Design principles of a cooperative robot controller
NASA Technical Reports Server (NTRS)
Hayward, Vincent; Hayati, Samad
1987-01-01
The paper describes the design of a controller for cooperative robots being designed at McGill University in a collaborative effort with the Jet Propulsion Laboratory. The first part of the paper discusses the background and motivation for multiple arm control. Then, a set of programming primitives, which are based on the RCCL system and which permit a programmer to specify cooperative tasks are described. The first group of primitives are motion primitives which specify asynchronous motions, master/slave motions, and cooperative motions. In the context of cooperative robots, trajectory generation issues will be discussed and the implementation described. A second set of primitives provides for the specification of spatial relationships. The relations between programming and control in the case of multiple robot are examined. Finally, the paper describes the allocation of various tasks among a set of microprocessors sharing a common bus.
KALI - An environment for the programming and control of cooperative manipulators
NASA Technical Reports Server (NTRS)
Hayward, Vincent; Hayati, Samad
1988-01-01
A design description is given of a controller for cooperative robots. The background and motivation for multiple arm control are discussed. A set of programming primitives which permit a programmer to specify cooperative tasks are described. Motion primitives specify asynchronous motions, master/slave motions, and cooperative motions. In the context of cooperative robots, trajectory generation issues are discussed and the authors' implementation briefly described. The relations between programming and control in the case of multiple robots are examined. The allocation of various tasks among a multiprocessor computer is described.
Developmental Approach for Behavior Learning Using Primitive Motion Skills.
Dawood, Farhan; Loo, Chu Kiong
2018-05-01
Imitation learning through self-exploration is essential in developing sensorimotor skills. Most developmental theories emphasize that social interactions, especially understanding of observed actions, could be first achieved through imitation, yet the discussion on the origin of primitive imitative abilities is often neglected, referring instead to the possibility of its innateness. This paper presents a developmental model of imitation learning based on the hypothesis that humanoid robot acquires imitative abilities as induced by sensorimotor associative learning through self-exploration. In designing such learning system, several key issues will be addressed: automatic segmentation of the observed actions into motion primitives using raw images acquired from the camera without requiring any kinematic model; incremental learning of spatio-temporal motion sequences to dynamically generates a topological structure in a self-stabilizing manner; organization of the learned data for easy and efficient retrieval using a dynamic associative memory; and utilizing segmented motion primitives to generate complex behavior by the combining these motion primitives. In our experiment, the self-posture is acquired through observing the image of its own body posture while performing the action in front of a mirror through body babbling. The complete architecture was evaluated by simulation and real robot experiments performed on DARwIn-OP humanoid robot.
A Generalized-Compliant-Motion Primitive
NASA Technical Reports Server (NTRS)
Backes, Paul G.
1993-01-01
Computer program bridges gap between planning and execution of compliant robotic motions developed and installed in control system of telerobot. Called "generalized-compliant-motion primitive," one of several task-execution-primitive computer programs, which receives commands from higher-level task-planning programs and executes commands by generating required trajectories and applying appropriate control laws. Program comprises four parts corresponding to nominal motion, compliant motion, ending motion, and monitoring. Written in C language.
Rafii-Tari, Hedyeh; Liu, Jindong; Payne, Christopher J; Bicknell, Colin; Yang, Guang-Zhong
2014-01-01
Despite increased use of remote-controlled steerable catheter navigation systems for endovascular intervention, most current designs are based on master configurations which tend to alter natural operator tool interactions. This introduces problems to both ergonomics and shared human-robot control. This paper proposes a novel cooperative robotic catheterization system based on learning-from-demonstration. By encoding the higher-level structure of a catheterization task as a sequence of primitive motions, we demonstrate how to achieve prospective learning for complex tasks whilst incorporating subject-specific variations. A hierarchical Hidden Markov Model is used to model each movement primitive as well as their sequential relationship. This model is applied to generation of motion sequences, recognition of operator input, and prediction of future movements for the robot. The framework is validated by comparing catheter tip motions against the manual approach, showing significant improvements in the quality of catheterization. The results motivate the design of collaborative robotic systems that are intuitive to use, while reducing the cognitive workload of the operator.
Generalized compliant motion primitive
NASA Technical Reports Server (NTRS)
Backes, Paul G. (Inventor)
1994-01-01
This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.
Reverse control for humanoid robot task recognition.
Hak, Sovannara; Mansard, Nicolas; Stasse, Olivier; Laumond, Jean Paul
2012-12-01
Efficient methods to perform motion recognition have been developed using statistical tools. Those methods rely on primitive learning in a suitable space, for example, the latent space of the joint angle and/or adequate task spaces. Learned primitives are often sequential: A motion is segmented according to the time axis. When working with a humanoid robot, a motion can be decomposed into parallel subtasks. For example, in a waiter scenario, the robot has to keep some plates horizontal with one of its arms while placing a plate on the table with its free hand. Recognition can thus not be limited to one task per consecutive segment of time. The method presented in this paper takes advantage of the knowledge of what tasks the robot is able to do and how the motion is generated from this set of known controllers, to perform a reverse engineering of an observed motion. This analysis is intended to recognize parallel tasks that have been used to generate a motion. The method relies on the task-function formalism and the projection operation into the null space of a task to decouple the controllers. The approach is successfully applied on a real robot to disambiguate motion in different scenarios where two motions look similar but have different purposes.
Moro, Federico L; Spröwitz, Alexander; Tuleu, Alexandre; Vespignani, Massimo; Tsagarakis, Nikos G; Ijspeert, Auke J; Caldwell, Darwin G
2013-06-01
This manuscript proposes a method to directly transfer the features of horse walking, trotting, and galloping to a quadruped robot, with the aim of creating a much more natural (horse-like) locomotion profile. A principal component analysis on horse joint trajectories shows that walk, trot, and gallop can be described by a set of four kinematic Motion Primitives (kMPs). These kMPs are used to generate valid, stable gaits that are tested on a compliant quadruped robot. Tests on the effects of gait frequency scaling as follows: results indicate a speed optimal walking frequency around 3.4 Hz, and an optimal trotting frequency around 4 Hz. Following, a criterion to synthesize gait transitions is proposed, and the walk/trot transitions are successfully tested on the robot. The performance of the robot when the transitions are scaled in frequency is evaluated by means of roll and pitch angle phase plots.
Dual-Arm Generalized Compliant Motion With Shared Control
NASA Technical Reports Server (NTRS)
Backes, Paul G.
1994-01-01
Dual-Arm Generalized Compliant Motion (DAGCM) primitive computer program implementing improved unified control scheme for two manipulator arms cooperating in task in which both grasp same object. Provides capabilities for autonomous, teleoperation, and shared control of two robot arms. Unifies cooperative dual-arm control with multi-sensor-based task control and makes complete task-control capability available to higher-level task-planning computer system via large set of input parameters used to describe desired force and position trajectories followed by manipulator arms. Some concepts discussed in "A Generalized-Compliant-Motion Primitive" (NPO-18134).
Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs.
Spröwitz, Alexander T; Ajallooeian, Mostafa; Tuleu, Alexandre; Ijspeert, Auke Jan
2014-01-01
In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2-3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware.
Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs
Spröwitz, Alexander T.; Ajallooeian, Mostafa; Tuleu, Alexandre; Ijspeert, Auke Jan
2014-01-01
In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2–3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware. PMID:24639645
Real-Time Motion Planning and Safe Navigation in Dynamic Multi-Robot Environments
2006-12-15
referee against a robot for pushing or hitting an opponent excessively, as well as for a non- goalie robot entering the team’s own defense area. The DSS... pulling ” a search graph by choosing random samples and then trying to connect a path to those points, some planners “push” samples by first choosing...implement the various roles (attacker, goalie , defender), which in turn build on sub-tactics known as skills [16]. One primitive skill used by almost all
Li, Cai; Lowe, Robert; Ziemke, Tom
2014-01-01
In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a "reshaping" function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal "reshaping" functions). In this article, we use this architecture with the actor-critic algorithms for finding a good "reshaping" function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion.
Li, Cai; Lowe, Robert; Ziemke, Tom
2014-01-01
In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a “reshaping” function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal “reshaping” functions). In this article, we use this architecture with the actor-critic algorithms for finding a good “reshaping” function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion. PMID:25324773
Differentially Constrained Motion Planning with State Lattice Motion Primitives
2012-02-01
datapoint distribution in such histograms to a scalar may be used . One example is Kullback - Leibler divergence; an even simpler method is a sum of ...the Coupled Layer Architecture for Robotic Autonomy (CLARAty) system at the Jet Propulsion Laboratory. This al- lowed us to test the application of ... good fit to extend the tree or the graph towards a random sample. However, by virtue of the regular structure of the state samples, lattice
Free-floating dual-arm robots for space assembly
NASA Technical Reports Server (NTRS)
Agrawal, Sunil Kumar; Chen, M. Y.
1994-01-01
Freely moving systems in space conserve linear and angular momentum. As moving systems collide, the velocities get altered due to transfer of momentum. The development of strategies for assembly in a free-floating work environment requires a good understanding of primitives such as self motion of the robot, propulsion of the robot due to onboard thrusters, docking of the robot, retrieval of an object from a collection of objects, and release of an object in an object pool. The analytics of such assemblies involve not only kinematics and rigid body dynamics but also collision and impact dynamics of multibody systems. In an effort to understand such assemblies in zero gravity space environment, we are currently developing at Ohio University a free-floating assembly facility with a dual-arm planar robot equipped with thrusters, a free-floating material table, and a free-floating assembly table. The objective is to pick up workpieces from the material table and combine them into prespecified assemblies. This paper presents analytical models of assembly primitives and strategies for overall assembly. A computer simulation of an assembly is developed using the analytical models. The experiment facility will be used to verify the theoretical predictions.
System Design and Locomotion of Superball, an Untethered Tensegrity Robot
NASA Technical Reports Server (NTRS)
Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Manovi, Pavlo; Firoozi, Roya Fallah; Dobi, Sarah; Agogino, Alice M.; Sunspiral, Vytas
2015-01-01
The Spherical Underactuated Planetary Exploration Robot ball (SUPERball) is an ongoing project within NASA Ames Research Center's Intelligent Robotics Group and the Dynamic Tensegrity Robotics Lab (DTRL). The current SUPERball is the first full prototype of this tensegrity robot platform, eventually destined for space exploration missions. This work, building on prior published discussions of individual components, presents the fully-constructed robot. Various design improvements are discussed, as well as testing results of the sensors and actuators that illustrate system performance. Basic low-level motor position controls are implemented and validated against sensor data, which show SUPERball to be uniquely suited for highly dynamic state trajectory tracking. Finally, SUPERball is shown in a simple example of locomotion. This implementation of a basic motion primitive shows SUPERball in untethered control.
A brittle star-like robot capable of immediately adapting to unexpected physical damage.
Kano, Takeshi; Sato, Eiki; Ono, Tatsuya; Aonuma, Hitoshi; Matsuzaka, Yoshiya; Ishiguro, Akio
2017-12-01
A major challenge in robotic design is enabling robots to immediately adapt to unexpected physical damage. However, conventional robots require considerable time (more than several tens of seconds) for adaptation because the process entails high computational costs. To overcome this problem, we focus on a brittle star-a primitive creature with expendable body parts. Brittle stars, most of which have five flexible arms, occasionally lose some of them and promptly coordinate the remaining arms to escape from predators. We adopted a synthetic approach to elucidate the essential mechanism underlying this resilient locomotion. Specifically, based on behavioural experiments involving brittle stars whose arms were amputated in various ways, we inferred the decentralized control mechanism that self-coordinates the arm motions by constructing a simple mathematical model. We implemented this mechanism in a brittle star-like robot and demonstrated that it adapts to unexpected physical damage within a few seconds by automatically coordinating its undamaged arms similar to brittle stars. Through the above-mentioned process, we found that physical interaction between arms plays an essential role for the resilient inter-arm coordination of brittle stars. This finding will help develop resilient robots that can work in inhospitable environments. Further, it provides insights into the essential mechanism of resilient coordinated motions characteristic of animal locomotion.
A brittle star-like robot capable of immediately adapting to unexpected physical damage
Sato, Eiki; Ono, Tatsuya; Aonuma, Hitoshi; Matsuzaka, Yoshiya; Ishiguro, Akio
2017-01-01
A major challenge in robotic design is enabling robots to immediately adapt to unexpected physical damage. However, conventional robots require considerable time (more than several tens of seconds) for adaptation because the process entails high computational costs. To overcome this problem, we focus on a brittle star—a primitive creature with expendable body parts. Brittle stars, most of which have five flexible arms, occasionally lose some of them and promptly coordinate the remaining arms to escape from predators. We adopted a synthetic approach to elucidate the essential mechanism underlying this resilient locomotion. Specifically, based on behavioural experiments involving brittle stars whose arms were amputated in various ways, we inferred the decentralized control mechanism that self-coordinates the arm motions by constructing a simple mathematical model. We implemented this mechanism in a brittle star-like robot and demonstrated that it adapts to unexpected physical damage within a few seconds by automatically coordinating its undamaged arms similar to brittle stars. Through the above-mentioned process, we found that physical interaction between arms plays an essential role for the resilient inter-arm coordination of brittle stars. This finding will help develop resilient robots that can work in inhospitable environments. Further, it provides insights into the essential mechanism of resilient coordinated motions characteristic of animal locomotion. PMID:29308250
Modal-Power-Based Haptic Motion Recognition
NASA Astrophysics Data System (ADS)
Kasahara, Yusuke; Shimono, Tomoyuki; Kuwahara, Hiroaki; Sato, Masataka; Ohnishi, Kouhei
Motion recognition based on sensory information is important for providing assistance to human using robots. Several studies have been carried out on motion recognition based on image information. However, in the motion of humans contact with an object can not be evaluated precisely by image-based recognition. This is because the considering force information is very important for describing contact motion. In this paper, a modal-power-based haptic motion recognition is proposed; modal power is considered to reveal information on both position and force. Modal power is considered to be one of the defining features of human motion. A motion recognition algorithm based on linear discriminant analysis is proposed to distinguish between similar motions. Haptic information is extracted using a bilateral master-slave system. Then, the observed motion is decomposed in terms of primitive functions in a modal space. The experimental results show the effectiveness of the proposed method.
Impact of Discrete Corrections in a Modular Approach for Trajectory Generation in Quadruped Robots
NASA Astrophysics Data System (ADS)
Pinto, Carla M. A.; Santos, Cristina P.; Rocha, Diana; Matos, Vítor
2011-09-01
Online generation of trajectories in robots is a very complex task that involves the combination of different types of movements, i.e., distinct motor primitives. The later are used to model complex behaviors in robots, such as locomotion in irregular terrain and obstacle avoidance. In this paper, we consider two motor primitives: rhythmic and discrete. We study the effect on the robots' gaits of superimposing the two motor primitives, considering two distinct types of coupling. Additionally, we simulate two scenarios, where the discrete primitive is inserted in all of the four limbs, or is inserted in ipsilateral pairs of limbs. Numerical results show that amplitude and frequency of the periodic solutions, corresponding to the gaits trot and pace, are almost constant for diffusive and synaptic couplings.
A real-time robot arm collision detection system
NASA Technical Reports Server (NTRS)
Shaffer, Clifford A.; Herb, Gregory M.
1990-01-01
A data structure and update algorithm are presented for a prototype real time collision detection safety system for a multi-robot environment. The data structure is a variant of the octree, which serves as a spatial index. An octree recursively decomposes 3-D space into eight equal cubic octants until each octant meets some decomposition criteria. The octree stores cylspheres (cylinders with spheres on each end) and rectangular solids as primitives (other primitives can easily be added as required). These primitives make up the two seven degrees-of-freedom robot arms and environment modeled by the system. Octree nodes containing more than a predetermined number N of primitives are decomposed. This rule keeps the octree small, as the entire environment for the application can be modeled using a few dozen primitives. As robot arms move, the octree is updated to reflect their changed positions. During most update cycles, any given primitive does not change which octree nodes it is in. Thus, modification to the octree is rarely required. Incidents in which one robot arm comes too close to another arm or an object are reported. Cycle time for interpreting current joint angles, updating the octree, and detecting/reporting imminent collisions averages 30 milliseconds on an Intel 80386 processor running at 20 MHz.
Dynamic primitives in the control of locomotion.
Hogan, Neville; Sternad, Dagmar
2013-01-01
Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term "rhythmic" may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered.
Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons
Lauretti, Clemente; Cordella, Francesca; Ciancio, Anna Lisa; Trigili, Emilio; Catalan, Jose Maria; Badesa, Francisco Javier; Crea, Simona; Pagliara, Silvio Marcello; Sterzi, Silvia; Vitiello, Nicola; Garcia Aracil, Nicolas; Zollo, Loredana
2018-01-01
The reference joint position of upper-limb exoskeletons is typically obtained by means of Cartesian motion planners and inverse kinematics algorithms with the inverse Jacobian; this approach allows exploiting the available Degrees of Freedom (i.e. DoFs) of the robot kinematic chain to achieve the desired end-effector pose; however, if used to operate non-redundant exoskeletons, it does not ensure that anthropomorphic criteria are satisfied in the whole human-robot workspace. This paper proposes a motion planning system, based on Learning by Demonstration, for upper-limb exoskeletons that allow successfully assisting patients during Activities of Daily Living (ADLs) in unstructured environment, while ensuring that anthropomorphic criteria are satisfied in the whole human-robot workspace. The motion planning system combines Learning by Demonstration with the computation of Dynamic Motion Primitives and machine learning techniques to construct task- and patient-specific joint trajectories based on the learnt trajectories. System validation was carried out in simulation and in a real setting with a 4-DoF upper-limb exoskeleton, a 5-DoF wrist-hand exoskeleton and four patients with Limb Girdle Muscular Dystrophy. Validation was addressed to (i) compare the performance of the proposed motion planning with traditional methods; (ii) assess the generalization capabilities of the proposed method with respect to the environment variability. Three ADLs were chosen to validate the system: drinking, pouring and lifting a light sphere. The achieved results showed a 100% success rate in the task fulfillment, with a high level of generalization with respect to the environment variability. Moreover, an anthropomorphic configuration of the exoskeleton is always ensured. PMID:29527161
Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons.
Lauretti, Clemente; Cordella, Francesca; Ciancio, Anna Lisa; Trigili, Emilio; Catalan, Jose Maria; Badesa, Francisco Javier; Crea, Simona; Pagliara, Silvio Marcello; Sterzi, Silvia; Vitiello, Nicola; Garcia Aracil, Nicolas; Zollo, Loredana
2018-01-01
The reference joint position of upper-limb exoskeletons is typically obtained by means of Cartesian motion planners and inverse kinematics algorithms with the inverse Jacobian; this approach allows exploiting the available Degrees of Freedom (i.e. DoFs) of the robot kinematic chain to achieve the desired end-effector pose; however, if used to operate non-redundant exoskeletons, it does not ensure that anthropomorphic criteria are satisfied in the whole human-robot workspace. This paper proposes a motion planning system, based on Learning by Demonstration, for upper-limb exoskeletons that allow successfully assisting patients during Activities of Daily Living (ADLs) in unstructured environment, while ensuring that anthropomorphic criteria are satisfied in the whole human-robot workspace. The motion planning system combines Learning by Demonstration with the computation of Dynamic Motion Primitives and machine learning techniques to construct task- and patient-specific joint trajectories based on the learnt trajectories. System validation was carried out in simulation and in a real setting with a 4-DoF upper-limb exoskeleton, a 5-DoF wrist-hand exoskeleton and four patients with Limb Girdle Muscular Dystrophy. Validation was addressed to (i) compare the performance of the proposed motion planning with traditional methods; (ii) assess the generalization capabilities of the proposed method with respect to the environment variability. Three ADLs were chosen to validate the system: drinking, pouring and lifting a light sphere. The achieved results showed a 100% success rate in the task fulfillment, with a high level of generalization with respect to the environment variability. Moreover, an anthropomorphic configuration of the exoskeleton is always ensured.
Dynamic primitives in the control of locomotion
Hogan, Neville; Sternad, Dagmar
2013-01-01
Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term “rhythmic” may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered. PMID:23801959
MACOP modular architecture with control primitives
Waegeman, Tim; Hermans, Michiel; Schrauwen, Benjamin
2013-01-01
Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on these findings in the quest for adaptive and skillful control for robots. In this work we propose a modular architecture with control primitives (MACOP) which uses a set of controllers, where each controller becomes specialized in a subregion of its joint and task-space. Instead of having a single controller being used in this subregion [such as MOSAIC (modular selection and identification for control) on which MACOP is inspired], MACOP relates more to the idea of continuously mixing a limited set of primitive controllers. By enforcing a set of desired properties on the mixing mechanism, a mixture of primitives emerges unsupervised which successfully solves the control task. We evaluate MACOP on a numerical model of a robot arm by training it to generate desired trajectories. We investigate how the tracking performance is affected by the number of controllers in MACOP and examine how the individual controllers and their generated control primitives contribute to solving the task. Furthermore, we show how MACOP compensates for the dynamic effects caused by a fixed control rate and the inertia of the robot. PMID:23888140
Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan
2016-01-01
In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.
Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan
2016-01-01
In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion. PMID:26881743
A real-time robot arm collision avoidance system
NASA Technical Reports Server (NTRS)
Shaffer, Clifford A.; Herb, Gregory M.
1992-01-01
A data structure and update algorithm are presented for a prototype real-time collision avoidance safety system simulating a multirobot workspace. The data structure is a variant of the octree, which serves as a spatial index. An octree recursively decomposes 3D space into eight equal cubic octants until each octant meets some decomposition criteria. The N-objects octree, which indexes a collection of 3D primitive solids is used. These primitives make up the two (seven-degrees-of-freedom) robot arms and workspace modeled by the system. As robot arms move, the octree is updated to reflect their changed positions. During most update cycles, any given primitive does not change which octree nodes it is in. Thus, modification to the octree is rarely required. Cycle time for interpreting current arm joint angles, updating the octree to reflect new positions, and detecting/reporting imminent collisions averages 30 ms on an Intel 80386 processor running at 20 MHz.
1982-12-01
1Muter.Te Motions Based on Ana lyzed Winds and wind-driven December 1982 Currents from. a Primitive Squat ion General a.OW -love"*..* Oean Circulation...mew se"$ (comeS.... do oISN..u am ae~ 00do OWaor NUN Fourier and Rotary Spc , Analysis Modeled Inertial and Subinrtial Motion 4 Primitive Equation
NASA Technical Reports Server (NTRS)
Backes, Paul G. (Inventor); Tso, Kam S. (Inventor)
1993-01-01
This invention relates to an operator interface for controlling a telerobot to perform tasks in a poorly modeled environment and/or within unplanned scenarios. The telerobot control system includes a remote robot manipulator linked to an operator interface. The operator interface includes a setup terminal, simulation terminal, and execution terminal for the control of the graphics simulator and local robot actuator as well as the remote robot actuator. These terminals may be combined in a single terminal. Complex tasks are developed from sequential combinations of parameterized task primitives and recorded teleoperations, and are tested by execution on a graphics simulator and/or local robot actuator, together with adjustable time delays. The novel features of this invention include the shared and supervisory control of the remote robot manipulator via operator interface by pretested complex tasks sequences based on sequences of parameterized task primitives combined with further teleoperation and run-time binding of parameters based on task context.
Determining robot actions for tasks requiring sensor interaction
NASA Technical Reports Server (NTRS)
Budenske, John; Gini, Maria
1989-01-01
The performance of non-trivial tasks by a mobile robot has been a long term objective of robotic research. One of the major stumbling blocks to this goal is the conversion of the high-level planning goals and commands into the actuator and sensor processing controls. In order for a mobile robot to accomplish a non-trivial task, the task must be described in terms of primitive actions of the robot's actuators. Most non-trivial tasks require the robot to interact with its environment; thus necessitating coordination of sensor processing and actuator control to accomplish the task. The main contention is that the transformation from the high level description of the task to the primitive actions should be performed primarily at execution time, when knowledge about the environment can be obtained through sensors. It is proposed to produce the detailed plan of primitive actions by using a collection of low-level planning components that contain domain specific knowledge and knowledge about the available sensors, actuators, and sensor/actuator processing. This collection will perform signal and control processing as well as serve as a control interface between an actual mobile robot and a high-level planning system. Previous research has shown the usefulness of high-level planning systems to plan the coordination of activities such to achieve a goal, but none have been fully applied to actual mobile robots due to the complexity of interacting with sensors and actuators. This control interface is currently being implemented on a LABMATE mobile robot connected to a SUN workstation and will be developed such to enable the LABMATE to perform non-trivial, sensor-intensive tasks as specified by a planning system.
Application of Kalman filters to robot calibration
NASA Technical Reports Server (NTRS)
Whitney, D. E.; Junkel, E. F.
1983-01-01
This report explores new uses of Kalman filter theory in manufacturing systems (robots in particular). The Kalman filter allows the robot to read its sensors plus external sensors and learn from its experience. In effect, the robot is given primitive intelligence. The study, which is applicable to any type of powered kinematic linkage, focuses on the calibration of a manipulator.
Quadruped robots' modular trajectories: Stability issues
NASA Astrophysics Data System (ADS)
Pinto, Carla M. A.
2012-09-01
Pinto, Santos, Rocha and Matos [13, 12] study a CPG model for the generation of modular trajectories of quadruped robots. They consider that each movement is composed of two types of primitives: rhythmic and discrete. The rhythmic primitive models the periodic patterns and the discrete primitive is inserted as a perturbation of those patterns. In this paper we begin to tackle numerically the problem of the stability of that mathematical model. We observe that if the discrete part is inserted in all limbs, with equal values, and as an offset of the rhythmic part, the obtained gait is stable and has the same spatial and spatio-temporal symmetry groups as the purely rhythmic gait, differing only on the value of the offset.
NASA Astrophysics Data System (ADS)
Zheng, Taixiong
2005-12-01
A neuro-fuzzy network based approach for robot motion in an unknown environment was proposed. In order to control the robot motion in an unknown environment, the behavior of the robot was classified into moving to the goal and avoiding obstacles. Then, according to the dynamics of the robot and the behavior character of the robot in an unknown environment, fuzzy control rules were introduced to control the robot motion. At last, a 6-layer neuro-fuzzy network was designed to merge from what the robot sensed to robot motion control. After being trained, the network may be used for robot motion control. Simulation results show that the proposed approach is effective for robot motion control in unknown environment.
Motion coordination and programmable teleoperation between two industrial robots
NASA Technical Reports Server (NTRS)
Luh, J. Y. S.; Zheng, Y. F.
1987-01-01
Tasks for two coordinated industrial robots always bring the robots in contact with a same object. The motion coordination among the robots and the object must be maintained all the time. To plan the coordinated tasks, only one robot's motion is planned according to the required motion of the object. The motion of the second robot is to follow the first one as specified by a set of holonomic equality constraints at every time instant. If any modification of the object's motion is needed in real-time, only the first robot's motion has to be modified accordingly in real-time. The modification for the second robot is done implicitly through the constraint conditions. Thus the operation is simplified. If the object is physically removed, the second robot still continually follows the first one through the constraint conditions. If the first robot is maneuvered through either the teach pendant or the keyboard, the second one moves accordingly to form the teleoperation which is linked through the software programming. Obviously, the second robot does not need to duplicate the first robot's motion. The programming of the constraints specifies their relative motions.
MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy.
Susko, Tyler; Swaminathan, Krithika; Krebs, Hermano Igo
2016-10-01
The MIT-Skywalker is a novel robotic device developed for the rehabilitation or habilitation of gait and balance after a neurological injury. It represents an embodiment of the concept exhibited by passive walkers for rehabilitation training. Its novelty extends beyond the passive walker quintessence to the unparalleled versatility among lower extremity devices. For example, it affords the potential to implement a novel training approach built upon our working model of movement primitives based on submovements, oscillations, and mechanical impedances. This translates into three distinct training modes: discrete, rhythmic, and balance. The system offers freedom of motion that forces self-directed movement for each of the three modes. This paper will present the technical details of the robotic system as well as a feasibility study done with one adult with stroke and two adults with cerebral palsy. Results of the one-month feasibility study demonstrated that the device is safe and suggested the potential advantages of the three modular training modes that can be added or subtracted to tailor therapy to a particular patient's need. Each participant demonstrated improvement in common clinical and kinematic measurements that must be confirmed in larger randomized control clinical trials.
MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy
Susko, Tyler; Swaminathan, Krithika; Krebs, Hermano Igo
2017-01-01
The MIT-Skywalker is a novel robotic device developed for the rehabilitation or habilitation of gait and balance after a neurological injury. It represents an embodiment of the concept exhibited by passive walkers for rehabilitation training. Its novelty extends beyond the passive walker quintessence to the unparalleled versatility among lower extremity devices. For example, it affords the potential to implement a novel training approach built upon our working model of movement primitives based on submovements, oscillations, and mechanical impedances. This translates into three distinct training modes: discrete, rhythmic, and balance. The system offers freedom of motion that forces self-directed movement for each of the three modes. This paper will present the technical details of the robotic system as well as a feasibility study done with one adult with stroke and two adults with cerebral palsy. Results of the one-month feasibility study demonstrated that the device is safe and suggested the potential advantages of the three modular training modes that can be added or subtracted to tailor therapy to a particular patient's need. Each participant demonstrated improvement in common clinical and kinematic measurements that must be confirmed in larger randomized control clinical trials. PMID:26929056
Characterization of selected elementary motion detector cells to image primitives.
Benson, Leslie A; Barrett, Steven F; Wright, Cameron H G
2008-01-01
Developing a visual sensing system, complete with motion processing hardware and software would have many applications to current technology. It could be mounted on many autonomous vehicles to provide information about the navigational environment, as well as obstacle avoidance features. Incorporating the motion processing capabilities into the sensor requires a new approach to the algorithm implementation. This research, and that of many others, have turned to nature for inspiration. Elementary motion detector (EMD) cells are involved in a biological preprocessing network to provide information to the motion processing lobes of the house degrees y Musca domestica. This paper describes the response of the photoreceptor inputs to the EMDs. The inputs to the EMD components are tested as they are stimulated with varying image primitives. This is the first of many steps in characterizing the EMD response to image primitives.
Dynamic Primitives of Motor Behavior
Hogan, Neville; Sternad, Dagmar
2013-01-01
We present in outline a theory of sensorimotor control based on dynamic primitives, which we define as attractors. To account for the broad class of human interactive behaviors—especially tool use—we propose three distinct primitives: submovements, oscillations and mechanical impedances, the latter necessary for interaction with objects. Due to fundamental features of the neuromuscular system, most notably its slow response, we argue that encoding in terms of parameterized primitives may be an essential simplification required for learning, performance, and retention of complex skills. Primitives may simultaneously and sequentially be combined to produce observable forces and motions. This may be achieved by defining a virtual trajectory composed of submovements and/or oscillations interacting with impedances. Identifying primitives requires care: in principle, overlapping submovements would be sufficient to compose all observed movements but biological evidence shows that oscillations are a distinct primitive. Conversely, we suggest that kinematic synergies, frequently discussed as primitives of complex actions, may be an emergent consequence of neuromuscular impedance. To illustrate how these dynamic primitives may account for complex actions, we briefly review three types of interactive behaviors: constrained motion, impact tasks, and manipulation of dynamic objects. PMID:23124919
Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives.
Zhong, Junpei; Cangelosi, Angelo; Wermter, Stefan
2014-01-01
The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases) and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e., observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context.
Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives
Zhong, Junpei; Cangelosi, Angelo; Wermter, Stefan
2014-01-01
The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases) and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e., observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context. PMID:24550798
Learning New Basic Movements for Robotics
NASA Astrophysics Data System (ADS)
Kober, Jens; Peters, Jan
Obtaining novel skills is one of the most important problems in robotics. Machine learning techniques may be a promising approach for automatic and autonomous acquisition of movement policies. However, this requires both an appropriate policy representation and suitable learning algorithms. Employing the most recent form of the dynamical systems motor primitives originally introduced by Ijspeert et al. [1], we show how both discrete and rhythmic tasks can be learned using a concerted approach of both imitation and reinforcement learning, and present our current best performing learning algorithms. Finally, we show that it is possible to include a start-up phase in rhythmic primitives. We apply our approach to two elementary movements, i.e., Ball-in-a-Cup and Ball-Paddling, which can be learned on a real Barrett WAM robot arm at a pace similar to human learning.
Yamashita, Yuichi; Tani, Jun
2008-01-01
It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties (“multiple timescales”). Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms leading to functional hierarchy in neural systems. PMID:18989398
Analyzing the effects of human-aware motion planning on close-proximity human-robot collaboration.
Lasota, Przemyslaw A; Shah, Julie A
2015-02-01
The objective of this work was to examine human response to motion-level robot adaptation to determine its effect on team fluency, human satisfaction, and perceived safety and comfort. The evaluation of human response to adaptive robotic assistants has been limited, particularly in the realm of motion-level adaptation. The lack of true human-in-the-loop evaluation has made it impossible to determine whether such adaptation would lead to efficient and satisfying human-robot interaction. We conducted an experiment in which participants worked with a robot to perform a collaborative task. Participants worked with an adaptive robot incorporating human-aware motion planning and with a baseline robot using shortest-path motions. Team fluency was evaluated through a set of quantitative metrics, and human satisfaction and perceived safety and comfort were evaluated through questionnaires. When working with the adaptive robot, participants completed the task 5.57% faster, with 19.9% more concurrent motion, 2.96% less human idle time, 17.3% less robot idle time, and a 15.1% greater separation distance. Questionnaire responses indicated that participants felt safer and more comfortable when working with an adaptive robot and were more satisfied with it as a teammate than with the standard robot. People respond well to motion-level robot adaptation, and significant benefits can be achieved from its use in terms of both human-robot team fluency and human worker satisfaction. Our conclusion supports the development of technologies that could be used to implement human-aware motion planning in collaborative robots and the use of this technique for close-proximity human-robot collaboration.
Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.
Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K
2013-03-01
Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.
Software for Project-Based Learning of Robot Motion Planning
ERIC Educational Resources Information Center
Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.
2013-01-01
Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can…
Robot and Human Surface Operations on Solar System Bodies
NASA Technical Reports Server (NTRS)
Weisbin, C. R.; Easter, R.; Rodriguez, G.
2001-01-01
This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.
Analyzing the Effects of Human-Aware Motion Planning on Close-Proximity Human–Robot Collaboration
Shah, Julie A.
2015-01-01
Objective: The objective of this work was to examine human response to motion-level robot adaptation to determine its effect on team fluency, human satisfaction, and perceived safety and comfort. Background: The evaluation of human response to adaptive robotic assistants has been limited, particularly in the realm of motion-level adaptation. The lack of true human-in-the-loop evaluation has made it impossible to determine whether such adaptation would lead to efficient and satisfying human–robot interaction. Method: We conducted an experiment in which participants worked with a robot to perform a collaborative task. Participants worked with an adaptive robot incorporating human-aware motion planning and with a baseline robot using shortest-path motions. Team fluency was evaluated through a set of quantitative metrics, and human satisfaction and perceived safety and comfort were evaluated through questionnaires. Results: When working with the adaptive robot, participants completed the task 5.57% faster, with 19.9% more concurrent motion, 2.96% less human idle time, 17.3% less robot idle time, and a 15.1% greater separation distance. Questionnaire responses indicated that participants felt safer and more comfortable when working with an adaptive robot and were more satisfied with it as a teammate than with the standard robot. Conclusion: People respond well to motion-level robot adaptation, and significant benefits can be achieved from its use in terms of both human–robot team fluency and human worker satisfaction. Application: Our conclusion supports the development of technologies that could be used to implement human-aware motion planning in collaborative robots and the use of this technique for close-proximity human–robot collaboration. PMID:25790568
Effect of spine motion on mobility in quadruped running
NASA Astrophysics Data System (ADS)
Chen, Dongliang; Liu, Qi; Dong, Litao; Wang, Hong; Zhang, Qun
2014-11-01
Most of current running quadruped robots have similar construction: a stiff body and four compliant legs. Many researches have indicated that the stiff body without spine motion is a main factor in limitation of robots' mobility. Therefore, investigating spine motion is very important to build robots with better mobility. A planar quadruped robot is designed based on cheetahs' morphology. There is a spinal driving joint in the body of the robot. When the spinal driving joint acts, the robot has spine motion; otherwise, the robot has not spine motion. Six group prototype experiments with the robot are carried out to study the effect of spine motion on mobility. In each group, there are two comparative experiments: the spinal driving joint acts in one experiment but does not in the other experiment. The results of the prototype experiments indicate that the average speeds of the robot with spine motion are 8.7%-15.9% larger than those of the robot without spine motion. Furthermore, a simplified sagittal plane model of quadruped mammals is introduced. The simplified model also has a spinal driving joint. Using a similar process as the prototype experiments, six group simulation experiments with the simplified model are conducted. The results of the simulation experiments show that the maximum rear leg horizontal thrusts of the simplified mode with spine motion are 68.2%-71.3% larger than those of the simplified mode without spine motion. Hence, it is found that spine motion can increase the average running speed and the intrinsic reason of speed increase is the improvement of the maximum rear leg horizontal thrust.
Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor
NASA Technical Reports Server (NTRS)
Prinz, F. B. S.; Mahalingam, S.
1992-01-01
A capacitance based proximity sensor, the 'Capaciflector' (Vranish 92), has been developed at the Goddard Space Flight Center of NASA. We had investigated the use of this sensor for avoiding and maneuvering around unexpected objects (Mahalingam 92). The approach developed there would help in executing collision-free gross motions. Another important aspect of robot motion planning is fine motion planning. Let us classify manipulator robot motion planning into two groups at the task level: gross motion planning and fine motion planning. We use the term 'gross planning' where the major degrees of freedom of the robot execute large motions, for example, the motion of a robot in a pick and place type operation. We use the term 'fine motion' to indicate motions of the robot where the large dofs do not move much, and move far less than the mirror dofs, such as in inserting a peg in a hole. In this report we describe our experiments and experiences in this area.
Primitive robotic procedures: automotions for medical liquids in 12th century Asia minor.
Penbegul, Necmettin; Atar, Murat; Kendirci, Muammer; Bozkurt, Yasar; Hatipoglu, Namık Kemal; Verit, Ayhan; Kadıoglu, Ates
2014-12-30
In recent years, day by day, robotic surgery applications have increase their role in our medical life. In this article, we reported the discovery of the first primitive robotic applications as automatic machines for the sensitive calculation of liquids such as blood in the literature. Al-Jazari who wrote the book "Elcâmi 'Beyne'l - 'ilm ve'l - 'amel en-nâfi 'fi es-sınaâ 'ti'l - hiyel", lived in Anatolian territory between 1136 and 1206. In this book that was written in the twelfth century, Al-Jazari described nearly fifty graphics of robotic machines and six of them that were designed for medical purposes. We found that some of the robots mentioned in this book are related to medical applications. This book reviews approximately 50 devices, including water clocks, candle clocks, ewers, various automata used for amusement in drink assemblies, automata used for ablution, blood collection tanks, fountains, music devices, devices for water lifting, locks, a protractor, a boat-shaped water clock, and the gate of Diyarbakir City in south-east of Turkey, actually in northern Mesopotamia. We found that automata used for ablution and blood collection tanks were related with medical applications; therefore, we will describe these robots.
Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU.
Zhao, Xu; Dou, Lihua; Su, Zhong; Liu, Ning
2018-03-16
A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot's motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS) Inertial-Measurement-Unit (IMU). First, it studies the snake robot's motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot's navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF) position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD). In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots.
Self-evaluation on Motion Adaptation for Service Robots
NASA Astrophysics Data System (ADS)
Funabora, Yuki; Yano, Yoshikazu; Doki, Shinji; Okuma, Shigeru
We suggest self motion evaluation method to adapt to environmental changes for service robots. Several motions such as walking, dancing, demonstration and so on are described with time series patterns. These motions are optimized with the architecture of the robot and under certain surrounding environment. Under unknown operating environment, robots cannot accomplish their tasks. We propose autonomous motion generation techniques based on heuristic search with histories of internal sensor values. New motion patterns are explored under unknown operating environment based on self-evaluation. Robot has some prepared motions which realize the tasks under the designed environment. Internal sensor values observed under the designed environment with prepared motions show the interaction results with the environment. Self-evaluation is composed of difference of internal sensor values between designed environment and unknown operating environment. Proposed method modifies the motions to synchronize the interaction results on both environment. New motion patterns are generated to maximize self-evaluation function without external information, such as run length, global position of robot, human observation and so on. Experimental results show that the possibility to adapt autonomously patterned motions to environmental changes.
Motion generation of peristaltic mobile robot with particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Homma, Takahiro; Kamamichi, Norihiro
2015-03-01
In developments of robots, bio-mimetics is attracting attention, which is a technology for the design of the structure and function inspired from biological system. There are a lot of examples of bio-mimetics in robotics such as legged robots, flapping robots, insect-type robots, fish-type robots. In this study, we focus on the motion of earthworm and aim to develop a peristaltic mobile robot. The earthworm is a slender animal moving in soil. It has a segmented body, and each segment can be shorted and lengthened by muscular actions. It can move forward by traveling expanding motions of each segment backward. By mimicking the structure and motion of the earthworm, we can construct a robot with high locomotive performance against an irregular ground or a narrow space. In this paper, to investigate the motion analytically, a dynamical model is introduced, which consist of a series-connected multi-mass model. Simple periodic patterns which mimic the motions of earthworms are applied in an open-loop fashion, and the moving patterns are verified through numerical simulations. Furthermore, to generate efficient motion of the robot, a particle swarm optimization algorithm, one of the meta-heuristic optimization, is applied. The optimized results are investigated by comparing to simple periodic patterns.
A motion sensing-based framework for robotic manipulation.
Deng, Hao; Xia, Zeyang; Weng, Shaokui; Gan, Yangzhou; Fang, Peng; Xiong, Jing
2016-01-01
To data, outside of the controlled environments, robots normally perform manipulation tasks operating with human. This pattern requires the robot operators with high technical skills training for varied teach-pendant operating system. Motion sensing technology, which enables human-machine interaction in a novel and natural interface using gestures, has crucially inspired us to adopt this user-friendly and straightforward operation mode on robotic manipulation. Thus, in this paper, we presented a motion sensing-based framework for robotic manipulation, which recognizes gesture commands captured from motion sensing input device and drives the action of robots. For compatibility, a general hardware interface layer was also developed in the framework. Simulation and physical experiments have been conducted for preliminary validation. The results have shown that the proposed framework is an effective approach for general robotic manipulation with motion sensing control.
Two-legged walking robot prescribed motion on a rough cylinder
NASA Astrophysics Data System (ADS)
Golubev, Yury; Melkumova, Elena
2018-05-01
The motion of a walking robot with n legs, that ensure the desired motion of the robot body, is described using general dynamics theoretical framework. When each of the robot legs contacts the surface in a single foothold, the momentum and angular momentum theorems yield a system of six differential equations that form a complete description of the robot motion. In the case of two-leg robot (n = 2) the problem of the existence of the solution can be reduced to a system of algebraic inequalities. Using numerical analysis, the classification of footholds positions for different values of the friction coefficient is obtained.
Sports Training Support Method by Self-Coaching with Humanoid Robot
NASA Astrophysics Data System (ADS)
Toyama, S.; Ikeda, F.; Yasaka, T.
2016-09-01
This paper proposes a new training support method called self-coaching with humanoid robots. In the proposed method, two small size inexpensive humanoid robots are used because of their availability. One robot called target robot reproduces motion of a target player and another robot called reference robot reproduces motion of an expert player. The target player can recognize a target technique from the reference robot and his/her inadequate skill from the target robot. Modifying the motion of the target robot as self-coaching, the target player could get advanced cognition. Some experimental results show some possibility as the new training method and some issues of the self-coaching interface program as a future work.
A Unified Approach to Motion Control of Motion Robots
NASA Technical Reports Server (NTRS)
Seraji, H.
1994-01-01
This paper presents a simple on-line approach for motion control of mobile robots made up of a manipulator arm mounted on a mobile base. The proposed approach is equally applicable to nonholonomic mobile robots, such as rover-mounted manipulators and to holonomic mobile robots such as tracked robots or compound manipulators. The computational efficiency of the proposed control scheme makes it particularly suitable for real-time implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravishankar, A.S. Ghosal, A.
1999-01-01
The dynamics of a feedback-controlled rigid robot is most commonly described by a set of nonlinear ordinary differential equations. In this paper, the authors analyze these equations, representing the feedback-controlled motion of two- and three-degrees-of-freedom rigid robots with revolute (R) and prismatic (P) joints in the absence of compliance, friction, and potential energy, for the possibility of chaotic motions. The authors first study the unforced or inertial motions of the robots, and show that when the Gaussian or Riemannian curvature of the configuration space of a robot is negative, the robot equations can exhibit chaos. If the curvature is zeromore » or positive, then the robot equations cannot exhibit chaos. The authors show that among the two-degrees-of-freedom robots, the PP and the PR robot have zero Gaussian curvature while the RP and RR robots have negative Gaussian curvatures. For the three-degrees-of-freedom robots, they analyze the two well-known RRP and RRR configurations of the Stanford arm and the PUMA manipulator, respectively, and derive the conditions for negative curvature and possible chaotic motions. The criteria of negative curvature cannot be used for the forced or feedback-controlled motions. For the forced motion, the authors resort to the well-known numerical techniques and compute chaos maps, Poincare maps, and bifurcation diagrams. Numerical results are presented for the two-degrees-of-freedom RP and RR robots, and the authors show that these robot equations can exhibit chaos for low controller gains and for large underestimated models. From the bifurcation diagrams, the route to chaos appears to be through period doubling.« less
Motion synthesis and force distribution analysis for a biped robot.
Trojnacki, Maciej T; Zielińska, Teresa
2011-01-01
In this paper, the method of generating biped robot motion using recorded human gait is presented. The recorded data were modified taking into account the velocity available for robot drives. Data includes only selected joint angles, therefore the missing values were obtained considering the dynamic postural stability of the robot, which means obtaining an adequate motion trajectory of the so-called Zero Moment Point (ZMT). Also, the method of determining the ground reaction forces' distribution during the biped robot's dynamic stable walk is described. The method was developed by the authors. Following the description of equations characterizing the dynamics of robot's motion, the values of the components of ground reaction forces were symbolically determined as well as the coordinates of the points of robot's feet contact with the ground. The theoretical considerations have been supported by computer simulation and animation of the robot's motion. This was done using Matlab/Simulink package and Simulink 3D Animation Toolbox, and it has proved the proposed method.
Software for project-based learning of robot motion planning
NASA Astrophysics Data System (ADS)
Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.
2013-12-01
Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can be explained in a simplified two-dimensional setting, but this masks many of the subtleties and complexities of the underlying problem. We have developed software for project-based learning of motion planning that enables deep learning. The projects that we have developed allow advanced undergraduate students and graduate students to reflect on the performance of existing textbook algorithms and their own variations on such algorithms. Formative assessment has been conducted at three institutions. The core of the software used for this teaching module is also used within the Robot Operating System, a widely adopted platform by the robotics research community. This allows for transfer of knowledge and skills to robotics research projects involving a large variety robot hardware platforms.
Yang, Yang; Saleemi, Imran; Shah, Mubarak
2013-07-01
This paper proposes a novel representation of articulated human actions and gestures and facial expressions. The main goals of the proposed approach are: 1) to enable recognition using very few examples, i.e., one or k-shot learning, and 2) meaningful organization of unlabeled datasets by unsupervised clustering. Our proposed representation is obtained by automatically discovering high-level subactions or motion primitives, by hierarchical clustering of observed optical flow in four-dimensional, spatial, and motion flow space. The completely unsupervised proposed method, in contrast to state-of-the-art representations like bag of video words, provides a meaningful representation conducive to visual interpretation and textual labeling. Each primitive action depicts an atomic subaction, like directional motion of limb or torso, and is represented by a mixture of four-dimensional Gaussian distributions. For one--shot and k-shot learning, the sequence of primitive labels discovered in a test video are labeled using KL divergence, and can then be represented as a string and matched against similar strings of training videos. The same sequence can also be collapsed into a histogram of primitives or be used to learn a Hidden Markov model to represent classes. We have performed extensive experiments on recognition by one and k-shot learning as well as unsupervised action clustering on six human actions and gesture datasets, a composite dataset, and a database of facial expressions. These experiments confirm the validity and discriminative nature of the proposed representation.
Method and apparatus for planning motions of robot manipulators
Chen, Pang C.; Hwang, Yong K.
1996-01-01
Method and apparatus for automatically planning motions of robot manipulators. The invention rapidly finds a collision-free path in a cluttered robot environment, if one exists, from any starting configuration of the robot manipulator to any ending configuration. The time to solution of a motion planning problem is not uniform, but proportional to the complexity of the problem.
Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU
Dou, Lihua; Su, Zhong; Liu, Ning
2018-01-01
A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot’s motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS) Inertial-Measurement-Unit (IMU). First, it studies the snake robot’s motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot’s navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF) position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD). In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots. PMID:29547515
NASA Astrophysics Data System (ADS)
Fornas, D.; Sales, J.; Peñalver, A.; Pérez, J.; Fernández, J. J.; Marín, R.; Sanz, P. J.
2016-03-01
This article presents research on the subject of autonomous underwater robot manipulation. Ongoing research in underwater robotics intends to increase the autonomy of intervention operations that require physical interaction in order to achieve social benefits in fields such as archaeology or biology that cannot afford the expenses of costly underwater operations using remote operated vehicles. Autonomous grasping is still a very challenging skill, especially in underwater environments, with highly unstructured scenarios, limited availability of sensors and adverse conditions that affect the robot perception and control systems. To tackle these issues, we propose the use of vision and segmentation techniques that aim to improve the specification of grasping operations on underwater primitive shaped objects. Several sources of stereo information are used to gather 3D information in order to obtain a model of the object. Using a RANSAC segmentation algorithm, the model parameters are estimated and a set of feasible grasps are computed. This approach is validated in both simulated and real underwater scenarios.
NASA Technical Reports Server (NTRS)
Jackson, Mariea Dunn; Dischinger, Charles; Stambolian, Damon; Henderson, Gena
2012-01-01
Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a Primitive motion capture library. The Library will be used by the human factors engineering in the future to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the Primitive models are being developed for the library the project has selected several current human factors issues to be addressed for the SLS and Orion launch systems. This paper explains how the Motion Capture of unique ground systems activities are being used to verify the human factors analysis requirements for ground system used to process the STS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.
Postures and Motions Library Development for Verification of Ground Crew Human Factors Requirements
NASA Technical Reports Server (NTRS)
Stambolian, Damon; Henderson, Gena; Jackson, Mariea Dunn; Dischinger, Charles
2013-01-01
Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a primitive motion capture library. The library will be used by human factors engineering analysts to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the primitive models are being developed for the library, the project has selected several current human factors issues to be addressed for the Space Launch System (SLS) and Orion launch systems. This paper explains how the motion capture of unique ground systems activities is being used to verify the human factors engineering requirements for ground systems used to process the SLS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.
Sample-Based Motion Planning in High-Dimensional and Differentially-Constrained Systems
2010-02-01
Reachable Set . . . 88 6-1 LittleDog Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6-2 Dog bounding up stairs ...planning algorithm implemented on LittleDog, a quadruped robot . The motion planning algorithm successfully planned bounding trajectories over extremely...a motion planning algorithm implemented on LittleDog, a quadruped robot . The motion planning algorithm successfully planned bounding trajectories
Fast instantaneous center of rotation estimation algorithm for a skied-steered robot
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2015-05-01
Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.
Deep circulations under simple classes of stratification
NASA Technical Reports Server (NTRS)
Salby, Murry L.
1989-01-01
Deep circulations where the motion field is vertically aligned over one or more scale heights are studied under barotropic and equivalent barotropic stratifications. The study uses two-dimensional equations reduced from the three-dimensional primitive equations in spherical geometry. A mapping is established between the full primitive equations and general shallow water behavior and the correspondence between variables describing deep atmospheric motion and those of shallow water behavior is established.
a New Golf-Swing Robot Model Utilizing Shaft Elasticity
NASA Astrophysics Data System (ADS)
Suzuki, S.; Inooka, H.
1998-10-01
The performance of golf clubs and balls is generally evaluated by using golf-swing robots that conventionally have two or three joints with completely interrelated motion. This interrelation allows the user of this robot to specify only the initial posture and swing velocity of the robot and therefore the swing motion of this type of robot cannot be subtly adjusted to the specific characteristics of individual golf clubs. Consequently, golf-swing robots cannot accurately emulate advanced golfers, and this causes serious problems for the evaluation of golf club performance. In this study, a new golf-swing robot that can adjust its motion to both a specified value of swing velocity and the specific characteristics of individual golf clubs was analytically investigated. This robot utilizes the dynamic interference force produced by its swing motion and by shaft vibration and can therefore emulate advanced golfers and perform highly reliable evaluations of golf clubs.
A Scalable Distributed Approach to Mobile Robot Vision
NASA Technical Reports Server (NTRS)
Kuipers, Benjamin; Browning, Robert L.; Gribble, William S.
1997-01-01
This paper documents our progress during the first year of work on our original proposal entitled 'A Scalable Distributed Approach to Mobile Robot Vision'. We are pursuing a strategy for real-time visual identification and tracking of complex objects which does not rely on specialized image-processing hardware. In this system perceptual schemas represent objects as a graph of primitive features. Distributed software agents identify and track these features, using variable-geometry image subwindows of limited size. Active control of imaging parameters and selective processing makes simultaneous real-time tracking of many primitive features tractable. Perceptual schemas operate independently from the tracking of primitive features, so that real-time tracking of a set of image features is not hurt by latency in recognition of the object that those features make up. The architecture allows semantically significant features to be tracked with limited expenditure of computational resources, and allows the visual computation to be distributed across a network of processors. Early experiments are described which demonstrate the usefulness of this formulation, followed by a brief overview of our more recent progress (after the first year).
Research on Snake-Like Robot with Controllable Scales
NASA Astrophysics Data System (ADS)
Chen, Kailin; Zhao, Yuting; Chen, Shuping
The purpose of this paper is to propose a new structure for a snake-like robot. This type of snake-like robot is different from the normal snake-like robot because it has lots of controllable scales which have a large role in helping moving. Besides, a new form of robot gait named as linear motion mode is developed based on theoretical analysis for the new mechanical structure. Through simulation and analysis in simmechanics of matlab, we proved the validity of theories about the motion mode of snake-like robot. The proposed machine construction and control method for the designed motion is verified experimentally by the independent developed snake robot.
Autonomous Motion Learning for Intra-Vehicular Activity Space Robot
NASA Astrophysics Data System (ADS)
Watanabe, Yutaka; Yairi, Takehisa; Machida, Kazuo
Space robots will be needed in the future space missions. So far, many types of space robots have been developed, but in particular, Intra-Vehicular Activity (IVA) space robots that support human activities should be developed to reduce human-risks in space. In this paper, we study the motion learning method of an IVA space robot with the multi-link mechanism. The advantage point is that this space robot moves using reaction force of the multi-link mechanism and contact forces from the wall as space walking of an astronaut, not to use a propulsion. The control approach is determined based on a reinforcement learning with the actor-critic algorithm. We demonstrate to clear effectiveness of this approach using a 5-link space robot model by simulation. First, we simulate that a space robot learn the motion control including contact phase in two dimensional case. Next, we simulate that a space robot learn the motion control changing base attitude in three dimensional case.
Evolving mobile robots able to display collective behaviors.
Baldassarre, Gianluca; Nolfi, Stefano; Parisi, Domenico
2003-01-01
We present a set of experiments in which simulated robots are evolved for the ability to aggregate and move together toward a light target. By developing and using quantitative indexes that capture the structural properties of the emerged formations, we show that evolved individuals display interesting behavioral patterns in which groups of robots act as a single unit. Moreover, evolved groups of robots with identical controllers display primitive forms of situated specialization and play different behavioral functions within the group according to the circumstances. Overall, the results presented in the article demonstrate that evolutionary techniques, by exploiting the self-organizing behavioral properties that emerge from the interactions between the robots and between the robots and the environment, are a powerful method for synthesizing collective behavior.
EVA Robotic Assistant Project: Platform Attitude Prediction
NASA Technical Reports Server (NTRS)
Nickels, Kevin M.
2003-01-01
The Robotic Systems Technology Branch is currently working on the development of an EVA Robotic Assistant under the sponsorship of the Surface Systems Thrust of the NASA Cross Enterprise Technology Development Program (CETDP). This will be a mobile robot that can follow a field geologist during planetary surface exploration, carry his tools and the samples that he collects, and provide video coverage of his activity. Prior experiments have shown that for such a robot to be useful it must be able to follow the geologist at walking speed over any terrain of interest. Geologically interesting terrain tends to be rough rather than smooth. The commercial mobile robot that was recently purchased as an initial testbed for the EVA Robotic Assistant Project, an ATRV Jr., is capable of faster than walking speed outside but it has no suspension. Its wheels with inflated rubber tires are attached to axles that are connected directly to the robot body. Any angular motion of the robot produced by driving over rough terrain will directly affect the pointing of the on-board stereo cameras. The resulting image motion is expected to make tracking of the geologist more difficult. This will either require the tracker to search a larger part of the image to find the target from frame to frame or to search mechanically in pan and tilt whenever the image motion is large enough to put the target outside the image in the next frame. This project consists of the design and implementation of a Kalman filter that combines the output of the angular rate sensors and linear accelerometers on the robot to estimate the motion of the robot base. The motion of the stereo camera pair mounted on the robot that results from this motion as the robot drives over rough terrain is then straightforward to compute. The estimates may then be used, for example, to command the robot s on-board pan-tilt unit to compensate for the camera motion induced by the base movement. This has been accomplished in two ways: first, a standalone head stabilizer has been implemented and second, the estimates have been used to influence the search algorithm of the stereo tracking algorithm. Studies of the image motion of a tracked object indicate that the image motion of objects is suppressed while the robot crossing rough terrain. This work expands the range of speed and surface roughness over which the robot should be able to track and follow a field geologist and accept arm gesture commands from the geologist.
Performance-based robotic assistance during rhythmic arm exercises.
Leconte, Patricia; Ronsse, Renaud
2016-09-13
Rhythmic and discrete upper-limb movements are two fundamental motor primitives controlled by different neural pathways, at least partially. After stroke, both primitives can be impaired. Both conventional and robot-assisted therapies mainly train discrete functional movements like reaching and grasping. However, if the movements form two distinct neural and functional primitives, both should be trained to recover the complete motor repertoire. Recent studies show that rhythmic movements tend to be less impaired than discrete ones, so combining both movement types in therapy could support the execution of movements with a higher degree of impairment by movements that are performed more stably. A new performance-based assistance method was developed to train rhythmic movements with a rehabilitation robot. The algorithm uses the assist-as-needed paradigm by independently assessing and assisting movement features of smoothness, velocity, and amplitude. The method relies on different building blocks: (i) an adaptive oscillator captures the main movement harmonic in state variables, (ii) custom metrics measure the movement performance regarding the three features, and (iii) adaptive forces assist the patient. The patient is encouraged to improve performance regarding these three features with assistance forces computed in parallel to each other. The method was tested with simulated jerky signals and a pilot experiment with two stroke patients, who were instructed to make circular movements with an end-effector robot with assistance during half of the trials. Simulation data reveal sensitivity of the metrics for assessing the features while limiting interference between them. The assistance's effectiveness with stroke patients is established since it (i) adapts to the patient's real-time performance, (ii) improves patient motor performance, and (iii) does not lead the patient to slack. The smoothness assistance was by far the most used by both patients, while it provided no active mechanical work to the patient on average. Our performance-based assistance method for training rhythmic movements is a viable candidate to complement robot-assisted upper-limb therapies for training a larger motor repertoire.
Guarded Motion for Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
2005-03-30
The Idaho National Laboratory (INL) has created codes that ensure that a robot will come to a stop at a precise, specified distance from any obstacle regardless of the robot's initial speed, its physical characteristics, and the responsiveness of the low-level motor control schema. This Guarded Motion for Mobile Robots system iteratively adjusts the robot's action in response to information about the robot's environment.
Torres, Luis G; Kuntz, Alan; Gilbert, Hunter B; Swaney, Philip J; Hendrick, Richard J; Webster, Robert J; Alterovitz, Ron
2015-05-01
Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot's shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot's tip. However, the robot's unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot's shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles.
A robotic orbital emulator with lidar-based SLAM and AMCL for multiple entity pose estimation
NASA Astrophysics Data System (ADS)
Shen, Dan; Xiang, Xingyu; Jia, Bin; Wang, Zhonghai; Chen, Genshe; Blasch, Erik; Pham, Khanh
2018-05-01
This paper revises and evaluates an orbital emulator (OE) for space situational awareness (SSA). The OE can produce 3D satellite movements using capabilities generated from omni-wheeled robot and robotic arm motions. The 3D motion of satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The 3D actions are emulated by omni-wheeled robot models while the up-down motions are performed by a stepped-motorcontrolled- ball along a rod (robotic arm), which is attached to the robot. Lidar only measurements are used to estimate the pose information of the multiple robots. SLAM (simultaneous localization and mapping) is running on one robot to generate the map and compute the pose for the robot. Based on the SLAM map maintained by the robot, the other robots run the adaptive Monte Carlo localization (AMCL) method to estimate their poses. The controller is designed to guide the robot to follow a given orbit. The controllability is analyzed by using a feedback linearization method. Experiments are conducted to show the convergence of AMCL and the orbit tracking performance.
NASA Astrophysics Data System (ADS)
Okuzawa, Yuki; Kato, Shohei; Kanoh, Masayoshi; Itoh, Hidenori
A knowledge-based approach to imitation learning of motion generation for humanoid robots and an imitative motion generation system based on motion knowledge learning and modification are described. The system has three parts: recognizing, learning, and modifying parts. The first part recognizes an instructed motion distinguishing it from the motion knowledge database by the continuous hidden markov model. When the motion is recognized as being unfamiliar, the second part learns it using locally weighted regression and acquires a knowledge of the motion. When a robot recognizes the instructed motion as familiar or judges that its acquired knowledge is applicable to the motion generation, the third part imitates the instructed motion by modifying a learned motion. This paper reports some performance results: the motion imitation of several radio gymnastics motions.
A novel four-wire-driven robotic catheter for radio-frequency ablation treatment.
Yoshimitsu, Kitaro; Kato, Takahisa; Song, Sang-Eun; Hata, Nobuhiko
2014-09-01
Robotic catheters have been proposed to increase the efficacy and safety of the radio-frequency ablation treatment. The robotized motion of current robotic catheters mimics the motion of manual ones-namely, deflection in one direction and rotation around the catheter. With the expectation that the higher dexterity may achieve further efficacy and safety of the robotically driven treatment, we prototyped a four-wire-driven robotic catheter with the ability to deflect in two- degree-of-freedom motions in addition to rotation. A novel quad-directional structure with two wires was designed and developed to attain yaw and pitch motion in the robotic catheter. We performed a mechanical evaluation of the bendability and maneuverability of the robotic catheter and compared it with current manual catheters. We found that the four-wire-driven robotic catheter can achieve a pitching angle of 184.7[Formula: see text] at a pulling distance of wire for 11 mm, while the yawing angle was 170.4[Formula: see text] at 11 mm. The robotic catheter could attain the simultaneous two- degree-of-freedom motions in a simulated cardiac chamber. The results indicate that the four-wire-driven robotic catheter may offer physicians the opportunity to intuitively control a catheter and smoothly approach the focus position that they aim to ablate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morin, Stephen A.; Shepherd, Robert F.; Stokes, Adam
Systems and methods for providing flexible robotic actuators are disclosed. Some embodiments of the disclosed subject matter include a soft robot capable of providing a radial deflection motions; a soft tentacle actuator capable of providing a variety of motions and providing transportation means for various types of materials; and a hybrid robotic system that retains desirable characteristics of both soft robots and hard robots. Some embodiments of the disclosed subject matter also include methods for operating the disclosed robotic systems.
Human motion behavior while interacting with an industrial robot.
Bortot, Dino; Ding, Hao; Antonopolous, Alexandros; Bengler, Klaus
2012-01-01
Human workers and industrial robots both have specific strengths within industrial production. Advantageously they complement each other perfectly, which leads to the development of human-robot interaction (HRI) applications. Bringing humans and robots together in the same workspace may lead to potential collisions. The avoidance of such is a central safety requirement. It can be realized with sundry sensor systems, all of them decelerating the robot when the distance to the human decreases alarmingly and applying the emergency stop, when the distance becomes too small. As a consequence, the efficiency of the overall systems suffers, because the robot has high idle times. Optimized path planning algorithms have to be developed to avoid that. The following study investigates human motion behavior in the proximity of an industrial robot. Three different kinds of encounters between the two entities under three robot speed levels are prompted. A motion tracking system is used to capture the motions. Results show, that humans keep an average distance of about 0,5m to the robot, when the encounter occurs. Approximation of the workbenches is influenced by the robot in ten of 15 cases. Furthermore, an increase of participants' walking velocity with higher robot velocities is observed.
NASA Astrophysics Data System (ADS)
Sakai, Naoki; Kawabe, Naoto; Hara, Masayuki; Toyoda, Nozomi; Yabuta, Tetsuro
This paper argues how a compact humanoid robot can acquire a giant-swing motion without any robotic models by using Q-Learning method. Generally, it is widely said that Q-Learning is not appropriated for learning dynamic motions because Markov property is not necessarily guaranteed during the dynamic task. However, we tried to solve this problem by embedding the angular velocity state into state definition and averaging Q-Learning method to reduce dynamic effects, although there remain non-Markov effects in the learning results. The result shows how the robot can acquire a giant-swing motion by using Q-Learning algorithm. The successful acquired motions are analyzed in the view point of dynamics in order to realize a functionally giant-swing motion. Finally, the result shows how this method can avoid the stagnant action loop at around the bottom of the horizontal bar during the early stage of giant-swing motion.
Funnel Libraries for Real-Time Robust Feedback Motion Planning
2016-07-21
motion plans for a robot that are guaranteed to suc- ceed despite uncertainty in the environment, parametric model uncertainty, and disturbances...resulting funnel library is then used to sequentially compose motion plans at runtime while ensuring the safety of the robot . A major advantage of...the work presented here is that by explicitly taking into account the effect of uncertainty, the robot can evaluate motion plans based on how vulnerable
Interactive-rate Motion Planning for Concentric Tube Robots.
Torres, Luis G; Baykal, Cenk; Alterovitz, Ron
2014-05-01
Concentric tube robots may enable new, safer minimally invasive surgical procedures by moving along curved paths to reach difficult-to-reach sites in a patient's anatomy. Operating these devices is challenging due to their complex, unintuitive kinematics and the need to avoid sensitive structures in the anatomy. In this paper, we present a motion planning method that computes collision-free motion plans for concentric tube robots at interactive rates. Our method's high speed enables a user to continuously and freely move the robot's tip while the motion planner ensures that the robot's shaft does not collide with any anatomical obstacles. Our approach uses a highly accurate mechanical model of tube interactions, which is important since small movements of the tip position may require large changes in the shape of the device's shaft. Our motion planner achieves its high speed and accuracy by combining offline precomputation of a collision-free roadmap with online position control. We demonstrate our interactive planner in a simulated neurosurgical scenario where a user guides the robot's tip through the environment while the robot automatically avoids collisions with the anatomical obstacles.
Actuation control of a PiezoMEMS biomimetic robotic jellyfish
NASA Astrophysics Data System (ADS)
Alejandre, Alvaro; Olszewski, Oskar; Jackson, Nathan
2017-06-01
Biomimetic micro-robots try to mimic the motion of a living system in the form of a synthetically developed microfabricated device. Dynamic motion of living systems have evolved through the years, but trying to mimic these motions is challenging. Micro-robotics are particular challenging as the fabrication of devices and controlling the motion in 3 dimensions is difficult. However, micro-scale robotics have potential to be used in a wide range of applications. MEMS based robots that can move and function in a liquid environment is of particular interest. This paper describes the development of a piezoMEMS based device that mimics the movement of a jellyfish. The paper focuses on the development of a finite element model that investigates a method of controlling the individual piezoelectric beams in order to create a jet propulsion motion, consisting of a quick excitation pulse followed by a slow recovery pulse in order to maximize thrust and velocity. By controlling the individual beams or legs of the jellyfish robot the authors can control the robot to move precisely in 3 dimensions.
Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer
Hata, Nobuhiko; Song, Sang-Eun; Olubiyi, Olutayo; Arimitsu, Yasumichi; Fujimoto, Kosuke; Kato, Takahisa; Tuncali, Kemal; Tani, Soichiro; Tokuda, Junichi
2016-01-01
Purpose: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient’s whole body motion. Methods: Keeping the device’s minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient’s body, even in the presence of the patient’s frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors’ validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. Results: The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth of 80 mm. The phantom test indicated that the accuracy of probe placement was significantly better with the robotic instrument guide (4.1 mm) than without the guide (6.3 mm, p<0.001), even in the presence of body motion. When independent organ motion was artificially added, in addition to body motion, the advantage of accurate probe placement using the robotic instrument guide disappeared statistically [i.e., 6.0 mm with the robotic guide and 5.9 mm without the robotic guide (p = 0.906)]. When the robotic instrument guide was used, the total time required to complete the procedure was reduced from 19.6 to 12.7 min (p<0.001). Multivariable analysis indicated that the robotic instrument guide, not the organ motion, was the cause of statistical significance. The statistical power the authors obtained was 88% in accuracy assessment and 99% higher in duration measurement. Conclusions: The body-mounted robotic instrument guide allows positioning of the probe during image-guided cryotherapy of renal cancer and was done in fewer attempts and in less time than the free-hand approach. The accuracy of the placement of the cryotherapy probe was better using the robotic instrument guide than without the guide when no organ motion was present. The accuracy between the robotic and free-hand approach becomes comparable when organ motion was present. PMID:26843245
Kinematics Control and Analysis of Industrial Robot
NASA Astrophysics Data System (ADS)
Zhu, Tongbo; Cai, Fan; Li, Yongmei; Liu, Wei
2018-03-01
The robot’s development present situation, basic principle and control system are introduced briefly. Research is mainly focused on the study of the robot’s kinematics and motion control. The structural analysis of a planar articulated robot (SCARA) robot is presented,the coordinate system is established to obtain the position and orientation matrix of the end effector,a method of robot kinematics analysis based on homogeneous transformation method is proposed, and the kinematics solution of the robot is obtained.Establishment of industrial robot’s kinematics equation and formula for positive kinematics by example. Finally,the kinematic analysis of this robot was verified by examples.It provides a basis for structural design and motion control.It has active significance to promote the motion control of industrial robot.
NASA Astrophysics Data System (ADS)
Shi, Chengkun; Sun, Hanxu; Jia, Qingxuan; Zhao, Kailiang
2009-05-01
For realizing omni-directional movement and operating task of spherical space robot system, this paper describes an innovated prototype and analyzes dynamic characteristics of a spherical rolling robot with telescopic manipulator. Based on the Newton-Euler equations, the kinematics and dynamic equations of the spherical robot's motion are instructed detailedly. Then the motion simulations of the robot in different environments are developed with ADAMS. The simulation results validate the mathematics model of the system. And the dynamic model establishes theoretical basis for the latter job.
Cache-Aware Asymptotically-Optimal Sampling-Based Motion Planning.
Ichnowski, Jeffrey; Prins, Jan F; Alterovitz, Ron
2014-05-01
We present CARRT* (Cache-Aware Rapidly Exploring Random Tree*), an asymptotically optimal sampling-based motion planner that significantly reduces motion planning computation time by effectively utilizing the cache memory hierarchy of modern central processing units (CPUs). CARRT* can account for the CPU's cache size in a manner that keeps its working dataset in the cache. The motion planner progressively subdivides the robot's configuration space into smaller regions as the number of configuration samples rises. By focusing configuration exploration in a region for periods of time, nearest neighbor searching is accelerated since the working dataset is small enough to fit in the cache. CARRT* also rewires the motion planning graph in a manner that complements the cache-aware subdivision strategy to more quickly refine the motion planning graph toward optimality. We demonstrate the performance benefit of our cache-aware motion planning approach for scenarios involving a point robot as well as the Rethink Robotics Baxter robot.
Deictic primitives for general purpose navigation
NASA Technical Reports Server (NTRS)
Crismann, Jill D.
1994-01-01
A visually-based deictic primative used as an elementary command set for general purpose navigation was investigated. It was shown that a simple 'follow your eyes' scenario is sufficient for tracking a moving target. Limitations of velocity, acceleration, and modeling of the response of the mechanical systems were enforced. Realistic paths of the robots were produced during the simulation. Scientists could remotely command a planetary rover to go to a particular rock formation that may be interesting. Similarly an expert at plant maintenance could obtain diagnostic information remotely by using deictic primitives on a mobile are used in the deictic primitives, we could imagine that the exact same control software could be used for all of these applications.
NASA Astrophysics Data System (ADS)
Almubarak, Yara; Tadesse, Yonas
2017-04-01
The potential applications of humanoid robots in social environments, motivates researchers to design, and control biomimetic humanoid robots. Generally, people are more interested to interact with robots that have similar attributes and movements to humans. The head is one of most important part of any social robot. Currently, most humanoid heads use electrical motors, pneumatic actuators, and shape memory alloy (SMA) actuators for actuation. Electrical and pneumatic actuators take most of the space and would cause unsmooth motions. SMAs are expensive to use in humanoids. Recently, in many robotic projects, Twisted and Coiled Polymer (TCP) artificial muscles are used as linear actuators which take up little space compared to the motors. In this paper, we will demonstrate the designing process and motion control of a robotic head with TCP muscles. Servo motors and artificial muscles are used for actuating the head motion, which have been controlled by a cost efficient ARM Cortex-M7 based development board. A complete comparison between the two actuators is presented.
JacksonBot - Design, Simulation and Optimal Control of an Action Painting Robot
NASA Astrophysics Data System (ADS)
Raschke, Michael; Mombaur, Katja; Schubert, Alexander
We present the robotics platform JacksonBot which is capable to produce paintings inspired by the Action Painting style of Jackson Pollock. A dynamically moving robot arm splashes color from a container at the end effector on the canvas. The paintings produced by this platform rely on a combination of the algorithmic generation of robot arm motions with random effects of the splashing color. The robot can be considered as a complex and powerful tool to generate art works programmed by a user. Desired end effector motions can be prescribed either by mathematical functions, by point sequences or by data glove motions. We have evaluated the effect of different shapes of input motions on the resulting painting. In order to compute the robot joint trajectories necessary to move along a desired end effector path, we use an optimal control based approach to solve the inverse kinematics problem.
An Exoskeleton Robot for Human Forearm and Wrist Motion Assist
NASA Astrophysics Data System (ADS)
Ranathunga Arachchilage Ruwan Chandra Gopura; Kiguchi, Kazuo
The exoskeleton robot is worn by the human operator as an orthotic device. Its joints and links correspond to those of the human body. The same system operated in different modes can be used for different fundamental applications; a human-amplifier, haptic interface, rehabilitation device and assistive device sharing a portion of the external load with the operator. We have been developing exoskeleton robots for assisting the motion of physically weak individuals such as elderly or slightly disabled in daily life. In this paper, we propose a three degree of freedom (3DOF) exoskeleton robot (W-EXOS) for the forearm pronation/ supination motion, wrist flexion/extension motion and ulnar/radial deviation. The paper describes the wrist anatomy toward the development of the exoskeleton robot, the hardware design of the exoskeleton robot and EMG-based control method. The skin surface electromyographic (EMG) signals of muscles in forearm of the exoskeletons' user and the hand force/forearm torque are used as input information for the controller. By applying the skin surface EMG signals as main input signals to the controller, automatic control of the robot can be realized without manipulating any other equipment. Fuzzy control method has been applied to realize the natural and flexible motion assist. Experiments have been performed to evaluate the proposed exoskeleton robot and its control method.
Constrained motion model of mobile robots and its applications.
Zhang, Fei; Xi, Yugeng; Lin, Zongli; Chen, Weidong
2009-06-01
Target detecting and dynamic coverage are fundamental tasks in mobile robotics and represent two important features of mobile robots: mobility and perceptivity. This paper establishes the constrained motion model and sensor model of a mobile robot to represent these two features and defines the k -step reachable region to describe the states that the robot may reach. We show that the calculation of the k-step reachable region can be reduced from that of 2(k) reachable regions with the fixed motion styles to k + 1 such regions and provide an algorithm for its calculation. Based on the constrained motion model and the k -step reachable region, the problems associated with target detecting and dynamic coverage are formulated and solved. For target detecting, the k-step detectable region is used to describe the area that the robot may detect, and an algorithm for detecting a target and planning the optimal path is proposed. For dynamic coverage, the k-step detected region is used to represent the area that the robot has detected during its motion, and the dynamic-coverage strategy and algorithm are proposed. Simulation results demonstrate the efficiency of the coverage algorithm in both convex and concave environments.
Human Guidance Behavior Decomposition and Modeling
NASA Astrophysics Data System (ADS)
Feit, Andrew James
Trained humans are capable of high performance, adaptable, and robust first-person dynamic motion guidance behavior. This behavior is exhibited in a wide variety of activities such as driving, piloting aircraft, skiing, biking, and many others. Human performance in such activities far exceeds the current capability of autonomous systems in terms of adaptability to new tasks, real-time motion planning, robustness, and trading safety for performance. The present work investigates the structure of human dynamic motion guidance that enables these performance qualities. This work uses a first-person experimental framework that presents a driving task to the subject, measuring control inputs, vehicle motion, and operator visual gaze movement. The resulting data is decomposed into subspace segment clusters that form primitive elements of action-perception interactive behavior. Subspace clusters are defined by both agent-environment system dynamic constraints and operator control strategies. A key contribution of this work is to define transitions between subspace cluster segments, or subgoals, as points where the set of active constraints, either system or operator defined, changes. This definition provides necessary conditions to determine transition points for a given task-environment scenario that allow a solution trajectory to be planned from known behavior elements. In addition, human gaze behavior during this task contains predictive behavior elements, indicating that the identified control modes are internally modeled. Based on these ideas, a generative, autonomous guidance framework is introduced that efficiently generates optimal dynamic motion behavior in new tasks. The new subgoal planning algorithm is shown to generate solutions to certain tasks more quickly than existing approaches currently used in robotics.
Baykal, Cenk; Torres, Luis G; Alterovitz, Ron
2015-09-28
Concentric tube robots are tentacle-like medical robots that can bend around anatomical obstacles to access hard-to-reach clinical targets. The component tubes of these robots can be swapped prior to performing a task in order to customize the robot's behavior and reachable workspace. Optimizing a robot's design by appropriately selecting tube parameters can improve the robot's effectiveness on a procedure-and patient-specific basis. In this paper, we present an algorithm that generates sets of concentric tube robot designs that can collectively maximize the reachable percentage of a given goal region in the human body. Our algorithm combines a search in the design space of a concentric tube robot using a global optimization method with a sampling-based motion planner in the robot's configuration space in order to find sets of designs that enable motions to goal regions while avoiding contact with anatomical obstacles. We demonstrate the effectiveness of our algorithm in a simulated scenario based on lung anatomy.
The ECM moves during primitive streak formation--computation of ECM versus cellular motion.
Zamir, Evan A; Rongish, Brenda J; Little, Charles D
2008-10-14
Galileo described the concept of motion relativity--motion with respect to a reference frame--in 1632. He noted that a person below deck would be unable to discern whether the boat was moving. Embryologists, while recognizing that embryonic tissues undergo large-scale deformations, have failed to account for relative motion when analyzing cell motility data. A century of scientific articles has advanced the concept that embryonic cells move ("migrate") in an autonomous fashion such that, as time progresses, the cells and their progeny assemble an embryo. In sharp contrast, the motion of the surrounding extracellular matrix scaffold has been largely ignored/overlooked. We developed computational/optical methods that measure the extent embryonic cells move relative to the extracellular matrix. Our time-lapse data show that epiblastic cells largely move in concert with a sub-epiblastic extracellular matrix during stages 2 and 3 in primitive streak quail embryos. In other words, there is little cellular motion relative to the extracellular matrix scaffold--both components move together as a tissue. The extracellular matrix displacements exhibit bilateral vortical motion, convergence to the midline, and extension along the presumptive vertebral axis--all patterns previously attributed solely to cellular "migration." Our time-resolved data pose new challenges for understanding how extracellular chemical (morphogen) gradients, widely hypothesized to guide cellular trajectories at early gastrulation stages, are maintained in this dynamic extracellular environment. We conclude that models describing primitive streak cellular guidance mechanisms must be able to account for sub-epiblastic extracellular matrix displacements.
Intelligent control of neurosurgical robot MM-3 using dynamic motion scaling.
Ko, Sunho; Nakazawa, Atsushi; Kurose, Yusuke; Harada, Kanako; Mitsuishi, Mamoru; Sora, Shigeo; Shono, Naoyuki; Nakatomi, Hirofumi; Saito, Nobuhito; Morita, Akio
2017-05-01
OBJECTIVE Advanced and intelligent robotic control is necessary for neurosurgical robots, which require great accuracy and precision. In this article, the authors propose methods for dynamically and automatically controlling the motion-scaling ratio of a master-slave neurosurgical robotic system to reduce the task completion time. METHODS Three dynamic motion-scaling modes were proposed and compared with the conventional fixed motion-scaling mode. These 3 modes were defined as follows: 1) the distance between a target point and the tip of the slave manipulator, 2) the distance between the tips of the slave manipulators, and 3) the velocity of the master manipulator. Five test subjects, 2 of whom were neurosurgeons, sutured 0.3-mm artificial blood vessels using the MM-3 neurosurgical robot in each mode. RESULTS The task time, total path length, and helpfulness score were evaluated. Although no statistically significant differences were observed, the mode using the distance between the tips of the slave manipulators improves the suturing performance. CONCLUSIONS Dynamic motion scaling has great potential for the intelligent and accurate control of neurosurgical robots.
Single-step collision-free trajectory planning of biped climbing robots in spatial trusses.
Zhu, Haifei; Guan, Yisheng; Chen, Shengjun; Su, Manjia; Zhang, Hong
For a biped climbing robot with dual grippers to climb poles, trusses or trees, feasible collision-free climbing motion is inevitable and essential. In this paper, we utilize the sampling-based algorithm, Bi-RRT, to plan single-step collision-free motion for biped climbing robots in spatial trusses. To deal with the orientation limit of a 5-DoF biped climbing robot, a new state representation along with corresponding operations including sampling, metric calculation and interpolation is presented. A simple but effective model of a biped climbing robot in trusses is proposed, through which the motion planning of one climbing cycle is transformed to that of a manipulator. In addition, the pre- and post-processes are introduced to expedite the convergence of the Bi-RRT algorithm and to ensure the safe motion of the climbing robot near poles as well. The piecewise linear paths are smoothed by utilizing cubic B-spline curve fitting. The effectiveness and efficiency of the presented Bi-RRT algorithm for climbing motion planning are verified by simulations.
The phantom robot - Predictive displays for teleoperation with time delay
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Kim, Won S.; Venema, Steven C.
1990-01-01
An enhanced teleoperation technique for time-delayed bilateral teleoperator control is discussed. The control technique selected for time delay is based on the use of a high-fidelity graphics phantom robot that is being controlled in real time (without time delay) against the static task image. Thus, the motion of the phantom robot image on the monitor predicts the motion of the real robot. The real robot's motion will follow the phantom robot's motion on the monitor with the communication time delay implied in the task. Real-time high-fidelity graphics simulation of a PUMA arm is generated and overlaid on the actual camera view of the arm. A simple camera calibration technique is used for calibrated graphics overlay. A preliminary experiment is performed with the predictive display by using a very simple tapping task. The results with this simple task indicate that predictive display enhances the human operator's telemanipulation task performance significantly during free motion when there is a long time delay. It appears, however, that either two-view or stereoscopic predictive displays are necessary for general three-dimensional tasks.
Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators.
Marchese, Andrew D; Onal, Cagdas D; Rus, Daniela
2014-03-01
In this work we describe an autonomous soft-bodied robot that is both self-contained and capable of rapid, continuum-body motion. We detail the design, modeling, fabrication, and control of the soft fish, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the robot has a novel fluidic actuation system that drives body motion and has all the subsystems of a traditional robot onboard: power, actuation, processing, and control. At the core of the fish's soft body is an array of fluidic elastomer actuators. We design the fish to emulate escape responses in addition to forward swimming because such maneuvers require rapid body accelerations and continuum-body motion. These maneuvers showcase the performance capabilities of this self-contained robot. The kinematics and controllability of the robot during simulated escape response maneuvers are analyzed and compared with studies on biological fish. We show that during escape responses, the soft-bodied robot has similar input-output relationships to those observed in biological fish. The major implication of this work is that we show soft robots can be both self-contained and capable of rapid body motion.
Collision-free motion of two robot arms in a common workspace
NASA Technical Reports Server (NTRS)
Basta, Robert A.; Mehrotra, Rajiv; Varanasi, Murali R.
1987-01-01
Collision-free motion of two robot arms in a common workspace is investigated. A collision-free motion is obtained by detecting collisions along the preplanned trajectories using a sphere model for the wrist of each robot and then modifying the paths and/or trajectories of one or both robots to avoid the collision. Detecting and avoiding collisions are based on the premise that: preplanned trajectories of the robots follow a straight line; collisions are restricted to between the wrists of the two robots (which corresponds to the upper three links of PUMA manipulators); and collisions never occur between the beginning points or end points on the straight line paths. The collision detection algorithm is described and some approaches to collision avoidance are discussed.
Training industrial robots with gesture recognition techniques
NASA Astrophysics Data System (ADS)
Piane, Jennifer; Raicu, Daniela; Furst, Jacob
2013-01-01
In this paper we propose to use gesture recognition approaches to track a human hand in 3D space and, without the use of special clothing or markers, be able to accurately generate code for training an industrial robot to perform the same motion. The proposed hand tracking component includes three methods: a color-thresholding model, naïve Bayes analysis and Support Vector Machine (SVM) to detect the human hand. Next, it performs stereo matching on the region where the hand was detected to find relative 3D coordinates. The list of coordinates returned is expectedly noisy due to the way the human hand can alter its apparent shape while moving, the inconsistencies in human motion and detection failures in the cluttered environment. Therefore, the system analyzes the list of coordinates to determine a path for the robot to move, by smoothing the data to reduce noise and looking for significant points used to determine the path the robot will ultimately take. The proposed system was applied to pairs of videos recording the motion of a human hand in a „real‟ environment to move the end-affector of a SCARA robot along the same path as the hand of the person in the video. The correctness of the robot motion was determined by observers indicating that motion of the robot appeared to match the motion of the video.
Development of a force-reflecting robotic platform for cardiac catheter navigation.
Park, Jun Woo; Choi, Jaesoon; Pak, Hui-Nam; Song, Seung Joon; Lee, Jung Chan; Park, Yongdoo; Shin, Seung Min; Sun, Kyung
2010-11-01
Electrophysiological catheters are used for both diagnostics and clinical intervention. To facilitate more accurate and precise catheter navigation, robotic cardiac catheter navigation systems have been developed and commercialized. The authors have developed a novel force-reflecting robotic catheter navigation system. The system is a network-based master-slave configuration having a 3-degree of freedom robotic manipulator for operation with a conventional cardiac ablation catheter. The master manipulator implements a haptic user interface device with force feedback using a force or torque signal either measured with a sensor or estimated from the motor current signal in the slave manipulator. The slave manipulator is a robotic motion control platform on which the cardiac ablation catheter is mounted. The catheter motions-forward and backward movements, rolling, and catheter tip bending-are controlled by electromechanical actuators located in the slave manipulator. The control software runs on a real-time operating system-based workstation and implements the master/slave motion synchronization control of the robot system. The master/slave motion synchronization response was assessed with step, sinusoidal, and arbitrarily varying motion commands, and showed satisfactory performance with insignificant steady-state motion error. The current system successfully implemented the motion control function and will undergo safety and performance evaluation by means of animal experiments. Further studies on the force feedback control algorithm and on an active motion catheter with an embedded actuation mechanism are underway. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Experimental study of the quasi 1d motion of a ``robot bacterium'' within a tube
NASA Astrophysics Data System (ADS)
Liu, Kai; Jiao, Yusheng; Li, Shutong; Ding, Yang; Xu, Xinliang; Complex Fluids Team
2017-11-01
Understanding how solid boundary influences the motion of a micro-swimmer can be quite important. Here we experimentally study the problem with a system of centi-meter size ``robot bacterium'' immersed in the solvent silicon oil. Equipped with build-in battery and motor, the robot mimics a free swimmer and the overall Reynolds number of the system is kept very small as we use silicon oil with very high viscosity. The motion of centi-meter size ``robot bacterium'' within cylindrical tube is experimentally studied in detail. Our results show that robot bacteria with different shapes respond very different to the solid boundary. For certain shapes the swimmers actually swim much faster within a tube, when compared to their motions without any confinement, in good agreement with our numerical evaluations of the hydrodynamics of the system.
Takano, Wataru; Kusajima, Ikuo; Nakamura, Yoshihiko
2016-08-01
It is desirable for robots to be able to linguistically understand human actions during human-robot interactions. Previous research has developed frameworks for encoding human full body motion into model parameters and for classifying motion into specific categories. For full understanding, the motion categories need to be connected to the natural language such that the robots can interpret human motions as linguistic expressions. This paper proposes a novel framework for integrating observation of human motion with that of natural language. This framework consists of two models; the first model statistically learns the relations between motions and their relevant words, and the second statistically learns sentence structures as word n-grams. Integration of these two models allows robots to generate sentences from human motions by searching for words relevant to the motion using the first model and then arranging these words in appropriate order using the second model. This allows making sentences that are the most likely to be generated from the motion. The proposed framework was tested on human full body motion measured by an optical motion capture system. In this, descriptive sentences were manually attached to the motions, and the validity of the system was demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.
CT fluoroscopy-guided robotically-assisted lung biopsy
NASA Astrophysics Data System (ADS)
Xu, Sheng; Fichtinger, Gabor; Taylor, Russell H.; Banovac, Filip; Cleary, Kevin
2006-03-01
Lung biopsy is a common interventional radiology procedure. One of the difficulties in performing the lung biopsy is that lesions move with respiration. This paper presents a new robotically assisted lung biopsy system for CT fluoroscopy that can automatically compensate for the respiratory motion during the intervention. The system consists of a needle placement robot to hold the needle on the CT scan plane, a radiolucent Z-frame for registration of the CT and robot coordinate systems, and a frame grabber to obtain the CT fluoroscopy image in real-time. The CT fluoroscopy images are used to noninvasively track the motion of a pulmonary lesion in real-time. The position of the lesion in the images is automatically determined by the image processing software and the motion of the robot is controlled to compensate for the lesion motion. The system was validated under CT fluoroscopy using a respiratory motion simulator. A swine study was also done to show the feasibility of the technique in a respiring animal.
Torres, Luis G.; Kuntz, Alan; Gilbert, Hunter B.; Swaney, Philip J.; Hendrick, Richard J.; Webster, Robert J.; Alterovitz, Ron
2015-01-01
Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot’s shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot’s tip. However, the robot’s unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot’s shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles. PMID:26413381
Flowrate behavior and clustering of self-driven robots in a channel
NASA Astrophysics Data System (ADS)
Tian, Bo; Sun, Wang-Ping; Li, Ming; Jiang, Rui; Hu, Mao-Bin
2018-03-01
In this paper, the collective motion of self-driven robots is studied experimentally and theoretically. In the channel, the flowrate of robots increases with the density linearly, even if the density of the robots tends to 1.0. There is no abrupt drop in the flowrate, similar to the collective motion of ants. We find that the robots will adjust their velocities by a serial of tiny collisions. The speed-adjustment will affect both robots involved in the collision, and will help to maintain a nearly uniform velocity for the robots. As a result, the flowrate drop will disappear. In the motion, the robots neither gather together nor scatter completely. Instead, they form some clusters to move together. These clusters are not stable during the moving process, but their sizes follow a power-law-alike distribution. We propose a theoretical model to simulate this collective motion process, which can reproduce these behaviors well. Analytic results about the flowrate behavior are also consistent with experiments. Project supported by the Key Research and Development Program, China (Grant No. 2016YFC0802508) and the National Natural Science Foundation of China (Grant Nos. 11672289 and 11422221).
Advanced Robotics for In-Space Vehicle Processing
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Estus, Jay; Heneghan, Cate; Bosley, John
1990-01-01
An analysis of spaceborne vehicle processing is described. Generic crew-EVA tasks are presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general implications to other on-orbit vehicles. The OMV is examined with respect to both servicing and maintenance. Crew-EVA activities are presented by task and mapped to a common set of generic crew-EVA primitives to identify high-demand areas for telerobot services. Similarly, a set of telerobot primitives is presented that can be used to model telerobot actions for alternative telerobot reference configurations. The telerobot primitives are tied to technologies and used for composting telerobot operations for an automated refueling scenario. Telerobotics technology issues and design accomodation guidelines (hooks and scars) for the Space Station Freedom are described.
NASA Technical Reports Server (NTRS)
Garrahan, Steven L.; Tolson, Robert H.; Williams, Robert L., II
1995-01-01
Industrial robots are usually attached to a rigid base. Placing the robot on a compliant base introduces dynamic coupling between the two systems. The Vehicle Emulation System (VES) is a six DOF platform that is capable of modeling this interaction. The VES employs a force-torque sensor as the interface between robot and base. A computer simulation of the VES is presented. Each of the hardware and software components is described and Simulink is used as the programming environment. The simulation performance is compared with experimental results to validate accuracy. A second simulation which models the dynamic interaction of a robot and a flexible base acts as a comparison to the simulated motion of the VES. Results are presented that compare the simulated VES motion with the motion of the VES hardware using the same admittance model. The two computer simulations are compared to determine how well the VES is expected to emulate the desired motion. Simulation results are given for robots mounted to the end effector of the Space Shuttle Remote Manipulator System (SRMS). It is shown that for fast motions of the two robots studied, the SRMS experiences disturbances on the order of centimeters. Larger disturbances are possible if different manipulators are used.
Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.
Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Portillo, Eva; Jung, Je Hyung
2018-03-05
In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP) rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error). Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.
The research on visual industrial robot which adopts fuzzy PID control algorithm
NASA Astrophysics Data System (ADS)
Feng, Yifei; Lu, Guoping; Yue, Lulin; Jiang, Weifeng; Zhang, Ye
2017-03-01
The control system of six degrees of freedom visual industrial robot based on the control mode of multi-axis motion control cards and PC was researched. For the variable, non-linear characteristics of industrial robot`s servo system, adaptive fuzzy PID controller was adopted. It achieved better control effort. In the vision system, a CCD camera was used to acquire signals and send them to video processing card. After processing, PC controls the six joints` motion by motion control cards. By experiment, manipulator can operate with machine tool and vision system to realize the function of grasp, process and verify. It has influence on the manufacturing of the industrial robot.
A satellite orbital testbed for SATCOM using mobile robots
NASA Astrophysics Data System (ADS)
Shen, Dan; Lu, Wenjie; Wang, Zhonghai; Jia, Bin; Wang, Gang; Wang, Tao; Chen, Genshe; Blasch, Erik; Pham, Khanh
2016-05-01
This paper develops and evaluates a satellite orbital testbed (SOT) for satellite communications (SATCOM). SOT can emulate the 3D satellite orbit using the omni-wheeled robots and a robotic arm. The 3D motion of satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The former actions are emulated by omni-wheeled robots while the up-down motions are performed by a stepped-motor-controlled-ball along a rod (robotic arm), which is attached to the robot. The emulated satellite positions will go to the measure model, whose results will be used to perform multiple space object tracking. Then the tracking results will go to the maneuver detection and collision alert. The satellite maneuver commands will be translated to robots commands and robotic arm commands. In SATCOM, the effects of jamming depend on the range and angles of the positions of satellite transponder relative to the jamming satellite. We extend the SOT to include USRP transceivers. In the extended SOT, the relative ranges and angles are implemented using omni-wheeled robots and robotic arms.
Hannan, Michael W; Walker, Ian D
2003-02-01
Traditionally, robot manipulators have been a simple arrangement of a small number of serially connected links and actuated joints. Though these manipulators prove to be very effective for many tasks, they are not without their limitations, due mainly to their lack of maneuverability or total degrees of freedom. Continuum style (i.e., continuous "back-bone") robots, on the other hand, exhibit a wide range of maneuverability, and can have a large number of degrees of freedom. The motion of continuum style robots is generated through the bending of the robot over a given section; unlike traditional robots where the motion occurs in discrete locations, i.e., joints. The motion of continuum manipulators is often compared to that of biological manipulators such as trunks and tentacles. These continuum style robots can achieve motions that could only be obtainable by a conventionally designed robot with many more degrees of freedom. In this paper we present a detailed formulation and explanation of a novel kinematic model for continuum style robots. The design, construction, and implementation of our continuum style robot called the elephant trunk manipulator is presented. Experimental results are then provided to verify the legitimacy of our model when applied to our physical manipulator. We also provide a set of obstacle avoidance experiments that help to exhibit the practical implementation of both our manipulator and our kinematic model. c2003 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Hannan, Michael W.; Walker, Ian D.
2003-01-01
Traditionally, robot manipulators have been a simple arrangement of a small number of serially connected links and actuated joints. Though these manipulators prove to be very effective for many tasks, they are not without their limitations, due mainly to their lack of maneuverability or total degrees of freedom. Continuum style (i.e., continuous "back-bone") robots, on the other hand, exhibit a wide range of maneuverability, and can have a large number of degrees of freedom. The motion of continuum style robots is generated through the bending of the robot over a given section; unlike traditional robots where the motion occurs in discrete locations, i.e., joints. The motion of continuum manipulators is often compared to that of biological manipulators such as trunks and tentacles. These continuum style robots can achieve motions that could only be obtainable by a conventionally designed robot with many more degrees of freedom. In this paper we present a detailed formulation and explanation of a novel kinematic model for continuum style robots. The design, construction, and implementation of our continuum style robot called the elephant trunk manipulator is presented. Experimental results are then provided to verify the legitimacy of our model when applied to our physical manipulator. We also provide a set of obstacle avoidance experiments that help to exhibit the practical implementation of both our manipulator and our kinematic model. c2003 Wiley Periodicals, Inc.
Design and implementation of self-balancing coaxial two wheel robot based on HSIC
NASA Astrophysics Data System (ADS)
Hu, Tianlian; Zhang, Hua; Dai, Xin; Xia, Xianfeng; Liu, Ran; Qiu, Bo
2007-12-01
This thesis has studied the control problem concerning position and orientation control of self-balancing coaxial two wheel robot based on the human simulated intelligent control (HSIC) theory. Adopting Lagrange equation, the dynamic model of self-balancing coaxial two-wheel Robot is built up, and the Sensory-motor Intelligent Schemas (SMIS) of HSIC controller for the robot is designed by analyzing its movement and simulating the human controller. In robot's motion process, by perceiving position and orientation of the robot and using multi-mode control strategy based on characteristic identification, the HSIC controller enables the robot to control posture. Utilizing Matlab/Simulink, a simulation platform is established and a motion controller is designed and realized based on RT-Linux real-time operating system, employing high speed ARM9 processor S3C2440 as kernel of the motion controller. The effectiveness of the new design is testified by the experiment.
NASA Technical Reports Server (NTRS)
Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve
2003-01-01
A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.
Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application
NASA Astrophysics Data System (ADS)
Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain
2014-12-01
Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.
Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles
NASA Astrophysics Data System (ADS)
Zhang, Jun; Simeonov, Anthony; Yip, Michael C.
2018-03-01
Robotic artificial muscles are compliant and can generate straight contractions. They are increasingly popular as driving mechanisms for robotic systems. However, their strain and tension force often vary simultaneously under varying loads and inputs, resulting in three-dimensional hysteretic relationships. The three-dimensional hysteresis in robotic artificial muscles poses difficulties in estimating how they work and how to make them perform designed motions. This study proposes an approach to driving robotic artificial muscles to generate designed motions and forces by modeling and compensating for their three-dimensional hysteresis. The proposed scheme captures the nonlinearity by embedding two hysteresis models. The effectiveness of the model is confirmed by testing three popular robotic artificial muscles. Inverting the proposed model allows us to compensate for the hysteresis among temperature surrogate, contraction length, and tension force of a shape memory alloy (SMA) actuator. Feedforward control of an SMA-actuated robotic bicep is demonstrated. This study can be generalized to other robotic artificial muscles, thus enabling muscle-powered machines to generate desired motions.
Integrating deliberative planning in a robot architecture
NASA Technical Reports Server (NTRS)
Elsaesser, Chris; Slack, Marc G.
1994-01-01
The role of planning and reactive control in an architecture for autonomous agents is discussed. The postulated architecture seperates the general robot intelligence problem into three interacting pieces: (1) robot reactive skills, i.e., grasping, object tracking, etc.; (2) a sequencing capability to differentially ativate the reactive skills; and (3) a delibrative planning capability to reason in depth about goals, preconditions, resources, and timing constraints. Within the sequencing module, caching techniques are used for handling routine activities. The planning system then builds on these cached solutions to routine tasks to build larger grain sized primitives. This eliminates large numbers of essentially linear planning problems. The architecture will be used in the future to incorporate in robots cognitive capabilites normally associated with intelligent behavior.
Structured Kernel Subspace Learning for Autonomous Robot Navigation.
Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai
2018-02-14
This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.
Physiological and subjective evaluation of a human-robot object hand-over task.
Dehais, Frédéric; Sisbot, Emrah Akin; Alami, Rachid; Causse, Mickaël
2011-11-01
In the context of task sharing between a robot companion and its human partners, the notions of safe and compliant hardware are not enough. It is necessary to guarantee ergonomic robot motions. Therefore, we have developed Human Aware Manipulation Planner (Sisbot et al., 2010), a motion planner specifically designed for human-robot object transfer by explicitly taking into account the legibility, the safety and the physical comfort of robot motions. The main objective of this research was to define precise subjective metrics to assess our planner when a human interacts with a robot in an object hand-over task. A second objective was to obtain quantitative data to evaluate the effect of this interaction. Given the short duration, the "relative ease" of the object hand-over task and its qualitative component, classical behavioral measures based on accuracy or reaction time were unsuitable to compare our gestures. In this perspective, we selected three measurements based on the galvanic skin conductance response, the deltoid muscle activity and the ocular activity. To test our assumptions and validate our planner, an experimental set-up involving Jido, a mobile manipulator robot, and a seated human was proposed. For the purpose of the experiment, we have defined three motions that combine different levels of legibility, safety and physical comfort values. After each robot gesture the participants were asked to rate them on a three dimensional subjective scale. It has appeared that the subjective data were in favor of our reference motion. Eventually the three motions elicited different physiological and ocular responses that could be used to partially discriminate them. Copyright © 2011 Elsevier Ltd and the Ergonomics Society. All rights reserved.
Whole-body Motion Planning with Simple Dynamics and Full Kinematics
2014-08-01
optimizations can take an excessively long time to run, and may also suffer from local minima. Thus, this approach can become intractable for complex robots...motions like jumping and climbing. Additionally, the point-mass model suggests that the centroidal angular momentum is zero, which is not valid for motions...use in the DARPA Robotics Challenge. A. Jumping Our first example is to command the robot to jump off the ground, as illustrated in Fig.4. We assign
Shahriari, Mohammadali; Biglarbegian, Mohammad
2018-01-01
This paper presents a new conflict resolution methodology for multiple mobile robots while ensuring their motion-liveness, especially for cluttered and dynamic environments. Our method constructs a mathematical formulation in a form of an optimization problem by minimizing the overall travel times of the robots subject to resolving all the conflicts in their motion. This optimization problem can be easily solved through coordinating only the robots' speeds. To overcome the computational cost in executing the algorithm for very cluttered environments, we develop an innovative method through clustering the environment into independent subproblems that can be solved using parallel programming techniques. We demonstrate the scalability of our approach through performing extensive simulations. Simulation results showed that our proposed method is capable of resolving the conflicts of 100 robots in less than 1.23 s in a cluttered environment that has 4357 intersections in the paths of the robots. We also developed an experimental testbed and demonstrated that our approach can be implemented in real time. We finally compared our approach with other existing methods in the literature both quantitatively and qualitatively. This comparison shows while our approach is mathematically sound, it is more computationally efficient, scalable for very large number of robots, and guarantees the live and smooth motion of robots.
Measurement of the Robot Motor Capability of a Robot Motor System: A Fitts's-Law-Inspired Approach
Lin, Hsien-I; George Lee, C. S.
2013-01-01
Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly. PMID:23820745
Measurement of the robot motor capability of a robot motor system: a Fitts's-law-inspired approach.
Lin, Hsien-I; Lee, C S George
2013-07-02
Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly.
Method for neural network control of motion using real-time environmental feedback
NASA Technical Reports Server (NTRS)
Buckley, Theresa M. (Inventor)
1997-01-01
A method of motion control for robotics and other automatically controlled machinery using a neural network controller with real-time environmental feedback. The method is illustrated with a two-finger robotic hand having proximity sensors and force sensors that provide environmental feedback signals. The neural network controller is taught to control the robotic hand through training sets using back- propagation methods. The training sets are created by recording the control signals and the feedback signal as the robotic hand or a simulation of the robotic hand is moved through a representative grasping motion. The data recorded is divided into discrete increments of time and the feedback data is shifted out of phase with the control signal data so that the feedback signal data lag one time increment behind the control signal data. The modified data is presented to the neural network controller as a training set. The time lag introduced into the data allows the neural network controller to account for the temporal component of the robotic motion. Thus trained, the neural network controlled robotic hand is able to grasp a wide variety of different objects by generalizing from the training sets.
An orbital emulator for pursuit-evasion game theoretic sensor management
NASA Astrophysics Data System (ADS)
Shen, Dan; Wang, Tao; Wang, Gang; Jia, Bin; Wang, Zhonghai; Chen, Genshe; Blasch, Erik; Pham, Khanh
2017-05-01
This paper develops and evaluates an orbital emulator (OE) for space situational awareness (SSA). The OE can produce 3D satellite movements using capabilities generated from omni-wheeled robot and robotic arm motion methods. The 3D motion of a satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The 3D actions are emulated by omni-wheeled robot models while the up-down motions are performed by a stepped-motor-controlled-ball along a rod (robotic arm), which is attached to the robot. For multiple satellites, a fast map-merging algorithm is integrated into the robot operating system (ROS) and simultaneous localization and mapping (SLAM) routines to locate the multiple robots in the scene. The OE is used to demonstrate a pursuit-evasion (PE) game theoretic sensor management algorithm, which models conflicts between a space-based-visible (SBV) satellite (as pursuer) and a geosynchronous (GEO) satellite (as evader). The cost function of the PE game is based on the informational entropy of the SBV-tracking-GEO scenario. GEO can maneuver using a continuous and low thruster. The hard-in-loop space emulator visually illustrates the SSA problem solution based PE game.
Kelasidi, Eleni; Liljebäck, Pål; Pettersen, Kristin Y; Gravdahl, Jan T
2015-01-01
Underwater snake robots offer many interesting capabilities for underwater operations. The long and slender structure of such robots provide superior capabilities for access through narrow openings and within confined areas. This is interesting for inspection and monitoring operations, for instance within the subsea oil and gas industry and within marine archeology. In addition, underwater snake robots can provide both inspection and intervention capabilities and are thus interesting candidates for the next generation inspection and intervention AUVs. Furthermore, bioinspired locomotion through oscillatory gaits, like lateral undulation and eel-like motion, is interesting from an energy efficiency point of view. Increasing the motion efficiency in terms of the achieved forward speed by improving the method of propulsion is a key issue for underwater robots. Moreover, energy efficiency is one of the main challenges for long-term autonomy of these systems. In this study, we will consider both these two aspects of efficiency. This paper considers the energy efficiency of swimming snake robots by presenting and experimentally investigating fundamental properties of the velocity and the power consumption of an underwater snake robot for both lateral undulation and eel-like motion patterns. In particular, we investigate the relationship between the parameters of the gait patterns, the forward velocity and the energy consumption for different motion patterns. The simulation and experimental results are seen to support the theoretical findings.
A New Approach for Human Forearm Motion Assist by Actuated Artificial Joint-An Inner Skeleton Robot
NASA Astrophysics Data System (ADS)
Kundu, Subrata Kumar; Kiguchi, Kazuo; Teramoto, Kenbu
In order to help the physical activities of the elderly or physically disabled persons, we propose a new concept of a power-assist inner skeleton robot (i.e., actuated artificial joint) that is supposed to assist the human daily life motion from inside of the human body. This paper presents an implantable 2 degree of freedom (DOF) inner skeleton robot that is designed to assist human elbow flexion-extension motion and forearm supination-pronation motion for daily life activities. We have developed a prototype of the inner skeleton robot that is supposed to assist the motion from inside of the body and act as an actuated artificial joint. The proposed system is controlled based on the activation patterns of the electromyogram (EMG) signals of the user's muscles by applying fuzzy-neuro control method. A joint actuator with angular position sensor is designed for the inner skeleton robot and a T-Mechanism is proposed to keep the bone arrangement similar to the normal human articulation after the elbow arthroplasty. The effectiveness of the proposed system has been evaluated by experiment.
Robotic Prostate Biopsy in Closed MRI Scanner
2009-02-01
radioactive seeds or diagnosis by harvesting tissue samples inside the mag- net bore, under remote control of the physician without mov- ing the patient out...and allows fast removal for reloading brachytherapy needles or col- lecting harvested biopsy tissue. The primary actuated motions of the robot...include two prismatic motions and two rotational motions for aligning the needle axis. In addition to these base motions, application-specific motions are
An Integrated Framework for Human-Robot Collaborative Manipulation.
Sheng, Weihua; Thobbi, Anand; Gu, Ye
2015-10-01
This paper presents an integrated learning framework that enables humanoid robots to perform human-robot collaborative manipulation tasks. Specifically, a table-lifting task performed jointly by a human and a humanoid robot is chosen for validation purpose. The proposed framework is split into two phases: 1) phase I-learning to grasp the table and 2) phase II-learning to perform the manipulation task. An imitation learning approach is proposed for phase I. In phase II, the behavior of the robot is controlled by a combination of two types of controllers: 1) reactive and 2) proactive. The reactive controller lets the robot take a reactive control action to make the table horizontal. The proactive controller lets the robot take proactive actions based on human motion prediction. A measure of confidence of the prediction is also generated by the motion predictor. This confidence measure determines the leader/follower behavior of the robot. Hence, the robot can autonomously switch between the behaviors during the task. Finally, the performance of the human-robot team carrying out the collaborative manipulation task is experimentally evaluated on a platform consisting of a Nao humanoid robot and a Vicon motion capture system. Results show that the proposed framework can enable the robot to carry out the collaborative manipulation task successfully.
A Course in Simulation and Demonstration of Humanoid Robot Motion
ERIC Educational Resources Information Center
Liu, Hsin-Yu; Wang, Wen-June; Wang, Rong-Jyue
2011-01-01
An introductory course for humanoid robot motion realization for undergraduate and graduate students is presented in this study. The basic operations of AX-12 motors and the mechanics combination of a 16 degrees-of-freedom (DOF) humanoid robot are presented first. The main concepts of multilink systems, zero moment point (ZMP), and feedback…
A Null Space Control of Two Wheels Driven Mobile Manipulator Using Passivity Theory
NASA Astrophysics Data System (ADS)
Shibata, Tsuyoshi; Murakami, Toshiyuki
This paper describes a control strategy of null space motion of a two wheels driven mobile manipulator. Recently, robot is utilized in various industrial fields and it is preferable for the robot manipulator to have multiple degrees of freedom motion. Several studies of kinematics for null space motion have been proposed. However stability analysis of null space motion is not enough. Furthermore, these approaches apply to stable systems, but they do not apply unstable systems. Then, in this research, base of manipulator equips with two wheels driven mobile robot. This robot is called two wheels driven mobile manipulator, which becomes unstable system. In the proposed approach, a control design of null space uses passivity based stabilizing. A proposed controller is decided so that closed-loop system of robot dynamics satisfies passivity. This is passivity based control. Then, control strategy is that stabilizing of the robot system applies to work space observer based approach and null space control while keeping end-effector position. The validity of the proposed approach is verified by simulations and experiments of two wheels driven mobile manipulator.
Concurrent Path Planning with One or More Humanoid Robots
NASA Technical Reports Server (NTRS)
Reiland, Matthew J. (Inventor); Sanders, Adam M. (Inventor)
2014-01-01
A robotic system includes a controller and one or more robots each having a plurality of robotic joints. Each of the robotic joints is independently controllable to thereby execute a cooperative work task having at least one task execution fork, leading to multiple independent subtasks. The controller coordinates motion of the robot(s) during execution of the cooperative work task. The controller groups the robotic joints into task-specific robotic subsystems, and synchronizes motion of different subsystems during execution of the various subtasks of the cooperative work task. A method for executing the cooperative work task using the robotic system includes automatically grouping the robotic joints into task-specific subsystems, and assigning subtasks of the cooperative work task to the subsystems upon reaching a task execution fork. The method further includes coordinating execution of the subtasks after reaching the task execution fork.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry
This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics naturalmore » human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.« less
Towards frameless maskless SRS through real-time 6DoF robotic motion compensation.
Belcher, Andrew H; Liu, Xinmin; Chmura, Steven; Yenice, Kamil; Wiersma, Rodney D
2017-11-13
Stereotactic radiosurgery (SRS) uses precise dose placement to treat conditions of the CNS. Frame-based SRS uses a metal head ring fixed to the patient's skull to provide high treatment accuracy, but patient comfort and clinical workflow may suffer. Frameless SRS, while potentially more convenient, may increase uncertainty of treatment accuracy and be physiologically confining to some patients. By incorporating highly precise robotics and advanced software algorithms into frameless treatments, we present a novel frameless and maskless SRS system where a robot provides real-time 6DoF head motion stabilization allowing positional accuracies to match or exceed those of traditional frame-based SRS. A 6DoF parallel kinematics robot was developed and integrated with a real-time infrared camera in a closed loop configuration. A novel compensation algorithm was developed based on an iterative closest-path correction approach. The robotic SRS system was tested on six volunteers, whose motion was monitored and compensated for in real-time over 15 min simulated treatments. The system's effectiveness in maintaining the target's 6DoF position within preset thresholds was determined by comparing volunteer head motion with and without compensation. Comparing corrected and uncorrected motion, the 6DoF robotic system showed an overall improvement factor of 21 in terms of maintaining target position within 0.5 mm and 0.5 degree thresholds. Although the system's effectiveness varied among the volunteers examined, for all volunteers tested the target position remained within the preset tolerances 99.0% of the time when robotic stabilization was used, compared to 4.7% without robotic stabilization. The pre-clinical robotic SRS compensation system was found to be effective at responding to sub-millimeter and sub-degree cranial motions for all volunteers examined. The system's success with volunteers has demonstrated its capability for implementation with frameless and maskless SRS treatments, potentially able to achieve the same or better treatment accuracies compared to traditional frame-based approaches.
Towards frameless maskless SRS through real-time 6DoF robotic motion compensation
NASA Astrophysics Data System (ADS)
Belcher, Andrew H.; Liu, Xinmin; Chmura, Steven; Yenice, Kamil; Wiersma, Rodney D.
2017-12-01
Stereotactic radiosurgery (SRS) uses precise dose placement to treat conditions of the CNS. Frame-based SRS uses a metal head ring fixed to the patient’s skull to provide high treatment accuracy, but patient comfort and clinical workflow may suffer. Frameless SRS, while potentially more convenient, may increase uncertainty of treatment accuracy and be physiologically confining to some patients. By incorporating highly precise robotics and advanced software algorithms into frameless treatments, we present a novel frameless and maskless SRS system where a robot provides real-time 6DoF head motion stabilization allowing positional accuracies to match or exceed those of traditional frame-based SRS. A 6DoF parallel kinematics robot was developed and integrated with a real-time infrared camera in a closed loop configuration. A novel compensation algorithm was developed based on an iterative closest-path correction approach. The robotic SRS system was tested on six volunteers, whose motion was monitored and compensated for in real-time over 15 min simulated treatments. The system’s effectiveness in maintaining the target’s 6DoF position within preset thresholds was determined by comparing volunteer head motion with and without compensation. Comparing corrected and uncorrected motion, the 6DoF robotic system showed an overall improvement factor of 21 in terms of maintaining target position within 0.5 mm and 0.5 degree thresholds. Although the system’s effectiveness varied among the volunteers examined, for all volunteers tested the target position remained within the preset tolerances 99.0% of the time when robotic stabilization was used, compared to 4.7% without robotic stabilization. The pre-clinical robotic SRS compensation system was found to be effective at responding to sub-millimeter and sub-degree cranial motions for all volunteers examined. The system’s success with volunteers has demonstrated its capability for implementation with frameless and maskless SRS treatments, potentially able to achieve the same or better treatment accuracies compared to traditional frame-based approaches.
Optimizing Motion Planning for Hyper Dynamic Manipulator
NASA Astrophysics Data System (ADS)
Aboura, Souhila; Omari, Abdelhafid; Meguenni, Kadda Zemalache
2012-01-01
This paper investigates the optimal motion planning for an hyper dynamic manipulator. As case study, we consider a golf swing robot which is consisting with two actuated joint and a mechanical stoppers. Genetic Algorithm (GA) technique is proposed to solve the optimal golf swing motion which is generated by Fourier series approximation. The objective function for GA approach is to minimizing the intermediate and final state, minimizing the robot's energy consummation and maximizing the robot's speed. Obtained simulation results show the effectiveness of the proposed scheme.
Planning and Teaching Compliant Motion Strategies.
1987-01-01
commanded motion. The black polyhedron shown in the figure contains a set of commanded positions. The robot is to aim for any point in the polyhedron . The...between the T-shape and the hole face will cause it to stop there. The black polyhedron is behind and more narrow than the stopping region to account for...motion. If the robot aims for any commanded position in the black polyhedron shown in the figure, then the robot will enter the second hole, slide along
Optimal control of 2-wheeled mobile robot at energy performance index
NASA Astrophysics Data System (ADS)
Kaliński, Krzysztof J.; Mazur, Michał
2016-03-01
The paper presents the application of the optimal control method at the energy performance index towards motion control of the 2-wheeled mobile robot. With the use of the proposed method of control the 2-wheeled mobile robot can realise effectively the desired trajectory. The problem of motion control of mobile robots is usually neglected and thus performance of the realisation of the high level control tasks is limited.
Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.
Felt, Wyatt; Chin, Khai Yi; Remy, C David
2017-09-01
This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.
Development of soft robots using dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Godaba, Hareesh; Wang, Yuzhe; Cao, Jiawei; Zhu, Jian
2016-04-01
Soft robots are gaining in popularity due to their unique attributes such as low weight, compliance, flexibility and diverse range in motion types. This paper illustrates soft robots and actuators which are developed using dielectric elastomer. These developments include a jellyfish robot, a worm like robot and artificial muscle actuators for jaw movement in a robotic skull. The jellyfish robot which employs a bulged dielectric elastomer membrane has been demonstrated too generate thrust and buoyant forces and can move effectively in water. The artificial muscle for jaw movement employs a pure shear configuration and has been shown to closely mimic the jaw motion while chewing or singing a song. Thee inchworm robot, powered by dielectric elastomer actuator can demonstrate stable movement in one-direction.
Navigation strategies for multiple autonomous mobile robots moving in formation
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1991-01-01
The problem of deriving navigation strategies for a fleet of autonomous mobile robots moving in formation is considered. Here, each robot is represented by a particle with a spherical effective spatial domain and a specified cone of visibility. The global motion of each robot in the world space is described by the equations of motion of the robot's center of mass. First, methods for formation generation are discussed. Then, simple navigation strategies for robots moving in formation are derived. A sufficient condition for the stability of a desired formation pattern for a fleet of robots each equipped with the navigation strategy based on nearest neighbor tracking is developed. The dynamic behavior of robot fleets consisting of three or more robots moving in formation in a plane is studied by means of computer simulation.
An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger
Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico
2016-01-01
In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can successfully be used, not only to control the motion of a supernumerary robotic finger but also to regulate its compliance. The proposed approach can be exploited also for the control of different wearable devices that has to actively cooperate with the human limbs. PMID:27891088
Design, development, and evaluation of an MRI-guided SMA spring-actuated neurosurgical robot
Ho, Mingyen; Kim, Yeongjin; Cheng, Shing Shin; Gullapalli, Rao; Desai, Jaydev P.
2015-01-01
In this paper, we present our work on the development of a magnetic resonance imaging (MRI)-compatible Minimally Invasive Neurosurgical Intracranial Robot (MINIR) comprising of shape memory alloy (SMA) spring actuators and tendon-sheath mechanism. We present the detailed modeling and analysis along with experimental results of the characterization of SMA spring actuators. Furthermore, to demonstrate image-feedback control, we used the images obtained from a camera to control the motion of the robot so that eventually continuous MR images could be used in the future to control the robot motion. Since the image tracking algorithm may fail in some situations, we also developed a temperature feedback control scheme which served as a backup controller for the robot. Experimental results demonstrated that both image feedback and temperature feedback can be used to control the motion of MINIR. A series of MRI compatibility tests were performed on the robot and the experimental results demonstrated that the robot is MRI compatible and no significant visual image distortion was observed in the MR images during robot operation. PMID:26622075
D2 Delta Robot Structural Design and Kinematics Analysis
NASA Astrophysics Data System (ADS)
Yang, Xudong; wang, Song; Dong, Yu; Yang, Hai
2017-12-01
In this paper, a new type of Delta robot with only two degrees of freedom is proposed on the basis of multi - degree - of - freedom delta robot. In order to meet our application requirements, we have carried out structural design and analysis of the robot. Through SolidWorks modeling, combined with 3D printing technology to determine the final robot structure. In order to achieve the precise control of the robot, the kinematics analysis of the robot was carried out. The SimMechanics toolbox of MATLAB is used to establish the mechanism model, and the kinematics mathematical model is used to simulate the robot motion control in Matlab environment. Finally, according to the design mechanism, the working space of the robot is drawn by the graphic method, which lays the foundation for the motion control of the subsequent robot.
NASA Technical Reports Server (NTRS)
Wheatley, Thomas E.; Michaloski, John L.; Lumia, Ronald
1989-01-01
Analysis of a robot control system leads to a broad range of processing requirements. One fundamental requirement of a robot control system is the necessity of a microcomputer system in order to provide sufficient processing capability.The use of multiple processors in a parallel architecture is beneficial for a number of reasons, including better cost performance, modular growth, increased reliability through replication, and flexibility for testing alternate control strategies via different partitioning. A survey of the progression from low level control synchronizing primitives to higher level communication tools is presented. The system communication and control mechanisms of existing robot control systems are compared to the hierarchical control model. The impact of this design methodology on the current robot control systems is explored.
Remote Control and Children's Understanding of Robots
ERIC Educational Resources Information Center
Somanader, Mark C.; Saylor, Megan M.; Levin, Daniel T.
2011-01-01
Children use goal-directed motion to classify agents as living things from early in infancy. In the current study, we asked whether preschoolers are flexible in their application of this criterion by introducing them to robots that engaged in goal-directed motion. In one case the robot appeared to move fully autonomously, and in the other case it…
Off-line programming motion and process commands for robotic welding of Space Shuttle main engines
NASA Technical Reports Server (NTRS)
Ruokangas, C. C.; Guthmiller, W. A.; Pierson, B. L.; Sliwinski, K. E.; Lee, J. M. F.
1987-01-01
The off-line-programming software and hardware being developed for robotic welding of the Space Shuttle main engine are described and illustrated with diagrams, drawings, graphs, and photographs. The menu-driven workstation-based interactive programming system is designed to permit generation of both motion and process commands for the robotic workcell by weld engineers (with only limited knowledge of programming or CAD systems) on the production floor. Consideration is given to the user interface, geometric-sources interfaces, overall menu structure, weld-parameter data base, and displays of run time and archived data. Ongoing efforts to address limitations related to automatic-downhand-configuration coordinated motion, a lack of source codes for the motion-control software, CAD data incompatibility, interfacing with the robotic workcell, and definition of the welding data base are discussed.
Cache-Aware Asymptotically-Optimal Sampling-Based Motion Planning
Ichnowski, Jeffrey; Prins, Jan F.; Alterovitz, Ron
2014-01-01
We present CARRT* (Cache-Aware Rapidly Exploring Random Tree*), an asymptotically optimal sampling-based motion planner that significantly reduces motion planning computation time by effectively utilizing the cache memory hierarchy of modern central processing units (CPUs). CARRT* can account for the CPU’s cache size in a manner that keeps its working dataset in the cache. The motion planner progressively subdivides the robot’s configuration space into smaller regions as the number of configuration samples rises. By focusing configuration exploration in a region for periods of time, nearest neighbor searching is accelerated since the working dataset is small enough to fit in the cache. CARRT* also rewires the motion planning graph in a manner that complements the cache-aware subdivision strategy to more quickly refine the motion planning graph toward optimality. We demonstrate the performance benefit of our cache-aware motion planning approach for scenarios involving a point robot as well as the Rethink Robotics Baxter robot. PMID:25419474
Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test
Kopman, Vladislav; Laut, Jeffrey; Polverino, Giovanni; Porfiri, Maurizio
2013-01-01
In this paper, we study the response of zebrafish to a robotic-fish whose morphology and colour pattern are inspired by zebrafish. Experiments are conducted in a three-chambered instrumented water tank where a robotic-fish is juxtaposed with an empty compartment, and the preference of live subjects is scored as the mean time spent in the vicinity of the tank's two lateral sides. The tail-beating of the robotic-fish is controlled in real-time based on feedback from fish motion to explore a spectrum of closed-loop systems, including proportional and integral controllers. Closed-loop control systems are complemented by open-loop strategies, wherein the tail-beat of the robotic-fish is independent of the fish motion. The preference space and the locomotory patterns of fish for each experimental condition are analysed and compared to understand the influence of real-time closed-loop control on zebrafish response. The results of this study show that zebrafish respond differently to the pattern of tail-beating motion executed by the robotic-fish. Specifically, the preference and behaviour of zebrafish depend on whether the robotic-fish tail-beating frequency is controlled as a function of fish motion and how such closed-loop control is implemented. PMID:23152102
Control of motion stability of the line tracer robot using fuzzy logic and kalman filter
NASA Astrophysics Data System (ADS)
Novelan, M. S.; Tulus; Zamzami, E. M.
2018-03-01
Setting of motion and balance line tracer robot two wheels is actually a combination of a two-wheeled robot balance concept and the concept of line follower robot. The main objective of this research is to maintain the robot in an upright and can move to follow the line of the Wizard while maintaining balance. In this study the motion balance system on line tracer robot by considering the presence of a noise, so that it takes the estimator is used to mengestimasi the line tracer robot motion. The estimation is done by the method of Kalman Filter and the combination of Fuzzy logic-Fuzzy Kalman Filter called Kalman Filter, as well as optimal smooting. Based on the results of the study, the value of the output of the fuzzy results obtained from the sensor input value has been filtered before entering the calculation of the fuzzy. The results of the output of the fuzzy logic hasn’t been able to control dc motors are well balanced at the moment to be able to run. The results of the fuzzy logic by using membership function of triangular membership function or yet can control with good dc motor movement in order to be balanced
High-Frequency Replanning Under Uncertainty Using Parallel Sampling-Based Motion Planning
Sun, Wen; Patil, Sachin; Alterovitz, Ron
2015-01-01
As sampling-based motion planners become faster, they can be re-executed more frequently by a robot during task execution to react to uncertainty in robot motion, obstacle motion, sensing noise, and uncertainty in the robot’s kinematic model. We investigate and analyze high-frequency replanning (HFR), where, during each period, fast sampling-based motion planners are executed in parallel as the robot simultaneously executes the first action of the best motion plan from the previous period. We consider discrete-time systems with stochastic nonlinear (but linearizable) dynamics and observation models with noise drawn from zero mean Gaussian distributions. The objective is to maximize the probability of success (i.e., avoid collision with obstacles and reach the goal) or to minimize path length subject to a lower bound on the probability of success. We show that, as parallel computation power increases, HFR offers asymptotic optimality for these objectives during each period for goal-oriented problems. We then demonstrate the effectiveness of HFR for holonomic and nonholonomic robots including car-like vehicles and steerable medical needles. PMID:26279645
NASA Astrophysics Data System (ADS)
Okuno, Keisuke; Inamura, Tetsunari
A robotic coaching system can improve humans' learning performance of motions by intelligent usage of emphatic motions and adverbial expressions according to user reactions. In robotics, however, method to control both the motions and the expressions and how to bind them had not been adequately discussed from an engineering point of view. In this paper, we propose a method for controlling and binding emphatic motions and adverbial expressions by using two scalar parameters in a phase space. In the phase space, variety of motion patterns and verbal expressions are connected and can be expressed as static points. We show the feasibility of the proposing method through experiments of actual sport coaching tasks for beginners. From the results of participants' improvements in motion learning, we confirmed the feasibility of the methods to control and bind emphatic motions and adverbial expressions, as well as confirmed contribution of the emphatic motions and positive correlation of adverbial expressions for participants' improvements in motion learning. Based on the results, we introduce a hypothesis that individually optimized method for binding adverbial expression is required.
Ren, Ziyu; Yang, Xingbang; Wang, Tianmiao; Wen, Li
2016-02-08
Recent advances in understanding fish locomotion with robotic devices have included the use of biomimetic flapping based and fin undulatory locomotion based robots, treating two locomotions separately from each other. However, in most fish species, patterns of active movements of fins occur in concert with the body undulatory deformation during swimming. In this paper, we describe a biomimetic robotic caudal fin programmed with individually actuated fin rays to mimic the fin motion of the Bluegill Sunfish (Lepomis macrochirus) and coupled with heave and pitch oscillatory motions adding to the robot to mimic the peduncle motion which is derived from the undulatory fish body. Multiple-axis force and digital particle image velocimetry (DPIV) experiments from both the vertical and horizontal planes behind the robotic model were conducted under different motion programs and flow speeds. We found that both mean thrust and lift could be altered by changing the phase difference (φ) from 0° to 360° between the robotic caudal peduncle and the fin ray motion (spanning from 3 mN to 124 mN). Notably, DPIV results demonstrated that the caudal fin generated multiple wake flow patterns in both the vertical and horizontal planes by varying φ. Vortex jet angle and thrust impulse also varied significantly both in these two planes. In addition, the vortex shedding position along the spanwise tail direction could be shifted around the mid-sagittal position between the upper and lower lobes by changing the phase difference. We hypothesize that the fish caudal fin may serve as a flexible vectoring propeller during swimming and may be critical for the high maneuverability of fish.
Improving Grasp Skills Using Schema Structured Learning
NASA Technical Reports Server (NTRS)
Platt, Robert; Grupen, ROderic A.; Fagg, Andrew H.
2006-01-01
Abstract In the control-based approach to robotics, complex behavior is created by sequencing and combining control primitives. While it is desirable for the robot to autonomously learn the correct control sequence, searching through the large number of potential solutions can be time consuming. This paper constrains this search to variations of a generalized solution encoded in a framework known as an action schema. A new algorithm, SCHEMA STRUCTURED LEARNING, is proposed that repeatedly executes variations of the generalized solution in search of instantiations that satisfy action schema objectives. This approach is tested in a grasping task where Dexter, the UMass humanoid robot, learns which reaching and grasping controllers maximize the probability of grasp success.
An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot.
Kiguchi, K; Hayashi, Y
2012-08-01
Many kinds of power-assist robots have been developed in order to assist self-rehabilitation and/or daily life motions of physically weak persons. Several kinds of control methods have been proposed to control the power-assist robots according to user's motion intention. In this paper, an electromyogram (EMG)-based impedance control method for an upper-limb power-assist exoskeleton robot is proposed to control the robot in accordance with the user's motion intention. The proposed method is simple, easy to design, humanlike, and adaptable to any user. A neurofuzzy matrix modifier is applied to make the controller adaptable to any users. Not only the characteristics of EMG signals but also the characteristics of human body are taken into account in the proposed method. The effectiveness of the proposed method was evaluated by the experiments.
Development of haptic system for surgical robot
NASA Astrophysics Data System (ADS)
Gang, Han Gyeol; Park, Jiong Min; Choi, Seung-Bok; Sohn, Jung Woo
2017-04-01
In this paper, a new type of haptic system for surgical robot application is proposed and its performances are evaluated experimentally. The proposed haptic system consists of an effective master device and a precision slave robot. The master device has 3-DOF rotational motion as same as human wrist motion. It has lightweight structure with a gyro sensor and three small-sized MR brakes for position measurement and repulsive torque generation, respectively. The slave robot has 3-DOF rotational motion using servomotors, five bar linkage and a torque sensor is used to measure resistive torque. It has been experimentally demonstrated that the proposed haptic system has good performances on tracking control of desired position and repulsive torque. It can be concluded that the proposed haptic system can be effectively applied to the surgical robot system in real field.
Anthropomorphic Robot Hand And Teaching Glove
NASA Technical Reports Server (NTRS)
Engler, Charles D., Jr.
1991-01-01
Robotic forearm-and-hand assembly manipulates objects by performing wrist and hand motions with nearly human grasping ability and dexterity. Imitates hand motions of human operator who controls robot in real time by programming via exoskeletal "teaching glove". Telemanipulator systems based on this robotic-hand concept useful where humanlike dexterity required. Underwater, high-radiation, vacuum, hot, cold, toxic, or inhospitable environments potential application sites. Particularly suited to assisting astronauts on space station in safely executing unexpected tasks requiring greater dexterity than standard gripper.
NASA Astrophysics Data System (ADS)
Güler, Fatma; Kasap, Emin
Using the curvature theory for the ruled surfaces a technique for robot trajectory planning is presented. This technique ensures the calculation of robot’s next path. The positional variation of the Tool Center Point (TCP), linear velocity, angular velocity are required in the work area of the robot. In some circumstances, it may not be physically achievable and a re-computation of the robot trajectory might be necessary. This technique is suitable for re-computation of the robot trajectory. We obtain different robot trajectories which change depending on the darboux angle function and define trajectory ruled surface family with a common trajectory curve with the rotation trihedron. Also, the motion of robot end effector is illustrated with examples.
Lyapunov vector function method in the motion stabilisation problem for nonholonomic mobile robot
NASA Astrophysics Data System (ADS)
Andreev, Aleksandr; Peregudova, Olga
2017-07-01
In this paper we propose a sampled-data control law in the stabilisation problem of nonstationary motion of nonholonomic mobile robot. We assume that the robot moves on a horizontal surface without slipping. The dynamical model of a mobile robot is considered. The robot has one front free wheel and two rear wheels which are controlled by two independent electric motors. We assume that the controls are piecewise constant signals. Controller design relies on the backstepping procedure with the use of Lyapunov vector-function method. Theoretical considerations are verified by numerical simulation.
Duran, Cassidy; Estrada, Sean; O'Malley, Marcia; Lumsden, Alan B; Bismuth, Jean
2015-02-01
Endovascular robotics systems, now approved for clinical use in the United States and Europe, are seeing rapid growth in interest. Determining who has sufficient expertise for safe and effective clinical use remains elusive. Our aim was to analyze performance on a robotic platform to determine what defines an expert user. During three sessions, 21 subjects with a range of endovascular expertise and endovascular robotic experience (novices <2 hours to moderate-extensive experience with >20 hours) performed four tasks on a training model. All participants completed a 2-hour training session on the robot by a certified instructor. Completion times, global rating scores, and motion metrics were collected to assess performance. Electromagnetic tracking was used to capture and to analyze catheter tip motion. Motion analysis was based on derivations of speed and position including spectral arc length and total number of submovements (inversely proportional to proficiency of motion) and duration of submovements (directly proportional to proficiency). Ninety-eight percent of competent subjects successfully completed the tasks within the given time, whereas 91% of noncompetent subjects were successful. There was no significant difference in completion times between competent and noncompetent users except for the posterior branch (151 s:105 s; P = .01). The competent users had more efficient motion as evidenced by statistically significant differences in the metrics of motion analysis. Users with >20 hours of experience performed significantly better than those newer to the system, independent of prior endovascular experience. This study demonstrates that motion-based metrics can differentiate novice from trained users of flexible robotics systems for basic endovascular tasks. Efficiency of catheter movement, consistency of performance, and learning curves may help identify users who are sufficiently trained for safe clinical use of the system. This work will help identify the learning curve and specific movements that translate to expert robotic navigation. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Maneuvering and control of flexible space robots
NASA Technical Reports Server (NTRS)
Meirovitch, Leonard; Lim, Seungchul
1994-01-01
This paper is concerned with a flexible space robot capable of maneuvering payloads. The robot is assumed to consist of two hinge-connected flexible arms and a rigid end-effector holding a payload; the robot is mounted on a rigid platform floating in space. The equations of motion are nonlinear and of high order. Based on the assumption that the maneuvering motions are one order of magnitude larger than the elastic vibrations, a perturbation approach permits design of controls for the two types of motion separately. The rigid-body maneuvering is carried out open loop, but the elastic motions are controlled closed loop, by means of discrete-time linear quadratic regulator theory with prescribed degree of stability. A numerical example demonstrates the approach. In the example, the controls derived by the perturbation approach are applied to the original nonlinear system and errors are found to be relatively small.
Surrogate: A Body-Dexterous Mobile Manipulation Robot with a Tracked Base
NASA Technical Reports Server (NTRS)
Hebert, Paul (Inventor); Borders, James W. (Inventor); Hudson, Nicolas H. (Inventor); Kennedy, Brett A. (Inventor); Ma, Jeremy C. (Inventor); Bergh, Charles F. (Inventor)
2018-01-01
Robotics platforms in accordance with various embodiments of the invention can be utilized to implement highly dexterous robots capable of whole body motion. Robotics platforms in accordance with one embodiment of the invention include: a memory containing a whole body motion application; a spine, where the spine has seven degrees of freedom and comprises a spine actuator and three spine elbow joints that each include two spine joint actuators; at least one limb, where the at least one limb comprises a limb actuator and three limb elbow joints that each include two limb joint actuators; a tracked base; a connecting structure that connects the at least one limb to the spine; a second connecting structure that connects the spine to the tracked base; wherein the processor is configured by the whole body motion application to move the at least one limb and the spine to perform whole body motion.
An open architecture motion controller
NASA Technical Reports Server (NTRS)
Rossol, Lothar
1994-01-01
Nomad, an open architecture motion controller, is described. It is formed by a combination of TMOS, C-WORKS, and other utilities. Nomad software runs in a UNIX environment and provides for sensor-controlled robotic motions, with user replaceable kinematics. It can also be tailored for highly specialized applications. Open controllers such as Nomad should have a major impact on the robotics industry.
Development of a 6DOF robotic motion phantom for radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belcher, Andrew H.; Liu, Xinmin; Grelewicz, Zachary
Purpose: The use of medical technology capable of tracking patient motion or positioning patients along 6 degree-of-freedom (6DOF) has steadily increased in the field of radiation therapy. However, due to the complex nature of tracking and performing 6DOF motion, it is critical that such technology is properly verified to be operating within specifications in order to ensure patient safety. In this study, a robotic motion phantom is presented that can be programmed to perform highly accurate motion along any X (left–right), Y (superior–inferior), Z (anterior–posterior), pitch (around X), roll (around Y), and yaw (around Z) axes. In addition, highly synchronizedmore » motion along all axes can be performed in order to simulate the dynamic motion of a tumor in 6D. The accuracy and reproducibility of this 6D motion were characterized. Methods: An in-house designed and built 6D robotic motion phantom was constructed following the Stewart–Gough parallel kinematics platform archetype. The device was controlled using an inverse kinematics formulation, and precise movements in all 6 degrees-of-freedom (X, Y, Z, pitch, roll, and yaw) were performed, both simultaneously and separately for each degree-of-freedom. Additionally, previously recorded 6D cranial and prostate motions were effectively executed. The robotic phantom movements were verified using a 15 fps 6D infrared marker tracking system and the measured trajectories were compared quantitatively to the intended input trajectories. The workspace, maximum 6D velocity, backlash, and weight load capabilities of the system were also established. Results: Evaluation of the 6D platform demonstrated translational root mean square error (RMSE) values of 0.14, 0.22, and 0.08 mm over 20 mm in X and Y and 10 mm in Z, respectively, and rotational RMSE values of 0.16°, 0.06°, and 0.08° over 10° of pitch, roll, and yaw, respectively. The robotic stage also effectively performed controlled 6D motions, as well as reproduced cranial trajectories over 15 min, with a maximal RMSE of 0.04 mm translationally and 0.04° rotationally, and a prostate trajectory over 2 min, with a maximal RMSE of 0.06 mm translationally and 0.04° rotationally. Conclusions: This 6D robotic phantom has proven to be accurate under clinical standards and capable of reproducing tumor motion in 6D. Such functionality makes the robotic phantom usable for either quality assurance or research purposes.« less
Humanlike robot hands controlled by brain activity arouse illusion of ownership in operators
Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi
2013-01-01
Operators of a pair of robotic hands report ownership for those hands when they hold image of a grasp motion and watch the robot perform it. We present a novel body ownership illusion that is induced by merely watching and controlling robot's motions through a brain machine interface. In past studies, body ownership illusions were induced by correlation of such sensory inputs as vision, touch and proprioception. However, in the presented illusion none of the mentioned sensations are integrated except vision. Our results show that during BMI-operation of robotic hands, the interaction between motor commands and visual feedback of the intended motions is adequate to incorporate the non-body limbs into one's own body. Our discussion focuses on the role of proprioceptive information in the mechanism of agency-driven illusions. We believe that our findings will contribute to improvement of tele-presence systems in which operators incorporate BMI-operated robots into their body representations. PMID:23928891
Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning
Baykal, Cenk; Torres, Luis G.; Alterovitz, Ron
2015-01-01
Concentric tube robots are tentacle-like medical robots that can bend around anatomical obstacles to access hard-to-reach clinical targets. The component tubes of these robots can be swapped prior to performing a task in order to customize the robot’s behavior and reachable workspace. Optimizing a robot’s design by appropriately selecting tube parameters can improve the robot’s effectiveness on a procedure-and patient-specific basis. In this paper, we present an algorithm that generates sets of concentric tube robot designs that can collectively maximize the reachable percentage of a given goal region in the human body. Our algorithm combines a search in the design space of a concentric tube robot using a global optimization method with a sampling-based motion planner in the robot’s configuration space in order to find sets of designs that enable motions to goal regions while avoiding contact with anatomical obstacles. We demonstrate the effectiveness of our algorithm in a simulated scenario based on lung anatomy. PMID:26951790
Najafi, Mohammad; Adams, Kim; Tavakoli, Mahdi
2017-07-01
The number of people with physical disabilities and impaired motion control is increasing. Consequently, there is a growing demand for intelligent assistive robotic systems to cooperate with people with disability and help them carry out different tasks. To this end, our group has pioneered the use of robot learning from demonstration (RLfD) techniques, which eliminate the need for task-specific robot programming, in robotic rehabilitation and assistive technologies settings. First, in the demonstration phase, the therapist (or in general, a helper) provides an intervention (typically assistance) and cooperatively performs a task with a patient several times. The demonstrated motion is modelled by a statistical RLfD algorithm, which will later be used in the robot controllers to reproduce a similar intervention robotically. In this paper, by proposing a Tangential-Normal Varying-Impedance Controller (TNVIC), the robotic manipulator not only follows the therapist's demonstrated motion, but also mimics his/her interaction impedance during the therapeutic/assistive intervention. The feasibility and efficacy of the proposed framework are evaluated by conducting an experiment involving a healthy adult with cerebral palsy symptoms being induced using transcutaneous electrical nerve stimulation.
Collision-free motion planning for fiber positioner robots: discretization of velocity profiles
NASA Astrophysics Data System (ADS)
Makarem, Laleh; Kneib, Jean-Paul; Gillet, Denis; Bleuler, Hannes; Bouri, Mohamed; Hörler, Philippe; Jenni, Laurent; Prada, Francisco; Sánchez, Justo
2014-07-01
The next generation of large-scale spectroscopic survey experiments such as DESI, will use thousands of fiber positioner robots packed on a focal plate. In order to maximize the observing time with this robotic system we need to move in parallel the fiber-ends of all positioners from the previous to the next target coordinates. Direct trajectories are not feasible due to collision risks that could undeniably damage the robots and impact the survey operation and performance. We have previously developed a motion planning method based on a novel decentralized navigation function for collision-free coordination of fiber positioners. The navigation function takes into account the configuration of positioners as well as their envelope constraints. The motion planning scheme has linear complexity and short motion duration (2.5 seconds with the maximum speed of 30 rpm for the positioner), which is independent of the number of positioners. These two key advantages of the decentralization designate the method as a promising solution for the collision-free motion-planning problem in the next-generation of fiber-fed spectrographs. In a framework where a centralized computer communicates with the positioner robots, communication overhead can be reduced significantly by using velocity profiles consisting of a few bits only. We present here the discretization of velocity profiles to ensure the feasibility of a real-time coordination for a large number of positioners. The modified motion planning method that generates piecewise linearized position profiles guarantees collision-free trajectories for all the robots. The velocity profiles fit few bits at the expense of higher computational costs.
Obstacle avoidance for redundant robots using configuration control
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor); Colbaugh, Richard D. (Inventor); Glass, Kristin L. (Inventor)
1992-01-01
A redundant robot control scheme is provided for avoiding obstacles in a workspace during the motion of an end effector along a preselected trajectory by stopping motion of the critical point on the robot closest to the obstacle when the distance between is reduced to a predetermined sphere of influence surrounding the obstacle. Algorithms are provided for conveniently determining the critical point and critical distance.
3D force control for robotic-assisted beating heart surgery based on viscoelastic tissue model.
Liu, Chao; Moreira, Pedro; Zemiti, Nabil; Poignet, Philippe
2011-01-01
Current cardiac surgery faces the challenging problem of heart beating motion even with the help of mechanical stabilizer which makes delicate operation on the heart surface difficult. Motion compensation methods for robotic-assisted beating heart surgery have been proposed recently in literature, but research on force control for such kind of surgery has hardly been reported. Moreover, the viscoelasticity property of the interaction between organ tissue and robotic instrument further complicates the force control design which is much easier in other applications by assuming the interaction model to be elastic (industry, stiff object manipulation, etc.). In this work, we present a three-dimensional force control method for robotic-assisted beating heart surgery taking into consideration of the viscoelastic interaction property. Performance studies based on our D2M2 robot and 3D heart beating motion information obtained through Da Vinci™ system are provided.
Control of humanoid robot via motion-onset visual evoked potentials
Li, Wei; Li, Mengfan; Zhao, Jing
2015-01-01
This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task. PMID:25620918
Motion planning: A journey of robots, molecules, digital actors, and other artifacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latombe, J.C.
1999-11-01
During the past three decades, motion planning has emerged as a crucial and productive research area in robotics. In the mid-1980s, the most advanced planners were barely able to compute collision-free paths for objects crawling in planar workspaces. Today, planners efficiently deal with robots with many degrees of freedom in complex environments. Techniques also exist to generate quasi-optimal trajectories, coordinate multiple robots, deal with dynamic and kinematic constraints, and handle dynamic environments. This paper describes some of these achievements, presents new problems that have recently emerged, discusses applications likely to motivate future research, and finally gives expectations for the comingmore » years. It stresses the fact that nonrobotics applications (e.g., graphic animation, surgical planning, computational biology) are growing in importance and are likely to shape future motion-planning research more than robotics itself.« less
Dynamic analysis of a bio-inspired climbing robot using ADAMS-Simulink co-simulation
NASA Astrophysics Data System (ADS)
Chattopadhyay, P.; Dikshit, H.; Majumder, A.; Ghoshal, S.; Maity, A.
2018-04-01
Climbing robot has been an area of interest since the demand of inspection of pipeline, nuclear power plant, and various big structure is growing up rapidly. This paper represents the development of a bio-inspired modular robot which mimics inchworm locomotion during climbing. In the present paper, the climbing motion is achieved only on a flat vertical plane by magnetic adhesion principle. The robot is modelled as a 4-link planar mechanism with three revolute joints actuated by DC servo motors. Sinusoidal gait pattern is used to approximate the motion of an inchworm. The dynamics of the robot is presented by using ADAMS/MATLAB co-simulation methodology. The simulation result gives the maximum value of joint torque during one complete cycle of motion. This torque value is used for the selection of servo motor specifications required to build the prototype.
Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy
Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.
2014-01-01
This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962
Asymptotically Optimal Motion Planning for Learned Tasks Using Time-Dependent Cost Maps
Bowen, Chris; Ye, Gu; Alterovitz, Ron
2015-01-01
In unstructured environments in people’s homes and workspaces, robots executing a task may need to avoid obstacles while satisfying task motion constraints, e.g., keeping a plate of food level to avoid spills or properly orienting a finger to push a button. We introduce a sampling-based method for computing motion plans that are collision-free and minimize a cost metric that encodes task motion constraints. Our time-dependent cost metric, learned from a set of demonstrations, encodes features of a task’s motion that are consistent across the demonstrations and, hence, are likely required to successfully execute the task. Our sampling-based motion planner uses the learned cost metric to compute plans that simultaneously avoid obstacles and satisfy task constraints. The motion planner is asymptotically optimal and minimizes the Mahalanobis distance between the planned trajectory and the distribution of demonstrations in a feature space parameterized by the locations of task-relevant objects. The motion planner also leverages the distribution of the demonstrations to significantly reduce plan computation time. We demonstrate the method’s effectiveness and speed using a small humanoid robot performing tasks requiring both obstacle avoidance and satisfaction of learned task constraints. Note to Practitioners Motivated by the desire to enable robots to autonomously operate in cluttered home and workplace environments, this paper presents an approach for intuitively training a robot in a manner that enables it to repeat the task in novel scenarios and in the presence of unforeseen obstacles in the environment. Based on user-provided demonstrations of the task, our method learns features of the task that are consistent across the demonstrations and that we expect should be repeated by the robot when performing the task. We next present an efficient algorithm for planning robot motions to perform the task based on the learned features while avoiding obstacles. We demonstrate the effectiveness of our motion planner for scenarios requiring transferring a powder and pushing a button in environments with obstacles, and we plan to extend our results to more complex tasks in the future. PMID:26279642
Research on Robot Pose Control Technology Based on Kinematics Analysis Model
NASA Astrophysics Data System (ADS)
Liu, Dalong; Xu, Lijuan
2018-01-01
In order to improve the attitude stability of the robot, proposes an attitude control method of robot based on kinematics analysis model, solve the robot walking posture transformation, grasping and controlling the motion planning problem of robot kinematics. In Cartesian space analytical model, using three axis accelerometer, magnetometer and the three axis gyroscope for the combination of attitude measurement, the gyroscope data from Calman filter, using the four element method for robot attitude angle, according to the centroid of the moving parts of the robot corresponding to obtain stability inertia parameters, using random sampling RRT motion planning method, accurate operation to any position control of space robot, to ensure the end effector along a prescribed trajectory the implementation of attitude control. The accurate positioning of the experiment is taken using MT-R robot as the research object, the test robot. The simulation results show that the proposed method has better robustness, and higher positioning accuracy, and it improves the reliability and safety of robot operation.
Design of a Lightweight Soft Robotic Arm Using Pneumatic Artificial Muscles and Inflatable Sleeves.
Ohta, Preston; Valle, Luis; King, Jonathan; Low, Kevin; Yi, Jaehyun; Atkeson, Christopher G; Park, Yong-Lae
2018-04-01
As robots begin to interact with humans and operate in human environments, safety becomes a major concern. Conventional robots, although reliable and consistent, can cause injury to anyone within its range of motion. Soft robotics, wherein systems are made to be soft and mechanically compliant, are thus a promising alternative due to their lightweight nature and ability to cushion impacts, but current designs often sacrifice accuracy and usefulness for safety. We, therefore, have developed a bioinspired robotic arm combining elements of rigid and soft robotics such that it exhibits the positive qualities of both, namely compliance and accuracy, while maintaining a low weight. This article describes the design of a robotic arm-wrist-hand system with seven degrees of freedom (DOFs). The shoulder and elbow each has two DOFs for two perpendicular rotational motions on each joint, and the hand has two DOFs for wrist rotations and one DOF for a grasp motion. The arm is pneumatically powered using custom-built McKibben type pneumatic artificial muscles, which are inflated and deflated using binary and proportional valves. The wrist and hand motions are actuated through servomotors. In addition to the actuators, the arm is equipped with a potentiometer in each joint for detecting joint angle changes. Simulation and experimental results for closed-loop position control are also presented in the article.
Wood, Nathan A.; del Agua, Diego Moral; Zenati, Marco A.; Riviere, Cameron N.
2012-01-01
HeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles. The work presented uses an Extended Kalman Filter framework to estimate parameters of non-stationary Fourier series models of the motion of the heart due to the respiratory and cardiac cycles as well as the position of the robot as it moves over the surface of the heart. The proposed method is demonstrated in the laboratory with HeartLander operating on a physiological motion simulator. Improved performance is demonstrated in comparison to the filtering methods previously used with HeartLander. The use of detected physiological cycle phases to synchronize locomotion of HeartLander is also described. PMID:23066511
Wood, Nathan A; Del Agua, Diego Moral; Zenati, Marco A; Riviere, Cameron N
2011-12-05
HeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles. The work presented uses an Extended Kalman Filter framework to estimate parameters of non-stationary Fourier series models of the motion of the heart due to the respiratory and cardiac cycles as well as the position of the robot as it moves over the surface of the heart. The proposed method is demonstrated in the laboratory with HeartLander operating on a physiological motion simulator. Improved performance is demonstrated in comparison to the filtering methods previously used with HeartLander. The use of detected physiological cycle phases to synchronize locomotion of HeartLander is also described.
Motion Imagery and Robotics Application Project (MIRA)
NASA Technical Reports Server (NTRS)
Grubbs, Rodney P.
2010-01-01
This viewgraph presentation describes the Motion Imagery and Robotics Application (MIRA) Project. A detailed description of the MIRA camera service software architecture, encoder features, and on-board communications are presented. A description of a candidate camera under development is also shown.
Energy harvesting from mouse click of robot finger using piezoelectrics
NASA Astrophysics Data System (ADS)
Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon
2017-04-01
In this paper, we investigate the feasibility of energy harvesting from the mouse click motion using a piezoelectric energy transducer. Specifically, we use a robotic finger to realize repeatable mouse click motion. The robotic finger wears a glove with a pocket for including the piezoelectric material as an energy transducer. We propose a model for the energy harvesting system through the inverse kinematic framework of parallel joints in the finger and the electromechanical coupling equations of the piezoelectric material. Experiments are performed to elucidate the effect of the load resistance and the mouse click motion on energy harvesting.
Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung
2017-07-01
In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.
NASA Astrophysics Data System (ADS)
Chen, Dechao; Zhang, Yunong
2017-10-01
Dual-arm redundant robot systems are usually required to handle primary tasks, repetitively and synchronously in practical applications. In this paper, a jerk-level synchronous repetitive motion scheme is proposed to remedy the joint-angle drift phenomenon and achieve the synchronous control of a dual-arm redundant robot system. The proposed scheme is novelly resolved at jerk level, which makes the joint variables, i.e. joint angles, joint velocities and joint accelerations, smooth and bounded. In addition, two types of dynamics algorithms, i.e. gradient-type (G-type) and zeroing-type (Z-type) dynamics algorithms, for the design of repetitive motion variable vectors, are presented in detail with the corresponding circuit schematics. Subsequently, the proposed scheme is reformulated as two dynamical quadratic programs (DQPs) and further integrated into a unified DQP (UDQP) for the synchronous control of a dual-arm robot system. The optimal solution of the UDQP is found by the piecewise-linear projection equation neural network. Moreover, simulations and comparisons based on a six-degrees-of-freedom planar dual-arm redundant robot system substantiate the operation effectiveness and tracking accuracy of the robot system with the proposed scheme for repetitive motion and synchronous control.
Robotically assisted velocity-sensitive triggered focused ultrasound surgery
NASA Astrophysics Data System (ADS)
Maier, Florian; Brunner, Alexander; Jenne, Jürgen W.; Krafft, Axel J.; Semmler, Wolfhard; Bock, Michael
2012-11-01
Magnetic Resonance (MR) guided Focused Ultrasound Surgery (FUS) of abdominal organs is challenging due to breathing motion and limited patient access in the MR environment. In this work, an experimental robotically assisted FUS setup was combined with a MR-based navigator technique to realize motion-compensated sonications and online temperature imaging. Experiments were carried out in a static phantom, during periodic manual motion of the phantom without triggering, and with triggering to evaluate the triggering method. In contrast to the non-triggered sonication, the results of the triggered sonication show a confined symmetric temperature distribution. In conclusion, the velocity sensitive navigator can be employed for triggered FUS to compensate for periodic motion. Combined with the robotic FUS setup, flexible treatment of abdominal targets might be realized.
Behavior Selection of Mobile Robot Based on Integration of Multimodal Information
NASA Astrophysics Data System (ADS)
Chen, Bin; Kaneko, Masahide
Recently, biologically inspired robots have been developed to acquire the capacity for directing visual attention to salient stimulus generated from the audiovisual environment. On purpose to realize this behavior, a general method is to calculate saliency maps to represent how much the external information attracts the robot's visual attention, where the audiovisual information and robot's motion status should be involved. In this paper, we represent a visual attention model where three modalities, that is, audio information, visual information and robot's motor status are considered, while the previous researches have not considered all of them. Firstly, we introduce a 2-D density map, on which the value denotes how much the robot pays attention to each spatial location. Then we model the attention density using a Bayesian network where the robot's motion statuses are involved. Secondly, the information from both of audio and visual modalities is integrated with the attention density map in integrate-fire neurons. The robot can direct its attention to the locations where the integrate-fire neurons are fired. Finally, the visual attention model is applied to make the robot select the visual information from the environment, and react to the content selected. Experimental results show that it is possible for robots to acquire the visual information related to their behaviors by using the attention model considering motion statuses. The robot can select its behaviors to adapt to the dynamic environment as well as to switch to another task according to the recognition results of visual attention.
Endocavity Ultrasound Probe Manipulators
Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop
2014-01-01
We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525
Quantifying Mapping Orbit Performance in the Vicinity of Primitive Bodies
NASA Technical Reports Server (NTRS)
Pavlak, Thomas A.; Broschart, Stephen B.; Lantoine, Gregory
2015-01-01
Predicting and quantifying the capability of mapping orbits in the vicinity of primitive bodies is challenging given the complex orbit geometries that exist and the irregular shape of the bodies themselves. This paper employs various quantitative metrics to characterize the performance and relative effectiveness of various types of mapping orbits including terminator, quasi-terminator, hovering, pingpong, and conic-like trajectories. Metrics of interest include surface area coverage, lighting conditions, and the variety of viewing angles achieved. The metrics discussed in this investigation are intended to enable mission designers and project stakeholders to better characterize candidate mapping orbits during preliminary mission formulation activities.The goal of this investigation is to understand the trade space associated with carrying out remotesensing campaigns at small primitive bodies in the context of a robotic space mission. Specifically,this study seeks to understand the surface viewing geometries, ranges, etc. that are available fromseveral commonly proposed mapping orbits architectures.
Quantifying Mapping Orbit Performance in the Vicinity of Primitive Bodies
NASA Technical Reports Server (NTRS)
Pavlak, Thomas A.; Broschart, Stephen B.; Lantoine, Gregory
2015-01-01
Predicting and quantifying the capability of mapping orbits in the vicinity of primitive bodies is challenging given the complex orbit geometries that exist and the irregular shape of the bodies themselves. This paper employs various quantitative metrics to characterize the performance and relative effectiveness of various types of mapping orbits including terminator, quasi-terminator, hovering, ping pong, and conic-like trajectories. Metrics of interest include surface area coverage, lighting conditions, and the variety of viewing angles achieved. The metrics discussed in this investigation are intended to enable mission designers and project stakeholders to better characterize candidate mapping orbits during preliminary mission formulation activities. The goal of this investigation is to understand the trade space associated with carrying out remote sensing campaigns at small primitive bodies in the context of a robotic space mission. Specifically, this study seeks to understand the surface viewing geometries, ranges, etc. that are available from several commonly proposed mapping orbits architectures
Kinematics Simulation Analysis of Packaging Robot with Joint Clearance
NASA Astrophysics Data System (ADS)
Zhang, Y. W.; Meng, W. J.; Wang, L. Q.; Cui, G. H.
2018-03-01
Considering the influence of joint clearance on the motion error, repeated positioning accuracy and overall position of the machine, this paper presents simulation analysis of a packaging robot — 2 degrees of freedom(DOF) planar parallel robot based on the characteristics of high precision and fast speed of packaging equipment. The motion constraint equation of the mechanism is established, and the analysis and simulation of the motion error are carried out in the case of turning the revolute clearance. The simulation results show that the size of the joint clearance will affect the movement accuracy and packaging efficiency of the packaging robot. The analysis provides a reference point of view for the packaging equipment design and selection criteria and has a great significance on the packaging industry automation.
Machine learning in motion control
NASA Technical Reports Server (NTRS)
Su, Renjeng; Kermiche, Noureddine
1989-01-01
The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.
TH-EF-BRB-08: Robotic Motion Compensation for Radiation Therapy: A 6DOF Phantom Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belcher, AH; Liu, X; Wiersma, R
Purpose: The high accuracy of frame-based stereotactic radiosurgery (SRS), which uses a rigid frame fixed to the patient’s skull, is offset by potential drawbacks of poor patient compliance and clinical workflow restrictions. Recent research into frameless SRS has so far resulted in reduced accuracy. In this study, we investigate the use of a novel 6 degree-of-freedom (6DOF) robotic head motion cancellation system that continuously detects and compensates for patient head motions during a SRS delivery. This approach has the potential to reduce invasiveness while still achieving accuracies better or equal to traditional frame-based SRS. Methods: A 6DOF parallel kinematics roboticsmore » stage was constructed, and controlled using an inverse kinematics-based motion compensation algorithm. A 6DOF stereoscopic infrared (IR) marker tracking system was used to monitor real-time motions at sub-millimeter and sub-degree levels. A novel 6DOF calibration technique was first applied to properly orient the camera coordinate frame to match that of the LINAC and robotic control frames. Simulated head motions were measured by the system, and the robotic stage responded to these 6DOF motions automatically, returning the reflective marker coordinate frame to its original position. Results: After the motions were introduced to the system in the phantom-based study, the robotic stage automatically and rapidly returned the phantom to LINAC isocenter. When errors exceeded the compensation lower threshold of 0.25 mm or 0.25 degrees, the system registered the 6DOF error and generated a cancellation trajectory. The system responded in less than 0.5 seconds and returned all axes to less than 0.1 mm and 0.1 degree after the 6DOF compensation was performed. Conclusion: The 6DOF real-time motion cancellation system was found to be effective at compensating for translational and rotational motions to current SRS requirements. This system can improve frameless SRS by automatically returning patients to isocenter with high 6DOF accuracy.« less
Chanel, Laure-Anais; Nageotte, Florent; Vappou, Jonathan; Luo, Jianwen; Cuvillon, Loic; de Mathelin, Michel
2015-01-01
High Intensity Focused Ultrasound (HIFU) therapy is a very promising method for ablation of solid tumors. However, intra-abdominal organ motion, principally due to breathing, is a substantial limitation that results in incorrect tumor targeting. The objective of this work is to develop an all-in-one robotized HIFU system that can compensate motion in real-time during HIFU treatment. To this end, an ultrasound visual servoing scheme working at 20 Hz was designed. It relies on the motion estimation by using a fast ultrasonic speckle tracking algorithm and on the use of an interleaved imaging/HIFU sonication sequence for avoiding ultrasonic wave interferences. The robotized HIFU system was tested on a sample of chicken breast undergoing a vertical sinusoidal motion at 0.25 Hz. Sonications with and without motion compensation were performed in order to assess the effect of motion compensation on thermal lesions induced by HIFU. Motion was reduced by more than 80% thanks to this ultrasonic visual servoing system.
Sensing human hand motions for controlling dexterous robots
NASA Technical Reports Server (NTRS)
Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.
1988-01-01
The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.
Mathematical Modeling Of The Terrain Around A Robot
NASA Technical Reports Server (NTRS)
Slack, Marc G.
1992-01-01
In conceptual system for modeling of terrain around autonomous mobile robot, representation of terrain used for control separated from representation provided by sensors. Concept takes motion-planning system out from under constraints imposed by discrete spatial intervals of square terrain grid(s). Separation allows sensing and motion-controlling systems to operate asynchronously; facilitating integration of new map and sensor data into planning of motions.
NASA Astrophysics Data System (ADS)
Da Fonseca, Ijar M.; Goes, Luiz C. S.; Seito, Narumi; da Silva Duarte, Mayara K.; de Oliveira, Élcio Jeronimo
2017-08-01
In space the manipulators working space is characterized by the microgravity environment. In this environment the spacecraft floats and its rotational/translational motion may be excited by any internal and external disturbances. The complete system, i.e., the spacecraft and the associated robotic manipulator, floats and is sensitive to any reaction force and torque related to the manipulator's operation. In this sense the effort done by the robot may result in torque about the system center of mass and also in forces changing its translational motion. This paper analyzes the impact of the robot manipulator dynamics on the attitude motion and the associated control effort to keep the attitude stable during the manipulator's operation. The dynamics analysis is performed in the close proximity phase of rendezvous docking/berthing operation. In such scenario the linear system equations for the translation and attitude relative motions are appropriate. The computer simulations are implemented for the relative translational and rotational motion. The equations of motion have been simulated through computer by using the MatLab software. The LQR and the PID control laws are used for linear and nonlinear control, respectively, aiming to keep the attitude stable while the robot is in and out of service. The gravity-gradient and the residual magnetic torque are considered as external disturbances. The control efforts are analyzed for the manipulator in and out of service. The control laws allow the system stabilization and good performance when the manipulator is in service.
Neural net target-tracking system using structured laser patterns
NASA Astrophysics Data System (ADS)
Cho, Jae-Wan; Lee, Yong-Bum; Lee, Nam-Ho; Park, Soon-Yong; Lee, Jongmin; Choi, Gapchu; Baek, Sunghyun; Park, Dong-Sun
1996-06-01
In this paper, we describe a robot endeffector tracking system using sensory information from recently-announced structured pattern laser diodes, which can generate images with several different types of structured pattern. The neural network approach is employed to recognize the robot endeffector covering the situation of three types of motion: translation, scaling and rotation. Features for the neural network to detect the position of the endeffector are extracted from the preprocessed images. Artificial neural networks are used to store models and to match with unknown input features recognizing the position of the robot endeffector. Since a minimal number of samples are used for different directions of the robot endeffector in the system, an artificial neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network trained with the back propagation learning is used to detect the position of the robot endeffector. Another feedforward neural network module is used to estimate the motion from a sequence of images and to control movements of the robot endeffector. COmbining the tow neural networks for recognizing the robot endeffector and estimating the motion with the preprocessing stage, the whole system keeps tracking of the robot endeffector effectively.
Semantic Mapping and Motion Planning with Turtlebot Roomba
NASA Astrophysics Data System (ADS)
Aslam Butt, Rizwan; Usman Ali, Syed M.
2013-12-01
In this paper, we have successfully demonstrated the semantic mapping and motion planning experiments on Turtlebot Robot using Microsoft Kinect in ROS environment. Moreover, we have also performed the comparative studies on various sampling based motion planning algorithms with Turtlebot in Open Motion Planning Library. Our comparative analysis revealed that Expansive Space Trees (EST) surmounted all other approaches with respect to memory occupation and processing time. We have also tried to summarize the related concepts of autonomous robotics which we hope would be helpful for beginners.
Hardware Development for a Mobile Educational Robot.
ERIC Educational Resources Information Center
Mannaa, A. M.; And Others
1987-01-01
Describes the development of a robot whose mainframe is essentially transparent and walks on four legs. Discusses various gaits in four-legged motion. Reports on initial trials of a full-sized model without computer-control, including smoothness of motion and actual obstacle crossing features. (CW)
Robust adaptive kinematic control of redundant robots
NASA Technical Reports Server (NTRS)
Tarokh, M.; Zuck, D. D.
1992-01-01
The paper presents a general method for the resolution of redundancy that combines the Jacobian pseudoinverse and augmentation approaches. A direct adaptive control scheme is developed to generate joint angle trajectories for achieving desired end-effector motion as well as additional user defined tasks. The scheme ensures arbitrarily small errors between the desired and the actual motion of the manipulator. Explicit bounds on the errors are established that are directly related to the mismatch between actual and estimated pseudoinverse Jacobian matrix, motion velocity and the controller gain. It is shown that the scheme is tolerant of the mismatch and consequently only infrequent pseudoinverse computations are needed during a typical robot motion. As a result, the scheme is computationally fast, and can be implemented for real-time control of redundant robots. A method is incorporated to cope with the robot singularities allowing the manipulator to get very close or even pass through a singularity while maintaining a good tracking performance and acceptable joint velocities. Computer simulations and experimental results are provided in support of the theoretical developments.
Remote mission specialist - A study in real-time, adaptive planning
NASA Technical Reports Server (NTRS)
Rokey, Mark J.
1990-01-01
A high-level planning architecture for robotic operations is presented. The remote mission specialist integrates high-level directives with low-level primitives executable by a run-time controller for command of autonomous servicing activities. The planner has been designed to address such issues as adaptive plan generation, real-time performance, and operator intervention.
Implementing real-time robotic systems using CHIMERA II
NASA Technical Reports Server (NTRS)
Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.
1990-01-01
A description is given of the CHIMERA II programming environment and operating system, which was developed for implementing real-time robotic systems. Sensor-based robotic systems contain both general- and special-purpose hardware, and thus the development of applications tends to be a time-consuming task. The CHIMERA II environment is designed to reduce the development time by providing a convenient software interface between the hardware and the user. CHIMERA II supports flexible hardware configurations which are based on one or more VME-backplanes. All communication across multiple processors is transparent to the user through an extensive set of interprocessor communication primitives. CHIMERA II also provides a high-performance real-time kernel which supports both deadline and highest-priority-first scheduling. The flexibility of CHIMERA II allows hierarchical models for robot control, such as NASREM, to be implemented with minimal programming time and effort.
Virtual remote center of motion control for needle placement robots.
Boctor, Emad M; Webster, Robert J; Mathieu, Herve; Okamura, Allison M; Fichtinger, Gabor
2004-01-01
We present an algorithm that enables percutaneous needle-placement procedures to be performed with unencoded, unregistered, minimally calibrated robots while removing the constraint of placing the needle tip on a mechanically enforced Remote Center of Motion (RCM). The algorithm requires only online tracking of the surgical tool and a five-degree-of-freedom (5-DOF) robot comprising three prismatic DOF and two rotational DOF. An incremental adaptive motion control cycle guides the needle to the insertion point and also orients it to align with the target-entry-point line. The robot executes RCM motion without having a physically constrained fulcrum point. The proof-of-concept prototype system achieved 0.78 mm translation accuracy and 1.4 degrees rotational accuracy (this is within the tracker accuracy) within 17 iterative steps (0.5-1 s). This research enables robotic assistant systems for image-guided percutaneous procedures to be prototyped/constructed more quickly and less expensively than has been previously possible. Since the clinical utility of such systems is clear and has been demonstrated in the literature, our work may help promote widespread clinical adoption of this technology by lowering system cost and complexity.
Smith predictor-based robot control for ultrasound-guided teleoperated beating-heart surgery.
Bowthorpe, Meaghan; Tavakoli, Mahdi; Becher, Harald; Howe, Robert
2014-01-01
Performing surgery on fast-moving heart structures while the heart is freely beating is next to impossible. Nevertheless, the ability to do this would greatly benefit patients. By controlling a teleoperated robot to continuously follow the heart's motion, the heart can be made to appear stationary. The surgeon will then be able to operate on a seemingly stationary heart when in reality it is freely beating. The heart's motion is measured from ultrasound images and thus involves a non-negligible delay due to image acquisition and processing, estimated to be 150 ms that, if not compensated for, can cause the teleoperated robot's end-effector (i.e., the surgical tool) to collide with and puncture the heart. This research proposes the use of a Smith predictor to compensate for this time delay in calculating the reference position for the teleoperated robot. The results suggest that heart motion tracking is improved as the introduction of the Smith predictor significantly decreases the mean absolute error, which is the error in making the distance between the robot's end-effector and the heart follow the surgeon's motion, and the mean integrated square error.
Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring
Khan, Hassan; Kottapalli, Ajay; Asadnia, Mohsen
2018-01-01
Flexible electronic devices offer the capability to integrate and adapt with human body. These devices are mountable on surfaces with various shapes, which allow us to attach them to clothes or directly onto the body. This paper suggests a facile fabrication strategy via electrospinning to develop a stretchable, and sensitive poly (vinylidene fluoride) nanofibrous strain sensor for human motion monitoring. A complete characterization on the single PVDF nano fiber has been performed. The charge generated by PVDF electrospun strain sensor changes was employed as a parameter to control the finger motion of the robotic arm. As a proof of concept, we developed a smart glove with five sensors integrated into it to detect the fingers motion and transfer it to a robotic hand. Our results shows that the proposed strain sensors are able to detect tiny motion of fingers and successfully run the robotic hand. PMID:29389851
Coordination of dual robot arms using kinematic redundancy
NASA Technical Reports Server (NTRS)
Suh, Il Hong; Shin, Kang G.
1988-01-01
A method is developed to coordinate the motion of dual robot arms carrying a solid object, where the first robot (leader) grasps one end of the object rigidly and the second robot (follower) is allowed to change its grasping position at the other end of the object along the object surface while supporting the object. It is shown that this flexible grasping is equivalent to the addition of one more degree of freedom (dof), giving the follower more maneuvering capabilities. In particular, motion commands for the follower are generated by using kinematic redundancy. To show the utility and power of the method, an example system with two PUMA 560 robots carrying a beam is analyzed.
Observation and imitation of actions performed by humans, androids, and robots: an EMG study
Hofree, Galit; Urgen, Burcu A.; Winkielman, Piotr; Saygin, Ayse P.
2015-01-01
Understanding others’ actions is essential for functioning in the physical and social world. In the past two decades research has shown that action perception involves the motor system, supporting theories that we understand others’ behavior via embodied motor simulation. Recently, empirical approach to action perception has been facilitated by using well-controlled artificial stimuli, such as robots. One broad question this approach can address is what aspects of similarity between the observer and the observed agent facilitate motor simulation. Since humans have evolved among other humans and animals, using artificial stimuli such as robots allows us to probe whether our social perceptual systems are specifically tuned to process other biological entities. In this study, we used humanoid robots with different degrees of human-likeness in appearance and motion along with electromyography (EMG) to measure muscle activity in participants’ arms while they either observed or imitated videos of three agents produce actions with their right arm. The agents were a Human (biological appearance and motion), a Robot (mechanical appearance and motion), and an Android (biological appearance and mechanical motion). Right arm muscle activity increased when participants imitated all agents. Increased muscle activation was found also in the stationary arm both during imitation and observation. Furthermore, muscle activity was sensitive to motion dynamics: activity was significantly stronger for imitation of the human than both mechanical agents. There was also a relationship between the dynamics of the muscle activity and motion dynamics in stimuli. Overall our data indicate that motor simulation is not limited to observation and imitation of agents with a biological appearance, but is also found for robots. However we also found sensitivity to human motion in the EMG responses. Combining data from multiple methods allows us to obtain a more complete picture of action understanding and the underlying neural computations. PMID:26150782
The dynamics and control of a spherical robot with an internal omniwheel platform
NASA Astrophysics Data System (ADS)
Karavaev, Yury L.; Kilin, Alexander A.
2015-03-01
This paper deals with the problem of a spherical robot propelled by an internal omniwheel platform and rolling without slipping on a plane. The problem of control of spherical robot motion along an arbitrary trajectory is solved within the framework of a kinematic model and a dynamic model. A number of particular cases of motion are identified, and their stability is investigated. An algorithm for constructing elementary maneuvers (gaits) providing the transition from one steady-state motion to another is presented for the dynamic model. A number of experiments have been carried out confirming the adequacy of the proposed kinematic model.
A Car Transportation System in Cooperation by Multiple Mobile Robots for Each Wheel: iCART II
NASA Astrophysics Data System (ADS)
Kashiwazaki, Koshi; Yonezawa, Naoaki; Kosuge, Kazuhiro; Sugahara, Yusuke; Hirata, Yasuhisa; Endo, Mitsuru; Kanbayashi, Takashi; Shinozuka, Hiroyuki; Suzuki, Koki; Ono, Yuki
The authors proposed a car transportation system, iCART (intelligent Cooperative Autonomous Robot Transporters), for automation of mechanical parking systems by two mobile robots. However, it was difficult to downsize the mobile robot because the length of it requires at least the wheelbase of a car. This paper proposes a new car transportation system, iCART II (iCART - type II), based on “a-robot-for-a-wheel” concept. A prototype system, MRWheel (a Mobile Robot for a Wheel), is designed and downsized less than half the conventional robot. First, a method for lifting up a wheel by MRWheel is described. In general, it is very difficult for mobile robots such as MRWheel to move to desired positions without motion errors caused by slipping, etc. Therefore, we propose a follower's motion error estimation algorithm based on the internal force applied to each follower by extending a conventional leader-follower type decentralized control algorithm for cooperative object transportation. The proposed algorithm enables followers to estimate their motion errors and enables the robots to transport a car to a desired position. In addition, we analyze and prove the stability and convergence of the resultant system with the proposed algorithm. In order to extract only the internal force from the force applied to each robot, we also propose a model-based external force compensation method. Finally, proposed methods are applied to the car transportation system, the experimental results confirm their validity.
Robust sensorimotor representation to physical interaction changes in humanoid motion learning.
Shimizu, Toshihiko; Saegusa, Ryo; Ikemoto, Shuhei; Ishiguro, Hiroshi; Metta, Giorgio
2015-05-01
This paper proposes a learning from demonstration system based on a motion feature, called phase transfer sequence. The system aims to synthesize the knowledge on humanoid whole body motions learned during teacher-supported interactions, and apply this knowledge during different physical interactions between a robot and its surroundings. The phase transfer sequence represents the temporal order of the changing points in multiple time sequences. It encodes the dynamical aspects of the sequences so as to absorb the gaps in timing and amplitude derived from interaction changes. The phase transfer sequence was evaluated in reinforcement learning of sitting-up and walking motions conducted by a real humanoid robot and compatible simulator. In both tasks, the robotic motions were less dependent on physical interactions when learned by the proposed feature than by conventional similarity measurements. Phase transfer sequence also enhanced the convergence speed of motion learning. Our proposed feature is original primarily because it absorbs the gaps caused by changes of the originally acquired physical interactions, thereby enhancing the learning speed in subsequent interactions.
High level intelligent control of telerobotics systems
NASA Technical Reports Server (NTRS)
Mckee, James
1988-01-01
A high level robot command language is proposed for the autonomous mode of an advanced telerobotics system and a predictive display mechanism for the teleoperational model. It is believed that any such system will involve some mixture of these two modes, since, although artificial intelligence can facilitate significant autonomy, a system that can resort to teleoperation will always have the advantage. The high level command language will allow humans to give the robot instructions in a very natural manner. The robot will then analyze these instructions to infer meaning so that is can translate the task into lower level executable primitives. If, however, the robot is unable to perform the task autonomously, it will switch to the teleoperational mode. The time delay between control movement and actual robot movement has always been a problem in teleoperations. The remote operator may not actually see (via a monitor) the results of high actions for several seconds. A computer generated predictive display system is proposed whereby the operator can see a real-time model of the robot's environment and the delayed video picture on the monitor at the same time.
Manufacturing implementation of off-line programming for the Space Shuttle Main Engines
NASA Technical Reports Server (NTRS)
Sliwinski, K. E.; Pierson, B. L.; Anderson, R. R.; Guthmiller, W. A.
1989-01-01
An account is given of the efforts made to implement an off-line programming (OLP) system for a gas tungsten arc welding robot in actual manufacturing operations, namely those involved in the manufacture of the SSMEs. In conjunction with a real-time sensor control system, the OLP constitutes the Advanced Robotic Welding System, or 'AROWS'. OLP's task is to develop a robot-motion path without the initial use of the robot to 'teach' the characteristics of such motion; actual process parameters are recorded by OLP and correlated with the position along the weld.
Moreno, Javier; Clotet, Eduard; Lupiañez, Ruben; Tresanchez, Marcel; Martínez, Dani; Pallejà, Tomàs; Casanovas, Jordi; Palacín, Jordi
2016-10-10
This paper presents the design, implementation and validation of the three-wheel holonomic motion system of a mobile robot designed to operate in homes. The holonomic motion system is described in terms of mechanical design and electronic control. The paper analyzes the kinematics of the motion system and validates the estimation of the trajectory comparing the displacement estimated with the internal odometry of the motors and the displacement estimated with a SLAM procedure based on LIDAR information. Results obtained in different experiments have shown a difference on less than 30 mm between the position estimated with the SLAM and odometry, and a difference in the angular orientation of the mobile robot lower than 5° in absolute displacements up to 1000 mm.
Moreno, Javier; Clotet, Eduard; Lupiañez, Ruben; Tresanchez, Marcel; Martínez, Dani; Pallejà, Tomàs; Casanovas, Jordi; Palacín, Jordi
2016-01-01
This paper presents the design, implementation and validation of the three-wheel holonomic motion system of a mobile robot designed to operate in homes. The holonomic motion system is described in terms of mechanical design and electronic control. The paper analyzes the kinematics of the motion system and validates the estimation of the trajectory comparing the displacement estimated with the internal odometry of the motors and the displacement estimated with a SLAM procedure based on LIDAR information. Results obtained in different experiments have shown a difference on less than 30 mm between the position estimated with the SLAM and odometry, and a difference in the angular orientation of the mobile robot lower than 5° in absolute displacements up to 1000 mm. PMID:27735857
Research of the master-slave robot surgical system with the function of force feedback.
Shi, Yunyong; Zhou, Chaozheng; Xie, Le; Chen, Yongjun; Jiang, Jun; Zhang, Zhenfeng; Deng, Ze
2017-12-01
Surgical robots lack force feedback, which may lead to operation errors. In order to improve surgical outcomes, this research developed a new master-slave surgical robot, which was designed with an integrated force sensor. The new structure designed for the master-slave robot employs a force feedback mechanism. A six-dimensional force sensor was mounted on the tip of the slave robot's actuator. Sliding model control was adopted to control the slave robot. According to the movement of the master system manipulated by the surgeon, the slave's movement and the force feedback function were validated. The motion was completed, the standard deviation was calculated, and the force data were detected. Hence, force feedback was realized in the experiment. The surgical robot can help surgeons to complete trajectory motions with haptic sensation. Copyright © 2017 John Wiley & Sons, Ltd.
Manipulation strategies for massive space payloads
NASA Technical Reports Server (NTRS)
Book, Wayne J.
1991-01-01
Motion planning and control for the joints of flexible manipulators are discussed. Specific topics covered include control of a flexible braced manipulator, control of a small working robot on a large flexible manipulator to suppress vibrations, control strategies for ensuring cooperation among disparate manipulators, and motion planning for robots in free-fall.
Interactive-rate Motion Planning for Concentric Tube Robots
Torres, Luis G.; Baykal, Cenk; Alterovitz, Ron
2014-01-01
Concentric tube robots may enable new, safer minimally invasive surgical procedures by moving along curved paths to reach difficult-to-reach sites in a patient’s anatomy. Operating these devices is challenging due to their complex, unintuitive kinematics and the need to avoid sensitive structures in the anatomy. In this paper, we present a motion planning method that computes collision-free motion plans for concentric tube robots at interactive rates. Our method’s high speed enables a user to continuously and freely move the robot’s tip while the motion planner ensures that the robot’s shaft does not collide with any anatomical obstacles. Our approach uses a highly accurate mechanical model of tube interactions, which is important since small movements of the tip position may require large changes in the shape of the device’s shaft. Our motion planner achieves its high speed and accuracy by combining offline precomputation of a collision-free roadmap with online position control. We demonstrate our interactive planner in a simulated neurosurgical scenario where a user guides the robot’s tip through the environment while the robot automatically avoids collisions with the anatomical obstacles. PMID:25436176
Nishimoto, Ryunosuke; Tani, Jun
2009-07-01
The current paper shows a neuro-robotics experiment on developmental learning of goal-directed actions. The robot was trained to predict visuo-proprioceptive flow of achieving a set of goal-directed behaviors through iterative tutor training processes. The learning was conducted by employing a dynamic neural network model which is characterized by their multiple time-scale dynamics. The experimental results showed that functional hierarchical structures emerge through stages of developments where behavior primitives are generated in earlier stages and their sequences of achieving goals appear in later stages. It was also observed that motor imagery is generated in earlier stages compared to actual behaviors. Our claim that manipulatable inner representation should emerge through the sensory-motor interactions is corresponded to Piaget's constructivist view.
Kwok, Ka-Wai; Tsoi, Kuen Hung; Vitiello, Valentina; Clark, James; Chow, Gary C. T.; Luk, Wayne; Yang, Guang-Zhong
2014-01-01
This paper presents a real-time control framework for a snake robot with hyper-kinematic redundancy under dynamic active constraints for minimally invasive surgery. A proximity query (PQ) formulation is proposed to compute the deviation of the robot motion from predefined anatomical constraints. The proposed method is generic and can be applied to any snake robot represented as a set of control vertices. The proposed PQ formulation is implemented on a graphic processing unit, allowing for fast updates over 1 kHz. We also demonstrate that the robot joint space can be characterized into lower dimensional space for smooth articulation. A novel motion parameterization scheme in polar coordinates is proposed to describe the transition of motion, thus allowing for direct manual control of the robot using standard interface devices with limited degrees of freedom. Under the proposed framework, the correct alignment between the visual and motor axes is ensured, and haptic guidance is provided to prevent excessive force applied to the tissue by the robot body. A resistance force is further incorporated to enhance smooth pursuit movement matched to the dynamic response and actuation limit of the robot. To demonstrate the practical value of the proposed platform with enhanced ergonomic control, detailed quantitative performance evaluation was conducted on a group of subjects performing simulated intraluminal and intracavity endoscopic tasks. PMID:24741371
Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test.
Gilbert, Hunter B; Hendrick, Richard J; Webster, Robert J
2016-02-01
Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots. However, a general measure for how stable a given robot configuration is has yet to be proposed. In this paper, we use bifurcation and elastic stability theory to provide such a measure, as well as to produce a test for determining whether a given design is snap-free (i.e. whether snapping can occur anywhere in the unloaded robot's workspace). These results are useful in designing, planning motions for, and controlling concentric tube robots with high curvatures.
Parallel Robot for Lower Limb Rehabilitation Exercises.
Rastegarpanah, Alireza; Saadat, Mozafar; Borboni, Alberto
2016-01-01
The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises.
Parallel Robot for Lower Limb Rehabilitation Exercises
Saadat, Mozafar; Borboni, Alberto
2016-01-01
The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises. PMID:27799727
Adaptive walking of a quadrupedal robot based on layered biological reflexes
NASA Astrophysics Data System (ADS)
Zhang, Xiuli; Mingcheng, E.; Zeng, Xiangyu; Zheng, Haojun
2012-07-01
A multiple-legged robot is traditionally controlled by using its dynamic model. But the dynamic-model-based approach fails to acquire satisfactory performances when the robot faces rough terrains and unknown environments. Referring animals' neural control mechanisms, a control model is built for a quadruped robot walking adaptively. The basic rhythmic motion of the robot is controlled by a well-designed rhythmic motion controller(RMC) comprising a central pattern generator(CPG) for hip joints and a rhythmic coupler (RC) for knee joints. CPG and RC have relationships of motion-mapping and rhythmic couple. Multiple sensory-motor models, abstracted from the neural reflexes of a cat, are employed. These reflex models are organized and thus interact with the CPG in three layers, to meet different requirements of complexity and response time to the tasks. On the basis of the RMC and layered biological reflexes, a quadruped robot is constructed, which can clear obstacles and walk uphill and downhill autonomously, and make a turn voluntarily in uncertain environments, interacting with the environment in a way similar to that of an animal. The paper provides a biologically inspired architecture, with which a robot can walk adaptively in uncertain environments in a simple and effective way, and achieve better performances.
Motion and Emotional Behavior Design for Pet Robot Dog
NASA Astrophysics Data System (ADS)
Cheng, Chi-Tai; Yang, Yu-Ting; Miao, Shih-Heng; Wong, Ching-Chang
A pet robot dog with two ears, one mouth, one facial expression plane, and one vision system is designed and implemented so that it can do some emotional behaviors. Three processors (Inter® Pentium® M 1.0 GHz, an 8-bit processer 8051, and embedded soft-core processer NIOS) are used to control the robot. One camera, one power detector, four touch sensors, and one temperature detector are used to obtain the information of the environment. The designed robot with 20 DOF (degrees of freedom) is able to accomplish the walking motion. A behavior system is built on the implemented pet robot so that it is able to choose a suitable behavior for different environmental situation. From the practical test, we can see that the implemented pet robot dog can do some emotional interaction with the human.
NASA Technical Reports Server (NTRS)
2000-01-01
The Automated Endoscopic System for Optimal Positioning, or AESOP, was developed by Computer Motion, Inc. under a SBIR contract from the Jet Propulsion Lab. AESOP is a robotic endoscopic positioning system used to control the motion of a camera during endoscopic surgery. The camera, which is mounted at the end of a robotic arm, previously had to be held in place by the surgical staff. With AESOP the robotic arm can make more precise and consistent movements. AESOP is also voice controlled by the surgeon. It is hoped that this technology can be used in space repair missions which require precision beyond human dexterity. A new generation of the same technology entitled the ZEUS Robotic Surgical System can make endoscopic procedures even more successful. ZEUS allows the surgeon control various instruments in its robotic arms, allowing for the precision the procedure requires.
Computer coordination of limb motion for a three-legged walking robot
NASA Technical Reports Server (NTRS)
Klein, C. A.; Patterson, M. R.
1980-01-01
Coordination of the limb motion of a vehicle which could perform assembly and maintenance operations on large structures in space is described. Manipulator kinematics and walking robots are described. The basic control scheme of the robot is described. The control of the individual arms are described. Arm velocities are generally described in Cartesian coordinates. Cartesian velocities are converted to joint velocities using the Jacobian matrix. The calculation of a trajectory for an arm given a sequence of points through which it is to pass is described. The free gait algorithm which controls the lifting and placing of legs for the robot is described. The generation of commanded velocities for the robot, and the implementation of those velocities by the algorithm are discussed. Suggestions for further work in the area of robot legged locomotion are presented.
Redundant arm control in a supervisory and shared control system
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Long, Mark K.
1992-01-01
The Extended Task Space Control approach to robotic operations based on manipulator behaviors derived from task requirements is described. No differentiation between redundant and non-redundant robots is made at the task level. The manipulation task behaviors are combined into a single set of motion commands. The manipulator kinematics are used subsequently in mapping motion commands into actuator commands. Extended Task Space Control is applied to a Robotics Research K-1207 seven degree-of-freedom manipulator in a supervisory telerobot system as an example.
The motion control of a statically stable biped robot on an uneven floor.
Shih, C L; Chiou, C J
1998-01-01
This work studies the motion control of a statically stable biped robot having seven degrees of freedom. Statically stable walking of the biped robot is realized by maintaining the center-of-gravity inside the convex region of the supporting foot and/or feet during both single-support and double-support phases. The main points of this work are framing the stability in an easy and correct way, the design of a bipedal statically stable walker, and walking on sloping surfaces and stairs.
Decentralized digital adaptive control of robot motion
NASA Technical Reports Server (NTRS)
Tarokh, M.
1990-01-01
A decentralized model reference adaptive scheme is developed for digital control of robot manipulators. The adaptation laws are derived using hyperstability theory, which guarantees asymptotic trajectory tracking despite gross robot parameter variations. The control scheme has a decentralized structure in the sense that each local controller receives only its joint angle measurement to produce its joint torque. The independent joint controllers have simple structures and can be programmed using a very simple and computationally fast algorithm. As a result, the scheme is suitable for real-time motion control.
Sensing And Force-Reflecting Exoskeleton
NASA Technical Reports Server (NTRS)
Eberman, Brian; Fontana, Richard; Marcus, Beth
1993-01-01
Sensing and force-reflecting exoskeleton (SAFiRE) provides control signals to robot hand and force feedback from robot hand to human operator. Operator makes robot hand touch objects gently and manipulates them finely without exerting excessive forces. Device attaches to operator's hand; comfortable and lightweight. Includes finger exoskeleton, cable mechanical transmission, two dc servomotors, partial thumb exoskeleton, harness, amplifier box, two computer circuit boards, and software. Transduces motion of index finger and thumb. Video monitor of associated computer displays image corresponding to motion.
NASA Astrophysics Data System (ADS)
Takasugi, Shoji; Yamamoto, Tomohito; Muto, Yumiko; Abe, Hiroyuki; Miyake, Yoshihiro
The purpose of this study is to clarify the effects of timing control of utterance and body motion in human-robot interaction. Our previous study has already revealed the correlation of timing of utterance and body motion in human-human communication. Here we proposed a timing control model based on our previous research and estimated its influence to realize human-like communication using a questionnaire method. The results showed that the difference of effectiveness between the communication with the timing control model and that without it was observed. In addition, elderly people evaluated the communication with timing control much higher than younger people. These results show not only the importance of timing control of utterance and body motion in human communication but also its effectiveness for realizing human-like human-robot interaction.
Computer Graphics Research Laboratory Quarterly Progress Report Number 49, July-September 1993
1993-11-22
20 Texture Sampling and Strength Guided Motion: Jeffry S. Nimeroff 23 21 Radiosity : Min-Zhi Shao 24 22 Blended Shape Primitives: Douglas DeCarlo 25 23...placement. "* Extensions of radiosity rendering. "* A discussion of blended shape primitives and the applications in computer vision and computer...user. Radiosity : An improved version of the radiosity renderer is included. This version uses a fast over- relaxation progressive refinement algorithm
Li, Dongrui; Cheng, Zhigang; Chen, Gang; Liu, Fangyi; Wu, Wenbo; Yu, Jie; Gu, Ying; Liu, Fengyong; Ren, Chao; Liang, Ping
2018-04-03
To test the accuracy and efficacy of the multimodality imaging-compatible insertion robot with a respiratory motion calibration module designed for ablation of liver tumors in phantom and animal models. To evaluate and compare the influences of intervention experience on robot-assisted and ultrasound-controlled ablation procedures. Accuracy tests on rigid body/phantom model with a respiratory movement simulation device and microwave ablation tests on porcine liver tumor/rabbit liver cancer were performed with the robot we designed or with the traditional ultrasound-guidance by physicians with or without intervention experience. In the accuracy tests performed by the physicians without intervention experience, the insertion accuracy and efficiency of robot-assisted group was higher than those of ultrasound-guided group with statistically significant differences. In the microwave ablation tests performed by the physicians without intervention experience, better complete ablation rate was achieved when applying the robot. In the microwave ablation tests performed by the physicians with intervention experience, there was no statistically significant difference of the insertion number and total ablation time between the robot-assisted group and the ultrasound-controlled group. The evaluation by the NASA-TLX suggested that the robot-assisted insertion and microwave ablation process performed by physicians with or without experience were more comfortable. The multimodality imaging-compatible insertion robot with a respiratory motion calibration module designed for ablation of liver tumors could increase the insertion accuracy and ablation efficacy, and minimize the influence of the physicians' experience. The ablation procedure could be more comfortable with less stress with the application of the robot.
NASA Astrophysics Data System (ADS)
Dong, Gangqi; Zhu, Z. H.
2016-04-01
This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.
A natural-language interface to a mobile robot
NASA Technical Reports Server (NTRS)
Michalowski, S.; Crangle, C.; Liang, L.
1987-01-01
The present work on robot instructability is based on an ongoing effort to apply modern manipulation technology to serve the needs of the handicapped. The Stanford/VA Robotic Aid is a mobile manipulation system that is being developed to assist severely disabled persons (quadriplegics) in performing simple activities of everyday living in a homelike, unstructured environment. It consists of two major components: a nine degree-of-freedom manipulator and a stationary control console. In the work presented here, only the motions of the Robotic Aid's omnidirectional motion base have been considered, i.e., the six degrees of freedom of the arm and gripper have been ignored. The goal has been to develop some basic software tools for commanding the robot's motions in an enclosed room containing a few objects such as tables, chairs, and rugs. In the present work, the environmental model takes the form of a two-dimensional map with objects represented by polygons. Admittedly, such a highly simplified scheme bears little resemblance to the elaborate cognitive models of reality that are used in normal human discourse. In particular, the polygonal model is given a priori and does not contain any perceptual elements: there is no polygon sensor on board the mobile robot.
Control of a Quadcopter Aerial Robot Using Optic Flow Sensing
NASA Astrophysics Data System (ADS)
Hurd, Michael Brandon
This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).
Yang, Yunpeng; Jiang, Shan; Yang, Zhiyong; Yuan, Wei; Dou, Huaisu; Wang, Wei; Zhang, Daguang; Bian, Yuan
2017-04-01
Nowadays, biopsy is a decisive method of lung cancer diagnosis, whereas lung biopsy is time-consuming, complex and inaccurate. So a computed tomography-compatible robot for rapid and precise lung biopsy is developed in this article. According to the actual operation process, the robot is divided into two modules: 4-degree-of-freedom position module for location of puncture point is appropriate for patient's almost all positions and 3-degree-of-freedom tendon-based orientation module with remote center of motion is compact and computed tomography-compatible to orientate and insert needle automatically inside computed tomography bore. The workspace of the robot surrounds patient's thorax, and the needle tip forms a cone under patient's skin. A new error model of the robot based on screw theory is proposed in view of structure error and actuation error, which are regarded as screw motions. Simulation is carried out to verify the precision of the error model contrasted with compensation via inverse kinematics. The results of insertion experiment on specific phantom prove the feasibility of the robot with mean error of 1.373 mm in laboratory environment, which is accurate enough to replace manual operation.
A bioinspired aquatic robot propelled by an internal rotor
NASA Astrophysics Data System (ADS)
Tallapragada, Phanindra; Pollard, Beau
2015-11-01
Low dimensional models of fish-like swimming of a deformable Joukowski foil shedding singular distributions of vorticity have been well known for two decades. The deformation of the foil can be interpreted to be periodic changes in an abstract shape space and the creation of vorticity can be shown to act as a nonholonomic constraint. With this geometric insight, it can be demonstrated that a Joukowski foil (or in general any body) can possibly swim to the motion of an internal rotor, that acts as a shape variable. The motion of the rotor pumps in angular momentum and the simultaneous creation of vorticity allows this to be `converted' into linear momentum of the foil. We demonstrate the feasibility of this theoretical prediction with a robot shaped as a Joukowski foil propelled by the motion of an internal momentum wheel. We also demonstrate that the internal rotor acts both as a means of propulsion as well as a means of controlling the heading of the robot. Some maneuvers of the robot and features of its physical and `mathematical' resemblance to fish-like motion are demonstrated.
Miyake, Tamon; Tsukune, Mariko; Kobayashi, Yo; Sugano, Shigeki; Fujie, Masakatsu G
2016-08-01
Elderly people are at risk of tripping because of their narrow range of articular motion. To avoid tripping, gait training that improves their range of articular motion would be beneficial. In this study we propose a gait-training robot that applies a torque during the pre-swing phase to achieve this goal. We investigated the relationship between magnitude of applied torque and change in the range of knee-articular motion while walking before and after the application of this torque. We developed a wearable robot and carried out an experiment on human participants in which a motor pulls a string embedded on the robotic frame, applying torque in the pre-swing phase for a period of 20 [s]. Before and after applying torque the participant walked normally for 15 [s] without interference from the robot. We found that knee flexion angle increased after applying the torque if the torque was within the range of approximately 6-8 [Nm]. Therefore, we were able to verify that a new range of knee articular motion can be learned through application of torque.
Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm.
Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae; Kim, Tae Il; Yi, Byung Ju
2017-01-01
Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site.
Multipurpose surgical robot as a laparoscope assistant.
Nelson, Carl A; Zhang, Xiaoli; Shah, Bhavin C; Goede, Matthew R; Oleynikov, Dmitry
2010-07-01
This study demonstrates the effectiveness of a new, compact surgical robot at improving laparoscope guidance. Currently, the assistant guiding the laparoscope camera tends to be less experienced and requires physical and verbal direction from the surgeon. Human guidance has disadvantages of fatigue and shakiness leading to inconsistency in the field of view. This study investigates whether replacing the assistant with a compact robot can improve the stability of the surgeon's field of view and also reduce crowding at the operating table. A compact robot based on a bevel-geared "spherical mechanism" with 4 degrees of freedom and capable of full dexterity through a 15-mm port was designed and built. The robot was mounted on the standard railing of the operating table and used to manipulate a laparoscope through a supraumbilical port in a porcine model via a joystick controlled externally by a surgeon. The process was videotaped externally via digital video recorder and internally via laparoscope. Robot position data were also recorded within the robot's motion control software. The robot effectively manipulated the laparoscope in all directions to provide a clear and consistent view of liver, small intestine, and spleen. Its range of motion was commensurate with typical motions executed by a human assistant and was well controlled with the joystick. Qualitative analysis of the video suggested that this method of laparoscope guidance provides highly stable imaging during laparoscopic surgery, which was confirmed by robot position data. Because the robot was table-mounted and compact in design, it increased standing room around the operation table and did not interfere with the workspace of other surgical instruments. The study results also suggest that this robotic method may be combined with flexible endoscopes for highly dexterous visualization with more degrees of freedom.
Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
Hu, Zhenkai; Yoon, Chae-Hyun; Park, Samuel Byeongjun; Jo, Yung-Ho
2016-07-01
We propose a portable haptic device providing grasp (kinesthetic) and push-pull (cutaneous) sensations for optical-motion-capture master interfaces. Although optical-motion-capture master interfaces for surgical robot systems can overcome the stiffness, friction, and coupling problems of mechanical master interfaces, it is difficult to add haptic feedback to an optical-motion-capture master interface without constraining the free motion of the operator's hands. Therefore, we utilized a Bowden cable-driven mechanism to provide the grasp and push-pull sensation while retaining the free hand motion of the optical-motion capture master interface. To evaluate the haptic device, we construct a 2-DOF force sensing/force feedback system. We compare the sensed force and the reproduced force of the haptic device. Finally, a needle insertion test was done to evaluate the performance of the haptic interface in the master-slave system. The results demonstrate that both the grasp force feedback and the push-pull force feedback provided by the haptic interface closely matched with the sensed forces of the slave robot. We successfully apply our haptic interface in the optical-motion-capture master-slave system. The results of the needle insertion test showed that our haptic feedback can provide more safety than merely visual observation. We develop a suitable haptic device to produce both kinesthetic grasp force feedback and cutaneous push-pull force feedback. Our future research will include further objective performance evaluations of the optical-motion-capture master-slave robot system with our haptic interface in surgical scenarios.
Towards an SEMG-based tele-operated robot for masticatory rehabilitation.
Kalani, Hadi; Moghimi, Sahar; Akbarzadeh, Alireza
2016-08-01
This paper proposes a real-time trajectory generation for a masticatory rehabilitation robot based on surface electromyography (SEMG) signals. We used two Gough-Stewart robots. The first robot was used as a rehabilitation robot while the second robot was developed to model the human jaw system. The legs of the rehabilitation robot were controlled by the SEMG signals of a tele-operator to reproduce the masticatory motion in the human jaw, supposedly mounted on the moving platform, through predicting the location of a reference point. Actual jaw motions and the SEMG signals from the masticatory muscles were recorded and used as output and input, respectively. Three different methods, namely time-delayed neural networks, time delayed fast orthogonal search, and time-delayed Laguerre expansion technique, were employed and compared to predict the kinematic parameters. The optimal model structures as well as the input delays were obtained for each model and each subject through a genetic algorithm. Equations of motion were obtained by the virtual work method. Fuzzy method was employed to develop a fuzzy impedance controller. Moreover, a jaw model was developed to demonstrate the time-varying behavior of the muscle lengths during the rehabilitation process. The three modeling methods were capable of providing reasonably accurate estimations of the kinematic parameters, although the accuracy and training/validation speed of time-delayed fast orthogonal search were higher than those of the other two aforementioned methods. Also, during a simulation study, the fuzzy impedance scheme proved successful in controlling the moving platform for the accurate navigation of the reference point in the desired trajectory. SEMG has been widely used as a control command for prostheses and exoskeleton robots. However, in the current study by employing the proposed rehabilitation robot the complete continuous profile of the clenching motion was reproduced in the sagittal plane. Copyright © 2016. Published by Elsevier Ltd.
Development of support system to handle ultrasound probe by coordinated motion with medical robot.
Masuda, Kohji; Takachi, Yuuki; Urayama, Yasuhiro; Yoshinaga, Takashi
2011-01-01
We have developed a support system using our ultrasound diagnosis robot, which is able to support manual handling of ultrasound probe in echography to alleviate fatigue of examiner. This system realizes a coordinated motion according to the motion of the probe, which is hold by the robot and is moved by an examiner. We have established four kinds of situations, which are initial fixation, coordinate motions with/without contact on the body surface, and automatic chase motion of an internal organ. The system recognizes when the examiner grasps the ultrasound probe by 6-axis force sensor and touches it on body surface by processing echograms. Not only unskilled examiners but also a professional sonographer have evaluated the performance of the system after elucidating multiple parameters for compliance control and self-weight and moment compensation of the probe. As the results, this system has the potential to be able to support advanced diagnosis for conventional echography.
The effect of inertial coupling in the dynamics and control of flexible robotic manipulators
NASA Technical Reports Server (NTRS)
Tesar, Delbert; Curran, Carol Cockrell; Graves, Philip Lee
1988-01-01
A general model of the dynamics of flexible robotic manipulators is presented, including the gross motion of the links, the vibrations of the links and joints, and the dynamic coupling between the gross motions and vibrations. The vibrations in the links may be modeled using lumped parameters, truncated modal summation, a component mode synthesis method, or a mixture of these methods. The local link inertia matrix is derived to obtain the coupling terms between the gross motion of the link and the vibrations of the link. Coupling between the motions of the links results from the kinematic model, which utilizes the method of kinematic influence. The model is used to simulate the dynamics of a flexible space-based robotic manipulator which is attached to a spacecraft, and is free to move with respect to the inertial reference frame. This model may be used to study the dynamic response of the manipulator to the motions of its joints, or to externally applied disturbances.
Zhang, Zhijun; Li, Zhijun; Zhang, Yunong; Luo, Yamei; Li, Yuanqing
2015-12-01
We propose a dual-arm cyclic-motion-generation (DACMG) scheme by a neural-dynamic method, which can remedy the joint-angle-drift phenomenon of a humanoid robot. In particular, according to a neural-dynamic design method, first, a cyclic-motion performance index is exploited and applied. This cyclic-motion performance index is then integrated into a quadratic programming (QP)-type scheme with time-varying constraints, called the time-varying-constrained DACMG (TVC-DACMG) scheme. The scheme includes the kinematic motion equations of two arms and the time-varying joint limits. The scheme can not only generate the cyclic motion of two arms for a humanoid robot but also control the arms to move to the desired position. In addition, the scheme considers the physical limit avoidance. To solve the QP problem, a recurrent neural network is presented and used to obtain the optimal solutions. Computer simulations and physical experiments demonstrate the effectiveness and the accuracy of such a TVC-DACMG scheme and the neural network solver.
Robot body self-modeling algorithm: a collision-free motion planning approach for humanoids.
Leylavi Shoushtari, Ali
2016-01-01
Motion planning for humanoid robots is one of the critical issues due to the high redundancy and theoretical and technical considerations e.g. stability, motion feasibility and collision avoidance. The strategies which central nervous system employs to plan, signal and control the human movements are a source of inspiration to deal with the mentioned problems. Self-modeling is a concept inspired by body self-awareness in human. In this research it is integrated in an optimal motion planning framework in order to detect and avoid collision of the manipulated object with the humanoid body during performing a dynamic task. Twelve parametric functions are designed as self-models to determine the boundary of humanoid's body. Later, the boundaries which mathematically defined by the self-models are employed to calculate the safe region for box to avoid the collision with the robot. Four different objective functions are employed in motion simulation to validate the robustness of algorithm under different dynamics. The results also confirm the collision avoidance, reality and stability of the predicted motion.
Li, Zhijun; Ge, Shuzhi Sam; Liu, Sibang
2014-08-01
This paper investigates optimal feet forces' distribution and control of quadruped robots under external disturbance forces. First, we formulate a constrained dynamics of quadruped robots and derive a reduced-order dynamical model of motion/force. Consider an external wrench on quadruped robots; the distribution of required forces and moments on the supporting legs of a quadruped robot is handled as a tip-point force distribution and used to equilibrate the external wrench. Then, a gradient neural network is adopted to deal with the optimized objective function formulated as to minimize this quadratic objective function subjected to linear equality and inequality constraints. For the obtained optimized tip-point force and the motion of legs, we propose the hybrid motion/force control based on an adaptive neural network to compensate for the perturbations in the environment and approximate feedforward force and impedance of the leg joints. The proposed control can confront the uncertainties including approximation error and external perturbation. The verification of the proposed control is conducted using a simulation.
Design and demonstration of a fish robot actuated by a SMA-driven actuation system
NASA Astrophysics Data System (ADS)
Le, Chan H.; Nguyen, Quang S.; Park, Hoon C.
2010-04-01
This paper presents a concept of a fish robot actuated by an SMA-based actuator. The bending-type actuator system is composed of a 0.1mm diameter SMA wire and a 0.5mm thick glass/epoxy strip. The SMA wire is installed to the bent composite strip. The actuator can produce about 200gf of blocking force and 3.5mm displacement at the center of the glass/epoxy strip. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed and thrust produced by the fish robot. The tail-beat angle is about 20° and the maximum swimming speed is about 1.6cm/s. The measured thrust is about 0.4gf when the fish robot is operated at 0.9Hz.
NASA Astrophysics Data System (ADS)
Hendzel, Z.; Rykała, Ł.
2017-02-01
The work presents the dynamic equations of motion of a wheeled mobile robot with mecanum wheels derived with the use of Lagrange equations of the second kind. Mecanum wheels are a new type of wheels used in wheeled mobile robots and they consist of freely rotating rollers attached to the circumference of the wheels. In order to derive dynamic equations of motion of a wheeled mobile robot, the kinetic energy of the system is determined, as well as the generalised forces affecting the system. The resulting mathematical model of a wheeled mobile robot was generated with the use of Maple V software. The results of a solution of inverse and forward problems of dynamics of the discussed object are also published.
Visually guided grasping to study teleprogrammation within the BAROCO testbed
NASA Technical Reports Server (NTRS)
Devy, M.; Garric, V.; Delpech, M.; Proy, C.
1994-01-01
This paper describes vision functionalities required in future orbital laboratories; in such systems, robots will be needed in order to execute the on-board scientific experiments or servicing and maintenance tasks under the remote control of ground operators. For this sake, ESA has proposed a robotic configuration called EMATS; a testbed has been developed by ESTEC in order to evaluate the potentialities of EMATS-like robot to execute scientific tasks in automatic mode. For the same context, CNES develops the BAROCO testbed to investigate remote control and teleprogrammation, in which high level primitives like 'Pick Object A' are provided as basic primitives. In nominal situations, the system has an a priori knowledge about the position of all objects. These positions are not very accurate, but this knowledge is sufficient in order to predict the position of the object which must be grasped, with respect to the manipulator frame. Vision is required in order to insure a correct grasping and to guarantee a good accuracy for the following operations. We describe our results about a visually guided grasping of static objects. It seems to be a very classical problem, and a lot of results are available. But, in many cases, it lacks a realistic evaluation of the accuracy, because such an evaluation requires tedious experiments. We propose several results about calibration of the experimental testbed, recognition algorithms required to locate a 3D polyhedral object, and the grasping itself.
Switching PD-based sliding mode control for hovering of a tilting-thruster underwater robot.
Jin, Sangrok; Bak, Jeongae; Kim, Jongwon; Seo, TaeWon; Kim, Hwa Soo
2018-01-01
This paper presents a switching PD-based sliding mode control (PD-SMC) method for the 6-degree-of-freedom (DOF) hovering motion of the underwater robot with tilting thrusters. Four thrusters of robot can be tilted simultaneously in the horizontal and vertical directions, and the 6-DOF motion is achieved by switching between two thruster configurations. Therefore, the tilting speed of thruster becomes the most essential parameter to determine the stability of hovering motion. Even though the previous PD control ensures stable hovering motion within a certain ranges of tilting speed, a PD-SMC is suggested in this paper by combining PD control with sliding mode control in order to achieve acceptable hovering performance even at the much lower tilting speeds. Also, the sign function in the sliding mode control is replaced by a sigmoid function to reduce undesired chattering. Simulations show that while PD control is effective only for tilting duration of 600 ms, the PD-based sliding mode control can guarantee the stable hovering motion of underwater robot even for the tilting duration of up to 1500 ms. Extensive experimental results confirm the hovering performance of the proposed PD-SMC method is much superior to that of PD method for much larger tilting durations.
Beating-heart registration for organ-mounted robots.
Wood, Nathan A; Schwartzman, David; Passineau, Michael J; Moraca, Robert J; Zenati, Marco A; Riviere, Cameron N
2018-03-06
Organ-mounted robots address the problem of beating-heart surgery by adhering to the heart, passively providing a platform that approaches zero relative motion. Because of the quasi-periodic deformation of the heart due to heartbeat and respiration, registration must address not only spatial registration but also temporal registration. Motion data were collected in the porcine model in vivo (N = 6). Fourier series models of heart motion were developed. By comparing registrations generated using an iterative closest-point approach at different phases of respiration, the phase corresponding to minimum registration distance is identified. The spatiotemporal registration technique presented here reduces registration error by an average of 4.2 mm over the 6 trials, in comparison with a more simplistic static registration that merely averages out the physiological motion. An empirical metric for spatiotemporal registration of organ-mounted robots is defined and demonstrated using data from animal models in vivo. Copyright © 2018 John Wiley & Sons, Ltd.
Modelling of industrial robot in LabView Robotics
NASA Astrophysics Data System (ADS)
Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.
2017-08-01
Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.
Comparison of three different techniques for camera and motion control of a teleoperated robot.
Doisy, Guillaume; Ronen, Adi; Edan, Yael
2017-01-01
This research aims to evaluate new methods for robot motion control and camera orientation control through the operator's head orientation in robot teleoperation tasks. Specifically, the use of head-tracking in a non-invasive way, without immersive virtual reality devices was combined and compared with classical control modes for robot movements and camera control. Three control conditions were tested: 1) a condition with classical joystick control of both the movements of the robot and the robot camera, 2) a condition where the robot movements were controlled by a joystick and the robot camera was controlled by the user head orientation, and 3) a condition where the movements of the robot were controlled by hand gestures and the robot camera was controlled by the user head orientation. Performance, workload metrics and their evolution as the participants gained experience with the system were evaluated in a series of experiments: for each participant, the metrics were recorded during four successive similar trials. Results shows that the concept of robot camera control by user head orientation has the potential of improving the intuitiveness of robot teleoperation interfaces, specifically for novice users. However, more development is needed to reach a margin of progression comparable to a classical joystick interface. Copyright © 2016 Elsevier Ltd. All rights reserved.
A human factors analysis of EVA time requirements
NASA Technical Reports Server (NTRS)
Pate, D. W.
1996-01-01
Human Factors Engineering (HFE), also known as Ergonomics, is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. A human factors motion and time study was initiated with the goal of developing a database of EVA task times and a method of utilizing the database to predict how long an ExtraVehicular Activity (EVA) should take. Initial development relied on the EVA activities performed during the STS-61 mission (Hubble repair). The first step of the analysis was to become familiar with EVAs and with the previous studies and documents produced on EVAs. After reviewing these documents, an initial set of task primitives and task time modifiers was developed. Videotaped footage of STS-61 EVAs were analyzed using these primitives and task time modifiers. Data for two entire EVA missions and portions of several others, each with two EVA astronauts, was collected for analysis. Feedback from the analysis of the data will be used to further refine the primitives and task time modifiers used. Analysis of variance techniques for categorical data will be used to determine which factors may, individually or by interactions, effect the primitive times and how much of an effect they have.
Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study
NASA Astrophysics Data System (ADS)
D'Souza, Warren D.; Naqvi, Shahid A.; Yu, Cedric X.
2005-09-01
Significant differences between planned and delivered treatments may occur due to respiration-induced tumour motion, leading to underdosing of parts of the tumour and overdosing of parts of the surrounding critical structures. Existing methods proposed to counter tumour motion include breath-holds, gating and MLC-based tracking. Breath-holds and gating techniques increase treatment time considerably, whereas MLC-based tracking is limited to two dimensions. We present an alternative solution in which a robotic couch moves in real time in response to organ motion. To demonstrate proof-of-principle, we constructed a miniature adaptive couch model consisting of two movable platforms that simulate tumour motion and couch motion, respectively. These platforms were connected via an electronic feedback loop so that the bottom platform responded to the motion of the top platform. We tested our model with a seven-field step-and-shoot delivery case in which we performed three film-based experiments: (1) static geometry, (2) phantom-only motion and (3) phantom motion with simulated couch motion. Our measurements demonstrate that the miniature couch was able to compensate for phantom motion to the extent that the dose distributions were practically indistinguishable from those in static geometry. Motivated by this initial success, we investigated a real-time couch compensation system consisting of a stereoscopic infra-red camera system interfaced to a robotic couch known as the Hexapod™, which responds in real time to any change in position detected by the cameras. Optical reflectors placed on a solid water phantom were used as surrogates for motion. We tested the effectiveness of couch-based motion compensation for fixed fields and a dynamic arc delivery cases. Due to hardware limitations, we performed film-based experiments (1), (2) and (3), with the robotic couch at a phantom motion period and dose rate of 16 s and 100 MU min-1, respectively. Analysis of film measurements showed near-equivalent dose distributions (<=2 mm agreement of corresponding isodose lines) for static geometry and motion-synchronized real-time robotic couch tracking-based radiation delivery.
On the zero-Rossby limit for the primitive equations of the atmosphere*
NASA Astrophysics Data System (ADS)
Chen, Gui-Qiang; Zhang, Ping
2001-09-01
The zero-Rossby limit for the primitive equations governing atmospheric motions is analysed. The limit is important in geophysics for large-scale models (cf Lions 1996 Int. Conf. IAM 95 (Hamburg 1995) (Math. Res. vol 87) (Berlin: Akademie) pp 177-212) and is in the level of the zero relaxation limit for nonlinear partial differential equations (cf Chen et al 1994 Commun. Pure Appl. Math. 47 787-830). It is proved that, if the initial data appropriately approximate data of geostrophic type, the corresponding solutions of the simplified primitive equations approximate the solutions of the quasigeostrophic equations with order ɛ accuracy as the Rossby number ɛ goes to zero.
Teaching an Old Robot New Tricks: Learning Novel Tasks via Interaction with People and Things
2003-06-01
visions behind the Cog Project were to build a "robot baby ", which could interact with people and objects, imitate the motions of its teachers, and even...though. A very elaborate animatronic motor controller can produce very life-like canned motion, although the controller itself bears little resemblance
Social Studies in Motion: Learning with the Whole Person
ERIC Educational Resources Information Center
Schulte, Paige L.
2005-01-01
Total Physical Response (TPR), developed by James Asher, is defined as a teaching technique whereby a learner responds to language input with body motions. Performing a chant or the game "Robot" is an example of a TPR activity, where the teacher commands her robots to do some task in the classroom. Acting out stories and giving imperative commands…
A Visual Tool for Computer Supported Learning: The Robot Motion Planning Example
ERIC Educational Resources Information Center
Elnagar, Ashraf; Lulu, Leena
2007-01-01
We introduce an effective computer aided learning visual tool (CALVT) to teach graph-based applications. We present the robot motion planning problem as an example of such applications. The proposed tool can be used to simulate and/or further to implement practical systems in different areas of computer science such as graphics, computational…
Design of a high-mobility multi-terrain robot based on eccentric paddle mechanism.
Sun, Yi; Yang, Yang; Ma, Shugen; Pu, Huayan
Gaining high mobility on versatile terrains is a crucial target for designing a mobile robot toward tasks such as search and rescue, scientific exploration, and environment monitoring. Inspired by dextrous limb motion of animals, a novel form of locomotion has been established in our previous study, by proposing an eccentric paddle mechanism (ePaddle) for integrating paddling motion into a traditional wheeled mechanism. In this paper, prototypes of an ePaddle mechanism and an ePaddle-based quadruped robot are presented. Several locomotion modes, including wheeled rolling, legged crawling, legged race-walking, rotational paddling, oscillating paddling, and paddle-aided rolling, are experimentally verified on testbeds with fabricated prototypes. Experimental results confirm that paddle's motion is useful in all the locomotion modes.
Feedback control of vibrations in a moving flexible robot arm with rotary and prismatic joints
NASA Technical Reports Server (NTRS)
Wang, P. K. C.; Wei, Jin-Duo
1987-01-01
A robot with a long extendible flexible arm which can also undergo both vertical translation and rotary motion is considered. First, A distributed-parameter model for the robot arm dynamics is developed. It is found that the extending motion could enhance the arm vibrations. Then, a Galerkin-type approximation based on an appropriate time-dependent basis for the solution space is used to obtain an approximate finite-dimensional model for simulation studies. A feedback control for damping the motion-induced vibrations is derived by considering the time rate-of-change of the total vibrational energy of the flexible arm. The authors conclude with some simulation results for a special case with the proposed control law.
Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test
Gilbert, Hunter B.; Hendrick, Richard J.; Webster, Robert J.
2016-01-01
Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots. However, a general measure for how stable a given robot configuration is has yet to be proposed. In this paper, we use bifurcation and elastic stability theory to provide such a measure, as well as to produce a test for determining whether a given design is snap-free (i.e. whether snapping can occur anywhere in the unloaded robot’s workspace). These results are useful in designing, planning motions for, and controlling concentric tube robots with high curvatures. PMID:27042170
Panteleimonitis, Sofoklis; Harper, Mick; Hall, Stuart; Figueiredo, Nuno; Qureshi, Tahseen; Parvaiz, Amjad
2017-09-15
Robotic rectal surgery is becoming increasingly more popular among colorectal surgeons. However, time spent on robotic platform docking, arm clashing and undocking of the platform during the procedure are factors that surgeons often find cumbersome and time consuming. The newest surgical platform, the da Vinci Xi, coupled with integrated table motion can help to overcome these problems. This technical note aims to describe a standardised operative technique of single docking robotic rectal surgery using the da Vinci Xi system and integrated table motion. A stepwise approach of the da Vinci docking process and surgical technique is described accompanied by an intra-operative video that demonstrates this technique. We also present data collected from a prospectively maintained database. 33 consecutive rectal cancer patients (24 male, 9 female) received robotic rectal surgery with the da Vinci Xi during the preparation of this technical note. 29 (88%) patients had anterior resections, and four (12%) had abdominoperineal excisions. There were no conversions, no anastomotic leaks and no mortality. Median operation time was 331 (249-372) min, blood loss 20 (20-45) mls and length of stay 6.5 (4-8) days. 30-day readmission rate and re-operation rates were 3% (n = 1). This standardised technique of single docking robotic rectal surgery with the da Vinci Xi is safe, feasible and reproducible. The technological advances of the new robotic system facilitate the totally robotic single docking approach.
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345
Dexterity-Enhanced Telerobotic Microsurgery
NASA Technical Reports Server (NTRS)
Charles, Steve; Das, Hari; Ohm, Timothy; Boswell, Curtis; Rodriguez, Guillermo; Steele, Robert; Istrate, Dan
1997-01-01
The work reported in this paper is the result, of a collaboration between researchers at the Jet Propulsion Laboratory and Steve Charles, MD, a vitreo-retinal surgeon. The Robot Assisted MicroSurgery (RAMS) telerobotic workstation developed at JPL is a prototype of a system that will be completely under the manual control of a surgeon. The system has a slave robot that will hold surgical instruments. The slave robot motions replicate in six degrees of freedom those of tile. surgeon's hand measured using a master input device with a surgical instrument, shaped handle. The surgeon commands motions for the instrument by moving the handle in the desired trajectories. The trajectories are measured, filtered, and scaled down then used to drive the slave robot.
Robot Geometry and the High School Curriculum.
ERIC Educational Resources Information Center
Meyer, Walter
1988-01-01
Description of the field of robotics and its possible use in high school computational geometry classes emphasizes motion planning exercises and computer graphics displays. Eleven geometrical problems based on robotics are presented along with the correct solutions and explanations. (LRW)
Cognitive object recognition system (CORS)
NASA Astrophysics Data System (ADS)
Raju, Chaitanya; Varadarajan, Karthik Mahesh; Krishnamurthi, Niyant; Xu, Shuli; Biederman, Irving; Kelley, Troy
2010-04-01
We have developed a framework, Cognitive Object Recognition System (CORS), inspired by current neurocomputational models and psychophysical research in which multiple recognition algorithms (shape based geometric primitives, 'geons,' and non-geometric feature-based algorithms) are integrated to provide a comprehensive solution to object recognition and landmarking. Objects are defined as a combination of geons, corresponding to their simple parts, and the relations among the parts. However, those objects that are not easily decomposable into geons, such as bushes and trees, are recognized by CORS using "feature-based" algorithms. The unique interaction between these algorithms is a novel approach that combines the effectiveness of both algorithms and takes us closer to a generalized approach to object recognition. CORS allows recognition of objects through a larger range of poses using geometric primitives and performs well under heavy occlusion - about 35% of object surface is sufficient. Furthermore, geon composition of an object allows image understanding and reasoning even with novel objects. With reliable landmarking capability, the system improves vision-based robot navigation in GPS-denied environments. Feasibility of the CORS system was demonstrated with real stereo images captured from a Pioneer robot. The system can currently identify doors, door handles, staircases, trashcans and other relevant landmarks in the indoor environment.
Dual-body magnetic helical robot for drilling and cargo delivery in human blood vessels
NASA Astrophysics Data System (ADS)
Lee, Wonseo; Jeon, Seungmun; Nam, Jaekwang; Jang, Gunhee
2015-05-01
We propose a novel dual-body magnetic helical robot (DMHR) manipulated by a magnetic navigation system. The proposed DMHR can generate helical motions to navigate in human blood vessels and to drill blood clots by an external rotating magnetic field. It can also generate release motions which are relative rotational motions between dual-bodies to release the carrying cargos to a target region by controlling the magnitude of an external magnetic field. Constraint equations were derived to selectively manipulate helical and release motions by controlling external magnetic fields. The DMHR was prototyped and various experiments were conducted to demonstrate its motions and verify its manipulation methods.
Robot Manipulations: A Synergy of Visualization, Computation and Action for Spatial Instruction
ERIC Educational Resources Information Center
Verner, Igor M.
2004-01-01
This article considers the use of a learning environment, RoboCell, where manipulations of objects are performed by robot operations specified through the learner's application of mathematical and spatial reasoning. A curriculum is proposed relating to robot kinematics and point-to-point motion, rotation of objects, and robotic assembly of spatial…
Automatic Control of Robot Motion.
1987-12-01
8217It. I II. FUDMWALRBTC A. INTRODUCTION d The word robotics was invented by the Isaac Asimov , one of the best of the science fiction writers, to describe...8217, Asimov propounded the famous Three Laws of Robotics. 1. A robot must not harm a human being or, through inaction, allow human being to come to harm
Applications of artificial intelligence in safe human-robot interactions.
Najmaei, Nima; Kermani, Mehrdad R
2011-04-01
The integration of industrial robots into the human workspace presents a set of unique challenges. This paper introduces a new sensory system for modeling, tracking, and predicting human motions within a robot workspace. A reactive control scheme to modify a robot's operations for accommodating the presence of the human within the robot workspace is also presented. To this end, a special class of artificial neural networks, namely, self-organizing maps (SOMs), is employed for obtaining a superquadric-based model of the human. The SOM network receives information of the human's footprints from the sensory system and infers necessary data for rendering the human model. The model is then used in order to assess the danger of the robot operations based on the measured as well as predicted human motions. This is followed by the introduction of a new reactive control scheme that results in the least interferences between the human and robot operations. The approach enables the robot to foresee an upcoming danger and take preventive actions before the danger becomes imminent. Simulation and experimental results are presented in order to validate the effectiveness of the proposed method.
The Structure, Design, and Closed-Loop Motion Control of a Differential Drive Soft Robot.
Wu, Pang; Jiangbei, Wang; Yanqiong, Fei
2018-02-01
This article presents the structure, design, and motion control of an inchworm inspired pneumatic soft robot, which can perform differential movement. This robot mainly consists of two columns of pneumatic multi-airbags (actuators), one sensor, one baseboard, front feet, and rear feet. According to the different inflation time of left and right actuators, the robot can perform both linear and turning movements. The actuators of this robot are composed of multiple airbags, and the design of the airbags is analyzed. To deal with the nonlinear performance of the soft robot, we use radial basis function neural networks to train the turning ability of this robot on three different surfaces and create a mathematical model among coefficient of friction, deflection angle, and inflation time. Then, we establish the closed-loop automatic control model using three-axis electronic compass sensor. Finally, the automatic control model is verified by linear and turning movement experiments. According to the experiment, the robot can finish the linear and turning movements under the closed-loop control system.
Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.
Kim, Sung Hoon; Shin, Kyoosik; Hashi, Shuichiro; Ishiyama, Kazushi
2012-09-01
This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities.
Bourbakis, N G
1997-01-01
This paper presents a generic traffic priority language, called KYKLOFORTA, used by autonomous robots for collision-free navigation in a dynamic unknown or known navigation space. In a previous work by X. Grossmman (1988), a set of traffic control rules was developed for the navigation of the robots on the lines of a two-dimensional (2-D) grid and a control center coordinated and synchronized their movements. In this work, the robots are considered autonomous: they are moving anywhere and in any direction inside the free space, and there is no need of a central control to coordinate and synchronize them. The requirements for each robot are i) visual perception, ii) range sensors, and iii) the ability of each robot to detect other moving objects in the same free navigation space, define the other objects perceived size, their velocity and their directions. Based on these assumptions, a traffic priority language is needed for each robot, making it able to decide during the navigation and avoid possible collision with other moving objects. The traffic priority language proposed here is based on a set of primitive traffic priority alphabet and rules which compose pattern of corridors for the application of the traffic priority rules.
Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm
Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae
2017-01-01
Purpose Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. Materials and Methods The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. Results A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. Conclusion This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site. PMID:27873506
Upper-limb tremor suppression with a 7DOF exoskeleton power-assist robot.
Kiguchi, Kazuo; Hayashi, Yoshiaki
2013-01-01
A tremor which is one of the involuntary motions is somewhat rhythmic motion that may occur in various body parts. Although there are several kinds of the tremor, an essential tremor is the most common tremor disorder of the arm. The essential tremor is a disorder of unknown cause, and it is common in the elderly. The essential tremor interferes with a patient's daily living activity, because it may occur during a voluntary motion. If a patient of an essential tremor uses an EMG-based controlled power-assist robot, the robot might misunderstand the user's motion intention because of the effect of the essential tremor. In that case, upper-limb power-assist robots must carry out tremor suppression as well as power-assist, since a person performs various precise tasks with certain tools by the upper-limb in daily living. Therefore, it is important to suppress the tremor at the hand and grasped tool. However, in the case of the tremor suppression control method which suppressed the vibrations of the hand and the tip of the tool, vibration of other part such as elbow might occur. In this paper, the tremor suppression control method for upper-limb power-assist robot is proposed. In the proposed method, the vibration of the elbow is suppressed in addition to the hand and the tip of the tool. The validity of the proposed method was verified by the experiments.
NASA Technical Reports Server (NTRS)
Voellmer, George M.
1992-01-01
Mechanism enables robot to change tools on end of arm. Actuated by motion of robot: requires no additional electrical or pneumatic energy to make or break connection between tool and wrist at end of arm. Includes three basic subassemblies: wrist interface plate attached to robot arm at wrist, tool interface plate attached to tool, and holster. Separate tool interface plate and holster provided for each tool robot uses.
Cooperative Three-Robot System for Traversing Steep Slopes
NASA Technical Reports Server (NTRS)
Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael
2009-01-01
Teamed Robots for Exploration and Science in Steep Areas (TRESSA) is a system of three autonomous mobile robots that cooperate with each other to enable scientific exploration of steep terrain (slope angles up to 90 ). Originally intended for use in exploring steep slopes on Mars that are not accessible to lone wheeled robots (Mars Exploration Rovers), TRESSA and systems like TRESSA could also be used on Earth for performing rescues on steep slopes and for exploring steep slopes that are too remote or too dangerous to be explored by humans. TRESSA is modeled on safe human climbing of steep slopes, two key features of which are teamwork and safety tethers. Two of the autonomous robots, denoted Anchorbots, remain at the top of a slope; the third robot, denoted the Cliffbot, traverses the slope. The Cliffbot drives over the cliff edge supported by tethers, which are payed out from the Anchorbots (see figure). The Anchorbots autonomously control the tension in the tethers to counter the gravitational force on the Cliffbot. The tethers are payed out and reeled in as needed, keeping the body of the Cliffbot oriented approximately parallel to the local terrain surface and preventing wheel slip by controlling the speed of descent or ascent, thereby enabling the Cliffbot to drive freely up, down, or across the slope. Due to the interactive nature of the three-robot system, the robots must be very tightly coupled. To provide for this tight coupling, the TRESSA software architecture is built on a combination of (1) the multi-robot layered behavior-coordination architecture reported in "An Architecture for Controlling Multiple Robots" (NPO-30345), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 65, and (2) the real-time control architecture reported in "Robot Electronics Architecture" (NPO-41784), NASA Tech Briefs, Vol. 32, No. 1 (January 2008), page 28. The combination architecture makes it possible to keep the three robots synchronized and coordinated, to use data from all three robots for decision- making at each step, and to control the physical connections among the robots. In addition, TRESSA (as in prior systems that have utilized this architecture) , incorporates a capability for deterministic response to unanticipated situations from yet another architecture reported in Control Architecture for Robotic Agent Command and Sensing (NPO-43635), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 40. Tether tension control is a major consideration in the design and operation of TRESSA. Tension is measured by force sensors connected to each tether at the Cliffbot. The direction of the tension (both azimuth and elevation) is also measured. The tension controller combines a controller to counter gravitational force and an optional velocity controller that anticipates the motion of the Cliffbot. The gravity controller estimates the slope angle from the inclination of the tethers. This angle and the weight of the Cliffbot determine the total tension needed to counteract the weight of the Cliffbot. The total needed tension is broken into components for each Anchorbot. The difference between this needed tension and the tension measured at the Cliffbot constitutes an error signal that is provided to the gravity controller. The velocity controller computes the tether speed needed to produce the desired motion of the Cliffbot. Another major consideration in the design and operation of TRESSA is detection of faults. Each robot in the TRESSA system monitors its own performance and the performance of its teammates in order to detect any system faults and prevent unsafe conditions. At startup, communication links are tested and if any robot is not communicating, the system refuses to execute any motion commands. Prior to motion, the Anchorbots attempt to set tensions in the tethers at optimal levels for counteracting the weight of the Cliffbot; if either Anchorbot fails to reach its optimal tension level within a specified time, it sends message to the other robots and the commanded motion is not executed. If any mechanical error (e.g., stalling of a motor) is detected, the affected robot sends a message triggering stoppage of the current motion. Lastly, messages are passed among the robots at each time step (10 Hz) to share sensor information during operations. If messages from any robot cease for more than an allowable time interval, the other robots detect the communication loss and initiate stoppage.
Coordinating robot motion, sensing, and control in plans. LDRD project final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, P.G.; Brown, R.G.; Watterberg, P.A.
1997-08-01
The goal of this project was to develop a framework for robotic planning and execution that provides a continuum of adaptability with respect to model incompleteness, model error, and sensing error. For example, dividing robot motion into gross-motion planning, fine-motion planning, and sensor-augmented control had yielded productive research and solutions to individual problems. Unfortunately, these techniques could only be combined by hand with ad hoc methods and were restricted to systems where all kinematics are completely modeled in planning. The original intent was to develop methods for understanding and autonomously synthesizing plans that coordinate motion, sensing, and control. The projectmore » considered this problem from several perspectives. Results included (1) theoretical methods to combine and extend gross-motion and fine-motion planning; (2) preliminary work in flexible-object manipulation and an implementable algorithm for planning shortest paths through obstacles for the free-end of an anchored cable; (3) development and implementation of a fast swept-body distance algorithm; and (4) integration of Sandia`s C-Space Toolkit geometry engine and SANDROS motion planer and improvements, which yielded a system practical for everyday motion planning, with path-segment planning at interactive speeds. Results (3) and (4) have either led to follow-on work or are being used in current projects, and they believe that (2) will eventually be also.« less
Robot Trajectories Comparison: A Statistical Approach
Ansuategui, A.; Arruti, A.; Susperregi, L.; Yurramendi, Y.; Jauregi, E.; Lazkano, E.; Sierra, B.
2014-01-01
The task of planning a collision-free trajectory from a start to a goal position is fundamental for an autonomous mobile robot. Although path planning has been extensively investigated since the beginning of robotics, there is no agreement on how to measure the performance of a motion algorithm. This paper presents a new approach to perform robot trajectories comparison that could be applied to any kind of trajectories and in both simulated and real environments. Given an initial set of features, it automatically selects the most significant ones and performs a statistical comparison using them. Additionally, a graphical data visualization named polygraph which helps to better understand the obtained results is provided. The proposed method has been applied, as an example, to compare two different motion planners, FM2 and WaveFront, using different environments, robots, and local planners. PMID:25525618
NASA Technical Reports Server (NTRS)
Balabanovic, Marko; Becker, Craig; Morse, Sarah K.; Nourbakhsh, Illah R.
1994-01-01
The success of every mobile robot application hinges on the ability to navigate robustly in the real world. The problem of robust navigation is separable from the challenges faced by any particular robot application. We offer the Real-World Navigator as a solution architecture that includes a path planner, a map-based localizer, and a motion control loop that combines reactive avoidance modules with deliberate goal-based motion. Our architecture achieves a high degree of reliability by maintaining and reasoning about an explicit description of positional uncertainty. We provide two implementations of real-world robot systems that incorporate the Real-World Navigator. The Vagabond Project culminated in a robot that successfully navigated a portion of the Stanford University campus. The Scimmer project developed successful entries for the AIAA 1993 Robotics Competition, placing first in one of the two contests entered.
Vibrations in a moving flexible robot arm
NASA Technical Reports Server (NTRS)
Wang, P. K. C.; Wei, Jin-Duo
1987-01-01
The vibration in a flexible robot arm modeled by a moving slender prismatic beam is considered. It is found that the extending and contracting motions have destabilizing and stabilizing effects on the vibratory motions, respectively. The vibration analysis is based on a Galerkin approximation with time-dependent basis functions. Typical numerical results are presented to illustrate the qualitative features of vibrations.
Surgeon Training in Telerobotic Surgery via a Hardware-in-the-Loop Simulator
Alemzadeh, Homa; Chen, Daniel; Kalbarczyk, Zbigniew; Iyer, Ravishankar K.; Kesavadas, Thenkurussi
2017-01-01
This work presents a software and hardware framework for a telerobotic surgery safety and motor skill training simulator. The aims are at providing trainees a comprehensive simulator for acquiring essential skills to perform telerobotic surgery. Existing commercial robotic surgery simulators lack features for safety training and optimal motion planning, which are critical factors in ensuring patient safety and efficiency in operation. In this work, we propose a hardware-in-the-loop simulator directly introducing these two features. The proposed simulator is built upon the Raven-II™ open source surgical robot, integrated with a physics engine and a safety hazard injection engine. Also, a Fast Marching Tree-based motion planning algorithm is used to help trainee learn the optimal instrument motion patterns. The main contributions of this work are (1) reproducing safety hazards events, related to da Vinci™ system, reported to the FDA MAUDE database, with a novel haptic feedback strategy to provide feedback to the operator when the underlying dynamics differ from the real robot's states so that the operator will be aware and can mitigate the negative impact of the safety-critical events, and (2) using motion planner to generate semioptimal path in an interactive robotic surgery training environment. PMID:29065635
Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.
Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang
2018-03-01
Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Determining of a robot workspace using the integration of a CAD system with a virtual control system
NASA Astrophysics Data System (ADS)
Herbuś, K.; Ociepka, P.
2016-08-01
The paper presents a method for determining the workspace of an industrial robot using an approach consisting in integration a 3D model of an industrial robot with a virtual control system. The robot model with his work environment, prepared for motion simulation, was created in the “Motion Simulation” module of the Siemens PLM NX software. In the mentioned model components of the “link” type were created which map the geometrical form of particular elements of the robot and the components of “joint” type mapping way of cooperation of components of the “link” type. In the paper is proposed the solution in which the control process of a virtual robot is similar to the control process of a real robot using the manual control panel (teach pendant). For this purpose, the control application “JOINT” was created, which provides the manipulation of a virtual robot in accordance with its internal control system. The set of procedures stored in an .xlsx file is the element integrating the 3D robot model working in the CAD/CAE class system with the elaborated control application.
Patient motion tracking in the presence of measurement errors.
Haidegger, Tamás; Benyó, Zoltán; Kazanzides, Peter
2009-01-01
The primary aim of computer-integrated surgical systems is to provide physicians with superior surgical tools for better patient outcome. Robotic technology is capable of both minimally invasive surgery and microsurgery, offering remarkable advantages for the surgeon and the patient. Current systems allow for sub-millimeter intraoperative spatial positioning, however certain limitations still remain. Measurement noise and unintended changes in the operating room environment can result in major errors. Positioning errors are a significant danger to patients in procedures involving robots and other automated devices. We have developed a new robotic system at the Johns Hopkins University to support cranial drilling in neurosurgery procedures. The robot provides advanced visualization and safety features. The generic algorithm described in this paper allows for automated compensation of patient motion through optical tracking and Kalman filtering. When applied to the neurosurgery setup, preliminary results show that it is possible to identify patient motion within 700 ms, and apply the appropriate compensation with an average of 1.24 mm positioning error after 2 s of setup time.
Development of a Wearable Assist Robot for Walk Rehabilitation After Knee Arthroplasty Surgery
NASA Astrophysics Data System (ADS)
Terada, H.; Zhu, Y.; Horiguchi, K.; Nakamura, M.; Takahashi, R.
In Japan, it is popular that the disease knee joints will be replaced to artificial joints by surgery. And we have to assist so many patients for walk rehabilitation. So, the wearable assist robot has been developed. This robot includes the knee motion assist mechanism and the hip joint support mechanism. Especially, the knee motion assist mechanism consists of a non-circular gear and grooved cams. This mechanism rotates and slides simultaneously, which has two degree-of-freedom. Also, the hip joint support mechanism consists of a hip brace and a ball-joint. This mechanism can avoid motion constraints which are the internal or external rotation and the adduction or abduction. Then, the control algorithm, which considers an assisting timing for the walk rehabilitation, has been proposed. A sensing system of a walk state for this control system uses a heel contacts sensor and knee and hip joint rotation angle sensors. Also, the prototype robot has been tested. And it is confirmed that the assisting system is useful.
Experimental validation of flexible robot arm modeling and control
NASA Technical Reports Server (NTRS)
Ulsoy, A. Galip
1989-01-01
Flexibility is important for high speed, high precision operation of lightweight manipulators. Accurate dynamic modeling of flexible robot arms is needed. Previous work has mostly been based on linear elasticity with prescribed rigid body motions (i.e., no effect of flexible motion on rigid body motion). Little or no experimental validation of dynamic models for flexible arms is available. Experimental results are also limited for flexible arm control. Researchers include the effects of prismatic as well as revolute joints. They investigate the effect of full coupling between the rigid and flexible motions, and of axial shortening, and consider the control of flexible arms using only additional sensors.
Stingray-inspired robot with simply actuated intermediate motion
NASA Astrophysics Data System (ADS)
Neely, Lincoln; Gaiennie, Jack; Noble, Nick; Erickson, Jonathan C.
2016-04-01
Batoids, or rays, utilize unique forms of locomotion that may offer more efficient techniques of motorized propulsion in various marine environments. We present a novel biomimetic engineering design and assembly of a stingray-inspired robot swimmer. The robots locomotion mimics the Dasyatis americana, or southern stingray, whose distinction among rays is its intermediate motion, characterized by sweeping strokes that propagate between 1/2-1 wavelength of the fin profile in the posterior direction. Though oscillatory (<1/2 wavelength) and undulatory (> wavelengths) ray-based robots have been created, this project demonstrates new engineering possibilities in what is, to the best of our knowledge, the first intermediately propelled batoid-based robot. The robots fins were made of silicone rubber, cast in a 3-D printed mold, with wingspan of 42 cm (1/2 - 1/5 scale for males and females, respectively, scale of model organism). Two anteriorly placed servomotors per fin were used, all controlled by one wirelessly enabled Arduino microcontroller. Each servomotor oscillated a flexible rod with cylindrical joint, whose frequency, speed, and front-back phase delay were user-programmed over wireless connection. During free-swimming tests, the fin profile developed about 0.8 wavelength, qualifying for successful mimicry of its biological inspiration. The robot satisfactorily maintained straight-line motion, reaching average peak velocity of 9.4+/-1.0 cm/s (0.27-0.03 body lengths/second) at its optimum flapping frequency of 1.4 Hz. This is in the same order of magnitude of speed normalized to body length achieved by others in two recent batoid-based projects. In summary, our robot performed intermediate stingray locomotion with relatively fewer components, which reveals robust potential for innovation of the simple intermediate batoid-based robot swimmer.
Development of a vision non-contact sensing system for telerobotic applications
NASA Astrophysics Data System (ADS)
Karkoub, M.; Her, M.-G.; Ho, M.-I.; Huang, C.-C.
2013-08-01
The study presented here describes a novel vision-based motion detection system for telerobotic operations such as distant surgical procedures. The system uses a CCD camera and image processing to detect the motion of a master robot or operator. Colour tags are placed on the arm and head of a human operator to detect the up/down, right/left motion of the head as well as the right/left motion of the arm. The motion of the colour tags are used to actuate a slave robot or a remote system. The determination of the colour tags' motion is achieved through image processing using eigenvectors and colour system morphology and the relative head, shoulder and wrist rotation angles through inverse dynamics and coordinate transformation. A program is used to transform this motion data into motor control commands and transmit them to a slave robot or remote system through wireless internet. The system performed well even in complex environments with errors that did not exceed 2 pixels with a response time of about 0.1 s. The results of the experiments are available at: http://www.youtube.com/watch?v=yFxLaVWE3f8 and http://www.youtube.com/watch?v=_nvRcOzlWHw
Multi-Robot Assembly Strategies and Metrics.
Marvel, Jeremy A; Bostelman, Roger; Falco, Joe
2018-02-01
We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.
Multi-Robot Assembly Strategies and Metrics
MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE
2018-01-01
We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234
Insect-Inspired Optical-Flow Navigation Sensors
NASA Technical Reports Server (NTRS)
Thakoor, Sarita; Morookian, John M.; Chahl, Javan; Soccol, Dean; Hines, Butler; Zornetzer, Steven
2005-01-01
Integrated circuits that exploit optical flow to sense motions of computer mice on or near surfaces ( optical mouse chips ) are used as navigation sensors in a class of small flying robots now undergoing development for potential use in such applications as exploration, search, and surveillance. The basic principles of these robots were described briefly in Insect-Inspired Flight Control for Small Flying Robots (NPO-30545), NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 61. To recapitulate from the cited prior article: The concept of optical flow can be defined, loosely, as the use of texture in images as a source of motion cues. The flight-control and navigation systems of these robots are inspired largely by the designs and functions of the vision systems and brains of insects, which have been demonstrated to utilize optical flow (as detected by their eyes and brains) resulting from their own motions in the environment. Optical flow has been shown to be very effective as a means of avoiding obstacles and controlling speeds and altitudes in robotic navigation. Prior systems used in experiments on navigating by means of optical flow have involved the use of panoramic optics, high-resolution image sensors, and programmable imagedata- processing computers.
A Dynamic Non Energy Storing Guidance Constraint with Motion Redirection for Robot Assisted Surgery
2016-12-01
Abstract— Haptically enabled hands-on or tele-operated surgical robotic systems provide a unique opportunity to integrate pre- and intra... robot -assisted surgical systems aim at improving and extending human capabilities, by exploiting the advantages of robotic systems while keeping the...move during the operation. Robot -assisted beating heart surgery is an example of procedures that can benefit from dynamic constraints. Their
Stinton, S K; Siebold, R; Freedberg, H; Jacobs, C; Branch, T P
2016-03-01
The purpose of this study was to: (1) determine whether a robotic tibial rotation device and an electromagnetic tracking system could accurately reproduce the clinical dial test at 30° of knee flexion; (2) compare rotation data captured at the footplates of the robotic device to tibial rotation data measured using an electromagnetic sensor on the proximal tibia. Thirty-two unilateral ACL-reconstructed patients were examined using a robotic tibial rotation device that mimicked the dial test. The data reported in this study is only from the healthy legs of these patients. Torque was applied through footplates and was measured using servomotors. Lower leg motion was measured at the foot using the motors. Tibial motion was also measured through an electromagnetic tracking system and a sensor on the proximal tibia. Load-deformation curves representing rotational motion of the foot and tibia were compared using Pearson's correlation coefficients. Off-axis motions including medial-lateral translation and anterior-posterior translation were also measured using the electromagnetic system. The robotic device and electromagnetic system were able to provide axial rotation data and translational data for the tibia during the dial test. Motion measured at the foot was not correlated to motion of the tibial tubercle in internal rotation or in external rotation. The position of the tibial tubercle was 26.9° ± 11.6° more internally rotated than the foot at torque 0 Nm. Medial-lateral translation and anterior-posterior translation were combined to show the path of the tubercle in the coronal plane during tibial rotation. The information captured during a manual dial test includes both rotation of the tibia and proximal tibia translation. All of this information can be captured using a robotic tibial axial rotation device with an electromagnetic tracking system. The pathway of the tibial tubercle during tibial axial rotation can provide additional information about knee instability without relying on side-to-side comparison between knees. The translation of the proximal tibia is important information that must be considered in addition to axial rotation of the tibia when performing a dial test whether done manually or with a robotic device. Instrumented foot position cannot provide the same information. IV.
SU-F-BRE-05: Development and Evaluation of a Real-Time Robotic 6D Quality Assurance Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belcher, AH; Liu, X; Grelewicz, Z
Purpose: A 6 degree-of-freedom robotic phantom capable of reproducing dynamic tumor motion in 6D was designed to more effectively match solid tumor movements throughout pre-treatment scanning and radiation therapy. With the abundance of optical and x-ray 6D real-time tumor tracking methodologies clinically available, and the substantial dosimetric consequences of failing to consider tumor rotation as well as translation, this work presents the development and evaluation of a 6D instrument with the facility to improve quality assurance. Methods: An in-house designed and built 6D robotic motion phantom was constructed following the so-called Stewart-Gough parallel kinematics platform archetype. The device was thenmore » controlled using an inverse kinematics formulation, and precise movements in all six degrees of freedom (X, Y, Z, pitch, roll, and yaw) as well as previously obtained cranial motion, were effectively executed. The robotic phantom movements were verified using a 15 fps 6D infrared marker tracking system (Polaris, NDI), and quantitatively compared to the input trajectory. Thus, the accuracy and repeatability of 6D motion was investigated and the phantom performance was characterized. Results: Evaluation of the 6D platform demonstrated translational RMSE values of 0.196 mm, 0.260 mm, and 0.101 mm over 20 mm in X and Y and 10 mm in Z, respectively, and rotational RMSE values of 0.068 degrees, 0.0611 degrees, and 0.095 degrees over 10 degrees of pitch, roll, and yaw, respectively. The robotic stage also effectively performed controlled 6D motions, as well as reproduced cranial trajectories over 15 minutes, with a maximal RMSE of 0.044 mm translationally and 0.036 degrees rotationally. Conclusion: This 6D robotic phantom has proven to be accurate under clinical standards and capable of reproducing tumor motion in 6D. Consequently, such a robotics device has the potential to serve as a more effective system for IGRT QA that involves both translational and rotational dimensions. Research was partially funded by NIH Grant T32 EB002103-21 from NIBIB. Contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIBIB or NIH.« less
Robotic situational awareness of actions in human teaming
NASA Astrophysics Data System (ADS)
Tahmoush, Dave
2015-06-01
When robots can sense and interpret the activities of the people they are working with, they become more of a team member and less of just a piece of equipment. This has motivated work on recognizing human actions using existing robotic sensors like short-range ladar imagers. These produce three-dimensional point cloud movies which can be analyzed for structure and motion information. We skeletonize the human point cloud and apply a physics-based velocity correlation scheme to the resulting joint motions. The twenty actions are then recognized using a nearest-neighbors classifier that achieves good accuracy.
Unified Behavior Framework for Reactive Robot Control in Real-Time Systems
2007-03-01
maintain coherent operation in concurrent programs by employing standard communication and synchronization patterns. Some typical ones are: semaphores ...through the semaphore . Signals, whether persistent or transient, are used to communicate between threads as a means of synchronizing their progress...tasks to be decomposed into collections of low-level primitive behaviors, Figure 2.b. This approach takes on the self- contradictory term, reactive
Wang, Kundong; Chen, Bing; Lu, Qingsheng; Li, Hongbing; Liu, Manhua; Shen, Yu; Xu, Zhuoyan
2018-05-15
Endovascular interventional surgery (EIS) is performed under a high radiation environment at the sacrifice of surgeons' health. This paper introduces a novel endovascular interventional surgical robot that aims to reduce radiation to surgeons and physical stress imposed by lead aprons during fluoroscopic X-ray guided catheter intervention. The unique mechanical structure allowed the surgeon to manipulate the axial and radial motion of the catheter and guide wire. Four catheter manipulators (to manipulate the catheter and guide wire), and a control console which consists of four joysticks, several buttons and two twist switches (to control the catheter manipulators) were presented. The entire robotic system was established on a master-slave control structure through CAN (Controller Area Network) bus communication, meanwhile, the slave side of this robotic system showed highly accurate control over velocity and displacement with PID controlling method. The robotic system was tested and passed in vitro and animal experiments. Through functionality evaluation, the manipulators were able to complete interventional surgical motion both independently and cooperatively. The robotic surgery was performed successfully in an adult female pig and demonstrated the feasibility of superior mesenteric and common iliac artery stent implantation. The entire robotic system met the clinical requirements of EIS. The results show that the system has the ability to imitate the movements of surgeons and to accomplish the axial and radial motions with consistency and high-accuracy. Copyright © 2018 John Wiley & Sons, Ltd.
Shock and Vibration Control of a Golf-Swing Robot at Impacting the Ball
NASA Astrophysics Data System (ADS)
Hoshino, Yohei; Kobayashi, Yukinori
A golf swing robot is a kind of fast motion manipulator with a flexible link. A robot manipulator is greatly affected by Corioli's and centrifugal forces during fast motion. Nonlinearity due to these forces can have an adverse effect on the performance of feedback control. In the same way, ordinary state observers of a linear system cannot accurately estimate the states of nonlinear systems. This paper uses a state observer that considers disturbances to improve the performance of state estimation and feedback control. A mathematical model of the golf robot is derived by Hamilton's principle. A linear quadratic regulator (LQR) that considers the vibration of the club shaft is used to stop the robot during the follow-through action. The state observer that considers disturbances estimates accurate state variables when the disturbances due to Corioli's and centrifugal forces, and impact forces work on the robot. As a result, the performance of the state feedback control is improved. The study compares the results of the numerical simulations with experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, Francois G.; Love, Lonnie L.; Jung, David L.
2004-03-29
Contrary to the repetitive tasks performed by industrial robots, the tasks in most DOE missions such as environmental restoration or Decontamination and Decommissioning (D&D) can be characterized as ''batches-of-one'', in which robots must be capable of adapting to changes in constraints, tools, environment, criteria and configuration. No commercially available robot control code is suitable for use with such widely varying conditions. In this talk we present our development of a ''generic code'' to allow real time (at loop rate) robot behavior adaptation to changes in task objectives, tools, number and type of constraints, modes of controls or kinematics configuration. Wemore » present the analytical framework underlying our approach and detail the design of its two major modules for the automatic generation of the kinematics equations when the robot configuration or tools change and for the motion planning under time-varying constraints. Sample problems illustrating the capabilities of the developed system are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quintana, John P.
This paper reports on the progress toward creating semi-autonomous motion control platforms for beamline applications using the iRobot Create registered platform. The goal is to create beamline research instrumentation where the motion paths are based on the local environment rather than position commanded from a control system, have low integration costs and also be scalable and easily maintainable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogunmolu, O; Gans, N; Jiang, S
Purpose: We propose a surface-image-guided soft robotic patient positioning system for maskless head-and-neck radiotherapy. The ultimate goal of this project is to utilize a soft robot to realize non-rigid patient positioning and real-time motion compensation. In this proof-of-concept study, we design a position-based visual servoing control system for an air-bladder-based soft robot and investigate its performance in controlling the flexion/extension cranial motion on a mannequin head phantom. Methods: The current system consists of Microsoft Kinect depth camera, an inflatable air bladder (IAB), pressured air source, pneumatic valve actuators, custom-built current regulators, and a National Instruments myRIO microcontroller. The performance ofmore » the designed system was evaluated on a mannequin head, with a ball joint fixed below its neck to simulate torso-induced head motion along flexion/extension direction. The IAB is placed beneath the mannequin head. The Kinect camera captures images of the mannequin head, extracts the face, and measures the position of the head relative to the camera. This distance is sent to the myRIO, which runs control algorithms and sends actuation commands to the valves, inflating and deflating the IAB to induce head motion. Results: For a step input, i.e. regulation of the head to a constant displacement, the maximum error was a 6% overshoot, which the system then reduces to 0% steady-state error. In this initial investigation, the settling time to reach the regulated position was approximately 8 seconds, with 2 seconds of delay between the command start of motion due to capacitance of the pneumatics, for a total of 10 seconds to regulate the error. Conclusion: The surface image-guided soft robotic patient positioning system can achieve accurate mannequin head flexion/extension motion. Given this promising initial Result, the extension of the current one-dimensional soft robot control to multiple IABs for non-rigid positioning control will be pursued.« less
Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke
2012-01-01
This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients’ group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0–66 points), Modified Ashworth scale (MA, 0–60 pts) and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion) and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA) parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement) and position of target to be reached (ipsilateral, central and contralateral peripersonal space). These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved interjoint coordination of elbow and shoulder joints. PMID:22681653
Offline motion planning and simulation of two-robot welding coordination
NASA Astrophysics Data System (ADS)
Zhang, Tie; Ouyang, Fan
2012-03-01
This paper focuses on the two-robot welding coordination of complex curve seam which means one robot grasp the workpiece, the other hold the torch, the two robots work on the same workpiece simultaneously. This paper builds the dual-robot coordinate system at the beginning, and three point calibration method of two robots' relative base coordinate system is presented. After that, the non master/slave scheme is chosen for the motion planning, the non master/slave scheme sets the poses versus time function of the point u on the workpiece, and calculates the two robot end effecter trajectories through the constrained relationship matrix automatically. Moreover, downhand welding is employed which can guarantee the torch and the seam keep in good contact condition all the time during the welding. Finally, a Solidworks-Sim Mechanics simulation platform is established, and a simulation of curved steel pipe welding is conducted. The results of the simulation illustrate the welding process can meet the requirements of downhand welding, the joint displacement curves are smooth and continuous and no joint velocities are out of working scope.
Chen, Ching-Pei; Chen, Jing-Yi; Huang, Chun-Kai; Lu, Jau-Ching; Lin, Pei-Chun
2015-01-01
We report on a sensor data fusion algorithm via an extended Kalman filter for estimating the spatial motion of a bipedal robot. Through fusing the sensory information from joint encoders, a 6-axis inertial measurement unit and a 2-axis inclinometer, the robot’s body state at a specific fixed position can be yielded. This position is also equal to the CoM when the robot is in the standing posture suggested by the detailed CAD model of the robot. In addition, this body state is further utilized to provide sensory information for feedback control on a bipedal robot with walking gait. The overall control strategy includes the proposed body state estimator as well as the damping controller, which regulates the body position state of the robot in real-time based on instant and historical position tracking errors. Moreover, a posture corrector for reducing unwanted torque during motion is addressed. The body state estimator and the feedback control structure are implemented in a child-size bipedal robot and the performance is experimentally evaluated. PMID:25734644
Phamduy, P; Polverino, G; Fuller, R C; Porfiri, M
2014-09-01
The experimental integration of bioinspired robots in groups of social animals has become a valuable tool to understand the basis of social behavior and uncover the fundamental determinants of animal communication. In this study, we measured the preference of fertile female bluefin killifish (Lucania goodei) for robotic replicas whose aspect ratio, body size, motion pattern, and color morph were inspired by adult male killifish. The motion of the fish replica was controlled via a robotic platform, which simulated the typical courtship behavior observed in killifish males. The positional preferences of females were measured for three different color morphs (red, yellow, and blue). While variation in preference was high among females, females tend to spend more time in the vicinity of the yellow painted robot replicas. This preference may have emerged because the yellow robot replicas were very bright, particularly in the longer wavelengths (550–700 nm) compared to the red and blue replicas. These findings are in agreement with previous observations in mosquitofish and zebrafish on fish preference for artificially enhanced yellow pigmentation.
Precharged Pneumatic Soft Actuators and Their Applications to Untethered Soft Robots.
Li, Yunquan; Chen, Yonghua; Ren, Tao; Li, Yingtian; Choi, Shiu Hong
2018-06-20
The past decade has witnessed tremendous progress in soft robotics. Unlike most pneumatic-based methods, we present a new approach to soft robot design based on precharged pneumatics (PCP). We propose a PCP soft bending actuator, which is actuated by precharged air pressure and retracted by inextensible tendons. By pulling or releasing the tendons, the air pressure in the soft actuator is modulated, and hence, its bending angle. The tendons serve in a way similar to pressure-regulating valves that are used in typical pneumatic systems. The linear motion of tendons is transduced into complex motion via the prepressurized bent soft actuator. Furthermore, since a PCP actuator does not need any gas supply, complicated pneumatic control systems used in traditional soft robotics are eliminated. This facilitates the development of compact untethered autonomous soft robots for various applications. Both theoretical modeling and experimental validation have been conducted on a sample PCP soft actuator design. A fully untethered autonomous quadrupedal soft robot and a soft gripper have been developed to demonstrate the superiority of the proposed approach over traditional pneumatic-driven soft robots.
Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures.
Cruces, R A Castillo; Wahrburg, J
2007-12-01
This paper presents the ongoing results of an effort to achieve the integration of a navigated cooperative robotic arm into computer-assisted orthopaedic surgery. A seamless integration requires the system acting in direct cooperation with the surgeon instead of replacing him. Two technical issues are discussed to improve the haptic operating modes for interactive robot guidance. The concept of virtual fixtures is used to restrict the range of motion of the robot according to pre-operatively defined constraints, and methodologies to assure a robust and accurate motion through singular arm configurations are investigated. A new method for handling singularities is proposed, which is superior to the commonly used damped-least-squares method. It produces no deviations of the end-effector in relation to the virtually constrained path. A solution to assure a good performance of a hands-on robotic arm at singularity configurations is proposed. (c) 2007 John Wiley & Sons, Ltd.
Kawamoto, Hiroaki; Kandone, Hideki; Sakurai, Takeru; Ariyasu, Ryohei; Ueno, Yukiko; Eguchi, Kiyoshi; Sankai, Yoshiyuki
2014-01-01
Among several characteristics seen in gait of hemiplegic patients after stroke, symmetry is known to be an indicator of the degree of impairment of walking ability. This paper proposes a control method for a wearable type lower limb motion assist robot to realize spontaneous symmetric gait for these individuals. This control method stores the motion of the unaffected limb during swing and then provides motion support on the affected limb during the subsequent swing using the stored pattern to realize symmetric gait based on spontaneous limb swing. This method is implemented on the robot suit HAL (Hybrid Assistive Limbs). Clinical tests were conducted in order to assess the feasibility of the control method. Our case study involved participation of one chronic stroke patient who was not able to flex his right knee. As a result, the walking support for hemiplegic leg provided by the HAL improved the subject's gait symmetry. The feasibility study showed promising basis for the future clinical study.
Motion generation of robotic surgical tasks: learning from expert demonstrations.
Reiley, Carol E; Plaku, Erion; Hager, Gregory D
2010-01-01
Robotic surgical assistants offer the possibility of automating portions of a task that are time consuming and tedious in order to reduce the cognitive workload of a surgeon. This paper proposes using programming by demonstration to build generative models and generate smooth trajectories that capture the underlying structure of the motion data recorded from expert demonstrations. Specifically, motion data from Intuitive Surgical's da Vinci Surgical System of a panel of expert surgeons performing three surgical tasks are recorded. The trials are decomposed into subtasks or surgemes, which are then temporally aligned through dynamic time warping. Next, a Gaussian Mixture Model (GMM) encodes the experts' underlying motion structure. Gaussian Mixture Regression (GMR) is then used to extract a smooth reference trajectory to reproduce a trajectory of the task. The approach is evaluated through an automated skill assessment measurement. Results suggest that this paper presents a means to (i) extract important features of the task, (ii) create a metric to evaluate robot imitative performance (iii) generate smoother trajectories for reproduction of three common medical tasks.
Automatic detection and classification of obstacles with applications in autonomous mobile robots
NASA Astrophysics Data System (ADS)
Ponomaryov, Volodymyr I.; Rosas-Miranda, Dario I.
2016-04-01
Hardware implementation of an automatic detection and classification of objects that can represent an obstacle for an autonomous mobile robot using stereo vision algorithms is presented. We propose and evaluate a new method to detect and classify objects for a mobile robot in outdoor conditions. This method is divided in two parts, the first one is the object detection step based on the distance from the objects to the camera and a BLOB analysis. The second part is the classification step that is based on visuals primitives and a SVM classifier. The proposed method is performed in GPU in order to reduce the processing time values. This is performed with help of hardware based on multi-core processors and GPU platform, using a NVIDIA R GeForce R GT640 graphic card and Matlab over a PC with Windows 10.
A deformable spherical planet exploration robot
NASA Astrophysics Data System (ADS)
Liang, Yi-shan; Zhang, Xiu-li; Huang, Hao; Yang, Yan-feng; Jin, Wen-tao; Sang, Zhong-xun
2013-03-01
In this paper, a deformable spherical planet exploration robot has been introduced to achieve the task of environmental detection in outer space or extreme conditions. The robot imitates the morphology structure and motion mechanism of tumbleweeds. The robot is wind-driven. It consists of an axle, a spherical steel skeleton and twelve airbags. The axle is designed as two parts. The robot contracts by contracting the two-part axle. The spherical robot installs solar panels to provide energy for its control system.
Robot-assisted general surgery.
Hazey, Jeffrey W; Melvin, W Scott
2004-06-01
With the initiation of laparoscopic techniques in general surgery, we have seen a significant expansion of minimally invasive techniques in the last 16 years. More recently, robotic-assisted laparoscopy has moved into the general surgeon's armamentarium to address some of the shortcomings of laparoscopic surgery. AESOP (Computer Motion, Goleta, CA) addressed the issue of visualization as a robotic camera holder. With the introduction of the ZEUS robotic surgical system (Computer Motion), the ability to remotely operate laparoscopic instruments became a reality. US Food and Drug Administration approval in July 2000 of the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, CA) further defined the ability of a robotic-assist device to address limitations in laparoscopy. This includes a significant improvement in instrument dexterity, dampening of natural hand tremors, three-dimensional visualization, ergonomics, and camera stability. As experience with robotic technology increased and its applications to advanced laparoscopic procedures have become more understood, more procedures have been performed with robotic assistance. Numerous studies have shown equivalent or improved patient outcomes when robotic-assist devices are used. Initially, robotic-assisted laparoscopic cholecystectomy was deemed safe, and now robotics has been shown to be safe in foregut procedures, including Nissen fundoplication, Heller myotomy, gastric banding procedures, and Roux-en-Y gastric bypass. These techniques have been extrapolated to solid-organ procedures (splenectomy, adrenalectomy, and pancreatic surgery) as well as robotic-assisted laparoscopic colectomy. In this chapter, we review the evolution of robotic technology and its applications in general surgical procedures.
Hazardous materials emergency response mobile robot
NASA Technical Reports Server (NTRS)
Stone, Henry W. (Inventor); Lloyd, James (Inventor); Alahuzos, George (Inventor)
1992-01-01
A simple or unsophisticated robot incapable of effecting straight-line motion at the end of its arm inserts a key held in its end effector or hand into a door lock with nearly straight-line motion by gently thrusting its back heels downwardly so that it pivots forwardly on its front toes while holding its arm stationary. The relatively slight arc traveled by the robot's hand is compensated by a complaint tool with which the robot hand grips the door key. A visible beam is projected through the axis of the hand or gripper on the robot arm end at an angle to the general direction in which the robot thrusts the gripper forward. As the robot hand approaches a target surface, a video camera on the robot wrist watches the beam spot on the target surface fall from a height proportional to the distance between the robot hand and the target surface until the beam spot is nearly aligned with the top of the robot hand. Holes in the front face of the hand are connected through internal passages inside the arm to an on-board chemical sensor. Full rotation of the hand or gripper about the robot arm's wrist is made possible by slip rings in the wrist which permit passage of the gases taken in through the nose holes in the front of the hand through the wrist regardless of the rotational orientation of the wrist.
Feasibility of Synergy-Based Exoskeleton Robot Control in Hemiplegia.
Hassan, Modar; Kadone, Hideki; Ueno, Tomoyuki; Hada, Yasushi; Sankai, Yoshiyuki; Suzuki, Kenji
2018-06-01
Here, we present a study on exoskeleton robot control based on inter-limb locomotor synergies using a robot control method developed to target hemiparesis. The robot control is based on inter-limb locomotor synergies and kinesiological information from the non-paretic leg and a walking aid cane to generate motion patterns for the assisted leg. The developed synergy-based system was tested against an autonomous robot control system in five patients with hemiparesis and varying locomotor abilities. Three of the participants were able to walk using the robot. Results from these participants showed an improved spatial symmetry ratio and more consistent step length with the synergy-based method compared with that for the autonomous method, while the increase in the range of motion for the assisted joints was larger with the autonomous system. The kinematic synergy distribution of the participants walking without the robot suggests a relationship between each participant's synergy distribution and his/her ability to control the robot: participants with two independent synergies accounting for approximately 80% of the data variability were able to walk with the robot. This observation was not consistently apparent with conventional clinical measures such as the Brunnstrom stages. This paper contributes to the field of robot-assisted locomotion therapy by introducing the concept of inter-limb synergies, demonstrating performance differences between synergy-based and autonomous robot control, and investigating the range of disability in which the system is usable.
Overcoming Robot-Arm Joint Singularities
NASA Technical Reports Server (NTRS)
Barker, L. K.; Houck, J. A.
1986-01-01
Kinematic equations allow arm to pass smoothly through singular region. Report discusses mathematical singularities in equations of robotarm control. Operator commands robot arm to move in direction relative to its own axis system by specifying velocity in that direction. Velocity command then resolved into individual-joint rotational velocities in robot arm to effect motion. However, usual resolved-rate equations become singular when robot arm is straightened.
A review on robotic fish enabled by ionic polymer-metal composite artificial muscles.
Chen, Zheng
2017-01-01
A novel actuating material, which is lightweight, soft, and capable of generating large flapping motion under electrical stimuli, is highly desirable to build energy-efficient and maneuverable bio-inspired underwater robots. Ionic polymer-metal composites are important category of electroactive polymers, since they can generate large bending motions under low actuation voltages. IPMCs are ideal artificial muscles for small-scale and bio-inspired robots. This paper takes a system perspective to review the recent work on IPMC-enabled underwater robots, from modeling, fabrication, and bio-inspired design perspectives. First, a physics-based and control-oriented model of IPMC actuator will be reviewed. Second, a bio-inspired robotic fish propelled by IPMC caudal fin will be presented and a steady-state speed model of the fish will be demonstrated. Third, a novel fabrication process for 3D actuating membrane will be introduced and a bio-inspired robotic manta ray propelled by two IPMC pectoral fins will be demonstrated. Fourth, a 2D maneuverable robotic fish propelled by multiple IPMC fin will be presented. Last, advantages and challenges of using IPMC artificial muscles in bio-inspired robots will be concluded.
Considerations for designing robotic upper limb rehabilitation devices
NASA Astrophysics Data System (ADS)
Nadas, I.; Vaida, C.; Gherman, B.; Pisla, D.; Carbone, G.
2017-12-01
The present study highlights the advantages of robotic systems for post-stroke rehabilitation of the upper limb. The latest demographic studies illustrate a continuous increase of the average life span, which leads to a continuous increase of stroke incidents and patients requiring rehabilitation. Some studies estimate that by 2030 the number of physical therapists will be insufficient for the patients requiring physical rehabilitation, imposing a shift in the current methodologies. A viable option is the implementation of robotic systems that assist the patient in performing rehabilitation exercises, the physical therapist role being to establish the therapeutic program for each patient and monitor their individual progress. Using a set of clinical measurements for the upper limb motions, the analysis of rehabilitation robotic systems provides a comparative study between the motions required by clinicians and the ones that robotic systems perform for different therapeutic exercises. A critical analysis of existing robots is performed using several classifications: mechanical design, assistance type, actuation and power transmission, control systems and human robot interaction (HRI) strategies. This classification will determine a set of pre-requirements for the definition of new concepts and efficient solutions for robotic assisted rehabilitation therapy.
Very fast motion planning for highly dexterous-articulated robots
NASA Technical Reports Server (NTRS)
Challou, Daniel J.; Gini, Maria; Kumar, Vipin
1994-01-01
Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations.
Destephe, Matthieu; Brandao, Martim; Kishi, Tatsuhiro; Zecca, Massimiliano; Hashimoto, Kenji; Takanishi, Atsuo
2015-01-01
The Uncanny valley hypothesis, which tells us that almost-human characteristics in a robot or a device could cause uneasiness in human observers, is an important research theme in the Human Robot Interaction (HRI) field. Yet, that phenomenon is still not well-understood. Many have investigated the external design of humanoid robot faces and bodies but only a few studies have focused on the influence of robot movements on our perception and feelings of the Uncanny valley. Moreover, no research has investigated the possible relation between our uneasiness feeling and whether or not we would accept robots having a job in an office, a hospital or elsewhere. To better understand the Uncanny valley, we explore several factors which might have an influence on our perception of robots, be it related to the subjects, such as culture or attitude toward robots, or related to the robot such as emotions and emotional intensity displayed in its motion. We asked 69 subjects (N = 69) to rate the motions of a humanoid robot (Perceived Humanity, Eeriness, and Attractiveness) and state where they would rather see the robot performing a task. Our results suggest that, among the factors we chose to test, the attitude toward robots is the main influence on the perception of the robot related to the Uncanny valley. Robot occupation acceptability was affected only by Attractiveness, mitigating any Uncanny valley effect. We discuss the implications of these findings for the Uncanny valley and the acceptability of a robotic worker in our society.
Destephe, Matthieu; Brandao, Martim; Kishi, Tatsuhiro; Zecca, Massimiliano; Hashimoto, Kenji; Takanishi, Atsuo
2015-01-01
The Uncanny valley hypothesis, which tells us that almost-human characteristics in a robot or a device could cause uneasiness in human observers, is an important research theme in the Human Robot Interaction (HRI) field. Yet, that phenomenon is still not well-understood. Many have investigated the external design of humanoid robot faces and bodies but only a few studies have focused on the influence of robot movements on our perception and feelings of the Uncanny valley. Moreover, no research has investigated the possible relation between our uneasiness feeling and whether or not we would accept robots having a job in an office, a hospital or elsewhere. To better understand the Uncanny valley, we explore several factors which might have an influence on our perception of robots, be it related to the subjects, such as culture or attitude toward robots, or related to the robot such as emotions and emotional intensity displayed in its motion. We asked 69 subjects (N = 69) to rate the motions of a humanoid robot (Perceived Humanity, Eeriness, and Attractiveness) and state where they would rather see the robot performing a task. Our results suggest that, among the factors we chose to test, the attitude toward robots is the main influence on the perception of the robot related to the Uncanny valley. Robot occupation acceptability was affected only by Attractiveness, mitigating any Uncanny valley effect. We discuss the implications of these findings for the Uncanny valley and the acceptability of a robotic worker in our society. PMID:25762967
Control Of A Serpentine Robot For Inspection Tasks
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Colbaugh, Richard D.; Glass, Kristin L.
1996-01-01
Efficient, robust kinematic control scheme developed to control serpentine robot designed to inspect complex structure. Takes full advantage of multiple redundant degrees of freedom of robot to provide considerable dexterity for maneuvering through workspace cluttered with stationary obstacles at initially unknown positions. Control scheme produces slithering motion.
Mental models for cognitive control
NASA Astrophysics Data System (ADS)
Schilling, Malte; Cruse, Holk; Schmitz, Josef
2007-05-01
Even so called "simple" organisms as insects are able to fastly adapt to changing conditions of their environment. Their behaviour is affected by many external influences and only its variability and adaptivity permits their survival. An intensively studied example concerns hexapod walking. 1,2 Complex walking behaviours in stick insects have been analysed and the results were used to construct a reactive model that controls walking in a robot. This model is now extended by higher levels of control: as a bottom-up approach the low-level reactive behaviours are modulated and activated through a medium level. In addition, the system grows up to an upper level for cognitive control of the robot: Cognition - as the ability to plan ahead - and cognitive skills involve internal representations of the subject itself and its environment. These representations are used for mental simulations: In difficult situations, for which neither motor primitives, nor whole sequences of these exist, available behaviours are varied and applied in the internal model while the body itself is decoupled from the controlling modules. The result of the internal simulation is evaluated. Successful actions are learned and applied to the robot. This constitutes a level for planning. Its elements (movements, behaviours) are embodied in the lower levels, whereby their meaning arises directly from these levels. The motor primitives are situation models represented as neural networks. The focus of this work concerns the general architecture of the framework as well as the reactive basic layer of the bottom-up architecture and its connection to higher level functions and its application on an internal model.
Biobotic insect swarm based sensor networks for search and rescue
NASA Astrophysics Data System (ADS)
Bozkurt, Alper; Lobaton, Edgar; Sichitiu, Mihail; Hedrick, Tyson; Latif, Tahmid; Dirafzoon, Alireza; Whitmire, Eric; Verderber, Alexander; Marin, Juan; Xiong, Hong
2014-06-01
The potential benefits of distributed robotics systems in applications requiring situational awareness, such as search-and-rescue in emergency situations, are indisputable. The efficiency of such systems requires robotic agents capable of coping with uncertain and dynamic environmental conditions. For example, after an earthquake, a tremendous effort is spent for days to reach to surviving victims where robotic swarms or other distributed robotic systems might play a great role in achieving this faster. However, current technology falls short of offering centimeter scale mobile agents that can function effectively under such conditions. Insects, the inspiration of many robotic swarms, exhibit an unmatched ability to navigate through such environments while successfully maintaining control and stability. We have benefitted from recent developments in neural engineering and neuromuscular stimulation research to fuse the locomotory advantages of insects with the latest developments in wireless networking technologies to enable biobotic insect agents to function as search-and-rescue agents. Our research efforts towards this goal include development of biobot electronic backpack technologies, establishment of biobot tracking testbeds to evaluate locomotion control efficiency, investigation of biobotic control strategies with Gromphadorhina portentosa cockroaches and Manduca sexta moths, establishment of a localization and communication infrastructure, modeling and controlling collective motion by learning deterministic and stochastic motion models, topological motion modeling based on these models, and the development of a swarm robotic platform to be used as a testbed for our algorithms.
High degree-of-freedom dynamic manipulation
NASA Astrophysics Data System (ADS)
Murphy, Michael P.; Stephens, Benjamin; Abe, Yeuhi; Rizzi, Alfred A.
2012-06-01
The creation of high degree of freedom dynamic mobile manipulation techniques and behaviors will allow robots to accomplish difficult tasks in the field. We are investigating the use of the body and legs of legged robots to improve the strength, velocity, and workspace of an integrated manipulator to accomplish dynamic manipulation. This is an especially challenging task, as all of the degrees of freedom are active at all times, the dynamic forces generated are high, and the legged system must maintain robust balance throughout the duration of the tasks. To accomplish this goal, we are utilizing trajectory optimization techniques to generate feasible open-loop behaviors for our 28 dof quadruped robot (BigDog) by planning the trajectories in a 13 dimensional space. Covariance Matrix Adaptation techniques are utilized to optimize for several criteria such as payload capability and task completion speed while also obeying constraints such as torque and velocity limits, kinematic limits, and center of pressure location. These open-loop behaviors are then used to generate feed-forward terms, which are subsequently used online to improve tracking and maintain low controller gains. Some initial results on one of our existing balancing quadruped robots with an additional human-arm-like manipulator are demonstrated on robot hardware, including dynamic lifting and throwing of heavy objects 16.5kg cinder blocks, using motions that resemble a human athlete more than typical robotic motions. Increased payload capacity is accomplished through coordinated body motion.
A turtle-like swimming robot using a smart soft composite (SSC) structure
NASA Astrophysics Data System (ADS)
Kim, Hyung-Jung; Song, Sung-Hyuk; Ahn, Sung-Hoon
2013-01-01
This paper describes the development of a biomimetic swimming robot based on the locomotion of a marine turtle. To realize the smooth, soft flapping motions of this type of turtle, a novel actuator was also developed, using a smart soft composite (SSC) structure that can generate bending and twisting motions in a simple, lightweight structure. The SSC structure is a composite consisting of an active component to generate the actuation force, a passive component to determine the twisting angle of the structure, and a matrix to combine the components. The motion of such a structure can be designed by specifying the angle between a filament of the scaffold structure and a shape-memory alloy (SMA) wire. The bending and twisting motion of the SSC structure is explained in terms of classical laminate theory, and cross-ply and angled-ply structures were fabricated to evaluate its motion. Finally, the turtle-like motion of a swimming robot was realized by employing a specially designed SSC structure. To mimic the posterior positive twisting angle of a turtle’s flipper during the upstroke, the SMA wire on the upper side was offset, and a positive ply-angled scaffold was used. Likewise, for the anterior negative twisting angle of the flipper during the downstroke, an offset SMA wire on the lower side and a positive ply-angled scaffold were also required. The fabricated flipper’s length is 64.3 mm and it realizes 55 mm bending and 24° twisting. The resulting robot achieved a swimming speed of 22.5 mm s-1.
NASA Astrophysics Data System (ADS)
Zhang, Xin; Liu, Jinguo
2018-07-01
Although many motion planning strategies for missions involving space robots capturing floating targets can be found in the literature, relatively little has discussed how to select the berth position where the spacecraft base hovers. In fact, the berth position is a flexible and controllable factor, and selecting a suitable berth position has a great impact on improving the efficiency of motion planning in the capture mission. Therefore, to make full use of the manoeuvrability of the space robot, this paper proposes a new viewpoint that utilizes the base berth position as an optimizable parameter to formulate a more comprehensive and effective motion planning strategy. Considering the dynamic coupling, the dynamic singularities, and the physical limitations of space robots, a unified motion planning framework based on the forward kinematics and parameter optimization technique is developed to convert the planning problem into the parameter optimization problem. For getting rid of the strict grasping position constraints in the capture mission, a new conception of grasping area is proposed to greatly simplify the difficulty of the motion planning. Furthermore, by utilizing the penalty function method, a new concise objective function is constructed. Here, the intelligent algorithm, Particle Swarm Optimization (PSO), is worked as solver to determine the free parameters. Two capturing cases, i.e., capturing a two-dimensional (2D) planar target and capturing a three-dimensional (3D) spatial target, are studied under this framework. The corresponding simulation results demonstrate that the proposed method is more efficient and effective for planning the capture missions.
Towards building a team of intelligent robots
NASA Technical Reports Server (NTRS)
Varanasi, Murali R.; Mehrotra, R.
1987-01-01
Topics addressed include: collision-free motion planning of multiple robot arms; two-dimensional object recognition; and pictorial databases (storage and sharing of the representations of three-dimensional objects).
The Maiden Voyage of a Kinematics Robot
NASA Astrophysics Data System (ADS)
Greenwolfe, Matthew L.
2015-04-01
In a Montessori preschool classroom, students work independently on tasks that absorb their attention in part because the apparatus are carefully designed to make mistakes directly observable and limit exploration to one aspect or dimension. Control of error inheres in the apparatus itself, so that teacher intervention can be minimal.1 Inspired by this example, I created a robotic kinematics apparatus that also shapes the inquiry experience. Students program the robot by drawing kinematic graphs on a computer and then observe its motion. Exploration is at once limited to constant velocity and constant acceleration motion, yet open to complex multi-segment examples difficult to achieve in the lab in other ways. The robot precisely and reliably produces the motion described by the students' graphs, so that the apparatus itself provides immediate visual feedback about whether their understanding is correct as they are free to explore within the hard-coded limits. In particular, the kinematic robot enables hands-on study of multi-segment constant velocity situations, which lays a far stronger foundation for the study of accelerated motion. When correction is anonymous—just between one group of lab partners and their robot—students using the kinematic robot tend to flow right back to work because they view the correction as an integral part of the inquiry learning process. By contrast, when correction occurs by the teacher and/or in public (e.g., returning a graded assignment or pointing out student misconceptions during class), students all too often treat the event as the endpoint to inquiry. Furthermore, quantitative evidence shows a large gain from pre-test to post-test scores using the Test of Understanding Graphs in Kinematics (TUG-K).
CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
Liu, Chengju; Chen, Qijun; Wang, Danwei
2011-06-01
This paper deals with the locomotion control of quadruped robots inspired by the biological concept of central pattern generator (CPG). A control architecture is proposed with a 3-D workspace trajectory generator and a motion engine. The workspace trajectory generator generates adaptive workspace trajectories based on CPGs, and the motion engine realizes joint motion imputes. The proposed architecture is able to generate adaptive workspace trajectories online by tuning the parameters of the CPG network to adapt to various terrains. With feedback information, a quadruped robot can walk through various terrains with adaptive joint control signals. A quadruped platform AIBO is used to validate the proposed locomotion control system. The experimental results confirm the effectiveness of the proposed control architecture. A comparison by experiments shows the superiority of the proposed method against the traditional CPG-joint-space control method.
Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.
Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta
2010-01-01
This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.
Systems and Methods of Coordination Control for Robot Manipulation
NASA Technical Reports Server (NTRS)
Chang, Chu-Yin (Inventor); English, James (Inventor); Tardella, Neil (Inventor); Bacon, James (Inventor)
2013-01-01
Disclosed herein are systems and methods for controlling robotic apparatus having several movable elements or segments coupled by joints. At least one of the movable elements can include one or more mobile bases, while the others can form one or more manipulators. One of the movable elements can be treated as an end effector for which a certain motion is desired. The end effector may include a tool, for example, or represent a robotic hand (or a point thereon), or one or more of the one or more mobile bases. In accordance with the systems and methods disclosed herein, movement of the manipulator and the mobile base can be controlled and coordinated to effect a desired motion for the end effector. In many cases, the motion can include simultaneously moving the manipulator and the mobile base.
An all-joint-control master device for single-port laparoscopic surgery robots.
Shim, Seongbo; Kang, Taehun; Ji, Daekeun; Choi, Hyunseok; Joung, Sanghyun; Hong, Jaesung
2016-08-01
Robots for single-port laparoscopic surgery (SPLS) typically have all of their joints located inside abdomen during surgery, whereas with the da Vinci system, only the tip part of the robot arm is inserted and manipulated. A typical master device that controls only the tip with six degrees of freedom (DOFs) is not suitable for use with SPLS robots because of safety concerns. We designed an ergonomic six-DOF master device that can control all of the joints of an SPLS robot. We matched each joint of the master, the slave, and the human arm to decouple all-joint motions of the slave robot. Counterbalance masses were used to reduce operator fatigue. Mapping factors were determined based on kinematic analysis and were used to achieve all-joint control with minimal error at the tip of the slave robot. The proposed master device has two noteworthy features: efficient joint matching to the human arm to decouple each joint motion of the slave robot and accurate mapping factors, which can minimize the trajectory error of the tips between the master and the slave. We confirmed that the operator can manipulate the slave robot intuitively with the master device and that both tips have similar trajectories with minimal error.
NASA Technical Reports Server (NTRS)
Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.
2012-01-01
A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.
Increasing The Dexterity Of Redundant Robots
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1990-01-01
Redundant coordinates used to define additional tasks. Configuration control emerging as effective way to control motions of robot having more degrees of freedom than necessary to define trajectory of end effector and/or of object to be manipulated. Extra or redundant degrees of freedom used to give robot humanlike dexterity and versatility.
Robotic Welding and Inspection System
DOE Office of Scientific and Technical Information (OSTI.GOV)
H. B. Smartt; D. P. Pace; E. D. Larsen
2008-06-01
This paper presents a robotic system for GTA welding of lids on cylindrical vessels. The system consists of an articulated robot arm, a rotating positioner, end effectors for welding, grinding, ultrasonic and eddy current inspection. Features include weld viewing cameras, modular software, and text-based procedural files for process and motion trajectories.
Hussein, Sami; Kruger, Jörg
2011-01-01
Robot assisted training has proven beneficial as an extension of conventional therapy to improve rehabilitation outcome. Further facilitation of this positive impact is expected from the application of cooperative control algorithms to increase the patient's contribution to the training effort according to his level of ability. This paper presents an approach for cooperative training for end-effector based gait rehabilitation devices. Thereby it provides the basis to firstly establish sophisticated cooperative control methods in this class of devices. It uses a haptic control framework to synthesize and render complex, task specific training environments, which are composed of polygonal primitives. Training assistance is integrated as part of the environment into the haptic control framework. A compliant window is moved along a nominal training trajectory compliantly guiding and supporting the foot motion. The level of assistance is adjusted via the stiffness of the moving window. Further an iterative learning algorithm is used to automatically adjust this assistance level. Stable haptic rendering of the dynamic training environments and adaptive movement assistance have been evaluated in two example training scenarios: treadmill walking and stair climbing. Data from preliminary trials with one healthy subject is provided in this paper. © 2011 IEEE
Hazardous materials emergency response mobile robot
NASA Technical Reports Server (NTRS)
Stone, Henry W. (Inventor); Lloyd, James W. (Inventor); Alahuzos, George A. (Inventor)
1995-01-01
A simple or unsophisticated robot incapable of effecting straight-line motion at the end of its arm is presented. This robot inserts a key held in its end effector or hand into a door lock with nearly straight-line motion by gently thrusting its back heels downwardly so that it pivots forwardly on its front toes while holding its arm stationary. The relatively slight arc traveled by the robot's hand is compensated by a complaint tool with which the robot hand grips the door key. A visible beam is projected through the axis of the hand or gripper on the robot arm end at an angle to the general direction in which the robot thrusts the gripper forward. As the robot hand approaches a target surface, a video camera on the robot wrist watches the beam spot on the target surface fall from a height proportional to the distance between the robot hand and the target surface until the beam spot is nearly aligned with the top of the robot hand. Holes in the front face of the hand are connected through internal passages inside the arm to an on-board chemical sensor. Full rotation of the hand or gripper about the robot arm's wrist is made possible by slip rings in the wrist which permit passage of the gases taken in through the nose holes in the front of the hand through the wrist regardless of the rotational orientation of the wrist.
EEG theta and Mu oscillations during perception of human and robot actions
Urgen, Burcu A.; Plank, Markus; Ishiguro, Hiroshi; Poizner, Howard; Saygin, Ayse P.
2013-01-01
The perception of others’ actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8–13 Hz) and frontal theta (4–8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other. PMID:24348375
EEG theta and Mu oscillations during perception of human and robot actions.
Urgen, Burcu A; Plank, Markus; Ishiguro, Hiroshi; Poizner, Howard; Saygin, Ayse P
2013-01-01
The perception of others' actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8-13 Hz) and frontal theta (4-8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other.
Engineering Sensorial Delay to Control Phototaxis and Emergent Collective Behaviors
NASA Astrophysics Data System (ADS)
Mijalkov, Mite; McDaniel, Austin; Wehr, Jan; Volpe, Giovanni
2016-01-01
Collective motions emerging from the interaction of autonomous mobile individuals play a key role in many phenomena, from the growth of bacterial colonies to the coordination of robotic swarms. For these collective behaviors to take hold, the individuals must be able to emit, sense, and react to signals. When dealing with simple organisms and robots, these signals are necessarily very elementary; e.g., a cell might signal its presence by releasing chemicals and a robot by shining light. An additional challenge arises because the motion of the individuals is often noisy; e.g., the orientation of cells can be altered by Brownian motion and that of robots by an uneven terrain. Therefore, the emphasis is on achieving complex and tunable behaviors from simple autonomous agents communicating with each other in robust ways. Here, we show that the delay between sensing and reacting to a signal can determine the individual and collective long-term behavior of autonomous agents whose motion is intrinsically noisy. We experimentally demonstrate that the collective behavior of a group of phototactic robots capable of emitting a radially decaying light field can be tuned from segregation to aggregation and clustering by controlling the delay with which they change their propulsion speed in response to the light intensity they measure. We track this transition to the underlying dynamics of this system, in particular, to the ratio between the robots' sensorial delay time and the characteristic time of the robots' random reorientation. Supported by numerics, we discuss how the same mechanism can be applied to control active agents, e.g., airborne drones, moving in a three-dimensional space. Given the simplicity of this mechanism, the engineering of sensorial delay provides a potentially powerful tool to engineer and dynamically tune the behavior of large ensembles of autonomous mobile agents; furthermore, this mechanism might already be at work within living organisms such as chemotactic cells.
Goto, Takaaki; Dobashi, Hiroki; Yoshikawa, Tsuneo; Loureiro, Rui C V; Harwin, William S; Miyamura, Yuga; Nagai, Kiyoshi
2017-07-01
This paper addresses the mechanical structure and control method of a redundant drive robot (RDR) to produce compliant motions, and show how the design parameters of the RDR can effect the produced motions and the mechanical and performance limitations of the actuators of the RDR. The structure and control method of the RDR can have been proper to produce compliant motions, but the effect of the design parameters of the RDR to the mechanical and performance limitations have not been clear. Therefore, the feasibility of producing compliant motions in the case of the prototype of the RDR is confirmed by conducting simulations and experiments, and then the design parameters of the RDR to the mechanical and performance limitations are verified by conducting simulations.
Fully decentralized control of a soft-bodied robot inspired by true slime mold.
Umedachi, Takuya; Takeda, Koichi; Nakagaki, Toshiyuki; Kobayashi, Ryo; Ishiguro, Akio
2010-03-01
Animals exhibit astoundingly adaptive and supple locomotion under real world constraints. In order to endow robots with similar capabilities, we must implement many degrees of freedom, equivalent to animals, into the robots' bodies. For taming many degrees of freedom, the concept of autonomous decentralized control plays a pivotal role. However a systematic way of designing such autonomous decentralized control system is still missing. Aiming at understanding the principles that underlie animals' locomotion, we have focused on a true slime mold, a primitive living organism, and extracted a design scheme for autonomous decentralized control system. In order to validate this design scheme, this article presents a soft-bodied amoeboid robot inspired by the true slime mold. Significant features of this robot are twofold: (1) the robot has a truly soft and deformable body stemming from real-time tunable springs and protoplasm, the former is used for an outer skin of the body and the latter is to satisfy the law of conservation of mass; and (2) fully decentralized control using coupled oscillators with completely local sensory feedback mechanism is realized by exploiting the long-distance physical interaction between the body parts stemming from the law of conservation of protoplasmic mass. Simulation results show that this robot exhibits highly supple and adaptive locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on design methodology for autonomous decentralized control system.
Spatial Rack Drives Pitch Configurations: Essence and Content
NASA Astrophysics Data System (ADS)
Abadjieva, Emilia; Abadjiev, Valentin; Naganawa, Akihiro
2018-03-01
The practical realization of all types of mechanical motions converters is preceded by solving the task of their kinematic synthesis. In this way, the determination of the optimal values of the constant geometrical parameters of the chosen structure of the created mechanical system is achieved. The searched result is a guarantee of the preliminary defined kinematic characteristics of the synthesized transmission and in the first place, to guarantee the law of motions transformation. The kinematic synthesis of mechanical transmissions is based on adequate mathematical modelling of the process of motions transformation and on the object, realizing this transformation. Basic primitives of the mathematical models for synthesis upon a pitch contact point are geometric and kinematic pitch configurations. Their dimensions and mutual position in space are the input parameters for the processes of design and elaboration of the synthesized mechanical device. The study presented here is a brief review of the theory of pitch configurations. It is an independent scientific branch of the spatial gearing theory (theory of hyperboloid gears). On this basis, the essence and content of the corresponding primitives, applicable to the synthesis of spatial rack drives, are defined.
Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
Vallery, Heike; van Asseldonk, Edwin H F; Buss, Martin; van der Kooij, Herman
2009-02-01
For gait rehabilitation robots, an important question is how to ensure stable gait, while avoiding any interaction forces between robot and human in case the patient walks correctly. To achieve this, the definition of "correct" gait needs to adapted both to the individual patient and to the situation. Recently, we proposed a method for online trajectory generation that can be applied for hemiparetic subjects. Desired states for one (disabled) leg are generated online based on the movements of the other (sound) leg. An instantaneous mapping between legs is performed by exploiting physiological interjoint couplings. This way, the patient generates the reference motion for the affected leg autonomously. The approach, called Complementary Limb Motion Estimation (CLME), is implemented on the LOPES gait rehabilitation robot and evaluated with healthy subjects in two different experiments. In a previously described study, subjects walk only with one leg, while the robot's other leg acts as a fake prosthesis, to simulate complete loss of function in one leg. This study showed that CLME ensures stable gait. In a second study, to be presented in this paper, healthy subjects walk with both their own legs to assess the interference with self-determined walking. Evaluation criteria are: Power delivered to the joints by the robot, electromyography (EMG) distortions, and kinematic distortions, all compared to zero torque control, which is the baseline of minimum achievable interference. Results indicate that interference of the robot is lower with CLME than with a fixed reference trajectory, mainly in terms of lowered exchanged power and less alteration of EMG. This implies that subjects can walk more naturally with CLME, and they are assisted less by the robot when it is not needed. Future studies with patients are yet to show whether these properties of CLME transfer to the clinical domain.
Computing Dynamics Of A Robot Of 6+n Degrees Of Freedom
NASA Technical Reports Server (NTRS)
Quiocho, Leslie J.; Bailey, Robert W.
1995-01-01
Improved formulation speeds and simplifies computation of dynamics of robot arm of n rotational degrees of freedom mounted on platform having three translational and three rotational degrees of freedom. Intended for use in dynamical modeling of robotic manipulators attached to such moving bases as spacecraft, aircraft, vessel, or land vehicle. Such modeling important part of simulation and control of robotic motions.
Teen Sized Humanoid Robot: Archie
NASA Astrophysics Data System (ADS)
Baltes, Jacky; Byagowi, Ahmad; Anderson, John; Kopacek, Peter
This paper describes our first teen sized humanoid robot Archie. This robot has been developed in conjunction with Prof. Kopacek’s lab from the Technical University of Vienna. Archie uses brushless motors and harmonic gears with a novel approach to position encoding. Based on our previous experience with small humanoid robots, we developed software to create, store, and play back motions as well as control methods which automatically balance the robot using feedback from an internal measurement unit (IMU).
Safety Ellipse Motion with Coarse Sun Angle Optimization
NASA Technical Reports Server (NTRS)
Naasz, Bo
2005-01-01
The Hubble Space Telescope Robotic Servicing and De-orbit Mission (HRSDM) was t o be performed by the unmanned Hubble Robotic Vehicle (HRV) consisting of a Deorbit Module (DM), responsible for the ultimate disposal of Hubble Space Telescope (HST) at the end of science operations, and an Ejection Module (EM), responsible for robotically servicing the HST to extend its useful operational lifetime. HRSDM consisted of eight distinct phases, including: launch, pursuit, proximity operations, capture, servicing, EM jettison and disposal, science operations, and deorbit. The scope of this paper is limited to the Proximity Operations phase of HRSDM. It introduces a relative motion strategy useful for Autonomous Rendezvous and Docking (AR&D) or Formation Flying missions where safe circumnavigation trajectories, or close proximity operations (tens or hundreds of meters) are required for extended periods of time. Parameters and algorithms used to model the relative motion of HRV with respect to HST during the Proximity Operations phase of the HRSDM are described. Specifically, the Safety Ellipse (SE) concept, convenient parameters for describing SE motion, and a concept for initializing SE motion around a target vehicle to coarsely optimize sun and relative navigation sensor angles are presented. The effects of solar incidence angle variations on sun angle optimization, and the effects of orbital perturbations and navigation uncertainty on long term SE motion are discussed.
Palsbo, Susan E; Hood-Szivek, Pamela
2012-01-01
We explored the efficacy of robotic technology in improving handwriting in children with impaired motor skills. Eighteen participants had impairments arising from cerebral palsy (CP), autism spectrum disorder (ASD), attention deficit disorder (ADD), attention deficit hyperactivity disorder (ADHD), or other disorders. The intervention was robotic-guided three-dimensional repetitive motion in 15-20 daily sessions of 25-30 min each over 4-8 wk. Fine motor control improved for the children with learning disabilities and those ages 9 or older but not for those with CP or under age 9. All children with ASD or ADHD referred for slow writing speed were able to increase speed while maintaining legibility. Three-dimensional, robot-assisted, repetitive motion training improved handwriting fluidity in children with mild to moderate fine motor deficits associated with ASD or ADHD within 10 hr of training. This dosage may not be sufficient for children with CP. Copyright © 2012 by the American Occupational Therapy Association, Inc.
Visual Control for Multirobot Organized Rendezvous.
Lopez-Nicolas, G; Aranda, M; Mezouar, Y; Sagues, C
2012-08-01
This paper addresses the problem of visual control of a set of mobile robots. In our framework, the perception system consists of an uncalibrated flying camera performing an unknown general motion. The robots are assumed to undergo planar motion considering nonholonomic constraints. The goal of the control task is to drive the multirobot system to a desired rendezvous configuration relying solely on visual information given by the flying camera. The desired multirobot configuration is defined with an image of the set of robots in that configuration without any additional information. We propose a homography-based framework relying on the homography induced by the multirobot system that gives a desired homography to be used to define the reference target, and a new image-based control law that drives the robots to the desired configuration by imposing a rigidity constraint. This paper extends our previous work, and the main contributions are that the motion constraints on the flying camera are removed, the control law is improved by reducing the number of required steps, the stability of the new control law is proved, and real experiments are provided to validate the proposal.
SDRE controller for motion design of cable-suspended robot with uncertainties and moving obstacles
NASA Astrophysics Data System (ADS)
Behboodi, Ahad; Salehi, Seyedmohammad
2017-10-01
In this paper an optimal control approach for nonlinear dynamical systems was proposed based on State Dependent Riccati Equation (SDRE) and its robustness against uncertainties is shown by simulation results. The proposed method was applied on a spatial six-cable suspended robot, which was designed to carry loads or perform different tasks in huge workspaces. Motion planning for cable-suspended robots in such a big workspace is subjected to uncertainties and obstacles. First, we emphasized the ability of SDRE to construct a systematic basis and efficient design of controller for wide variety of nonlinear dynamical systems. Then we showed how this systematic design improved the robustness of the system and facilitated the integration of motion planning techniques with the controller. In particular, obstacle avoidance technique based on artificial potential field (APF) can be easily combined with SDRE controller with efficient performance. Due to difficulties of exact solution for SDRE, an approximation method was used based on power series expansion. The efficiency and robustness of the SDRE controller was illustrated on a six-cable suspended robot with proper simulations.
NASA Technical Reports Server (NTRS)
Soo, Han Lee
1991-01-01
Researchers developed a robust control law for slow motions for the accurate trajectory control of a flexible robot. The control law does not need larger velocity gains than position gains, which some researchers need to ensure the stability of a rigid robot. Initial experimentation for the Small Articulated Manipulator (SAM) shows that control laws that use smaller velocity gains are more robust to signal noise than the control laws that use larger velocity gains. Researchers analyzed the stability of the composite control law, the robust control for the slow motion, and the strain rate feedback for the fast control. The stability analysis was done by using a quadratic Liapunov function. Researchers found that the flexible motion of links could be controlled by relating the input force to the flexible signals which are sensed at the near tip of each link. The signals are contaminated by the time delayed input force. However, the effect of the time delayed input force can be reduced by giving a certain configuration to the SAM.
Robotics-based synthesis of human motion.
Khatib, O; Demircan, E; De Sapio, V; Sentis, L; Besier, T; Delp, S
2009-01-01
The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.
Tanaka, Yoshiyuki; Mizoe, Genki; Kawaguchi, Tomohiro
2015-01-01
This paper proposes a simple diagnostic methodology for checking the ability of proprioceptive/kinesthetic sensation by using a robotic device. The perception ability of virtual frictional forces is examined in operations of the robotic device by the hand at a uniform slow velocity along the virtual straight/circular path. Experimental results by healthy subjects demonstrate that percentage of correct answers for the designed perceptual tests changes in the motion direction as well as the arm configuration and the HFM (human force manipulability) measure. It can be supposed that the proposed methodology can be applied into the early detection of neuromuscular/neurological disorders.
On the reproducibility of expert-operated and robotic ultrasound acquisitions.
Kojcev, Risto; Khakzar, Ashkan; Fuerst, Bernhard; Zettinig, Oliver; Fahkry, Carole; DeJong, Robert; Richmon, Jeremy; Taylor, Russell; Sinibaldi, Edoardo; Navab, Nassir
2017-06-01
We present the evaluation of the reproducibility of measurements performed using robotic ultrasound imaging in comparison with expert-operated sonography. Robotic imaging for interventional procedures may be a valuable contribution, but requires reproducibility for its acceptance in clinical routine. We study this by comparing repeated measurements based on robotic and expert-operated ultrasound imaging. Robotic ultrasound acquisition is performed in three steps under user guidance: First, the patient is observed using a 3D camera on the robot end effector, and the user selects the region of interest. This allows for automatic planning of the robot trajectory. Next, the robot executes a sweeping motion following the planned trajectory, during which the ultrasound images and tracking data are recorded. As the robot is compliant, deviations from the path are possible, for instance due to patient motion. Finally, the ultrasound slices are compounded to create a volume. Repeated acquisitions can be performed automatically by comparing the previous and current patient surface. After repeated image acquisitions, the measurements based on acquisitions performed by the robotic system and expert are compared. Within our case series, the expert measured the anterior-posterior, longitudinal, transversal lengths of both of the left and right thyroid lobes on each of the 4 healthy volunteers 3 times, providing 72 measurements. Subsequently, the same procedure was performed using the robotic system resulting in a cumulative total of 144 clinically relevant measurements. Our results clearly indicated that robotic ultrasound enables more repeatable measurements. A robotic ultrasound platform leads to more reproducible data, which is of crucial importance for planning and executing interventions.
Astragalar Morphology of Selected Giraffidae.
Solounias, Nikos; Danowitz, Melinda
2016-01-01
The artiodactyl astragalus has been modified to exhibit two trochleae, creating a double pullied structure allowing for significant dorso-plantar motion, and limited mediolateral motion. The astragalus structure is partly influenced by environmental substrates, and correspondingly, morphometric studies can yield paleohabitat information. The present study establishes terminology and describes detailed morphological features on giraffid astragali. Each giraffid astragalus exhibits a unique combination of anatomical characteristics. The giraffid astragalar morphologies reinforce previously established phylogenetic relationships. We find that the enlargement of the navicular head is a feature shared by all giraffids, and that the primitive giraffids possess exceptionally tall astragalar heads in relation to the total astragalar height. The sivatheres and the okapi share a reduced notch on the lateral edge of the astragalus. We find that Samotherium is more primitive in astragalar morphologies than Palaeotragus, which is reinforced by tooth characteristics and ossicone position. Diagnostic anatomical characters on the astragalus allow for giraffid species identifications and a better understanding of Giraffidae.
Kinematic control of redundant robots and the motion optimizability measure.
Li, L; Gruver, W A; Zhang, Q; Yang, Z
2001-01-01
This paper treats the kinematic control of manipulators with redundant degrees of freedom. We derive an analytical solution for the inverse kinematics that provides a means for accommodating joint velocity constraints in real time. We define the motion optimizability measure and use it to develop an efficient method for the optimization of joint trajectories subject to multiple criteria. An implementation of the method for a 7-dof experimental redundant robot is present.
Endo, Hiroshi
2015-01-01
This study examined whether manipulability during smartphone thumb-based touch operations could be predicted by the following robotic manipulability indices: the volume and direction of the 'manipulability ellipsoid' (MEd), both of which evaluate the influence of kinematics on manipulability. Limits of the thumb's range of motion were considered in the MEd to improve predictability. Thumb postures at 25 key target locations were measured in 16 subjects. Though there was no correlation between subjective evaluation and the volume of the MEd, high correlation was obtained when motion range limits were taken into account. These limits changed the size of the MEd and improved the accuracy of the manipulability evaluation. Movement directions associated with higher performance could also be predicted. In conclusion, robotic manipulability indices with motion range limits were considered to be useful measures for quantitatively evaluating human hand operations.
A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)
Dülger, L. Canan; Kapucu, Sadettin
2016-01-01
This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129
A Robotic Platform to Study the Foreflipper of the California Sea Lion.
Kulkarni, Aditya A; Patel, Rahi K; Friedman, Chen; Leftwich, Megan C
2017-01-10
The California sea lion (Zalophus californianus), is an agile and powerful swimmer. Unlike many successful swimmers (dolphins, tuna), they generate most of their thrust with their large foreflippers. This protocol describes a robotic platform designed to study the hydrodynamic performance of the swimming California sea lion (Zalophus californianus). The robot is a model of the animal's foreflipper that is actuated by motors to replicate the motion of its propulsive stroke (the 'clap'). The kinematics of the sea lion's propulsive stroke are extracted from video data of unmarked, non-research sea lions at the Smithsonian Zoological Park (SNZ). Those data form the basis of the actuation motion of the robotic flipper presented here. The geometry of the robotic flipper is based a on high-resolution laser scan of a foreflipper of an adult female sea lion, scaled to about 60% of the full-scale flipper. The articulated model has three joints, mimicking the elbow, wrist and knuckle joint of the sea lion foreflipper. The robotic platform matches dynamics properties-Reynolds number and tip speed-of the animal when accelerating from rest. The robotic flipper can be used to determine the performance (forces and torques) and resulting flowfields.
Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin
2016-01-01
This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles.
Smart Prosthetic Hand Technology - Phase 2
2011-05-01
identification and estimation, hand motion estimation, intelligent embedded systems and control, robotic hand and biocompatibility and signaling. The...Smart Prosthetics, Bio- Robotics , Intelligent EMG Signal Processing, Embedded Systems and Intelligent Control, Inflammatory Responses of Cells, Toxicity...estimation, intelligent embedded systems and control, robotic hand and biocompatibility and signaling. The developed identification algorithm using a new
Waldman, Genna; Yang, Chung-Yong; Ren, Yupeng; Liu, Lin; Guo, Xin; Harvey, Richard L; Roth, Elliot J; Zhang, Li-Qun
2013-01-01
To investigate the effects of controlled passive stretching and active movement training using a portable rehabilitation robot on stroke survivors with ankle and mobility impairment. Twenty-four patients at least 3 months post stroke were assigned to receive 6 week training using the portable robot in a research laboratory (robot group) or an instructed exercise program at home (control group). All patients underwent clinical and biomechanical evaluations in the laboratory at pre-evaluation, post-evaluation, and 6-week follow-up. Subjects in the robot group improved significantly more than that in the control group in reduction in spasticity measured by modified Ashworth scale, mobility by Stroke Rehabilitation Assessment of Movement (STREAM), the balance by Berg balance score, dorsiflexion passive range of motion, dorsiflexion strength, and load bearing on the affected limb during gait after 6-week training. Both groups improved in the STREAM, dorsiflexion active range of motion and dorsiflexor strength after the training, which were retained in the follow-up evaluation. Robot-assisted passive stretching and active movement training is effective in improving motor function and mobility post stroke.
Numerical approach of collision avoidance and optimal control on robotic manipulators
NASA Technical Reports Server (NTRS)
Wang, Jyhshing Jack
1990-01-01
Collision-free optimal motion and trajectory planning for robotic manipulators are solved by a method of sequential gradient restoration algorithm. Numerical examples of a two degree-of-freedom (DOF) robotic manipulator are demonstrated to show the excellence of the optimization technique and obstacle avoidance scheme. The obstacle is put on the midway, or even further inward on purpose, of the previous no-obstacle optimal trajectory. For the minimum-time purpose, the trajectory grazes by the obstacle and the minimum-time motion successfully avoids the obstacle. The minimum-time is longer for the obstacle avoidance cases than the one without obstacle. The obstacle avoidance scheme can deal with multiple obstacles in any ellipsoid forms by using artificial potential fields as penalty functions via distance functions. The method is promising in solving collision-free optimal control problems for robotics and can be applied to any DOF robotic manipulators with any performance indices and mobile robots as well. Since this method generates optimum solution based on Pontryagin Extremum Principle, rather than based on assumptions, the results provide a benchmark against which any optimization techniques can be measured.
Calibration Of An Omnidirectional Vision Navigation System Using An Industrial Robot
NASA Astrophysics Data System (ADS)
Oh, Sung J.; Hall, Ernest L.
1989-09-01
The characteristics of an omnidirectional vision navigation system were studied to determine position accuracy for the navigation and path control of a mobile robot. Experiments for calibration and other parameters were performed using an industrial robot to conduct repetitive motions. The accuracy and repeatability of the experimental setup and the alignment between the robot and the sensor provided errors of less than 1 pixel on each axis. Linearity between zenith angle and image location was tested at four different locations. Angular error of less than 1° and radial error of less than 1 pixel were observed at moderate speed variations. The experimental information and the test of coordinated operation of the equipment provide understanding of characteristics as well as insight into the evaluation and improvement of the prototype dynamic omnivision system. The calibration of the sensor is important since the accuracy of navigation influences the accuracy of robot motion. This sensor system is currently being developed for a robot lawn mower; however, wider applications are obvious. The significance of this work is that it adds to the knowledge of the omnivision sensor.
Documentation of the Fourth Order Band Model
NASA Technical Reports Server (NTRS)
Kalnay-Rivas, E.; Hoitsma, D.
1979-01-01
A general circulation model is presented which uses quadratically conservative, fourth order horizontal space differences on an unstaggered grid and second order vertical space differences with a forward-backward or a smooth leap frog time scheme to solve the primitive equations of motion. The dynamic equations for motion, finite difference equations, a discussion of the structure and flow chart of the program code, a program listing, and three relevent papers are given.
Ghasemzadeh, Hassan; Loseu, Vitali; Jafari, Roozbeh
2010-03-01
Mobile sensor-based systems are emerging as promising platforms for healthcare monitoring. An important goal of these systems is to extract physiological information about the subject wearing the network. Such information can be used for life logging, quality of life measures, fall detection, extraction of contextual information, and many other applications. Data collected by these sensor nodes are overwhelming, and hence, an efficient data processing technique is essential. In this paper, we present a system using inexpensive, off-the-shelf inertial sensor nodes that constructs motion transcripts from biomedical signals and identifies movements by taking collaboration between the nodes into consideration. Transcripts are built of motion primitives and aim to reduce the complexity of the original data. We then label each primitive with a unique symbol and generate a sequence of symbols, known as motion template, representing a particular action. This model leads to a distributed algorithm for action recognition using edit distance with respect to motion templates. The algorithm reduces the number of active nodes during every classification decision. We present our results using data collected from five normal subjects performing transitional movements. The results clearly illustrate the effectiveness of our framework. In particular, we obtain a classification accuracy of 84.13% with only one sensor node involved in the classification process.
A Mobile Robot for Small Object Handling
NASA Astrophysics Data System (ADS)
Fišer, Ondřej; Szűcsová, Hana; Grimmer, Vladimír; Popelka, Jan; Vonásek, Vojtěch; Krajník, Tomáš; Chudoba, Jan
The aim of this paper is to present an intelligent autonomous robot capable of small object manipulation. The design of the robot is influenced mainly by the rules of EUROBOT 09 competition. In this challenge, two robots pick up objects scattered on a planar rectangular playfield and use these elements to build models of Hellenistic temples. This paper describes the robot hardware, i.e. electro-mechanics of the drive, chassis and manipulator, as well as the software, i.e. localization, collision avoidance, motion control and planning algorithms.
Distributed Automated Medical Robotics to Improve Medical Field Operations
2010-04-01
ROBOT PATIENT INTERFACE Robotic trauma diagnosis and intervention is performed using instruments and tools mounted on the end of a robotic manipulator...manipulator to respond quickly enough to accommodate for motion due to high inertia and inaccuracies caused by low stiffness at the tool point. Ultrasonic...program was licensed to Intuitive Surgical, Inc and subsequently morphed into the daVinci surgical system. The daVinci has been widely applied in
ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot
2016-10-09
ANYmal - A Highly Mobile and Dynamic Quadrupedal Robot * Marco Hutter1, Christian Gehring2, Dominic Jud1, Andreas Lauber1, C. Dario Bellicoso1...Abstract— This paper introduces ANYmal, a quadrupedal robot that features outstanding mobility and dynamic motion capability. Thanks to novel...compliant joint modules with integrated electronics, the 30 kg, 0.5 m tall robotic dog is torque controllable and very robust against impulsive loads during
Development of a medical robot system for minimally invasive surgery.
Feng, Mei; Fu, Yili; Pan, Bo; Liu, Chang
2012-03-01
Robot-assisted systems have been widely used in minimally invasive surgery (MIS) practice, and with them the precision and accuracy of surgical procedures can be significantly improved. Promoting the development of robot technology in MIS will improve robot performance and help in tackling problems from complex surgical procedures. A medical robot system with a new mechanism for MIS was proposed to achieve a two-dimensional (2D) remote centre of motion (RCM). An improved surgical instrument was designed to enhance manipulability and eliminate the coupling motion between the wrist and the grippers. The control subsystem adopted a master-slave control mode, upon which a new method with error compensation of repetitive feedback can be based for the inverse kinematics solution. A unique solution with less computation and higher satisfactory accuracy was also obtained. Tremor filtration and trajectory planning were also addressed with regard to the smoothness of the surgical instrument movement. The robot system was tested on pigs weighing 30-45 kg. The experimental results show that the robot can successfully complete a cholecystectomy and meet the demands of MIS. The results of the animal experiments were excellent, indicating a promising clinical application of the robot with high manipulability. Copyright © 2011 John Wiley & Sons, Ltd.
A GPU-accelerated cortical neural network model for visually guided robot navigation.
Beyeler, Michael; Oros, Nicolas; Dutt, Nikil; Krichmar, Jeffrey L
2015-12-01
Humans and other terrestrial animals use vision to traverse novel cluttered environments with apparent ease. On one hand, although much is known about the behavioral dynamics of steering in humans, it remains unclear how relevant perceptual variables might be represented in the brain. On the other hand, although a wealth of data exists about the neural circuitry that is concerned with the perception of self-motion variables such as the current direction of travel, little research has been devoted to investigating how this neural circuitry may relate to active steering control. Here we present a cortical neural network model for visually guided navigation that has been embodied on a physical robot exploring a real-world environment. The model includes a rate based motion energy model for area V1, and a spiking neural network model for cortical area MT. The model generates a cortical representation of optic flow, determines the position of objects based on motion discontinuities, and combines these signals with the representation of a goal location to produce motor commands that successfully steer the robot around obstacles toward the goal. The model produces robot trajectories that closely match human behavioral data. This study demonstrates how neural signals in a model of cortical area MT might provide sufficient motion information to steer a physical robot on human-like paths around obstacles in a real-world environment, and exemplifies the importance of embodiment, as behavior is deeply coupled not only with the underlying model of brain function, but also with the anatomical constraints of the physical body it controls. Copyright © 2015 Elsevier Ltd. All rights reserved.
Control of articulated snake robot under dynamic active constraints.
Kwok, Ka-Wai; Vitiello, Valentina; Yang, Guang-Zhong
2010-01-01
Flexible, ergonomically enhanced surgical robots have important applications to transluminal endoscopic surgery, for which path-following and dynamic shape conformance are essential. In this paper, kinematic control of a snake robot for motion stabilisation under dynamic active constraints is addressed. The main objective is to enable the robot to track the visual target accurately and steadily on deforming tissue whilst conforming to pre-defined anatomical constraints. The motion tracking can also be augmented with manual control. By taking into account the physical limits in terms of maximum frequency response of the system (manifested as a delay between the input of the manipulator and the movement of the end-effector), we show the importance of visual-motor synchronisation for performing accurate smooth pursuit movements. Detailed user experiments are performed to demonstrate the practical value of the proposed control mechanism.
Finding the Correspondence of Audio-Visual Events by Object Manipulation
NASA Astrophysics Data System (ADS)
Nishibori, Kento; Takeuchi, Yoshinori; Matsumoto, Tetsuya; Kudo, Hiroaki; Ohnishi, Noboru
A human being understands the objects in the environment by integrating information obtained by the senses of sight, hearing and touch. In this integration, active manipulation of objects plays an important role. We propose a method for finding the correspondence of audio-visual events by manipulating an object. The method uses the general grouping rules in Gestalt psychology, i.e. “simultaneity” and “similarity” among motion command, sound onsets and motion of the object in images. In experiments, we used a microphone, a camera, and a robot which has a hand manipulator. The robot grasps an object like a bell and shakes it or grasps an object like a stick and beat a drum in a periodic, or non-periodic motion. Then the object emits periodical/non-periodical events. To create more realistic scenario, we put other event source (a metronome) in the environment. As a result, we had a success rate of 73.8 percent in finding the correspondence between audio-visual events (afferent signal) which are relating to robot motion (efferent signal).
NASA Astrophysics Data System (ADS)
Shi, Zhong; Huang, Xuexiang; Hu, Tianjian; Tan, Qian; Hou, Yuzhuo
2016-10-01
Space teleoperation is an important space technology, and human-robot motion similarity can improve the flexibility and intuition of space teleoperation. This paper aims to obtain an appropriate kinematics mapping method of coupled Cartesian-joint space for space teleoperation. First, the coupled Cartesian-joint similarity principles concerning kinematics differences are defined. Then, a novel weighted augmented Jacobian matrix with a variable coefficient (WAJM-VC) method for kinematics mapping is proposed. The Jacobian matrix is augmented to achieve a global similarity of human-robot motion. A clamping weighted least norm scheme is introduced to achieve local optimizations, and the operating ratio coefficient is variable to pursue similarity in the elbow joint. Similarity in Cartesian space and the property of joint constraint satisfaction is analysed to determine the damping factor and clamping velocity. Finally, a teleoperation system based on human motion capture is established, and the experimental results indicate that the proposed WAJM-VC method can improve the flexibility and intuition of space teleoperation to complete complex space tasks.
Hadavand, Mostafa; Mirbagheri, Alireza; Behzadipour, Saeed; Farahmand, Farzam
2014-06-01
An effective master robot for haptic tele-surgery applications needs to provide a solution for the inversed movements of the surgical tool, in addition to sufficient workspace and manipulability, with minimal moving inertia. A novel 4 + 1-DOF mechanism was proposed, based on a triple parallelogram linkage, which provided a Remote Center of Motion (RCM) at the back of the user's hand. The kinematics of the robot was analyzed and a prototype was fabricated and evaluated by experimental tests. With a RCM at the back of the user's hand the actuators far from the end effector, the robot could produce the sensation of hand-inside surgery with minimal moving inertia. The target workspace was achieved with an acceptable manipulability. The trajectory tracking experiments revealed small errors, due to backlash at the joints. The proposed mechanism meets the basic requirements of an effective master robot for haptic tele-surgery applications. Copyright © 2013 John Wiley & Sons, Ltd.
Surgical robot for single-incision laparoscopic surgery.
Choi, Hyundo; Kwak, Ho-Seong; Lim, Yo-An; Kim, Hyung-Joo
2014-09-01
This paper introduces a novel surgical robot for single-incision laparoscopic surgeries. The robot system includes the cone-type remote center-of-motion (RCM) mechanism and two articulated instruments having a flexible linkage-driven elbow. The RCM mechanism, which has two revolute joints and one prismatic joint, is designed to maintain a stationary point at the apex of the cone shape. By placing the stationary point on the incision area, the mechanism allows a surgical instrument to explore the abdominal area through a small incision point. The instruments have six articulated joints, including an elbow pitch joint, which make the triangulation position for the surgery possible inside of the abdominal area. The presented elbow pitch structure is similar to the slider-crank mechanism but the connecting rod is composed of a flexible leaf spring for high payload and small looseness error. We verified the payload of the robot is more than 10 N and described preliminary experiments on peg transfer and suture motion by using the proposed surgical robot.
Estimating anatomical wrist joint motion with a robotic exoskeleton.
Rose, Chad G; Kann, Claudia K; Deshpande, Ashish D; O'Malley, Marcia K
2017-07-01
Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible. These assumptions hold well for simple one degree-of-freedom joints, but may not be valid for multi-articular joints with unique musculoskeletal properties such as the wrist. This paper presents an experiment comparing robot joint kinematic measurements from an exoskeleton to anatomical joint angles measured with a motion capture system. Joint-space position measurements and task-space smoothness metrics were compared between the two measurement modalities. The experimental results quantify the error between joint-level position measurements, and show that exoskeleton kinematic measurements preserve smoothness characteristics found in anatomical measures of wrist movements.
A novel teaching system for industrial robots.
Lin, Hsien-I; Lin, Yu-Hsiang
2014-03-27
The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles.
A Novel Teaching System for Industrial Robots
Lin, Hsien-I; Lin, Yu-Hsiang
2014-01-01
The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles. PMID:24681669
Sang, Hongqiang; Yang, Chenghao; Liu, Fen; Yun, Jintian; Jin, Guoguang
2016-12-01
It is very important for robotically assisted minimally invasive surgery to achieve a high-precision and smooth motion control. However, the surgical instrument tip will exhibit vibration caused by nonlinear friction and unmodeled dynamics, especially when the surgical robot system is attempting low-speed, fine motion. A fuzzy neural network sliding mode controller (FNNSMC) is proposed to suppress vibration of the surgical robotic system. Nonlinear friction and modeling uncertainties are compensated by a Stribeck model, a radial basis function (RBF) neural network and a fuzzy system, respectively. Simulations and experiments were performed on a 3 degree-of-freedom (DOF) minimally invasive surgical robot. The results demonstrate that the FNNSMC is effective and can suppress vibrations at the surgical instrument tip. The proposed FNNSMC can provide a robust performance and suppress the vibrations at the surgical instrument tip, which can enhance the quality and security of surgical procedures. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Erickson, David; Lacheray, Hervé; Lai, Gilbert; Haddadi, Amir
2014-06-01
This paper presents the latest advancements of the Haptics-based Immersive Tele-robotic System (HITS) project, a next generation Improvised Explosive Device (IED) disposal (IEDD) robotic interface containing an immersive telepresence environment for a remotely-controlled three-articulated-robotic-arm system. While the haptic feedback enhances the operator's perception of the remote environment, a third teleoperated dexterous arm, equipped with multiple vision sensors and cameras, provides stereo vision with proper visual cues, and a 3D photo-realistic model of the potential IED. This decentralized system combines various capabilities including stable and scaled motion, singularity avoidance, cross-coupled hybrid control, active collision detection and avoidance, compliance control and constrained motion to provide a safe and intuitive control environment for the operators. Experimental results and validation of the current system are presented through various essential IEDD tasks. This project demonstrates that a two-armed anthropomorphic Explosive Ordnance Disposal (EOD) robot interface can achieve complex neutralization techniques against realistic IEDs without the operator approaching at any time.
An improved adaptive control for repetitive motion of robots
NASA Technical Reports Server (NTRS)
Pourboghrat, F.
1989-01-01
An adaptive control algorithm is proposed for a class of nonlinear systems, such as robotic manipulators, which is capable of improving its performance in repetitive motions. When the task is repeated, the error between the desired trajectory and that of the system is guaranteed to decrease. The design is based on the combination of a direct adaptive control and a learning process. This method does not require any knowledge of the dynamic parameters of the system.
Optimal design of a novel remote center-of-motion mechanism for minimally invasive surgical robot
NASA Astrophysics Data System (ADS)
Sun, Jingyuan; Yan, Zhiyuan; Du, Zhijiang
2017-06-01
Surgical robot with a remote center-of-motion (RCM) plays an important role in minimally invasive surgery (MIS) field. To make the mechanism has high flexibility and meet the demand of movements during processing of operation, an optimized RCM mechanism is proposed in this paper. Then, the kinematic performance and workspace are analyzed. Finally, a new optimization objective function is built by using the condition number index and the workspace index.
NASA Astrophysics Data System (ADS)
Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin
2017-05-01
For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.
NASA Astrophysics Data System (ADS)
Li, Chunguang; Inoue, Yoshio; Liu, Tao; Shibata, Kyoko; Oka, Koichi
Master-slave control is becoming increasingly popular in the development of robotic systems which can provide rehabilitation training for hemiplegic patients with a unilaterally disabled limb. However, the system structures and control strategies of existent master-slave systems are always complex. An innovative master-slave system implementing force feedback and motion tracking for a rehabilitation robot is presented in this paper. The system consists of two identical motors with a wired connection, and the two motors are located at the master and slave manipulator sites respectively. The slave motor tracks the motion of the master motor directly driven by a patient. As well, the interaction force produced at the slave site is fed back to the patient. Therefore, the impaired limb driven by the slave motor can imitate the motion of the healthy limb controlling the master motor, and the patient can regulate the control force of the healthy limb properly according to the force sensation. The force sensing and motion tracking are achieved simultaneously with neither force sensors nor sophisticated control algorithms. The system is characterized by simple structure, bidirectional controllability, energy recycling, and force feedback without a force sensor. Test experiments on a prototype were conducted, and the results appraise the advantages of the system and demonstrate the feasibility of the proposed control scheme for a rehabilitation robot.
A neuro-collision avoidance strategy for robot manipulators
NASA Technical Reports Server (NTRS)
Onema, Joel P.; Maclaunchlan, Robert A.
1992-01-01
The area of collision avoidance and path planning in robotics has received much attention in the research community. Our study centers on a combination of an artificial neural network paradigm with a motion planning strategy that insures safe motion of the Articulated Two-Link Arm with Scissor Hand System relative to an object. Whenever an obstacle is encountered, the arm attempts to slide along the obstacle surface, thereby avoiding collision by means of the local tangent strategy and its artificial neural network implementation. This combination compensates the inverse kinematics of a robot manipulator. Simulation results indicate that a neuro-collision avoidance strategy can be achieved by means of a learning local tangent method.
Superfast 3D shape measurement of a flapping flight process with motion based segmentation
NASA Astrophysics Data System (ADS)
Li, Beiwen
2018-02-01
Flapping flight has drawn interests from different fields including biology, aerodynamics and robotics. For such research, the digital fringe projection technology using defocused binary image projection has superfast (e.g. several kHz) measurement capabilities with digital-micromirror-device, yet its measurement quality is still subject to the motion of flapping flight. This research proposes a novel computational framework for dynamic 3D shape measurement of a flapping flight process. The fast and slow motion parts are separately reconstructed with Fourier transform and phase shifting. Experiments demonstrate its success by measuring a flapping wing robot (image acquisition rate: 5000 Hz; flapping speed: 25 cycles/second).
Exploration of Near-Earth Asteroids
NASA Technical Reports Server (NTRS)
Abell, Paul
2013-01-01
A major goal for NASA's human spaceflight program is to send astronauts to near-Earth asteroids (NEAs) in the coming decades. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. However, prior to sending human explorers to NEAs, robotic investigations of these bodies would be required in order to maximize operational efficiency and reduce mission risk. These precursor missions to NEAs would fill crucial strategic knowledge gaps concerning their physical characteristics that are relevant for human exploration of these relatively unknown destinations. Information obtained from a human investigation of a NEA, together with ground-based observations and prior spacecraft investigations of asteroids and comets, will also provide a real measure of ground truth to data obtained from terrestrial meteorite collections. Major advances in the areas of geochemistry, impact history, thermal history, isotope analyses, mineralogy, space weathering, formation ages, thermal inertias, volatile content, source regions, solar system formation, etc. can be expected from human NEA missions. Samples directly returned from a primitive body would lead to the same kind of breakthroughs for understanding NEAs that the Apollo samples provided for understanding the Earth-Moon system and its formation history. In addition, robotic precursor and human exploration missions to NEAs would allow the NASA and its international partners to gain operational experience in performing complex tasks (e.g., sample collection, deployment of payloads, retrieval of payloads, etc.) with crew, robots, and spacecraft under microgravity conditions at or near the surface of a small body. This would provide an important synergy between the worldwide Science and Exploration communities, which will be crucial for development of future international deep space exploration architectures and has potential benefits for future exploration of other destinations beyond low-Earth orbit.
NASA Technical Reports Server (NTRS)
1992-01-01
The PER-Force robotic handcontroller provides a sense of touch or "feel" to an operator manipulating robots. The force simulation and wide range of motion greatly enhances the efficiency of robotic and computer operations. The handcontroller was developed for the Space Station by Cybernet Systems Corporation under a Small Business Innovation Research (SBIR) contract. Commercial applications include underwater use, underground excavations, research laboratories, hazardous waste handling and in manufacturing operations in which it is unsafe or impractical for humans to work.
Modeling of Two-Wheeled Self-Balancing Robot Driven by DC Gearmotors
NASA Astrophysics Data System (ADS)
Frankovský, P.; Dominik, L.; Gmiterko, A.; Virgala, I.; Kurylo, P.; Perminova, O.
2017-08-01
This paper is aimed at modelling a two-wheeled self-balancing robot driven by the geared DC motors. A mathematical model consists of two main parts, the model of robot's mechanical structure and the model of the actuator. Linearized equations of motion are derived and the overall model of the two-wheeled self-balancing robot is represented in state-space realization for the purpose of state feedback controller design.
Positional control of space robot manipulator
NASA Astrophysics Data System (ADS)
Kurochkin, Vladislav; Shymanchuk, Dzmitry
2018-05-01
In this article the mathematical model of a planar space robot manipulator is under study. The space robot manipulator represents a solid body with attached manipulators. The system of equations of motion is determined using the Lagrange's equations. The control problem concerning moving the robot to a given point and return it to a given trajectory in the phase space is solved. Changes of generalized coordinates and necessary control actions are plotted for a specific model.
Surgical robot setup simulation with consistent kinematics and haptics for abdominal surgery.
Hayashibe, Mitsuhiro; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Konishi, Kozo; Kakeji, Yoshihiro; Hashizume, Makoto
2005-01-01
Preoperative simulation and planning of surgical robot setup should accompany advanced robotic surgery if their advantages are to be further pursued. Feedback from the planning system will plays an essential role in computer-aided robotic surgery in addition to preoperative detailed geometric information from patient CT/MRI images. Surgical robot setup simulation systems for appropriate trocar site placement have been developed especially for abdominal surgery. The motion of the surgical robot can be simulated and rehearsed with kinematic constraints at the trocar site, and the inverse-kinematics of the robot. Results from simulation using clinical patient data verify the effectiveness of the proposed system.
Motion planning with complete knowledge using a colored SOM.
Vleugels, J; Kok, J N; Overmars, M
1997-01-01
The motion planning problem requires that a collision-free path be determined for a robot moving amidst a fixed set of obstacles. Most neural network approaches to this problem are for the situation in which only local knowledge about the configuration space is available. The main goal of the paper is to show that neural networks are also suitable tools in situations with complete knowledge of the configuration space. In this paper we present an approach that combines a neural network and deterministic techniques. We define a colored version of Kohonen's self-organizing map that consists of two different classes of nodes. The network is presented with random configurations of the robot and, from this information, it constructs a road map of possible motions in the work space. The map is a growing network, and different nodes are used to approximate boundaries of obstacles and the Voronoi diagram of the obstacles, respectively. In a second phase, the positions of the two kinds of nodes are combined to obtain the road map. In this way a number of typical problems with small obstacles and passages are avoided, and the required number of nodes for a given accuracy is within reasonable limits. This road map is searched to find a motion connecting the given source and goal configurations of the robot. The algorithm is simple and general; the only specific computation that is required is a check for intersection of two polygons. We implemented the algorithm for planar robots allowing both translation and rotation and experiments show that compared to conventional techniques it performs well, even for difficult motion planning scenes.
[Robot-aided training in rehabilitation].
Hachisuka, Kenji
2010-02-01
Recently, new training techniques that involve the use of robots have been used in the rehabilitation of patients with hemiplegia and paraplegia. Robots used for training the arm include the MIT-MANUS, Arm Trainer, mirror-image motion enabler (MIME) robot, and the assisted rehabilitation and measurement (ARM) Guide. Robots that are used for lower-limb training are the Rehabot, Gait Trainer, Lokomat, LOPES Exoskeleton Robot, and Gait Assist Robot. Robot-aided therapy has enabled the functional training of the arm and the lower limbs in an effective, easy, and comfortable manner. Therefore, with this type of therapy, the patients can repeatedly undergo sufficient and accurate training for a prolonged period. However, evidence of the benefits of robot-aided training has not yet been established.
Robotic cadaver testing of a new total ankle prosthesis model (German Ankle System).
Richter, Martinus; Zech, Stefan; Westphal, Ralf; Klimesch, Yvone; Gosling, Thomas
2007-12-01
An investigation was carried out into possible increased forces, torques, and altered motions during load-bearing ankle motion after implantation of two different total ankle prostheses. We hypothesized that the parameters investigated would not differ in relation to the two implants compared. We included two different ankle prostheses (Hintegra, Newdeal, Vienne, France; German Ankle System, R-Innovation, Coburg, Germany). The prostheses were implanted in seven paired cadaver specimens. The specimens were mounted on an industrial robot that enables complex motion under predefined conditions (RX 90, Stäubli, Bayreuth, Germany). The robot detected the load-bearing (30 kg) motion of the 100(th) cycle of the specimens without prostheses as the baseline for the later testing, and mimicked that exact motion during 100 cycles after the prostheses were implanted. The resulting forces, torques, and bone motions were recorded and the differences between the prostheses compared. The Hintegra and German Ankle System, significantly increased the forces and torques in relation to the specimen without a prosthesis with one exception (one-sample-t-test, each p < or = 0.01; exception, parameter lateral force measured with the German Ankle System, p = 0.34). The force, torque, and motion differences between the specimens before and after implantation of the prostheses were lower with the German Ankle System than with the Hintegra (unpaired t-test, each p < or = 0.05). The German Ankle System prosthesis had less of an effect on resulting forces and torques during partial weightbearing passive ankle motion than the Hintegra prosthesis. This might improve function and minimize loosening during the clinical use.
Effect of motor dynamics on nonlinear feedback robot arm control
NASA Technical Reports Server (NTRS)
Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping
1991-01-01
A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.
Monitoring and Controlling an Underwater Robotic Arm
NASA Technical Reports Server (NTRS)
Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.
2009-01-01
The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.
Isaac-Lowry, Oran Jacob; Okamoto, Steele; Pedram, Sahba Aghajani; Woo, Russell; Berkelman, Peter
2017-12-01
To date a variety of teleoperated surgical robotic systems have been developed to improve a surgeon's ability to perform demanding single-port procedures. However typical large systems are bulky, expensive, and afford limited angular motion, while smaller designs suffer complications arising from limited motion range, speed, and force generation. This work was to develop and validate a simple, compact, low cost single site teleoperated laparoendoscopic surgical robotic system, with demonstrated capability to carry out basic surgical procedures. This system builds upon previous work done at the University of Hawaii at Manoa and includes instrument and endoscope manipulators as well as compact articulated instruments designed to overcome single incision geometry complications. A robotic endoscope holder was used for the base, with an added support frame for teleoperated manipulators and instruments fabricated mostly from 3D printed parts. Kinematics and control methods were formulated for the novel manipulator configuration. Trajectory following results from an optical motion tracker and sample task performance results are presented. Results indicate that the system has successfully met the goal of basic surgical functionality while minimizing physical size, complexity, and cost. Copyright © 2017 John Wiley & Sons, Ltd.
Bipedal locomotion in granular media
NASA Astrophysics Data System (ADS)
Kingsbury, Mark; Zhang, Tingnan; Goldman, Daniel
Bipedal walking, locomotion characterized by alternating swing and double support phase, is well studied on ground where feet do not penetrate the substrate. On granular media like sand however, intrusion and extrusion phases also occur. In these phases, relative motion of the two feet requires that one or both feet slip through the material, degrading performance. To study walking in these phases, we designed and studied a planarized bipedal robot (1.6 kg, 42 cm) that walked in a fluidized bed of poppy seeds. We also simulated the robot in a multibody software environment (Chrono) using granular resistive force theory (RFT) to calculate foot forces. In experiment and simulation, the robot experienced slip during the intrusion phase, with the experiment presenting additional slip due to motor control error during the double support phase. This exaggerated slip gave insight (through analysis of ground reaction forces in simulation) into how slip occurs when relative motion exists between the two feet in the granular media, where the foot with higher relative drag forces (from its instantaneous orientation, rotation, relative direction of motion, and depth) remains stationary. With this relationship, we generated walking gaits for the robot to walk with minimal slip.
Kim, Seung-Won; Koh, Je-Sung; Lee, Jong-Gu; Ryu, Junghyun; Cho, Maenghyo; Cho, Kyu-Jin
2014-09-01
The Venus flytrap uses bistability, the structural characteristic of its leaf, to actuate the leaf's rapid closing motion for catching its prey. This paper presents a flytrap-inspired robot and novel actuation mechanism that exploits the structural characteristics of this structure and a developable surface. We focus on the concept of exploiting structural characteristics for actuation. Using shape memory alloy (SMA), the robot actuates artificial leaves made from asymmetrically laminated carbon fiber reinforced prepregs. We exploit two distinct structural characteristics of the leaves. First, the bistability acts as an implicit actuator enabling rapid morphing motion. Second, the developable surface has a kinematic constraint that constrains the curvature of the artificial leaf. Due to this constraint, the curved artificial leaf can be unbent by bending the straight edge orthogonal to the curve. The bending propagates from one edge to the entire surface and eventually generates an overall shape change. The curvature change of the artificial leaf is 18 m(-1) within 100 ms when closing. Experiments show that these actuation mechanisms facilitate the generation of a rapid and large morphing motion of the flytrap robot by one-way actuation of the SMA actuators at a local position.
Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi
2016-09-22
Body ownership illusions provide evidence that our sense of self is not coherent and can be extended to non-body objects. Studying about these illusions gives us practical tools to understand the brain mechanisms that underlie body recognition and the experience of self. We previously introduced an illusion of body ownership transfer (BOT) for operators of a very humanlike robot. This sensation of owning the robot's body was confirmed when operators controlled the robot either by performing the desired motion with their body (motion-control) or by employing a brain-computer interface (BCI) that translated motor imagery commands to robot movement (BCI-control). The interesting observation during BCI-control was that the illusion could be induced even with a noticeable delay in the BCI system. Temporal discrepancy has always shown critical weakening effects on body ownership illusions. However the delay-robustness of BOT during BCI-control raised a question about the interaction between the proprioceptive inputs and delayed visual feedback in agency-driven illusions. In this work, we compared the intensity of BOT illusion for operators in two conditions; motion-control and BCI-control. Our results revealed a significantly stronger BOT illusion for the case of BCI-control. This finding highlights BCI's potential in inducing stronger agency-driven illusions by building a direct communication between the brain and controlled body, and therefore removing awareness from the subject's own body.
Maximizing Efficiency and Reducing Robotic Surgery Costs Using the NASA Task Load Index.
Walters, Carrie; Webb, Paula J
2017-10-01
Perioperative leaders at our facility were struggling to meet efficiency targets for robotic surgery procedures while also maintaining the satisfaction of the surgical team. We developed a human resources time and motion study tool and used it in conjunction with the NASA Task Load Index to observe and analyze the required workload of personnel assigned to 25 robotic surgery procedures. The time and motion study identified opportunities to enlist the help of nonlicensed support personnel to ensure safe patient care and improve OR efficiency. Using the NASA Task Load Index demonstrated that high temporal, effort, and physical demands existed for personnel assisting with and performing robotic surgery. We believe that this process could be used to develop cost-effective staffing models, resulting in safe and efficient care for all surgical patients. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Mobile robot motion estimation using Hough transform
NASA Astrophysics Data System (ADS)
Aldoshkin, D. N.; Yamskikh, T. N.; Tsarev, R. Yu
2018-05-01
This paper proposes an algorithm for estimation of mobile robot motion. The geometry of surrounding space is described with range scans (samples of distance measurements) taken by the mobile robot’s range sensors. A similar sample of space geometry in any arbitrary preceding moment of time or the environment map can be used as a reference. The suggested algorithm is invariant to isotropic scaling of samples or map that allows using samples measured in different units and maps made at different scales. The algorithm is based on Hough transform: it maps from measurement space to a straight-line parameters space. In the straight-line parameters, space the problems of estimating rotation, scaling and translation are solved separately breaking down a problem of estimating mobile robot localization into three smaller independent problems. The specific feature of the algorithm presented is its robustness to noise and outliers inherited from Hough transform. The prototype of the system of mobile robot orientation is described.
Initial Experiments with the Leap Motion as a User Interface in Robotic Endonasal Surgery.
Travaglini, T A; Swaney, P J; Weaver, Kyle D; Webster, R J
The Leap Motion controller is a low-cost, optically-based hand tracking system that has recently been introduced on the consumer market. Prior studies have investigated its precision and accuracy, toward evaluating its usefulness as a surgical robot master interface. Yet due to the diversity of potential slave robots and surgical procedures, as well as the dynamic nature of surgery, it is challenging to make general conclusions from published accuracy and precision data. Thus, our goal in this paper is to explore the use of the Leap in the specific scenario of endonasal pituitary surgery. We use it to control a concentric tube continuum robot in a phantom study, and compare user performance using the Leap to previously published results using the Phantom Omni. We find that the users were able to achieve nearly identical average resection percentage and overall surgical duration with the Leap.
Gaze-contingent soft tissue deformation tracking for minimally invasive robotic surgery.
Mylonas, George P; Stoyanov, Danail; Deligianni, Fani; Darzi, Ara; Yang, Guang-Zhong
2005-01-01
The introduction of surgical robots in Minimally Invasive Surgery (MIS) has allowed enhanced manual dexterity through the use of microprocessor controlled mechanical wrists. Although fully autonomous robots are attractive, both ethical and legal barriers can prohibit their practical use in surgery. The purpose of this paper is to demonstrate that it is possible to use real-time binocular eye tracking for empowering robots with human vision by using knowledge acquired in situ. By utilizing the close relationship between the horizontal disparity and the depth perception varying with the viewing distance, it is possible to use ocular vergence for recovering 3D motion and deformation of the soft tissue during MIS procedures. Both phantom and in vivo experiments were carried out to assess the potential frequency limit of the system and its intrinsic depth recovery accuracy. The potential applications of the technique include motion stabilization and intra-operative planning in the presence of large tissue deformation.
Liu, Zhi; Chen, Ci; Zhang, Yun; Chen, C L P
2015-03-01
To achieve an excellent dual-arm coordination of the humanoid robot, it is essential to deal with the nonlinearities existing in the system dynamics. The literatures so far on the humanoid robot control have a common assumption that the problem of output hysteresis could be ignored. However, in the practical applications, the output hysteresis is widely spread; and its existing limits the motion/force performances of the robotic system. In this paper, an adaptive neural control scheme, which takes the unknown output hysteresis and computational efficiency into account, is presented and investigated. In the controller design, the prior knowledge of system dynamics is assumed to be unknown. The motion error is guaranteed to converge to a small neighborhood of the origin by Lyapunov's stability theory. Simultaneously, the internal force is kept bounded and its error can be made arbitrarily small.
Adaptive control of space based robot manipulators
NASA Technical Reports Server (NTRS)
Walker, Michael W.; Wee, Liang-Boon
1991-01-01
For space based robots in which the base is free to move, motion planning and control is complicated by uncertainties in the inertial properties of the manipulator and its load. A new adaptive control method is presented for space based robots which achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. A partition is made of the fifteen degree of freedom system dynamics into two parts: a nine degree of freedom invertible portion and a six degree of freedom noninvertible portion. The controller is then designed to achieve trajectory tracking of the invertible portion of the system. This portion consist of the manipulator joint positions and the orientation of the base. The motion of the noninvertible portion is bounded, but unpredictable. This portion consist of the position of the robot's base and the position of the reaction wheel.
Brain computer interface for operating a robot
NASA Astrophysics Data System (ADS)
Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed
2013-10-01
A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.
Initial Experiments with the Leap Motion as a User Interface in Robotic Endonasal Surgery
Travaglini, T. A.; Swaney, P. J.; Weaver, Kyle D.; Webster, R. J.
2016-01-01
The Leap Motion controller is a low-cost, optically-based hand tracking system that has recently been introduced on the consumer market. Prior studies have investigated its precision and accuracy, toward evaluating its usefulness as a surgical robot master interface. Yet due to the diversity of potential slave robots and surgical procedures, as well as the dynamic nature of surgery, it is challenging to make general conclusions from published accuracy and precision data. Thus, our goal in this paper is to explore the use of the Leap in the specific scenario of endonasal pituitary surgery. We use it to control a concentric tube continuum robot in a phantom study, and compare user performance using the Leap to previously published results using the Phantom Omni. We find that the users were able to achieve nearly identical average resection percentage and overall surgical duration with the Leap. PMID:26752501
A Generalized Method for Automatic Downhand and Wirefeed Control of a Welding Robot and Positioner
NASA Technical Reports Server (NTRS)
Fernandez, Ken; Cook, George E.
1988-01-01
A generalized method for controlling a six degree-of-freedom (DOF) robot and a two DOF positioner used for arc welding operations is described. The welding path is defined in the part reference frame, and robot/positioner joint angles of the equivalent eight DOF serial linkage are determined via an iterative solution. Three algorithms are presented: the first solution controls motion of the eight DOF mechanism such that proper torch motion is achieved while minimizing the sum-of-squares of joint displacements; the second algorithm adds two constraint equations to achieve torch control while maintaining part orientation so that welding occurs in the downhand position; and the third algorithm adds the ability to control the proper orientation of a wire feed mechanism used in gas tungsten arc (GTA) welding operations. A verification of these algorithms is given using ROBOSIM, a NASA developed computer graphic simulation software package design for robot systems development.
Gaze-contingent control for minimally invasive robotic surgery.
Mylonas, George P; Darzi, Ara; Yang, Guang Zhong
2006-09-01
Recovering tissue depth and deformation during robotically assisted minimally invasive procedures is an important step towards motion compensation, stabilization and co-registration with preoperative data. This work demonstrates that eye gaze derived from binocular eye tracking can be effectively used to recover 3D motion and deformation of the soft tissue. A binocular eye-tracking device was integrated into the stereoscopic surgical console. After calibration, the 3D fixation point of the participating subjects could be accurately resolved in real time. A CT-scanned phantom heart model was used to demonstrate the accuracy of gaze-contingent depth extraction and motion stabilization of the soft tissue. The dynamic response of the oculomotor system was assessed with the proposed framework by using autoregressive modeling techniques. In vivo data were also used to perform gaze-contingent decoupling of cardiac and respiratory motion. Depth reconstruction, deformation tracking, and motion stabilization of the soft tissue were possible with binocular eye tracking. The dynamic response of the oculomotor system was able to cope with frequencies likely to occur under most routine minimally invasive surgical operations. The proposed framework presents a novel approach towards the tight integration of a human and a surgical robot where interaction in response to sensing is required to be under the control of the operating surgeon.
Analysis and experiments with an elephant's trunk robot
NASA Technical Reports Server (NTRS)
Hannan, M. W.; Walker, I. D.
2001-01-01
The area of tentacle and trunk type biological manipulation is not new, but there has been little progress in the development and application of a physical device to simulate these types of manipulation. Our research in this area is based on using an 'elephant trunk' robot. In this paper, we review the construction of the robot and how it compares to biological manipulators. We then apply our previously designed kinematic model to describe the kinematics of the robot. We finish by providing some examples of motion planning and intelligent manipulation using the robot.
The use of computer graphic simulation in the development of on-orbit tele-robotic systems
NASA Technical Reports Server (NTRS)
Fernandez, Ken; Hinman, Elaine
1987-01-01
This paper describes the use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems used for on-orbit operations. These issues are robot motion control, robot path-planning/verification, and robot dynamics. The major design issues in developing effective telerobotic systems are discussed, and the use of ROBOSIM, a NASA-developed computer graphic simulation tool, to address these issues is presented. Simulation plans for the Space Station and the Orbital Maneuvering Vehicle are presented and discussed.
Graphics modelling of non-contact thickness measuring robotics work cell
NASA Technical Reports Server (NTRS)
Warren, Charles W.
1990-01-01
A system was developed for measuring, in real time, the thickness of a sprayable insulation during its application. The system was graphically modelled, off-line, using a state-of-the-art graphics workstation and associated software. This model was to contain a 3D color model of a workcell containing a robot and an air bearing turntable. A communication link was established between the graphics workstations and the robot's controller. Sequences of robot motion generated by the computer simulation are transmitted to the robot for execution.
Small Body Exploration Technologies as Precursors for Interstellar Robotics
NASA Astrophysics Data System (ADS)
Noble, R. J.; Sykes, M. V.
The scientific activities undertaken to explore our Solar System will be very similar to those required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution, as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of the technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.
Small Body Exploration Technologies as Precursors for Interstellar Robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Robert; /SLAC; Sykes, Mark V.
The scientific activities undertaken to explore our Solar System will be the same as required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of themore » technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.« less
Vision System Measures Motions of Robot and External Objects
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Matthies, Larry
2008-01-01
A prototype of an advanced robotic vision system both (1) measures its own motion with respect to a stationary background and (2) detects other moving objects and estimates their motions, all by use of visual cues. Like some prior robotic and other optoelectronic vision systems, this system is based partly on concepts of optical flow and visual odometry. Whereas prior optoelectronic visual-odometry systems have been limited to frame rates of no more than 1 Hz, a visual-odometry subsystem that is part of this system operates at a frame rate of 60 to 200 Hz, given optical-flow estimates. The overall system operates at an effective frame rate of 12 Hz. Moreover, unlike prior machine-vision systems for detecting motions of external objects, this system need not remain stationary: it can detect such motions while it is moving (even vibrating). The system includes a stereoscopic pair of cameras mounted on a moving robot. The outputs of the cameras are digitized, then processed to extract positions and velocities. The initial image-data-processing functions of this system are the same as those of some prior systems: Stereoscopy is used to compute three-dimensional (3D) positions for all pixels in the camera images. For each pixel of each image, optical flow between successive image frames is used to compute the two-dimensional (2D) apparent relative translational motion of the point transverse to the line of sight of the camera. The challenge in designing this system was to provide for utilization of the 3D information from stereoscopy in conjunction with the 2D information from optical flow to distinguish between motion of the camera pair and motions of external objects, compute the motion of the camera pair in all six degrees of translational and rotational freedom, and robustly estimate the motions of external objects, all in real time. To meet this challenge, the system is designed to perform the following image-data-processing functions: The visual-odometry subsystem (the subsystem that estimates the motion of the camera pair relative to the stationary background) utilizes the 3D information from stereoscopy and the 2D information from optical flow. It computes the relationship between the 3D and 2D motions and uses a least-mean-squares technique to estimate motion parameters. The least-mean-squares technique is suitable for real-time implementation when the number of external-moving-object pixels is smaller than the number of stationary-background pixels.
Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor
NASA Technical Reports Server (NTRS)
Prinz, F. B.
1991-01-01
Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm.
Use of 3D vision for fine robot motion
NASA Technical Reports Server (NTRS)
Lokshin, Anatole; Litwin, Todd
1989-01-01
An integration of 3-D vision systems with robot manipulators will allow robots to operate in a poorly structured environment by visually locating targets and obstacles. However, by using computer vision for objects acquisition makes the problem of overall system calibration even more difficult. Indeed, in a CAD based manipulation a control architecture has to find an accurate mapping between the 3-D Euclidean work space and a robot configuration space (joint angles). If a stereo vision is involved, then one needs to map a pair of 2-D video images directly into the robot configuration space. Neural Network approach aside, a common solution to this problem is to calibrate vision and manipulator independently, and then tie them via common mapping into the task space. In other words, both vision and robot refer to some common Absolute Euclidean Coordinate Frame via their individual mappings. This approach has two major difficulties. First a vision system has to be calibrated over the total work space. And second, the absolute frame, which is usually quite arbitrary, has to be the same with a high degree of precision for both robot and vision subsystem calibrations. The use of computer vision to allow robust fine motion manipulation in a poorly structured world which is currently in progress is described along with the preliminary results and encountered problems.
Analyzing Robotic Kinematics Via Computed Simulations
NASA Technical Reports Server (NTRS)
Carnahan, Timothy M.
1992-01-01
Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.
Biologically-Inspired Micro-Robots. Volume 1. Robots Based on Crickets
2005-05-19
is limited to flat, smooth surfaces. Another group of specialized robots that use piezoelectric actuators are the pipe robots developed at Shanghai...along in a pipe . They were developed for very specific terrain that allows them to take advantage of the small strain, high- frequency motion of...the valve. To open the valve you apply a current to the TiNi, heating it and pulling the plunger up, opening the valve. All three components are
Miyake, Tamon; Kobayashi, Yo; Fujie, Masakatsu G; Sugano, Shigeki
2017-07-01
Gait training robots are useful for changing gait patterns and decreasing risk of trip. Previous research has reported that decreasing duration of the assistance or guidance of the robot is beneficial for efficient gait training. Although robotic intermittent control method for assisting joint motion has been established, the effect of the robot intervention timing on change of toe clearance is unclear. In this paper, we tested different timings of applying torque to the knee, employing the intermittent control of a gait training robot to increase toe clearance throughout the swing phase. We focused on knee flexion motion and designed a gait training robot that can apply flexion torque to the knee with a wire-driven system. We used a method of timing detecting for the robot conducting torque control based on information from the hip, knee, and ankle angles to establish a non-time dependent parameter that can be used to adapt to gait change, such as gait speed. We carried out an experiment in which the conditions were four time points: starting the swing phase, lifting the foot, maintaining knee flexion, and finishing knee flexion. The results show that applying flexion torque to the knee at the time point when people start lifting their toe is effective for increasing toe clearance in the whole swing phase.
Upper-limb kinematic reconstruction during stroke robot-aided therapy.
Papaleo, E; Zollo, L; Garcia-Aracil, N; Badesa, F J; Morales, R; Mazzoleni, S; Sterzi, S; Guglielmelli, E
2015-09-01
The paper proposes a novel method for an accurate and unobtrusive reconstruction of the upper-limb kinematics of stroke patients during robot-aided rehabilitation tasks with end-effector machines. The method is based on a robust analytic procedure for inverse kinematics that simply uses, in addition to hand pose data provided by the robot, upper arm acceleration measurements for computing a constraint on elbow position; it is exploited for task space augmentation. The proposed method can enable in-depth comprehension of planning strategy of stroke patients in the joint space and, consequently, allow developing therapies tailored for their residual motor capabilities. The experimental validation has a twofold purpose: (1) a comparative analysis with an optoelectronic motion capturing system is used to assess the method capability to reconstruct joint motion; (2) the application of the method to healthy and stroke subjects during circle-drawing tasks with InMotion2 robot is used to evaluate its efficacy in discriminating stroke from healthy behavior. The experimental results have shown that arm angles are reconstructed with a RMSE of 8.3 × 10(-3) rad. Moreover, the comparison between healthy and stroke subjects has revealed different features in the joint space in terms of mean values and standard deviations, which also allow assessing inter- and intra-subject variability. The findings of this study contribute to the investigation of motor performance in the joint space and Cartesian space of stroke patients undergoing robot-aided therapy, thus allowing: (1) evaluating the outcomes of the therapeutic approach, (2) re-planning the robotic treatment based on patient needs, and (3) understanding pathology-related motor strategies.
Modeling the maneuvering of a vehicle
NASA Astrophysics Data System (ADS)
Antonyuk, E. Ya.; Zabuga, A. T.
2012-07-01
A kinematic model of one- and two-link robotic vehicles with two or three steerable wheels is considered. A nonsmooth path in the form of an astroid enveloping the positions of the robot is planned. The motion of a two-link vehicle with such a trajectory is modeled. A numerical analysis of the dynamic of robots is performed determining the reactions of nonholonomic constraints
Trajectory control of an articulated robot with a parallel drive arm based on splines under tension
NASA Astrophysics Data System (ADS)
Yi, Seung-Jong
Today's industrial robots controlled by mini/micro computers are basically simple positioning devices. The positioning accuracy depends on the mathematical description of the robot configuration to place the end-effector at the desired position and orientation within the workspace and on following the specified path which requires the trajectory planner. In addition, the consideration of joint velocity, acceleration, and jerk trajectories are essential for trajectory planning of industrial robots to obtain smooth operation. The newly designed 6 DOF articulated robot with a parallel drive arm mechanism which permits the joint actuators to be placed in the same horizontal line to reduce the arm inertia and to increase load capacity and stiffness is selected. First, the forward kinematic and inverse kinematic problems are examined. The forward kinematic equations are successfully derived based on Denavit-Hartenberg notation with independent joint angle constraints. The inverse kinematic problems are solved using the arm-wrist partitioned approach with independent joint angle constraints. Three types of curve fitting methods used in trajectory planning, i.e., certain degree polynomial functions, cubic spline functions, and cubic spline functions under tension, are compared to select the best possible method to satisfy both smooth joint trajectories and positioning accuracy for a robot trajectory planner. Cubic spline functions under tension is the method selected for the new trajectory planner. This method is implemented for a 6 DOF articulated robot with a parallel drive arm mechanism to improve the smoothness of the joint trajectories and the positioning accuracy of the manipulator. Also, this approach is compared with existing trajectory planners, 4-3-4 polynomials and cubic spline functions, via circular arc motion simulations. The new trajectory planner using cubic spline functions under tension is implemented into the microprocessor based robot controller and motors to produce combined arc and straight-line motion. The simulation and experiment show interesting results by demonstrating smooth motion in both acceleration and jerk and significant improvements of positioning accuracy in trajectory planning.
Conformal Robotic Stereolithography
Stevens, Adam G.; Oliver, C. Ryan; Kirchmeyer, Matthieu; Wu, Jieyuan; Chin, Lillian; Polsen, Erik S.; Archer, Chad; Boyle, Casey; Garber, Jenna
2016-01-01
Abstract Additive manufacturing by layerwise photopolymerization, commonly called stereolithography (SLA), is attractive due to its high resolution and diversity of materials chemistry. However, traditional SLA methods are restricted to planar substrates and planar layers that are perpendicular to a single-axis build direction. Here, we present a robotic system that is capable of maskless layerwise photopolymerization on curved surfaces, enabling production of large-area conformal patterns and the construction of conformal freeform objects. The system comprises an industrial six-axis robot and a custom-built maskless projector end effector. Use of the system involves creating a mesh representation of the freeform substrate, generation of a triangulated toolpath with curved layers that represents the target object to be printed, precision mounting of the substrate in the robot workspace, and robotic photopatterning of the target object by coordinated motion of the robot and substrate. We demonstrate printing of conformal photopatterns on spheres of various sizes, and construction of miniature three-dimensional objects on spheres without requiring support features. Improvement of the motion accuracy and development of freeform toolpaths would enable construction of polymer objects that surpass the size and support structure constraints imparted by traditional SLA systems. PMID:29577062
NASA Astrophysics Data System (ADS)
Baharudin, M. E.; Nor, A. M.; Saad, A. R. M.; Yusof, A. M.
2018-03-01
The motion of vibration-driven robots is based on an internal oscillating mass which can move without legs or wheels. The oscillation of the unbalanced mass by a motor is translated into vibration which in turn produces vertical and horizontal forces. Both vertical and horizontal oscillations are of the same frequency but the phases are shifted. The vertical forces will deflect the bristles which cause the robot to move forward. In this paper, the horizontal motion direction caused by the vertically vibrated bristle is numerically simulated by tuning the frequency of their oscillatory actuation. As a preliminary work, basic equations for a simple off-centered vibration location on the robot platform and simulation model for vibration excitement are introduced. It involves both static and dynamic vibration analysis of robots and analysis of different type of parameters. In addition, the orientation of the bristles and oscillators are also analysed. Results from the numerical integration seem to be in good agreement with those achieved from the literature. The presented numerical integration modeling can be used for designing the bristles and controlling the speed and direction of the robot.
Curiosity Mars Rover Flexes its Robotic Arm
2010-09-16
Test operators in a clean room at NASA Jet Propulsion Laboratory monitor some of the first motions by the robotic arm on the Mars rover Curiosity after installation in August 2010. The arm is shown in a partially extended position.
Soft robotics: a review and progress towards faster and higher torque actuators (presentation video)
NASA Astrophysics Data System (ADS)
Shepherd, Robert
2014-03-01
Last year, nearly 160,000 industrial robots were shipped worldwide—into a total market valued at 26 Bn (including hardware, software, and peripherals).[1] Service robots for professional (e.g., defense, medical, agriculture) and personal (e.g., household, handicap assistance, toys, and education) use accounted for 16,000 units, 3.4 Bn and 3,000,000 units, $1.2 Bn respectively.[1] The vast majority of these robotic systems use fully actuated, rigid components that take little advantage of passive dynamics. Soft robotics is a field that is taking advantage of compliant actuators and passive dynamics to achieve several goals: reduced design, manufacturing and control complexity, improved energy efficiency, more sophisticated motions, and safe human-machine interactions to name a few. The potential for societal impact is immense. In some instances, soft actuators have achieved commercial success; however, large scale adoption will require improved methods of controlling non-linear systems, greater reliability in their function, and increased utility from faster and more forceful actuation. In my talk, I will describe efforts from my work in the Whitesides group at Harvard to prove sophisticated motions in these machines using simple controls, as well capabilities unique to soft machines. I will also describe the potential for combinations of different classes of soft actuators (e.g., electrically and pneumatically actuated systems) to improve the utility of soft robots. 1. World Robotics - Industrial Robots 2013, 2013, International Federation of Robotics.
A soft biomimetic tongue: model reconstruction and motion tracking
NASA Astrophysics Data System (ADS)
Lu, Xuanming; Xu, Weiliang; Li, Xiaoning
2016-04-01
A bioinspired robotic tongue which is actuated by a network of compressed air is proposed for the purpose of mimicking the movements of human tongue. It can be applied in the fields such as medical science and food engineering. The robotic tongue is made of two kinds of silicone rubber Ecoflex 0030 and PDMS with the shape simplified from real human tongue. In order to characterize the robotic tongue, a series of experiments were carried out. Laser scan was applied to reconstruct the static model of robotic tongue when it was under pressurization. After each scan, the robotic tongue was scattered into dense points in the same 3D coordinate system and the coordinates of each point were recorded. Motion tracking system (OptiTrack) was used to track and record the whole process of deformation dynamically during the loading and unloading phase. In the experiments, five types of deformation were achieved including roll-up, roll-down, elongation, groove and twist. Utilizing the discrete points generated by laser scan, the accurate parameterized outline of robotic tongue under different pressure was obtained, which could help demonstrate the static characteristic of robotic tongue. The precise deformation process under one pressure was acquired through the OptiTrack system which contains a series of digital cameras, markers on the robotic tongue and a set of hardware and software for data processing. By means of tracking and recording different process of deformation under different pressure, the dynamic characteristic of robotic tongue could be achieved.
Biologically-inspired hexapod robot design and simulation
NASA Technical Reports Server (NTRS)
Espenschied, Kenneth S.; Quinn, Roger D.
1994-01-01
The design and construction of a biologically-inspired hexapod robot is presented. A previously developed simulation is modified to include models of the DC drive motors, the motor driver circuits and their transmissions. The application of this simulation to the design and development of the robot is discussed. The mechanisms thought to be responsible for the leg coordination of the walking stick insect were previously applied to control the straight-line locomotion of a robot. We generalized these rules for a robot walking on a plane. This biologically-inspired control strategy is used to control the robot in simulation. Numerical results show that the general body motion and performance of the simulated robot is similar to that of the robot based on our preliminary experimental results.
Task decomposition for a multilimbed robot to work in reachable but unorientable space
NASA Technical Reports Server (NTRS)
Su, Chau; Zheng, Yuan F.
1991-01-01
Robot manipulators installed on legged mobile platforms are suggested for enlarging robot workspace. To plan the motion of such a system, the arm-platform motion coordination problem is raised, and a task decomposition is proposed to solve the problem. A given task described by the destination position and orientation of the end effector is decomposed into subtasks for arm manipulation and for platform configuration, respectively. The former is defined as the end-effector position and orientation with respect to the platform, and the latter as the platform position and orientation in the base coordinates. Three approaches are proposed for the task decomposition. The approaches are also evaluated in terms of the displacements, from which an optimal approach can be selected.
Motion of an Articulated Vehicle with Two-Dimensional Sections Subject to Lateral Obstacles
NASA Astrophysics Data System (ADS)
Antonyuk, E. Ya.; Zabuga, A. T.
2016-07-01
Some aspects of the geometry, kinematics, and dynamics of a three-section robotic vehicle with a front steerable wheel are studied. The constraints between the wheels and the flat ground are assumed nonholonomic. The vehicle moves in a narrow L-shaped corridor. A path for the characteristic points of the sections of the robot is designed. A dynamic model of the system is developed. The maximum possible dimensions of the robot that allow its unimpeded and non-stop motion are determined. The kinetostatic analysis of the load on a three-section vehicle moving along a planned path is modeled. The holonomic and nonholonomic constraint reactions between the wheels and the ground and in the joints between the sections are determined
NASA Astrophysics Data System (ADS)
Martínez, Fredy; Martínez, Fernando; Jacinto, Edwar
2017-02-01
In this paper we propose an on-line motion planning strategy for autonomous robots in dynamic and locally observable environments. In this approach, we first visually identify geometric shapes in the environment by filtering images. Then, an ART-2 network is used to establish the similarity between patterns. The proposed algorithm allows that a robot establish its relative location in the environment, and define its navigation path based on images of the environment and its similarity to reference images. This is an efficient and minimalist method that uses the similarity of landmark view patterns to navigate to the desired destination. Laboratory tests on real prototypes demonstrate the performance of the algorithm.
Shepherd, Robert F.; Ilievski, Filip; Choi, Wonjae; Morin, Stephen A.; Stokes, Adam A.; Mazzeo, Aaron D.; Chen, Xin; Wang, Michael; Whitesides, George M.
2011-01-01
This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion. PMID:22123978
NASA Technical Reports Server (NTRS)
Martin, William Campbell
2011-01-01
The Jet Propulsion Laboratory (JPL) is developing the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) to assist in manned space missions. One of the proposed targets for this robotic vehicle is a near-Earth asteroid (NEA), which typically exhibit a surface gravity of only a few micro-g. In order to properly test ATHLETE in such an environment, the development team has constructed an inverted Stewart platform testbed that acts as a robotic motion simulator. This project focused on creating physical simulation software that is able to predict how ATHLETE will function on and around a NEA. The corresponding platform configurations are calculated and then passed to the testbed to control ATHLETE's motion. In addition, imitation attitude, imitation attitude control thrusters were designed and fabricated for use on ATHLETE. These utilize a combination of high power LEDs and audio amplifiers to provide visual and auditory cues that correspond to the physics simulation.
Chaminade, Thierry; Ishiguro, Hiroshi; Driver, Jon; Frith, Chris
2012-01-01
Using functional magnetic resonance imaging (fMRI) repetition suppression, we explored the selectivity of the human action perception system (APS), which consists of temporal, parietal and frontal areas, for the appearance and/or motion of the perceived agent. Participants watched body movements of a human (biological appearance and movement), a robot (mechanical appearance and movement) or an android (biological appearance, mechanical movement). With the exception of extrastriate body area, which showed more suppression for human like appearance, the APS was not selective for appearance or motion per se. Instead, distinctive responses were found to the mismatch between appearance and motion: whereas suppression effects for the human and robot were similar to each other, they were stronger for the android, notably in bilateral anterior intraparietal sulcus, a key node in the APS. These results could reflect increased prediction error as the brain negotiates an agent that appears human, but does not move biologically, and help explain the ‘uncanny valley’ phenomenon. PMID:21515639
Perceptual integration of kinematic components in the recognition of emotional facial expressions.
Chiovetto, Enrico; Curio, Cristóbal; Endres, Dominik; Giese, Martin
2018-04-01
According to a long-standing hypothesis in motor control, complex body motion is organized in terms of movement primitives, reducing massively the dimensionality of the underlying control problems. For body movements, this low-dimensional organization has been convincingly demonstrated by the learning of low-dimensional representations from kinematic and EMG data. In contrast, the effective dimensionality of dynamic facial expressions is unknown, and dominant analysis approaches have been based on heuristically defined facial "action units," which reflect contributions of individual face muscles. We determined the effective dimensionality of dynamic facial expressions by learning of a low-dimensional model from 11 facial expressions. We found an amazingly low dimensionality with only two movement primitives being sufficient to simulate these dynamic expressions with high accuracy. This low dimensionality is confirmed statistically, by Bayesian model comparison of models with different numbers of primitives, and by a psychophysical experiment that demonstrates that expressions, simulated with only two primitives, are indistinguishable from natural ones. In addition, we find statistically optimal integration of the emotion information specified by these primitives in visual perception. Taken together, our results indicate that facial expressions might be controlled by a very small number of independent control units, permitting very low-dimensional parametrization of the associated facial expression.
Humanlike Articulate Robotic Headform to Replace Human Volunteers in Respirator Fit Testing
2012-12-01
Vinci suggested that a wet, finely woven cloth could protect sailors from the particles [6] and, later in the 16th century, Agricola described a...survivors. An improvised response by Canadian troops, using urine-soaked cloths as primitive respirators to dissolve and neutralize the chlorine vapor...speech, and were usually covered with a thin layer of rubber or plastic that made no attempt to mimic the thickness and properties of human facial
Piecewise-Planar StereoScan: Sequential Structure and Motion using Plane Primitives.
Raposo, Carolina; Antunes, Michel; P Barreto, Joao
2017-08-09
The article describes a pipeline that receives as input a sequence of stereo images, and outputs the camera motion and a Piecewise-Planar Reconstruction (PPR) of the scene. The pipeline, named Piecewise-Planar StereoScan (PPSS), works as follows: the planes in the scene are detected for each stereo view using semi-dense depth estimation; the relative pose is computed by a new closed-form minimal algorithm that only uses point correspondences whenever plane detections do not fully constrain the motion; the camera motion and the PPR are jointly refined by alternating between discrete optimization and continuous bundle adjustment; and, finally, the detected 3D planes are segmented in images using a new framework that handles low texture and visibility issues. PPSS is extensively validated in indoor and outdoor datasets, and benchmarked against two popular point-based SfM pipelines. The experiments confirm that plane-based visual odometry is resilient to situations of small image overlap, poor texture, specularity, and perceptual aliasing where the fast LIBVISO2 pipeline fails. The comparison against VisualSfM+CMVS/PMVS shows that, for a similar computational complexity, PPSS is more accurate and provides much more compelling and visually pleasant 3D models. These results strongly suggest that plane primitives are an advantageous alternative to point correspondences for applications of SfM and 3D reconstruction in man-made environments.
Coordination of multiple robot arms
NASA Technical Reports Server (NTRS)
Barker, L. K.; Soloway, D.
1987-01-01
Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself.
Unified Approach To Control Of Motions Of Mobile Robots
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1995-01-01
Improved computationally efficient scheme developed for on-line coordinated control of both manipulation and mobility of robots that include manipulator arms mounted on mobile bases. Present scheme similar to one described in "Coordinated Control of Mobile Robotic Manipulators" (NPO-19109). Both schemes based on configuration-control formalism. Present one incorporates explicit distinction between holonomic and nonholonomic constraints. Several other prior articles in NASA Tech Briefs discussed aspects of configuration-control formalism. These include "Increasing the Dexterity of Redundant Robots" (NPO-17801), "Redundant Robot Can Avoid Obstacles" (NPO-17852), "Configuration-Control Scheme Copes with Singularities" (NPO-18556), "More Uses for Configuration Control of Robots" (NPO-18607/NPO-18608).
A General, Adaptive, Roadmap-Based Algorithm for Protein Motion Computation.
Molloy, Kevin; Shehu, Amarda
2016-03-01
Precious information on protein function can be extracted from a detailed characterization of protein equilibrium dynamics. This remains elusive in wet and dry laboratories, as function-modulating transitions of a protein between functionally-relevant, thermodynamically-stable and meta-stable structural states often span disparate time scales. In this paper we propose a novel, robotics-inspired algorithm that circumvents time-scale challenges by drawing analogies between protein motion and robot motion. The algorithm adapts the popular roadmap-based framework in robot motion computation to handle the more complex protein conformation space and its underlying rugged energy surface. Given known structures representing stable and meta-stable states of a protein, the algorithm yields a time- and energy-prioritized list of transition paths between the structures, with each path represented as a series of conformations. The algorithm balances computational resources between a global search aimed at obtaining a global view of the network of protein conformations and their connectivity and a detailed local search focused on realizing such connections with physically-realistic models. Promising results are presented on a variety of proteins that demonstrate the general utility of the algorithm and its capability to improve the state of the art without employing system-specific insight.
Huang, Xianwei; Naghdy, Fazel; Naghdy, Golshah; Du, Haiping; Todd, Catherine
2018-01-01
Robot-assisted therapy is regarded as an effective and reliable method for the delivery of highly repetitive training that is needed to trigger neuroplasticity following a stroke. However, the lack of fully adaptive assist-as-needed control of the robotic devices and an inadequate immersive virtual environment that can promote active participation during training are obstacles hindering the achievement of better training results with fewer training sessions required. This study thus focuses on these research gaps by combining these 2 key components into a rehabilitation system, with special attention on the rehabilitation of fine hand motion skills. The effectiveness of the proposed system is tested by conducting clinical trials on a chronic stroke patient and verified through clinical evaluation methods by measuring the key kinematic features such as active range of motion (ROM), finger strength, and velocity. By comparing the pretraining and post-training results, the study demonstrates that the proposed method can further enhance the effectiveness of fine hand motion rehabilitation training by improving finger ROM, strength, and coordination. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Simulation study of the ROMPS robot control system
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Liu, HUI-I.
1994-01-01
This is a report presenting the progress of a research grant funded by NASA for work performed from June 1, 1993 to August 1, 1993. The report deals with the Robot Operated Material Processing System (ROMPS). It presents results of a computer simulation study conducted to investigate the performance of the control systems controlling the azimuth, elevation, and radial axes of the ROMPS and its gripper. Four study cases are conducted. The first case investigates the control of free motion of the three areas. In the second case, the compliant motion in the elevation axis with the wrist compliant device is studied in terms of position accuracy and impact forces. The third case focuses on the behavior of the control system in controlling the robot motion along the radial axis when pulling the pallet out of the rack. In the fourth case, the compliant motion of the gripper grasping a solid object under the effect of the gripper passive compliance is studied in terms of position accuracy and contact forces. For each of the above cases, a set of PIR gains will be selected to optimize the controller performance and computer simulation results will be presented and discussed.
Chiang, Mao-Hsiung; Lin, Hao-Ting
2011-01-01
This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to verify the feasibility of the proposed parallel mechanism robot driven by three vertical pneumatic servo actuators, a full-scale test rig of the proposed parallel mechanism pneumatic robot is set up. Thus, simulations and experiments for different complex 3D motion profiles of the robot end-effector can be successfully achieved. The desired, the actual and the calculated 3D position of the end-effector can be compared in the complex 3D motion control.
Design and control of an embedded vision guided robotic fish with multiple control surfaces.
Yu, Junzhi; Wang, Kai; Tan, Min; Zhang, Jianwei
2014-01-01
This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin is proposed. To achieve flexible yet stable motions in aquatic environments, a central pattern generator- (CPG-) based control method is employed. Meanwhile, a monocular underwater vision serves as sensory feedback that modifies the control parameters. The integration of the CPG-based motion control and the visual processing in an embedded microcontroller allows the robotic fish to navigate online. Aquatic tests demonstrate the efficacy of the proposed mechatronic design and swimming control methods. Particularly, a pelvic fin actuated sideward swimming gait was first implemented. It is also found that the speeds and maneuverability of the robotic fish with coordinated control surfaces were largely superior to that of the swimming robot propelled by a single control surface.
Planning Paths Through Singularities in the Center of Mass Space
NASA Technical Reports Server (NTRS)
Doggett, William R.; Messner, William C.; Juang, Jer-Nan
1998-01-01
The center of mass space is a convenient space for planning motions that minimize reaction forces at the robot's base or optimize the stability of a mechanism. A unique problem associated with path planning in the center of mass space is the potential existence of multiple center of mass images for a single Cartesian obstacle, since a single center of mass location can correspond to multiple robot joint configurations. The existence of multiple images results in a need to either maintain multiple center of mass obstacle maps or to update obstacle locations when the robot passes through a singularity, such as when it moves from an elbow-up to an elbow-down configuration. To illustrate the concepts presented in this paper, a path is planned for an example task requiring motion through multiple center of mass space maps. The object of the path planning algorithm is to locate the bang- bang acceleration profile that minimizes the robot's base reactions in the presence of a single Cartesian obstacle. To simplify the presentation, only non-redundant robots are considered and joint non-linearities are neglected.
Certainty grids for mobile robots
NASA Technical Reports Server (NTRS)
Moravec, H. P.
1987-01-01
A numerical representation of uncertain and incomplete sensor knowledge called Certainty Grids has been used successfully in several mobile robot control programs, and has proven itself to be a powerful and efficient unifying solution for sensor fusion, motion planning, landmark identification, and many other central problems. Researchers propose to build a software framework running on processors onboard the new Uranus mobile robot that will maintain a probabilistic, geometric map of the robot's surroundings as it moves. The certainty grid representation will allow this map to be incrementally updated in a uniform way from various sources including sonar, stereo vision, proximity and contact sensors. The approach can correctly model the fuzziness of each reading, while at the same time combining multiple measurements to produce sharper map features, and it can deal correctly with uncertainties in the robot's motion. The map will be used by planning programs to choose clear paths, identify locations (by correlating maps), identify well-known and insufficiently sensed terrain, and perhaps identify objects by shape. The certainty grid representation can be extended in the same dimension and used to detect and track moving objects.
An EMG-based robot control scheme robust to time-varying EMG signal features.
Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J
2010-05-01
Human-robot control interfaces have received increased attention during the past decades. With the introduction of robots in everyday life, especially in providing services to people with special needs (i.e., elderly, people with impairments, or people with disabilities), there is a strong necessity for simple and natural control interfaces. In this paper, electromyographic (EMG) signals from muscles of the human upper limb are used as the control interface between the user and a robot arm. EMG signals are recorded using surface EMG electrodes placed on the user's skin, making the user's upper limb free of bulky interface sensors or machinery usually found in conventional human-controlled systems. The proposed interface allows the user to control in real time an anthropomorphic robot arm in 3-D space, using upper limb motion estimates based only on EMG recordings. Moreover, the proposed interface is robust to EMG changes with respect to time, mainly caused by muscle fatigue or adjustments of contraction level. The efficiency of the method is assessed through real-time experiments, including random arm motions in the 3-D space with variable hand speed profiles.
NASA Technical Reports Server (NTRS)
Cannon, R. H., Jr.; Alexander, H.
1985-01-01
A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.
The KALI multi-arm robot programming and control environment
NASA Technical Reports Server (NTRS)
Backes, Paul; Hayati, Samad; Hayward, Vincent; Tso, Kam
1989-01-01
The KALI distributed robot programming and control environment is described within the context of its use in the Jet Propulsion Laboratory (JPL) telerobot project. The purpose of KALI is to provide a flexible robot programming and control environment for coordinated multi-arm robots. Flexibility, both in hardware configuration and software, is desired so that it can be easily modified to test various concepts in robot programming and control, e.g., multi-arm control, force control, sensor integration, teleoperation, and shared control. In the programming environment, user programs written in the C programming language describe trajectories for multiple coordinated manipulators with the aid of KALI function libraries. A system of multiple coordinated manipulators is considered within the programming environment as one motion system. The user plans the trajectory of one controlled Cartesian frame associated with a motion system and describes the positions of the manipulators with respect to that frame. Smooth Cartesian trajectories are achieved through a blending of successive path segments. The manipulator and load dynamics are considered during trajectory generation so that given interface force limits are not exceeded.
Design and Control of an Embedded Vision Guided Robotic Fish with Multiple Control Surfaces
Wang, Kai; Tan, Min; Zhang, Jianwei
2014-01-01
This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin is proposed. To achieve flexible yet stable motions in aquatic environments, a central pattern generator- (CPG-) based control method is employed. Meanwhile, a monocular underwater vision serves as sensory feedback that modifies the control parameters. The integration of the CPG-based motion control and the visual processing in an embedded microcontroller allows the robotic fish to navigate online. Aquatic tests demonstrate the efficacy of the proposed mechatronic design and swimming control methods. Particularly, a pelvic fin actuated sideward swimming gait was first implemented. It is also found that the speeds and maneuverability of the robotic fish with coordinated control surfaces were largely superior to that of the swimming robot propelled by a single control surface. PMID:24688413
Automated Robot Movement in the Mapped Area Using Fuzzy Logic for Wheel Chair Application
NASA Astrophysics Data System (ADS)
Siregar, B.; Efendi, S.; Ramadhana, H.; Andayani, U.; Fahmi, F.
2018-03-01
The difficulties of the disabled to move make them unable to live independently. People with disabilities need supporting device to move from place to place. For that, we proposed a solution that can help people with disabilities to move from one room to another automatically. This study aims to create a wheelchair prototype in the form of a wheeled robot as a means to learn the automatic mobilization. The fuzzy logic algorithm was used to determine motion direction based on initial position, ultrasonic sensors reading in avoiding obstacles, infrared sensors reading as a black line reader for the wheeled robot to move smooth and smartphone as a mobile controller. As a result, smartphones with the Android operating system can control the robot using Bluetooth. Here Bluetooth technology can be used to control the robot from a maximum distance of 15 meters. The proposed algorithm was able to work stable for automatic motion determination based on initial position, and also able to modernize the wheelchair movement from one room to another automatically.
Telerehabilitation robotics: bright lights, big future?
Carignan, Craig R; Krebs, Hermano I
2006-01-01
The potential for remote diagnosis and treatment over the Internet using robotics is now a reality. The state of the art is exemplified by several Internet applications, and we explore the current trends in developing new systems. We review the technical challenges that lie ahead, along with some potential solutions. Some promising results for a new bilateral system involving two InMotion2 robots are presented. Finally, we discuss the future direction and commercial outlook for rehabilitation robots over the next 15 years.
Configuration Synthesis and Efficient Motion Programming of Robot Manipulators
1991-03-15
Gupta and Ma 90- Robotica 8:81-84]. When a set of discrete stations are specified along a robot task path, it becomes necessary to find a related...velocity Jacobian relations for the manipulator [Singh 87-MS Thesis][Gupta and Singh 89- Robotica 7:159-1641 and [Cheng 89-PhD Thesis][Cheng and Gupta...1987; Robotica 7:159-164, 1989 (revised). K. C. Gupta, "Kinematics of a Robot with Continuous Roll Wrist," IEEE J. Robotics and Automation 4(4):440-443
Design and Implementation of a Quadruped Bionic Robot Based on Virtual Prototype Technology
NASA Astrophysics Data System (ADS)
Wang, Li
2017-10-01
Design out a quadruped bionic robot with nine degrees of freedom. Conduct virtual assembly and trotting gait simulation on the robot by using NX software. Present the angular velocity and angular displacement curves of the diagonal two legs’ hip joints and knee joints, thus to instruct the practical assemble and control of the robot. The fact that the movement effect of the physical model is consistent with the simulation verifies the validity and practicability of virtual assembly and motion simulation. both.
Note: Dynamic analysis of a robotic fish motion with a caudal fin with vertical phase differences
NASA Astrophysics Data System (ADS)
Yun, Dongwon; Kim, Kyung-Soo; Kim, Soohyun; Kyung, Jinho; Lee, Sunghwi
2013-03-01
In this paper, a robotic fish with a caudal fin with vertical phase differences is studied, especially focusing on the energy consumption. Energies for thrusting a conventional robotic fish and one with caudal fin with vertical phase differences are obtained and compared each other. It is shown that a robotic fish with a caudal fin with vertical phase differences can save more energy, which implies the efficient thrusting via a vertically waving caudal fin.
Astragalar Morphology of Selected Giraffidae
2016-01-01
The artiodactyl astragalus has been modified to exhibit two trochleae, creating a double pullied structure allowing for significant dorso-plantar motion, and limited mediolateral motion. The astragalus structure is partly influenced by environmental substrates, and correspondingly, morphometric studies can yield paleohabitat information. The present study establishes terminology and describes detailed morphological features on giraffid astragali. Each giraffid astragalus exhibits a unique combination of anatomical characteristics. The giraffid astragalar morphologies reinforce previously established phylogenetic relationships. We find that the enlargement of the navicular head is a feature shared by all giraffids, and that the primitive giraffids possess exceptionally tall astragalar heads in relation to the total astragalar height. The sivatheres and the okapi share a reduced notch on the lateral edge of the astragalus. We find that Samotherium is more primitive in astragalar morphologies than Palaeotragus, which is reinforced by tooth characteristics and ossicone position. Diagnostic anatomical characters on the astragalus allow for giraffid species identifications and a better understanding of Giraffidae. PMID:27028515
Robot-Arm Dynamic Control by Computer
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Tarn, Tzyh J.; Chen, Yilong J.
1987-01-01
Feedforward and feedback schemes linearize responses to control inputs. Method for control of robot arm based on computed nonlinear feedback and state tranformations to linearize system and decouple robot end-effector motions along each of cartesian axes augmented with optimal scheme for correction of errors in workspace. Major new feature of control method is: optimal error-correction loop directly operates on task level and not on joint-servocontrol level.
Design of a 7-DOF slave robot integrated with a magneto-rheological haptic master
NASA Astrophysics Data System (ADS)
Hwang, Yong-Hoon; Cha, Seung-Woo; Kang, Seok-Rae; Choi, Seung-Bok
2017-04-01
In this study, a 7-DOF slave robot integrated with the haptic master is designed and its dynamic motion is controlled. The haptic master is made using a controllable magneto-rheological (MR) clutch and brake and it provides the surgeon with a sense of touch by using both kinetic and kinesthetic information. Due to the size constraint of the slave robot, a wire actuating is adopted to make the desired motion of the end-effector which has 3-DOF instead of a conventional direct-driven motor. Another motions of the link parts that have 4-DOF use direct-driven motor. In total system, for working as a haptic device, the haptic master need to receive the information of repulsive forces applied on the slave robot. Therefore, repulsive forces on the end-effector are sensed by using three uniaxial torque transducer inserted in the wire actuating system and another repulsive forces applied on link part are sensed by using 6-axis transducer that is able to sense forces and torques. Using another 6-axis transducer, verify the reliability of force information on final end of slave robot. Lastly, integrated with a MR haptic master, psycho-physical test is conducted by different operators who can feel the different repulsive force or torque generated from the haptic master which is equivalent to the force or torque occurred on the end-effector to demonstrate the effectiveness of the proposed system.
Genetic Algorithm-Based Motion Estimation Method using Orientations and EMGs for Robot Controls
Chae, Jeongsook; Jin, Yong; Sung, Yunsick
2018-01-01
Demand for interactive wearable devices is rapidly increasing with the development of smart devices. To accurately utilize wearable devices for remote robot controls, limited data should be analyzed and utilized efficiently. For example, the motions by a wearable device, called Myo device, can be estimated by measuring its orientation, and calculating a Bayesian probability based on these orientation data. Given that Myo device can measure various types of data, the accuracy of its motion estimation can be increased by utilizing these additional types of data. This paper proposes a motion estimation method based on weighted Bayesian probability and concurrently measured data, orientations and electromyograms (EMG). The most probable motion among estimated is treated as a final estimated motion. Thus, recognition accuracy can be improved when compared to the traditional methods that employ only a single type of data. In our experiments, seven subjects perform five predefined motions. When orientation is measured by the traditional methods, the sum of the motion estimation errors is 37.3%; likewise, when only EMG data are used, the error in motion estimation by the proposed method was also 37.3%. The proposed combined method has an error of 25%. Therefore, the proposed method reduces motion estimation errors by 12%. PMID:29324641
Validation of cardiac accelerometer sensor measurements.
Remme, Espen W; Hoff, Lars; Halvorsen, Per Steinar; Naerum, Edvard; Skulstad, Helge; Fleischer, Lars A; Elle, Ole Jakob; Fosse, Erik
2009-12-01
In this study we have investigated the accuracy of an accelerometer sensor designed for the measurement of cardiac motion and automatic detection of motion abnormalities caused by myocardial ischaemia. The accelerometer, attached to the left ventricular wall, changed its orientation relative to the direction of gravity during the cardiac cycle. This caused a varying gravity component in the measured acceleration signal that introduced an error in the calculation of myocardial motion. Circumferential displacement, velocity and rotation of the left ventricular apical region were calculated from the measured acceleration signal. We developed a mathematical method to separate translational and gravitational acceleration components based on a priori assumptions of myocardial motion. The accuracy of the measured motion was investigated by comparison with known motion of a robot arm programmed to move like the heart wall. The accuracy was also investigated in an animal study. The sensor measurements were compared with simultaneously recorded motion from a robot arm attached next to the sensor on the heart and with measured motion by echocardiography and a video camera. The developed compensation method for the varying gravity component improved the accuracy of the calculated velocity and displacement traces, giving very good agreement with the reference methods.
Aoyagi, Daisuke; Ichinose, Wade E; Harkema, Susan J; Reinkensmeyer, David J; Bobrow, James E
2007-09-01
Locomotor training using body weight support on a treadmill and manual assistance is a promising rehabilitation technique following neurological injuries, such as spinal cord injury (SCI) and stroke. Previous robots that automate this technique impose constraints on naturalistic walking due to their kinematic structure, and are typically operated in a stiff mode, limiting the ability of the patient or human trainer to influence the stepping pattern. We developed a pneumatic gait training robot that allows for a full range of natural motion of the legs and pelvis during treadmill walking, and provides compliant assistance. However, we observed an unexpected consequence of the device's compliance: unimpaired and SCI individuals invariably began walking out-of-phase with the device. Thus, the robot perturbed rather than assisted stepping. To address this problem, we developed a novel algorithm that synchronizes the device in real-time to the actual motion of the individual by sensing the state error and adjusting the replay timing to reduce this error. This paper describes data from experiments with individuals with SCI that demonstrate the effectiveness of the synchronization algorithm, and the potential of the device for relieving the trainers of strenuous work while maintaining naturalistic stepping.
Akiyama, Yasuhiro; Okamoto, Shogo; Yamada, Yoji; Ishiguro, Kenji
2016-07-01
Continuous use of wearable robots can cause skin injuries beneath the cuffs of robots. To prevent such injuries, understanding the contact behavior of the cuff is important. Thus far, this contact behavior has not been studied because of the difficulty involved in measuring the slippage under the cuff. In this study, for the first time, the relative displacement, slippage, and interaction force and moment at the thigh cuff of a robot during sit-to-stand motion were measured using an instrumented cuff, which was developed for this purpose. The results indicated that the slippage and relative displacement under the cuff was uneven because of the rotation of the cuff, which suggests that the risk of skin injuries is different at different positions. Especially, the skin closer to the hip showed larger dynamism, with a maximum slippage of approximately 10 mm and a displacement of 20 mm during motion. Another important phenomenon was the individual difference among subjects. During motion, the interaction force, moment, and slippage of some subjects suddenly increased. Such behavior results in stress concentration, which increases the risk of skin injuries. These analyses are intended to understand how skin injuries are caused and to design measures to prevent such injuries.
Zhang, Da-song; Chu, Jian
2014-01-01
Based on the 6D constraints of momentum change rate (CMCR), this paper puts forward a real-time and full balance maintenance method for the humanoid robot during high-speed movement of its 7-DOF arm. First, the total momentum formula for the robot's two arms is given and the momentum change rate is defined by the time derivative of the total momentum. The author also illustrates the idea of full balance maintenance and analyzes the physical meaning of 6D CMCR and its fundamental relation to full balance maintenance. Moreover, discretization and optimization solution of CMCR has been provided with the motion constraint of the auxiliary arm's joint, and the solving algorithm is optimized. The simulation results have shown the validity and generality of the proposed method on the full balance maintenance in the 6 DOFs of the robot body under 6D CMCR. This method ensures 6D dynamics balance performance and increases abundant ZMP stability margin. The resulting motion of the auxiliary arm has large abundance in joint space, and the angular velocity and the angular acceleration of these joints lie within the predefined limits. The proposed algorithm also has good real-time performance. PMID:24883404
Zebrafish response to a robotic replica in three dimensions
Ruberto, Tommaso; Mwaffo, Violet; Singh, Sukhgewanpreet; Neri, Daniele
2016-01-01
As zebrafish emerge as a species of choice for the investigation of biological processes, a number of experimental protocols are being developed to study their social behaviour. While live stimuli may elicit varying response in focal subjects owing to idiosyncrasies, tiredness and circadian rhythms, video stimuli suffer from the absence of physical input and rely only on two-dimensional projections. Robotics has been recently proposed as an alternative approach to generate physical, customizable, effective and consistent stimuli for behavioural phenotyping. Here, we contribute to this field of investigation through a novel four-degree-of-freedom robotics-based platform to manoeuvre a biologically inspired three-dimensionally printed replica. The platform enables three-dimensional motions as well as body oscillations to mimic zebrafish locomotion. In a series of experiments, we demonstrate the differential role of the visual stimuli associated with the biologically inspired replica and its three-dimensional motion. Three-dimensional tracking and information-theoretic tools are complemented to quantify the interaction between zebrafish and the robotic stimulus. Live subjects displayed a robust attraction towards the moving replica, and such attraction was lost when controlling for its visual appearance or motion. This effort is expected to aid zebrafish behavioural phenotyping, by offering a novel approach to generate physical stimuli moving in three dimensions. PMID:27853566
Cheng, Shing Shin; Kim, Yeongjin; Desai, Jaydev P
2017-09-01
Since shape memory alloy (SMA) has high power density and is magnetic resonance imaging (MRI) compatible, it has been chosen as the actuator for the meso-scale minimally invasive neurosurgical intracranial robot (MINIR-II) that is envisioned to be operated under continuous MRI guidance. We have devised a water cooling strategy to improve its actuation frequency by threading a silicone tube through the spring coils to form a compact cooling module-integrated actuator. To create active bi-directional motion in each robot joint, we configured the SMA springs in an antagonistic way. We modeled the antagonistic SMA spring behavior and provided the detailed steps to simulate its motion for a complete cycle. We investigated heat transfer during the resistive heating and water cooling processes. Characterization experiments were performed to determine the parameters used in both models, which were then verified by comparing the experimental and simulated data. The actuation frequency of the antagonistic SMAs was evaluated for several motion amplitudes and we could achieve a maximum actuation frequency of 0.143 Hz for a sinusoidal trajectory with 2 mm amplitude. Lastly, we developed a robotic system to implement the actuators on the MINIR-II to move its end segment back and forth for approximately ±25°.
Method and apparatus for configuration control of redundant robots
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1991-01-01
A method and apparatus to control a robot or manipulator configuration over the entire motion based on augmentation of the manipulator forward kinematics is disclosed. A set of kinematic functions is defined in Cartesian or joint space to reflect the desirable configuration that will be achieved in addition to the specified end-effector motion. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. A task-based adaptive scheme is then utilized to directly control the configuration variables so as to achieve tracking of some desired reference trajectories throughout the robot motion. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The present invention can also be used for optimization of any kinematic objective function, or for satisfaction of a set of kinematic inequality constraints, as in an obstacle avoidance problem. In contrast to pseudoinverse-based methods, the configuration control scheme ensures cyclic motion of the manipulator, which is an essential requirement for repetitive operations. The control law is simple and computationally very fast, and does not require either the complex manipulator dynamic model or the complicated inverse kinematic transformation. The configuration control scheme can alternatively be implemented in joint space.
NASA Technical Reports Server (NTRS)
Tuccillo, J. J.
1984-01-01
Numerical Weather Prediction (NWP), for both operational and research purposes, requires only fast computational speed but also large memory. A technique for solving the Primitive Equations for atmospheric motion on the CYBER 205, as implemented in the Mesoscale Atmospheric Simulation System, which is fully vectorized and requires substantially less memory than other techniques such as the Leapfrog or Adams-Bashforth Schemes is discussed. The technique presented uses the Euler-Backard time marching scheme. Also discussed are several techniques for reducing computational time of the model by replacing slow intrinsic routines by faster algorithms which use only hardware vector instructions.
NASA Astrophysics Data System (ADS)
Zhang, Dong Ping; Edwards, Eddie; Mei, Lin; Rueckert, Daniel
2009-02-01
In this paper, we present a novel approach for coronary artery motion modeling from cardiac Computed Tomography( CT) images. The aim of this work is to develop a 4D motion model of the coronaries for image guidance in robotic-assisted totally endoscopic coronary artery bypass (TECAB) surgery. To utilize the pre-operative cardiac images to guide the minimally invasive surgery, it is essential to have a 4D cardiac motion model to be registered with the stereo endoscopic images acquired intraoperatively using the da Vinci robotic system. In this paper, we are investigating the extraction of the coronary arteries and the modelling of their motion from a dynamic sequence of cardiac CT. We use a multi-scale vesselness filter to enhance vessels in the cardiac CT images. The centerlines of the arteries are extracted using a ridge traversal algorithm. Using this method the coronaries can be extracted in near real-time as only local information is used in vessel tracking. To compute the deformation of the coronaries due to cardiac motion, the motion is extracted from a dynamic sequence of cardiac CT. Each timeframe in this sequence is registered to the end-diastole timeframe of the sequence using a non-rigid registration algorithm based on free-form deformations. Once the images have been registered a dynamic motion model of the coronaries can be obtained by applying the computed free-form deformations to the extracted coronary arteries. To validate the accuracy of the motion model we compare the actual position of the coronaries in each time frame with the predicted position of the coronaries as estimated from the non-rigid registration. We expect that this motion model of coronaries can facilitate the planning of TECAB surgery, and through the registration with real-time endoscopic video images it can reduce the conversion rate from TECAB to conventional procedures.
Singularity-robustness and task-prioritization in configuration control of redundant robots
NASA Technical Reports Server (NTRS)
Seraji, H.; Colbaugh, R.
1990-01-01
The authors present a singularity-robust task-prioritized reformulation of the configuration control for redundant robot manipulators. This reformation suppresses large joint velocities to induce minimal errors in the task performance by modifying the task trajectories. Furthermore, the same framework provides a means for assignment of priorities between the basic task of end-effector motion and the user-defined additional task for utilizing redundancy. This allows automatic relaxation of the additional task constraints in favor of the desired end-effector motion when both cannot be achieved exactly.
NASA Astrophysics Data System (ADS)
Chen, Yuzhen; Xie, Fugui; Liu, Xinjun; Zhou, Yanhua
2014-07-01
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error's influence on the moving platform's pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
A novel optimal coordinated control strategy for the updated robot system for single port surgery.
Bai, Weibang; Cao, Qixin; Leng, Chuntao; Cao, Yang; Fujie, Masakatsu G; Pan, Tiewen
2017-09-01
Research into robotic systems for single port surgery (SPS) has become widespread around the world in recent years. A new robot arm system for SPS was developed, but its positioning platform and other hardware components were not efficient. Special features of the developed surgical robot system make good teleoperation with safety and efficiency difficult. A robot arm is combined and used as new positioning platform, and the remote center motion is realized by a new method using active motion control. A new mapping strategy based on kinematics computation and a novel optimal coordinated control strategy based on real-time approaching to a defined anthropopathic criterion configuration that is referred to the customary ease state of human arms and especially the configuration of boxers' habitual preparation posture are developed. The hardware components, control architecture, control system, and mapping strategy of the robotic system has been updated. A novel optimal coordinated control strategy is proposed and tested. The new robot system can be more dexterous, intelligent, convenient and safer for preoperative positioning and intraoperative adjustment. The mapping strategy can achieve good following and representation for the slave manipulator arms. And the proposed novel control strategy can enable them to complete tasks with higher maneuverability, lower possibility of self-interference and singularity free while teleoperating. Copyright © 2017 John Wiley & Sons, Ltd.
Milot, Marie-Helene; Hamel, Mathieu; Provost, Philippe-Olivier; Bernier-Ouellet, Julien; Dupuis, Maxime; Letourneau, Dominic; Briere, Simon; Michaud, Francois
2016-08-01
Stroke is one of the leading causes of disability worldwide. Consequently, many stroke survivors exhibit difficulties undergoing voluntary movement in their affected upper limb, compromising their functional performance and level of independence. To minimize the negative impact of stroke disabilities, exercises are recognized as a key element in post-stroke rehabilitation. In order to provide the practice of exercises in a uniform and controlled manner as well as increasing the efficiency of therapists' interventions, robotic training has been found, and continues to prove itself, as an innovative intervention for post-stroke rehabilitation. However, the complexity as well as the limited degrees of freedom and workspace of currently commercially available robots can limit their use in clinical settings. Up to now, user-friendly robots covering a sufficiently large workspace for training of the upper limb in its full range of motion are lacking. This paper presents the design and implementation of ERA, an upper-limb 3-DOF force-controlled exerciser robot, which presents a workspace covering the entire range of motion of the upper limb. The ERA robot provides 3D reaching movements in a haptic virtual environment. A description of the hardware and software components of the ERA robot is also presented along with a demonstration of its capabilities in one of the three operational modes that were developed.
NASA Astrophysics Data System (ADS)
House, Christopher; Armstrong, Jenelle; Burkhardt, John; Firebaugh, Samara
2014-06-01
With the end goal of medical applications such as non-invasive surgery and targeted drug delivery, an acoustically driven resonant structure is proposed for microrobotic propulsion. At the proposed scale, the low Reynolds number environment requires non-reciprocal motion from the robotic structure for propulsion; thus, a "flapper" with multiple, flexible joints, has been designed to produce excitation modes that involve the necessary flagella-like bending for non-reciprocal motion. The key design aspect of the flapper structure involves a very thin joint that allows bending in one (vertical) direction, but not the opposing direction. This allows for the second mass and joint to bend in a manner similar to a dolphin's "kick" at the bottom of their stroke, resulting in forward thrust. A 130 mm x 50 mm x 0.2 mm prototype of a swimming robot that utilizes the flapper was fabricated out of acrylic using a laser cutter. The robot was tested in water and in a water-glycerine solution designed to mimic microscale fluid conditions. The robot exhibited forward propulsion when excited by an underwater speaker at its resonance mode, with velocities up to 2.5 mm/s. The robot also displayed frequency selectivity, leading to the possibility of exploring a steering mechanism with alternatively tuned flappers. Additional tests were conducted with a robot at a reduced size scale.
Decking, J; Gerber, A; Kränzlein, J; Meurer, A; Böhm, B; Plitz, W
2004-01-01
We investigated the initial stability of cementless stems implanted with robotic milling and conventional manual broaching. Proximally porous structured stems (G2, ESKA-Implants, Luebeck, Germany) were implanted into synthetic femora. In one group, the femoral cavity was prepared by a CT-based robot (CASPAR, URS-Ortho, Germany) with a high-speed milling head. In the other group, femora were rasped manually with broaches. The broaches had 1 mm proximal press-fit, the robotic cavities 1.5 mm. The implants were exposed to 15 000 loading cycles with 1 000 +/- 500 N. The direction of forces on the implant head were chosen to simulate stair climbing. Internal rotation and translation (caudal, dorsal and lateral) of the implants were measured by linear transducers. The robotic group showed significantly less reversible motion regarding translation in caudal, dorsal and lateral directions. The standard deviations of implant motions were smaller in the robotic group. Using robotic preparation of the femur, initial stability was higher and more consistent than with manual broaching, but differences in undersizing of the cavities created in the femur in relation to the implant may have contributed to these differences for the most part. In-vitro-loading experiments focusing on femoral cavities with varying press-fits are recommended before the introduction of new implants or operating procedures.
System for robot-assisted real-time laparoscopic ultrasound elastography
NASA Astrophysics Data System (ADS)
Billings, Seth; Deshmukh, Nishikant; Kang, Hyun Jae; Taylor, Russell; Boctor, Emad M.
2012-02-01
Surgical robots provide many advantages for surgery, including minimal invasiveness, precise motion, high dexterity, and crisp stereovision. One limitation of current robotic procedures, compared to open surgery, is the loss of haptic information for such purposes as palpation, which can be very important in minimally invasive tumor resection. Numerous studies have reported the use of real-time ultrasound elastography, in conjunction with conventional B-mode ultrasound, to differentiate malignant from benign lesions. Several groups (including our own) have reported integration of ultrasound with the da Vinci robot, and ultrasound elastography is a very promising image guidance method for robotassisted procedures that will further enable the role of robots in interventions where precise knowledge of sub-surface anatomical features is crucial. We present a novel robot-assisted real-time ultrasound elastography system for minimally invasive robot-assisted interventions. Our system combines a da Vinci surgical robot with a non-clinical experimental software interface, a robotically articulated laparoscopic ultrasound probe, and our GPU-based elastography system. Elasticity and B-mode ultrasound images are displayed as picture-in-picture overlays in the da Vinci console. Our system minimizes dependence on human performance factors by incorporating computer-assisted motion control that automatically generates the tissue palpation required for elastography imaging, while leaving high-level control in the hands of the user. In addition to ensuring consistent strain imaging, the elastography assistance mode avoids the cognitive burden of tedious manual palpation. Preliminary tests of the system with an elasticity phantom demonstrate the ability to differentiate simulated lesions of varied stiffness and to clearly delineate lesion boundaries.
Robotic follow system and method
Bruemmer, David J [Idaho Falls, ID; Anderson, Matthew O [Idaho Falls, ID
2007-05-01
Robot platforms, methods, and computer media are disclosed. The robot platform includes perceptors, locomotors, and a system controller, which executes instructions for a robot to follow a target in its environment. The method includes receiving a target bearing and sensing whether the robot is blocked front. If the robot is blocked in front, then the robot's motion is adjusted to avoid the nearest obstacle in front. If the robot is not blocked in front, then the method senses whether the robot is blocked toward the target bearing and if so, sets the rotational direction opposite from the target bearing, and adjusts the rotational velocity and translational velocity. If the robot is not blocked toward the target bearing, then the rotational velocity is adjusted proportional to an angle of the target bearing and the translational velocity is adjusted proportional to a distance to the nearest obstacle in front.
Mobile robotic sensors for perimeter detection and tracking.
Clark, Justin; Fierro, Rafael
2007-02-01
Mobile robot/sensor networks have emerged as tools for environmental monitoring, search and rescue, exploration and mapping, evaluation of civil infrastructure, and military operations. These networks consist of many sensors each equipped with embedded processors, wireless communication, and motion capabilities. This paper describes a cooperative mobile robot network capable of detecting and tracking a perimeter defined by a certain substance (e.g., a chemical spill) in the environment. Specifically, the contributions of this paper are twofold: (i) a library of simple reactive motion control algorithms and (ii) a coordination mechanism for effectively carrying out perimeter-sensing missions. The decentralized nature of the methodology implemented could potentially allow the network to scale to many sensors and to reconfigure when adding/deleting sensors. Extensive simulation results and experiments verify the validity of the proposed cooperative control scheme.
Smooth Sensor Motion Planning for Robotic Cyber Physical Social Sensing (CPSS)
Tang, Hong; Li, Liangzhi; Xiao, Nanfeng
2017-01-01
Although many researchers have begun to study the area of Cyber Physical Social Sensing (CPSS), few are focused on robotic sensors. We successfully utilize robots in CPSS, and propose a sensor trajectory planning method in this paper. Trajectory planning is a fundamental problem in mobile robotics. However, traditional methods are not suited for robotic sensors, because of their low efficiency, instability, and non-smooth-generated paths. This paper adopts an optimizing function to generate several intermediate points and regress these discrete points to a quintic polynomial which can output a smooth trajectory for the robotic sensor. Simulations demonstrate that our approach is robust and efficient, and can be well applied in the CPSS field. PMID:28218649
Hu, Xiaoling; Tong, K Y; Li, R; Chen, M; Xue, J J; Ho, S K; Chen, P N
2010-01-01
Functional electrical stimulation (FES) and rehabilitation robots are techniques used to assist in post-stroke rehabilitation. However, FES and rehabilitation robots are still separate systems currently; and their combined training effects on persons after experiencing a stroke have not been well studied yet. In this work, a new combined FES-robot system driven by user's voluntary intention was developed for wrist joint training after stroke. The performance of the FES-robot assisted wrist tracking was evaluated on five subjects with chronic stroke. With simultaneous assistance from both the FES and robot parts of the system, the motion accuracy was improved and excessive activation in elbow flexor was reduced during wrist tracking.
Decentralized control algorithms of a group of vehicles in 2D space
NASA Astrophysics Data System (ADS)
Pshikhopov, V. K.; Medvedev, M. Y.; Fedorenko, R. V.; Gurenko, B. V.
2017-02-01
The problem of decentralized control of group of robots, described by kinematic and dynamic equations of motion in the plane, is considered. Group performs predetermined rectangular area passing at a fixed speed, keeping the line and a uniform distribution. The environment may contain a priori unknown moving or stationary obstacles. Decentralized control algorithms, based on the formation of repellers in the state space of robots, are proposed. These repellers form repulsive forces generated by dynamic subsystems that extend the state space of robots. These repulsive forces are dynamic functions of distances and velocities of robots in the area of operation of the group. The process of formation of repellers allows to take into account the dynamic properties of robots, such as the maximum speed and acceleration. The robots local control law formulas are derived based on positionally-trajectory control method, which allows to operate with non-linear models. Lyapunov function in the form of a quadratic function of the state variables is constructed to obtain a nonlinear closed-loop control system. Due to the fact that a closed system is decomposed into two independent subsystems Lyapunov function is also constructed as two independent functions. Numerical simulation of the motion of a group of five robots is presented. In this simulation obstacles are presented by the boundaries of working area and a movable object of a given radius, moving rectilinear and uniform. Obstacle speed is comparable to the speeds of the robots in a group. The advantage of the proposed method is ensuring the stability of the trajectories and consideration of the limitations on the speed and acceleration at the trajectory planning stage. Proposed approach can be used for more general robots' models, including robots in the three-dimensional environment.
NASA Astrophysics Data System (ADS)
Rahman, Md. Mozasser; Ikeura, Ryojun; Mizutani, Kazuki
In the near future many aspects of our lives will be encompassed by tasks performed in cooperation with robots. The application of robots in home automation, agricultural production and medical operations etc. will be indispensable. As a result robots need to be made human-friendly and to execute tasks in cooperation with humans. Control systems for such robots should be designed to work imitating human characteristics. In this study, we have tried to achieve these goals by means of controlling a simple one degree-of-freedom cooperative robot. Firstly, the impedance characteristic of the human arm in a cooperative task is investigated. Then, this characteristic is implemented to control a robot in order to perform cooperative task with humans. A human followed the motion of an object, which is moved through desired trajectories. The motion is actuated by the linear motor of the one degree-of-freedom robot system. Trajectories used in the experiments of this method were minimum jerk (the rate of change of acceleration) trajectory, which was found during human and human cooperative task and optimum for muscle movement. As the muscle is mechanically analogous to a spring-damper system, a simple second-order equation is used as models for the arm dynamics. In the model, we considered mass, stiffness and damping factor. Impedance parameter is calculated from the position and force data obtained from the experiments and based on the “Estimation of Parametric Model”. Investigated impedance characteristic of human arm is then implemented to control a robot, which performed cooperative task with human. It is observed that the proposed control methodology has given human like movements to the robot for cooperating with human.
NASA Astrophysics Data System (ADS)
Zeng, Wenhui; Yi, Jin; Rao, Xiao; Zheng, Yun
2017-11-01
In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task's completion time. Accordingly, a new approach based on Pythagorean Hodograph (PH) curves and Modified Harmony Search algorithm is proposed to solve the two-stage path-planning problem subject to kinematic constraints such as velocity, acceleration, and minimum turning radius. First, a method of path planning based on PH curves for a single robot is proposed. Second, a mathematical model of the two-stage path-planning problem for multiple car-like robots with variable motion subject to kinematic constraints is constructed that the first-stage minimizes the total length of all paths and the second-stage minimizes the task's completion time. Finally, a modified harmony search algorithm is applied to solve the two-stage optimization problem. A set of experiments demonstrate the effectiveness of the proposed approach.
PSD Camera Based Position and Posture Control of Redundant Robot Considering Contact Motion
NASA Astrophysics Data System (ADS)
Oda, Naoki; Kotani, Kentaro
The paper describes a position and posture controller design based on the absolute position by external PSD vision sensor for redundant robot manipulator. The redundancy enables a potential capability to avoid obstacle while continuing given end-effector jobs under contact with middle link of manipulator. Under contact motion, the deformation due to joint torsion obtained by comparing internal and external position sensor, is actively suppressed by internal/external position hybrid controller. The selection matrix of hybrid loop is given by the function of the deformation. And the detected deformation is also utilized in the compliant motion controller for passive obstacle avoidance. The validity of the proposed method is verified by several experimental results of 3link planar redundant manipulator.
Motion control of 7-DOF arms - The configuration control approach
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Long, Mark K.; Lee, Thomas S.
1993-01-01
Graphics simulation and real-time implementation of configuration control schemes for a redundant 7-DOF Robotics Research arm are described. The arm kinematics and motion control schemes are described briefly. This is followed by a description of a graphics simulation environment for 7-DOF arm control on the Silicon Graphics IRIS Workstation. Computer simulation results are presented to demonstrate elbow control, collision avoidance, and optimal joint movement as redundancy resolution goals. The laboratory setup for experimental validation of motion control of the 7-DOF Robotics Research arm is then described. The configuration control approach is implemented on a Motorola-68020/VME-bus-based real-time controller, with elbow positioning for redundancy resolution. Experimental results demonstrate the efficacy of configuration control for real-time control.