prevent the toxic effects caused by heavy metals in addition to having effective resistance mechanisms to prevent cell damage and bind to these metals, sequestering them from the cell surface and removing them from the body. Species of Lactobacillus, Streptococcus, Bacillus and Bifidobacterium present in the human mouth and gut and in fermented foods have the ability to bind and detoxify some of these substances. This review address the primary topics related to Cr(VI) poisoning in animals and humans and the use of probiotics as a way to mitigate or prevent the toxic effects caused by Cr(VI). Further advances in the genetic knowledge of such microorganisms may lead to discoveries which will clarify the most active microorganisms that act as bioprotectants in bodies exposed to Cr(VI) and are an affordable option for people and animals intoxicated by the oral route. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Miniature in vivo robotics and novel robotic surgical platforms.

    PubMed

    Shah, Bhavin C; Buettner, Shelby L; Lehman, Amy C; Farritor, Shane M; Oleynikov, Dmitry

    2009-05-01

    Robotic surgical systems, such as the da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, California), have revolutionized laparoscopic surgery but are limited by large size, increased costs, and limitations in imaging. Miniature in vivo robots are being developed that are inserted entirely into the peritoneal cavity for laparoscopic and natural orifice transluminal endoscopic surgical (NOTES) procedures. In the future, miniature camera robots and microrobots should be able to provide a mobile viewing platform. This article discusses the current state of miniature robotics and novel robotic surgical platforms and the development of future robotic technology for general surgery and urology.

  16. Robotic follow system and method

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Anderson, Matthew O [Idaho Falls, ID

    2007-05-01

    Robot platforms, methods, and computer media are disclosed. The robot platform includes perceptors, locomotors, and a system controller, which executes instructions for a robot to follow a target in its environment. The method includes receiving a target bearing and sensing whether the robot is blocked front. If the robot is blocked in front, then the robot's motion is adjusted to avoid the nearest obstacle in front. If the robot is not blocked in front, then the method senses whether the robot is blocked toward the target bearing and if so, sets the rotational direction opposite from the target bearing, and adjusts the rotational velocity and translational velocity. If the robot is not blocked toward the target bearing, then the rotational velocity is adjusted proportional to an angle of the target bearing and the translational velocity is adjusted proportional to a distance to the nearest obstacle in front.

  17. Robotics and remote systems applications

    SciTech Connect

    Rabold, D.E.

    1996-05-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling.

  18. Fundamentals of soft robot locomotion.

    PubMed

    Calisti, M; Picardi, G; Laschi, C

    2017-05-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).

  19. Continuum limbed robots for locomotion

    NASA Astrophysics Data System (ADS)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  20. Air Force Successes and Challenges in Cr(VI) Elimination

    DTIC Science & Technology

    2011-05-10

    Cr(VI) has been used for 40+ years and is an excellent corrosion inhibitor • Cr(VI) compounds are highly toxic • National & International...use of Cr(VI) • Suitable Substitutes for Specific Applications are being Actively Sought 3 Chrome Reduction Plan Description: • Reduce Cr(VI) and...ion vapor deposited Al, and Cd coatings 2. Use trivalent chromium [Cr(III)] conversion coating (CC) on Dipsol IZ- C17+ zinc- nickel (Zn-Ni) coating

  1. 23 CFR 200.7 - FHWA Title VI policy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false FHWA Title VI policy. 200.7 Section 200.7 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS TITLE VI PROGRAM AND RELATED STATUTES-IMPLEMENTATION AND REVIEW PROCEDURES § 200.7 FHWA Title VI policy. It is the policy of the FHWA to ensure compliance with Title VI of the...

  2. 23 CFR 200.7 - FHWA Title VI policy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false FHWA Title VI policy. 200.7 Section 200.7 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS TITLE VI PROGRAM AND RELATED STATUTES-IMPLEMENTATION AND REVIEW PROCEDURES § 200.7 FHWA Title VI policy. It is the policy of the FHWA to ensure compliance with Title VI of the...

  3. Tank-automotive robotics

    NASA Astrophysics Data System (ADS)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  4. Robotics in Colorectal Surgery

    PubMed Central

    Weaver, Allison; Steele, Scott

    2016-01-01

    Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients. PMID:27746895

  5. K-10 Robots

    NASA Image and Video Library

    Robots, scientists, engineers and flight controllers from NASA's Ames Research Center at Moffett Field, Calif., and NASA's Johnson Space Center in Houston, gathered at NASA Ames to perform a series...

  6. Phoenix Robotic Arm Rasp

    NASA Image and Video Library

    2008-07-15

    This photograph shows the rasp protruding from the back of the scoop on NASA Phoenix Mars Lander Robotic Arm engineering model in the Payload Interoperability Testbed at the University of Arizona, Tucson.

  7. Robotics and neuroscience.

    PubMed

    Floreano, Dario; Ijspeert, Auke Jan; Schaal, Stefan

    2014-09-22

    In the attempt to build adaptive and intelligent machines, roboticists have looked at neuroscience for more than half a century as a source of inspiration for perception and control. More recently, neuroscientists have resorted to robots for testing hypotheses and validating models of biological nervous systems. Here, we give an overview of the work at the intersection of robotics and neuroscience and highlight the most promising approaches and areas where interactions between the two fields have generated significant new insights. We articulate the work in three sections, invertebrate, vertebrate and primate neuroscience. We argue that robots generate valuable insight into the function of nervous systems, which is intimately linked to behaviour and embodiment, and that brain-inspired algorithms and devices give robots life-like capabilities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. FIRST Robotics Kickoff

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.

  9. Robotic aortic surgery.

    PubMed

    Duran, Cassidy; Kashef, Elika; El-Sayed, Hosam F; Bismuth, Jean

    2011-01-01

    Surgical robotics was first utilized to facilitate neurosurgical biopsies in 1985, and it has since found application in orthopedics, urology, gynecology, and cardiothoracic, general, and vascular surgery. Surgical assistance systems provide intelligent, versatile tools that augment the physician's ability to treat patients by eliminating hand tremor and enabling dexterous operation inside the patient's body. Surgical robotics systems have enabled surgeons to treat otherwise untreatable conditions while also reducing morbidity and error rates, shortening operative times, reducing radiation exposure, and improving overall workflow. These capabilities have begun to be realized in two important realms of aortic vascular surgery, namely, flexible robotics for exclusion of complex aortic aneurysms using branched endografts, and robot-assisted laparoscopic aortic surgery for occlusive and aneurysmal disease.

  10. FIRST Robotics Kickoff

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.

  11. Path Following Robot.

    DTIC Science & Technology

    1987-12-01

    ARTICULATED ROBOT MODEL A. INTRODUCION ............................................................... 172 B. COORDINATE TRANSFORMATIONS...and matrix algebra . Scalars are represented by lowercase letters, vectors by -’ lowercase bold letters, and matrices by uppercase bold letters."’ A.1

  12. Rolling friction robot fingers

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1992-01-01

    A low friction, object guidance, and gripping finger device for a robotic end effector on a robotic arm is disclosed, having a pair of robotic fingers each having a finger shaft slideably located on a gripper housing attached to the end effector. Each of the robotic fingers has a roller housing attached to the finger shaft. The roller housing has a ball bearing mounted centering roller located at the center, and a pair of ball bearing mounted clamping rollers located on either side of the centering roller. The object has a recess to engage the centering roller and a number of seating ramps for engaging the clamping rollers. The centering roller acts to position and hold the object symmetrically about the centering roller with respect to the X axis and the clamping rollers act to position and hold the object with respect to the Y and Z axis.

  13. Transoral Robotic Reconstructive Surgery

    PubMed Central

    Selber, Jesse C.; Sarhane, Karim A.; Ibrahim, Amir E.; Holsinger, Floyd C.

    2014-01-01

    Transoral robotic surgery (TORS) has emerged as a technique that allows head and neck surgeons to safely resect large and complex oropharyngeal tumors without dividing the mandible or performing a lip-split incision. These resections provide a reconstructive challenge because the cylinder of the oropharynx remains closed and both physical access and visualization of oropharyngeal anatomy is severely restricted. Transoral robotic reconstruction (TORRS) of such defects allows the reconstructive surgeon to inset free flaps or perform adjacent tissue transfer while seeing what the resecting surgeon sees. Early experience with this technique has proved feasible and effective. Robotic reconstruction has many distinct advantages over conventional surgery, and offers patients a less morbid surgical course. In this review, we discuss the clinical applicability of transoral robotic surgery in head and neck reconstruction, highlighting the benefits and limitations of such an approach, and outlining the guidelines for its utilization. PMID:24872777

  14. DOE Robotics Project

    SciTech Connect

    Not Available

    1991-01-01

    This document provide the bimonthly progress reports on the Department of Energy (DOE) Robotics Project by the University of Michigan. Reports are provided for the time periods of December 90/January 91 through June 91/July 91. (FI)

  15. Robots in operating theatres.

    PubMed Central

    Buckingham, R. A.; Buckingham, R. O.

    1995-01-01

    Robots designed for surgery have three main advantages over humans. They have greater three dimensional spatial accuracy, are more reliable, and can achieve much greater precision. Although few surgical robots are yet in clinical trials one or two have advanced to the stage of seeking approval from the UK's Medical Devices Agency and the US Federal Drug Administration. Safety is a key concern. A robotic device can be designed in an intrinsically safe way by restricting its range of movement to an area where it can do no damage. Furthermore, safety can be increased by making it passive, guided at all times by a surgeon. Nevertheless, some of the most promising developments may come from robots that are active (monitored rather than controlled by the surgeon) and not limited to intrinsically safe motion. Images Fig 1 Fig 3 Fig 4 PMID:8520340

  16. Operator roles in robotics

    SciTech Connect

    Lyman, J.; Madni, A.M.

    1984-01-01

    The authors suggest that operator roles in robotics can be classified under the categories of monitor, manager, and maintainer. With increasingly sophisticated applications of machine intelligence, however, these roles will require explicit and continuing reassessment. 5 references.

  17. Microprocessors, Robotics, and Work.

    ERIC Educational Resources Information Center

    DeVore, Paul W.

    1982-01-01

    The author explores several recent technological developments which will have an impact on future technical education. These developments include the revolution in information services, robotics, job changes and eliminations, changing role of the worker, and quality of life. (CT)

  18. Laser radar in robotics

    SciTech Connect

    Carmer, D.C.; Peterson, L.M.

    1996-02-01

    In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

  19. Robotics in Colorectal Surgery.

    PubMed

    Weaver, Allison; Steele, Scott

    2016-01-01

    Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients.

  20. Robotics in urologic oncology

    PubMed Central

    Jain, Saurabh; Gautam, Gagan

    2015-01-01

    Robotic surgery was initially developed to overcome problems faced during conventional laparoscopic surgeries and to perform telesurgery at distant locations. It has now established itself as the epitome of minimally invasive surgery (MIS). It is one of the most significant advances in MIS in recent years and is considered by many as a revolutionary technology, capable of influencing the future of surgery. After its introduction to urology, robotic surgery has redefined the management of urological malignancies. It promises to make difficult urological surgeries easier, safer and more acceptable to both the surgeon and the patient. Robotic surgery is slowly, but surely establishing itself in India. In this article, we provide an overview of the advantages, disadvantages, current status, and future applications of robotic surgery for urologic cancers in the context of the Indian scenario. PMID:25598598

  1. Robots on the Roof

    NASA Image and Video Library

    The Aerosol Robotic Network (AERONET) is one of the first places that scientists turn when volcanoes, wildfires, pollution plumes, dust storms and many other phenomena—both natural and manmade—...

  2. Microprocessors, Robotics, and Work.

    ERIC Educational Resources Information Center

    DeVore, Paul W.

    1982-01-01

    The author explores several recent technological developments which will have an impact on future technical education. These developments include the revolution in information services, robotics, job changes and eliminations, changing role of the worker, and quality of life. (CT)

  3. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    College team members watch a live display of their mining robots during test runs in the mining arena at NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  4. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    A robotic miner digs in the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  5. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    College team members prepare to enter the robotic mining arena for a test run during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  6. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    The robotic miner from Mississippi State University digs in the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  7. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    Team Raptor members from the University of North Dakota College of Engineering and Mines check their robot, named "Marsbot," in the RoboPit at NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  8. FIRST Robotics Kickoff

    NASA Image and Video Library

    2007-01-06

    NASA engineers Scott Olive (left) and Bo Clarke answer questions during the 2007 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition regional kickoff event held Saturday, Jan. 6, 2007, at StenniSphere, the visitor center at NASA Stennis Space Center near Bay St. Louis, Miss. The SSC employees and FIRST Robotics volunteer mentors are standing near a mock-up of the playing field for the FIRST Robotics' 2007 `Rack n' Roll' challenge. Roughly 300 students and adult volunteers - representing 29 high schools from four states - attended the kickoff to hear the rules of `Rack n' Roll.' The teams will spend the next six weeks building and programming robots from parts kits they received Saturday, then battle their creations at regional spring competitions in New Orleans, Houston, Atlanta and other cities around the nation. FIRST aims to inspire students in the pursuit of engineering and technology studies and careers.

  9. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Twin mining robots from the University of Iowa dig in a supersized sandbox filled with BP-1, or simulated Martian soil, during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  10. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    Team members from Purdue University prepare their uniquely-designed robot miner in the RoboPit at NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  11. Biological Soft Robotics.

    PubMed

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  12. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Team members from the New York University Tandon School of Engineering transport their robot to the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  13. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Team members from West Virginia University prepare their mining robot for a test run in a giant sandbox before their scheduled mining run in the arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  14. Wheeled hopping robot

    DOEpatents

    Fischer, Gary J [Albuquerque, NM

    2010-08-17

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  15. Robotics and general surgery.

    PubMed

    Jacob, Brian P; Gagner, Michel

    2003-12-01

    Robotics are now being used in all surgical fields, including general surgery. By increasing intra-abdominal articulations while operating through small incisions, robotics are increasingly being used for a large number of visceral and solid organ operations, including those for the gallbladder, esophagus, stomach, intestines, colon, and rectum, as well as for the endocrine organs. Robotics and general surgery are blending for the first time in history and as a specialty field should continue to grow for many years to come. We continuously demand solutions to questions and limitations that are experienced in our daily work. Laparoscopy is laden with limitations such as fixed axis points at the trocar insertion sites, two-dimensional video monitors, limited dexterity at the instrument tips, lack of haptic sensation, and in some cases poor ergonomics. The creation of a surgical robot system with 3D visual capacity seems to deal with most of these limitations. Although some in the surgical community continue to test the feasibility of these surgical robots and to question the necessity of such an expensive venture, others are already postulating how to improve the next generation of telemanipulators, and in so doing are looking beyond today's horizon to find simpler solutions. As the robotic era enters the world of the general surgeon, more and more complex procedures will be able to be approached through small incisions. As technology catches up with our imaginations, robotic instruments (as opposed to robots) and 3D monitoring will become routine and continue to improve patient care by providing surgeons with the most precise, least traumatic ways of treating surgical disease.

  16. Robot Grasps Rotating Object

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Tso, Kam S.; Litwin, Todd E.; Hayati, Samad A.; Bon, Bruce B.

    1991-01-01

    Experimental robotic system semiautomatically grasps rotating object, stops rotation, and pulls object to rest in fixture. Based on combination of advanced techniques for sensing and control, constructed to test concepts for robotic recapture of spinning artificial satellites. Potential terrestrial applications for technology developed with help of system includes tracking and grasping of industrial parts on conveyor belts, tracking of vehicles and animals, and soft grasping of moving objects in general.

  17. First Robotics Competition

    NASA Image and Video Library

    2010-03-06

    Robots vie for position during the second day of the First Robotics Competition, Saturday, March 6, 2010, in Washington. The student competition is called "For Inspiration and Recognition of Science and Technology", or FIRST. The program was founded in 1989 by Dean Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers)

  18. 40 CFR Appendixes Vi-Vii to Part 600 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false VI Appendixes VI-VII to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Appendixes VI-VII to Part 600 ...

  19. 40 CFR Appendixes Vi-Vii to Part 600 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false VI Appendixes VI-VII to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Appendixes VI-VII to Part 600 ...

  20. 23 CFR 200.7 - FHWA Title VI policy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false FHWA Title VI policy. 200.7 Section 200.7 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS TITLE VI PROGRAM AND RELATED... ensure compliance with Title VI of the Civil Rights Act of 1964; 49 CFR part 21; and related statutes...

  1. 23 CFR 200.7 - FHWA Title VI policy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false FHWA Title VI policy. 200.7 Section 200.7 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS TITLE VI PROGRAM AND RELATED... ensure compliance with Title VI of the Civil Rights Act of 1964; 49 CFR part 21; and related statutes...

  2. 23 CFR 200.7 - FHWA Title VI policy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false FHWA Title VI policy. 200.7 Section 200.7 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS TITLE VI PROGRAM AND RELATED... ensure compliance with Title VI of the Civil Rights Act of 1964; 49 CFR part 21; and related statutes...

  3. 40 CFR 146.82 - Required Class VI permit information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Required Class VI permit information. 146.82 Section 146.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Applicable to Class VI Wells § 146.82 Required Class VI permit information. This section sets forth...

  4. U(VI) reduction to mononuclear U(VI) by desulfitobacterium spp.

    SciTech Connect

    Fletcher, K. E.; Boyanov, M. I.; Thomas, S. H.; Wu, Q.; Kemner, K. M.; Loffler, F. E.

    2010-06-15

    The bioreduction of U(VI) to U(IV) affects uranium mobility and fate in contaminated subsurface environments and is best understood in Gram-negative model organisms such as Geobacter and Shewanella spp. This study demonstrates that U(VI) reduction is a common trait of Gram-positive Desulfitobacterium spp. Five different Desulfitobacterium isolates reduced 100 {mu}M U(VI) to U(IV) in <10 days, whereas U(VI) remained soluble in abiotic and heat-killed controls. U(VI) reduction in live cultures was confirmed using X-ray absorption near-edge structure (XANES) analysis. Interestingly, although bioreduction of U(VI) is almost always reported to yield the uraninite mineral (UO{sub 2}), extended X-ray absorption fine structure (EXAFS) analysis demonstrated that the U(IV) produced in the Desulfitobacterium cultures was not UO{sub 2}. The EXAFS data indicated that the U(IV) product was a phase or mineral composed of mononuclear U(IV) atoms closely surrounded by light element shells. This atomic arrangement likely results from inner-sphere bonds between U(IV) and C/N/O- or P/S-containing ligands, such as carbonate or phosphate. The formation of a distinct U(IV) phase warrants further study because the characteristics of the reduced material affect uranium stability and fate in the contaminated subsurface.

  5. ENDF-201, ENDF/B-VI summary documentation supplement 1, ENDF/HE-VI summary documentation

    SciTech Connect

    McLane, V.

    1996-12-01

    The National Nuclear Data Center (NNDC) provides coordination for and serves as the secretariat to the Cross Section Evaluation Working Group (CSWEG). CSEWG is responsible for the oversight of the ENDF/B Evaluated Nuclear Data File. All data are checked and reviewed by CSEWG, and the file is maintained at the NNDC. For a description of the ENDF/B-VI file, see the ENDF-102 Data Formats and Procedures for the Evaluated Nuclear Data File ENDF-6. The purpose of this addendum to the ENDF/B-VI Summary Documentation is to provide documentation of Releases 1, 2, 3, and 4 for the ENDF/B-VI and ENDF/HE-VI evaluated nuclear data libraries. These releases contain many new and revised evaluations for the neutron, photo-atomic interaction, radioactive decay data, spontaneous fission product yield, neutron-induced fission product yield, thermal neutron scattering, proton, deuteron, and triton sublibraries. The summaries have been extracted mainly from the ENDF/B-VI File 1 comments (MT = 451), which have been checked, edited, and may also include supplementary information. Some summaries have been provided by the evaluators in electronic format, while others are extracted from reports on the evaluations. All references have been checked and corrected, or updated where appropriate. A list of the laboratories which have contributed evaluations used in ENDF/B-VI is given.

  6. Density and temperature diagnostics of solar emission lines from NE VI and MG VI

    NASA Astrophysics Data System (ADS)

    Raju, P. K.; Gupta, Asheesh K.

    1993-06-01

    Line intensity ratios of Ne VI lines with respect to a resonance line of Mg VI have been considered for electron density and temperature determinations within the chromosphere-corona transition region. The electron pressure within the transition region has been assumed to be constant. In addition, these ratios would enable us to estimate the relative element abundancns of neon to magnesium. An attempt has been made to explain the extreme ultraviolet intensities of Ne VI and Mg VI lines as observed by ATM ultraviolet spectrometer. The observed intensities correspond to the average quiet-sun conditions near solar minimum. Theoretical intensities for NeVI and MgVI lines have been computed using a model solar atmosphere. Theoretical intensities obtained by using the values 3.98 x 10 exp -5 and 3.16 x 10 exp -5 for element abundance of Ne and Mg, respectively, seem to agree well with the expected intensities. The agreement between some of the expected and computed intensities suggests the need for future observations at higher spectral resolutions to resolve difficulties arising out of blending due to two or more lines.

  7. Robotic surgery in gynecology

    PubMed Central

    Sinha, Rooma; Sanjay, Madhumati; Rupa, B.; Kumari, Samita

    2015-01-01

    FDA approved Da Vinci Surgical System in 2005 for gynecological surgery. It has been rapidly adopted and it has already assumed an important position at various centers where this is available. It comprises of three components: A surgeon's console, a patient-side cart with four robotic arms and a high-definition three-dimensional (3D) vision system. In this review we have discussed various robotic-assisted laparoscopic benign gynecological procedures like myomectomy, hysterectomy, endometriosis, tubal anastomosis and sacrocolpopexy. A PubMed search was done and relevant published studies were reviewed. Surgeries that can have future applications are also mentioned. At present most studies do not give significant advantage over conventional laparoscopic surgery in benign gynecological disease. However robotics do give an edge in more complex surgeries. The conversion rate to open surgery is lesser with robotic assistance when compared to laparoscopy. For myomectomy surgery, Endo wrist movement of robotic instrument allows better and precise suturing than conventional straight stick laparoscopy. The robotic platform is a logical step forward to laparoscopy and if cost considerations are addressed may become popular among gynecological surgeons world over. PMID:25598600

  8. Robotic assisted andrological surgery

    PubMed Central

    Parekattil, Sijo J; Gudeloglu, Ahmet

    2013-01-01

    The introduction of the operative microscope for andrological surgery in the 1970s provided enhanced magnification and accuracy, unparalleled to any previous visual loop or magnification techniques. This technology revolutionized techniques for microsurgery in andrology. Today, we may be on the verge of a second such revolution by the incorporation of robotic assisted platforms for microsurgery in andrology. Robotic assisted microsurgery is being utilized to a greater degree in andrology and a number of other microsurgical fields, such as ophthalmology, hand surgery, plastics and reconstructive surgery. The potential advantages of robotic assisted platforms include elimination of tremor, improved stability, surgeon ergonomics, scalability of motion, multi-input visual interphases with up to three simultaneous visual views, enhanced magnification, and the ability to manipulate three surgical instruments and cameras simultaneously. This review paper begins with the historical development of robotic microsurgery. It then provides an in-depth presentation of the technique and outcomes of common robotic microsurgical andrological procedures, such as vasectomy reversal, subinguinal varicocelectomy, targeted spermatic cord denervation (for chronic orchialgia) and robotic assisted microsurgical testicular sperm extraction (microTESE). PMID:23241637

  9. Insect walking and robotics.

    PubMed

    Delcomyn, Fred

    2004-01-01

    With the advent of significant collaborations between researchers who study insect walking and robotics engineers interested in constructing adaptive legged robots, insect walking is once again poised to make a more significant scientific contribution than the numbers of participants in the field might suggest. This review outlines current knowledge of the physiological basis of insect walking with an emphasis on recent new developments in biomechanics and genetic dissection of behavior, and the impact this knowledge is having on robotics. Engineers have begun to team with neurobiologists to build walking robots whose physical design and functional control are based on insect biology. Such an approach may have benefits for engineering, by leading to the construction of better-performing robots, and for biology, by allowing real-time and real-world tests of critical hypotheses about how locomotor control is effected. It is argued that in order for the new field of biorobotics to have significant influence it must adopt criteria for performance and an experimental approach to the development of walking robots.

  10. Robot goniophotometry at PTB

    NASA Astrophysics Data System (ADS)

    Lindemann, M.; Maass, R.; Sauter, G.

    2015-04-01

    The total luminous flux of a light source is the complete integration of its spectral radiance distribution weighted with the photopic observer and taken over all parts of its surface and over the full solid angle of emittance. The spatial distributions are measured with various types of goniophotometers and the PTB robot goniophotometer is a new type with many unique features. It is built as an arrangement of three robots with arms of more than 6 m in length and with 7 degrees of freedom each. The extreme flexibility of the robots allows computer controlled tracks with variable radii and speeds up to 3 m and 1 m s-1, respectively. One robot aligns the light source and the two other robots move photometers and array spectrometers in their hemispheres simultaneously measuring planar illuminance and the related relative spectral distribution. The robot goniophotometer is optimized for the realisation of the luminous flux unit, the lumen and it is completely characterized in this report. The relevant properties and correction factors are explained, as well as the implementation of techniques for synchronisation and stabilisation of spatially resolved or integrated photometric and colorimetric quantities. Finally, all contributions are combined in the model of evaluation for the (total) luminous flux value and the measurement uncertainty associated with that value is evaluated in the presented uncertainty budget. The goniophotometric determination of the values for colorimetric quantities is explained for the total luminous flux and the spatially distributed radiant power.

  11. Robotic colorectal surgery.

    PubMed

    Baik, Seung Hyuk

    2008-12-31

    Robotic colorectal surgery has gradually been performed more with the help of the technological advantages of the da Vinci system. Advanced technological advantages of the da Vinci system compared with standard laparoscopic colorectal surgery have been reported. These are a stable camera platform, three-dimensional imaging, excellent ergonomics, tremor elimination, ambidextrous capability, motion scaling, and instruments with multiple degrees of freedom. However, despite these technological advantages, most studies did not report the clinical advantages of robotic colorectal surgery compared to standard laparoscopic colorectal surgery. Only one study recently implies the real benefits of robotic rectal cancer surgery. The purpose of this review article is to outline the early concerns of robotic colorectal surgery using the da Vinci system, to present early clinical outcomes from the most current series, and to discuss not only the safety and the feasibility but also the real benefits of robotic colorectal surgery. Moreover, this article will comment on the possible future clinical advantages and limitations of the da Vinci system in robotic colorectal surgery.

  12. Modularity in robotic systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Butler, Michael S.

    1989-01-01

    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

  13. Application of robots in space.

    NASA Technical Reports Server (NTRS)

    Johnsen, E. G.

    1971-01-01

    Robots are defined as electromechanical systems (with local computers) receiving inputs from sensors, and in turn, controlling motors and effectors to do tasks requiring some measure of intelligence and permitting the whole system to interact with the real world. Robot systems for space applications are categorized into three general groups consisting of roving exploration robots, spacecraft robots, and planet development robots. The functions of systems in each category are defined in terms of intended applications, and requirements for operating and decision making are outlined. Further developments which must be achieved in robot technology are summarized.

  14. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Children visiting the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event try to catch basketballs being thrown by a robot from FIRST Robotics at Burncoat High School (Mass.) on Saturday, June 16, 2012 at WPI in Worcester, Mass. The TouchTomorrow event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  15. Robotic hand with modular extensions

    DOEpatents

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  16. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Chief Technologist Mason Peck, left, NASA Deputy Administrator Lori Garver, and Worcester Polytechnic Institute (WPI) President Dennis Berkey, third from left, talk with WPI Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford at the edge of the playing field during the robotic challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams in the NASA-WPI Sample Return Robot Centennial Challenge were tasked with building autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  17. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Intrepid Systems Team member Mark Curry, left, talks with NASA Deputy Administrator Lori Garver and NASA Chief Technologist Mason Peck, right, about his robot named "MXR - Mark's Exploration Robot" on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  18. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems Team member Mark Curry, right, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "MXR - Mark's Exploration Robot" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  19. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems robot, foreground, and the University of Waterloo (Canada) robot, take to the practice field on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Robot teams will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  20. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Intrepid Systems robot "MXR - Mark's Exploration Robot" takes to the practice field and tries to capture the white object in the foreground on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Intrepid Systems' robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  1. Robotic Surgery for Thyroid Disease

    PubMed Central

    Lee, Jandee; Chung, Woong Youn

    2013-01-01

    Robotic surgery is an innovation in thyroid surgery that may compensate for the drawbacks of conventional endoscopic surgery. A surgical robot provides strong advantages, including three-dimensional imaging, motion scaling, tremor elimination, and additional degrees of freedom. We review here recent adaptations, experience and applications of robotics in thyroid surgery. Robotic thyroid surgeries include thyroid lobectomy, total thyroidectomy, central compartment neck dissection, and radical neck dissection for benign and malignant thyroid diseases. Most of the current literature consists of case series of robotic thyroidectomies. Recent retrospective and prospective analyses have evaluated the safety and oncologic efficacy of robotic surgery for thyroid cancer. Although robotic thyroid surgery is often associated with longer operation times than conventional open surgery, robotic techniques have shown similar or superior levels of surgical completeness and safety compared with conventional open or endoscopic surgery. Compared to open thyroidectomy, robotic thyroidectomy has been associated with several quality-of-life benefits, including excellent cosmetic results, reduced neck pain and sensory changes, and decreased voice and swallowing discomfort after surgery. For surgeons, robotic surgery has improved ergonomics and has a shorter learning curve than open or endoscopic surgery. The advantages of robotic thyroid surgery over conventional surgery suggest that robotic thyroidectomy with or without neck dissection may become the preferred surgical option for thyroid diseases. Robotic thyroid surgery will likely continue to develop as more endocrine and head-and-neck surgeons are trained and more patients seek this newly developed surgical option. PMID:24783046

  2. A history of robots: from science fiction to surgical robotics.

    PubMed

    Hockstein, N G; Gourin, C G; Faust, R A; Terris, D J

    2007-01-01

    Surgical robotics is an evolving field with great advances having been made over the last decade. The origin of robotics was in the science-fiction literature and from there industrial applications, and more recently commercially available, surgical robotic devices have been realized. In this review, we examine the field of robotics from its roots in literature to its development for clinical surgical use. Surgical mills and telerobotic devices are discussed, as are potential future developments.

  3. An overview of artificial intelligence and robotics. Volume 2: Robotics

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1982-01-01

    This report provides an overview of the rapidly changing field of robotics. The report incorporates definitions of the various types of robots, a summary of the basic concepts, utilized in each of the many technical areas, review of the state of the art and statistics of robot manufacture and usage. Particular attention is paid to the status of robot development, the organizations involved, their activities, and their funding.

  4. O VI Emission from the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Shelton, Robin L.

    2004-01-01

    This project's primary goal was to examine the Local Bubble, a large hot bubble surrounding the solar neighborhood. In order to do this, we observed the 1032 and 1038 A resonance line emission from O VI in the bubble and used the,results to comment on models for the Local Bubble and its embedded clouds. In order to maximize the signal to noise of our spectrum, we combined the awarded guest investigator observation with unpublished FUSE In Orbit Checkout observations. The resulting spectrum was sufficiently good as to enable us to place tight 2 sigma upper limits on the intensities of the 1032 and the 1038 A resonance lines. We also measured or placed upper limits on the other cosmic lines in the bandpass, including C III and C II. These are the first known ultraviolet emission line measurements and/or upper limits for the gas in the Local Bubble (as opposed to gas anywhere along long lines of sight). With the O VI upper limits, we were able to quantitatively evaluate competing theories for the origins of the Local Bubble. The upper limits are well below those expected in the Breitschwerdt model (which proposes that during its its early development, the Local Bubble rapidly expanded beyond its nascent cloud and, as a result, is now vastly underionized). The upper limits on the O VI resonance line doublet intensity and the measurement of the C III intensity, garnered from this project, combined with measurements of the O VI column density, garnered from another project, are so far below the predictions, that they make a good case for eliminating the Breitschwerdt model from the field of possibilities. Thus, instead of being vastly underionized, the Local Bubble is near ionizational equilibrium. In addition, the upper limits challenge the other well-known model for the Local Bubble. In that model, the Local Bubble was blown by a series of supernova explosions and winds and contains a myriad of evaporating clouds. The intensity of the O VI resonance line doublet

  5. Deployer: A Robot-Deploying Robot

    DTIC Science & Technology

    2003-04-01

    6: Bandicoot 11 Figure 7: Deployer mast in a.) retracted, b.) extending, and c.) fully extended positions. 13 Figure 8: Wombat climbing stairs with...mast in a.) retracted, b.)extending, and c.) fully extended positions. 13 Deploy er Outfitting - Wombat The second Urban Robot, Wombat (Fig.8), was...equipped with a single, rear-mounted ISIS transceiver and a Swarm Radio to communicate with all of the Joeys. In addition, Wombat was equipped with

  6. Supersmart Robots: The Next Generation of Robots Has Evolutionary Capabilities

    ERIC Educational Resources Information Center

    Simkins, Michael

    2008-01-01

    Robots that can learn new behaviors. Robots that can reproduce themselves. Science fiction? Not anymore. Roboticists at Cornell's Computational Synthesis Lab have developed just such engineered creatures that offer interesting implications for education. The team, headed by Hod Lipson, was intrigued by the question, "How can you get robots to be…

  7. Socially intelligent robots: dimensions of human-robot interaction.

    PubMed

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  8. Supersmart Robots: The Next Generation of Robots Has Evolutionary Capabilities

    ERIC Educational Resources Information Center

    Simkins, Michael

    2008-01-01

    Robots that can learn new behaviors. Robots that can reproduce themselves. Science fiction? Not anymore. Roboticists at Cornell's Computational Synthesis Lab have developed just such engineered creatures that offer interesting implications for education. The team, headed by Hod Lipson, was intrigued by the question, "How can you get robots to be…

  9. Robots for Astrobiology!

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.

    2016-01-01

    The search for life and its study is known as astrobiology. Conducting that search on other planets in our Solar System is a major goal of NASA and other space agencies, and a driving passion of the community of scientists and engineers around the world. We practice for that search in many ways, from exploring and studying extreme environments on Earth, to developing robots to go to other planets and help us look for any possible life that may be there or may have been there in the past. The unique challenges of space exploration make collaborations between robots and humans essential. The products of those collaborations will be novel and driven by the features of wholly new environments. For space and planetary environments that are intolerable for humans or where humans present an unacceptable risk to possible biologically sensitive sites, autonomous robots or telepresence offer excellent choices. The search for life signs on Mars fits within this category, especially in advance of human landed missions there, but also as assistants and tools once humans reach the Red Planet. For planetary destinations where we do not envision humans ever going in person, like bitterly cold icy moons, or ocean worlds with thick ice roofs that essentially make them planetary-sized ice caves, we will rely on robots alone to visit those environments for us and enable us to explore and understand any life that we may find there. Current generation robots are not quite ready for some of the tasks that we need them to do, so there are many opportunities for roboticists of the future to advance novel types of mobility, autonomy, and bio-inspired robotic designs to help us accomplish our astrobiological goals. We see an exciting partnership between robotics and astrobiology continually strengthening as we jointly pursue the quest to find extraterrestrial life.

  10. Regulation of myosin-VI targeting to endocytic compartments.

    PubMed

    Dance, Amber L; Miller, Matthew; Seragaki, Shinobu; Aryal, Prafulla; White, Breanne; Aschenbrenner, Laura; Hasson, Tama

    2004-10-01

    Myosin-VI has been implicated in endocytic trafficking at both the clathrin-coated and uncoated vesicle stages. The identification of alternative splice forms led to the suggestion that splicing defines the vesicle type to which myosin-VI is recruited. In contrast to this hypothesis, we find that in all cell types examined, myosin-VI is associated with uncoated endocytic vesicles, regardless of splice form. GIPC, a PDZ-domain containing adapter protein, co-assembles with myosin-VI on these vesicles. Myosin-VI is only recruited to clathrin-coated vesicles in cells that express high levels of Dab2, a clathrin-binding adapter protein. Overexpression of Dab2 is sufficient to reroute myosin-VI to clathrin-coated pits in cells where myosin-VI is normally associated with uncoated vesicles. In normal rat kidney (NRK) cells, which express high endogenous levels of Dab2, splicing of the globular tail domain further modulates targeting of ectopically expressed myosin-VI. Although myosin-VI can be recruited to clathrin-coated pits, we find no requirement for myosin-VI motor activity in endocytosis in NRK cells. Instead, our data suggest that myosin-VI recruitment to clathrin-coated pits may be an early step in the recruitment of GIPC to the vesicle surface.

  11. Myosin VI is required for targeted membrane transport during cytokinesis.

    PubMed

    Arden, Susan D; Puri, Claudia; Au, Josephine Sui-Yan; Kendrick-Jones, John; Buss, Folma

    2007-12-01

    Myosin VI plays important roles in endocytic and exocytic membrane-trafficking pathways in cells. Because recent work has highlighted the importance of targeted membrane transport during cytokinesis, we investigated whether myosin VI plays a role in this process during cell division. In dividing cells, myosin VI undergoes dramatic changes in localization: in prophase, myosin VI is recruited to the spindle poles; and in cytokinesis, myosin VI is targeted to the walls of the ingressing cleavage furrow, with a dramatic concentration in the midbody region. Furthermore, myosin VI is present on vesicles moving into and out of the cytoplasmic bridge connecting the two daughter cells. Inhibition of myosin VI activity by small interfering RNA (siRNA)-mediated knockdown or by overexpression of dominant-negative myosin VI tail leads to a delay in metaphase progression and a defect in cytokinesis. GAIP-interacting protein COOH terminus (GIPC), a myosin VI binding partner, is associated with the function(s) of myosin VI in dividing cells. Loss of GIPC in siRNA knockdown cells results in a more than fourfold increase in the number of multinucleated cells. Our results suggest that myosin VI has novel functions in mitosis and that it plays an essential role in targeted membrane transport during cytokinesis.

  12. Myosin VI Is Required for Targeted Membrane Transport during Cytokinesis

    PubMed Central

    Arden, Susan D.; Puri, Claudia; Au, Josephine Sui-Yan; Kendrick-Jones, John

    2007-01-01

    Myosin VI plays important roles in endocytic and exocytic membrane-trafficking pathways in cells. Because recent work has highlighted the importance of targeted membrane transport during cytokinesis, we investigated whether myosin VI plays a role in this process during cell division. In dividing cells, myosin VI undergoes dramatic changes in localization: in prophase, myosin VI is recruited to the spindle poles; and in cytokinesis, myosin VI is targeted to the walls of the ingressing cleavage furrow, with a dramatic concentration in the midbody region. Furthermore, myosin VI is present on vesicles moving into and out of the cytoplasmic bridge connecting the two daughter cells. Inhibition of myosin VI activity by small interfering RNA (siRNA)-mediated knockdown or by overexpression of dominant-negative myosin VI tail leads to a delay in metaphase progression and a defect in cytokinesis. GAIP-interacting protein COOH terminus (GIPC), a myosin VI binding partner, is associated with the function(s) of myosin VI in dividing cells. Loss of GIPC in siRNA knockdown cells results in a more than fourfold increase in the number of multinucleated cells. Our results suggest that myosin VI has novel functions in mitosis and that it plays an essential role in targeted membrane transport during cytokinesis. PMID:17881731

  13. Pediatric robotic urologic surgery-2014.

    PubMed

    Kearns, James T; Gundeti, Mohan S

    2014-07-01

    We seek to provide a background of the current state of pediatric urologic surgery including a brief history, procedural outcomes, cost considerations, future directions, and the state of robotic surgery in India. Pediatric robotic urology has been shown to be safe and effective in cases ranging from pyeloplasty to bladder augmentation with continent urinary diversion. Complication rates are in line with other methods of performing the same procedures. The cost of robotic surgery continues to decrease, but setting up pediatric robotic urology programs can be costly in terms of both monetary investment and the training of robotic surgeons. The future directions of robot surgery include instrument and system refinements, augmented reality and haptics, and telesurgery. Given the large number of children in India, there is huge potential for growth of pediatric robotic urology in India. Pediatric robotic urologic surgery has been established as safe and effective, and it will be an important tool in the future of pediatric urologic surgery worldwide.

  14. Robots Aboard International Space Station

    NASA Image and Video Library

    Ames Research Center, MIT and Johnson Space Center have two new robotics projects aboard the International Space Station (ISS). Robonaut 2, a two-armed humanoid robot with astronaut-like dexterity,...

  15. Basic Operational Robotics Instructional System

    NASA Technical Reports Server (NTRS)

    Todd, Brian Keith; Fischer, James; Falgout, Jane; Schweers, John

    2013-01-01

    The Basic Operational Robotics Instructional System (BORIS) is a six-degree-of-freedom rotational robotic manipulator system simulation used for training of fundamental robotics concepts, with in-line shoulder, offset elbow, and offset wrist. BORIS is used to provide generic robotics training to aerospace professionals including flight crews, flight controllers, and robotics instructors. It uses forward kinematic and inverse kinematic algorithms to simulate joint and end-effector motion, combined with a multibody dynamics model, moving-object contact model, and X-Windows based graphical user interfaces, coordinated in the Trick Simulation modeling environment. The motivation for development of BORIS was the need for a generic system for basic robotics training. Before BORIS, introductory robotics training was done with either the SRMS (Shuttle Remote Manipulator System) or SSRMS (Space Station Remote Manipulator System) simulations. The unique construction of each of these systems required some specialized training that distracted students from the ideas and goals of the basic robotics instruction.

  16. Industrial Robots on the Line.

    ERIC Educational Resources Information Center

    Ayres, Robert; Miller, Steve

    1982-01-01

    Explores the history of robotics and its effects upon the manufacturing industry. Topics include robots' capabilities and limitations, the factory of the future, displacement of the workforce, and implications for management and labor. (SK)

  17. Pediatric robotic urologic surgery-2014

    PubMed Central

    Kearns, James T.; Gundeti, Mohan S.

    2014-01-01

    We seek to provide a background of the current state of pediatric urologic surgery including a brief history, procedural outcomes, cost considerations, future directions, and the state of robotic surgery in India. Pediatric robotic urology has been shown to be safe and effective in cases ranging from pyeloplasty to bladder augmentation with continent urinary diversion. Complication rates are in line with other methods of performing the same procedures. The cost of robotic surgery continues to decrease, but setting up pediatric robotic urology programs can be costly in terms of both monetary investment and the training of robotic surgeons. The future directions of robot surgery include instrument and system refinements, augmented reality and haptics, and telesurgery. Given the large number of children in India, there is huge potential for growth of pediatric robotic urology in India. Pediatric robotic urologic surgery has been established as safe and effective, and it will be an important tool in the future of pediatric urologic surgery worldwide. PMID:25197187

  18. Robot Avoids Collisions With Obstacles

    NASA Technical Reports Server (NTRS)

    Cheung, Edward; Rosinski, Doug; Wegerif, Dan

    1993-01-01

    Developmental robot equipped with infrared sensors and control system acting in concert to enable manipulator arm to move around obstacles. Robot avoids collisions with other objects, even when moving in unpredictable ways. Control system requires no prior knowledge of environment.

  19. Artificial intelligence: Robots with instincts

    NASA Astrophysics Data System (ADS)

    Adami, Christoph

    2015-05-01

    An evolutionary algorithm has been developed that allows robots to adapt to unforeseen change. The robots learn behaviours quickly and instinctively by mining the memory of their past achievements. See Letter p.503

  20. ISS Update: Robotic Refueling Mission

    NASA Image and Video Library

    NASA Public Affairs Officer Dan Huot interviews Alex Janas, robotics operator from the Goddard Space Flight Center, about the Robotic Refueling Mission that has been taking place on the space stati...

  1. Industrial Robots on the Line.

    ERIC Educational Resources Information Center

    Ayres, Robert; Miller, Steve

    1982-01-01

    Explores the history of robotics and its effects upon the manufacturing industry. Topics include robots' capabilities and limitations, the factory of the future, displacement of the workforce, and implications for management and labor. (SK)

  2. Global Transcriptional Profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) Reduction†

    PubMed Central

    Bencheikh-Latmani, Rizlan; Williams, Sarah Middleton; Haucke, Lisa; Criddle, Craig S.; Wu, Liyou; Zhou, Jizhong; Tebo, Bradley M.

    2005-01-01

    Whole-genome DNA microarrays were used to examine the gene expression profile of Shewanella oneidensis MR-1 during U(VI) and Cr(VI) reduction. The same control, cells pregrown with nitrate and incubated with no electron acceptor, was used for the two time points considered and for both metals. U(VI)-reducing conditions resulted in the upregulation (≥3-fold) of 121 genes, while 83 genes were upregulated under Cr(VI)-reducing conditions. A large fraction of the genes upregulated [34% for U(VI) and 29% for Cr(VI)] encode hypothetical proteins of unknown function. Genes encoding proteins known to reduce alternative electron acceptors [fumarate, dimethyl sulfoxide, Mn(IV), or soluble Fe(III)] were upregulated under both U(VI)- and Cr(VI)-reducing conditions. The involvement of these upregulated genes in the reduction of U(VI) and Cr(VI) was tested using mutants lacking one or several of the gene products. Mutant testing confirmed the involvement of several genes in the reduction of both metals: mtrA, mtrB, mtrC, and menC, all of which are involved in Fe(III) citrate reduction by MR-1. Genes encoding efflux pumps were upregulated under Cr(VI)- but not under U(VI)-reducing conditions. Genes encoding proteins associated with general (e.g., groL and dnaJ) and membrane (e.g., pspBC) stress were also upregulated, particularly under U(VI)-reducing conditions, pointing to membrane damage by the solid-phase reduced U(IV) and Cr(III) and/or the direct effect of the oxidized forms of the metals. This study sheds light on the multifaceted response of MR-1 to U(VI) and Cr(VI) under anaerobic conditions and suggests that the same electron transport pathway can be used for more than one electron acceptor. PMID:16269787

  3. Remote Education Based on Robot Edutainment

    NASA Astrophysics Data System (ADS)

    Yorita, Akihiro; Hashimoto, Takuya; Kobayashi, Hiroshi; Kubota, Naoyuki

    This paper discusses the role of robots in remote education. There are three different aims of robot edutainment, i.e., Learning on Robots, Learning through Robots, and Learning with Robots. The last is to apply human-friendly robots instead of personal computers for computer-assisted instruction. Especially, natural communication capability is required to educational robots in the learning with robots. In this paper, we apply human-friendly robots to remote education and discuss the requirements and specifications of robots for the remote education.

  4. Proceedings of Minnowbrook Workshops I to VI

    NASA Technical Reports Server (NTRS)

    2012-01-01

    This DVD collection includes the complete proceedings of Minnowbrook Workshops I through VI. Titles include Minnowbrook I - 1993 Workshop on End-Stage Boundary Layer Transition (NASA/CP-2007-214667, CASI ID 20070038942), Minnowbrook II - 1997 Workshop on Boundary Layer Transition in Turbomachines (NASA/CP-1998-206958, CASI ID 19980206205), Minnowbrook III - 2000 Workshop on Boundary Layer Transition and Unsteady Aspects of Turbomachinery Flow (NASA/CP-2001-210888, CASI ID 20020067662), Minnowbrook IV - 2003 Workshop on Transition and Unsteady Aspects of Turbomachinery Flows (NASA TM-2004-212913, CASI ID 20040121174), Minnowbrook V - 2006 Workshop on Unsteady Flows in Turbomachinery (NASA/CP-2006-214484, CASI ID 20070024781), and Minnowbrook VI - 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics (NACA/CP-2010-216112, CASI ID 20100018557).

  5. Benign recurrent VI nerve palsy in childhood.

    PubMed

    Bixenman, W W; von Noorden, G K

    1981-01-01

    The case of a child with six documented episodes of benign recurrent unilateral VI nerve palsy between the ages of 2 1/2 months and 3 years is presented. Despite the recognized self-limiting course of this disorder, its possible evolution into a comitant esotropia makes close follow-up mandatory. The practical aspects of management including maintenance occlusion therapy are stressed as well as the need for prompt surgical intervention once the acquired stabismus has become stabilized. The etiology of benign VI nerve palsy of childhood may have the same immunological basis as other cases of para-infectious neuropathy. This isolated postinfective cranial mononeuropathy easily blends into the continuum of neurological involvement seen with the Landry-Guillian-Barre syndrome. With recovery from the initial episode, the abducens nerve may have become predisposed to recurrent inflammatory episodes and recurrent loss of function. Most often these recurrences are triggered by febrile illnesses of childhood.

  6. HalleyVI - a station for science

    NASA Astrophysics Data System (ADS)

    Rose, Mike; Tuplin, Karl

    2013-04-01

    There has been a research station at Halley in Antarctica (75°35'S, 26°34'W) since 1956. Halley has a long and successful scientific record, notably the discovery of the Ozone Hole and significant contributions to areas as diverse as Geology and Space physics. Halley is located on a floating and flowing iceshelf with constant surface accumulation. These conditions have resulted in the necessary regular rebuilding of the station and HalleyVI has just been completed. Halley VI has been fully scientifically operational since Feb 2012. The station supports a chemical and turbulence clean area, an electromagnetic quiet zone, an area for radars, and flexible facilities on the station to support a wide variety of science activities. This presentation outlines the major features of the new station, its current scientific activities, and the facilities that allow the hosting of a wide variety of scientific experiments.

  7. Final Technical Report -- GEO-VI - USGEO

    SciTech Connect

    Hirsch, Leonard

    2009-11-30

    Representatives of US earth observations departments and agencies, other participating governments, NGOs and civil society participated in the Sixth Plenary Meeting of the Group on Earth Observations (GEO-VI), hosted by the United States in Washington, DC on November 17 and 18, 2009. The meeting was held in the Atrium Ballroom of the Ronald Reagan International Trade Center. Exhibitions of international Earth observation technology and programs were held concurrently in the same venue. A number of GEO committee meetings and side events were held in conjunction with the GEO-VI Plenary, including the GEO-IGOS Symposium on Earth observation science and applications, the GEOSS in the Americas Forum on Coastal Zones, and separate meetings of the GEO Communities of Practice on Carbon, Health, and Air Quality.

  8. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    "Harry" a Goldendoodle is seen wearing a NASA backpack during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  9. The Impacts of Industrial Robots

    DTIC Science & Technology

    1981-11-01

    being installed in many medium batch size manufacturing plants, servicing two or three computer numerically controlled ( CNC ) machines . There will be a... Machine Tool Utilization in the Metalworking 22 Industries,19?7 Table 7: Motivations for Using Robots 26 Table 8: Prime Operative Tasks for Level I...ROBOTICS 1 What Are Industrial Robots? Industrial robots are machine tools. They are not human-like androids which can stroll around and converse

  10. Investigating the Implementation of Robotics.

    DTIC Science & Technology

    1984-02-01

    igating the Implementation of Robotics j Linda Argote and Paul S. Goodman I CML-RI-TRS84-9I Investigating the Implementation of Robotics #Linda...Argote and Paul S. Goodman CMU-RI-TR-84-9 The Robotics Institute Carnegie-Mellon University Pittsburgh, Pennsylvania 15213 Fecbruary 1984 JUN~jg 4...Copyright ®1984 Carnegie-Mellon UniversityA UA Support for this research was provided by the Graduate School of Industrial Administration, thc Robotics

  11. US Army TARDEC: Robotics Overview

    DTIC Science & Technology

    2010-03-25

    unclassified US ARMY TARDEC Robotics Overview Bernard Theisen, Joint Center for Robotics 25 March 2010 Reference herein to any specific commercial...4. TITLE AND SUBTITLE US ARMY TARDEC Robotics Overview 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Bernard... Robotics Industry Partnerships Academia PartnershipsGovernment Partnerships TRADOC Community Outreach • S&T Support to the RS-JPO • Develops and Fosters

  12. Heterogeneous Multi-Robot Cooperation

    DTIC Science & Technology

    1994-02-01

    Approaches to Multi-Robot Cooperative Control ................ 196 8.2.1 " Swarm " Cooperation ....... ...................... 196 8.2.2 "Intentional...involves the study of emergent cooperation in colonies, or swarms , of robots - an approach comparable to differentiating animal societies. This...using intention- ally cooperating robots to guide the activities of smaller groups of swarm robots in a coordinated way. The research presented in this

  13. Teen Sized Humanoid Robot: Archie

    NASA Astrophysics Data System (ADS)

    Baltes, Jacky; Byagowi, Ahmad; Anderson, John; Kopacek, Peter

    This paper describes our first teen sized humanoid robot Archie. This robot has been developed in conjunction with Prof. Kopacek’s lab from the Technical University of Vienna. Archie uses brushless motors and harmonic gears with a novel approach to position encoding. Based on our previous experience with small humanoid robots, we developed software to create, store, and play back motions as well as control methods which automatically balance the robot using feedback from an internal measurement unit (IMU).

  14. Recent Trends in Robotics Research

    NASA Astrophysics Data System (ADS)

    Ejiri, Masakazu

    My views on recent trends in the strategy and practice of Japan's robotics research are briefly introduced. To meet ever-increasing public expectations, robotics researchers and engineers have to be more seriously concerned about robots' intrinsic weaknesses. Examples of these are power-related and reliability issues. Resolving these issues will increase the feasibility of creating successful new industry, and the likelihood of robotics becoming a key technology for providing a safe and stress-free society in the future.

  15. Cooperative Autonomous Robots for Reconnaissance

    DTIC Science & Technology

    2009-03-06

    REPORT Cooperative Autonomous Robots for Reconnaissance 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Collaborating mobile robots equipped with WiFi ...Cooperative Autonomous Robots for Reconnaissance Report Title ABSTRACT Collaborating mobile robots equipped with WiFi transceivers are configured as a mobile...equipped with WiFi transceivers are configured as a mobile ad-hoc network. Algorithms are developed to take advantage of the distributed processing

  16. Aerial Explorers and Robotic Ecosystems

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg

    2004-01-01

    A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.

  17. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Posters for the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event are seen posted around the campus on Saturday, June 16, 2012 at WPI in Worcester, Mass. The TouchTomorrow event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  18. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Panoramic of some of the exhibits available on the campus of the Worcester Polytechnic Institute (WPI) during their "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Anthony Shrout)

  19. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    Team members of "Survey" drive their robot around the campus on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Survey team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  20. Diagnostic and treatment strategies in mucopolysaccharidosis VI

    PubMed Central

    Vairo, Filippo; Federhen, Andressa; Baldo, Guilherme; Riegel, Mariluce; Burin, Maira; Leistner-Segal, Sandra; Giugliani, Roberto

    2015-01-01

    Mucopolysaccharidosis VI (MPS VI) is a very rare autosomal recessive disorder caused by mutations in the ARSB gene, which lead to deficient activity of the lysosomal enzyme ASB. This enzyme is important for the breakdown of the glycosaminoglycans (GAGs) dermatan sulfate and chondroitin sulfate, which accumulate in body tissues and organs of MPS VI patients. The storage of GAGs (especially dermatan sulfate) causes bone dysplasia, joint restriction, organomegaly, heart disease, and corneal clouding, among several other problems, and reduced life span. Despite the fact that most cases are severe, there is a spectrum of severity and some cases are so attenuated that diagnosis is made late in life. Although the analysis of urinary GAGs and/or the measurement of enzyme activity in dried blood spots are useful screening methods, the diagnosis is based in the demonstration of the enzyme deficiency in leucocytes or fibroblasts, and/or in the identification of pathogenic mutations in the ARSB gene. Specific treatment with enzyme replacement has been available since 2005. It is safe and effective, bringing measurable benefits and increased survival to patients. As several evidences indicate that early initiation of therapy may lead to a better outcome, newborn screening is being considered for this condition, and it is already in place in selected areas where the incidence of MPS VI is increased. However, as enzyme replacement therapy is not curative, associated therapies should be considered, and research on innovative therapies continues. The management of affected patients by a multidisciplinary team with experience in MPS diseases is highly recommended. PMID:26586959

  1. The status of ENDF/B-VI

    SciTech Connect

    Roussin, R.; Dunford, C.; McKnight, R.; Young, P.

    1988-01-01

    A new version of the United States evaluated nuclear data file, ENDF/B-VI, is presently under development. Major emphasis is being placed on correcting some long-standing nuclear data problems that adversely affect applied calculations for both fission and fusion reactors. The paper reviews modifications to the formats and utility codes, outlines the evaluation activities, discusses the data testing programs, and projects a date for the unrestricted release of the new library. 27 refs., 2 tabs.

  2. Biologically inspired intelligent robots

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  3. Robotic microsurgery: corneal transplantation.

    PubMed

    Bourges, J-L; Hubschman, J-P; Burt, B; Culjat, M; Schwartz, S D

    2009-12-01

    Robotic ocular microsurgery including corneal suturing has been proven to be feasible in porcine eyes. To determine whether or not bimanual teleoperated robotic penetrating keratoplasty (PK) can be performed in porcine and human eyes. Three arms of the da Vinci surgical robot were loaded with a dual-channel video and two, 360 degrees -rotating, 8 mm, wrested-end effector instruments and placed over porcine eyes or over a human cadaver head. The surgeon remotely performed mechanical trephination, cardinal sutures, continuous 10.0 nylon sutures and suture adjustments on both eyes. The procedures were documented with still and video photography. Using the da Vinci robot, penetrating keratoplasty procedures were successfully performed on both porcine eyes and human eyes in natural anatomical conditions. The precise placement of continuous sutures was facilitated by the wrested-end forceps. Orbital rims and nose did not limit surgical motions. Teleoperated robotic penetrating keratoplasty is technically feasible in humans. Further studies are pending to implement the procedure with femtosecond laser and other automated steps.

  4. Engineering robust intelligent robots

    NASA Astrophysics Data System (ADS)

    Hall, E. L.; Ali, S. M. Alhaj; Ghaffari, M.; Liao, X.; Cao, M.

    2010-01-01

    The purpose of this paper is to discuss the challenge of engineering robust intelligent robots. Robust intelligent robots may be considered as ones that not only work in one environment but rather in all types of situations and conditions. Our past work has described sensors for intelligent robots that permit adaptation to changes in the environment. We have also described the combination of these sensors with a "creative controller" that permits adaptive critic, neural network learning, and a dynamic database that permits task selection and criteria adjustment. However, the emphasis of this paper is on engineering solutions which are designed for robust operations and worst case situations such as day night cameras or rain and snow solutions. This ideal model may be compared to various approaches that have been implemented on "production vehicles and equipment" using Ethernet, CAN Bus and JAUS architectures and to modern, embedded, mobile computing architectures. Many prototype intelligent robots have been developed and demonstrated in terms of scientific feasibility but few have reached the stage of a robust engineering solution. Continual innovation and improvement are still required. The significance of this comparison is that it provides some insights that may be useful in designing future robots for various manufacturing, medical, and defense applications where robust and reliable performance is essential.

  5. Robotic microsurgery optimization.

    PubMed

    Brahmbhatt, Jamin V; Gudeloglu, Ahmet; Liverneaux, Philippe; Parekattil, Sijo J

    2014-05-01

    The increased application of the da Vinci robotic platform (Intuitive Surgical Inc.) for microsurgery has led to the development of new adjunctive surgical instrumentation. In microsurgery, the robotic platform can provide high definition 12×-15× digital magnification, broader range of motion, fine instrument handling with decreased tremor, reduced surgeon fatigue, and improved surgical productivity. This paper presents novel adjunctive tools that provide enhanced optical magnification, micro-Doppler sensing of vessels down to a 1-mm size, vein mapping capabilities, hydro-dissection, micro-ablation technology (with minimal thermal spread-CO2 laser technology), and confocal microscopy to provide imaging at a cellular level. Microsurgical outcomes from the use of these tools in the management of patients with infertility and chronic groin and testicular pain are reviewed. All these instruments have been adapted for the robotic console and enhance the robot-assisted microsurgery experience. As the popularity of robot-assisted microsurgery grows, so will its breadth of instrumentation.

  6. Quantum robots plus environments.

    SciTech Connect

    Benioff, P.

    1998-07-23

    A quantum robot is a mobile quantum system, including an on board quantum computer and needed ancillary systems, that interacts with an environment of quantum systems. Quantum robots carry out tasks whose goals include making specified changes in the state of the environment or carrying out measurements on the environment. The environments considered so far, oracles, data bases, and quantum registers, are seen to be special cases of environments considered here. It is also seen that a quantum robot should include a quantum computer and cannot be simply a multistate head. A model of quantum robots and their interactions is discussed in which each task, as a sequence of alternating computation and action phases,is described by a unitary single time step operator T {approx} T{sub a} + T{sub c} (discrete space and time are assumed). The overall system dynamics is described as a sum over paths of completed computation (T{sub c}) and action (T{sub a}) phases. A simple example of a task, measuring the distance between the quantum robot and a particle on a 1D lattice with quantum phase path dispersion present, is analyzed. A decision diagram for the task is presented and analyzed.

  7. Robotics, Ethics, and Nanotechnology

    NASA Astrophysics Data System (ADS)

    Ganascia, Jean-Gabriel

    It may seem out of character to find a chapter on robotics in a book about nanotechnology, and even more so a chapter on the application of ethics to robots. Indeed, as we shall see, the questions look quite different in these two fields, i.e., in robotics and nanoscience. In short, in the case of robots, we are dealing with artificial beings endowed with higher cognitive faculties, such as language, reasoning, action, and perception, whereas in the case of nano-objects, we are talking about invisible macromolecules which act, move, and duplicate unseen to us. In one case, we find ourselves confronted by a possibly evil double of ourselves, and in the other, a creeping and intangible nebula assails us from all sides. In one case, we are faced with an alter ego which, although unknown, is clearly perceptible, while in the other, an unspeakable ooze, the notorious grey goo, whose properties are both mysterious and sinister, enters and immerses us. This leads to a shift in the ethical problem situation: the notion of responsibility can no longer be worded in the same terms because, despite its otherness, the robot can always be located somewhere, while in the case of nanotechnologies, myriad nanometric objects permeate everywhere, disseminating uncontrollably.

  8. Robotic Microsurgery Optimization

    PubMed Central

    Brahmbhatt, Jamin V; Gudeloglu, Ahmet; Liverneaux, Philippe

    2014-01-01

    The increased application of the da Vinci robotic platform (Intuitive Surgical Inc.) for microsurgery has led to the development of new adjunctive surgical instrumentation. In microsurgery, the robotic platform can provide high definition 12×-15× digital magnification, broader range of motion, fine instrument handling with decreased tremor, reduced surgeon fatigue, and improved surgical productivity. This paper presents novel adjunctive tools that provide enhanced optical magnification, micro-Doppler sensing of vessels down to a 1-mm size, vein mapping capabilities, hydro-dissection, micro-ablation technology (with minimal thermal spread-CO2 laser technology), and confocal microscopy to provide imaging at a cellular level. Microsurgical outcomes from the use of these tools in the management of patients with infertility and chronic groin and testicular pain are reviewed. All these instruments have been adapted for the robotic console and enhance the robot-assisted microsurgery experience. As the popularity of robot-assisted microsurgery grows, so will its breadth of instrumentation. PMID:24883272

  9. Surgery with cooperative robots.

    PubMed

    Lehman, Amy C; Berg, Kyle A; Dumpert, Jason; Wood, Nathan A; Visty, Abigail Q; Rentschler, Mark E; Platt, Stephen R; Farritor, Shane M; Oleynikov, Dmitry

    2008-03-01

    Advances in endoscopic techniques for abdominal procedures continue to reduce the invasiveness of surgery. Gaining access to the peritoneal cavity through small incisions prompted the first significant shift in general surgery. The complete elimination of external incisions through natural orifice access is potentially the next step in reducing patient trauma. While minimally invasive techniques offer significant patient advantages, the procedures are surgically challenging. Robotic surgical systems are being developed that address the visualization and manipulation limitations, but many of these systems remain constrained by the entry incisions. Alternatively, miniature in vivo robots are being developed that are completely inserted into the peritoneal cavity for laparoscopic and natural orifice procedures. These robots can provide vision and task assistance without the constraints of the entry incision, and can reduce the number of incisions required for laparoscopic procedures. In this study, a series of minimally invasive animal-model surgeries were performed using multiple miniature in vivo robots in cooperation with existing laparoscopy and endoscopy tools as well as the da Vinci Surgical System. These procedures demonstrate that miniature in vivo robots can address the visualization constraints of minimally invasive surgery by providing video feedback and task assistance from arbitrary orientations within the peritoneal cavity.

  10. The problem with multiple robots

    NASA Technical Reports Server (NTRS)

    Huber, Marcus J.; Kenny, Patrick G.

    1994-01-01

    The issues that can arise in research associated with multiple, robotic agents are discussed. Two particular multi-robot projects are presented as examples. This paper was written in the hope that it might ease the transition from single to multiple robot research.

  11. Humans and Robots. Educational Brief.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This brief discusses human movement and robotic human movement simulators. The activity for students in grades 5-12 provides a history of robotic movement and includes making an End Effector for the robotic arms used on the Space Shuttle and the International Space Station (ISS). (MVL)

  12. KC-135 materials handling robotics

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.

  13. Adaptive Language Games with Robots

    NASA Astrophysics Data System (ADS)

    Steels, Luc

    2010-11-01

    This paper surveys recent research into language evolution using computer simulations and robotic experiments. This field has made tremendous progress in the past decade going from simple simulations of lexicon formation with animallike cybernetic robots to sophisticated grammatical experiments with humanoid robots.

  14. Future perspectives in robotic surgery.

    PubMed

    Wedmid, Alexei; Llukani, Elton; Lee, David I

    2011-09-01

    Robotics of the current day have advanced significantly from early computer-aided design/manufacturing systems to modern master-slave robotic systems that replicate the surgeon's exact movements onto robotic instruments in the patient. • Globally >300,000 robotic procedures were completed in 2010, including ≈98,000 robot-assisted radical prostatectomies. • Broadening applications of robotics for urological procedures are being investigated in both adult and paediatric urology. • The use of the current robotic system continues to be further refined. Increasing experience has optimized port placement reducing arm collisions to allow for more expedient surgery. Improved three-dimensional camera magnification provides improved intraoperative identification of structures. • Robotics has probably improved the learning curve of laparoscopic surgery while still maintaining its patient recovery advantages and outcomes. • The future of robotic surgery will take this current platform forward by improving haptic (touch) feedback, improving vision beyond even the magnified eye, improving robot accessibility with a reduction of entry ports and miniaturizing the slave robot. • Here, we focus on the possible advancements that may change the future landscape of robotic surgery.

  15. Robot Technology: Implications for Education.

    ERIC Educational Resources Information Center

    Post, Paul E.; And Others

    1988-01-01

    Provides an introduction to robotic technology, and describes current robot models. Three ways of using robots in education are discussed--as exemplars of other processes, as objects of instruction, and as prosthetic aids--and selection criteria are outlined. (17 references) (CLB)

  16. Robotic Design for the Classroom

    NASA Technical Reports Server (NTRS)

    Culbert, Chris; Burns, Kaylynn

    2001-01-01

    This slide presentation reviews the use of robotic design to interest students in science and engineering. It describes one program, BEST, and resources that area available to design and create a robot. BEST is a competition for sixth and seventh graders that is designed to engage gifted and talented students. A couple of scenarios involving the use of a robot are outlined.

  17. Automatic Control of Robot Motion.

    DTIC Science & Technology

    1987-12-01

    8217It. I II. FUDMWALRBTC A. INTRODUCTION d The word robotics was invented by the Isaac Asimov , one of the best of the science fiction writers, to describe...8217, Asimov propounded the famous Three Laws of Robotics. 1. A robot must not harm a human being or, through inaction, allow human being to come to harm

  18. Higher Order Languages for Robots,

    DTIC Science & Technology

    1986-10-01

    Bertil Thorvaldsson ASEA Robotics Inc. Dr. Margaret A. Eastwood CIMCORP Dr. Robert L. Haar General Motors Mitchell Ward GM Fanuc Robotics ,% % 1V ’e V...lanager, Product Development 16250 West Glendale Dr. New Berlin, WI 53151 Mr. Mitchell Ward GM Fanuc Robotics Director of Software 5600 New King St

  19. Robot Technology: Implications for Education.

    ERIC Educational Resources Information Center

    Post, Paul E.; And Others

    1988-01-01

    Provides an introduction to robotic technology, and describes current robot models. Three ways of using robots in education are discussed--as exemplars of other processes, as objects of instruction, and as prosthetic aids--and selection criteria are outlined. (17 references) (CLB)

  20. Robotics and Intelligent Systems Program

    SciTech Connect

    Not Available

    1987-06-01

    This report gives brief descriptions of the projects associated with the Robotics and Intelligent Systems Program (RISP). Projects included in the report are (1) Remote Operations Demonstration Facility; (2) M-2 Servomanipulator; (3) The Advanced Servomanipulator; (4) Hostile Environment Robotic Machine Intelligence Experiment Series robots); and (5) Telerobotic Concepts. These devices have application in nuclear industry and space environments. (JDH)

  1. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA-WPI Sample Return Robot Centennial Challenge teams, NASA management, and challenge organizers pose for a group photograph on Saturday, June 16, 2012 at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  2. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Chief Technologist Mason Peck talks at the kick off of the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  3. Identifying the need for a multidisciplinary approach for early recognition of mucopolysaccharidosis VI (MPS VI).

    PubMed

    Choy, Yew Sing; Bhattacharya, Kaustuv; Balasubramaniam, Shanti; Fietz, Michael; Fu, Antony; Inwood, Anita; Jin, Dong-Kyu; Kim, Ok-Hwa; Kosuga, Motomichi; Kwun, Young Hee; Lin, Hsiang-Yu; Lin, Shuan-Pei; Mendelsohn, Nancy J; Okuyama, Torayuki; Samion, Hasri; Tan, Adeline; Tanaka, Akemi; Thamkunanon, Verasak; Thong, Meow-Keong; Toh, Teck-Hock; Yang, Albert D; McGill, Jim

    2015-05-01

    Mucopolysaccharidosis VI (MPS VI, Maroteaux-Lamy syndrome) is caused by deficient activity of the enzyme, N-acetylgalactosamine-4-sulfatase, resulting in impaired degradation of the glycosaminoglycan dermatan sulfate. Patients experience a range of manifestations including joint contractures, short stature, dysostosis multiplex, coarse facial features, decreased pulmonary function, cardiac abnormalities, corneal clouding and shortened life span. Recently, clinicians from institutions in the Asia-Pacific region met to discuss the occurrence and implications of delayed diagnosis and misdiagnosis of MPS VI in the patients they have managed. Eighteen patients (44% female) were diagnosed. The most common sign presented by the patients was bone deformities in 11 patients (65%). Delays to diagnosis occurred due to the lack of or distance to diagnostic facilities for four patients (31%), alternative diagnoses for two patients (15%), and misleading symptoms experienced by two patients (15%). Several patients experienced manifestations that were subtler than would be expected and were subsequently overlooked. Several cases highlighted the unique challenges associated with diagnosing MPS VI from the perspective of different specialties and provide insights into how these patients initially present, which may help to elucidate strategies to improve the diagnosis of MPS VI. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. FIRST robots compete

    NASA Technical Reports Server (NTRS)

    2000-01-01

    FIRST teams and their robots work to go through the right motions at the FIRST competition. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.

  5. Advanced mechanisms for robotics

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1992-01-01

    An overview of applied research and development at NASA-Goddard (GSFC) on mechanisms and the collision avoidance skin for robots is presented. First the work on robot end effectors is outlined, followed by a brief discussion on robot-friendly payload latching mechanisms and compliant joints. This, in turn, is followed by the collision avoidance/management skin and the GSFC research on magnetostrictive direct drive motors. Finally, a new project, the artificial muscle, is introduced. Each of the devices is described in sufficient detail to permit a basic understanding of its purpose, fundamental principles of operation, and capabilities. In addition, the development status of each is reported along with descriptions of breadboards and prototypes and their test results. In each case, the implications of the research for commercialization is discussed. The chronology of the presentation will give a clear idea of both the evolution of the R&D in recent years and its likely direction in the future.

  6. The universal robot

    NASA Technical Reports Server (NTRS)

    Moravec, Hans

    1993-01-01

    Our artifacts are getting smarter, and a loose parallel with the evolution of animal intelligence suggests one future course for them. Computerless industrial machinery exhibits the behavioral flexibility of single-celled organisms. Today's best computer-controlled robots are like the simpler invertebrates. A thousand-fold increase in computer power in the next decade should make possible machines with reptile-like sensory and motor competence. Properly configured, such robots could do in the physical world what personal computers now do in the world of data - act on our behalf as literal-minded slaves. Growing computer power over the next half-century will allow this reptile stage to be surpassed, in stages producing robots that learn like mammals, model their world like primates, and eventually reason like humans. Depending on your point of view, humanity will then have produced a worthy successor, or transcended some of its inherited limitations and so transformed itself into something quite new.

  7. The universal robot

    NASA Astrophysics Data System (ADS)

    Moravec, Hans

    1993-12-01

    Our artifacts are getting smarter, and a loose parallel with the evolution of animal intelligence suggests one future course for them. Computerless industrial machinery exhibits the behavioral flexibility of single-celled organisms. Today's best computer-controlled robots are like the simpler invertebrates. A thousand-fold increase in computer power in the next decade should make possible machines with reptile-like sensory and motor competence. Properly configured, such robots could do in the physical world what personal computers now do in the world of data - act on our behalf as literal-minded slaves. Growing computer power over the next half-century will allow this reptile stage to be surpassed, in stages producing robots that learn like mammals, model their world like primates, and eventually reason like humans. Depending on your point of view, humanity will then have produced a worthy successor, or transcended some of its inherited limitations and so transformed itself into something quite new.

  8. Human-Robot Interaction

    NASA Technical Reports Server (NTRS)

    Rochlis-Zumbado, Jennifer; Sandor, Aniko; Ezer, Neta

    2012-01-01

    Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is a new Human Research Program (HRP) risk. HRI is a research area that seeks to understand the complex relationship among variables that affect the way humans and robots work together to accomplish goals. The DRP addresses three major HRI study areas that will provide appropriate information for navigation guidance to a teleoperator of a robot system, and contribute to the closure of currently identified HRP gaps: (1) Overlays -- Use of overlays for teleoperation to augment the information available on the video feed (2) Camera views -- Type and arrangement of camera views for better task performance and awareness of surroundings (3) Command modalities -- Development of gesture and voice command vocabularies

  9. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Energy levels are high in the RoboPit as teams prepare for NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. arel using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  10. Transoral Robotic Surgery.

    PubMed

    Yee, Shokjean

    2017-01-01

    Transoral robotic surgery (TORS) is a technique used to treat oral, throat, and skull base cancers using a minimally invasive robotic approach through the mouth and throat. The TORS procedure allows deeper access and dissection of suspicious lesions and neoplastic growths in the oral cavity and those that extend from the throat to the base of the skull. Robotic surgery allows the surgeon to operate in tight spaces without a large open incision. This article discusses symptoms and risk factors of oral, throat, and skull base cancers; types of procedures that can be performed using the TORS approach; specialized instrumentation; patient selection; surgical advantages and disadvantages; patient benefits; and the role of the surgical team in preparing to intraoperatively care for the TORS patient.

  11. FIRST robots compete

    NASA Technical Reports Server (NTRS)

    2000-01-01

    FIRST teams and their robots work to go through the right motions at the FIRST competition. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.

  12. The Robotic FLOYDS Spectrographs

    NASA Astrophysics Data System (ADS)

    Sand, D.

    I will discuss the twin FLOYDS robotic spectrographs, operating at the 2m Faulkes Telescopes North and South. The FLOYDS instruments were designed with supernova classification and monitoring in mind, with a very large wavelength coverage (˜320 to 1000 nm) and a resolution (R ˜ 300 - 500, wavelength dependent) well-matched to the broad features of these and other transient and time domain events. Robotic acquisition of spectroscopic targets is the key ingredient for making robotic spectroscopy possible, and FLOYDS uses a slit-viewing camera with a ˜ 4‧ × 6‧ field to either do direct world coordinate system fitting or standard blind offsets to automatically place science targets into the slit. Future work includes an 'all-electronic' target of opportunity mode, which will allow for fast transient spectroscopy with no human necessary, even for inputting information into a phase 2 GUI. Initial science highlights from FLOYDS will also be presented.

  13. ISS Robotic Student Programming

    NASA Technical Reports Server (NTRS)

    Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.

    2016-01-01

    The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.

  14. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    NASA Kennedy Space Center Director Bob Cabana welcomes participants to the agency's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  15. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Derrick Matthews, left, with Kennedy Space Center's Communication and Public Engagement Directorate, and Kurt Leucht, event emcee, provide commentary at the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  16. Robotic surgery: colon and rectum.

    PubMed

    Baek, Seong Kyu; Carmichael, Joseph C; Pigazzi, Alessio

    2013-01-01

    Although robotic technology aims to obviate some of the limitations of conventional laparoscopic surgery, the role of robotics in colorectal surgery is still largely undefined and different with respect to its application in abdominal versus pelvic surgery. This review aims to elucidate current developments in colorectal robotic surgery.In colon surgery, robotic techniques are associated with longer operative times and higher costs compared with laparoscopic surgery. However, robotics provides a stable camera platform and articulated instruments that are not subject to human tremors. Because of these advantages, robotic systems can play a role in complex procedures such as the dissection of lymph nodes around major vessels. In addition robot-assisted hand-sewn intracorporeal anastomoses can be easily performed by the surgeon, without a substantial need for a competent assistant. At present, although the short-term outcomes and oncological adequacy of robotic colon resection have been observed to be acceptable, the long-term outcomes of robotic colon resection remain unknown.In rectal surgery, robotic-assisted surgery for rectal cancer can be carried out safely and in accordance with current oncological principles. However, to date, the impact of robotic rectal surgery on the long-term oncological outcomes of minimally invasive total mesorectal excision remains undetermined. Robotic total mesorectal excision may allow for better preservation of urinary and sexual functions, and robotic surgery may attenuate the learning curve for laparoscopic rectal resection. However, a major drawback to robotic rectal surgery is the high cost involved.Large-scale prospective randomized clinical trials such as the international randomized trial ROLARR are required to establish the benefits of robotic rectal surgery.

  17. Put Your Robot In, Put Your Robot Out: Sequencing through Programming Robots in Early Childhood

    ERIC Educational Resources Information Center

    Kazakoff, Elizabeth R.; Bers, Marina Umaschi

    2014-01-01

    This article examines the impact of programming robots on sequencing ability in early childhood. Thirty-four children (ages 4.5-6.5 years) participated in computer programming activities with a developmentally appropriate tool, CHERP, specifically designed to program a robot's behaviors. The children learned to build and program robots over three…

  18. Put Your Robot In, Put Your Robot Out: Sequencing through Programming Robots in Early Childhood

    ERIC Educational Resources Information Center

    Kazakoff, Elizabeth R.; Bers, Marina Umaschi

    2014-01-01

    This article examines the impact of programming robots on sequencing ability in early childhood. Thirty-four children (ages 4.5-6.5 years) participated in computer programming activities with a developmentally appropriate tool, CHERP, specifically designed to program a robot's behaviors. The children learned to build and program robots over three…

  19. ROBOTIC SURGERY: BIOETHICAL ASPECTS.

    PubMed

    Siqueira-Batista, Rodrigo; Souza, Camila Ribeiro; Maia, Polyana Mendes; Siqueira, Sávio Lana

    2016-01-01

    The use of robots in surgery has been increasingly common today, allowing the emergence of numerous bioethical issues in this area. To present review of the ethical aspects of robot use in surgery. Search in Pubmed, SciELO and Lilacs crossing the headings "bioethics", "surgery", "ethics", "laparoscopy" and "robotic". Of the citations obtained, were selected 17 articles, which were used for the preparation of the article. It contains brief presentation on robotics, its inclusion in health and bioethical aspects, and the use of robots in surgery. Robotic surgery is a reality today in many hospitals, which makes essential bioethical reflection on the relationship between health professionals, automata and patients. A utilização de robôs em procedimentos cirúrgicos tem sido cada vez mais frequente na atualidade, o que permite a emergência de inúmeras questões bioéticas nesse âmbito. Apresentar revisão sobre os aspectos éticos dos usos de robôs em cirurgia. Realizou-se revisão nas bases de dados Pubmed, SciELO e Lilacs cruzando-se os descritores "bioética", "cirurgia", "ética", "laparoscopia" e "robótica". Do total de citações obtidas, selecionou-se 17 artigos, os quais foram utilizados para a elaboração do artigo. Ele contém breve apresentação sobre a robótica, sua inserção na saúde e os aspectos bioéticos da utilização dos robôs em procedimentos cirúrgicos. A cirurgia robótica é uma realidade, hoje, em muitas unidades hospitalares, o que torna essencial a reflexão bioética sobre as relações entre profissionais da saúde, autômatos e pacientes.

  20. Few-layer III-VI and IV-VI 2D semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Sucharitakul, Sukrit; Liu, Mei; Kumar, Rajesh; Sankar, Raman; Chou, Fang C.; Chen, Yit-Tsong; Gao, Xuan

    Since the discovery of atomically thin graphene, a large variety of exfoliable 2D materials have been thoroughly explored for their exotic transport behavior and promises in technological breakthroughs. While most attention on 2D materials beyond graphene is focused on transition metal-dichalcogenides, relatively less attention is paid to layered III-VI and IV-VI semiconductors such as InSe, SnSe etc which bear stronger potential as 2D materials with high electron mobility or thermoelectric figure of merit. We will discuss our recent work on few-layer InSe 2D field effect transistors which exhibit carrier mobility approaching 1000 cm2/Vs and ON-OFF ratio exceeding 107 at room temperature. In addition, the fabrication and device performance of transistors made of mechanically exfoliated multilayer IV-VI semiconductor SnSe and SnSe2 will be discussed.

  1. SDIO robotics in space applications

    NASA Technical Reports Server (NTRS)

    Iliff, Richard

    1990-01-01

    Robotics in space supporting the Strategic Defense System (SDS) program is discussed. Ongoing initiatives which are intended to establish an initial Robotics in Space capability are addressed. This is specifically being referred to as the Satellite Servicing System (SSS). This system is based on the NASA Orbital Maneuvering Vehicle (OMV) with a Robotic Manipulator(s) based on the NASA Flight Telerobotic Servicer (FTS) and other SSS equipment required to do the satellite servicing work attached to the OMV. Specific Robotics in Space Requirements which have resulted from the completion of the Robotics Requirements Study Contract are addressed.

  2. Coordination of multiple robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Soloway, D.

    1987-01-01

    Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself.

  3. Joint service EOD robotics program

    NASA Astrophysics Data System (ADS)

    Hacker, Kurt; Brezina, Byron; DeBolt, Chris

    2006-05-01

    Within the military, the Explosive Ordnance Disposal (EOD) community has been an early adopter of robotic capabilities. The Joint Service EOD (JSEOD) Program is in the process of fielding its third generation of robotic systems to the EOD technicians. Robots have been an invaluable asset to the EOD technician, and they have been critical to operations in Iraq as we prosecute the IED problem. This paper provides a brief history of past EOD robotic systems, a description of currently fielded and supported systems, and the future of robotic programs within the Joint Service EOD community.

  4. Embedding knowledge in robot controllers

    SciTech Connect

    Puttre, M.

    1994-06-01

    This article reports that finding the right robot for a task and programming it remain key issues facing the industry. Developers, meanwhile, are striving to embed more applications knowledge in robot controllers using high-level languages and autonomy. Although robot components such as motors, arms, and sensors have become highly advanced, the control software and systems integration necessary to support rapidly configurable factory settings have been slow to emerge. The requirements for industrial robots currently are geared more toward performance than autonomy. However, as agile manufacturing issues gain importance, robot flexibility will also become an important requirement.

  5. Robust Software Architecture for Robots

    NASA Technical Reports Server (NTRS)

    Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael

    2009-01-01

    Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.

  6. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    Wunderkammer Laboratory Team leader Jim Rothrock, left, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "Cerberus" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Rothrock's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  7. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-15

    SpacePRIDE Team members Chris Williamson, right, and Rob Moore, second from right, answer questions from 8th grade Sullivan Middle School (Mass.) students about their robot on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. SpacePRIDE's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  8. Dextrous robot hands

    NASA Technical Reports Server (NTRS)

    Venkataraman, Subramanian T. (Editor); Iberall, Thea (Editor)

    1990-01-01

    Recent studies of human hand function and their implications for the design of robot hands are discussed in reviews and reports. Topics addressed include human grasp choice and robotic grasp analysis, opposition space and human prehension, coordination in normal and prosthetic reaching, and intelligent exploration by the human hand. Consideration is given to a task-oriented dextrous manipulation architecture, the control architecture for the Belgrade/USC hand, the analysis of multifingered grasping and manipulation, and tactile sensing for shape interpretation. Diagrams, graphs, and photographs are provided.

  9. Robotic Planetary Drill Tests

    NASA Technical Reports Server (NTRS)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  10. Robotic component preparation

    SciTech Connect

    Dokos, J.R.

    1986-04-01

    This report provides information on the preparation of robotic components. Component preparation includes pretinning or solder dipping, preforming, and pretrimming of component leads. Since about 70% of all components are axial-leaded resistor-type components, it was decided to begin with them and then later develop capabilities to handle other types. The first workcell is the first phase of an overall system to pretin, preform, and pretrim all components and to feed them to an automatic insertion system. Before use of the robot, a Unimation PUMA Modal 260, pretinning and preforming was done by first hand with a shield and vented booth.

  11. First Robotics Competition

    NASA Image and Video Library

    2010-03-05

    U.S. Senate Majority Leader Harry Reid, D-Nev., left, stands with Dean Kamen, the founder of First Robotics, as he talks about the importance of Science and Technology education during the First Robotics Competition, Friday March 5, 2010, in Washington. The student competition is called "For Inspiration and Recognition ofScience and Technology," or FIRST. The program was founded in 1989 by Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers)

  12. Robotic retroauricular thyroid surgery

    PubMed Central

    Alabbas, Haytham; Bu Ali, Daniah

    2016-01-01

    Surgery is the gold standard treatment for patients with thyroid cancer or nodules suspicious for cancer. Open conventional approach is the standard surgical approach. However, a visible neck incision could be a concern for most young female patients, especially for patients with a history of healing with keloid or hypertrophic scars. Robotic remote access approaches have evolved into a safe and feasible approach in selected patients, providing a hidden scar with good patient satisfaction. This review will focus on the performance and safety of robotic retroauricular thyroid surgery. PMID:28149806

  13. Robotic retroauricular thyroid surgery.

    PubMed

    Alabbas, Haytham; Bu Ali, Daniah; Kandil, Emad

    2016-12-01

    Surgery is the gold standard treatment for patients with thyroid cancer or nodules suspicious for cancer. Open conventional approach is the standard surgical approach. However, a visible neck incision could be a concern for most young female patients, especially for patients with a history of healing with keloid or hypertrophic scars. Robotic remote access approaches have evolved into a safe and feasible approach in selected patients, providing a hidden scar with good patient satisfaction. This review will focus on the performance and safety of robotic retroauricular thyroid surgery.

  14. Dextrous robot hands

    NASA Technical Reports Server (NTRS)

    Venkataraman, Subramanian T. (Editor); Iberall, Thea (Editor)

    1990-01-01

    Recent studies of human hand function and their implications for the design of robot hands are discussed in reviews and reports. Topics addressed include human grasp choice and robotic grasp analysis, opposition space and human prehension, coordination in normal and prosthetic reaching, and intelligent exploration by the human hand. Consideration is given to a task-oriented dextrous manipulation architecture, the control architecture for the Belgrade/USC hand, the analysis of multifingered grasping and manipulation, and tactile sensing for shape interpretation. Diagrams, graphs, and photographs are provided.

  15. Transoral robotic thyroid surgery

    PubMed Central

    Clark, James H.; Kim, Hoon Yub

    2015-01-01

    There is currently significant demand for minimally invasive thyroid surgery; however the majority of proposed surgical approaches necessitate a compromise between minimal tissue dissection with a visible cervical scar or extensive tissue dissection with a remote, hidden scar. The development of transoral endoscopic thyroid surgery however provides an approach which is truly minimally invasive, as it conceals the incision within the oral cavity without significantly increasing the amount of required dissection. The transoral endoscopic approach however presents multiple technical challenges, which could be overcome with the incorporation of a robotic operating system. This manuscript summarizes the literature on the feasibility and current clinical experience with transoral robotic thyroid surgery. PMID:26425456

  16. Robot welding process control

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  17. Microwave vision for robots

    NASA Technical Reports Server (NTRS)

    Lewandowski, Leon; Struckman, Keith

    1994-01-01

    Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.

  18. First Robotics Competition

    NASA Image and Video Library

    2010-03-05

    Students from the Highland School in Warrenton, Va. work on their robot in the "Pit Area" as they prepare to compete in the First Robotics Competition, Friday, March 5, 2010, in Washington. The student competition is called "For Inspiration and Recognition of Science and Technology," or FIRST. The program was founded in 1989 by inventor Dean Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers) Photo Credit: (NASA/Paul E. Alers)

  19. First Robotics Competition

    NASA Image and Video Library

    2010-03-05

    Students from McKinley Tech High School in Washington, D.C., work on their robot in the "Pit Area" as they prepare to compete in the First Robotics Competition, Friday, March 5, 2010, in Washington. The student competition is called "For Inspiration and Recognition of Science and Technology," or FIRST. The program was founded in 1989 by inventor Dean Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers)

  20. Role of anions and reaction conditions in the preparation of uranium(VI), neptunium(VI), and plutonium(VI) borates.

    PubMed

    Wang, Shuao; Villa, Eric M; Diwu, Juan; Alekseev, Evgeny V; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2011-03-21

    U(VI), Np(VI), and Pu(VI) borates with the formula AnO(2)[B(8)O(11)(OH)(4)] (An = U, Np, Pu) have been prepared via the reactions of U(VI) nitrate, Np(VI) perchlorate, or Pu(IV) or Pu(VI) nitrate with molten boric acid. These compounds are all isotypic and consist of a linear actinyl(VI) cation, AnO(2)(2+), surrounded by BO(3) triangles and BO(4) tetrahedra to create an AnO(8) hexagonal bipyramidal environment. The actinyl bond lengths are consistent with actinide contraction across this series. The borate anions bridge between actinyl units to create sheets. Additional BO(3) triangles and BO(4) tetrahedra extend from the polyborate layers and connect these sheets together to form a three-dimensional chiral framework structure. UV-vis-NIR absorption and fluorescence spectroscopy confirms the hexavalent oxidation state in all three compounds. Bond-valence parameters are developed for Np(VI).