Wei, Kun; Ren, Bingyin
2018-02-13
In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human-Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator's obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots' path planning.
Application of ant colony algorithm in path planning of the data center room robot
NASA Astrophysics Data System (ADS)
Wang, Yong; Ma, Jianming; Wang, Ying
2017-05-01
According to the Internet Data Center (IDC) room patrol robot as the background, the robot in the search path of autonomous obstacle avoidance and path planning ability, worked out in advance of the robot room patrol mission. The simulation experimental results show that the improved ant colony algorithm for IDC room patrol robot obstacle avoidance planning, makes the robot along an optimal or suboptimal and safe obstacle avoidance path to reach the target point to complete the task. To prove the feasibility of the method.
Path Planning for Robot based on Chaotic Artificial Potential Field Method
NASA Astrophysics Data System (ADS)
Zhang, Cheng
2018-03-01
Robot path planning in unknown environments is one of the hot research topics in the field of robot control. Aiming at the shortcomings of traditional artificial potential field methods, we propose a new path planning for Robot based on chaotic artificial potential field method. The path planning adopts the potential function as the objective function and introduces the robot direction of movement as the control variables, which combines the improved artificial potential field method with chaotic optimization algorithm. Simulations have been carried out and the results demonstrate that the superior practicality and high efficiency of the proposed method.
Interactive multi-objective path planning through a palette-based user interface
NASA Astrophysics Data System (ADS)
Shaikh, Meher T.; Goodrich, Michael A.; Yi, Daqing; Hoehne, Joseph
2016-05-01
n a problem where a human uses supervisory control to manage robot path-planning, there are times when human does the path planning, and if satisfied commits those paths to be executed by the robot, and the robot executes that plan. In planning a path, the robot often uses an optimization algorithm that maximizes or minimizes an objective. When a human is assigned the task of path planning for robot, the human may care about multiple objectives. This work proposes a graphical user interface (GUI) designed for interactive robot path-planning when an operator may prefer one objective over others or care about how multiple objectives are traded off. The GUI represents multiple objectives using the metaphor of an artist's palette. A distinct color is used to represent each objective, and tradeoffs among objectives are balanced in a manner that an artist mixes colors to get the desired shade of color. Thus, human intent is analogous to the artist's shade of color. We call the GUI an "Adverb Palette" where the word "Adverb" represents a specific type of objective for the path, such as the adverbs "quickly" and "safely" in the commands: "travel the path quickly", "make the journey safely". The novel interactive interface provides the user an opportunity to evaluate various alternatives (that tradeoff between different objectives) by allowing her to visualize the instantaneous outcomes that result from her actions on the interface. In addition to assisting analysis of various solutions given by an optimization algorithm, the palette has additional feature of allowing the user to define and visualize her own paths, by means of waypoints (guiding locations) thereby spanning variety for planning. The goal of the Adverb Palette is thus to provide a way for the user and robot to find an acceptable solution even though they use very different representations of the problem. Subjective evaluations suggest that even non-experts in robotics can carry out the planning tasks with a great deal of flexibility using the adverb palette.
Rao, Akshay; Elara, Mohan Rajesh; Elangovan, Karthikeyan
This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A detailed description of the robotic platform is first provided, and the suitability for deployment of each of the current state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar Histogram algorithm is described and reformulated to better fit the requirements of the platform. The algorithm is deployed on the robotic platform in crawling configuration and favorably compared with other state-of-the-art local path planning algorithms.
Task path planning, scheduling and learning for free-ranging robot systems
NASA Technical Reports Server (NTRS)
Wakefield, G. Steve
1987-01-01
The development of robotics applications for space operations is often restricted by the limited movement available to guided robots. Free ranging robots can offer greater flexibility than physically guided robots in these applications. Presented here is an object oriented approach to path planning and task scheduling for free-ranging robots that allows the dynamic determination of paths based on the current environment. The system also provides task learning for repetitive jobs. This approach provides a basis for the design of free-ranging robot systems which are adaptable to various environments and tasks.
Automatic Operation For A Robot Lawn Mower
NASA Astrophysics Data System (ADS)
Huang, Y. Y.; Cao, Z. L.; Oh, S. J.; Kattan, E. U.; Hall, E. L.
1987-02-01
A domestic mobile robot, lawn mower, which performs the automatic operation mode, has been built up in the Center of Robotics Research, University of Cincinnati. The robot lawn mower automatically completes its work with the region filling operation, a new kind of path planning for mobile robots. Some strategies for region filling of path planning have been developed for a partly-known or a unknown environment. Also, an advanced omnidirectional navigation system and a multisensor-based control system are used in the automatic operation. Research on the robot lawn mower, especially on the region filling of path planning, is significant in industrial and agricultural applications.
Two arm robot path planning in a static environment using polytopes and string stretching. Thesis
NASA Technical Reports Server (NTRS)
Schima, Francis J., III
1990-01-01
The two arm robot path planning problem has been analyzed and reduced into components to be simplified. This thesis examines one component in which two Puma-560 robot arms are simultaneously holding a single object. The problem is to find a path between two points around obstacles which is relatively fast and minimizes the distance. The thesis involves creating a structure on which to form an advanced path planning algorithm which could ideally find the optimum path. An actual path planning method is implemented which is simple though effective in most common situations. Given the limits of computer technology, a 'good' path is currently found. Objects in the workspace are modeled with polytopes. These are used because they can be used for rapid collision detection and still provide a representation which is adequate for path planning.
NASA Astrophysics Data System (ADS)
Zeng, Wenhui; Yi, Jin; Rao, Xiao; Zheng, Yun
2017-11-01
In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task's completion time. Accordingly, a new approach based on Pythagorean Hodograph (PH) curves and Modified Harmony Search algorithm is proposed to solve the two-stage path-planning problem subject to kinematic constraints such as velocity, acceleration, and minimum turning radius. First, a method of path planning based on PH curves for a single robot is proposed. Second, a mathematical model of the two-stage path-planning problem for multiple car-like robots with variable motion subject to kinematic constraints is constructed that the first-stage minimizes the total length of all paths and the second-stage minimizes the task's completion time. Finally, a modified harmony search algorithm is applied to solve the two-stage optimization problem. A set of experiments demonstrate the effectiveness of the proposed approach.
Dynamic path planning for mobile robot based on particle swarm optimization
NASA Astrophysics Data System (ADS)
Wang, Yong; Cai, Feng; Wang, Ying
2017-08-01
In the contemporary, robots are used in many fields, such as cleaning, medical treatment, space exploration, disaster relief and so on. The dynamic path planning of robot without collision is becoming more and more the focus of people's attention. A new method of path planning is proposed in this paper. Firstly, the motion space model of the robot is established by using the MAKLINK graph method. Then the A* algorithm is used to get the shortest path from the start point to the end point. Secondly, this paper proposes an effective method to detect and avoid obstacles. When an obstacle is detected on the shortest path, the robot will choose the nearest safety point to move. Moreover, calculate the next point which is nearest to the target. Finally, the particle swarm optimization algorithm is used to optimize the path. The experimental results can prove that the proposed method is more effective.
Reasoning on the Self-Organizing Incremental Associative Memory for Online Robot Path Planning
NASA Astrophysics Data System (ADS)
Kawewong, Aram; Honda, Yutaro; Tsuboyama, Manabu; Hasegawa, Osamu
Robot path-planning is one of the important issues in robotic navigation. This paper presents a novel robot path-planning approach based on the associative memory using Self-Organizing Incremental Neural Networks (SOINN). By the proposed method, an environment is first autonomously divided into a set of path-fragments by junctions. Each fragment is represented by a sequence of preliminarily generated common patterns (CPs). In an online manner, a robot regards the current path as the associative path-fragments, each connected by junctions. The reasoning technique is additionally proposed for decision making at each junction to speed up the exploration time. Distinct from other methods, our method does not ignore the important information about the regions between junctions (path-fragments). The resultant number of path-fragments is also less than other method. Evaluation is done via Webots physical 3D-simulated and real robot experiments, where only distance sensors are available. Results show that our method can represent the environment effectively; it enables the robot to solve the goal-oriented navigation problem in only one episode, which is actually less than that necessary for most of the Reinforcement Learning (RL) based methods. The running time is proved finite and scales well with the environment. The resultant number of path-fragments matches well to the environment.
Autonomous Navigation by a Mobile Robot
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Aghazarian, Hrand
2005-01-01
ROAMAN is a computer program for autonomous navigation of a mobile robot on a long (as much as hundreds of meters) traversal of terrain. Developed for use aboard a robotic vehicle (rover) exploring the surface of a remote planet, ROAMAN could also be adapted to similar use on terrestrial mobile robots. ROAMAN implements a combination of algorithms for (1) long-range path planning based on images acquired by mast-mounted, wide-baseline stereoscopic cameras, and (2) local path planning based on images acquired by body-mounted, narrow-baseline stereoscopic cameras. The long-range path-planning algorithm autonomously generates a series of waypoints that are passed to the local path-planning algorithm, which plans obstacle-avoiding legs between the waypoints. Both the long- and short-range algorithms use an occupancy-grid representation in computations to detect obstacles and plan paths. Maps that are maintained by the long- and short-range portions of the software are not shared because substantial localization errors can accumulate during any long traverse. ROAMAN is not guaranteed to generate an optimal shortest path, but does maintain the safety of the rover.
An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective.
Faigl, Jan
2016-01-01
In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to "see" the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning.
An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective
Faigl, Jan
2016-01-01
In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to “see” the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning. PMID:27340395
Multi Robot Path Planning for Budgeted Active Perception with Self-Organising Maps
2016-10-04
Multi- Robot Path Planning for Budgeted Active Perception with Self-Organising Maps Graeme Best1, Jan Faigl2 and Robert Fitch1 Abstract— We propose a...optimise paths for a multi- robot team that aims to maximally observe a set of nodes in the environment. The selected nodes are observed by visiting...regions, each node has an observation reward, and the robots are constrained by travel budgets. The SOM algorithm jointly selects and allocates nodes
Stochastic Evolutionary Algorithms for Planning Robot Paths
NASA Technical Reports Server (NTRS)
Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard
2006-01-01
A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.
Kinematic path planning for space-based robotics
NASA Astrophysics Data System (ADS)
Seereeram, Sanjeev; Wen, John T.
1998-01-01
Future space robotics tasks require manipulators of significant dexterity, achievable through kinematic redundancy and modular reconfigurability, but with a corresponding complexity of motion planning. Existing research aims for full autonomy and completeness, at the expense of efficiency, generality or even user friendliness. Commercial simulators require user-taught joint paths-a significant burden for assembly tasks subject to collision avoidance, kinematic and dynamic constraints. Our research has developed a Kinematic Path Planning (KPP) algorithm which bridges the gap between research and industry to produce a powerful and useful product. KPP consists of three key components: path-space iterative search, probabilistic refinement, and an operator guidance interface. The KPP algorithm has been successfully applied to the SSRMS for PMA relocation and dual-arm truss assembly tasks. Other KPP capabilities include Cartesian path following, hybrid Cartesian endpoint/intermediate via-point planning, redundancy resolution and path optimization. KPP incorporates supervisory (operator) input at any detail to influence the solution, yielding desirable/predictable paths for multi-jointed arms, avoiding obstacles and obeying manipulator limits. This software will eventually form a marketable robotic planner suitable for commercialization in conjunction with existing robotic CAD/CAM packages.
Visual environment recognition for robot path planning using template matched filters
NASA Astrophysics Data System (ADS)
Orozco-Rosas, Ulises; Picos, Kenia; Díaz-Ramírez, Víctor H.; Montiel, Oscar; Sepúlveda, Roberto
2017-08-01
A visual approach in environment recognition for robot navigation is proposed. This work includes a template matching filtering technique to detect obstacles and feasible paths using a single camera to sense a cluttered environment. In this problem statement, a robot can move from the start to the goal by choosing a single path between multiple possible ways. In order to generate an efficient and safe path for mobile robot navigation, the proposal employs a pseudo-bacterial potential field algorithm to derive optimal potential field functions using evolutionary computation. Simulation results are evaluated in synthetic and real scenes in terms of accuracy of environment recognition and efficiency of path planning computation.
A portable back massage robot based on Traditional Chinese Medicine.
Wang, Wendong; Liang, Chaohong; Zhang, Peng; Shi, Yikai
2018-05-30
A portable back massage robot which can complete the massage operations such as tapping, kneading and rolling was designed to improve the level of intelligence and massage effect. An efficient full covered path planning algorithm was put forward for a portable back massage robot to improve the coverage. Currently, massage robots has become one of important research focuses with the increasing requirements for healthcare. The massage robot is difficult to be widely accepted as there are problems of massage robot in control, structure, and coverage path planning. The 3D electromagnetic simulation model was established to optimize electromagnetic force. By analyzing the Traditional Chinese Medicine massage operation and the demands, the path planning algorithm models were established. The experimental platform of the massage robot was built. The simulation results show presented path planning algorithm is suitable for back massage, which ensures that the massage robot traverse the entire back area with improved massage coverage. The tested results show that the massage effect is best when the duty cycle is in the range of 1/8 to 1/2, and the massage force increases with the increase of the input voltage. The massage robot eventually achieved the desired massage effect, and the proposed efficient algorithm can effectively improve the coverage and promote the massage effect.
Adaptive Gait Control for a Quadruped Robot on 3D Path Planning
NASA Astrophysics Data System (ADS)
Igarashi, Hiroshi; Kakikura, Masayoshi
A legged walking robot is able to not only move on irregular terrain but also change its posture. For example, the robot can pass under overhead obstacles by crouching. The purpose of our research is to realize efficient path planning with a quadruped robot. Therefore, the path planning is expected to extended in three dimensions because of the mobility. However, some issues of the quadruped robot, which are instability, workspace limitation, deadlock and slippage, complicate realizing such application. In order to improve these issues and reinforce the mobility, a new static gait pattern for a quadruped robot, called TFG: Trajectory Following Gait, is proposed. The TFG intends to obtain high controllability like a wheel robot. Additionally, the TFG allows to change it posture during the walk. In this paper, some experimental results show that the TFG improves the issues and it is available for efficient locomotion in three dimensional environment.
Planning Paths Through Singularities in the Center of Mass Space
NASA Technical Reports Server (NTRS)
Doggett, William R.; Messner, William C.; Juang, Jer-Nan
1998-01-01
The center of mass space is a convenient space for planning motions that minimize reaction forces at the robot's base or optimize the stability of a mechanism. A unique problem associated with path planning in the center of mass space is the potential existence of multiple center of mass images for a single Cartesian obstacle, since a single center of mass location can correspond to multiple robot joint configurations. The existence of multiple images results in a need to either maintain multiple center of mass obstacle maps or to update obstacle locations when the robot passes through a singularity, such as when it moves from an elbow-up to an elbow-down configuration. To illustrate the concepts presented in this paper, a path is planned for an example task requiring motion through multiple center of mass space maps. The object of the path planning algorithm is to locate the bang- bang acceleration profile that minimizes the robot's base reactions in the presence of a single Cartesian obstacle. To simplify the presentation, only non-redundant robots are considered and joint non-linearities are neglected.
NASA Technical Reports Server (NTRS)
Weaver, Johnathan M.
1993-01-01
A method was developed to plan feasible and obstacle-avoiding paths for two spatial robots working cooperatively in a known static environment. Cooperating spatial robots as referred to herein are robots which work in 6D task space while simultaneously grasping and manipulating a common, rigid payload. The approach is configuration space (c-space) based and performs selective rather than exhaustive c-space mapping. No expensive precomputations are required. A novel, divide-and-conquer type of heuristic is used to guide the selective mapping process. The heuristic does not involve any robot, environment, or task specific assumptions. A technique was also developed which enables solution of the cooperating redundant robot path planning problem without requiring the use of inverse kinematics for a redundant robot. The path planning strategy involves first attempting to traverse along the configuration space vector from the start point towards the goal point. If an unsafe region is encountered, an intermediate via point is identified by conducting a systematic search in the hyperplane orthogonal to and bisecting the unsafe region of the vector. This process is repeatedly applied until a solution to the global path planning problem is obtained. The basic concept behind this strategy is that better local decisions at the beginning of the trouble region may be made if a possible way around the 'center' of the trouble region is known. Thus, rather than attempting paths which look promising locally (at the beginning of a trouble region) but which may not yield overall results, the heuristic attempts local strategies that appear promising for circumventing the unsafe region.
Path-following control of wheeled planetary exploration robots moving on deformable rough terrain.
Ding, Liang; Gao, Hai-bo; Deng, Zong-quan; Li, Zhijun; Xia, Ke-rui; Duan, Guang-ren
2014-01-01
The control of planetary rovers, which are high performance mobile robots that move on deformable rough terrain, is a challenging problem. Taking lateral skid into account, this paper presents a rough terrain model and nonholonomic kinematics model for planetary rovers. An approach is proposed in which the reference path is generated according to the planned path by combining look-ahead distance and path updating distance on the basis of the carrot following method. A path-following strategy for wheeled planetary exploration robots incorporating slip compensation is designed. Simulation results of a four-wheeled robot on deformable rough terrain verify that it can be controlled to follow a planned path with good precision, despite the fact that the wheels will obviously skid and slip.
Path-Following Control of Wheeled Planetary Exploration Robots Moving on Deformable Rough Terrain
Ding, Liang; Gao, Hai-bo; Deng, Zong-quan; Li, Zhijun; Xia, Ke-rui; Duan, Guang-ren
2014-01-01
The control of planetary rovers, which are high performance mobile robots that move on deformable rough terrain, is a challenging problem. Taking lateral skid into account, this paper presents a rough terrain model and nonholonomic kinematics model for planetary rovers. An approach is proposed in which the reference path is generated according to the planned path by combining look-ahead distance and path updating distance on the basis of the carrot following method. A path-following strategy for wheeled planetary exploration robots incorporating slip compensation is designed. Simulation results of a four-wheeled robot on deformable rough terrain verify that it can be controlled to follow a planned path with good precision, despite the fact that the wheels will obviously skid and slip. PMID:24790582
The application of Markov decision process in restaurant delivery robot
NASA Astrophysics Data System (ADS)
Wang, Yong; Hu, Zhen; Wang, Ying
2017-05-01
As the restaurant delivery robot is often in a dynamic and complex environment, including the chairs inadvertently moved to the channel and customers coming and going. The traditional path planning algorithm is not very ideal. To solve this problem, this paper proposes the Markov dynamic state immediate reward (MDR) path planning algorithm according to the traditional Markov decision process. First of all, it uses MDR to plan a global path, then navigates along this path. When the sensor detects there is no obstructions in front state, increase its immediate state reward value; when the sensor detects there is an obstacle in front, plan a global path that can avoid obstacle with the current position as the new starting point and reduce its state immediate reward value. This continues until the target is reached. When the robot learns for a period of time, it can avoid those places where obstacles are often present when planning the path. By analyzing the simulation experiment, the algorithm has achieved good results in the global path planning under the dynamic environment.
Symbiotic Navigation in Multi-Robot Systems with Remote Obstacle Knowledge Sharing
Ravankar, Abhijeet; Ravankar, Ankit A.; Kobayashi, Yukinori; Emaru, Takanori
2017-01-01
Large scale operational areas often require multiple service robots for coverage and task parallelism. In such scenarios, each robot keeps its individual map of the environment and serves specific areas of the map at different times. We propose a knowledge sharing mechanism for multiple robots in which one robot can inform other robots about the changes in map, like path blockage, or new static obstacles, encountered at specific areas of the map. This symbiotic information sharing allows the robots to update remote areas of the map without having to explicitly navigate those areas, and plan efficient paths. A node representation of paths is presented for seamless sharing of blocked path information. The transience of obstacles is modeled to track obstacles which might have been removed. A lazy information update scheme is presented in which only relevant information affecting the current task is updated for efficiency. The advantages of the proposed method for path planning are discussed against traditional method with experimental results in both simulation and real environments. PMID:28678193
Terrain classification in navigation of an autonomous mobile robot
NASA Astrophysics Data System (ADS)
Dodds, David R.
1991-03-01
In this paper we describe a method of path planning that integrates terrain classification (by means of fractals) the certainty grid method of spatial representation Kehtarnavaz Griswold collision-zones Dubois Prade fuzzy temporal and spatial knowledge and non-point sized qualitative navigational planning. An initially planned (" end-to-end" ) path is piece-wise modified to accommodate known and inferred moving obstacles and includes attention to time-varying multiple subgoals which may influence a section of path at a time after the robot has begun traversing that planned path.
Robot path planning algorithm based on symbolic tags in dynamic environment
NASA Astrophysics Data System (ADS)
Vokhmintsev, A.; Timchenko, M.; Melnikov, A.; Kozko, A.; Makovetskii, A.
2017-09-01
The present work will propose a new heuristic algorithms for path planning of a mobile robot in an unknown dynamic space that have theoretically approved estimates of computational complexity and are approbated for solving specific applied problems.
Path Planning Method in Multi-obstacle Marine Environment
NASA Astrophysics Data System (ADS)
Zhang, Jinpeng; Sun, Hanxv
2017-12-01
In this paper, an improved algorithm for particle swarm optimization is proposed for the application of underwater robot in the complex marine environment. Not only did consider to avoid obstacles when path planning, but also considered the current direction and the size effect on the performance of the robot dynamics. The algorithm uses the trunk binary tree structure to construct the path search space and A * heuristic search method is used in the search space to find a evaluation standard path. Then the particle swarm algorithm to optimize the path by adjusting evaluation function, which makes the underwater robot in the current navigation easier to control, and consume less energy.
Optimal path planning for a mobile robot using cuckoo search algorithm
NASA Astrophysics Data System (ADS)
Mohanty, Prases K.; Parhi, Dayal R.
2016-03-01
The shortest/optimal path planning is essential for efficient operation of autonomous vehicles. In this article, a new nature-inspired meta-heuristic algorithm has been applied for mobile robot path planning in an unknown or partially known environment populated by a variety of static obstacles. This meta-heuristic algorithm is based on the levy flight behaviour and brood parasitic behaviour of cuckoos. A new objective function has been formulated between the robots and the target and obstacles, which satisfied the conditions of obstacle avoidance and target-seeking behaviour of robots present in the terrain. Depending upon the objective function value of each nest (cuckoo) in the swarm, the robot avoids obstacles and proceeds towards the target. The smooth optimal trajectory is framed with this algorithm when the robot reaches its goal. Some simulation and experimental results are presented at the end of the paper to show the effectiveness of the proposed navigational controller.
Application of particle swarm optimization in path planning of mobile robot
NASA Astrophysics Data System (ADS)
Wang, Yong; Cai, Feng; Wang, Ying
2017-08-01
In order to realize the optimal path planning of mobile robot in unknown environment, a particle swarm optimization algorithm based on path length as fitness function is proposed. The location of the global optimal particle is determined by the minimum fitness value, and the robot moves along the points of the optimal particles to the target position. The process of moving to the target point is done with MATLAB R2014a. Compared with the standard particle swarm optimization algorithm, the simulation results show that this method can effectively avoid all obstacles and get the optimal path.
Software for Project-Based Learning of Robot Motion Planning
ERIC Educational Resources Information Center
Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.
2013-01-01
Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can…
Integration of Hierarchical Goal Network Planning and Autonomous Path Planning
2016-03-01
Conference on Robotics and Automation (ICRA); 2010 May 3– 7; Anchorage, AK. p. 2902–2908. 4. Ayan NF, Kuter U, Yaman F, Goldman RP. Hotride...DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Automated planning has...world robotic systems. This report documents work to integrate a hierarchical goal network planning algorithm with low-level path planning. The system
Mobile robot dynamic path planning based on improved genetic algorithm
NASA Astrophysics Data System (ADS)
Wang, Yong; Zhou, Heng; Wang, Ying
2017-08-01
In dynamic unknown environment, the dynamic path planning of mobile robots is a difficult problem. In this paper, a dynamic path planning method based on genetic algorithm is proposed, and a reward value model is designed to estimate the probability of dynamic obstacles on the path, and the reward value function is applied to the genetic algorithm. Unique coding techniques reduce the computational complexity of the algorithm. The fitness function of the genetic algorithm fully considers three factors: the security of the path, the shortest distance of the path and the reward value of the path. The simulation results show that the proposed genetic algorithm is efficient in all kinds of complex dynamic environments.
Dual stage potential field method for robotic path planning
NASA Astrophysics Data System (ADS)
Singh, Pradyumna Kumar; Parida, Pramod Kumar
2018-04-01
Path planning for autonomous mobile robots are the root for all autonomous mobile systems. Various methods are used for optimization of path to be followed by the autonomous mobile robots. Artificial potential field based path planning method is one of the most used methods for the researchers. Various algorithms have been proposed using the potential field approach. But in most of the common problems are encounters while heading towards the goal or target. i.e. local minima problem, zero potential regions problem, complex shaped obstacles problem, target near obstacle problem. In this paper we provide a new algorithm in which two types of potential functions are used one after another. The former one is to use to get the probable points and later one for getting the optimum path. In this algorithm we consider only the static obstacle and goal.
Neurosurgical robotic arm drilling navigation system.
Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai
2017-09-01
The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.
Planning Flight Paths of Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli
2009-01-01
Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.
NASA Astrophysics Data System (ADS)
Kortenkamp, David; Huber, Marcus J.; Congdon, Clare B.; Huffman, Scott B.; Bidlack, Clint R.; Cohen, Charles J.; Koss, Frank V.; Raschke, Ulrich; Weymouth, Terry E.
1993-05-01
This paper describes the design and implementation of an integrated system for combining obstacle avoidance, path planning, landmark detection and position triangulation. Such an integrated system allows the robot to move from place to place in an environment, avoiding obstacles and planning its way out of traps, while maintaining its position and orientation using distinctive landmarks. The task the robot performs is to search a 22 m X 22 m arena for 10 distinctive objects, visiting each object in turn. This same task was recently performed by a dozen different robots at a competition in which the robot described in this paper finished first.
A global approach to kinematic path planning to robots with holonomic and nonholonomic constraints
NASA Technical Reports Server (NTRS)
Divelbiss, Adam; Seereeram, Sanjeev; Wen, John T.
1993-01-01
Robots in applications may be subject to holonomic or nonholonomic constraints. Examples of holonomic constraints include a manipulator constrained through the contact with the environment, e.g., inserting a part, turning a crank, etc., and multiple manipulators constrained through a common payload. Examples of nonholonomic constraints include no-slip constraints on mobile robot wheels, local normal rotation constraints for soft finger and rolling contacts in grasping, and conservation of angular momentum of in-orbit space robots. The above examples all involve equality constraints; in applications, there are usually additional inequality constraints such as robot joint limits, self collision and environment collision avoidance constraints, steering angle constraints in mobile robots, etc. The problem of finding a kinematically feasible path that satisfies a given set of holonomic and nonholonomic constraints, of both equality and inequality types is addressed. The path planning problem is first posed as a finite time nonlinear control problem. This problem is subsequently transformed to a static root finding problem in an augmented space which can then be iteratively solved. The algorithm has shown promising results in planning feasible paths for redundant arms satisfying Cartesian path following and goal endpoint specifications, and mobile vehicles with multiple trailers. In contrast to local approaches, this algorithm is less prone to problems such as singularities and local minima.
Sampling-Based Coverage Path Planning for Complex 3D Structures
2012-09-01
one such task, in which a single robot must sweep its end effector over the entirety of a known workspace. For two-dimensional environments, optimal...structures. First, we introduce a new algorithm for planning feasible coverage paths. It is more computationally efficient in problems of complex geometry...iteratively shortens and smooths a feasible coverage path; robot configurations are adjusted without violating any coverage con- straints. Third, we propose
Robot path planning using expert systems and machine vision
NASA Astrophysics Data System (ADS)
Malone, Denis E.; Friedrich, Werner E.
1992-02-01
This paper describes a system developed for the robotic processing of naturally variable products. In order to plan the robot motion path it was necessary to use a sensor system, in this case a machine vision system, to observe the variations occurring in workpieces and interpret this with a knowledge based expert system. The knowledge base was acquired by carrying out an in-depth study of the product using examination procedures not available in the robotic workplace and relates the nature of the required path to the information obtainable from the machine vision system. The practical application of this system to the processing of fish fillets is described and used to illustrate the techniques.
Robot Path Planning in Uncertain Environments: A Language Measure-theoretic Approach
2014-01-01
Paper DS-14-1028 to appear in the Special Issue on Stochastic Models, Control and Algorithms in Robotics, ASME Journal of Dynamic Systems...Measurement and Control Robot Path Planning in Uncertain Environments: A Language Measure-theoretic Approach⋆ Devesh K. Jha† Yue Li† Thomas A. Wettergren‡† Asok...algorithm, called ν⋆, that was formulated in the framework of probabilistic finite state automata (PFSA) and language measure from a control -theoretic
Method and apparatus for planning motions of robot manipulators
Chen, Pang C.; Hwang, Yong K.
1996-01-01
Method and apparatus for automatically planning motions of robot manipulators. The invention rapidly finds a collision-free path in a cluttered robot environment, if one exists, from any starting configuration of the robot manipulator to any ending configuration. The time to solution of a motion planning problem is not uniform, but proportional to the complexity of the problem.
The application of Markov decision process with penalty function in restaurant delivery robot
NASA Astrophysics Data System (ADS)
Wang, Yong; Hu, Zhen; Wang, Ying
2017-05-01
As the restaurant delivery robot is often in a dynamic and complex environment, including the chairs inadvertently moved to the channel and customers coming and going. The traditional Markov decision process path planning algorithm is not save, the robot is very close to the table and chairs. To solve this problem, this paper proposes the Markov Decision Process with a penalty term called MDPPT path planning algorithm according to the traditional Markov decision process (MDP). For MDP, if the restaurant delivery robot bumps into an obstacle, the reward it receives is part of the current status reward. For the MDPPT, the reward it receives not only the part of the current status but also a negative constant term. Simulation results show that the MDPPT algorithm can plan a more secure path.
The force control and path planning of electromagnetic induction-based massage robot.
Wang, Wendong; Zhang, Lei; Li, Jinzhe; Yuan, Xiaoqing; Shi, Yikai; Jiang, Qinqin; He, Lijing
2017-07-20
Massage robot is considered as an effective physiological treatment to relieve fatigue, improve blood circulation, relax muscle tone, etc. The simple massage equipment quickly spread into market due to low cost, but they are not widely accepted due to restricted massage function. Complicated structure and high cost caused difficulties for developing multi-function massage equipment. This paper presents a novel massage robot which can achieve tapping, rolling, kneading and other massage operations, and proposes an improved reciprocating path planning algorithm to improve massage effect. The number of coil turns, the coil current and the distance between massage head and yoke were chosen to investigate the influence on massage force by finite element method. The control system model of the wheeled massage robot was established, including control subsystem of the motor, path algorithm control subsystem, parameter module of the massage robot and virtual reality interface module. The improved reciprocating path planning algorithm was proposed to improve regional coverage rate and massage effect. The influence caused by coil current, the number of coil turns and the distance between massage head and yoke were simulated in Maxwell. It indicated that coil current has more important influence compared to the other two factors. The path planning simulation of the massage robot was completed in Matlab, and the results show that the improved reciprocating path planning algorithm achieved higher coverage rate than the traditional algorithm. With the analysis of simulation results, it can be concluded that the number of coil turns and the distance between the moving iron core and the yoke could be determined prior to coil current, and the force can be controllable by optimizing structure parameters of massage head and adjusting coil current. Meanwhile, it demonstrates that the proposed algorithm could effectively improve path coverage rate during massage operations, therefore the massage effect can be improved.
Path planning algorithms for assembly sequence planning. [in robot kinematics
NASA Technical Reports Server (NTRS)
Krishnan, S. S.; Sanderson, Arthur C.
1991-01-01
Planning for manipulation in complex environments often requires reasoning about the geometric and mechanical constraints which are posed by the task. In planning assembly operations, the automatic generation of operations sequences depends on the geometric feasibility of paths which permit parts to be joined into subassemblies. Feasible locations and collision-free paths must be present for part motions, robot and grasping motions, and fixtures. This paper describes an approach to reasoning about the feasibility of straight-line paths among three-dimensional polyhedral parts using an algebra of polyhedral cones. A second method recasts the feasibility conditions as constraints in a nonlinear optimization framework. Both algorithms have been implemented and results are presented.
The navigation system of the JPL robot
NASA Technical Reports Server (NTRS)
Thompson, A. M.
1977-01-01
The control structure of the JPL research robot and the operations of the navigation subsystem are discussed. The robot functions as a network of interacting concurrent processes distributed among several computers and coordinated by a central executive. The results of scene analysis are used to create a segmented terrain model in which surface regions are classified by traversibility. The model is used by a path planning algorithm, PATH, which uses tree search methods to find the optimal path to a goal. In PATH, the search space is defined dynamically as a consequence of node testing. Maze-solving and the use of an associative data base for context dependent node generation are also discussed. Execution of a planned path is accomplished by a feedback guidance process with automatic error recovery.
NASA Astrophysics Data System (ADS)
Güler, Fatma; Kasap, Emin
Using the curvature theory for the ruled surfaces a technique for robot trajectory planning is presented. This technique ensures the calculation of robot’s next path. The positional variation of the Tool Center Point (TCP), linear velocity, angular velocity are required in the work area of the robot. In some circumstances, it may not be physically achievable and a re-computation of the robot trajectory might be necessary. This technique is suitable for re-computation of the robot trajectory. We obtain different robot trajectories which change depending on the darboux angle function and define trajectory ruled surface family with a common trajectory curve with the rotation trihedron. Also, the motion of robot end effector is illustrated with examples.
Automated generation of weld path trajectories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sizemore, John M.; Hinman-Sweeney, Elaine Marie; Ames, Arlo Leroy
2003-06-01
AUTOmated GENeration of Control Programs for Robotic Welding of Ship Structure (AUTOGEN) is software that automates the planning and compiling of control programs for robotic welding of ship structure. The software works by evaluating computer representations of the ship design and the manufacturing plan. Based on this evaluation, AUTOGEN internally identifies and appropriately characterizes each weld. Then it constructs the robot motions necessary to accomplish the welds and determines for each the correct assignment of process control values. AUTOGEN generates these robot control programs completely without manual intervention or edits except to correct wrong or missing input data. Most shipmore » structure assemblies are unique or at best manufactured only a few times. Accordingly, the high cost inherent in all previous methods of preparing complex control programs has made robot welding of ship structures economically unattractive to the U.S. shipbuilding industry. AUTOGEN eliminates the cost of creating robot control programs. With programming costs eliminated, capitalization of robots to weld ship structures becomes economically viable. Robot welding of ship structures will result in reduced ship costs, uniform product quality, and enhanced worker safety. Sandia National Laboratories and Northrop Grumman Ship Systems worked with the National Shipbuilding Research Program to develop a means of automated path and process generation for robotic welding. This effort resulted in the AUTOGEN program, which has successfully demonstrated automated path generation and robot control. Although the current implementation of AUTOGEN is optimized for welding applications, the path and process planning capability has applicability to a number of industrial applications, including painting, riveting, and adhesive delivery.« less
NASA Astrophysics Data System (ADS)
Curiac, Daniel-Ioan; Volosencu, Constantin
2014-10-01
The path-planning algorithm represents a crucial issue for every autonomous mobile robot. In normal circumstances a patrol robot will compute an optimal path to ensure its task accomplishment, but in adversarial conditions the problem is getting more complicated. Here, the robot’s trajectory needs to be altered into a misleading and unpredictable path to cope with potential opponents. Chaotic systems provide the needed framework for obtaining unpredictable motion in all of the three basic robot surveillance missions: area, points of interests and boundary monitoring. Proficient approaches have been provided for the first two surveillance tasks, but for boundary patrol missions no method has been reported yet. This paper addresses the mentioned research gap by proposing an efficient method, based on chaotic dynamic of the Hénon system, to ensure unpredictable boundary patrol on any shape of chosen closed contour.
A variational dynamic programming approach to robot-path planning with a distance-safety criterion
NASA Technical Reports Server (NTRS)
Suh, Suk-Hwan; Shin, Kang G.
1988-01-01
An approach to robot-path planning is developed by considering both the traveling distance and the safety of the robot. A computationally-efficient algorithm is developed to find a near-optimal path with a weighted distance-safety criterion by using a variational calculus and dynamic programming (VCDP) method. The algorithm is readily applicable to any factory environment by representing the free workspace as channels. A method for deriving these channels is also proposed. Although it is developed mainly for two-dimensional problems, this method can be easily extended to a class of three-dimensional problems. Numerical examples are presented to demonstrate the utility and power of this method.
Mission-directed path planning for planetary rover exploration
NASA Astrophysics Data System (ADS)
Tompkins, Paul
2005-07-01
Robotic rovers uniquely benefit planetary exploration---they enable regional exploration with the precision of in-situ measurements, a combination impossible from an orbiting spacecraft or fixed lander. Mission planning for planetary rover exploration currently utilizes sophisticated software for activity planning and scheduling, but simplified path planning and execution approaches tailored for localized operations to individual targets. This approach is insufficient for the investigation of multiple, regionally distributed targets in a single command cycle. Path planning tailored for this task must consider the impact of large scale terrain on power, speed and regional access; the effect of route timing on resource availability; the limitations of finite resource capacity and other operational constraints on vehicle range and timing; and the mutual influence between traverses and upstream and downstream stationary activities. Encapsulating this reasoning in an efficient autonomous planner would allow a rover to continue operating rationally despite significant deviations from an initial plan. This research presents mission-directed path planning that enables an autonomous, strategic reasoning capability for robotic explorers. Planning operates in a space of position, time and energy. Unlike previous hierarchical approaches, it treats these dimensions simultaneously to enable globally-optimal solutions. The approach calls on a near incremental search algorithm designed for planning and re-planning under global constraints, in spaces of higher than two dimensions. Solutions under this method specify routes that avoid terrain obstacles, optimize the collection and use of rechargable energy, satisfy local and global mission constraints, and account for the time and energy of interleaved mission activities. Furthermore, the approach efficiently re-plans in response to updates in vehicle state and world models, and is well suited to online operation aboard a robot. Simulations exhibit that the new methodology succeeds where conventional path planners would fail. Three planetary-relevant field experiments demonstrate the power of mission-directed path planning in directing actual exploration robots. Offline mission-directed planning sustained a solar-powered rover in a 24-hour sun-synchronous traverse. Online planning and re-planning enabled full navigational autonomy of over 1 kilometer, and supported the execution of science activities distributed over hundreds of meters.
Robust mobility in human-populated environments
NASA Astrophysics Data System (ADS)
Gonzalez, Juan Pablo; Phillips, Mike; Neuman, Brad; Likhachev, Max
2012-06-01
Creating robots that can help humans in a variety of tasks requires robust mobility and the ability to safely navigate among moving obstacles. This paper presents an overview of recent research in the Robotics Collaborative Technology Alliance (RCTA) that addresses many of the core requirements for robust mobility in human-populated environments. Safe Interval Path Planning (SIPP) allows for very fast planning in dynamic environments when planning timeminimal trajectories. Generalized Safe Interval Path Planning extends this concept to trajectories that minimize arbitrary cost functions. Finally, generalized PPCP algorithm is used to generate plans that reason about the uncertainty in the predicted trajectories of moving obstacles and try to actively disambiguate the intentions of humans whenever necessary. We show how these approaches consider moving obstacles and temporal constraints and produce high-fidelity paths. Experiments in simulated environments show the performance of the algorithms under different controlled conditions, and experiments on physical mobile robots interacting with humans show how the algorithms perform under the uncertainties of the real world.
Incorporating target registration error into robotic bone milling
NASA Astrophysics Data System (ADS)
Siebold, Michael A.; Dillon, Neal P.; Webster, Robert J.; Fitzpatrick, J. Michael
2015-03-01
Robots have been shown to be useful in assisting surgeons in a variety of bone drilling and milling procedures. Examples include commercial systems for joint repair or replacement surgeries, with in vitro feasibility recently shown for mastoidectomy. Typically, the robot is guided along a path planned on a CT image that has been registered to the physical anatomy in the operating room, which is in turn registered to the robot. The registrations often take advantage of the high accuracy of fiducial registration, but, because no real-world registration is perfect, the drill guided by the robot will inevitably deviate from its planned path. The extent of the deviation can vary from point to point along the path because of the spatial variation of target registration error. The allowable deviation can also vary spatially based on the necessary safety margin between the drill tip and various nearby anatomical structures along the path. Knowledge of the expected spatial distribution of registration error can be obtained from theoretical models or experimental measurements and used to modify the planned path. The objective of such modifications is to achieve desired probabilities for sparing specified structures. This approach has previously been studied for drilling straight holes but has not yet been generalized to milling procedures, such as mastoidectomy, in which cavities of more general shapes must be created. In this work, we present a general method for altering any path to achieve specified probabilities for any spatial arrangement of structures to be protected. We validate the method via numerical simulations in the context of mastoidectomy.
Incorporating Target Registration Error Into Robotic Bone Milling
Siebold, Michael A.; Dillon, Neal P.; Webster, Robert J.; Fitzpatrick, J. Michael
2015-01-01
Robots have been shown to be useful in assisting surgeons in a variety of bone drilling and milling procedures. Examples include commercial systems for joint repair or replacement surgeries, with in vitro feasibility recently shown for mastoidectomy. Typically, the robot is guided along a path planned on a CT image that has been registered to the physical anatomy in the operating room, which is in turn registered to the robot. The registrations often take advantage of the high accuracy of fiducial registration, but, because no real-world registration is perfect, the drill guided by the robot will inevitably deviate from its planned path. The extent of the deviation can vary from point to point along the path because of the spatial variation of target registration error. The allowable deviation can also vary spatially based on the necessary safety margin between the drill tip and various nearby anatomical structures along the path. Knowledge of the expected spatial distribution of registration error can be obtained from theoretical models or experimental measurements and used to modify the planned path. The objective of such modifications is to achieve desired probabilities for sparing specified structures. This approach has previously been studied for drilling straight holes but has not yet been generalized to milling procedures, such as mastoidectomy, in which cavities of more general shapes must be created. In this work, we present a general method for altering any path to achieve specified probabilities for any spatial arrangement of structures to be protected. We validate the method via numerical simulations in the context of mastoidectomy. PMID:26692630
NASA Astrophysics Data System (ADS)
Lee, Sam; Lucas, Nathan P.; Ellis, R. Darin; Pandya, Abhilash
2012-06-01
This paper presents a seamlessly controlled human multi-robot system comprised of ground and aerial robots of semiautonomous nature for source localization tasks. The system combines augmented reality interfaces capabilities with human supervisor's ability to control multiple robots. The role of this human multi-robot interface is to allow an operator to control groups of heterogeneous robots in real time in a collaborative manner. It used advanced path planning algorithms to ensure obstacles are avoided and that the operators are free for higher-level tasks. Each robot knows the environment and obstacles and can automatically generate a collision-free path to any user-selected target. It displayed sensor information from each individual robot directly on the robot in the video view. In addition, a sensor data fused AR view is displayed which helped the users pin point source information or help the operator with the goals of the mission. The paper studies a preliminary Human Factors evaluation of this system in which several interface conditions are tested for source detection tasks. Results show that the novel Augmented Reality multi-robot control (Point-and-Go and Path Planning) reduced mission completion times compared to the traditional joystick control for target detection missions. Usability tests and operator workload analysis are also investigated.
Navigation system for autonomous mapper robots
NASA Astrophysics Data System (ADS)
Halbach, Marc; Baudoin, Yvan
1993-05-01
This paper describes the conception and realization of a fast, robust, and general navigation system for a mobile (wheeled or legged) robot. A database, representing a high level map of the environment is generated and continuously updated. The first part describes the legged target vehicle and the hexapod robot being developed. The second section deals with spatial and temporal sensor fusion for dynamic environment modeling within an obstacle/free space probabilistic classification grid. Ultrasonic sensors are used, others are suspected to be integrated, and a-priori knowledge is treated. US sensors are controlled by the path planning module. The third part concerns path planning and a simulation of a wheeled robot is also presented.
Mobile robots IV; Proceedings of the Meeting, Philadelphia, PA, Nov. 6, 7, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, W.J.; Chun, W.H.
1990-01-01
The present conference on mobile robot systems discusses high-speed machine perception based on passive sensing, wide-angle optical ranging, three-dimensional path planning for flying/crawling robots, navigation of autonomous mobile intelligence in an unstructured natural environment, mechanical models for the locomotion of a four-articulated-track robot, a rule-based command language for a semiautonomous Mars rover, and a computer model of the structured light vision system for a Mars rover. Also discussed are optical flow and three-dimensional information for navigation, feature-based reasoning trail detection, a symbolic neural-net production system for obstacle avoidance and navigation, intelligent path planning for robot navigation in an unknown environment,more » behaviors from a hierarchical control system, stereoscopic TV systems, the REACT language for autonomous robots, and a man-amplifying exoskeleton.« less
Robot environment expert system
NASA Technical Reports Server (NTRS)
Potter, J. L.
1985-01-01
The Robot Environment Expert System uses a hexidecimal tree data structure to model a complex robot environment where not only the robot arm moves, but also the robot itself and other objects may move. The hextree model allows dynamic updating, collision avoidance and path planning over time, to avoid moving objects.
Path planning of decentralized multi-quadrotor based on fuzzy-cell decomposition algorithm
NASA Astrophysics Data System (ADS)
Iswanto, Wahyunggoro, Oyas; Cahyadi, Adha Imam
2017-04-01
The paper aims to present a design algorithm for multi quadrotor lanes in order to move towards the goal quickly and avoid obstacles in an area with obstacles. There are several problems in path planning including how to get to the goal position quickly and avoid static and dynamic obstacles. To overcome the problem, therefore, the paper presents fuzzy logic algorithm and fuzzy cell decomposition algorithm. Fuzzy logic algorithm is one of the artificial intelligence algorithms which can be applied to robot path planning that is able to detect static and dynamic obstacles. Cell decomposition algorithm is an algorithm of graph theory used to make a robot path map. By using the two algorithms the robot is able to get to the goal position and avoid obstacles but it takes a considerable time because they are able to find the shortest path. Therefore, this paper describes a modification of the algorithms by adding a potential field algorithm used to provide weight values on the map applied for each quadrotor by using decentralized controlled, so that the quadrotor is able to move to the goal position quickly by finding the shortest path. The simulations conducted have shown that multi-quadrotor can avoid various obstacles and find the shortest path by using the proposed algorithms.
Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor
NASA Technical Reports Server (NTRS)
Prinz, F. B.
1991-01-01
Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm.
Control of wheeled mobile robot in restricted environment
NASA Astrophysics Data System (ADS)
Ali, Mohammed A. H.; En, Chang Yong
2018-03-01
This paper presents a simulation and practical control system for wheeled mobile robot in restricted environment. A wheeled mobile robot with 3 wheels is fabricated and controlled by proportional derivative active force control (PD-AFC) to move in a pre-planned restricted environment to maintain the tracking errors at zero level. A control system with two loops, outer by PD controller and inner loop by Active Force Control, are designed to control the wheeled mobile robot. Fuzzy logic controller is implemented in the Active force Control to estimate the inertia matrix that will be used to calculate the actual torque applied on the wheeled mobile robot. The mobile robot is tested in two different trajectories, namely are circular and straight path. The actual path and desired path are compared.
Robot path planning using a genetic algorithm
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu
1988-01-01
Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandewouw, Marlee M., E-mail: marleev@mie.utoronto
Purpose: Continuous dose delivery in radiation therapy treatments has been shown to decrease total treatment time while improving the dose conformity and distribution homogeneity over the conventional step-and-shoot approach. The authors develop an inverse treatment planning method for Gamma Knife® Perfexion™ that continuously delivers dose along a path in the target. Methods: The authors’ method is comprised of two steps: find a path within the target, then solve a mixed integer optimization model to find the optimal collimator configurations and durations along the selected path. Robotic path-finding techniques, specifically, simultaneous localization and mapping (SLAM) using an extended Kalman filter, aremore » used to obtain a path that travels sufficiently close to selected isocentre locations. SLAM is novelly extended to explore a 3D, discrete environment, which is the target discretized into voxels. Further novel extensions are incorporated into the steering mechanism to account for target geometry. Results: The SLAM method was tested on seven clinical cases and compared to clinical, Hamiltonian path continuous delivery, and inverse step-and-shoot treatment plans. The SLAM approach improved dose metrics compared to the clinical plans and Hamiltonian path continuous delivery plans. Beam-on times improved over clinical plans, and had mixed performance compared to Hamiltonian path continuous plans. The SLAM method is also shown to be robust to path selection inaccuracies, isocentre selection, and dose distribution. Conclusions: The SLAM method for continuous delivery provides decreased total treatment time and increased treatment quality compared to both clinical and inverse step-and-shoot plans, and outperforms existing path methods in treatment quality. It also accounts for uncertainty in treatment planning by accommodating inaccuracies.« less
Off-line robot programming and graphical verification of path planning
NASA Technical Reports Server (NTRS)
Tonkay, Gregory L.
1989-01-01
The objective of this project was to develop or specify an integrated environment for off-line programming, graphical path verification, and debugging for robotic systems. Two alternatives were compared. The first was the integration of the ASEA Off-line Programming package with ROBSIM, a robotic simulation program. The second alternative was the purchase of the commercial product IGRIP. The needs of the RADL (Robotics Applications Development Laboratory) were explored and the alternatives were evaluated based on these needs. As a result, IGRIP was proposed as the best solution to the problem.
Environment exploration and SLAM experiment research based on ROS
NASA Astrophysics Data System (ADS)
Li, Zhize; Zheng, Wei
2017-11-01
Robots need to get the information of surrounding environment by means of map learning. SLAM or navigation based on mobile robots is developing rapidly. ROS (Robot Operating System) is widely used in the field of robots because of the convenient code reuse and open source. Numerous excellent algorithms of SLAM or navigation are ported to ROS package. hector_slam is one of them that can set up occupancy grid maps on-line fast with low computation resources requiring. Its characters above make the embedded handheld mapping system possible. Similarly, hector_navigation also does well in the navigation field. It can finish path planning and environment exploration by itself using only an environmental sensor. Combining hector_navigation with hector_slam can realize low cost environment exploration, path planning and slam at the same time
Smooth Sensor Motion Planning for Robotic Cyber Physical Social Sensing (CPSS)
Tang, Hong; Li, Liangzhi; Xiao, Nanfeng
2017-01-01
Although many researchers have begun to study the area of Cyber Physical Social Sensing (CPSS), few are focused on robotic sensors. We successfully utilize robots in CPSS, and propose a sensor trajectory planning method in this paper. Trajectory planning is a fundamental problem in mobile robotics. However, traditional methods are not suited for robotic sensors, because of their low efficiency, instability, and non-smooth-generated paths. This paper adopts an optimizing function to generate several intermediate points and regress these discrete points to a quintic polynomial which can output a smooth trajectory for the robotic sensor. Simulations demonstrate that our approach is robust and efficient, and can be well applied in the CPSS field. PMID:28218649
Planning paths through a spatial hierarchy - Eliminating stair-stepping effects
NASA Technical Reports Server (NTRS)
Slack, Marc G.
1989-01-01
Stair-stepping effects are a result of the loss of spatial continuity resulting from the decomposition of space into a grid. This paper presents a path planning algorithm which eliminates stair-stepping effects induced by the grid-based spatial representation. The algorithm exploits a hierarchical spatial model to efficiently plan paths for a mobile robot operating in dynamic domains. The spatial model and path planning algorithm map to a parallel machine, allowing the system to operate incrementally, thereby accounting for unexpected events in the operating space.
Experiments in autonomous robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamel, W.R.
1987-01-01
The Center for Engineering Systems Advanced Research (CESAR) is performing basic research in autonomous robotics for energy-related applications in hazardous environments. The CESAR research agenda includes a strong experimental component to assure practical evaluation of new concepts and theories. An evolutionary sequence of mobile research robots has been planned to support research in robot navigation, world sensing, and object manipulation. A number of experiments have been performed in studying robot navigation and path planning with planar sonar sensing. Future experiments will address more complex tasks involving three-dimensional sensing, dexterous manipulation, and human-scale operations.
The use of computer graphic simulation in the development of on-orbit tele-robotic systems
NASA Technical Reports Server (NTRS)
Fernandez, Ken; Hinman, Elaine
1987-01-01
This paper describes the use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems used for on-orbit operations. These issues are robot motion control, robot path-planning/verification, and robot dynamics. The major design issues in developing effective telerobotic systems are discussed, and the use of ROBOSIM, a NASA-developed computer graphic simulation tool, to address these issues is presented. Simulation plans for the Space Station and the Orbital Maneuvering Vehicle are presented and discussed.
Robot Path Planning in Uncertain Environments: A Language-Measure-Theoretic Approach
2015-03-01
in the framework of probabilistic finite state automata (PFSA) and language measure from a control-theoretic perspective. The proposed concept has been...DOI: 10.1115/1.4027876] Keywords: path planning, language measure, probabilistic finite state automata 1 Motivation and Introduction In general
Integration of task level planning and diagnosis for an intelligent robot
NASA Technical Reports Server (NTRS)
Chan, Amy W.
1992-01-01
A satellite floating space is diagnosed with a telerobot attached performing maintenance or replacement tasks. This research included three objectives. The first objective was to generate intelligent path planning for a robot to move around a satellite. The second objective was to diagnose possible faulty scenarios in the satellite. The third objective included two tasks. The first task was to combine intelligent path planning with diagnosis. The second task was to build an interface between the combined intelligent system with Robosim. The ability of a robot to deal with unexpected scenarios is particularly important in space since the situation could be different from time to time so that the telerobot must be capable of detecting that the situation has changed and the necessity may exist to alter its behavior based on the new situation. The feature of allowing human-in-the-loop is also very important in space. In some extreme cases, the situation is beyond the capability of a robot so our research project allows the human to override the decision of a robot.
Software for project-based learning of robot motion planning
NASA Astrophysics Data System (ADS)
Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.
2013-12-01
Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can be explained in a simplified two-dimensional setting, but this masks many of the subtleties and complexities of the underlying problem. We have developed software for project-based learning of motion planning that enables deep learning. The projects that we have developed allow advanced undergraduate students and graduate students to reflect on the performance of existing textbook algorithms and their own variations on such algorithms. Formative assessment has been conducted at three institutions. The core of the software used for this teaching module is also used within the Robot Operating System, a widely adopted platform by the robotics research community. This allows for transfer of knowledge and skills to robotics research projects involving a large variety robot hardware platforms.
Quantifying Traversability of Terrain for a Mobile Robot
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Seraji, Homayoun; Werger, Barry
2005-01-01
A document presents an updated discussion on a method of autonomous navigation for a robotic vehicle navigating across rough terrain. The method involves, among other things, the use of a measure of traversability, denoted the fuzzy traversability index, which embodies the information about the slope and roughness of terrain obtained from analysis of images acquired by cameras mounted on the robot. The improvements presented in the report focus on the use of the fuzzy traversability index to generate a traversability map and a grid map for planning the safest path for the robot. Once grid traversability values have been computed, they are utilized for rejecting unsafe path segments and for computing a traversalcost function for ranking candidate paths, selected by a search algorithm, from a specified initial position to a specified final position. The output of the algorithm is a set of waypoints designating a path having a minimal-traversal cost.
Spatial abstraction for autonomous robot navigation.
Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon
2015-09-01
Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel.
A Review of Robotics Technologies for On-Orbit Services
2013-01-01
The SpaceX vehicle has successfully accomplished its first docking with the ISS in May 2012, delivered about 1,200 lbs of water, food , and other...algorithms, which can generate collision-free robot motion paths. Recently, Franch et al [101] have employed flatness theory to plan trajectories...3713–3719 (2005). [101] Franch J, Agrawal S, Fattah A, "Design of Differentially Flat Planar Space Robots: a Step Forward in Their Planning and
Finding Out Critical Points For Real-Time Path Planning
NASA Astrophysics Data System (ADS)
Chen, Wei
1989-03-01
Path planning for a mobile robot is a classic topic, but the path planning under real-time environment is a different issue. The system sources including sampling time, processing time, processes communicating time, and memory space are very limited for this type of application. This paper presents a method which abstracts the world representation from the sensory data and makes the decision as to which point will be a potentially critical point to span the world map by using incomplete knowledge about physical world and heuristic rule. Without any previous knowledge or map of the workspace, the robot will determine the world map by roving through the workspace. The computational complexity for building and searching such a map is not more than O( n2 ) The find-path problem is well-known in robotics. Given an object with an initial location and orientation, a goal location and orientation, and a set of obstacles located in space, the problem is to find a continuous path for the object from the initial position to the goal position which avoids collisions with obstacles along the way. There are a lot of methods to find a collision-free path in given environment. Techniques for solving this problem can be classified into three approaches: 1) the configuration space approach [1],[2],[3] which represents the polygonal obstacles by vertices in a graph. The idea is to determine those parts of the free space which a reference point of the moving object can occupy without colliding with any obstacles. A path is then found for the reference point through this truly free space. Dealing with rotations turns out to be a major difficulty with the approach, requiring complex geometric algorithms which are computationally expensive. 2) the direct representation of the free space using basic shape primitives such as convex polygons [4] and overlapping generalized cones [5]. 3) the combination of technique 1 and 2 [6] by which the space is divided into the primary convex region, overlap region and obstacle region, then obstacle boundaries with attribute values are represented by the vertices of the hypergraph. The primary convex region and overlap region are represented by hyperedges, the centroids of overlap form the critical points. The difficulty is generating segment graph and estimating of minimum path width. The all techniques mentioned above need previous knowledge about the world to make path planning and the computational cost is not low. They are not available in an unknow and uncertain environment. Due to limited system resources such as CPU time, memory size and knowledge about the special application in an intelligent system (such as mobile robot), it is necessary to use algorithms that provide the good decision which is feasible with the available resources in real time rather than the best answer that could be achieved in unlimited time with unlimited resources. A real-time path planner should meet following requirements: - Quickly abstract the representation of the world from the sensory data without any previous knowledge about the robot environment. - Easily update the world model to spell out the global-path map and to reflect changes in the robot environment. - Must make a decision of where the robot must go and which direction the range sensor should point to in real time with limited resources. The method presented here assumes that the data from range sensors has been processed by signal process unite. The path planner will guide the scan of range sensor, find critical points, make decision where the robot should go and which point is poten- tial critical point, generate the path map and monitor the robot moves to the given point. The program runs recursively until the goal is reached or the whole workspace is roved through.
Robotic Online Path Planning on Point Cloud.
Liu, Ming
2016-05-01
This paper deals with the path-planning problem for mobile wheeled- or tracked-robot which drive in 2.5-D environments, where the traversable surface is usually considered as a 2-D-manifold embedded in a 3-D ambient space. Specially, we aim at solving the 2.5-D navigation problem using raw point cloud as input. The proposed method is independent of traditional surface parametrization or reconstruction methods, such as a meshing process, which generally has high-computational complexity. Instead, we utilize the output of 3-D tensor voting framework on the raw point clouds. The computation of tensor voting is accelerated by optimized implementation on graphics computation unit. Based on the tensor voting results, a novel local Riemannian metric is defined using the saliency components, which helps the modeling of the latent traversable surface. Using the proposed metric, we prove that the geodesic in the 3-D tensor space leads to rational path-planning results by experiments. Compared to traditional methods, the results reveal the advantages of the proposed method in terms of smoothing the robot maneuver while considering the minimum travel distance.
NASA Technical Reports Server (NTRS)
Rowe, Neil C.; Lewis, David H.
1989-01-01
Path planning is an important issue for space robotics. Finding safe and energy-efficient paths in the presence of obstacles and other constraints can be complex although important. High-level (large-scale) path planning for robotic vehicles was investigated in three-dimensional space with obstacles, accounting for: (1) energy costs proportional to path length; (2) turn costs where paths change trajectory abruptly; and (3) safety costs for the danger associated with traversing a particular path due to visibility or invisibility from a fixed set of observers. Paths optimal with respect to these cost factors are found. Autonomous or semi-autonomous vehicles were considered operating either in a space environment around satellites and space platforms, or aircraft, spacecraft, or smart missiles operating just above lunar and planetary surfaces. One class of applications concerns minimizing detection, as for example determining the best way to make complex modifications to a satellite without being observed by hostile sensors; another example is verifying there are no paths (holes) through a space defense system. Another class of applications concerns maximizing detection, as finding a good trajectory between mountain ranges of a planet while staying reasonably close to the surface, or finding paths for a flight between two locations that maximize the average number of triangulation points available at any time along the path.
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor)
1990-01-01
Various papers on intelligent control and adaptive systems are presented. Individual topics addressed include: control architecture for a Mars walking vehicle, representation for error detection and recovery in robot task plans, real-time operating system for robots, execution monitoring of a mobile robot system, statistical mechanics models for motion and force planning, global kinematics for manipulator planning and control, exploration of unknown mechanical assemblies through manipulation, low-level representations for robot vision, harmonic functions for robot path construction, simulation of dual behavior of an autonomous system. Also discussed are: control framework for hand-arm coordination, neural network approach to multivehicle navigation, electronic neural networks for global optimization, neural network for L1 norm linear regression, planning for assembly with robot hands, neural networks in dynamical systems, control design with iterative learning, improved fuzzy process control of spacecraft autonomous rendezvous using a genetic algorithm.
Path planning in GPS-denied environments via collective intelligence of distributed sensor networks
NASA Astrophysics Data System (ADS)
Jha, Devesh K.; Chattopadhyay, Pritthi; Sarkar, Soumik; Ray, Asok
2016-05-01
This paper proposes a framework for reactive goal-directed navigation without global positioning facilities in unknown dynamic environments. A mobile sensor network is used for localising regions of interest for path planning of an autonomous mobile robot. The underlying theory is an extension of a generalised gossip algorithm that has been recently developed in a language-measure-theoretic setting. The algorithm has been used to propagate local decisions of target detection over a mobile sensor network and thus, it generates a belief map for the detected target over the network. In this setting, an autonomous mobile robot may communicate only with a few mobile sensing nodes in its own neighbourhood and localise itself relative to the communicating nodes with bounded uncertainties. The robot makes use of the knowledge based on the belief of the mobile sensors to generate a sequence of way-points, leading to a possible goal. The estimated way-points are used by a sampling-based motion planning algorithm to generate feasible trajectories for the robot. The proposed concept has been validated by numerical simulation on a mobile sensor network test-bed and a Dubin's car-like robot.
Route planning in a four-dimensional environment
NASA Technical Reports Server (NTRS)
Slack, M. G.; Miller, D. P.
1987-01-01
Robots must be able to function in the real world. The real world involves processes and agents that move independently of the actions of the robot, sometimes in an unpredictable manner. A real-time integrated route planning and spatial representation system for planning routes through dynamic domains is presented. The system will find the safest most efficient route through space-time as described by a set of user defined evaluation functions. Because the route planning algorthims is highly parallel and can run on an SIMD machine in O(p) time (p is the length of a path), the system will find real-time paths through unpredictable domains when used in an incremental mode. Spatial representation, an SIMD algorithm for route planning in a dynamic domain, and results from an implementation on a traditional computer architecture are discussed.
Grasp planning under uncertainty
NASA Technical Reports Server (NTRS)
Erkmen, A. M.; Stephanou, H. E.
1989-01-01
The planning of dexterous grasps for multifingered robot hands operating in uncertain environments is covered. A sensor-based approach to the planning of a reach path prior to grasping is first described. An on-line, joint space finger path planning algorithm for the enclose phase of grasping was then developed. The algorithm minimizes the impact momentum of the hand. It uses a Preshape Jacobian matrix to map task-level hand preshape requirements into kinematic constraints. A master slave scheme avoids inter-finger collisions and reduces the dimensionality of the planning problem.
Path Planning for Non-Circular, Non-Holonomic Robots in Highly Cluttered Environments.
Samaniego, Ricardo; Lopez, Joaquin; Vazquez, Fernando
2017-08-15
This paper presents an algorithm for finding a solution to the problem of planning a feasible path for a slender autonomous mobile robot in a large and cluttered environment. The presented approach is based on performing a graph search on a kinodynamic-feasible lattice state space of high resolution; however, the technique is applicable to many search algorithms. With the purpose of allowing the algorithm to consider paths that take the robot through narrow passes and close to obstacles, high resolutions are used for the lattice space and the control set. This introduces new challenges because one of the most computationally expensive parts of path search based planning algorithms is calculating the cost of each one of the actions or steps that could potentially be part of the trajectory. The reason for this is that the evaluation of each one of these actions involves convolving the robot's footprint with a portion of a local map to evaluate the possibility of a collision, an operation that grows exponentially as the resolution is increased. The novel approach presented here reduces the need for these convolutions by using a set of offline precomputed maps that are updated, by means of a partial convolution, as new information arrives from sensors or other sources. Not only does this improve run-time performance, but it also provides support for dynamic search in changing environments. A set of alternative fast convolution methods are also proposed, depending on whether the environment is cluttered with obstacles or not. Finally, we provide both theoretical and experimental results from different experiments and applications.
Solar-based navigation for robotic explorers
NASA Astrophysics Data System (ADS)
Shillcutt, Kimberly Jo
2000-12-01
This thesis introduces the application of solar position and shadowing information to robotic exploration. Power is a critical resource for robots with remote, long-term missions, so this research focuses on the power generation capabilities of robotic explorers during navigational tasks, in addition to power consumption. Solar power is primarily considered, with the possibility of wind power also contemplated. Information about the environment, including the solar ephemeris, terrain features, time of day, and surface location, is incorporated into a planning structure, allowing robots to accurately predict shadowing and thus potential costs and gains during navigational tasks. By evaluating its potential to generate and expend power, a robot can extend its lifetime and accomplishments. The primary tasks studied are coverage patterns, with a variety of plans developed for this research. The use of sun, terrain and temporal information also enables new capabilities of identifying and following sun-synchronous and sun-seeking paths. Digital elevation maps are combined with an ephemeris algorithm to calculate the altitude and azimuth of the sun from surface locations, and to identify and map shadows. Solar navigation path simulators use this information to perform searches through two-dimensional space, while considering temporal changes. Step by step simulations of coverage patterns also incorporate time in addition to location. Evaluations of solar and wind power generation, power consumption, area coverage, area overlap, and time are generated for sets of coverage patterns, with on-board environmental information linked to the simulations. This research is implemented on the Nomad robot for the Robotic Antarctic Meteorite Search. Simulators have been developed for coverage pattern tests, as well as for sun-synchronous and sun-seeking path searches. Results of field work and simulations are reported and analyzed, with demonstrated improvements in efficiency, productivity and lifetime of robotic explorers, along with new solar navigation abilities.
Motion planning: A journey of robots, molecules, digital actors, and other artifacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latombe, J.C.
1999-11-01
During the past three decades, motion planning has emerged as a crucial and productive research area in robotics. In the mid-1980s, the most advanced planners were barely able to compute collision-free paths for objects crawling in planar workspaces. Today, planners efficiently deal with robots with many degrees of freedom in complex environments. Techniques also exist to generate quasi-optimal trajectories, coordinate multiple robots, deal with dynamic and kinematic constraints, and handle dynamic environments. This paper describes some of these achievements, presents new problems that have recently emerged, discusses applications likely to motivate future research, and finally gives expectations for the comingmore » years. It stresses the fact that nonrobotics applications (e.g., graphic animation, surgical planning, computational biology) are growing in importance and are likely to shape future motion-planning research more than robotics itself.« less
NASA Technical Reports Server (NTRS)
Mckee, James W.
1989-01-01
The objective is to develop a system that will allow a person not necessarily skilled in the art of programming robots to quickly and naturally create the necessary data and commands to enable a robot to perform a desired task. The system will use a menu driven graphical user interface. This interface will allow the user to input data to select objects to be moved. There will be an imbedded expert system to process the knowledge about objects and the robot to determine how they are to be moved. There will be automatic path planning to avoid obstacles in the work space and to create a near optimum path. The system will contain the software to generate the required robot instructions.
NASA Astrophysics Data System (ADS)
Zou, Yunpeng; Xu, Ying; Hu, Lei; Guo, Na; Wang, Lifeng
2017-01-01
Aiming the high failure rate, the high radiation quantity and the poor positioning accuracy of femoral neck traditional surgery, this article develops a set of new positioning robot system of femoral neck hollow screw implants based on X-rays error correction, which bases on the study of x-rays perspective principle and the Motion Principle of 6 DOF(degree of freedom) series robot UR(Universal Robots). Compared with Computer Assisted Navigation System, this system owns better positioning accuracy and more simple operation. In addition, without extra Equipment of Visual Tracking, this system can reduce a lot of cost. During the surgery, Doctor can plan the operation path and the pose of mark needle according to the positive and lateral X-rays images of patients. Then they can calculate the pixel ratio according to the ratio of the actual length of mark line and the length on image. After that, they can calculate the amount of exercise of UR Robot according to the relative position between operation path and guide pin and the fixed relationship between guide pin and UR robot. Then, they can control UR to drive the positioning guide pin to the operation path. At this point, check the positioning guide pin and the planning path is coincident, if not, repeat the previous steps, until the positioning guide pin and the planning path coincide which will eventually complete the positioning operation. Moreover, to verify the positioning accuracy, this paper make an errors analysis aiming to thirty cases of the experimental model of bone. The result shows that the motion accuracy of the UR Robot is 0.15mm and the Integral error precision is within 0.8mm. To verify the clinical feasibility of this system, this article analysis on three cases of the clinical experiment. In the whole process of positioning, the X-rays irradiation time is 2-3s, the number of perspective is 3-5 and the whole positioning time is 7-10min. The result shows that this system can complete accurately femoral neck positioning surgery. Meanwhile, it can greatly reduce the X-rays radiation of medical staff and patients. To summarize, it has a significant value in clinical application.
NASA Astrophysics Data System (ADS)
Chamitoff, Gregory E.; Saenz-Otero, Alvar; Katz, Jacob G.; Ulrich, Steve; Morrell, Benjamin J.; Gibbens, Peter W.
2018-01-01
This paper presents the development of a real-time path-planning optimization approach to controlling the motion of space-based robots. The algorithm is capable of planning three dimensional trajectories for a robot to navigate within complex surroundings that include numerous static and dynamic obstacles, path constraints and performance limitations. The methodology employs a unique transformation that enables rapid generation of feasible solutions for complex geometries, making it suitable for application to real-time operations and dynamic environments. This strategy was implemented on the Synchronized Position Hold Engage Reorient Experimental Satellite (SPHERES) test-bed on the International Space Station (ISS), and experimental testing was conducted onboard the ISS during Expedition 17 by the first author. Lessons learned from the on-orbit tests were used to further refine the algorithm for future implementations.
Sensors and Algorithms for an Unmanned Surf-Zone Robot
2015-12-01
71 3. Data Fusion and Filtering................................................ 74 C. VIRTUAL POTENTIAL FIELD (VPF) PATH PLANNING ...iron effects are clearly seen: Soft iron de - calibration (sphere distortion) was caused by proximity of circuit boards. Offset of the center of the...information to perform global tasks such as path- planning , sensors and actuators commands, external communications, etc. Python3 is used as the primary
Modeling the maneuvering of a vehicle
NASA Astrophysics Data System (ADS)
Antonyuk, E. Ya.; Zabuga, A. T.
2012-07-01
A kinematic model of one- and two-link robotic vehicles with two or three steerable wheels is considered. A nonsmooth path in the form of an astroid enveloping the positions of the robot is planned. The motion of a two-link vehicle with such a trajectory is modeled. A numerical analysis of the dynamic of robots is performed determining the reactions of nonholonomic constraints
The research of autonomous obstacle avoidance of mobile robot based on multi-sensor integration
NASA Astrophysics Data System (ADS)
Zhao, Ming; Han, Baoling
2016-11-01
The object of this study is the bionic quadruped mobile robot. The study has proposed a system design plan for mobile robot obstacle avoidance with the binocular stereo visual sensor and the self-control 3D Lidar integrated with modified ant colony optimization path planning to realize the reconstruction of the environmental map. Because the working condition of a mobile robot is complex, the result of the 3D reconstruction with a single binocular sensor is undesirable when feature points are few and the light condition is poor. Therefore, this system integrates the stereo vision sensor blumblebee2 and the Lidar sensor together to detect the cloud information of 3D points of environmental obstacles. This paper proposes the sensor information fusion technology to rebuild the environment map. Firstly, according to the Lidar data and visual data on obstacle detection respectively, and then consider two methods respectively to detect the distribution of obstacles. Finally fusing the data to get the more complete, more accurate distribution of obstacles in the scene. Then the thesis introduces ant colony algorithm. It has analyzed advantages and disadvantages of the ant colony optimization and its formation cause deeply, and then improved the system with the help of the ant colony optimization to increase the rate of convergence and precision of the algorithm in robot path planning. Such improvements and integrations overcome the shortcomings of the ant colony optimization like involving into the local optimal solution easily, slow search speed and poor search results. This experiment deals with images and programs the motor drive under the compiling environment of Matlab and Visual Studio and establishes the visual 2.5D grid map. Finally it plans a global path for the mobile robot according to the ant colony algorithm. The feasibility and effectiveness of the system are confirmed by ROS and simulation platform of Linux.
Ravankar, Abhijeet; Ravankar, Ankit A.; Kobayashi, Yukinori; Emaru, Takanori
2017-01-01
Hitchhiking is a means of transportation gained by asking other people for a (free) ride. We developed a multi-robot system which is the first of its kind to incorporate hitchhiking in robotics, and discuss its advantages. Our method allows the hitchhiker robot to skip redundant computations in navigation like path planning, localization, obstacle avoidance, and map update by completely relying on the driver robot. This allows the hitchhiker robot, which performs only visual servoing, to save computation while navigating on the common path with the driver robot. The driver robot, in the proposed system performs all the heavy computations in navigation and updates the hitchhiker about the current localized positions and new obstacle positions in the map. The proposed system is robust to recover from ‘driver-lost’ scenario which occurs due to visual servoing failure. We demonstrate robot hitchhiking in real environments considering factors like service-time and task priority with different start and goal configurations of the driver and hitchhiker robots. We also discuss the admissible characteristics of the hitchhiker, when hitchhiking should be allowed and when not, through experimental results. PMID:28809803
Ravankar, Abhijeet; Ravankar, Ankit A; Kobayashi, Yukinori; Emaru, Takanori
2017-08-15
Hitchhiking is a means of transportation gained by asking other people for a (free) ride. We developed a multi-robot system which is the first of its kind to incorporate hitchhiking in robotics, and discuss its advantages. Our method allows the hitchhiker robot to skip redundant computations in navigation like path planning, localization, obstacle avoidance, and map update by completely relying on the driver robot. This allows the hitchhiker robot, which performs only visual servoing, to save computation while navigating on the common path with the driver robot. The driver robot, in the proposed system performs all the heavy computations in navigation and updates the hitchhiker about the current localized positions and new obstacle positions in the map. The proposed system is robust to recover from `driver-lost' scenario which occurs due to visual servoing failure. We demonstrate robot hitchhiking in real environments considering factors like service-time and task priority with different start and goal configurations of the driver and hitchhiker robots. We also discuss the admissible characteristics of the hitchhiker, when hitchhiking should be allowed and when not, through experimental results.
Path planning and energy management of solar-powered unmanned ground vehicles
NASA Astrophysics Data System (ADS)
Kaplan, Adam
Many of the applications pertinent to unmanned vehicles, such as environmental research and analysis, communications, and information-surveillance and reconnaissance, benefit from prolonged vehicle operation time. Conventional efforts to increase the operational time of electric-powered unmanned vehicles have traditionally focused on the design of energy-efficient components and the identification of energy efficient search patterns, while little attention has been paid to the vehicle's mission-level path plan and power management. This thesis explores the formulation and generation of integrated motion-plans and power-schedules for solar-panel equipped mobile robots operating under strict energy constraints, which cannot be effectively addressed through conventional motion planning algorithms. Transit problems are considered to design time-optimal paths using both Balkcom-Mason and Pseudo-Dubins curves. Additionally, a more complicated problem to generate mission plans for vehicles which must persistently travel between certain locations, similar to the traveling salesperson problem (TSP), is presented. A comparison between one of the common motion-planning algorithms and experimental results of the prescribed algorithms, made possible by use of a test environment and mobile robot designed and developed specifically for this research, are presented and discussed.
Automatic Generation of Mechanical Assembly Sequences
1988-12-01
Planning Algorithm for General Robot Manipulators. In AAAI-86 Proceedings of the F~th National Conference on Artifcial Intelligence , pages 626-631...topic in artificial intelligence , and the Al approach has dominated much of the research in robot task planning using domain-independent methods. The...computed, using the data in the relational model: " The GEOMETRIC-FEASIBILITY predicate which is true if there exists a collision-free path to bring the two
Coordinating robot motion, sensing, and control in plans. LDRD project final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, P.G.; Brown, R.G.; Watterberg, P.A.
1997-08-01
The goal of this project was to develop a framework for robotic planning and execution that provides a continuum of adaptability with respect to model incompleteness, model error, and sensing error. For example, dividing robot motion into gross-motion planning, fine-motion planning, and sensor-augmented control had yielded productive research and solutions to individual problems. Unfortunately, these techniques could only be combined by hand with ad hoc methods and were restricted to systems where all kinematics are completely modeled in planning. The original intent was to develop methods for understanding and autonomously synthesizing plans that coordinate motion, sensing, and control. The projectmore » considered this problem from several perspectives. Results included (1) theoretical methods to combine and extend gross-motion and fine-motion planning; (2) preliminary work in flexible-object manipulation and an implementable algorithm for planning shortest paths through obstacles for the free-end of an anchored cable; (3) development and implementation of a fast swept-body distance algorithm; and (4) integration of Sandia`s C-Space Toolkit geometry engine and SANDROS motion planer and improvements, which yielded a system practical for everyday motion planning, with path-segment planning at interactive speeds. Results (3) and (4) have either led to follow-on work or are being used in current projects, and they believe that (2) will eventually be also.« less
Human-like robots for space and hazardous environments
NASA Technical Reports Server (NTRS)
1994-01-01
The three year goal for the Kansas State USRA/NASA Senior Design team is to design and build a walking autonomous robotic rover. The rover should be capable of crossing rough terrain, traversing human made obstacles (such as stairs and doors), and moving through human and robot occupied spaces without collision. The rover is also to evidence considerable decision making ability, navigation, and path planning skills.
Human-like robots for space and hazardous environments
NASA Astrophysics Data System (ADS)
The three year goal for the Kansas State USRA/NASA Senior Design team is to design and build a walking autonomous robotic rover. The rover should be capable of crossing rough terrain, traversing human made obstacles (such as stairs and doors), and moving through human and robot occupied spaces without collision. The rover is also to evidence considerable decision making ability, navigation, and path planning skills.
Implementation of a Multi-Robot Coverage Algorithm on a Two-Dimensional, Grid-Based Environment
2017-06-01
two planar laser range finders with a 180-degree field of view , color camera, vision beacons, and wireless communicator. In their system, the robots...Master’s thesis 4. TITLE AND SUBTITLE IMPLEMENTATION OF A MULTI -ROBOT COVERAGE ALGORITHM ON A TWO -DIMENSIONAL, GRID-BASED ENVIRONMENT 5. FUNDING NUMBERS...path planning coverage algorithm for a multi -robot system in a two -dimensional, grid-based environment. We assess the applicability of a topology
Automatic planning of needle placement for robot-assisted percutaneous procedures.
Belbachir, Esia; Golkar, Ehsan; Bayle, Bernard; Essert, Caroline
2018-04-18
Percutaneous procedures allow interventional radiologists to perform diagnoses or treatments guided by an imaging device, typically a computed tomography (CT) scanner with a high spatial resolution. To reduce exposure to radiations and improve accuracy, robotic assistance to needle insertion is considered in the case of X-ray guided procedures. We introduce a planning algorithm that computes a needle placement compatible with both the patient's anatomy and the accessibility of the robot within the scanner gantry. Our preoperative planning approach is based on inverse kinematics, fast collision detection, and bidirectional rapidly exploring random trees coupled with an efficient strategy of node addition. The algorithm computes the allowed needle entry zones over the patient's skin (accessibility map) from 3D models of the patient's anatomy, the environment (CT, bed), and the robot. The result includes the admissible robot joint path to target the prescribed internal point, through the entry point. A retrospective study was performed on 16 patients datasets in different conditions: without robot (WR) and with the robot on the left or the right side of the bed (RL/RR). We provide an accessibility map ensuring a collision-free path of the robot and allowing for a needle placement compatible with the patient's anatomy. The result is obtained in an average time of about 1 min, even in difficult cases. The accessibility maps of RL and RR covered about a half of the surface of WR map in average, which offers a variety of options to insert the needle with the robot. We also measured the average distance between the needle and major obstacles such as the vessels and found that RL and RR produced needle placements almost as safe as WR. The introduced planning method helped us prove that it is possible to use such a "general purpose" redundant manipulator equipped with a dedicated tool to perform percutaneous interventions in cluttered spaces like a CT gantry.
Serial robot for the trajectory optimization and error compensation of TMT mask exchange system
NASA Astrophysics Data System (ADS)
Wang, Jianping; Zhang, Feifan; Zhou, Zengxiang; Zhai, Chao
2015-10-01
Mask exchange system is the main part of Multi-Object Broadband Imaging Echellette (MOBIE) on the Thirty Meter Telescope (TMT). According to the conception of the TMT mask exchange system, the pre-design was introduced in the paper which was based on IRB 140 robot. The stiffness model of IRB 140 in SolidWorks was analyzed under different gravity vectors for further error compensation. In order to find the right location and path planning, the robot and the mask cassette model was imported into MOBIE model to perform different schemes simulation. And obtained the initial installation position and routing. Based on these initial parameters, IRB 140 robot was operated to simulate the path and estimate the mask exchange time. Meanwhile, MATLAB and ADAMS software were used to perform simulation analysis and optimize the route to acquire the kinematics parameters and compare with the experiment results. After simulation and experimental research mentioned in the paper, the theoretical reference was acquired which could high efficient improve the structure of the mask exchange system parameters optimization of the path and precision of the robot position.
Human-like robots for space and hazardous environments
NASA Technical Reports Server (NTRS)
Cogley, Allen; Gustafson, David; White, Warren; Dyer, Ruth; Hampton, Tom (Editor); Freise, Jon (Editor)
1990-01-01
The three year goal for this NASA Senior Design team is to design and build a walking autonomous robotic rover. The rover should be capable of rough terrain crossing, traversing human made obstacles (such as stairs and doors), and moving through human and robot occupied spaces without collision. The rover is also to evidence considerable decision making ability, navigation and path planning skills. These goals came from the concept that the robot should have the abilities of both a planetary rover and a hazardous waste site scout.
Human-like robots for space and hazardous environments
NASA Astrophysics Data System (ADS)
Cogley, Allen; Gustafson, David; White, Warren; Dyer, Ruth; Hampton, Tom; Freise, Jon
The three year goal for this NASA Senior Design team is to design and build a walking autonomous robotic rover. The rover should be capable of rough terrain crossing, traversing human made obstacles (such as stairs and doors), and moving through human and robot occupied spaces without collision. The rover is also to evidence considerable decision making ability, navigation and path planning skills. These goals came from the concept that the robot should have the abilities of both a planetary rover and a hazardous waste site scout.
Path planning for robotic truss assembly
NASA Technical Reports Server (NTRS)
Sanderson, Arthur C.
1993-01-01
A new Potential Fields approach to the robotic path planning problem is proposed and implemented. Our approach, which is based on one originally proposed by Munger, computes an incremental joint vector based upon attraction to a goal and repulsion from obstacles. By repetitively adding and computing these 'steps', it is hoped (but not guaranteed) that the robot will reach its goal. An attractive force exerted by the goal is found by solving for the the minimum norm solution to the linear Jacobian equation. A repulsive force between obstacles and the robot's links is used to avoid collisions. Its magnitude is inversely proportional to the distance. Together, these forces make the goal the global minimum potential point, but local minima can stop the robot from ever reaching that point. Our approach improves on a basic, potential field paradigm developed by Munger by using an active, adaptive field - what we will call a 'flexible' potential field. Active fields are stronger when objects move towards one another and weaker when they move apart. An adaptive field's strength is individually tailored to be just strong enough to avoid any collision. In addition to the local planner, a global planning algorithm helps the planner to avoid local field minima by providing subgoals. These subgoals are based on the obstacles which caused the local planner to fail. A best-first search algorithm A* is used for graph search.
Single-step collision-free trajectory planning of biped climbing robots in spatial trusses.
Zhu, Haifei; Guan, Yisheng; Chen, Shengjun; Su, Manjia; Zhang, Hong
For a biped climbing robot with dual grippers to climb poles, trusses or trees, feasible collision-free climbing motion is inevitable and essential. In this paper, we utilize the sampling-based algorithm, Bi-RRT, to plan single-step collision-free motion for biped climbing robots in spatial trusses. To deal with the orientation limit of a 5-DoF biped climbing robot, a new state representation along with corresponding operations including sampling, metric calculation and interpolation is presented. A simple but effective model of a biped climbing robot in trusses is proposed, through which the motion planning of one climbing cycle is transformed to that of a manipulator. In addition, the pre- and post-processes are introduced to expedite the convergence of the Bi-RRT algorithm and to ensure the safe motion of the climbing robot near poles as well. The piecewise linear paths are smoothed by utilizing cubic B-spline curve fitting. The effectiveness and efficiency of the presented Bi-RRT algorithm for climbing motion planning are verified by simulations.
NASA Technical Reports Server (NTRS)
Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven
2005-01-01
The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.
A Robot Trajectory Optimization Approach for Thermal Barrier Coatings Used for Free-Form Components
NASA Astrophysics Data System (ADS)
Cai, Zhenhua; Qi, Beichun; Tao, Chongyuan; Luo, Jie; Chen, Yuepeng; Xie, Changjun
2017-10-01
This paper is concerned with a robot trajectory optimization approach for thermal barrier coatings. As the requirements of high reproducibility of complex workpieces increase, an optimal thermal spraying trajectory should not only guarantee an accurate control of spray parameters defined by users (e.g., scanning speed, spray distance, scanning step, etc.) to achieve coating thickness homogeneity but also help to homogenize the heat transfer distribution on the coating surface. A mesh-based trajectory generation approach is introduced in this work to generate path curves on a free-form component. Then, two types of meander trajectories are generated by performing a different connection method. Additionally, this paper presents a research approach for introducing the heat transfer analysis into the trajectory planning process. Combining heat transfer analysis with trajectory planning overcomes the defects of traditional trajectory planning methods (e.g., local over-heating), which helps form the uniform temperature field by optimizing the time sequence of path curves. The influence of two different robot trajectories on the process of heat transfer is estimated by coupled FEM models which demonstrates the effectiveness of the presented optimization approach.
Development of the first force-controlled robot for otoneurosurgery.
Federspil, Philipp A; Geisthoff, Urban W; Henrich, Dominik; Plinkert, Peter K
2003-03-01
In some surgical specialties (eg, orthopedics), robots are already used in the operating room for bony milling work. Otological surgery and otoneurosurgery may also greatly benefit from the enhanced precision of robotics. Experimental study on robotic milling of oak wood and human temporal bone specimen. A standard industrial robot with a six-degrees-of-freedom serial kinematics was used, with force feedback to proportionally control the robot speed. Different milling modes and characteristic path parameters were evaluated to generate milling paths based on computer-aided design (CAD) geometry data of a cochlear implant and an implantable hearing system. The best-suited strategy proved to be the spiral horizontal milling mode with the burr held perpendicular to the temporal bone surface. To reduce groove height, the distance between paths should equal half the radius of the cutting burr head. Because of the vibration of the robot's own motors, a high oscillation of the SD of forces was encountered. This oscillation dropped drastically to nearly 0 Newton (N) when the burr head made contact with the dura mater, because of its damping characteristics. The cutting burr could be kept in contact with the dura mater for an extended period without damaging it, because of the burr's blunt head form. The robot moved the burr smoothly according to the encountered resistances. The study reports the first development of a functional robotic milling procedure for otoneurosurgery with force-based speed control. Future plans include implementation of ultrasound-based local navigation and performance of robotic mastoidectomy.
Mobile transporter path planning
NASA Technical Reports Server (NTRS)
Baffes, Paul; Wang, Lui
1990-01-01
The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.
Robot navigation research at CESAR (Center for Engineering Systems Advanced Research)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, D.L.; de Saussure, G.; Pin, F.G.
1989-01-01
A considerable amount of work has been reported on the problem of robot navigation in known static terrains. Algorithms have been proposed and implemented to search for an optimum path to the goal, taking into account the finite size and shape of the robot. Not as much work has been reported on robot navigation in unknown, unstructured, or dynamic environments. A robot navigating in an unknown environment must explore with its sensors, construct an abstract representation of its global environment to plan a path to the goal, and update or revise its plan based on accumulated data obtained and processedmore » in real-time. The core of the navigation program for the CESAR robots is a production system developed on the expert-system-shell CLIPS which runs on an NCUBE hypercube on board the robot. The production system can call on C-compiled navigation procedures. The production rules can read the sensor data and address the robot's effectors. This architecture was found efficient and flexible for the development and testing of the navigation algorithms; however, in order to process intelligently unexpected emergencies, it was found necessary to be able to control the production system through externally generated asynchronous data. This led to the design of a new asynchronous production system, APS, which is now being developed on the robot. This paper will review some of the navigation algorithms developed and tested at CESAR and will discuss the need for the new APS and how it is being integrated into the robot architecture. 18 refs., 3 figs., 1 tab.« less
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.
1991-01-01
Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.
Space station automation: the role of robotics and artificial intelligence (Invited Paper)
NASA Astrophysics Data System (ADS)
Park, W. T.; Firschein, O.
1985-12-01
Automation of the space station is necessary to make more effective use of the crew, to carry out repairs that are impractical or dangerous, and to monitor and control the many space station subsystems. Intelligent robotics and expert systems play a strong role in automation, and both disciplines are highly dependent on a common artificial intelligence (Al) technology base. The AI technology base provides the reasoning and planning capabilities needed in robotic tasks, such as perception of the environment and planning a path to a goal, and in expert systems tasks, such as control of subsystems and maintenance of equipment. This paper describes automation concepts for the space station, the specific robotic and expert systems required to attain this automation, and the research and development required. It also presents an evolutionary development plan that leads to fully automatic mobile robots for servicing satellites. Finally, we indicate the sequence of demonstrations and the research and development needed to confirm the automation capabilities. We emphasize that advanced robotics requires AI, and that to advance, AI needs the "real-world" problems provided by robotics.
Interactive-rate Motion Planning for Concentric Tube Robots.
Torres, Luis G; Baykal, Cenk; Alterovitz, Ron
2014-05-01
Concentric tube robots may enable new, safer minimally invasive surgical procedures by moving along curved paths to reach difficult-to-reach sites in a patient's anatomy. Operating these devices is challenging due to their complex, unintuitive kinematics and the need to avoid sensitive structures in the anatomy. In this paper, we present a motion planning method that computes collision-free motion plans for concentric tube robots at interactive rates. Our method's high speed enables a user to continuously and freely move the robot's tip while the motion planner ensures that the robot's shaft does not collide with any anatomical obstacles. Our approach uses a highly accurate mechanical model of tube interactions, which is important since small movements of the tip position may require large changes in the shape of the device's shaft. Our motion planner achieves its high speed and accuracy by combining offline precomputation of a collision-free roadmap with online position control. We demonstrate our interactive planner in a simulated neurosurgical scenario where a user guides the robot's tip through the environment while the robot automatically avoids collisions with the anatomical obstacles.
Tick, David; Satici, Aykut C; Shen, Jinglin; Gans, Nicholas
2013-08-01
This paper presents a novel navigation and control system for autonomous mobile robots that includes path planning, localization, and control. A unique vision-based pose and velocity estimation scheme utilizing both the continuous and discrete forms of the Euclidean homography matrix is fused with inertial and optical encoder measurements to estimate the pose, orientation, and velocity of the robot and ensure accurate localization and control signals. A depth estimation system is integrated in order to overcome the loss of scale inherent in vision-based estimation. A path following control system is introduced that is capable of guiding the robot along a designated curve. Stability analysis is provided for the control system and experimental results are presented that prove the combined localization and control system performs with high accuracy.
Very fast motion planning for highly dexterous-articulated robots
NASA Technical Reports Server (NTRS)
Challou, Daniel J.; Gini, Maria; Kumar, Vipin
1994-01-01
Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations.
Cracking the egg: virtual embryogenesis of real robots.
Cussat-Blanc, Sylvain; Pollack, Jordan
2014-01-01
All multicellular living beings are created from a single cell. A developmental process, called embryogenesis, takes this first fertilized cell down a complex path of reproduction, migration, and specialization into a complex organism adapted to its environment. In most cases, the first steps of the embryogenesis take place in a protected environment such as in an egg or in utero. Starting from this observation, we propose a new approach to the generation of real robots, strongly inspired by living systems. Our robots are composed of tens of specialized cells, grown from a single cell using a bio-inspired virtual developmental process. Virtual cells, controlled by gene regulatory networks, divide, migrate, and specialize to produce the robot's body plan (morphology), and then the robot is manually built from this plan. Because the robot is as easy to assemble as Lego, the building process could be easily automated.
Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test.
Gilbert, Hunter B; Hendrick, Richard J; Webster, Robert J
2016-02-01
Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots. However, a general measure for how stable a given robot configuration is has yet to be proposed. In this paper, we use bifurcation and elastic stability theory to provide such a measure, as well as to produce a test for determining whether a given design is snap-free (i.e. whether snapping can occur anywhere in the unloaded robot's workspace). These results are useful in designing, planning motions for, and controlling concentric tube robots with high curvatures.
Visual terrain mapping for traversable path planning of mobile robots
NASA Astrophysics Data System (ADS)
Shirkhodaie, Amir; Amrani, Rachida; Tunstel, Edward W.
2004-10-01
In this paper, we have primarily discussed technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain visual clues. The Kalman Filtering technique is applied for aggregative fusion of sub-terrain assessment results. The last two terrain classifiers are shown to have remarkable capability for terrain traversability assessment of natural terrains. We have conducted a comparative performance evaluation of all three terrain classifiers and presented the results in this paper.
Laser speckle velocimetry for robot manufacturing
NASA Astrophysics Data System (ADS)
Charrett, Thomas O. H.; Bandari, Yashwanth K.; Michel, Florent; Ding, Jialuo; Williams, Stewart W.; Tatam, Ralph P.
2017-06-01
A non-contact speckle correlation sensor for the measurement of robotic tool speed is presented for use in robotic manufacturing and is capable of measuring the in-plane relative velocities between a robot end-effector and the workpiece or other surface. The sensor performance was assessed in the laboratory with the sensor accuracies found to be better than 0:01 mm/s over a 70 mm/s velocity range. Finally an example of the sensors application to robotic manufacturing is presented where the sensor was applied to tool speed measurement for path planning in the wire and arc additive manufacturing process using a KUKA KR150 L110/2 industrial robot.
Motion of an Articulated Vehicle with Two-Dimensional Sections Subject to Lateral Obstacles
NASA Astrophysics Data System (ADS)
Antonyuk, E. Ya.; Zabuga, A. T.
2016-07-01
Some aspects of the geometry, kinematics, and dynamics of a three-section robotic vehicle with a front steerable wheel are studied. The constraints between the wheels and the flat ground are assumed nonholonomic. The vehicle moves in a narrow L-shaped corridor. A path for the characteristic points of the sections of the robot is designed. A dynamic model of the system is developed. The maximum possible dimensions of the robot that allow its unimpeded and non-stop motion are determined. The kinetostatic analysis of the load on a three-section vehicle moving along a planned path is modeled. The holonomic and nonholonomic constraint reactions between the wheels and the ground and in the joints between the sections are determined
Robot Trajectories Comparison: A Statistical Approach
Ansuategui, A.; Arruti, A.; Susperregi, L.; Yurramendi, Y.; Jauregi, E.; Lazkano, E.; Sierra, B.
2014-01-01
The task of planning a collision-free trajectory from a start to a goal position is fundamental for an autonomous mobile robot. Although path planning has been extensively investigated since the beginning of robotics, there is no agreement on how to measure the performance of a motion algorithm. This paper presents a new approach to perform robot trajectories comparison that could be applied to any kind of trajectories and in both simulated and real environments. Given an initial set of features, it automatically selects the most significant ones and performs a statistical comparison using them. Additionally, a graphical data visualization named polygraph which helps to better understand the obtained results is provided. The proposed method has been applied, as an example, to compare two different motion planners, FM2 and WaveFront, using different environments, robots, and local planners. PMID:25525618
Toward Autonomous Multi-floor Exploration: Ascending Stairway Localization and Modeling
2013-03-01
robots have traditionally been restricted to single floors of a building or outdoor areas free of abrupt elevation changes such as curbs and stairs ...solution to this problem and is motivated by the rich potential of an autonomous ground robot that can climb stairs while exploring a multi-floor...parameters of the stairways, the robot could plan a path that traverses the stairs in order to explore the frontier at other elevations that were previously
Path planning for assembly of strut-based structures. Thesis
NASA Technical Reports Server (NTRS)
Muenger, Rolf
1991-01-01
A path planning method with collision avoidance for a general single chain nonredundant or redundant robot is proposed. Joint range boundary overruns are also avoided. The result is a sequence of joint vectors which are passed to a trajectory planner. A potential field algorithm in joint space computes incremental joint vectors delta-q = delta-q(sub a) + delta-q(sub c) + delta-q(sub r). Adding delta-q to the robot's current joint vector leads to the next step in the path. Delta-q(sub a) is obtained by computing the minimum norm solution of the underdetermined linear system J delta-q(sub a) = x(sub a) where x(sub a) is a translational and rotational force vector that attracts the robot to its goal position and orientation. J is the manipulator Jacobian. Delta-q(sub c) is a collision avoidance term encompassing collisions between the robot (links and payload) and obstacles in the environment as well as collisions among links and payload of the robot themselves. It is obtained in joint space directly. Delta-q(sub r) is a function of the current joint vector and avoids joint range overruns. A higher level discrete search over candidate safe positions is used to provide alternatives in case the potential field algorithm encounters a local minimum and thus fails to reach the goal. The best first search algorithm A* is used for graph search. Symmetry properties of the payload and equivalent rotations are exploited to further enlarge the number of alternatives passed to the potential field algorithm.
Autonomous Robot Navigation in Human-Centered Environments Based on 3D Data Fusion
NASA Astrophysics Data System (ADS)
Steinhaus, Peter; Strand, Marcus; Dillmann, Rüdiger
2007-12-01
Efficient navigation of mobile platforms in dynamic human-centered environments is still an open research topic. We have already proposed an architecture (MEPHISTO) for a navigation system that is able to fulfill the main requirements of efficient navigation: fast and reliable sensor processing, extensive global world modeling, and distributed path planning. Our architecture uses a distributed system of sensor processing, world modeling, and path planning units. In this arcticle, we present implemented methods in the context of data fusion algorithms for 3D world modeling and real-time path planning. We also show results of the prototypic application of the system at the museum ZKM (center for art and media) in Karlsruhe.
Neural network-based landmark detection for mobile robot
NASA Astrophysics Data System (ADS)
Sekiguchi, Minoru; Okada, Hiroyuki; Watanabe, Nobuo
1996-03-01
The mobile robot can essentially have only the relative position data for the real world. However, there are many cases that the robot has to know where it is located. In those cases, the useful method is to detect landmarks in the real world and adjust its position using detected landmarks. In this point of view, it is essential to develop a mobile robot that can accomplish the path plan successfully using natural or artificial landmarks. However, artificial landmarks are often difficult to construct and natural landmarks are very complicated to detect. In this paper, the method of acquiring landmarks by using the sensor data from the mobile robot necessary for planning the path is described. The landmark we discuss here is the natural one and is composed of the compression of sensor data from the robot. The sensor data is compressed and memorized by using five layered neural network that is called a sand glass model. The input and output data that neural network should learn is the sensor data of the robot that are exactly the same. Using the intermediate output data of the network, a compressed data is obtained, which expresses a landmark data. If the sensor data is ambiguous or enormous, it is easy to detect the landmark because the data is compressed and classified by the neural network. Using the backward three layers, the compressed landmark data is expanded to original data at some level. The studied neural network categorizes the detected sensor data to the known landmark.
INL Autonomous Navigation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
2005-03-30
The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.
Trajectory planning of free-floating space robot using Particle Swarm Optimization (PSO)
NASA Astrophysics Data System (ADS)
Wang, Mingming; Luo, Jianjun; Walter, Ulrich
2015-07-01
This paper investigates the application of Particle Swarm Optimization (PSO) strategy to trajectory planning of the kinematically redundant space robot in free-floating mode. Due to the path dependent dynamic singularities, the volume of available workspace of the space robot is limited and enormous joint velocities are required when such singularities are met. In order to overcome this effect, the direct kinematics equations in conjunction with PSO are employed for trajectory planning of free-floating space robot. The joint trajectories are parametrized with the Bézier curve to simplify the calculation. Constrained PSO scheme with adaptive inertia weight is implemented to find the optimal solution of joint trajectories while specific objectives and imposed constraints are satisfied. The proposed method is not sensitive to the singularity issue due to the application of forward kinematic equations. Simulation results are presented for trajectory planning of 7 degree-of-freedom (DOF) redundant manipulator mounted on a free-floating spacecraft and demonstrate the effectiveness of the proposed method.
Numerical evaluation of mobile robot navigation in static indoor environment via EGAOR Iteration
NASA Astrophysics Data System (ADS)
Dahalan, A. A.; Saudi, A.; Sulaiman, J.; Din, W. R. W.
2017-09-01
One of the key issues in mobile robot navigation is the ability for the robot to move from an arbitrary start location to a specified goal location without colliding with any obstacles while traveling, also known as mobile robot path planning problem. In this paper, however, we examined the performance of a robust searching algorithm that relies on the use of harmonic potentials of the environment to generate smooth and safe path for mobile robot navigation in a static known indoor environment. The harmonic potentials will be discretized by using Laplacian’s operator to form a system of algebraic approximation equations. This algebraic linear system will be computed via 4-Point Explicit Group Accelerated Over-Relaxation (4-EGAOR) iterative method for rapid computation. The performance of the proposed algorithm will then be compared and analyzed against the existing algorithms in terms of number of iterations and execution time. The result shows that the proposed algorithm performed better than the existing methods.
Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test
Gilbert, Hunter B.; Hendrick, Richard J.; Webster, Robert J.
2016-01-01
Concentric tube robots are needle-sized manipulators which have been investigated for use in minimally invasive surgeries. It was noted early in the development of these devices that elastic energy storage can lead to rapid snapping motion for designs with moderate to high tube curvatures. Substantial progress has recently been made in the concentric tube robot community in designing snap-free robots, planning stable paths, and characterizing conditions that result in snapping for specific classes of concentric tube robots. However, a general measure for how stable a given robot configuration is has yet to be proposed. In this paper, we use bifurcation and elastic stability theory to provide such a measure, as well as to produce a test for determining whether a given design is snap-free (i.e. whether snapping can occur anywhere in the unloaded robot’s workspace). These results are useful in designing, planning motions for, and controlling concentric tube robots with high curvatures. PMID:27042170
Assist-as-needed path control for the PASCAL rehabilitation robot.
Keller, Urs; Rauter, Georg; Riener, Robert
2013-06-01
Adults and children with neurological disorders often require rehabilitation therapy to improve their arm motor functions. Complementary to conventional therapy, robotic therapy can be applied. Such robots should support arm movements while assisting only as much as needed to ensure an active participation of the patient. Different control strategies are known to provide arm support to the patient. The path controller is a strategy that helps the patient's arm to stay close to a given path while allowing for temporal and spatial freedom. In this paper, an assist-as-needed path controller is presented that is implemented in the end-effector-based robot PASCAL, which was designed for children with cerebral palsy. The new control approach is a combination of an existing path controller with additional speed restrictions to support, when the arm speed is too slow, and to resist, when the speed is too fast. Furthermore, a target position gain scheduling is introduced in order to reach a target position with a predefined precision as well as an adaptable direction-dependent supportive flux that supports along the path. These path control features were preliminarily tested with a healthy adult volunteer in different conditions. The presented controller covers the range from a completely passive user, who needs full support to an actively performed movement that needs no assistance. In close future, the controller is planned to be used to enable reaching in children as well as in adults and help to increase the intensity of the rehabilitation therapy by assisting the hand movement and by provoking an active participation.
Torres, Luis G; Kuntz, Alan; Gilbert, Hunter B; Swaney, Philip J; Hendrick, Richard J; Webster, Robert J; Alterovitz, Ron
2015-05-01
Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot's shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot's tip. However, the robot's unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot's shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles.
An industrial robot singular trajectories planning based on graphs and neural networks
NASA Astrophysics Data System (ADS)
Łęgowski, Adrian; Niezabitowski, Michał
2016-06-01
Singular trajectories are rarely used because of issues during realization. A method of planning trajectories for given set of points in task space with use of graphs and neural networks is presented. In every desired point the inverse kinematics problem is solved in order to derive all possible solutions. A graph of solutions is made. The shortest path is determined to define required nodes in joint space. Neural networks are used to define the path between these nodes.
Real-Time Motion Planning and Safe Navigation in Dynamic Multi-Robot Environments
2006-12-15
referee against a robot for pushing or hitting an opponent excessively, as well as for a non- goalie robot entering the team’s own defense area. The DSS... pulling ” a search graph by choosing random samples and then trying to connect a path to those points, some planners “push” samples by first choosing...implement the various roles (attacker, goalie , defender), which in turn build on sub-tactics known as skills [16]. One primitive skill used by almost all
Autonomous Navigation, Dynamic Path and Work Flow Planning in Multi-Agent Robotic Swarms Project
NASA Technical Reports Server (NTRS)
Falker, John; Zeitlin, Nancy; Leucht, Kurt; Stolleis, Karl
2015-01-01
Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots, called Swarmies, to be used as a ground-based research platform for in-situ resource utilization missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in an unknown environment and return those resources to a central site.
Concurrent Path Planning with One or More Humanoid Robots
NASA Technical Reports Server (NTRS)
Reiland, Matthew J. (Inventor); Sanders, Adam M. (Inventor)
2014-01-01
A robotic system includes a controller and one or more robots each having a plurality of robotic joints. Each of the robotic joints is independently controllable to thereby execute a cooperative work task having at least one task execution fork, leading to multiple independent subtasks. The controller coordinates motion of the robot(s) during execution of the cooperative work task. The controller groups the robotic joints into task-specific robotic subsystems, and synchronizes motion of different subsystems during execution of the various subtasks of the cooperative work task. A method for executing the cooperative work task using the robotic system includes automatically grouping the robotic joints into task-specific subsystems, and assigning subtasks of the cooperative work task to the subsystems upon reaching a task execution fork. The method further includes coordinating execution of the subtasks after reaching the task execution fork.
A neuro-collision avoidance strategy for robot manipulators
NASA Technical Reports Server (NTRS)
Onema, Joel P.; Maclaunchlan, Robert A.
1992-01-01
The area of collision avoidance and path planning in robotics has received much attention in the research community. Our study centers on a combination of an artificial neural network paradigm with a motion planning strategy that insures safe motion of the Articulated Two-Link Arm with Scissor Hand System relative to an object. Whenever an obstacle is encountered, the arm attempts to slide along the obstacle surface, thereby avoiding collision by means of the local tangent strategy and its artificial neural network implementation. This combination compensates the inverse kinematics of a robot manipulator. Simulation results indicate that a neuro-collision avoidance strategy can be achieved by means of a learning local tangent method.
NASA Astrophysics Data System (ADS)
Gurbani, Saumya S.; Wilkening, Paul; Zhao, Mingtao; Gonenc, Berk; Cheon, Gyeong Woo; Iordachita, Iulian I.; Chien, Wade; Taylor, Russell H.; Niparko, John K.; Kang, Jin U.
2014-05-01
Cochlear implantation offers the potential to restore sensitive hearing in patients with severe to profound deafness. However, surgical placement of the electrode array within the cochlea can produce trauma to sensorineural components, particularly if the initial turn of the cochlea is not successfully navigated as the array is advanced. In this work, we present a robot-mounted common-path swept-source optical coherence tomography endoscopic platform for three-dimensional (3-D) optical coherence tomography (OCT) registration and preoperative surgical planning for cochlear implant surgery. The platform is composed of a common-path 600-μm diameter fiber optic rotary probe attached to a five degrees of freedom robot capable of 1 μm precision movement. The system is tested on a dry fixed ex vivo human temporal bone, and we demonstrate the feasibility of a 3-D OCT registration of the cochlea to accurately describe the spatial and angular profiles of the canal formed by the scala tympani into the first cochlear turn.
Single-Command Approach and Instrument Placement by a Robot on a Target
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Cheng, Yang
2005-01-01
AUTOAPPROACH is a computer program that enables a mobile robot to approach a target autonomously, starting from a distance of as much as 10 m, in response to a single command. AUTOAPPROACH is used in conjunction with (1) software that analyzes images acquired by stereoscopic cameras aboard the robot and (2) navigation and path-planning software that utilizes odometer readings along with the output of the image-analysis software. Intended originally for application to an instrumented, wheeled robot (rover) in scientific exploration of Mars, AUTOAPPROACH could be adapted to terrestrial applications, notably including the robotic removal of land mines and other unexploded ordnance. A human operator generates the approach command by selecting the target in images acquired by the robot cameras. The approach path consists of multiple legs. Feature points are derived from images that contain the target and are thereafter tracked to correct odometric errors and iteratively refine estimates of the position and orientation of the robot relative to the target on successive legs. The approach is terminated when the robot attains the position and orientation required for placing a scientific instrument at the target. The workspace of the robot arm is then autonomously checked for self/terrain collisions prior to the deployment of the scientific instrument onto the target.
Automatic control of a robotic vehicle
NASA Technical Reports Server (NTRS)
Mcreynolds, S. R.
1976-01-01
Over the last several years Jet Propulsion Laboratory has been engaged in a project to develop some of the technology required to build a robotic vehicle for exploring planetary surfaces. An overview of hardware and software being developed for this project is given. Particular emphasis is placed on the description of the current design for the Vehicle System required for locomotion and the path planning algorithm.
Planning strategies for the Ambler walking robot
NASA Technical Reports Server (NTRS)
Wettergreen, David; Thomas, Hans; Thorpe, Chuck
1990-01-01
A hierarchy of planning strategies is proposed and explained for a walking robot called the Ambler. The hierarchy decomposes planning into levels of trajectory, gait, and footfall. An abstraction of feasible traversability allows the Ambler's trajectory planner to identify acceptable trajectories by finding paths that guarantee footfalls without specifying exactly which footfalls. Leg and body moves that achieve this trajectory can be generated by the Ambler's gait planner, which incorporates pattern constraints and measures of utility to search for the best next move. By combining constraints from the quality and details of the terrain, the Ambler's footfall planner can select footfalls that insure stability and remain within the tolerances of the gait.
A fuzzy logic controller for an autonomous mobile robot
NASA Technical Reports Server (NTRS)
Yen, John; Pfluger, Nathan
1993-01-01
The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.
NASA Astrophysics Data System (ADS)
Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig
2012-01-01
In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.
Artificial pheromone for path selection by a foraging swarm of robots.
Campo, Alexandre; Gutiérrez, Alvaro; Nouyan, Shervin; Pinciroli, Carlo; Longchamp, Valentin; Garnier, Simon; Dorigo, Marco
2010-11-01
Foraging robots involved in a search and retrieval task may create paths to navigate faster in their environment. In this context, a swarm of robots that has found several resources and created different paths may benefit strongly from path selection. Path selection enhances the foraging behavior by allowing the swarm to focus on the most profitable resource with the possibility for unused robots to stop participating in the path maintenance and to switch to another task. In order to achieve path selection, we implement virtual ants that lay artificial pheromone inside a network of robots. Virtual ants are local messages transmitted by robots; they travel along chains of robots and deposit artificial pheromone on the robots that are literally forming the chain and indicating the path. The concentration of artificial pheromone on the robots allows them to decide whether they are part of a selected path. We parameterize the mechanism with a mathematical model and provide an experimental validation using a swarm of 20 real robots. We show that our mechanism favors the selection of the closest resource is able to select a new path if a selected resource becomes unavailable and selects a newly detected and better resource when possible. As robots use very simple messages and behaviors, the system would be particularly well suited for swarms of microrobots with minimal abilities.
Using a virtual world for robot planning
NASA Astrophysics Data System (ADS)
Benjamin, D. Paul; Monaco, John V.; Lin, Yixia; Funk, Christopher; Lyons, Damian
2012-06-01
We are building a robot cognitive architecture that constructs a real-time virtual copy of itself and its environment, including people, and uses the model to process perceptual information and to plan its movements. This paper describes the structure of this architecture. The software components of this architecture include PhysX for the virtual world, OpenCV and the Point Cloud Library for visual processing, and the Soar cognitive architecture that controls the perceptual processing and task planning. The RS (Robot Schemas) language is implemented in Soar, providing the ability to reason about concurrency and time. This Soar/RS component controls visual processing, deciding which objects and dynamics to render into PhysX, and the degree of detail required for the task. As the robot runs, its virtual model diverges from physical reality, and errors grow. The Match-Mediated Difference component monitors these errors by comparing the visual data with corresponding data from virtual cameras, and notifies Soar/RS of significant differences, e.g. a new object that appears, or an object that changes direction unexpectedly. Soar/RS can then run PhysX much faster than real-time and search among possible future world paths to plan the robot's actions. We report experimental results in indoor environments.
Analyzing the effects of human-aware motion planning on close-proximity human-robot collaboration.
Lasota, Przemyslaw A; Shah, Julie A
2015-02-01
The objective of this work was to examine human response to motion-level robot adaptation to determine its effect on team fluency, human satisfaction, and perceived safety and comfort. The evaluation of human response to adaptive robotic assistants has been limited, particularly in the realm of motion-level adaptation. The lack of true human-in-the-loop evaluation has made it impossible to determine whether such adaptation would lead to efficient and satisfying human-robot interaction. We conducted an experiment in which participants worked with a robot to perform a collaborative task. Participants worked with an adaptive robot incorporating human-aware motion planning and with a baseline robot using shortest-path motions. Team fluency was evaluated through a set of quantitative metrics, and human satisfaction and perceived safety and comfort were evaluated through questionnaires. When working with the adaptive robot, participants completed the task 5.57% faster, with 19.9% more concurrent motion, 2.96% less human idle time, 17.3% less robot idle time, and a 15.1% greater separation distance. Questionnaire responses indicated that participants felt safer and more comfortable when working with an adaptive robot and were more satisfied with it as a teammate than with the standard robot. People respond well to motion-level robot adaptation, and significant benefits can be achieved from its use in terms of both human-robot team fluency and human worker satisfaction. Our conclusion supports the development of technologies that could be used to implement human-aware motion planning in collaborative robots and the use of this technique for close-proximity human-robot collaboration.
Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs
Jiang, Peng; Li, Deshi; Sun, Tao
2017-01-01
Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region. PMID:28925960
Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs.
Wang, Xiaoliang; Jiang, Peng; Li, Deshi; Sun, Tao
2017-09-19
Unmanned Aerial Vehicles (UAVs) play an important role in applications such as data collection and target reconnaissance. An accurate and optimal path can effectively increase the mission success rate in the case of small UAVs. Although path planning for UAVs is similar to that for traditional mobile robots, the special kinematic characteristics of UAVs (such as their minimum turning radius) have not been taken into account in previous studies. In this paper, we propose a locally-adjustable, continuous-curvature, bounded path-planning algorithm for fixed-wing UAVs. To deal with the curvature discontinuity problem, an optimal interpolation algorithm and a key-point shift algorithm are proposed based on the derivation of a curvature continuity condition. To meet the upper bound for curvature and to render the curvature extrema controllable, a local replanning scheme is designed by combining arcs and Bezier curves with monotonic curvature. In particular, a path transition mechanism is built for the replanning phase using minimum curvature circles for a planning philosophy. Numerical results demonstrate that the analytical planning algorithm can effectively generate continuous-curvature paths, while satisfying the curvature upper bound constraint and allowing UAVs to pass through all predefined waypoints in the desired mission region.
Trinh, Lan Anh; Ekström, Mikael; Cürüklü, Baran
2018-01-01
Recent industrial developments in autonomous systems, or agents, which assume that humans and the agents share the same space or even work in close proximity, open for new challenges in robotics, especially in motion planning and control. In these settings, the control system should be able to provide these agents a reliable path following control when they are working in a group or in collaboration with one or several humans in complex and dynamic environments. In such scenarios, these agents are not only moving to reach their goals, i.e., locations, they are also aware of the movements of other entities to find a collision-free path. Thus, this paper proposes a dependable, i.e., safe, reliable and effective, path planning algorithm for a group of agents that share their working space with humans. Firstly, the method employs the Theta * algorithm to initialize the paths from a starting point to a goal for a set of agents. As Theta * algorithm is computationally heavy, it only reruns when there is a significant change of the environment. To deal with the movements of the agents, a static flow field along the configured path is defined. This field is used by the agents to navigate and reach their goals even if the planned trajectories are changed. Secondly, a dipole field is calculated to avoid the collision of agents with other agents and human subjects. In this approach, each agent is assumed to be a source of a magnetic dipole field in which the magnetic moment is aligned with the moving direction of the agent. The magnetic dipole-dipole interactions between these agents generate repulsive forces to help them to avoid collision. The effectiveness of the proposed approach has been evaluated with extensive simulations. The results show that the static flow field is able to drive agents to the goals with a small number of requirements to update the path of agents. Meanwhile, the dipole flow field plays an important role to prevent collisions. The combination of these two fields results in a safe path planning algorithm, with a deterministic outcome, to navigate agents to their desired goals.
Space station automation and robotics study. Operator-systems interface
NASA Technical Reports Server (NTRS)
1984-01-01
This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.
NASA Astrophysics Data System (ADS)
Nazemizadeh, M.; Rahimi, H. N.; Amini Khoiy, K.
2012-03-01
This paper presents an optimal control strategy for optimal trajectory planning of mobile robots by considering nonlinear dynamic model and nonholonomic constraints of the system. The nonholonomic constraints of the system are introduced by a nonintegrable set of differential equations which represent kinematic restriction on the motion. The Lagrange's principle is employed to derive the nonlinear equations of the system. Then, the optimal path planning of the mobile robot is formulated as an optimal control problem. To set up the problem, the nonlinear equations of the system are assumed as constraints, and a minimum energy objective function is defined. To solve the problem, an indirect solution of the optimal control method is employed, and conditions of the optimality derived as a set of coupled nonlinear differential equations. The optimality equations are solved numerically, and various simulations are performed for a nonholonomic mobile robot to illustrate effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Martínez, Fredy; Martínez, Fernando; Jacinto, Edwar
2017-02-01
In this paper we propose an on-line motion planning strategy for autonomous robots in dynamic and locally observable environments. In this approach, we first visually identify geometric shapes in the environment by filtering images. Then, an ART-2 network is used to establish the similarity between patterns. The proposed algorithm allows that a robot establish its relative location in the environment, and define its navigation path based on images of the environment and its similarity to reference images. This is an efficient and minimalist method that uses the similarity of landmark view patterns to navigate to the desired destination. Laboratory tests on real prototypes demonstrate the performance of the algorithm.
An Innovative Multi-Agent Search-and-Rescue Path Planning Approach
2015-03-09
search problems from search theory and artificial intelligence /distributed robotic control, and pursuit-evasion problem perspectives may be found in...Dissanayake, “Probabilistic search for a moving target in an indoor environment”, In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2006, pp...3393-3398. [7] H. Lau, and G. Dissanayake, “Optimal search for multiple targets in a built environment”, In Proc. IEEE/RSJ Int. Conf. Intelligent
Long Range Navigation for Mars Rovers Using Sensor-Based Path Planning and Visual Localisation
NASA Technical Reports Server (NTRS)
Laubach, Sharon L.; Olson, Clark F.; Burdick, Joel W.; Hayati, Samad
1999-01-01
The Mars Pathfinder mission illustrated the benefits of including a mobile robotic explorer on a planetary mission. However, for future Mars rover missions, significantly increased autonomy in navigation is required in order to meet demanding mission criteria. To address these requirements, we have developed new path planning and localisation capabilities that allow a rover to navigate robustly to a distant landmark. These algorithms have been implemented on the JPL Rocky 7 prototype microrover and have been tested extensively in the JPL MarsYard, as well as in natural terrain.
2008-09-22
provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 72 19a. NAME OF RESPONSIBLE PERSON a . REPORT unclassified b...2008 Ian Mitchell, University of British Columbia 3 Basic Path Planning • Find the optimal path p(s) to a target (or from a source) • Inputs – Cost c
A flexible 3D laser scanning system using a robotic arm
NASA Astrophysics Data System (ADS)
Fei, Zixuan; Zhou, Xiang; Gao, Xiaofei; Zhang, Guanliang
2017-06-01
In this paper, we present a flexible 3D scanning system based on a MEMS scanner mounted on an industrial arm with a turntable. This system has 7-degrees of freedom and is able to conduct a full field scan from any angle, suitable for scanning object with the complex shape. The existing non-contact 3D scanning system usually uses laser scanner that projects fixed stripe mounted on the Coordinate Measuring Machine (CMM) or industrial robot. These existing systems can't perform path planning without CAD models. The 3D scanning system presented in this paper can scan the object without CAD models, and we introduced this path planning method in the paper. We also propose a practical approach to calibrating the hand-in-eye system based on binocular stereo vision and analyzes the errors of the hand-eye calibration.
Distributed cooperating processes in a mobile robot control system
NASA Technical Reports Server (NTRS)
Skillman, Thomas L., Jr.
1988-01-01
A mobile inspection robot has been proposed for the NASA Space Station. It will be a free flying autonomous vehicle that will leave a berthing unit to accomplish a variety of inspection tasks around the Space Station, and then return to its berth to recharge, refuel, and transfer information. The Flying Eye robot will receive voice communication to change its attitude, move at a constant velocity, and move to a predefined location along a self generated path. This mobile robot control system requires integration of traditional command and control techniques with a number of AI technologies. Speech recognition, natural language understanding, task and path planning, sensory abstraction and pattern recognition are all required for successful implementation. The interface between the traditional numeric control techniques and the symbolic processing to the AI technologies must be developed, and a distributed computing approach will be needed to meet the real time computing requirements. To study the integration of the elements of this project, a novel mobile robot control architecture and simulation based on the blackboard architecture was developed. The control system operation and structure is discussed.
On the reproducibility of expert-operated and robotic ultrasound acquisitions.
Kojcev, Risto; Khakzar, Ashkan; Fuerst, Bernhard; Zettinig, Oliver; Fahkry, Carole; DeJong, Robert; Richmon, Jeremy; Taylor, Russell; Sinibaldi, Edoardo; Navab, Nassir
2017-06-01
We present the evaluation of the reproducibility of measurements performed using robotic ultrasound imaging in comparison with expert-operated sonography. Robotic imaging for interventional procedures may be a valuable contribution, but requires reproducibility for its acceptance in clinical routine. We study this by comparing repeated measurements based on robotic and expert-operated ultrasound imaging. Robotic ultrasound acquisition is performed in three steps under user guidance: First, the patient is observed using a 3D camera on the robot end effector, and the user selects the region of interest. This allows for automatic planning of the robot trajectory. Next, the robot executes a sweeping motion following the planned trajectory, during which the ultrasound images and tracking data are recorded. As the robot is compliant, deviations from the path are possible, for instance due to patient motion. Finally, the ultrasound slices are compounded to create a volume. Repeated acquisitions can be performed automatically by comparing the previous and current patient surface. After repeated image acquisitions, the measurements based on acquisitions performed by the robotic system and expert are compared. Within our case series, the expert measured the anterior-posterior, longitudinal, transversal lengths of both of the left and right thyroid lobes on each of the 4 healthy volunteers 3 times, providing 72 measurements. Subsequently, the same procedure was performed using the robotic system resulting in a cumulative total of 144 clinically relevant measurements. Our results clearly indicated that robotic ultrasound enables more repeatable measurements. A robotic ultrasound platform leads to more reproducible data, which is of crucial importance for planning and executing interventions.
Equipment and technology in surgical robotics.
Sim, Hong Gee; Yip, Sidney Kam Hung; Cheng, Christopher Wai Sam
2006-06-01
Contemporary medical robotic systems used in urologic surgery usually consist of a computer and a mechanical device to carry out the designated task with an image acquisition module. These systems are typically from one of the two categories: offline or online robots. Offline robots, also known as fixed path robots, are completely automated with pre-programmed motion planning based on pre-operative imaging studies where precise movements within set confines are carried out. Online robotic systems rely on continuous input from the surgeons and change their movements and actions according to the input in real time. This class of robots is further divided into endoscopic manipulators and master-slave robotic systems. Current robotic surgical systems have resulted in a paradigm shift in the minimally invasive approach to complex laparoscopic urological procedures. Future developments will focus on refining haptic feedback, system miniaturization and improved augmented reality and telesurgical capabilities.
Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu
2015-05-01
This paper describes a switching formation strategy for multi-robots with velocity constraints to avoid and cross obstacles. In the strategy, a leader robot plans a safe path using the geometric obstacle avoidance control method (GOACM). By calculating new desired distances and bearing angles with the leader robot, the follower robots switch into a safe formation. With considering collision avoidance, a novel robot priority model, based on the desired distance and bearing angle between the leader and follower robots, is designed during the obstacle avoidance process. The adaptive tracking control algorithm guarantees that the trajectory and velocity tracking errors converge to zero. To demonstrate the validity of the proposed methods, simulation and experiment results present that multi-robots effectively form and switch formation avoiding obstacles without collisions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Autonomous Lawnmower using FPGA implementation.
NASA Astrophysics Data System (ADS)
Ahmad, Nabihah; Lokman, Nabill bin; Helmy Abd Wahab, Mohd
2016-11-01
Nowadays, there are various types of robot have been invented for multiple purposes. The robots have the special characteristic that surpass the human ability and could operate in extreme environment which human cannot endure. In this paper, an autonomous robot is built to imitate the characteristic of a human cutting grass. A Field Programmable Gate Array (FPGA) is used to control the movements where all data and information would be processed. Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) is used to describe the hardware using Quartus II software. This robot has the ability of avoiding obstacle using ultrasonic sensor. This robot used two DC motors for its movement. It could include moving forward, backward, and turning left and right. The movement or the path of the automatic lawn mower is based on a path planning technique. Four Global Positioning System (GPS) plot are set to create a boundary. This to ensure that the lawn mower operates within the area given by user. Every action of the lawn mower is controlled by the FPGA DE' Board Cyclone II with the help of the sensor. Furthermore, Sketch Up software was used to design the structure of the lawn mower. The autonomous lawn mower was able to operate efficiently and smoothly return to coordinated paths after passing the obstacle. It uses 25% of total pins available on the board and 31% of total Digital Signal Processing (DSP) blocks.
Analyzing the Effects of Human-Aware Motion Planning on Close-Proximity Human–Robot Collaboration
Shah, Julie A.
2015-01-01
Objective: The objective of this work was to examine human response to motion-level robot adaptation to determine its effect on team fluency, human satisfaction, and perceived safety and comfort. Background: The evaluation of human response to adaptive robotic assistants has been limited, particularly in the realm of motion-level adaptation. The lack of true human-in-the-loop evaluation has made it impossible to determine whether such adaptation would lead to efficient and satisfying human–robot interaction. Method: We conducted an experiment in which participants worked with a robot to perform a collaborative task. Participants worked with an adaptive robot incorporating human-aware motion planning and with a baseline robot using shortest-path motions. Team fluency was evaluated through a set of quantitative metrics, and human satisfaction and perceived safety and comfort were evaluated through questionnaires. Results: When working with the adaptive robot, participants completed the task 5.57% faster, with 19.9% more concurrent motion, 2.96% less human idle time, 17.3% less robot idle time, and a 15.1% greater separation distance. Questionnaire responses indicated that participants felt safer and more comfortable when working with an adaptive robot and were more satisfied with it as a teammate than with the standard robot. Conclusion: People respond well to motion-level robot adaptation, and significant benefits can be achieved from its use in terms of both human–robot team fluency and human worker satisfaction. Application: Our conclusion supports the development of technologies that could be used to implement human-aware motion planning in collaborative robots and the use of this technique for close-proximity human–robot collaboration. PMID:25790568
Knowledge assistant for robotic environmental characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feddema, J.; Rivera, J.; Tucker, S.
1996-08-01
A prototype sensor fusion framework called the {open_quotes}Knowledge Assistant{close_quotes} has been developed and tested on a gantry robot at Sandia National Laboratories. This Knowledge Assistant guides the robot operator during the planning, execution, and post analysis stages of the characterization process. During the planning stage, the Knowledge Assistant suggests robot paths and speeds based on knowledge of sensors available and their physical characteristics. During execution, the Knowledge Assistant coordinates the collection of data through a data acquisition {open_quotes}specialist.{close_quotes} During execution and postanalysis, the Knowledge Assistant sends raw data to other {open_quotes}specialists,{close_quotes} which include statistical pattern recognition software, a neural network,more » and model-based search software. After the specialists return their results, the Knowledge Assistant consolidates the information and returns a report to the robot control system where the sensed objects and their attributes (e.g., estimated dimensions, weight, material composition, etc.) are displayed in the world model. This report highlights the major components of this system.« less
Torres, Luis G.; Kuntz, Alan; Gilbert, Hunter B.; Swaney, Philip J.; Hendrick, Richard J.; Webster, Robert J.; Alterovitz, Ron
2015-01-01
Concentric tube robots are thin, tentacle-like devices that can move along curved paths and can potentially enable new, less invasive surgical procedures. Safe and effective operation of this type of robot requires that the robot’s shaft avoid sensitive anatomical structures (e.g., critical vessels and organs) while the surgeon teleoperates the robot’s tip. However, the robot’s unintuitive kinematics makes it difficult for a human user to manually ensure obstacle avoidance along the entire tentacle-like shape of the robot’s shaft. We present a motion planning approach for concentric tube robot teleoperation that enables the robot to interactively maneuver its tip to points selected by a user while automatically avoiding obstacles along its shaft. We achieve automatic collision avoidance by precomputing a roadmap of collision-free robot configurations based on a description of the anatomical obstacles, which are attainable via volumetric medical imaging. We also mitigate the effects of kinematic modeling error in reaching the goal positions by adjusting motions based on robot tip position sensing. We evaluate our motion planner on a teleoperated concentric tube robot and demonstrate its obstacle avoidance and accuracy in environments with tubular obstacles. PMID:26413381
Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph
2017-09-26
Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.
NASA Technical Reports Server (NTRS)
Mann, R. C.; Fujimura, K.; Unseren, M. A.
1992-01-01
One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of position and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace.
Real-time fuzzy inference based robot path planning
NASA Technical Reports Server (NTRS)
Pacini, Peter J.; Teichrow, Jon S.
1990-01-01
This project addresses the problem of adaptive trajectory generation for a robot arm. Conventional trajectory generation involves computing a path in real time to minimize a performance measure such as expended energy. This method can be computationally intensive, and it may yield poor results if the trajectory is weakly constrained. Typically some implicit constraints are known, but cannot be encoded analytically. The alternative approach used here is to formulate domain-specific knowledge, including implicit and ill-defined constraints, in terms of fuzzy rules. These rules utilize linguistic terms to relate input variables to output variables. Since the fuzzy rulebase is determined off-line, only high-level, computationally light processing is required in real time. Potential applications for adaptive trajectory generation include missile guidance and various sophisticated robot control tasks, such as automotive assembly, high speed electrical parts insertion, stepper alignment, and motion control for high speed parcel transfer systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.; Fujimura, K.; Unseren, M.A.
One of the frontiers in intelligent machine research is the understanding of how constructive cooperation among multiple autonomous agents can be effected. The effort at the Center for Engineering Systems Advanced Research (CESAR)at the Oak Ridge National Laboratory (ORNL) focuses on two problem areas: (1) cooperation by multiple mobile robots in dynamic, incompletely known environments; and (2) cooperating robotic manipulators. Particular emphasis is placed on experimental evaluation of research and developments using the CESAR robot system testbeds, including three mobile robots, and a seven-axis, kinematically redundant mobile manipulator. This paper summarizes initial results of research addressing the decoupling of positionmore » and force control for two manipulators holding a common object, and the path planning for multiple robots in a common workspace. 15 refs., 3 figs.« less
A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, Horst; Laurischkat, Roman; Zhu Junhong
One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi bodymore » system model and its included compensation method.« less
Kinematic simulation and analysis of robot based on MATLAB
NASA Astrophysics Data System (ADS)
Liao, Shuhua; Li, Jiong
2018-03-01
The history of industrial automation is characterized by quick update technology, however, without a doubt, the industrial robot is a kind of special equipment. With the help of MATLAB matrix and drawing capacity in the MATLAB environment each link coordinate system set up by using the d-h parameters method and equation of motion of the structure. Robotics, Toolbox programming Toolbox and GUIDE to the joint application is the analysis of inverse kinematics and path planning and simulation, preliminary solve the problem of college students the car mechanical arm positioning theory, so as to achieve the aim of reservation.
Path planning for mobile robot using the novel repulsive force algorithm
NASA Astrophysics Data System (ADS)
Sun, Siyue; Yin, Guoqiang; Li, Xueping
2018-01-01
A new type of repulsive force algorithm is proposed to solve the problem of local minimum and the target unreachable of the classic Artificial Potential Field (APF) method in this paper. The Gaussian function that is related to the distance between the robot and the target is added to the traditional repulsive force, solving the problem of the goal unreachable with the obstacle nearby; variable coefficient is added to the repulsive force component to resize the repulsive force, which can solve the local minimum problem when the robot, the obstacle and the target point are in the same line. The effectiveness of the algorithm is verified by simulation based on MATLAB and actual mobile robot platform.
NASA Astrophysics Data System (ADS)
Kiliclar, Yalin; Laurischkat, Roman; Vladimirov, Ivaylo N.; Reese, Stefanie
2011-08-01
The presented project deals with a robot based incremental sheet metal forming process, which is called roboforming and has been developed at the Chair of Production Systems. It is characterized by flexible shaping using a freely programmable path-synchronous movement of two industrial robots. The final shape is produced by the incremental infeed of the forming tool in depth direction and its movement along the part contour in lateral direction. However, the resulting geometries formed in roboforming deviate several millimeters from the reference geometry. This results from the compliance of the involved machine structures and the springback effects of the workpiece. The project aims to predict these deviations caused by resiliences and to carry out a compensative path planning based on this prediction. Therefore a planning tool is implemented which compensates the robots's compliance and the springback effects of the sheet metal. The forming process is simulated by means of a finite element analysis using a material model developed at the Institute of Applied Mechanics (IFAM). It is based on the multiplicative split of the deformation gradient in the context of hyperelasticity and combines nonlinear kinematic and isotropic hardening. Low-order finite elements used to simulate thin sheet structures, such as used for the experiments, have the major problem of locking, a nonphysical stiffening effect. For an efficient finite element analysis a special solid-shell finite element formulation based on reduced integration with hourglass stabilization has been developed. To circumvent different locking effects, the enhanced assumed strain (EAS) and the assumed natural strain (ANS) concepts are included in this formulation. Having such powerful tools available we obtain more accurate geometries.
Dynamics of a Two-Link Vehicle in an L-Shaped Corridor Revisited
NASA Astrophysics Data System (ADS)
Antonyuk, E. Ya.; Zabuga, A. T.
2014-03-01
The kinematics of a two-link mobile robot with three steerable wheels moving in an L-shaped corridor is analyzed. A smooth (with continuous first derivative) path is designed maintaining the optimal maneuverability of the vehicle. The motion of the vehicle along this path is planned. Analytical expressions for the reactions at the contact of the wheels with the ground are given in the general case of motion. The radius of curvature of the programmed path is shown to have a strong influence on the reactions.
Tokuda, Junichi; Song, Sang-Eun; Fischer, Gregory S; Iordachita, Iulian I; Seifabadi, Reza; Cho, Nathan B; Tuncali, Kemal; Fichtinger, Gabor; Tempany, Clare M; Hata, Nobuhiko
2012-11-01
To evaluate the targeting accuracy of a small profile MRI-compatible pneumatic robot for needle placement that can angulate a needle insertion path into a large accessible target volume. We extended our MRI-compatible pneumatic robot for needle placement to utilize its four degrees-of-freedom (4-DOF) mechanism with two parallel triangular structures and support transperineal prostate biopsies in a closed-bore magnetic resonance imaging (MRI) scanner. The robot is designed to guide a needle toward a lesion so that a radiologist can manually insert it in the bore. The robot is integrated with navigation software that allows an operator to plan angulated needle insertion by selecting a target and an entry point. The targeting error was evaluated while the angle between the needle insertion path and the static magnetic field was between -5.7° and 5.7° horizontally and between -5.7° and 4.3° vertically in the MRI scanner after sterilizing and draping the device. The robot positioned the needle for angulated insertion as specified on the navigation software with overall targeting error of 0.8 ± 0.5mm along the horizontal axis and 0.8 ± 0.8mm along the vertical axis. The two-dimensional root-mean-square targeting error on the axial slices as containing the targets was 1.4mm. Our preclinical evaluation demonstrated that the MRI-compatible pneumatic robot for needle placement with the capability to angulate the needle insertion path provides targeting accuracy feasible for clinical MRI-guided prostate interventions. The clinical feasibility has to be established in a clinical study.
Steering of an automated vehicle in an unstructured environment
NASA Astrophysics Data System (ADS)
Kanakaraju, Sampath; Shanmugasundaram, Sathish K.; Thyagarajan, Ramesh; Hall, Ernest L.
1999-08-01
The purpose of this paper is to describe a high-level path planning logic, which processes the data from a vision system and an ultrasonic obstacle avoidance system and steers an autonomous mobile robot between obstacles. The test bed was an autonomous root built at University of Cincinnati, and this logic was tested and debugged on this machine. Attempts have already been made to incorporate fuzzy system on a similar robot, and this paper extends them to take advantage of the robot's ZTR capability. Using the integrated vision syste, the vehicle senses its location and orientation. A rotating ultrasonic sensor is used to map the location and size of possible obstacles. With these inputs the fuzzy logic controls the speed and the steering decisions of the robot. With the incorporation of this logic, it has been observed that Bearcat II has been very successful in avoiding obstacles very well. This was achieved in the Ground Robotics Competition conducted by the AUVS in June 1999, where it travelled a distance of 154 feet in a 10ft. wide path ridden with obstacles. This logic proved to be a significant contributing factor in this feat of Bearcat II.
NASA Astrophysics Data System (ADS)
Wang, Mingming; Luo, Jianjun; Fang, Jing; Yuan, Jianping
2018-03-01
The existence of the path dependent dynamic singularities limits the volume of available workspace of free-floating space robot and induces enormous joint velocities when such singularities are met. In order to overcome this demerit, this paper presents an optimal joint trajectory planning method using forward kinematics equations of free-floating space robot, while joint motion laws are delineated with application of the concept of reaction null-space. Bézier curve, in conjunction with the null-space column vectors, are applied to describe the joint trajectories. Considering the forward kinematics equations of the free-floating space robot, the trajectory planning issue is consequently transferred to an optimization issue while the control points to construct the Bézier curve are the design variables. A constrained differential evolution (DE) scheme with premature handling strategy is implemented to find the optimal solution of the design variables while specific objectives and imposed constraints are satisfied. Differ from traditional methods, we synthesize null-space and specialized curve to provide a novel viewpoint for trajectory planning of free-floating space robot. Simulation results are presented for trajectory planning of 7 degree-of-freedom (DOF) kinematically redundant manipulator mounted on a free-floating spacecraft and demonstrate the feasibility and effectiveness of the proposed method.
Construction of Optimal-Path Maps for Homogeneous-Cost-Region Path-Planning Problems
1989-09-01
of Artificial Inteligence , 9%,4. 24. Kirkpatrick, S., Gelatt Jr., C. D., and Vecchi, M. P., "Optinization by Sinmulated Ani- nealing", Science, Vol...studied in depth by researchers in such fields as artificial intelligence, robot;cs, and computa- tional geometry. Most methods require homogeneous...the results of the research. 10 U. L SLEVANT RESEARCH A. APPLICABLE CONCEPTS FROM ARTIFICIAL INTELLIGENCE 1. Search Methods One of the central
Person-like intelligent systems architectures for robotic shared control and automated operations
NASA Technical Reports Server (NTRS)
Erickson, Jon D.; Aucoin, Paschal J., Jr.; Ossorio, Peter G.
1992-01-01
An approach to rendering robotic systems as 'personlike' as possible to achieve needed capabilities is outlined. Human characteristics such as knowledge, motivation, know-how, performance, achievement and individual differences corresponding to propensities and abilities can be supplied, within limits, with computing software and hardware to robotic systems provided with sufficiently rich sensory configurations. Pushing these limits is the developmental path for more and more personlike robotic systems. The portions of the Person Concept that appear to be most directly relevant to this effort are described in the following topics: reality concepts (the state-of-affairs system and descriptive formats, behavior as intentional action, individual persons (person characteristics), social patterns of behavior (social practices), and boundary conditions (status maxims). Personlike robotic themes and considerations for a technical development plan are also discussed.
Algorithms and Sensors for Small Robot Path Following
NASA Technical Reports Server (NTRS)
Hogg, Robert W.; Rankin, Arturo L.; Roumeliotis, Stergios I.; McHenry, Michael C.; Helmick, Daniel M.; Bergh, Charles F.; Matthies, Larry
2002-01-01
Tracked mobile robots in the 20 kg size class are under development for applications in urban reconnaissance. For efficient deployment, it is desirable for teams of robots to be able to automatically execute path following behaviors, with one or more followers tracking the path taken by a leader. The key challenges to enabling such a capability are (l) to develop sensor packages for such small robots that can accurately determine the path of the leader and (2) to develop path following algorithms for the subsequent robots. To date, we have integrated gyros, accelerometers, compass/inclinometers, odometry, and differential GPS into an effective sensing package. This paper describes the sensor package, sensor processing algorithm, and path tracking algorithm we have developed for the leader/follower problem in small robots and shows the result of performance characterization of the system. We also document pragmatic lessons learned about design, construction, and electromagnetic interference issues particular to the performance of state sensors on small robots.
Road-Following Formation Control of Autonomous Ground Vehicles
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Droge, Greg; Grip, Havard; Toupet, Olivier; Scrapper, Chris; Rahmani, Amir
2015-01-01
This work presents a novel cooperative path planning for formation keeping robots traversing along a road with obstacles and possible narrow passages. A unique challenge in this problem is a requirement for spatial and temporal coordination between vehicles while ensuring collision and obstacle avoidance.
Automated path planning of the Payload Inspection and Processing System
NASA Technical Reports Server (NTRS)
Byers, Robert M.
1994-01-01
The Payload Changeout Room Inspection and Processing System (PIPS) is a highly redundant manipulator intended for performing tasks in the crowded and sensitive environment of the Space Shuttle Orbiter payload bay. Its dexterity will be exploited to maneuver the end effector in a workspace populated with obstacles. A method is described by which the end effector of a highly redundant manipulator is directed toward a target via a Lyapunov stability function. A cost function is constructed which represents the distance from the manipulator links to obstacles. Obstacles are avoided by causing the vector of joint parameters to move orthogonally to the gradient of the workspace cost function. A C language program implements the algorithm to generate a joint history. The resulting motion is graphically displayed using the Interactive Graphical Robot Instruction Program (IGRIP) produced by Deneb Robotics. The graphical simulation has the potential to be a useful tool in path planning for the PIPS in the Shuttle Payload Bay environment.
A Mobile Robot for Locomotion Through a 3D Periodic Lattice Environment
NASA Technical Reports Server (NTRS)
Jenett, Benjamin; Cellucci, Daniel; Cheung, Kenneth
2017-01-01
This paper describes a novel class of robots specifically adapted to climb periodic lattices, which we call 'Relative Robots'. These robots use the regularity of the structure to simplify the path planning, align with minimal feedback, and reduce the number of degrees of freedom (DOF) required to locomote. They can perform vital inspection and repair tasks within the structure that larger truss construction robots could not perform without modifying the structure. We detail a specific type of relative robot designed to traverse a cuboctahedral (CubOct) cellular solids lattice, show how the symmetries of the lattice simplify the design, and test these design methodologies with a CubOct relative robot that traverses a 76.2 mm (3 in.) pitch lattice, MOJO (Multi-Objective JOurneying robot). We perform three locomotion tasks with MOJO: vertical climbing, horizontal climbing, and turning, and find that, due to changes in the orientation of the robot relative to the gravity vector, the success rate of vertical and horizontal climbing is significantly different.
Learning Preference Models for Autonomous Mobile Robots in Complex Domains
2010-12-01
van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney , “Stanley: The robot that won the...Learning, vol. 24, pp. 123–140, 1996. 137 [277] L. Murphy and P. Newman , “Planning most-likely paths from overhead imagery,” in Inter- national Conference...B. [150] Nashman, M. [64] Nehmzow, U. [265, 266] Neto, H. [265] Newman , P. [277] Ng, A. Y. [199, 203, 222, 223, 241–243, 254] Nguyen, T. [115] Niekum
Certainty grids for mobile robots
NASA Technical Reports Server (NTRS)
Moravec, H. P.
1987-01-01
A numerical representation of uncertain and incomplete sensor knowledge called Certainty Grids has been used successfully in several mobile robot control programs, and has proven itself to be a powerful and efficient unifying solution for sensor fusion, motion planning, landmark identification, and many other central problems. Researchers propose to build a software framework running on processors onboard the new Uranus mobile robot that will maintain a probabilistic, geometric map of the robot's surroundings as it moves. The certainty grid representation will allow this map to be incrementally updated in a uniform way from various sources including sonar, stereo vision, proximity and contact sensors. The approach can correctly model the fuzziness of each reading, while at the same time combining multiple measurements to produce sharper map features, and it can deal correctly with uncertainties in the robot's motion. The map will be used by planning programs to choose clear paths, identify locations (by correlating maps), identify well-known and insufficiently sensed terrain, and perhaps identify objects by shape. The certainty grid representation can be extended in the same dimension and used to detect and track moving objects.
Knowledge assistant: A sensor fusion framework for robotic environmental characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feddema, J.T.; Rivera, J.J.; Tucker, S.D.
1996-12-01
A prototype sensor fusion framework called the {open_quotes}Knowledge Assistant{close_quotes} has been developed and tested on a gantry robot at Sandia National Laboratories. This Knowledge Assistant guides the robot operator during the planning, execution, and post analysis stages of the characterization process. During the planning stage, the Knowledge Assistant suggests robot paths and speeds based on knowledge of sensors available and their physical characteristics. During execution, the Knowledge Assistant coordinates the collection of data through a data acquisition {open_quotes}specialist.{close_quotes} During execution and post analysis, the Knowledge Assistant sends raw data to other {open_quotes}specialists,{close_quotes} which include statistical pattern recognition software, a neuralmore » network, and model-based search software. After the specialists return their results, the Knowledge Assistant consolidates the information and returns a report to the robot control system where the sensed objects and their attributes (e.g. estimated dimensions, weight, material composition, etc.) are displayed in the world model. This paper highlights the major components of this system.« less
A Flexible Path for Human and Robotic Space Exploration
NASA Technical Reports Server (NTRS)
Korsmeyer, David J.; Landis, Robert; Merrill, Raymond Gabriel; Mazanek, Daniel D.; Falck, Robert D.; Adams, Robert B.
2010-01-01
During the summer of 2009, a flexible path scenario for human and robotic space exploration was developed that enables frequent, measured, and publicly notable human exploration of space beyond low-Earth orbit (LEO). The formulation of this scenario was in support of the Exploration Beyond LEO subcommittee of the Review of U.S. Human Space Flight Plans Committee that was commissioned by President Obama. Exploration mission sequences that allow humans to visit a wide number of inner solar system destinations were investigated. The scope of destinations included the Earth-Moon and Earth-Sun Lagrange points, near-Earth objects (NEOs), the Moon, and Mars and its moons. The missions examined assumed the use of Constellation Program elements along with existing launch vehicles and proposed augmentations. Additionally, robotic missions were envisioned as complements to human exploration through precursor missions, as crew emplaced scientific investigations, and as sample gathering assistants to the human crews. The focus of the flexible path approach was to gain ever-increasing operational experience through human exploration missions ranging from a few weeks to several years in duration, beginning in deep space beyond LEO and evolving to landings on the Moon and eventually Mars.
CMMAD Usability Case Study in Support of Countermine and Hazard Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor G. Walker; David I. Gertman
2010-04-01
During field trials, operator usability data were collected in support of lane clearing missions and hazard sensing for two robot platforms with Robot Intelligence Kernel (RIK) software and sensor scanning payloads onboard. The tests featured autonomous and shared robot autonomy levels where tasking of the robot used a graphical interface featuring mine location and sensor readings. The goal of this work was to provide insights that could be used to further technology development. The efficacy of countermine systems in terms of mobility, search, path planning, detection, and localization were assessed. Findings from objective and subjective operator interaction measures are reviewedmore » along with commentary from soldiers having taken part in the study who strongly endorse the system.« less
Principles of control for robotic excavation
NASA Astrophysics Data System (ADS)
Bernold, Leonhard E.
The issues of automatic planning and control systems for robotic excavation are addressed. Attention is given to an approach to understanding the principles of path and motion control which is based on scaled modeling and experimentation with different soil types and soil conditions. Control concepts for the independent control of a bucket are discussed, and ways in which force sensors could provide the necessary data are demonstrated. Results of experiments with lunar simulant showed that explosive loosening has a substantial impact on the energy needed during excavation. It is argued that through further laboratory and field research, 'pattern languages' for different excavators and soil conditions could be established and employed for robotic excavation.
Obstacle Avoidance On Roadways Using Range Data
NASA Astrophysics Data System (ADS)
Dunlay, R. Terry; Morgenthaler, David G.
1987-02-01
This report describes range data based obstacle avoidance techniques developed for use on an autonomous road-following robot vehicle. The purpose of these techniques is to detect and locate obstacles present in a road environment for navigation of a robot vehicle equipped with an active laser-based range sensor. Techniques are presented for obstacle detection, obstacle location, and coordinate transformations needed in the construction of Scene Models (symbolic structures representing the 3-D obstacle boundaries used by the vehicle's Navigator for path planning). These techniques have been successfully tested on an outdoor robotic vehicle, the Autonomous Land Vehicle (ALV), at speeds up to 3.5 km/hour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorum, O.H.; Hoover, A.; Jones, J.P.
This paper addresses some issues in the development of sensor-based systems for mobile robot navigation which use range imaging sensors as the primary source for geometric information about the environment. In particular, we describe a model of scanning laser range cameras which takes into account the properties of the mechanical system responsible for image formation and a calibration procedure which yields improved accuracy over previous models. In addition, we describe an algorithm which takes the limitations of these sensors into account in path planning and path execution. In particular, range imaging sensors are characterized by a limited field of viewmore » and a standoff distance -- a minimum distance nearer than which surfaces cannot be sensed. These limitations can be addressed by enriching the concept of configuration space to include information about what can be sensed from a given configuration, and using this information to guide path planning and path following.« less
Evolution and advanced technology. [of Flight Telerobotic Servicer
NASA Technical Reports Server (NTRS)
Ollendorf, Stanford; Pennington, Jack E.; Hansen, Bert, III
1990-01-01
The NASREM architecture with its standard interfaces permits development and evolution of the Flight Telerobotic Servicer to greater autonomy. Technologies in control strategies for an arm with seven DOF, including a safety system containing skin sensors for obstacle avoidance, are being developed. Planning and robotic execution software includes symbolic task planning, world model data bases, and path planning algorithms. Research over the last five years has led to the development of laser scanning and ranging systems, which use coherent semiconductor laser diodes for short range sensing. The possibility of using a robot to autonomously assemble space structures is being investigated. A control framework compatible with NASREM is being developed that allows direct global control of the manipulator. Researchers are developing systems that permit an operator to quickly reconfigure the telerobot to do new tasks safely.
A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction.
Li, Changsheng; Wang, Tianmiao; Hu, Lei; Zhang, Lihai; Du, Hailong; Zhao, Lu; Wang, Lifeng; Tang, Peifu
2015-09-01
Common fracture treatments include open reduction and intramedullary nailing technology. However, these methods have disadvantages such as intraoperative X-ray radiation, delayed union or nonunion and postoperative rotation. Robots provide a novel solution to the aforementioned problems while posing new challenges. Against this scientific background, we develop a visual servo-based teleoperation robot system. In this article, we present a robot system, analyze the visual servo-based control system in detail and develop path planning for fracture reduction, inverse kinematics, and output forces of the reduction mechanism. A series of experimental tests is conducted on a bone model and an animal bone. The experimental results demonstrate the feasibility of the robot system. The robot system uses preoperative computed tomography data to realize high precision and perform minimally invasive teleoperation for fracture reduction via the visual servo-based control system while protecting surgeons from radiation. © IMechE 2015.
Local Free-Space Mapping and Path Guidance for Mobile Robots.
1988-03-01
CM a CD U 00 Technical Document 1227 March 1988 Local Free- Space Mapping o and Path Guidance for Mobile Robots o William T. Gex N’% Nancy L. Campbell...TITLE (inludvSeocutCl&sas~o*) Local Free- Space Mapping and Path Guidance for Mobile Robots 12. PERSONAL AUTHOR(S) William T. Gex and Nancy L...Description of Robot System... 2 Free- Space Mapping ... 4 Map Construction ... 4 . ,12pping Examplk... 5 ’ft Sensor Unreliability... 8 % Path Guidance
Path planning and execution monitoring for a planetary rover
NASA Technical Reports Server (NTRS)
Gat, Erann; Slack, Marc G.; Miller, David P.; Firby, R. James
1990-01-01
A path planner and an execution monitoring planner that will enable the rover to navigate to its various destinations safely and correctly while detecting and avoiding hazards are described. An overview of the complete architecture is given. Implementation and testbeds are described. The robot can detect unforseen obstacles and take appropriate action. This includes having the rover back away from the hazard and mark the area as untraversable in the in the rover's internal map. The experiments have consisted of paths roughly 20 m in length. The architecture works with a large variety of rover configurations with different kinematic constraints.
Preliminary Testing of a Compact, Bone-Attached Robot for Otologic Surgery
Dillon, Neal P.; Balachandran, Ramya; dit Falisse, Antoine Motte; Wanna, George B.; Labadie, Robert F.; Withrow, Thomas J.; Fitzpatrick, J. Michael; Webster, Robert J.
2014-01-01
Otologic surgery often involves a mastoidectomy procedure, in which part of the temporal bone is milled away in order to visualize critical structures embedded in the bone and safely access the middle and inner ear. We propose to automate this portion of the surgery using a compact, bone-attached milling robot. A high level of accuracy is required to avoid damage to vital anatomy along the surgical path, most notably the facial nerve, making this procedure well-suited for robotic intervention. In this study, several of the design considerations are discussed and a robot design and prototype are presented. The prototype is a 4 degrees-of-freedom robot similar to a four-axis milling machine that mounts to the patient’s skull. A positioning frame, containing fiducial markers and attachment points for the robot, is rigidly attached to the skull of the patient, and a CT scan is acquired. The target bone volume is manually segmented in the CT by the surgeon and automatically converted to a milling path and robot trajectory. The robot is then attached to the positioning frame and is used to drill the desired volume. The accuracy of the entire system (image processing, planning, robot) was evaluated at several critical locations within or near the target bone volume with a mean free space accuracy result of 0.50 mm or less at all points. A milling test in a phantom material was then performed to evaluate the surgical workflow. The resulting milled volume did not violate any critical structures. PMID:25477726
The Performance Analysis of AN Indoor Mobile Mapping System with Rgb-D Sensor
NASA Astrophysics Data System (ADS)
Tsai, G. J.; Chiang, K. W.; Chu, C. H.; Chen, Y. L.; El-Sheimy, N.; Habib, A.
2015-08-01
Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.
Vision-based mapping with cooperative robots
NASA Astrophysics Data System (ADS)
Little, James J.; Jennings, Cullen; Murray, Don
1998-10-01
Two stereo-vision-based mobile robots navigate and autonomously explore their environment safely while building occupancy grid maps of the environment. The robots maintain position estimates within a global coordinate frame using landmark recognition. This allows them to build a common map by sharing position information and stereo data. Stereo vision processing and map updates are done at 3 Hz and the robots move at speeds of 200 cm/s. Cooperative mapping is achieved through autonomous exploration of unstructured and dynamic environments. The map is constructed conservatively, so as to be useful for collision-free path planning. Each robot maintains a separate copy of a shared map, and then posts updates to the common map when it returns to observe a landmark at home base. Issues include synchronization, mutual localization, navigation, exploration, registration of maps, merging repeated views (fusion), centralized vs decentralized maps.
Interactive-rate Motion Planning for Concentric Tube Robots
Torres, Luis G.; Baykal, Cenk; Alterovitz, Ron
2014-01-01
Concentric tube robots may enable new, safer minimally invasive surgical procedures by moving along curved paths to reach difficult-to-reach sites in a patient’s anatomy. Operating these devices is challenging due to their complex, unintuitive kinematics and the need to avoid sensitive structures in the anatomy. In this paper, we present a motion planning method that computes collision-free motion plans for concentric tube robots at interactive rates. Our method’s high speed enables a user to continuously and freely move the robot’s tip while the motion planner ensures that the robot’s shaft does not collide with any anatomical obstacles. Our approach uses a highly accurate mechanical model of tube interactions, which is important since small movements of the tip position may require large changes in the shape of the device’s shaft. Our motion planner achieves its high speed and accuracy by combining offline precomputation of a collision-free roadmap with online position control. We demonstrate our interactive planner in a simulated neurosurgical scenario where a user guides the robot’s tip through the environment while the robot automatically avoids collisions with the anatomical obstacles. PMID:25436176
Adaptive Tracking Control for Robots With an Interneural Computing Scheme.
Tsai, Feng-Sheng; Hsu, Sheng-Yi; Shih, Mau-Hsiang
2018-04-01
Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.
Yoo, Jeong-Ki; Kim, Jong-Hwan
2012-02-01
When a humanoid robot moves in a dynamic environment, a simple process of planning and following a path may not guarantee competent performance for dynamic obstacle avoidance because the robot acquires limited information from the environment using a local vision sensor. Thus, it is essential to update its local map as frequently as possible to obtain more information through gaze control while walking. This paper proposes a fuzzy integral-based gaze control architecture incorporated with the modified-univector field-based navigation for humanoid robots. To determine the gaze direction, four criteria based on local map confidence, waypoint, self-localization, and obstacles, are defined along with their corresponding partial evaluation functions. Using the partial evaluation values and the degree of consideration for criteria, fuzzy integral is applied to each candidate gaze direction for global evaluation. For the effective dynamic obstacle avoidance, partial evaluation functions about self-localization error and surrounding obstacles are also used for generating virtual dynamic obstacle for the modified-univector field method which generates the path and velocity of robot toward the next waypoint. The proposed architecture is verified through the comparison with the conventional weighted sum-based approach with the simulations using a developed simulator for HanSaRam-IX (HSR-IX).
Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey.
Shi, Chaoyang; Luo, Xiongbiao; Qi, Peng; Li, Tianliang; Song, Shuang; Najdovski, Zoran; Fukuda, Toshio; Ren, Hongliang
2017-08-01
Continuum robots provide inherent structural compliance with high dexterity to access the surgical target sites along tortuous anatomical paths under constrained environments and enable to perform complex and delicate operations through small incisions in minimally invasive surgery. These advantages enable their broad applications with minimal trauma and make challenging clinical procedures possible with miniaturized instrumentation and high curvilinear access capabilities. However, their inherent deformable designs make it difficult to realize 3-D intraoperative real-time shape sensing to accurately model their shape. Solutions to this limitation can lead themselves to further develop closely associated techniques of closed-loop control, path planning, human-robot interaction, and surgical manipulation safety concerns in minimally invasive surgery. Although extensive model-based research that relies on kinematics and mechanics has been performed, accurate shape sensing of continuum robots remains challenging, particularly in cases of unknown and dynamic payloads. This survey investigates the recent advances in alternative emerging techniques for 3-D shape sensing in this field and focuses on the following categories: fiber-optic-sensor-based, electromagnetic-tracking-based, and intraoperative imaging modality-based shape-reconstruction methods. The limitations of existing technologies and prospects of new technologies are also discussed.
Towards Autonomous Operations of the Robonaut 2 Humanoid Robotic Testbed
NASA Technical Reports Server (NTRS)
Badger, Julia; Nguyen, Vienny; Mehling, Joshua; Hambuchen, Kimberly; Diftler, Myron; Luna, Ryan; Baker, William; Joyce, Charles
2016-01-01
The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2012. Recently, the original upper body humanoid robot was upgraded by the addition of two climbing manipulators ("legs"), more capable processors, and new sensors, as shown in Figure 1. While Robonaut 2 (R2) has been working through checkout exercises on orbit following the upgrade, technology development on the ground has continued to advance. Through the Active Reduced Gravity Offload System (ARGOS), the Robonaut team has been able to develop technologies that will enable full operation of the robotic testbed on orbit using similar robots located at the Johnson Space Center. Once these technologies have been vetted in this way, they will be implemented and tested on the R2 unit on board the ISS. The goal of this work is to create a fully-featured robotics research platform on board the ISS to increase the technology readiness level of technologies that will aid in future exploration missions. Technology development has thus far followed two main paths, autonomous climbing and efficient tool manipulation. Central to both technologies has been the incorporation of a human robotic interaction paradigm that involves the visualization of sensory and pre-planned command data with models of the robot and its environment. Figure 2 shows screenshots of these interactive tools, built in rviz, that are used to develop and implement these technologies on R2. Robonaut 2 is designed to move along the handrails and seat track around the US lab inside the ISS. This is difficult for many reasons, namely the environment is cluttered and constrained, the robot has many degrees of freedom (DOF) it can utilize for climbing, and remote commanding for precision tasks such as grasping handrails is time-consuming and difficult. Because of this, it is important to develop the technologies needed to allow the robot to reach operator-specified positions as autonomously as possible. The most important progress in this area has been the work towards efficient path planning for high DOF, highly constrained systems. Other advances include machine vision algorithms for localizing and automatically docking with handrails, the ability of the operator to place obstacles in the robot's virtual environment, autonomous obstacle avoidance techniques, and constraint management.
Geospatial analysis based on GIS integrated with LADAR.
Fetterman, Matt R; Freking, Robert; Fernandez-Cull, Christy; Hinkle, Christopher W; Myne, Anu; Relyea, Steven; Winslow, Jim
2013-10-07
In this work, we describe multi-layered analyses of a high-resolution broad-area LADAR data set in support of expeditionary activities. High-level features are extracted from the LADAR data, such as the presence and location of buildings and cars, and then these features are used to populate a GIS (geographic information system) tool. We also apply line-of-sight (LOS) analysis to develop a path-planning module. Finally, visualization is addressed and enhanced with a gesture-based control system that allows the user to navigate through the enhanced data set in a virtual immersive experience. This work has operational applications including military, security, disaster relief, and task-based robotic path planning.
Energy aware path planning in complex four dimensional environments
NASA Astrophysics Data System (ADS)
Chakrabarty, Anjan
This dissertation addresses the problem of energy-aware path planning for small autonomous vehicles. While small autonomous vehicles can perform missions that are too risky (or infeasible) for larger vehicles, the missions are limited by the amount of energy that can be carried on board the vehicle. Path planning techniques that either minimize energy consumption or exploit energy available in the environment can thus increase range and endurance. Path planning is complicated by significant spatial (and potentially temporal) variations in the environment. While the main focus is on autonomous aircraft, this research also addresses autonomous ground vehicles. Range and endurance of small unmanned aerial vehicles (UAVs) can be greatly improved by utilizing energy from the atmosphere. Wind can be exploited to minimize energy consumption of a small UAV. But wind, like any other atmospheric component , is a space and time varying phenomenon. To effectively use wind for long range missions, both exploration and exploitation of wind is critical. This research presents a kinematics based tree algorithm which efficiently handles the four dimensional (three spatial and time) path planning problem. The Kinematic Tree algorithm provides a sequence of waypoints, airspeeds, heading and bank angle commands for each segment of the path. The planner is shown to be resolution complete and computationally efficient. Global optimality of the cost function cannot be claimed, as energy is gained from the atmosphere, making the cost function inadmissible. However the Kinematic Tree is shown to be optimal up to resolution if the cost function is admissible. Simulation results show the efficacy of this planning method for a glider in complex real wind data. Simulation results verify that the planner is able to extract energy from the atmosphere enabling long range missions. The Kinematic Tree planning framework, developed to minimize energy consumption of UAVs, is applied for path planning in ground robots. In traditional path planning problem the focus is on obstacle avoidance and navigation. The optimal Kinematic Tree algorithm named Kinematic Tree* is shown to find optimal paths to reach the destination while avoiding obstacles. A more challenging path planning scenario arises for planning in complex terrain. This research shows how the Kinematic Tree* algorithm can be extended to find minimum energy paths for a ground vehicle in difficult mountainous terrain.
Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot.
Duan, Xingguang; Gao, Liang; Wang, Yonggui; Li, Jianxi; Li, Haoyuan; Guo, Yanjun
2018-01-01
In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, "kinematics + optics" hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning.
Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot
Duan, Xingguang; Gao, Liang; Li, Jianxi; Li, Haoyuan; Guo, Yanjun
2018-01-01
In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, “kinematics + optics” hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning. PMID:29599948
DOE Office of Scientific and Technical Information (OSTI.GOV)
EISLER, G. RICHARD
This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Robust Planning for Autonomous Navigation of Mobile Robots In Unstructured, Dynamic Environments (AutoNav)''. The project goal was to develop an algorithmic-driven, multi-spectral approach to point-to-point navigation characterized by: segmented on-board trajectory planning, self-contained operation without human support for mission duration, and the development of appropriate sensors and algorithms to navigate unattended. The project was partially successful in achieving gains in sensing, path planning, navigation, and guidance. One of three experimental platforms, the Minimalist Autonomous Testbed, used a repetitive sense-and-re-plan combination to demonstratemore » the majority of elements necessary for autonomous navigation. However, a critical goal for overall success in arbitrary terrain, that of developing a sensor that is able to distinguish true obstacles that need to be avoided as a function of vehicle scale, still needs substantial research to bring to fruition.« less
Rectangular Array Of Digital Processors For Planning Paths
NASA Technical Reports Server (NTRS)
Kemeny, Sabrina E.; Fossum, Eric R.; Nixon, Robert H.
1993-01-01
Prototype 24 x 25 rectangular array of asynchronous parallel digital processors rapidly finds best path across two-dimensional field, which could be patch of terrain traversed by robotic or military vehicle. Implemented as single-chip very-large-scale integrated circuit. Excepting processors on edges, each processor communicates with four nearest neighbors along paths representing travel to north, south, east, and west. Each processor contains delay generator in form of 8-bit ripple counter, preset to 1 of 256 possible values. Operation begins with choice of processor representing starting point. Transmits signals to nearest neighbor processors, which retransmits to other neighboring processors, and process repeats until signals propagated across entire field.
High-Frequency Replanning Under Uncertainty Using Parallel Sampling-Based Motion Planning
Sun, Wen; Patil, Sachin; Alterovitz, Ron
2015-01-01
As sampling-based motion planners become faster, they can be re-executed more frequently by a robot during task execution to react to uncertainty in robot motion, obstacle motion, sensing noise, and uncertainty in the robot’s kinematic model. We investigate and analyze high-frequency replanning (HFR), where, during each period, fast sampling-based motion planners are executed in parallel as the robot simultaneously executes the first action of the best motion plan from the previous period. We consider discrete-time systems with stochastic nonlinear (but linearizable) dynamics and observation models with noise drawn from zero mean Gaussian distributions. The objective is to maximize the probability of success (i.e., avoid collision with obstacles and reach the goal) or to minimize path length subject to a lower bound on the probability of success. We show that, as parallel computation power increases, HFR offers asymptotic optimality for these objectives during each period for goal-oriented problems. We then demonstrate the effectiveness of HFR for holonomic and nonholonomic robots including car-like vehicles and steerable medical needles. PMID:26279645
Rapid, parallel path planning by propagating wavefronts of spiking neural activity
Ponulak, Filip; Hopfield, John J.
2013-01-01
Efficient path planning and navigation is critical for animals, robotics, logistics and transportation. We study a model in which spatial navigation problems can rapidly be solved in the brain by parallel mental exploration of alternative routes using propagating waves of neural activity. A wave of spiking activity propagates through a hippocampus-like network, altering the synaptic connectivity. The resulting vector field of synaptic change then guides a simulated animal to the appropriate selected target locations. We demonstrate that the navigation problem can be solved using realistic, local synaptic plasticity rules during a single passage of a wavefront. Our model can find optimal solutions for competing possible targets or learn and navigate in multiple environments. The model provides a hypothesis on the possible computational mechanisms for optimal path planning in the brain, at the same time it is useful for neuromorphic implementations, where the parallelism of information processing proposed here can fully be harnessed in hardware. PMID:23882213
Human motion behavior while interacting with an industrial robot.
Bortot, Dino; Ding, Hao; Antonopolous, Alexandros; Bengler, Klaus
2012-01-01
Human workers and industrial robots both have specific strengths within industrial production. Advantageously they complement each other perfectly, which leads to the development of human-robot interaction (HRI) applications. Bringing humans and robots together in the same workspace may lead to potential collisions. The avoidance of such is a central safety requirement. It can be realized with sundry sensor systems, all of them decelerating the robot when the distance to the human decreases alarmingly and applying the emergency stop, when the distance becomes too small. As a consequence, the efficiency of the overall systems suffers, because the robot has high idle times. Optimized path planning algorithms have to be developed to avoid that. The following study investigates human motion behavior in the proximity of an industrial robot. Three different kinds of encounters between the two entities under three robot speed levels are prompted. A motion tracking system is used to capture the motions. Results show, that humans keep an average distance of about 0,5m to the robot, when the encounter occurs. Approximation of the workbenches is influenced by the robot in ten of 15 cases. Furthermore, an increase of participants' walking velocity with higher robot velocities is observed.
Automatic programming of arc welding robots
NASA Astrophysics Data System (ADS)
Padmanabhan, Srikanth
Automatic programming of arc welding robots requires the geometric description of a part from a solid modeling system, expert weld process knowledge and the kinematic arrangement of the robot and positioner automatically. Current commercial solid models are incapable of storing explicitly product and process definitions of weld features. This work presents a paradigm to develop a computer-aided engineering environment that supports complete weld feature information in a solid model and to create an automatic programming system for robotic arc welding. In the first part, welding features are treated as properties or attributes of an object, features which are portions of the object surface--the topological boundary. The structure for representing the features and attributes is a graph called the Welding Attribute Graph (WAGRAPH). The method associates appropriate weld features to geometric primitives, adds welding attributes, and checks the validity of welding specifications. A systematic structure is provided to incorporate welding attributes and coordinate system information in a CSG tree. The specific implementation of this structure using a hybrid solid modeler (IDEAS) and an object-oriented programming paradigm is described. The second part provides a comprehensive methodology to acquire and represent weld process knowledge required for the proper selection of welding schedules. A methodology of knowledge acquisition using statistical methods is proposed. It is shown that these procedures did little to capture the private knowledge of experts (heuristics), but helped in determining general dependencies, and trends. A need was established for building the knowledge-based system using handbook knowledge and to allow the experts further to build the system. A methodology to check the consistency and validity for such knowledge addition is proposed. A mapping shell designed to transform the design features to application specific weld process schedules is described. A new approach using fixed path modified continuation methods is proposed in the final section to plan continuously the trajectory of weld seams in an integrated welding robot and positioner environment. The joint displacement, velocity, and acceleration histories all along the path as a function of the path parameter for the best possible welding condition are provided for the robot and the positioner to track various paths normally encountered in arc welding.
Integrated assignment and path planning
NASA Astrophysics Data System (ADS)
Murphey, Robert A.
2005-11-01
A surge of interest in unmanned systems has exposed many new and challenging research problems across many fields of engineering and mathematics. These systems have the potential of transforming our society by replacing dangerous and dirty jobs with networks of moving machines. This vision is fundamentally separate from the modern view of robotics in that sophisticated behavior is realizable not by increasing individual vehicle complexity, but instead through collaborative teaming that relies on collective perception, abstraction, decision making, and manipulation. Obvious examples where collective robotics will make an impact include planetary exploration, space structure assembly, remote and undersea mining, hazardous material handling and clean-up, and search and rescue. Nonetheless, the phenomenon driving this technology trend is the increasing reliance of the US military on unmanned vehicles, specifically, aircraft. Only a few years ago, following years of resistance to the use of unmanned systems, the military and civilian leadership in the United States reversed itself and have recently demonstrated surprisingly broad acceptance of increasingly pervasive use of unmanned platforms in defense surveillance, and even attack. However, as rapidly as unmanned systems have gained acceptance, the defense research community has discovered the technical pitfalls that lie ahead, especially for operating collective groups of unmanned platforms. A great deal of talent and energy has been devoted to solving these technical problems, which tend to fall into two categories: resource allocation of vehicles to objectives, and path planning of vehicle trajectories. An extensive amount of research has been conducted in each direction, yet, surprisingly, very little work has considered the integrated problem of assignment and path planning. This dissertation presents a framework for studying integrated assignment and path planning and then moves on to suggest an exact mathematical model and solution techniques. The approach adopted is based upon the very flexible New Product Development model but also blends many features from other approaches. Solution methods using branch and bound and construction heuristics are developed and tested on several example problems, including a military scenario featuring unmanned air vehicles.
Autonomous mobile robotic system for supporting counterterrorist and surveillance operations
NASA Astrophysics Data System (ADS)
Adamczyk, Marek; Bulandra, Kazimierz; Moczulski, Wojciech
2017-10-01
Contemporary research on mobile robots concerns applications to counterterrorist and surveillance operations. The goal is to develop systems that are capable of supporting the police and special forces by carrying out such operations. The paper deals with a dedicated robotic system for surveillance of large objects such as airports, factories, military bases, and many others. The goal is to trace unauthorised persons who try to enter to the guarded area, document the intrusion and report it to the surveillance centre, and then warn the intruder by sound messages and eventually subdue him/her by stunning through acoustic effect of great power. The system consists of several parts. An armoured four-wheeled robot assures required mobility of the system. The robot is equipped with a set of sensors including 3D mapping system, IR and video cameras, and microphones. It communicates with the central control station (CCS) by means of a wideband wireless encrypted system. A control system of the robot can operate autonomously, and under remote control. In the autonomous mode the robot follows the path planned by the CCS. Once an intruder has been detected, the robot can adopt its plan to allow tracking him/her. Furthermore, special procedures of treatment of the intruder are applied including warning about the breach of the border of the protected area, and incapacitation of an appropriately selected very loud sound until a patrol of guards arrives. Once getting stuck the robot can contact the operator who can remotely solve the problem the robot is faced with.
Nonlinear Control Theory for Missile Autopilot Design.
1987-04-24
minimum-time controller which includes constraints on both controls and angle-of-attack is developed and an example is given. -12- - - -~ *% PO PmCF E- A...constructed. In this case, some ideas from robotics on minimum-time trajectory planning under path constraints (see, e.g., Rajan (1985), Sahar and...Auto Cont., Vol. AC-29, No. 4, p. 361. Rajan, V.T. (1985), "Minimum-Time Trajectory Planning ", Proc IEEE Kobotics and Automation Conf., St. Louis. Reed
The sixth generation robot in space
NASA Technical Reports Server (NTRS)
Butcher, A.; Das, A.; Reddy, Y. V.; Singh, H.
1990-01-01
The knowledge based simulator developed in the artificial intelligence laboratory has become a working test bed for experimenting with intelligent reasoning architectures. With this simulator, recently, small experiments have been done with an aim to simulate robot behavior to avoid colliding paths. An automatic extension of such experiments to intelligently planning robots in space demands advanced reasoning architectures. One such architecture for general purpose problem solving is explored. The robot, seen as a knowledge base machine, goes via predesigned abstraction mechanism for problem understanding and response generation. The three phases in one such abstraction scheme are: abstraction for representation, abstraction for evaluation, and abstraction for resolution. Such abstractions require multimodality. This multimodality requires the use of intensional variables to deal with beliefs in the system. Abstraction mechanisms help in synthesizing possible propagating lattices for such beliefs. The machine controller enters into a sixth generation paradigm.
Planar maneuvering control of underwater snake robots using virtual holonomic constraints.
Kohl, Anna M; Kelasidi, Eleni; Mohammadi, Alireza; Maggiore, Manfredi; Pettersen, Kristin Y
2016-11-24
This paper investigates the problem of planar maneuvering control for bio-inspired underwater snake robots that are exposed to unknown ocean currents. The control objective is to make a neutrally buoyant snake robot which is subject to hydrodynamic forces and ocean currents converge to a desired planar path and traverse the path with a desired velocity. The proposed feedback control strategy enforces virtual constraints which encode biologically inspired gaits on the snake robot configuration. The virtual constraints, parametrized by states of dynamic compensators, are used to regulate the orientation and forward speed of the snake robot. A two-state ocean current observer based on relative velocity sensors is proposed. It enables the robot to follow the path in the presence of unknown constant ocean currents. The efficacy of the proposed control algorithm for several biologically inspired gaits is verified both in simulations for different path geometries and in experiments.
Molloy, Kevin; Shehu, Amarda
2013-01-01
Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers.
Bio-Inspired Genetic Algorithms with Formalized Crossover Operators for Robotic Applications.
Zhang, Jie; Kang, Man; Li, Xiaojuan; Liu, Geng-Yang
2017-01-01
Genetic algorithms are widely adopted to solve optimization problems in robotic applications. In such safety-critical systems, it is vitally important to formally prove the correctness when genetic algorithms are applied. This paper focuses on formal modeling of crossover operations that are one of most important operations in genetic algorithms. Specially, we for the first time formalize crossover operations with higher-order logic based on HOL4 that is easy to be deployed with its user-friendly programing environment. With correctness-guaranteed formalized crossover operations, we can safely apply them in robotic applications. We implement our technique to solve a path planning problem using a genetic algorithm with our formalized crossover operations, and the results show the effectiveness of our technique.
A Petri-net coordination model for an intelligent mobile robot
NASA Technical Reports Server (NTRS)
Wang, F.-Y.; Kyriakopoulos, K. J.; Tsolkas, A.; Saridis, G. N.
1990-01-01
The authors present a Petri net model of the coordination level of an intelligent mobile robot system (IMRS). The purpose of this model is to specify the integration of the individual efforts on path planning, supervisory motion control, and vision systems that are necessary for the autonomous operation of the mobile robot in a structured dynamic environment. This is achieved by analytically modeling the various units of the system as Petri net transducers and explicitly representing the task precedence and information dependence among them. The model can also be used to simulate the task processing and to evaluate the efficiency of operations and the responsibility of decisions in the coordination level of the IMRS. Some simulation results on the task processing and learning are presented.
Cooperative path following control of multiple nonholonomic mobile robots.
Cao, Ke-Cai; Jiang, Bin; Yue, Dong
2017-11-01
Cooperative path following control problem of multiple nonholonomic mobile robots has been considered in this paper. Based on the framework of decomposition, the cooperative path following problem has been transformed into path following problem and cooperative control problem; Then cascaded theory of non-autonomous system has been employed in the design of controllers without resorting to feedback linearization. One time-varying coordinate transformation based on dilation has been introduced to solve the uncontrollable problem of nonholonomic robots when the whole group's reference converges to stationary point. Cooperative path following controllers for nonholonomic robots have been proposed under persistent reference or reference target that converges to stationary point respectively. Simulation results using Matlab have illustrated the effectiveness of the obtained theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Centralized Planning for Multiple Exploratory Robots
NASA Technical Reports Server (NTRS)
Estlin, Tara; Rabideau, Gregg; Chien, Steve; Barrett, Anthony
2005-01-01
A computer program automatically generates plans for a group of robotic vehicles (rovers) engaged in geological exploration of terrain. The program rapidly generates multiple command sequences that can be executed simultaneously by the rovers. Starting from a set of high-level goals, the program creates a sequence of commands for each rover while respecting hardware constraints and limitations on resources of each rover and of hardware (e.g., a radio communication terminal) shared by all the rovers. First, a separate model of each rover is loaded into a centralized planning subprogram. The centralized planning software uses the models of the rovers plus an iterative repair algorithm to resolve conflicts posed by demands for resources and by constraints associated with the all the rovers and the shared hardware. During repair, heuristics are used to make planning decisions that will result in solutions that will be better and will be found faster than would otherwise be possible. In particular, techniques from prior solutions of the multiple-traveling- salesmen problem are used as heuristics to generate plans in which the paths taken by the rovers to assigned scientific targets are shorter than they would otherwise be.
Robotics virtual rail system and method
Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID
2011-07-05
A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.
Li, Pan; Yang, Zhiyong; Jiang, Shan
2018-06-01
Image-guided robot-assisted minimally invasive surgery is an important medicine procedure used for biopsy or local target therapy. In order to reach the target region not accessible using traditional techniques, long and thin flexible needles are inserted into the soft tissue which has large deformation and nonlinear characteristics. However, the detection results and therapeutic effect are directly influenced by the targeting accuracy of needle steering. For this reason, the needle-tissue interactive mechanism, path planning, and steering control are investigated in this review by searching literatures in the last 10 years, which results in a comprehensive overview of the existing techniques with the main accomplishments, limitations, and recommendations. Through comprehensive analyses, surgical simulation for insertion into multi-layer inhomogeneous tissue is verified as a primary and propositional aspect to be explored, which accurately predicts the nonlinear needle deflection and tissue deformation. Investigation of the path planning of flexible needles is recommended to an anatomical or a deformable environment which has characteristics of the tissue deformation. Nonholonomic modeling combined with duty-cycled spinning for needle steering, which tracks the tip position in real time and compensates for the deviation error, is recommended as a future research focus in the steering control in anatomical and deformable environments. Graphical abstract a Insertion force when the needle is inserted into soft tissue. b Needle deflection model when the needle is inserted into soft tissue [68]. c Path planning in anatomical environments [92]. d Duty-cycled spinning incorporated in nonholonomic needle steering [64].
Sensor module design and forward and inverse kinematics analysis of 6-DOF sorting transferring robot
NASA Astrophysics Data System (ADS)
Zhou, Huiying; Lin, Jiajian; Liu, Lei; Tao, Meng
2017-09-01
To meet the demand of high strength express sorting, it is significant to design a robot with multiple degrees of freedom that can sort and transfer. This paper uses infrared sensor, color sensor and pressure sensor to receive external information, combine the plan of motion path in advance and the feedback information from the sensors, then write relevant program. In accordance with these, we can design a 6-DOF robot that can realize multi-angle seizing. In order to obtain characteristics of forward and inverse kinematics, this paper describes the coordinate directions and pose estimation by the D-H parameter method and closed solution. On the basis of the solution of forward and inverse kinematics, geometric parameters of links and link parameters are optimized in terms of application requirements. In this way, this robot can identify route, sort and transfer.
Head Pose Estimation Using Multilinear Subspace Analysis for Robot Human Awareness
NASA Technical Reports Server (NTRS)
Ivanov, Tonislav; Matthies, Larry; Vasilescu, M. Alex O.
2009-01-01
Mobile robots, operating in unconstrained indoor and outdoor environments, would benefit in many ways from perception of the human awareness around them. Knowledge of people's head pose and gaze directions would enable the robot to deduce which people are aware of the its presence, and to predict future motions of the people for better path planning. To make such inferences, requires estimating head pose on facial images that are combination of multiple varying factors, such as identity, appearance, head pose, and illumination. By applying multilinear algebra, the algebra of higher-order tensors, we can separate these factors and estimate head pose regardless of subject's identity or image conditions. Furthermore, we can automatically handle uncertainty in the size of the face and its location. We demonstrate a pipeline of on-the-move detection of pedestrians with a robot stereo vision system, segmentation of the head, and head pose estimation in cluttered urban street scenes.
Mobile robot navigation modulated by artificial emotions.
Lee-Johnson, C P; Carnegie, D A
2010-04-01
For artificial intelligence research to progress beyond the highly specialized task-dependent implementations achievable today, researchers may need to incorporate aspects of biological behavior that have not traditionally been associated with intelligence. Affective processes such as emotions may be crucial to the generalized intelligence possessed by humans and animals. A number of robots and autonomous agents have been created that can emulate human emotions, but the majority of this research focuses on the social domain. In contrast, we have developed a hybrid reactive/deliberative architecture that incorporates artificial emotions to improve the general adaptive performance of a mobile robot for a navigation task. Emotions are active on multiple architectural levels, modulating the robot's decisions and actions to suit the context of its situation. Reactive emotions interact with the robot's control system, altering its parameters in response to appraisals from short-term sensor data. Deliberative emotions are learned associations that bias path planning in response to eliciting objects or events. Quantitative results are presented that demonstrate situations in which each artificial emotion can be beneficial to performance.
A universal six-joint robot controller
NASA Technical Reports Server (NTRS)
Bihn, D. G.; Hsia, T. C.
1987-01-01
A general purpose six-axis robotic manipulator controller was designed and implemented to serve as a research tool for the investigation of the practical and theoretical aspects of various control strategies in robotics. A 80286-based Intel System 310 running the Xenix operating servo software as well as the higher level software (e.g., kinematics and path planning) were employed. A Multibus compatible interface board was designed and constructed to handle I/O signals from the robot manipulator's joint motors. From the design point of view, the universal controller is capable of driving robot manipulators equipped with D.C. joint motors and position optical encoders. To test its functionality, the controller is connected to the joint motor D.C. power amplifier of a PUMA 560 arm bypassing completely the manufacturer-supplied Unimation controller. A controller algorithm consisting of local PD control laws was written and installed into the Xenix operating system. Additional software drivers were implemented to allow application programs access to the interface board. All software was written in the C language.
Surgeon Training in Telerobotic Surgery via a Hardware-in-the-Loop Simulator
Alemzadeh, Homa; Chen, Daniel; Kalbarczyk, Zbigniew; Iyer, Ravishankar K.; Kesavadas, Thenkurussi
2017-01-01
This work presents a software and hardware framework for a telerobotic surgery safety and motor skill training simulator. The aims are at providing trainees a comprehensive simulator for acquiring essential skills to perform telerobotic surgery. Existing commercial robotic surgery simulators lack features for safety training and optimal motion planning, which are critical factors in ensuring patient safety and efficiency in operation. In this work, we propose a hardware-in-the-loop simulator directly introducing these two features. The proposed simulator is built upon the Raven-II™ open source surgical robot, integrated with a physics engine and a safety hazard injection engine. Also, a Fast Marching Tree-based motion planning algorithm is used to help trainee learn the optimal instrument motion patterns. The main contributions of this work are (1) reproducing safety hazards events, related to da Vinci™ system, reported to the FDA MAUDE database, with a novel haptic feedback strategy to provide feedback to the operator when the underlying dynamics differ from the real robot's states so that the operator will be aware and can mitigate the negative impact of the safety-critical events, and (2) using motion planner to generate semioptimal path in an interactive robotic surgery training environment. PMID:29065635
NASA Astrophysics Data System (ADS)
Gao, Guoyou; Jiang, Chunsheng; Chen, Tao; Hui, Chun
2018-05-01
Industrial robots are widely used in various processes of surface manufacturing, such as thermal spraying. The established robot programming methods are highly time-consuming and not accurate enough to fulfil the demands of the actual market. There are many off-line programming methods developed to reduce the robot programming effort. This work introduces the principle of several based robot trajectory generation strategy on planar surface and curved surface. Since the off-line programming software is widely used and thus facilitates the robot programming efforts and improves the accuracy of robot trajectory, the analysis of this work is based on the second development of off-line programming software Robot studio™. To meet the requirements of automotive paint industry, this kind of software extension helps provide special functions according to the users defined operation parameters. The presented planning strategy generates the robot trajectory by moving an orthogonal surface according to the information of coating surface, a series of intersection curves are then employed to generate the trajectory points. The simulation results show that the path curve created with this method is successive and smooth, which corresponds to the requirements of automotive spray industrial applications.
Trajectory planning and control of a 6 DOF manipulator with Stewart platform-based mechanism
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami
1990-01-01
The trajectory planning and control was studied of a robot manipulator that has 6 degrees of freedom and was designed based on the mechanism of the Stewart Platform. First the main components of the manipulator is described along with its operation. The solutions are briefly prescribed for the forward and inverse kinematics of the manipulator. After that, two trajectory planning schemes are developed using the manipulator inverse kinematics to track straight lines and circular paths. Finally experiments conducted to study the performance of the developed planning schemes in tracking a straight line and a circle are presented and discussed.
An Analysis of Navigation Algorithms for Smartphones Using J2ME
NASA Astrophysics Data System (ADS)
Santos, André C.; Tarrataca, Luís; Cardoso, João M. P.
Embedded systems are considered one of the most potential areas for future innovations. Two embedded fields that will most certainly take a primary role in future innovations are mobile robotics and mobile computing. Mobile robots and smartphones are growing in number and functionalities, becoming a presence in our daily life. In this paper, we study the current feasibility of a smartphone to execute navigation algorithms. As a test case, we use a smartphone to control an autonomous mobile robot. We tested three navigation problems: Mapping, Localization and Path Planning. For each of these problems, an algorithm has been chosen, developed in J2ME, and tested on the field. Results show the current mobile Java capacity for executing computationally demanding algorithms and reveal the real possibility of using smartphones for autonomous navigation.
Variety Wins: Soccer-Playing Robots and Infant Walking.
Ossmy, Ori; Hoch, Justine E; MacAlpine, Patrick; Hasan, Shohan; Stone, Peter; Adolph, Karen E
2018-01-01
Although both infancy and artificial intelligence (AI) researchers are interested in developing systems that produce adaptive, functional behavior, the two disciplines rarely capitalize on their complementary expertise. Here, we used soccer-playing robots to test a central question about the development of infant walking. During natural activity, infants' locomotor paths are immensely varied. They walk along curved, multi-directional paths with frequent starts and stops. Is the variability observed in spontaneous infant walking a "feature" or a "bug?" In other words, is variability beneficial for functional walking performance? To address this question, we trained soccer-playing robots on walking paths generated by infants during free play and tested them in simulated games of "RoboCup." In Tournament 1, we compared the functional performance of a simulated robot soccer team trained on infants' natural paths with teams trained on less varied, geometric paths-straight lines, circles, and squares. Across 1,000 head-to-head simulated soccer matches, the infant-trained team consistently beat all teams trained with less varied walking paths. In Tournament 2, we compared teams trained on different clusters of infant walking paths. The team trained with the most varied combination of path shape, step direction, number of steps, and number of starts and stops outperformed teams trained with less varied paths. This evidence indicates that variety is a crucial feature supporting functional walking performance. More generally, we propose that robotics provides a fruitful avenue for testing hypotheses about infant development; reciprocally, observations of infant behavior may inform research on artificial intelligence.
Trajectory control of an articulated robot with a parallel drive arm based on splines under tension
NASA Astrophysics Data System (ADS)
Yi, Seung-Jong
Today's industrial robots controlled by mini/micro computers are basically simple positioning devices. The positioning accuracy depends on the mathematical description of the robot configuration to place the end-effector at the desired position and orientation within the workspace and on following the specified path which requires the trajectory planner. In addition, the consideration of joint velocity, acceleration, and jerk trajectories are essential for trajectory planning of industrial robots to obtain smooth operation. The newly designed 6 DOF articulated robot with a parallel drive arm mechanism which permits the joint actuators to be placed in the same horizontal line to reduce the arm inertia and to increase load capacity and stiffness is selected. First, the forward kinematic and inverse kinematic problems are examined. The forward kinematic equations are successfully derived based on Denavit-Hartenberg notation with independent joint angle constraints. The inverse kinematic problems are solved using the arm-wrist partitioned approach with independent joint angle constraints. Three types of curve fitting methods used in trajectory planning, i.e., certain degree polynomial functions, cubic spline functions, and cubic spline functions under tension, are compared to select the best possible method to satisfy both smooth joint trajectories and positioning accuracy for a robot trajectory planner. Cubic spline functions under tension is the method selected for the new trajectory planner. This method is implemented for a 6 DOF articulated robot with a parallel drive arm mechanism to improve the smoothness of the joint trajectories and the positioning accuracy of the manipulator. Also, this approach is compared with existing trajectory planners, 4-3-4 polynomials and cubic spline functions, via circular arc motion simulations. The new trajectory planner using cubic spline functions under tension is implemented into the microprocessor based robot controller and motors to produce combined arc and straight-line motion. The simulation and experiment show interesting results by demonstrating smooth motion in both acceleration and jerk and significant improvements of positioning accuracy in trajectory planning.
Autonomous mobile robot for radiologic surveys
Dudar, A.M.; Wagner, D.G.; Teese, G.D.
1994-06-28
An apparatus is described for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm. 5 figures.
Autonomous mobile robot for radiologic surveys
Dudar, Aed M.; Wagner, David G.; Teese, Gregory D.
1994-01-01
An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.
Wong, Yu-Tung; Finley, Charles C; Giallo, Joseph F; Buckmire, Robert A
2011-08-01
To introduce a novel method of combining robotics and the CO(2) laser micromanipulator to provide excellent precision and performance repeatability designed for surgical applications. Pilot feasibility study. We developed a portable robotic controller that appends to a standard CO(2) laser micromanipulator. The robotic accuracy and laser beam path repeatability were compared to six experienced users of the industry standard micromanipulator performing the same simulated surgical tasks. Helium-neon laser beam video tracking techniques were employed. The robotic controller demonstrated superiority over experienced human manual micromanipulator control in accuracy (laser path within 1 mm of idealized centerline), 97.42% (standard deviation [SD] 2.65%), versus 85.11% (SD 14.51%), P = .018; and laser beam path repeatability (area of laser path divergence on successive trials), 21.42 mm(2) (SD 4.35 mm(2) ) versus 65.84 mm(2) (SD 11.93 mm(2) ), P = .006. Robotic micromanipulator control enhances accuracy and repeatability for specific laser tasks. Computerized control opens opportunity for alternative user interfaces and additional safety features. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
2013-01-01
Background Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. Methods We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Results and conclusions Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers. PMID:24565158
Constrained motion model of mobile robots and its applications.
Zhang, Fei; Xi, Yugeng; Lin, Zongli; Chen, Weidong
2009-06-01
Target detecting and dynamic coverage are fundamental tasks in mobile robotics and represent two important features of mobile robots: mobility and perceptivity. This paper establishes the constrained motion model and sensor model of a mobile robot to represent these two features and defines the k -step reachable region to describe the states that the robot may reach. We show that the calculation of the k-step reachable region can be reduced from that of 2(k) reachable regions with the fixed motion styles to k + 1 such regions and provide an algorithm for its calculation. Based on the constrained motion model and the k -step reachable region, the problems associated with target detecting and dynamic coverage are formulated and solved. For target detecting, the k-step detectable region is used to describe the area that the robot may detect, and an algorithm for detecting a target and planning the optimal path is proposed. For dynamic coverage, the k-step detected region is used to represent the area that the robot has detected during its motion, and the dynamic-coverage strategy and algorithm are proposed. Simulation results demonstrate the efficiency of the coverage algorithm in both convex and concave environments.
Percutaneous needle placement using laser guidance: a practical solution
NASA Astrophysics Data System (ADS)
Xu, Sheng; Kapoor, Ankur; Abi-Jaoudeh, Nadine; Imbesi, Kimberly; Hong, Cheng William; Mazilu, Dumitru; Sharma, Karun; Venkatesan, Aradhana M.; Levy, Elliot; Wood, Bradford J.
2013-03-01
In interventional radiology, various navigation technologies have emerged aiming to improve the accuracy of device deployment and potentially the clinical outcomes of minimally invasive procedures. While these technologies' performance has been explored extensively, their impact on daily clinical practice remains undetermined due to the additional cost and complexity, modification of standard devices (e.g. electromagnetic tracking), and different levels of experience among physicians. Taking these factors into consideration, a robotic laser guidance system for percutaneous needle placement is developed. The laser guidance system projects a laser guide line onto the skin entry point of the patient, helping the physician to align the needle with the planned path of the preoperative CT scan. To minimize changes to the standard workflow, the robot is integrated with the CT scanner via optical tracking. As a result, no registration between the robot and CT is needed. The robot can compensate for the motion of the equipment and keep the laser guide line aligned with the biopsy path in real-time. Phantom experiments showed that the guidance system can benefit physicians at different skill levels, while clinical studies showed improved accuracy over conventional freehand needle insertion. The technology is safe, easy to use, and does not involve additional disposable costs. It is our expectation that this technology can be accepted by interventional radiologists for CT guided needle placement procedures.
Vision-based obstacle avoidance
Galbraith, John [Los Alamos, NM
2006-07-18
A method for allowing a robot to avoid objects along a programmed path: first, a field of view for an electronic imager of the robot is established along a path where the electronic imager obtains the object location information within the field of view; second, a population coded control signal is then derived from the object location information and is transmitted to the robot; finally, the robot then responds to the control signal and avoids the detected object.
Rezapour, Ehsan; Pettersen, Kristin Y; Liljebäck, Pål; Gravdahl, Jan T; Kelasidi, Eleni
This paper considers path following control of planar snake robots using virtual holonomic constraints. In order to present a model-based path following control design for the snake robot, we first derive the Euler-Lagrange equations of motion of the system. Subsequently, we define geometric relations among the generalized coordinates of the system, using the method of virtual holonomic constraints. These appropriately defined constraints shape the geometry of a constraint manifold for the system, which is a submanifold of the configuration space of the robot. Furthermore, we show that the constraint manifold can be made invariant by a suitable choice of feedback. In particular, we analytically design a smooth feedback control law to exponentially stabilize the constraint manifold. We show that enforcing the appropriately defined virtual holonomic constraints for the configuration variables implies that the robot converges to and follows a desired geometric path. Numerical simulations and experimental results are presented to validate the theoretical approach.
Neural Network Based Sensory Fusion for Landmark Detection
NASA Technical Reports Server (NTRS)
Kumbla, Kishan -K.; Akbarzadeh, Mohammad R.
1997-01-01
NASA is planning to send numerous unmanned planetary missions to explore the space. This requires autonomous robotic vehicles which can navigate in an unstructured, unknown, and uncertain environment. Landmark based navigation is a new area of research which differs from the traditional goal-oriented navigation, where a mobile robot starts from an initial point and reaches a destination in accordance with a pre-planned path. The landmark based navigation has the advantage of allowing the robot to find its way without communication with the mission control station and without exact knowledge of its coordinates. Current algorithms based on landmark navigation however pose several constraints. First, they require large memories to store the images. Second, the task of comparing the images using traditional methods is computationally intensive and consequently real-time implementation is difficult. The method proposed here consists of three stages, First stage utilizes a heuristic-based algorithm to identify significant objects. The second stage utilizes a neural network (NN) to efficiently classify images of the identified objects. The third stage combines distance information with the classification results of neural networks for efficient and intelligent navigation.
Bengochea-Guevara, José M; Conesa-Muñoz, Jesus; Andújar, Dionisio; Ribeiro, Angela
2016-02-24
The concept of precision agriculture, which proposes farming management adapted to crop variability, has emerged in recent years. To effectively implement precision agriculture, data must be gathered from the field in an automated manner at minimal cost. In this study, a small autonomous field inspection vehicle was developed to minimise the impact of the scouting on the crop and soil compaction. The proposed approach integrates a camera with a GPS receiver to obtain a set of basic behaviours required of an autonomous mobile robot to inspect a crop field with full coverage. A path planner considered the field contour and the crop type to determine the best inspection route. An image-processing method capable of extracting the central crop row under uncontrolled lighting conditions in real time from images acquired with a reflex camera positioned on the front of the robot was developed. Two fuzzy controllers were also designed and developed to achieve vision-guided navigation. A method for detecting the end of a crop row using camera-acquired images was developed. In addition, manoeuvres necessary for the robot to change rows were established. These manoeuvres enabled the robot to autonomously cover the entire crop by following a previously established plan and without stepping on the crop row, which is an essential behaviour for covering crops such as maize without damaging them.
Bengochea-Guevara, José M.; Conesa-Muñoz, Jesus; Andújar, Dionisio; Ribeiro, Angela
2016-01-01
The concept of precision agriculture, which proposes farming management adapted to crop variability, has emerged in recent years. To effectively implement precision agriculture, data must be gathered from the field in an automated manner at minimal cost. In this study, a small autonomous field inspection vehicle was developed to minimise the impact of the scouting on the crop and soil compaction. The proposed approach integrates a camera with a GPS receiver to obtain a set of basic behaviours required of an autonomous mobile robot to inspect a crop field with full coverage. A path planner considered the field contour and the crop type to determine the best inspection route. An image-processing method capable of extracting the central crop row under uncontrolled lighting conditions in real time from images acquired with a reflex camera positioned on the front of the robot was developed. Two fuzzy controllers were also designed and developed to achieve vision-guided navigation. A method for detecting the end of a crop row using camera-acquired images was developed. In addition, manoeuvres necessary for the robot to change rows were established. These manoeuvres enabled the robot to autonomously cover the entire crop by following a previously established plan and without stepping on the crop row, which is an essential behaviour for covering crops such as maize without damaging them. PMID:26927102
Optimized path planning for soft tissue resection via laser vaporization
NASA Astrophysics Data System (ADS)
Ross, Weston; Cornwell, Neil; Tucker, Matthew; Mann, Brian; Codd, Patrick
2018-02-01
Robotic and robotic-assisted surgeries are becoming more prevalent with the promise of improving surgical outcomes through increased precision, reduced operating times, and minimally invasive procedures. The handheld laser scalpel in neurosurgery has been shown to provide a more gentle approach to tissue manipulation on or near critical structures over classical tooling, though difficulties of control have prevented large scale adoption of the tool. This paper presents a novel approach to generating a cutting path for the volumetric resection of tissue using a computer-guided laser scalpel. A soft tissue ablation simulator is developed and used in conjunction with an optimization routine to select parameters which maximize the total resection of target tissue while minimizing the damage to surrounding tissue. The simulator predicts the ablative properties of tissue from an interrogation cut for tuning and simulates the removal of a tumorous tissue embedded on the surface of healthy tissue using a laser scalpel. We demonstrate the ability to control depth and smoothness of cut using genetic algorithms to optimize the ablation parameters and cutting path. The laser power level, cutting rate and spacing between cuts are optimized over multiple surface cuts to achieve the desired resection volumes.
ATHLETE's Feet: Mu1ti-Resolution Planning for a Hexapod Robot
NASA Technical Reports Server (NTRS)
Smith, Tristan B.; Barreiro, Javier; Smith, David E.; SunSpiral, Vytas; Chavez-Clemente, Daniel
2008-01-01
ATHLETE is a large six-legged tele-operated robot. Each foot is a wheel; travel can be achieved by walking, rolling, or some combination of the two. Operators control ATHLETE by selecting parameterized commands from a command dictionary. While rolling can be done efficiently with a single command, any motion involving steps is cumbersome - walking a few meters through difficult terrain can take hours. Our goal is to improve operator efficiency by automatically generating sequences of motion commands. There is increasing uncertainty regarding ATHLETE s actual configuration over time and decreasing quality of terrain data farther away from the current position. This, combined with the complexity that results from 36 degrees of kinematic freedom, led to an architecture that interleaves planning and execution at multiple levels, ranging from traditional configuration space motion planning algorithms for immediate moves to higher level task and path planning algorithms for overall travel. The modularity of the architecture also simplifies the development process and allows the operator to interact with and control the system at varying levels of autonomy depending on terrain and need.
Mobile robots traversability awareness based on terrain visual sensory data fusion
NASA Astrophysics Data System (ADS)
Shirkhodaie, Amir
2007-04-01
In this paper, we have presented methods that significantly improve the robot awareness of its terrain traversability conditions. The terrain traversability awareness is achieved by association of terrain image appearances from different poses and fusion of extracted information from multimodality imaging and range sensor data for localization and clustering environment landmarks. Initially, we describe methods for extraction of salient features of the terrain for the purpose of landmarks registration from two or more images taken from different via points along the trajectory path of the robot. The method of image registration is applied as a means of overlaying (two or more) of the same terrain scene at different viewpoints. The registration geometrically aligns salient landmarks of two images (the reference and sensed images). A Similarity matching techniques is proposed for matching the terrain salient landmarks. Secondly, we present three terrain classifier models based on rule-based, supervised neural network, and fuzzy logic for classification of terrain condition under uncertainty and mapping the robot's terrain perception to apt traversability measures. This paper addresses the technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain spatial and textural cues.
Simulation of Hazards and Poses for a Rocker-Bogie Rover
NASA Technical Reports Server (NTRS)
Backes, Paul; Norris, Jeffrey; Powell, Mark; Tharp, Gregory
2004-01-01
Provisions for specification of hazards faced by a robotic vehicle (rover) equipped with a rocker-bogie suspension, for prediction of collisions between the vehicle and the hazards, and for simulation of poses of the vehicle at selected positions on the terrain have been incorporated into software that simulates the movements of the vehicle on planned paths across the terrain. The software in question is that of the Web Interface for Telescience (WITS), selected aspects of which have been described in a number of prior NASA Tech Briefs articles. To recapitulate: The WITS is a system of computer software that enables scientists, located at geographically dispersed computer terminals connected to the World Wide Web, to command instrumented robotic vehicles (rovers) during exploration of Mars and perhaps eventually of other planets. The WITS also has potential for adaptation to terrestrial use in telerobotics and other applications that involve computer-based remote monitoring, supervision, control, and planning.
Variety Wins: Soccer-Playing Robots and Infant Walking
Ossmy, Ori; Hoch, Justine E.; MacAlpine, Patrick; Hasan, Shohan; Stone, Peter; Adolph, Karen E.
2018-01-01
Although both infancy and artificial intelligence (AI) researchers are interested in developing systems that produce adaptive, functional behavior, the two disciplines rarely capitalize on their complementary expertise. Here, we used soccer-playing robots to test a central question about the development of infant walking. During natural activity, infants' locomotor paths are immensely varied. They walk along curved, multi-directional paths with frequent starts and stops. Is the variability observed in spontaneous infant walking a “feature” or a “bug?” In other words, is variability beneficial for functional walking performance? To address this question, we trained soccer-playing robots on walking paths generated by infants during free play and tested them in simulated games of “RoboCup.” In Tournament 1, we compared the functional performance of a simulated robot soccer team trained on infants' natural paths with teams trained on less varied, geometric paths—straight lines, circles, and squares. Across 1,000 head-to-head simulated soccer matches, the infant-trained team consistently beat all teams trained with less varied walking paths. In Tournament 2, we compared teams trained on different clusters of infant walking paths. The team trained with the most varied combination of path shape, step direction, number of steps, and number of starts and stops outperformed teams trained with less varied paths. This evidence indicates that variety is a crucial feature supporting functional walking performance. More generally, we propose that robotics provides a fruitful avenue for testing hypotheses about infant development; reciprocally, observations of infant behavior may inform research on artificial intelligence. PMID:29867427
Intelligent robots for planetary exploration and construction
NASA Technical Reports Server (NTRS)
Albus, James S.
1992-01-01
Robots capable of practical applications in planetary exploration and construction will require realtime sensory-interactive goal-directed control systems. A reference model architecture based on the NIST Real-time Control System (RCS) for real-time intelligent control systems is suggested. RCS partitions the control problem into four basic elements: behavior generation (or task decomposition), world modeling, sensory processing, and value judgment. It clusters these elements into computational nodes that have responsibility for specific subsystems, and arranges these nodes in hierarchical layers such that each layer has characteristic functionality and timing. Planetary exploration robots should have mobility systems that can safely maneuver over rough surfaces at high speeds. Walking machines and wheeled vehicles with dynamic suspensions are candidates. The technology of sensing and sensory processing has progressed to the point where real-time autonomous path planning and obstacle avoidance behavior is feasible. Map-based navigation systems will support long-range mobility goals and plans. Planetary construction robots must have high strength-to-weight ratios for lifting and positioning tools and materials in six degrees-of-freedom over large working volumes. A new generation of cable-suspended Stewart platform devices and inflatable structures are suggested for lifting and positioning materials and structures, as well as for excavation, grading, and manipulating a variety of tools and construction machinery.
The KALI multi-arm robot programming and control environment
NASA Technical Reports Server (NTRS)
Backes, Paul; Hayati, Samad; Hayward, Vincent; Tso, Kam
1989-01-01
The KALI distributed robot programming and control environment is described within the context of its use in the Jet Propulsion Laboratory (JPL) telerobot project. The purpose of KALI is to provide a flexible robot programming and control environment for coordinated multi-arm robots. Flexibility, both in hardware configuration and software, is desired so that it can be easily modified to test various concepts in robot programming and control, e.g., multi-arm control, force control, sensor integration, teleoperation, and shared control. In the programming environment, user programs written in the C programming language describe trajectories for multiple coordinated manipulators with the aid of KALI function libraries. A system of multiple coordinated manipulators is considered within the programming environment as one motion system. The user plans the trajectory of one controlled Cartesian frame associated with a motion system and describes the positions of the manipulators with respect to that frame. Smooth Cartesian trajectories are achieved through a blending of successive path segments. The manipulator and load dynamics are considered during trajectory generation so that given interface force limits are not exceeded.
Strategy for robot motion and path planning in robot taping
NASA Astrophysics Data System (ADS)
Yuan, Qilong; Chen, I.-Ming; Lembono, Teguh Santoso; Landén, Simon Nelson; Malmgren, Victor
2016-06-01
Covering objects with masking tapes is a common process for surface protection in processes like spray painting, plasma spraying, shot peening, etc. Manual taping is tedious and takes a lot of effort of the workers. The taping process is a special process which requires correct surface covering strategy and proper attachment of the masking tape for an efficient surface protection. We have introduced an automatic robot taping system consisting of a robot manipulator, a rotating platform, a 3D scanner and specially designed taping end-effectors. This paper mainly talks about the surface covering strategies for different classes of geometries. The methods and corresponding taping tools are introduced for taping of following classes of surfaces: Cylindrical/extended surfaces, freeform surfaces with no grooves, surfaces with grooves, and rotational symmetrical surfaces. A collision avoidance algorithm is introduced for the robot taping manipulation. With further improvements on segmenting surfaces of taping parts and tape cutting mechanisms, such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to assist humans in this tedious and time costly work.
Optimizing a mobile robot control system using GPU acceleration
NASA Astrophysics Data System (ADS)
Tuck, Nat; McGuinness, Michael; Martin, Fred
2012-01-01
This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.
The influence of computer-generated path on the robot’s effector stability of motion
NASA Astrophysics Data System (ADS)
Foit, K.; Banaś, W.; Gwiazda, A.; Ćwikła, G.
2017-08-01
The off-line trajectory planning is often carried out due to economical and practical reasons: the robot is not excluded from the production process and the operator could benefit from testing programs in the virtual environment. On the other hand, the dedicated off-line programming and simulation software is often limited in features and is intended to roughly check the program. It should be expected that the arm of the real robot’s manipulator will realize the trajectory in different manner: the acceleration and deceleration phases may trigger the vibrations of the kinematic chain that could affect the precision of effector positioning and degrade the quality of process realized by the robot. The purpose of this work is the analysis of the selected cases, when the robot’s effector has been moved along the programmed path. The off-line generated, test trajectories have different arrangement of points: such approach has allowed evaluating the time needed to complete the each of the tasks, as well as measuring the level of the vibration of the robot’s wrist. All tests were performed without the load. The conclusions of the experiment may be useful during the trajectory planning in order to avoid the critical configuration of points.
H-SLAM: Rao-Blackwellized Particle Filter SLAM Using Hilbert Maps.
Vallicrosa, Guillem; Ridao, Pere
2018-05-01
Occupancy Grid maps provide a probabilistic representation of space which is important for a variety of robotic applications like path planning and autonomous manipulation. In this paper, a SLAM (Simultaneous Localization and Mapping) framework capable of obtaining this representation online is presented. The H-SLAM (Hilbert Maps SLAM) is based on Hilbert Map representation and uses a Particle Filter to represent the robot state. Hilbert Maps offer a continuous probabilistic representation with a small memory footprint. We present a series of experimental results carried both in simulation and with real AUVs (Autonomous Underwater Vehicles). These results demonstrate that our approach is able to represent the environment more consistently while capable of running online.
Optical information processing at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Reid, Max B.; Bualat, Maria G.; Cho, Young C.; Downie, John D.; Gary, Charles K.; Ma, Paul W.; Ozcan, Meric; Pryor, Anna H.; Spirkovska, Lilly
1993-01-01
The combination of analog optical processors with digital electronic systems offers the potential of tera-OPS computational performance, while often requiring less power and weight relative to all-digital systems. NASA is working to develop and demonstrate optical processing techniques for on-board, real time science and mission applications. Current research areas and applications under investigation include optical matrix processing for space structure vibration control and the analysis of Space Shuttle Main Engine plume spectra, optical correlation-based autonomous vision for robotic vehicles, analog computation for robotic path planning, free-space optical interconnections for information transfer within digital electronic computers, and multiplexed arrays of fiber optic interferometric sensors for acoustic and vibration measurements.
Hsu, Bing-Cheng
2018-01-01
Waxing is an important aspect of automobile detailing, aimed at protecting the finish of the car and preventing rust. At present, this delicate work is conducted manually due to the need for iterative adjustments to achieve acceptable quality. This paper presents a robotic waxing system in which surface images are used to evaluate the quality of the finish. An RGB-D camera is used to build a point cloud that details the sheet metal components to enable path planning for a robot manipulator. The robot is equipped with a multi-axis force sensor to measure and control the forces involved in the application and buffing of wax. Images of sheet metal components that were waxed by experienced car detailers were analyzed using image processing algorithms. A Gaussian distribution function and its parameterized values were obtained from the images for use as a performance criterion in evaluating the quality of surfaces prepared by the robotic waxing system. Waxing force and dwell time were optimized using a mathematical model based on the image-based criterion used to measure waxing performance. Experimental results demonstrate the feasibility of the proposed robotic waxing system and image-based performance evaluation scheme. PMID:29757940
Lin, Chi-Ying; Hsu, Bing-Cheng
2018-05-14
Waxing is an important aspect of automobile detailing, aimed at protecting the finish of the car and preventing rust. At present, this delicate work is conducted manually due to the need for iterative adjustments to achieve acceptable quality. This paper presents a robotic waxing system in which surface images are used to evaluate the quality of the finish. An RGB-D camera is used to build a point cloud that details the sheet metal components to enable path planning for a robot manipulator. The robot is equipped with a multi-axis force sensor to measure and control the forces involved in the application and buffing of wax. Images of sheet metal components that were waxed by experienced car detailers were analyzed using image processing algorithms. A Gaussian distribution function and its parameterized values were obtained from the images for use as a performance criterion in evaluating the quality of surfaces prepared by the robotic waxing system. Waxing force and dwell time were optimized using a mathematical model based on the image-based criterion used to measure waxing performance. Experimental results demonstrate the feasibility of the proposed robotic waxing system and image-based performance evaluation scheme.
NASA Astrophysics Data System (ADS)
Rangarajan, J. R.; Van Kuyck, K.; Himmelreich, U.; Nuttin, B.; Maes, F.; Suetens, P.
2011-03-01
Clinical and pre-clinical studies show that deep brain stimulation (DBS) of targeted brain regions by neurosurgical techniques ameliorate psychiatric disorder such as anorexia nervosa. Neurosurgical interventions in preclinical rodent brain are mostly accomplished manually with a 2D atlas. Considering both the large number of animals subjected to stereotactic surgical experiments and the associated imaging cost, feasibility of sophisticated pre-operative imaging based surgical path planning and/or robotic guidance is limited. Here, we spatially normalize vasculature information and assess the intra-strain variability in cerebral vasculature for a neurosurgery planning. By co-registering and subsequently building a probabilistic vasculature template in a standard space, we evaluate the risk of a user defined electrode trajectory damaging a blood vessel on its path. The use of such a method may not only be confined to DBS therapy in small animals, but also could be readily applicable to a wide range of stereotactic small animal surgeries like targeted injection of contrast agents and cell labeling applications.
Navigation of military and space unmanned ground vehicles in unstructured terrains
NASA Technical Reports Server (NTRS)
Lescoe, Paul; Lavery, David; Bedard, Roger
1991-01-01
Development of unmanned vehicles for local navigation in terrains unstructured by humans is reviewed. Modes of navigation include teleoperation or remote control, computer assisted remote driving (CARD), and semiautonomous navigation (SAN). A first implementation of a CARD system was successfully tested using the Robotic Technology Test Vehicle developed by Jet Propulsion Laboratory. Stereo pictures were transmitted to a remotely located human operator, who performed the sensing, perception, and planning functions of navigation. A computer provided range and angle measurements and the path plan was transmitted to the vehicle which autonomously executed the path. This implementation is to be enhanced by providing passive stereo vision and a reflex control system for autonomously stopping the vehicle if blocked by an obstacle. SAN achievements include implementation of a navigation testbed on a six wheel, three-body articulated rover vehicle, development of SAN algorithms and code, integration of SAN software onto the vehicle, and a successful feasibility demonstration that represents a step forward towards the technology required for long-range exploration of the lunar or Martian surface. The vehicle includes a passive stereo vision system with real-time area-based stereo image correlation, a terrain matcher, a path planner, and a path execution planner.
Autonomous path-planning navigation system for site characterization
NASA Astrophysics Data System (ADS)
Rankin, Arturo L.; Crane, Carl D., III; Armstrong, David G., II; Nease, Allen D.; Brown, H. Edward
1996-05-01
The location and removal of buried munitions is an important yet hazardous task. Current development is aimed at performing both the ordnance location and removal tasks autonomously. An autonomous survey vehicle (ASV) named the Gator has been developed at the Center for Intelligent Machines and Robotics, under the direction of Wright Laboratory, Tyndall Air Force Base, Florida, and the Navy Explosive Ordnance Disposal Technology Division, Indian Head, Maryland. The primary task of the survey vehicle is to autonomously traverse an off-road site, towing behind it a trailer containing a sensor package capable of characterizing the sub-surface contents. Achieving 00 percent coverage of the site is critical to fully characterizing the site. This paper presents a strategy for planning efficient paths for the survey vehicle that guarantees near-complete coverage of a site. A small library of three in-house developed path planners are reviewed. A strategy is also presented to keep the trailer on-path and to calculate the percent of coverage of a site with a resolution of 0.01 m2. All of the algorithms discussed in this paper were initially developed in simulation on a Silicon Graphics computer and subsequently implemented on the survey vehicle.
Driving Under the Influence (of Language).
Barrett, Daniel Paul; Bronikowski, Scott Alan; Yu, Haonan; Siskind, Jeffrey Mark
2017-06-09
We present a unified framework which supports grounding natural-language semantics in robotic driving. This framework supports acquisition (learning grounded meanings of nouns and prepositions from human sentential annotation of robotic driving paths), generation (using such acquired meanings to generate sentential description of new robotic driving paths), and comprehension (using such acquired meanings to support automated driving to accomplish navigational goals specified in natural language). We evaluate the performance of these three tasks by having independent human judges rate the semantic fidelity of the sentences associated with paths. Overall, machine performance is 74.9%, while the performance of human annotators is 83.8%.
NASA Technical Reports Server (NTRS)
Thakoor, Anil
1990-01-01
Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.
Levels of Autonomy and Autonomous System Performance Assessment for Intelligent Unmanned Systems
2014-04-01
LIDAR and camera sensors that is driven entirely by teleoperation would be AL 0. If that same robot used its LIDAR and camera data to generate a...obstacle detection, mapping, path planning 3 CMMAD semi- autonomous counter- mine system (Few 2010) Talon UGV, camera, LIDAR , metal detector...NCAP framework are performed on individual UMS components and do not require mission level evaluations. For example, bench testing of camera, LIDAR
Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Birge, Brian
2013-01-01
The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from preplanned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission. A novel path planning algorithm and prototype program was developed using biologically inspired particle swarm optimization (PSO) that generates an optimal path of traversal while avoiding obstacles. Applications include emergency path planning on lunar, Martian, and/or asteroid surfaces, generating multiple scenarios for outbound missions, Earth-based search and rescue, as well as human manual traversal and/or path integration into robotic control systems. The strategy allows for a changing environment, and can be re-tasked at will and run in real-time situations. Given a random extraterrestrial planetary or small body surface position, the goal was to find the fastest (or shortest) path to an arbitrary position such as a safe zone or geographic objective, subject to possibly varying constraints. The problem requires a workable solution 100% of the time, though it does not require the absolute theoretical optimum. Obstacles should be avoided, but if they cannot be, then the algorithm needs to be smart enough to recognize this and deal with it. With some modifications, it works with non-stationary error topologies as well.
MR-based real time path planning for cardiac operations with transapical access.
Yeniaras, Erol; Navkar, Nikhil V; Sonmez, Ahmet E; Shah, Dipan J; Deng, Zhigang; Tsekos, Nikolaos V
2011-01-01
Minimally invasive surgeries (MIS) have been perpetually evolving due to their potential high impact on improving patient management and overall cost effectiveness. Currently, MIS are further strengthened by the incorporation of magnetic resonance imaging (MRI) for amended visualization and high precision. Motivated by the fact that real-time MRI is emerging as a feasible modality especially for guiding interventions and surgeries in the beating heart; in this paper we introduce a real-time path planning algorithm for intracardiac procedures. Our approach creates a volumetric safety zone inside a beating heart and updates it on-the-fly using real-time MRI during the deployment of a robotic device. In order to prove the concept and assess the feasibility of the introduced method, a realistic operational scenario of transapical aortic valve replacement in a beating heart is chosen as the virtual case study.
Collision-free motion of two robot arms in a common workspace
NASA Technical Reports Server (NTRS)
Basta, Robert A.; Mehrotra, Rajiv; Varanasi, Murali R.
1987-01-01
Collision-free motion of two robot arms in a common workspace is investigated. A collision-free motion is obtained by detecting collisions along the preplanned trajectories using a sphere model for the wrist of each robot and then modifying the paths and/or trajectories of one or both robots to avoid the collision. Detecting and avoiding collisions are based on the premise that: preplanned trajectories of the robots follow a straight line; collisions are restricted to between the wrists of the two robots (which corresponds to the upper three links of PUMA manipulators); and collisions never occur between the beginning points or end points on the straight line paths. The collision detection algorithm is described and some approaches to collision avoidance are discussed.
Buschbaum, Jan; Fremd, Rainer; Pohlemann, Tim; Kristen, Alexander
2017-08-01
Reduction is a crucial step in the surgical treatment of bone fractures. Finding an optimal path for restoring anatomical alignment is considered technically demanding because collisions as well as high forces caused by surrounding soft tissues can avoid desired reduction movements. The repetition of reduction movements leads to a trial-and-error process which causes a prolonged duration of surgery. By planning an appropriate reduction path-an optimal sequence of target-directed movements-these problems should be overcome. For this purpose, a computer-based method has been developed. Using the example of simple femoral shaft fractures, 3D models are generated out of CT images. A reposition algorithm aligns both fragments by reconstructing their broken edges. According to the criteria of a deduced planning strategy, a modified A*-algorithm searches collision-free route of minimal force from the dislocated into the computed target position. Muscular forces are considered using a musculoskeletal reduction model (OpenSim model), and bone collisions are detected by an appropriate method. Five femoral SYNBONE models were broken into different fracture classification types and were automatically reduced from ten randomly selected displaced positions. Highest mean translational and rotational error for achieving target alignment is [Formula: see text] and [Formula: see text]. Mean value and standard deviation of occurring forces are [Formula: see text] for M. tensor fasciae latae and [Formula: see text] for M. semitendinosus over all trials. These pathways are precise, collision-free, required forces are minimized, and thus regarded as optimal paths. A novel method for planning reduction paths under consideration of collisions and muscular forces is introduced. The results deliver additional knowledge for an appropriate tactical reduction procedure and can provide a basis for further navigated or robotic-assisted developments.
Architecture for Control of the K9 Rover
NASA Technical Reports Server (NTRS)
Bresina, John L.; Bualat, maria; Fair, Michael; Wright, Anne; Washington, Richard
2006-01-01
Software featuring a multilevel architecture is used to control the hardware on the K9 Rover, which is a mobile robot used in research on robots for scientific exploration and autonomous operation in general. The software consists of five types of modules: Device Drivers - These modules, at the lowest level of the architecture, directly control motors, cameras, data buses, and other hardware devices. Resource Managers - Each of these modules controls several device drivers. Resource managers can be commanded by either a remote operator or the pilot or conditional-executive modules described below. Behaviors and Data Processors - These modules perform computations for such functions as planning paths, avoiding obstacles, visual tracking, and stereoscopy. These modules can be commanded only by the pilot. Pilot - The pilot receives a possibly complex command from the remote operator or the conditional executive, then decomposes the command into (1) more-specific commands to the resource managers and (2) requests for information from the behaviors and data processors. Conditional Executive - This highest-level module interprets a command plan sent by the remote operator, determines whether resources required for execution of the plan are available, monitors execution, and, if necessary, selects an alternate branch of the plan.
Motion planning with complete knowledge using a colored SOM.
Vleugels, J; Kok, J N; Overmars, M
1997-01-01
The motion planning problem requires that a collision-free path be determined for a robot moving amidst a fixed set of obstacles. Most neural network approaches to this problem are for the situation in which only local knowledge about the configuration space is available. The main goal of the paper is to show that neural networks are also suitable tools in situations with complete knowledge of the configuration space. In this paper we present an approach that combines a neural network and deterministic techniques. We define a colored version of Kohonen's self-organizing map that consists of two different classes of nodes. The network is presented with random configurations of the robot and, from this information, it constructs a road map of possible motions in the work space. The map is a growing network, and different nodes are used to approximate boundaries of obstacles and the Voronoi diagram of the obstacles, respectively. In a second phase, the positions of the two kinds of nodes are combined to obtain the road map. In this way a number of typical problems with small obstacles and passages are avoided, and the required number of nodes for a given accuracy is within reasonable limits. This road map is searched to find a motion connecting the given source and goal configurations of the robot. The algorithm is simple and general; the only specific computation that is required is a check for intersection of two polygons. We implemented the algorithm for planar robots allowing both translation and rotation and experiments show that compared to conventional techniques it performs well, even for difficult motion planning scenes.
Zeng, Jinle; Chang, Baohua; Du, Dong; Wang, Li; Chang, Shuhe; Peng, Guodong; Wang, Wenzhu
2018-01-05
Multi-layer/multi-pass welding (MLMPW) technology is widely used in the energy industry to join thick components. During automatic welding using robots or other actuators, it is very important to recognize the actual weld pass position using visual methods, which can then be used not only to perform reasonable path planning for actuators, but also to correct any deviations between the welding torch and the weld pass position in real time. However, due to the small geometrical differences between adjacent weld passes, existing weld position recognition technologies such as structured light methods are not suitable for weld position detection in MLMPW. This paper proposes a novel method for weld position detection, which fuses various kinds of information in MLMPW. First, a synchronous acquisition method is developed to obtain various kinds of visual information when directional light and structured light sources are on, respectively. Then, interferences are eliminated by fusing adjacent images. Finally, the information from directional and structured light images is fused to obtain the 3D positions of the weld passes. Experiment results show that each process can be done in 30 ms and the deviation is less than 0.6 mm. The proposed method can be used for automatic path planning and seam tracking in the robotic MLMPW process as well as electron beam freeform fabrication process.
A self-paced motor imagery based brain-computer interface for robotic wheelchair control.
Tsui, Chun Sing Louis; Gan, John Q; Hu, Huosheng
2011-10-01
This paper presents a simple self-paced motor imagery based brain-computer interface (BCI) to control a robotic wheelchair. An innovative control protocol is proposed to enable a 2-class self-paced BCI for wheelchair control, in which the user makes path planning and fully controls the wheelchair except for the automatic obstacle avoidance based on a laser range finder when necessary. In order for the users to train their motor imagery control online safely and easily, simulated robot navigation in a specially designed environment was developed. This allowed the users to practice motor imagery control with the core self-paced BCI system in a simulated scenario before controlling the wheelchair. The self-paced BCI can then be applied to control a real robotic wheelchair using a protocol similar to that controlling the simulated robot. Our emphasis is on allowing more potential users to use the BCI controlled wheelchair with minimal training; a simple 2-class self paced system is adequate with the novel control protocol, resulting in a better transition from offline training to online control. Experimental results have demonstrated the usefulness of the online practice under the simulated scenario, and the effectiveness of the proposed self-paced BCI for robotic wheelchair control.
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Chen, Alexander Y. K.
1991-01-01
Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two articulated arms, one movable robot head, and two charged coupled device (CCD) cameras for producing the stereoscopic views, and articulated cylindrical-type lower body, and an optional mobile base. A functional prototype is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Pin, F.G.
This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin's maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the accelerationmore » on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Pin, F.G.
This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin`s maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the accelerationmore » on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.« less
A networked modular hardware and software system for MRI-guided robotic prostate interventions
NASA Astrophysics Data System (ADS)
Su, Hao; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Cole, Gregory; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare; Fischer, Gregory S.
2012-02-01
Magnetic resonance imaging (MRI) provides high resolution multi-parametric imaging, large soft tissue contrast, and interactive image updates making it an ideal modality for diagnosing prostate cancer and guiding surgical tools. Despite a substantial armamentarium of apparatuses and systems has been developed to assist surgical diagnosis and therapy for MRI-guided procedures over last decade, the unified method to develop high fidelity robotic systems in terms of accuracy, dynamic performance, size, robustness and modularity, to work inside close-bore MRI scanner still remains a challenge. In this work, we develop and evaluate an integrated modular hardware and software system to support the surgical workflow of intra-operative MRI, with percutaneous prostate intervention as an illustrative case. Specifically, the distinct apparatuses and methods include: 1) a robot controller system for precision closed loop control of piezoelectric motors, 2) a robot control interface software that connects the 3D Slicer navigation software and the robot controller to exchange robot commands and coordinates using the OpenIGTLink open network communication protocol, and 3) MRI scan plane alignment to the planned path and imaging of the needle as it is inserted into the target location. A preliminary experiment with ex-vivo phantom validates the system workflow, MRI-compatibility and shows that the robotic system has a better than 0.01mm positioning accuracy.
Scheidt, Robert A.; Lillis, Kyle P.; Emerson, Scott J.
2010-01-01
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject-driven) and passive (robot-driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target vs. when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed. PMID:20532489
Path planning on cellular nonlinear network using active wave computing technique
NASA Astrophysics Data System (ADS)
Yeniçeri, Ramazan; Yalçın, Müstak E.
2009-05-01
This paper introduces a simple algorithm to solve robot path finding problem using active wave computing techniques. A two-dimensional Cellular Neural/Nonlinear Network (CNN), consist of relaxation oscillators, has been used to generate active waves and to process the visual information. The network, which has been implemented on a Field Programmable Gate Array (FPGA) chip, has the feature of being programmed, controlled and observed by a host computer. The arena of the robot is modelled as the medium of the active waves on the network. Active waves are employed to cover the whole medium with their own dynamics, by starting from an initial point. The proposed algorithm is achieved by observing the motion of the wave-front of the active waves. Host program first loads the arena model onto the active wave generator network and command to start the generation. Then periodically pulls the network image from the generator hardware to analyze evolution of the active waves. When the algorithm is completed, vectorial data image is generated. The path from any of the pixel on this image to the active wave generating pixel is drawn by the vectors on this image. The robot arena may be a complicated labyrinth or may have a simple geometry. But, the arena surface always must be flat. Our Autowave Generator CNN implementation which is settled on the Xilinx University Program Virtex-II Pro Development System is operated by a MATLAB program running on the host computer. As the active wave generator hardware has 16, 384 neurons, an arena with 128 × 128 pixels can be modeled and solved by the algorithm. The system also has a monitor and network image is depicted on the monitor simultaneously.
LDRD project final report : hybrid AI/cognitive tactical behavior framework for LVC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djordjevich, Donna D.; Xavier, Patrick Gordon; Brannon, Nathan Gregory
This Lab-Directed Research and Development (LDRD) sought to develop technology that enhances scenario construction speed, entity behavior robustness, and scalability in Live-Virtual-Constructive (LVC) simulation. We investigated issues in both simulation architecture and behavior modeling. We developed path-planning technology that improves the ability to express intent in the planning task while still permitting an efficient search algorithm. An LVC simulation demonstrated how this enables 'one-click' layout of squad tactical paths, as well as dynamic re-planning for simulated squads and for real and simulated mobile robots. We identified human response latencies that can be exploited in parallel/distributed architectures. We did an experimentalmore » study to determine where parallelization would be productive in Umbra-based force-on-force (FOF) simulations. We developed and implemented a data-driven simulation composition approach that solves entity class hierarchy issues and supports assurance of simulation fairness. Finally, we proposed a flexible framework to enable integration of multiple behavior modeling components that model working memory phenomena with different degrees of sophistication.« less
STS-104 Crew Interview: Steve Lindsey
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Commander Steve Lindsey is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Lindsey describes his role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
STS-104 Crew Interview: Mike Gernhardt
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Mission Specialist Mike Gernhardt is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Gernhardt describes his role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
STS-104 Crew Interview: Janet Kavandi
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Mission Specialist Janet Kavandi is seen being interviewed. She answers questions about her inspiration to become an astronaut and her career path. She gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Kavandi describes her role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
STS-104 Crew Interview: Jim Reilly
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Mission Specialist Jim Reilly is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Reilly describes his role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
STS-104 Crew Interview: Charlie Hobaugh
NASA Technical Reports Server (NTRS)
2001-01-01
STS-104 Pilot Charlie Hobaugh is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (the Joint Airlock and the external gas tanks), and the usefulness of the newly installed Canadian Robotic Arm (installed by STS-100 crew). Hobaugh describes his role in the rendezvous, docking, undocking, and flyaround of the Atlantis Orbiter and the International Space Station (ISS) and discusses the mission's planned spacewalks.
Online Aerial Terrain Mapping for Ground Robot Navigation
Peterson, John; Chaudhry, Haseeb; Abdelatty, Karim; Bird, John; Kochersberger, Kevin
2018-01-01
This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle’s overhead view to inform the ground vehicle’s path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS) and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles. PMID:29461496
Online Aerial Terrain Mapping for Ground Robot Navigation.
Peterson, John; Chaudhry, Haseeb; Abdelatty, Karim; Bird, John; Kochersberger, Kevin
2018-02-20
This work presents a collaborative unmanned aerial and ground vehicle system which utilizes the aerial vehicle's overhead view to inform the ground vehicle's path planning in real time. The aerial vehicle acquires imagery which is assembled into a orthomosaic and then classified. These terrain classes are used to estimate relative navigation costs for the ground vehicle so energy-efficient paths may be generated and then executed. The two vehicles are registered in a common coordinate frame using a real-time kinematic global positioning system (RTK GPS) and all image processing is performed onboard the unmanned aerial vehicle, which minimizes the data exchanged between the vehicles. This paper describes the architecture of the system and quantifies the registration errors between the vehicles.
Multi-hop path tracing of mobile robot with multi-range image
NASA Astrophysics Data System (ADS)
Choudhury, Ramakanta; Samal, Chandrakanta; Choudhury, Umakanta
2010-02-01
It is well known that image processing depends heavily upon image representation technique . This paper intends to find out the optimal path of mobile robots for a specified area where obstacles are predefined as well as modified. Here the optimal path is represented by using the Quad tree method. Since there has been rising interest in the use of quad tree, we have tried to use the successive subdivision of images into quadrants from which the quad tree is developed. In the quad tree, obstacles-free area and the partial filled area are represented with different notations. After development of quad tree the algorithm is used to find the optimal path by employing neighbor finding technique, with a view to move the robot from the source to destination. The algorithm, here , permeates through the entire tree, and tries to locate the common ancestor for computation. The computation and the algorithm, aim at easing the ability of the robot to trace the optimal path with the help of adjacencies between the neighboring nodes as well as determining such adjacencies in the horizontal, vertical and diagonal directions. In this paper efforts have been made to determine the movement of the adjacent block in the quad tree and to detect the transition between the blocks equal size and finally generate the result.
Soft computing-based terrain visual sensing and data fusion for unmanned ground robotic systems
NASA Astrophysics Data System (ADS)
Shirkhodaie, Amir
2006-05-01
In this paper, we have primarily discussed technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain visual clues. The Kalman Filtering technique is applied for aggregative fusion of sub-terrain assessment results. The last two terrain classifiers are shown to have remarkable capability for terrain traversability assessment of natural terrains. We have conducted a comparative performance evaluation of all three terrain classifiers and presented the results in this paper.
Attention control learning in the decision space using state estimation
NASA Astrophysics Data System (ADS)
Gharaee, Zahra; Fatehi, Alireza; Mirian, Maryam S.; Nili Ahmadabadi, Majid
2016-05-01
The main goal of this paper is modelling attention while using it in efficient path planning of mobile robots. The key challenge in concurrently aiming these two goals is how to make an optimal, or near-optimal, decision in spite of time and processing power limitations, which inherently exist in a typical multi-sensor real-world robotic application. To efficiently recognise the environment under these two limitations, attention of an intelligent agent is controlled by employing the reinforcement learning framework. We propose an estimation method using estimated mixture-of-experts task and attention learning in perceptual space. An agent learns how to employ its sensory resources, and when to stop observing, by estimating its perceptual space. In this paper, static estimation of the state space in a learning task problem, which is examined in the WebotsTM simulator, is performed. Simulation results show that a robot learns how to achieve an optimal policy with a controlled cost by estimating the state space instead of continually updating sensory information.
Navigable points estimation for mobile robots using binary image skeletonization
NASA Astrophysics Data System (ADS)
Martinez S., Fernando; Jacinto G., Edwar; Montiel A., Holman
2017-02-01
This paper describes the use of image skeletonization for the estimation of all the navigable points, inside a scene of mobile robots navigation. Those points are used for computing a valid navigation path, using standard methods. The main idea is to find the middle and the extreme points of the obstacles in the scene, taking into account the robot size, and create a map of navigable points, in order to reduce the amount of information for the planning algorithm. Those points are located by means of the skeletonization of a binary image of the obstacles and the scene background, along with some other digital image processing algorithms. The proposed algorithm automatically gives a variable number of navigable points per obstacle, depending on the complexity of its shape. As well as, the way how the algorithm can change some of their parameters in order to change the final number of the resultant key points is shown. The results shown here were obtained applying different kinds of digital image processing algorithms on static scenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seimenis, Ioannis; Tsekos, Nikolaos V.; Keroglou, Christoforos
2012-04-15
Purpose: The aim of this work was to develop and test a general methodology for the planning and performance of robot-assisted, MR-guided interventions. This methodology also includes the employment of software tools with appropriately tailored routines to effectively exploit the capabilities of MRI and address the relevant spatial limitations. Methods: The described methodology consists of: (1) patient-customized feasibility study that focuses on the geometric limitations imposed by the gantry, the robotic hardware, and interventional tools, as well as the patient; (2) stereotactic preoperative planning for initial positioning of the manipulator and alignment of its end-effector with a selected target; andmore » (3) real-time, intraoperative tool tracking and monitoring of the actual intervention execution. Testing was performed inside a standard 1.5T MRI scanner in which the MR-compatible manipulator is deployed to provide the required access. Results: A volunteer imaging study demonstrates the application of the feasibility stage. A phantom study on needle targeting is also presented, demonstrating the applicability and effectiveness of the proposed preoperative and intraoperative stages of the methodology. For this purpose, a manually actuated, MR-compatible robotic manipulation system was used to accurately acquire a prescribed target through alternative approaching paths. Conclusions: The methodology presented and experimentally examined allows the effective performance of MR-guided interventions. It is suitable for, but not restricted to, needle-targeting applications assisted by a robotic manipulation system, which can be deployed inside a cylindrical scanner to provide the required access to the patient facilitating real-time guidance and monitoring.« less
Vision-based semi-autonomous outdoor robot system to reduce soldier workload
NASA Astrophysics Data System (ADS)
Richardson, Al; Rodgers, Michael H.
2001-09-01
Sensors and computational capability have not reached the point to enable small robots to navigate autonomously in unconstrained outdoor environments at tactically useful speeds. This problem is greatly reduced, however, if a soldier can lead the robot through terrain that he knows it can traverse. An application of this concept is a small pack-mule robot that follows a foot soldier over outdoor terrain. The solder would be responsible to avoid situations beyond the robot's limitations when encountered. Having learned the route, the robot could autonomously retrace the path carrying supplies and munitions. This would greatly reduce the soldier's workload under normal conditions. This paper presents a description of a developmental robot sensor system using low-cost commercial 3D vision and inertial sensors to address this application. The robot moves at fast walking speed and requires only short-range perception to accomplish its task. 3D-feature information is recorded on a composite route map that the robot uses to negotiate its local environment and retrace the path taught by the soldier leader.
Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng
2015-04-24
Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient , the path curvature variable and robot speed ), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model's stationary response for the vehicle shows a qualitative relationship for the specified parameters and . Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient and two physical factors is studied, i.e., the radius of the path curvature and the robot speed . An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid-steering robot.
Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J.
2014-01-01
Abstract. Brain tumor margin removal is challenging because diseased tissue is often visually indistinguishable from healthy tissue. Leaving residual tumor leads to decreased survival, and removing normal tissue causes life-long neurological deficits. Thus, a surgical robotics system with a high degree of dexterity, accurate navigation, and highly precise resection is an ideal candidate for image-guided removal of fluorescently labeled brain tumor cells. To image, we developed a scanning fiber endoscope (SFE) which acquires concurrent reflectance and fluorescence wide-field images at a high resolution. This miniature flexible endoscope was affixed to the arm of a RAVEN II surgical robot providing programmable motion with feedback control using stereo-pair surveillance cameras. To verify the accuracy of the three-dimensional (3-D) reconstructed surgical field, a multimodal physical-sized model of debulked brain tumor was used to obtain the 3-D locations of residual tumor for robotic path planning to remove fluorescent cells. Such reconstruction is repeated intraoperatively during margin clean-up so the algorithm efficiency and accuracy are important to the robotically assisted surgery. Experimental results indicate that the time for creating this 3-D surface can be reduced to one-third by using known trajectories of a robot arm, and the error from the reconstructed phantom is within 0.67 mm in average compared to the model design. PMID:26158071
Mignon, Paul; Poignet, Philippe; Troccaz, Jocelyne
2018-05-29
Robotic control of needle bending aims at increasing the precision of percutaneous procedures. Ultrasound feedback is preferable for its clinical ease of use, cost and compactness but raises needle detection issues. In this paper, we propose a complete system dedicated to robotized guidance of a flexible needle under 3D ultrasound imaging. This system includes a medical robot dedicated to transperineal needle positioning and insertion, a rapid path planning for needle steering using bevel-tip needle natural curvature in tissue, and an ultrasound-based automatic needle detection algorithm. Since ultrasound-based automatic needle steering is often made difficult by the needle localization in biological tissue, we quantify the benefit of using flexible echogenic needles for robotized guidance under 3D ultrasound. The "echogenic" term refers to the etching of microstructures on the needle shaft. We prove that these structures improve needle visibility and detection robustness in ultrasound images. We finally present promising results when reaching targets using needle steering. The experiments were conducted with various needles in different media (synthetic phantoms and ex vivo biological tissue). For instance, with nitinol needles the mean accuracy is 1.2 mm (respectively 3.8 mm) in phantoms (resp. biological tissue).
Papantoniou, V.
1999-01-01
The Palaiomation Consortium, supported by the European Commission, is building a robot Iguanodon atherfieldensis for museum display that is much more sophisticated than existing animatronic exhibits. The current half-size (2.5 m) prototype is fully autonomous, carrying its own computer and batteries. It walks around the room, choosing its own path and avoiding obstacles. A bigger version with a larger repertoire of behaviours is planned. Many design problems have had to be overcome. A real dinosaur would have had hundreds of muscles, and we have had to devise means of achieving life-like movement with a much smaller number of motors; we have limited ourselves to 20, to keep the control problems manageable. Realistic stance requires a narrower trackway and a higher centre of mass than in previous (often spider-like) legged robots, making it more difficult to maintain stability. Other important differences from previous walking robots are that the forelegs have to be shorter than the hind, and the machinery has had to be designed to fit inside a realistically shaped body shell. Battery life is about one hour, but to achieve this we have had to design the robot to have very low power consumption. Currently, this limits it to unrealistically slow movement. The control system includes a high-level instructions processor, a gait generator, a motion-coordination generator, and a kinematic model.
Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems.
Brookes, Jack; Kuznecovs, Maksims; Kanakis, Menelaos; Grigals, Arturs; Narvidas, Mazvydas; Gallagher, Justin; Levesley, Martin
2017-07-01
Robotics is increasing in popularity as a method of providing rich, personalized and cost-effective physiotherapy to individuals with some degree of upper limb paralysis, such as those who have suffered a stroke. These robotic rehabilitation systems are often high powered, and exoskeletal systems can attach to the person in a restrictive manner. Therefore, ensuring the mechanical safety of these devices before they come in contact with individuals is a priority. Additionally, rehabilitation systems may use novel sensor systems to measure current arm position. Used to capture and assess patient movements, these first need to be verified for accuracy by an external system. We present the ALAN-Arm, a humanoid robotic arm designed to be used for both accuracy benchmarking and safety testing of robotic rehabilitation systems. The system can be attached to a rehabilitation device and then replay generated or human movement trajectories, as well as autonomously play rehabilitation games or activities. Tests of the ALAN-Arm indicated it could recreate the path of a generated slow movement path with a maximum error of 14.2mm (mean = 5.8mm) and perform cyclic movements up to 0.6Hz with low gain (<1.5dB). Replaying human data trajectories showed the ability to largely preserve human movement characteristics with slightly higher path length and lower normalised jerk.
Training industrial robots with gesture recognition techniques
NASA Astrophysics Data System (ADS)
Piane, Jennifer; Raicu, Daniela; Furst, Jacob
2013-01-01
In this paper we propose to use gesture recognition approaches to track a human hand in 3D space and, without the use of special clothing or markers, be able to accurately generate code for training an industrial robot to perform the same motion. The proposed hand tracking component includes three methods: a color-thresholding model, naïve Bayes analysis and Support Vector Machine (SVM) to detect the human hand. Next, it performs stereo matching on the region where the hand was detected to find relative 3D coordinates. The list of coordinates returned is expectedly noisy due to the way the human hand can alter its apparent shape while moving, the inconsistencies in human motion and detection failures in the cluttered environment. Therefore, the system analyzes the list of coordinates to determine a path for the robot to move, by smoothing the data to reduce noise and looking for significant points used to determine the path the robot will ultimately take. The proposed system was applied to pairs of videos recording the motion of a human hand in a „real‟ environment to move the end-affector of a SCARA robot along the same path as the hand of the person in the video. The correctness of the robot motion was determined by observers indicating that motion of the robot appeared to match the motion of the video.
Generation of RGB-D data for SLAM using robotic framework V-REP
NASA Astrophysics Data System (ADS)
Gritsenko, Pavel S.; Gritsenko, Igor S.; Seidakhmet, Askar Zh.; Abduraimov, Azizbek E.
2017-09-01
In this article, we will present a methodology to debug RGB-D SLAM systems as well as to generate testing data. We have created a model of a laboratory with an area of 250 m2 (25 × 10) with set of objects of different type. V-REP Microsoft Kinect sensor simulation model was used as a basis for robot vision system. Motion path of the sensor model has multiple loops. We have written a program in V-Rep native language Lua to record data array from the Microsoft Kinect sensor model. The array includes both RGB and Depth streams with full resolution (640 × 480) for every 10 cm of the path. The simulated path has absolute accuracy, since it is a simulation, and is represented by an array of transformation matrices (4 × 4). The length of the data array is 1000 steps or 100 m. The path simulates frequently occurring cases in SLAM, including loops. It is worth noting that the path was modeled for a mobile robot and it is represented by a 2D path parallel to the floor at a height of 40 cm.
1988-06-01
gantry configuration, however, presents a cage-like barrier to the rapid loading and unloading of workpieces such as automobile bodies or body...assemblies almost as large as an automobile . System controls can follow cutting paths within a few thousandths of an inch while producing such path detail...are often called robots. Indeed, they meet the RIA* definition of an industrial robot as follows: "A reprogrammable multifunctional manipulator designed
Dynamics and control of robot for capturing objects in space
NASA Astrophysics Data System (ADS)
Huang, Panfeng
Space robots are expected to perform intricate tasks in future space services, such as satellite maintenance, refueling, and replacing the orbital replacement unit (ORU). To realize these missions, the capturing operation may not be avoided. Such operations will encounter some challenges because space robots have some unique characteristics unfound on ground-based robots, such as, dynamic singularities, dynamic coupling between manipulator and space base, limited energy supply and working without a fixed base, and so on. In addition, since contacts and impacts may not be avoided during capturing operation. Therefore, dynamics and control problems of space robot for capturing objects are significant research topics if the robots are to be deployed for the space services. A typical servicing operation mainly includes three phases: capturing the object, berthing and docking the object, then repairing the target. Therefore, this thesis will focus on resolving some challenging problems during capturing the object, berthing and docking, and so on. In this thesis, I study and analyze the dynamics and control problems of space robot for capturing objects. This work has potential impact in space robotic applications. I first study the contact and impact dynamics of space robot and objects. I specifically focus on analyzing the impact dynamics and mapping the relationship of influence and speed. Then, I develop the fundamental theory for planning the minimum-collision based trajectory of space robot and designing the configuration of space robot at the moment of capture. To compensate for the attitude of the space base during the capturing approach operation, a new balance control concept which can effectively balance the attitude of the space base using the dynamic couplings is developed. The developed balance control concept helps to understand of the nature of space dynamic coupling, and can be readily applied to compensate or minimize the disturbance to the space base. After capturing the object, the space robot must complete the following two tasks: one is to berth the object, and the other is to re-orientate the attitude of the whole robot system for communication and power supply. Therefore, I propose a method to accomplish these two tasks simultaneously using manipulator motion only. The ultimate goal of space services is to realize the capture and manipulation autonomously. Therefore, I propose an affective approach based on learning human skill to track and capture the objects automatically in space. With human-teaching demonstration, the space robot is able to learn and abstract human tracking and capturing skill using an efficient neural-network learning architecture that combines flexible Cascade Neural Networks with Node Decoupled Extended Kalman Filtering (CNN-NDEKF). The simulation results attest that this approach is useful and feasible in tracking trajectory planning and capturing of space robot. Finally I propose a novel approach based on Genetic Algorithms (GAs) to optimize the approach trajectory of space robots in order to realize effective and stable operations. I complete the minimum-torque path planning in order to save the limited energy in space, and design the minimum jerk trajectory for the stabilization of the space manipulator and its space base. These optimal algorithms are very important and useful for the application of space robot.
Robot Tracer with Visual Camera
NASA Astrophysics Data System (ADS)
Jabbar Lubis, Abdul; Dwi Lestari, Yuyun; Dafitri, Haida; Azanuddin
2017-12-01
Robot is a versatile tool that can function replace human work function. The robot is a device that can be reprogrammed according to user needs. The use of wireless networks for remote monitoring needs can be utilized to build a robot that can be monitored movement and can be monitored using blueprints and he can track the path chosen robot. This process is sent using a wireless network. For visual robot using high resolution cameras to facilitate the operator to control the robot and see the surrounding circumstances.
Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng
2015-01-01
Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient χ, the path curvature variable λ and robot speed v), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model’s stationary response for the vehicle shows a qualitative relationship for the specified parameters χ and λ. Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient χ and two physical factors is studied, i.e., the radius of the path curvature λ and the robot speed v. An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid–steering robot. PMID:25919370
Hierarchical Motion Planning for Autonomous Aerial and Terrestrial Vehicles
NASA Astrophysics Data System (ADS)
Cowlagi, Raghvendra V.
Autonomous mobile robots---both aerial and terrestrial vehicles---have gained immense importance due to the broad spectrum of their potential military and civilian applications. One of the indispensable requirements for the autonomy of a mobile vehicle is the vehicle's capability of planning and executing its motion, that is, finding appropriate control inputs for the vehicle such that the resulting vehicle motion satisfies the requirements of the vehicular task. The motion planning and control problem is inherently complex because it involves two disparate sub-problems: (1) satisfaction of the vehicular task requirements, which requires tools from combinatorics and/or formal methods, and (2) design of the vehicle control laws, which requires tools from dynamical systems and control theory. Accordingly, this problem is usually decomposed and solved over two levels of hierarchy. The higher level, called the geometric path planning level, finds a geometric path that satisfies the vehicular task requirements, e.g., obstacle avoidance. The lower level, called the trajectory planning level, involves sufficient smoothening of this geometric path followed by a suitable time parametrization to obtain a reference trajectory for the vehicle. Although simple and efficient, such hierarchical decomposition suffers a serious drawback: the geometric path planner has no information of the kinematical and dynamical constraints of the vehicle. Consequently, the geometric planner may produce paths that the trajectory planner cannot transform into a feasible reference trajectory. Two main ideas appear in the literature to remedy this problem: (a) randomized sampling-based planning, which eliminates the geometric planner altogether by planning in the vehicle state space, and (b) geometric planning supported by feedback control laws. The former class of methods suffer from a lack of optimality of the resultant trajectory, while the latter class of methods makes a restrictive assumption concerning the vehicle kinematical model. We propose a hierarchical motion planning framework based on a novel mode of interaction between these two levels of planning. This interaction rests on the solution of a special shortest-path problem on graphs, namely, one using costs defined on multiple edge transitions in the path instead of the usual single edge transition costs. These costs are provided by a local trajectory generation algorithm, which we implement using model predictive control and the concept of effective target sets for simplifying the non-convex constraints involved in the problem. The proposed motion planner ensures "consistency" between the two levels of planning, i.e., a guarantee that the higher level geometric path is always associated with a kinematically and dynamically feasible trajectory. The main contributions of this thesis are: 1. A motion planning framework based on history-dependent costs (H-costs) in cell decomposition graphs for incorporating vehicle dynamical constraints: this framework offers distinct advantages in comparison with the competing approaches of discretization of the state space, of randomized sampling-based motion planning, and of local feedback-based, decoupled hierarchical motion planning, 2. An efficient and flexible algorithm for finding optimal H-cost paths, 3. A precise and general formulation of a local trajectory problem (the tile motion planning problem) that allows independent development of the discrete planner and the trajectory planner, while maintaining "compatibility" between the two planners, 4. A local trajectory generation algorithm using mpc, and the application of the concept of effective target sets for a significant simplification of the local trajectory generation problem, 5. The geometric analysis of curvature-bounded traversal of rectangular channels, leading to less conservative results in comparison with a result reported in the literature, and also to the efficient construction of effective target sets for the solution of the tile motion planning problem, 6. A wavelet-based multi-resolution path planning scheme, and a proof of completeness of the proposed scheme: such proofs are altogether absent from other works on multi-resolution path planning, 7. A technique for extracting all information about cells---namely, the locations, the sizes, and the associated image intensities---directly from the set of significant detail coefficients considered for path planning at a given iteration, and 8. The extension of the multi-resolution path planning scheme to include vehicle dynamical constraints using the aforementioned history-dependent costs approach. The future work includes an implementation of the proposed framework involving a discrete planner that solves classical planning problems more general than the single-query path planning problem considered thus far, and involving trajectory generation schemes for realistic vehicle dynamical models such as the bicycle model.
Autonomous mobile platform with simultaneous localisation and mapping system for patrolling purposes
NASA Astrophysics Data System (ADS)
Mitka, Łukasz; Buratowski, Tomasz
2017-10-01
This work describes an autonomous mobile platform for supervision and surveillance purposes. The system can be adapted for mounting on different types of vehicles. The platform is based on a SLAM navigation system which performs a localization task. Sensor fusion including laser scanners, inertial measurement unit (IMU), odometry and GPS lets the system determine its position in a certain and precise way. The platform is able to create a 3D model of a supervised area and export it as a point cloud. The system can operate both inside and outside as the navigation algorithm is resistant to typical localization errors caused by wheel slippage or temporal GPS signal loss. The system is equipped with a path-planning module which allows operating in two modes. The first mode is for periodical observation of points in a selected area. The second mode is turned on in case of an alarm. When it is called, the platform moves with the fastest route to the place of the alert. The path planning is always performed online with use of the most current scans, therefore the platform is able to adjust its trajectory to the environment changes or obstacles that are in the motion. The control algorithms are developed under the Robot Operating System (ROS) since it comes with drivers for many devices used in robotics. Such a solution allows for extending the system with any type of sensor in order to incorporate its data into a created area model. Proposed appliance can be ported to other existing robotic platforms or used to develop a new platform dedicated to a specific kind of surveillance. The platform use cases are to patrol an area, such as airport or metro station, in search for dangerous substances or suspicious objects and in case of detection instantly inform security forces. Second use case is a tele-operation in hazardous area for an inspection purposes.
Remote imagery for unmanned ground vehicles: the future of path planning for ground robotics
NASA Astrophysics Data System (ADS)
Frederick, Philip A.; Theisen, Bernard L.; Ward, Derek
2006-10-01
Remote Imagery for Unmanned Ground Vehicles (RIUGV) uses a combination of high-resolution multi-spectral satellite imagery and advanced commercial off-the-self (COTS) object-oriented image processing software to provide automated terrain feature extraction and classification. This information, along with elevation data, infrared imagery, a vehicle mobility model and various meta-data (local weather reports, Zobler Soil map, etc...), is fed into automated path planning software to provide a stand-alone ability to generate rapidly updateable dynamic mobility maps for Manned or Unmanned Ground Vehicles (MGVs or UGVs). These polygon based mobility maps can reside on an individual platform or a tactical network. When new information is available, change files are generated and ingested into existing mobility maps based on user selected criteria. Bandwidth concerns are mitigated by the use of shape files for the representation of the data (e.g. each object in the scene is represented by a shape file and thus can be transmitted individually). User input (desired level of stealth, required time of arrival, etc...) determines the priority in which objects are tagged for updates. This paper will also discuss the planned July 2006 field experiment.
Surgical robotics for patient safety in the perioperative environment: realizing the promise.
Fuji Lai; Louw, Deon
2007-06-01
Surgery is at a crossroads of complexity. However, there is a potential path toward patient safety. One such course is to leverage computer and robotic assist techniques in the reduction and interception of error in the perioperative environment. This white paper attempts to facilitate the road toward realizing that promise by outlining a research agenda. The paper will briefly review the current status of surgical robotics and summarize any conclusions that can be reached to date based on existing research. It will then lay out a roadmap for future research to determine how surgical robots should be optimally designed and integrated into the perioperative workflow and process. Successful movement down this path would involve focused efforts and multiagency collaboration to address the research priorities outlined, thereby realizing the full potential of surgical robotics to augment human capabilities, enhance task performance, extend the reach of surgical care, improve health care quality, and ultimately enhance patient safety.
Quantum robots and environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, P.
1998-08-01
Quantum robots and their interactions with environments of quantum systems are described, and their study justified. A quantum robot is a mobile quantum system that includes an on-board quantum computer and needed ancillary systems. Quantum robots carry out tasks whose goals include specified changes in the state of the environment, or carrying out measurements on the environment. Each task is a sequence of alternating computation and action phases. Computation phase activites include determination of the action to be carried out in the next phase, and recording of information on neighborhood environmental system states. Action phase activities include motion of themore » quantum robot and changes in the neighborhood environment system states. Models of quantum robots and their interactions with environments are described using discrete space and time. A unitary step operator T that gives the single time step dynamics is associated with each task. T=T{sub a}+T{sub c} is a sum of action phase and computation phase step operators. Conditions that T{sub a} and T{sub c} should satisfy are given along with a description of the evolution as a sum over paths of completed phase input and output states. A simple example of a task{emdash}carrying out a measurement on a very simple environment{emdash}is analyzed in detail. A decision tree for the task is presented and discussed in terms of the sums over phase paths. It is seen that no definite times or durations are associated with the phase steps in the tree, and that the tree describes the successive phase steps in each path in the sum over phase paths. {copyright} {ital 1998} {ital The American Physical Society}« less
Fast obstacle detection based on multi-sensor information fusion
NASA Astrophysics Data System (ADS)
Lu, Linli; Ying, Jie
2014-11-01
Obstacle detection is one of the key problems in areas such as driving assistance and mobile robot navigation, which cannot meet the actual demand by using a single sensor. A method is proposed to realize the real-time access to the information of the obstacle in front of the robot and calculating the real size of the obstacle area according to the mechanism of the triangle similarity in process of imaging by fusing datum from a camera and an ultrasonic sensor, which supports the local path planning decision. In the part of image analyzing, the obstacle detection region is limited according to complementary principle. We chose ultrasonic detection range as the region for obstacle detection when the obstacle is relatively near the robot, and the travelling road area in front of the robot is the region for a relatively-long-distance detection. The obstacle detection algorithm is adapted from a powerful background subtraction algorithm ViBe: Visual Background Extractor. We extracted an obstacle free region in front of the robot in the initial frame, this region provided a reference sample set of gray scale value for obstacle detection. Experiments of detecting different obstacles at different distances respectively, give the accuracy of the obstacle detection and the error percentage between the calculated size and the actual size of the detected obstacle. Experimental results show that the detection scheme can effectively detect obstacles in front of the robot and provide size of the obstacle with relatively high dimensional accuracy.
Development and demonstration of autonomous behaviors for urban environment exploration
NASA Astrophysics Data System (ADS)
Ahuja, Gaurav; Fellars, Donald; Kogut, Gregory; Pacis Rius, Estrellina; Schoolov, Misha; Xydes, Alexander
2012-06-01
Under the Urban Environment Exploration project, the Space and Naval Warfare Systems Center Pacic (SSC- PAC) is maturing technologies and sensor payloads that enable man-portable robots to operate autonomously within the challenging conditions of urban environments. Previously, SSC-PAC has demonstrated robotic capabilities to navigate and localize without GPS and map the ground oors of various building sizes.1 SSC-PAC has since extended those capabilities to localize and map multiple multi-story buildings within a specied area. To facilitate these capabilities, SSC-PAC developed technologies that enable the robot to detect stairs/stairwells, maintain localization across multiple environments (e.g. in a 3D world, on stairs, with/without GPS), visualize data in 3D, plan paths between any two points within the specied area, and avoid 3D obstacles. These technologies have been developed as independent behaviors under the Autonomous Capabilities Suite, a behavior architecture, and demonstrated at a MOUT site at Camp Pendleton. This paper describes the perceptions and behaviors used to produce these capabilities, as well as an example demonstration scenario.
NASA Astrophysics Data System (ADS)
Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.
2014-03-01
A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.
Intelligent vehicle control: Opportunities for terrestrial-space system integration
NASA Technical Reports Server (NTRS)
Shoemaker, Charles
1994-01-01
For 11 years the Department of Defense has cooperated with a diverse array of other Federal agencies including the National Institute of Standards and Technology, the Jet Propulsion Laboratory, and the Department of Energy, to develop robotics technology for unmanned ground systems. These activities have addressed control system architectures supporting sharing of tasks between the system operator and various automated subsystems, man-machine interfaces to intelligent vehicles systems, video compression supporting vehicle driving in low data rate digital communication environments, multiple simultaneous vehicle control by a single operator, path planning and retrace, and automated obstacle detection and avoidance subsystem. Performance metrics and test facilities for robotic vehicles were developed permitting objective performance assessment of a variety of operator-automated vehicle control regimes. Progress in these areas will be described in the context of robotic vehicle testbeds specifically developed for automated vehicle research. These initiatives, particularly as regards the data compression, task sharing, and automated mobility topics, also have relevance in the space environment. The intersection of technology development interests between these two communities will be discussed in this paper.
JPRS Report, Science & Technology, Japan, 4th Intelligent Robots Symposium, Volume 2
1989-03-16
accidents caused by strikes by robots,5 a quantitative model for safety evaluation,6 and evaluations of actual systems7 in order to contribute to...Mobile Robot Position Referencing Using Map-Based Vision Systems.... 160 Safety Evaluation of Man-Robot System 171 Fuzzy Path Pattern of Automatic...camera are made after the robot stops to prevent damage from occurring through obstacle interference. The position of the camera is indicated on the
Efficient Symbolic Task Planning for Multiple Mobile Robots
2016-12-13
Efficient Symbolic Task Planning for Multiple Mobile Robots Yuqian Jiang December 13, 2016 Abstract Symbolic task planning enables a robot to make...high-level deci- sions toward a complex goal by computing a sequence of actions with minimum expected costs. This thesis builds on a single- robot ...time complexity of optimal planning for multiple mobile robots . In this thesis we first investigate the performance of the state-of-the-art solvers of
2010-01-01
Background Manual body weight supported treadmill training and robot-aided treadmill training are frequently used techniques for the gait rehabilitation of individuals after stroke and spinal cord injury. Current evidence suggests that robot-aided gait training may be improved by making robotic behavior more patient-cooperative. In this study, we have investigated the immediate effects of patient-cooperative versus non-cooperative robot-aided gait training on individuals with incomplete spinal cord injury (iSCI). Methods Eleven patients with iSCI participated in a single training session with the gait rehabilitation robot Lokomat. The patients were exposed to four different training modes in random order: During both non-cooperative position control and compliant impedance control, fixed timing of movements was provided. During two variants of the patient-cooperative path control approach, free timing of movements was enabled and the robot provided only spatial guidance. The two variants of the path control approach differed in the amount of additional support, which was either individually adjusted or exaggerated. Joint angles and torques of the robot as well as muscle activity and heart rate of the patients were recorded. Kinematic variability, interaction torques, heart rate and muscle activity were compared between the different conditions. Results Patients showed more spatial and temporal kinematic variability, reduced interaction torques, a higher increase of heart rate and more muscle activity in the patient-cooperative path control mode with individually adjusted support than in the non-cooperative position control mode. In the compliant impedance control mode, spatial kinematic variability was increased and interaction torques were reduced, but temporal kinematic variability, heart rate and muscle activity were not significantly higher than in the position control mode. Conclusions Patient-cooperative robot-aided gait training with free timing of movements made individuals with iSCI participate more actively and with larger kinematic variability than non-cooperative, position-controlled robot-aided gait training. PMID:20828422
A Two-stage Improvement Method for Robot Based 3D Surface Scanning
NASA Astrophysics Data System (ADS)
He, F. B.; Liang, Y. D.; Wang, R. F.; Lin, Y. S.
2018-03-01
As known that the surface of unknown object was difficult to measure or recognize precisely, hence the 3D laser scanning technology was introduced and used properly in surface reconstruction. Usually, the surface scanning speed was slower and the scanning quality would be better, while the speed was faster and the quality would be worse. In this case, the paper presented a new two-stage scanning method in order to pursuit the quality of surface scanning in a faster speed. The first stage was rough scanning to get general point cloud data of object’s surface, and then the second stage was specific scanning to repair missing regions which were determined by chord length discrete method. Meanwhile, a system containing a robotic manipulator and a handy scanner was also developed to implement the two-stage scanning method, and relevant paths were planned according to minimum enclosing ball and regional coverage theories.
Robotics in rehabilitation: technology as destiny.
Stein, Joel
2012-11-01
Robotic aids for rehabilitation hold considerable promise but have not yet achieved widespread clinical adoption. Barriers to adoption include the limited data on efficacy, the single-purpose design of existing robots, financial considerations, and clinician lack of familiarity with this technology. Although the path forward to clinical adoption may be slow and have several false starts, the labor-saving aspect of robotic technology will ultimately ensure its adoption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This plan covers robotics Research, Development, Demonstration, Testing, activities in the Program for the next five years. These activities range from bench-scale R D to fullscale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and an initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management operations at DOE sites to be safer, faster and cheaper. Fivemore » priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. This 5-Year Program Plan discusses the overall approach to be adopted by the RTDP to aggressively develop robotics technology and contains discussions of the Program Management Plan, Site Visit and Needs Summary, Approach to Needs-Directed Technical Development, Application-Specific Technical Development, and Cross-Cutting and Advanced Technology. Integrating application-specific ER WM needs, the current state of robotics technology, and the potential benefits (in terms of faster, safer, and cheaper) of new technology, the Plan develops application-specific road maps for robotics RDDT E for the period FY 1991 through FY 1995. In addition, the Plan identifies areas where longer-term research in robotics will have a high payoff in the 5- to 20-year time frame. 12 figs.« less
Learning for intelligent mobile robots
NASA Astrophysics Data System (ADS)
Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.
2003-10-01
Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A mathematical model of the creative control process is presented that illustrates the use for mobile robots. Examples from a variety of intelligent mobile robot applications are also presented. The significance of this work is in providing a greater understanding of the applications of learning to mobile robots that could lead to many applications.
Sample-Based Motion Planning in High-Dimensional and Differentially-Constrained Systems
2010-02-01
Reachable Set . . . 88 6-1 LittleDog Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6-2 Dog bounding up stairs ...planning algorithm implemented on LittleDog, a quadruped robot . The motion planning algorithm successfully planned bounding trajectories over extremely...a motion planning algorithm implemented on LittleDog, a quadruped robot . The motion planning algorithm successfully planned bounding trajectories
An intelligent approach to welding robot selection
NASA Astrophysics Data System (ADS)
Milano, J.; Mauk, S. D.; Flitter, L.; Morris, R.
1993-10-01
In a shipyard where multiple stationary and mobile workcells are employed in the fabrication of components of complex sub-assemblies,efficient operation requires an intelligent method of scheduling jobs and selecting workcells based on optimum throughput and cost. The achievement of this global solution requires the successful organization of resource availability,process requirements,and process constraints. The Off-line Planner (OLP) of the Programmable Automated Weld Systemd (PAWS) is capable of advanced modeling of weld processes and environments as well as the generation of complete weld procedures. These capabilities involve the integration of advanced Computer Aided Design (CAD), path planning, and obstacle detection and avoidance techniques as well as the synthesis of complex design and process information. These existing capabilities provide the basis of the functionality required for the successful implementation of an intelligent weld robot selector and material flow planner. Current efforts are focused on robot selection via the dynamic routing of components to the appropriate work cells. It is proposed that this problem is a variant of the “Traveling Salesman Problem” (TSP) that has been proven to belong to a larger set of optimization problems termed nondeterministic polynomial complete (NP complete). In this paper, a heuristic approach utilizing recurrent neural networks is explored as a rapid means of producing a near optimal, if not optimal, bdweld robot selection.
Shin, Joon-Ho; Park, Gyulee; Cho, Duk Youn
2017-04-01
To explore motor performance on 2 different cognitive tasks during robotic rehabilitation in which motor performance was longitudinally assessed. Prospective study. Rehabilitation hospital. Patients (N=22) with chronic stroke and upper extremity impairment. A total of 640 repetitions of robot-assisted planar reaching, 5 times a week for 4 weeks. Longitudinal robotic evaluations regarding motor performance included smoothness, mean velocity, path error, and reach error by the type of cognitive task. Dual-task effects (DTEs) of motor performance were computed to analyze the effect of the cognitive task on dual-task interference. Cognitive task type influenced smoothness (P=.006), the DTEs of smoothness (P=.002), and the DTEs of reach error (P=.052). Robotic rehabilitation improved smoothness (P=.007) and reach error (P=.078), while stroke severity affected smoothness (P=.01), reach error (P<.001), and path error (P=.01). Robotic rehabilitation or severity did not affect the DTEs of motor performance. The results provide evidence for the effect of cognitive-motor interference on upper extremity performance among participants with stroke using a robotic-guided rehabilitation system. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mineo, Carmelo; MacLeod, Charles; Morozov, Maxim; Pierce, S. Gareth; Summan, Rahul; Rodden, Tony; Kahani, Danial; Powell, Jonathan; McCubbin, Paul; McCubbin, Coreen; Munro, Gavin; Paton, Scott; Watson, David
2017-02-01
Improvements in performance of modern robotic manipulators have in recent years allowed research aimed at development of fast automated non-destructive testing (NDT) of complex geometries. Contemporary robots are well adaptable to new tasks. Several robotic inspection prototype systems and a number of commercial products have been developed worldwide. This paper describes the latest progress in research focused at large composite aerospace components. A multi-robot flexible inspection cell is used to take the fundamental research and the feasibility studies to higher technology readiness levels, all set for the future industrial exploitation. The robot cell is equipped with high accuracy and high payload robots, mounted on 7 meter tracks, and an external rotary axis. A robotically delivered photogrammetry technique is first used to assess the position of the components placed within the robot working envelope and their deviation to CAD. Offline programming is used to generate a scan path for phased array ultrasonic testing (PAUT). PAUT is performed using a conformable wheel probe, with high data rate acquisition from PAUT controller. Real-time robot path-correction, based on force-torque control (FTC), is deployed to achieve the optimum ultrasonic coupling and repeatable data quality. New communication software is developed that enabled simultaneous control of the multiple robots performing different tasks and the acquisition of accurate positional data. All aspects of the system are controlled through a purposely developed graphic user interface that enables the flexible use of the unique set of hardware resources, the data acquisition, visualization and analysis.
Path optimisation of a mobile robot using an artificial neural network controller
NASA Astrophysics Data System (ADS)
Singh, M. K.; Parhi, D. R.
2011-01-01
This article proposed a novel approach for design of an intelligent controller for an autonomous mobile robot using a multilayer feed forward neural network, which enables the robot to navigate in a real world dynamic environment. The inputs to the proposed neural controller consist of left, right and front obstacle distance with respect to its position and target angle. The output of the neural network is steering angle. A four layer neural network has been designed to solve the path and time optimisation problem of mobile robots, which deals with the cognitive tasks such as learning, adaptation, generalisation and optimisation. A back propagation algorithm is used to train the network. This article also analyses the kinematic design of mobile robots for dynamic movements. The simulation results are compared with experimental results, which are satisfactory and show very good agreement. The training of the neural nets and the control performance analysis has been done in a real experimental setup.
Robot-Assisted Arm Assessments in Spinal Cord Injured Patients: A Consideration of Concept Study
Albisser, Urs; Rudhe, Claudia; Curt, Armin; Riener, Robert; Klamroth-Marganska, Verena
2015-01-01
Robotic assistance is increasingly used in neurological rehabilitation for enhanced training. Furthermore, therapy robots have the potential for accurate assessment of motor function in order to diagnose the patient status, to measure therapy progress or to feedback the movement performance to the patient and therapist in real time. We investigated whether a set of robot-based assessments that encompasses kinematic, kinetic and timing metrics is applicable, safe, reliable and comparable to clinical metrics for measurement of arm motor function. Twenty-four healthy subjects and five patients after spinal cord injury underwent robot-based assessments using the exoskeleton robot ARMin. Five different tasks were performed with aid of a visual display. Ten kinematic, kinetic and timing assessment parameters were extracted on joint- and end-effector level (active and passive range of motion, cubic reaching volume, movement time, distance-path ratio, precision, smoothness, reaction time, joint torques and joint stiffness). For cubic volume, joint torques and the range of motion for most joints, good inter- and intra-rater reliability were found whereas precision, movement time, distance-path ratio and smoothness showed weak to moderate reliability. A comparison with clinical scores revealed good correlations between robot-based joint torques and the Manual Muscle Test. Reaction time and distance-path ratio showed good correlation with the “Graded and Redefined Assessment of Strength, Sensibility and Prehension” (GRASSP) and the Van Lieshout Test (VLT) for movements towards a predefined position in the center of the frontal plane. In conclusion, the therapy robot ARMin provides a comprehensive set of assessments that are applicable and safe. The first results with spinal cord injured patients and healthy subjects suggest that the measurements are widely reliable and comparable to clinical scales for arm motor function. The methods applied and results can serve as a basis for the future development of end-effector and exoskeleton-based robotic assessments. PMID:25996374
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Tseng, T
2014-06-01
Purpose: To evaluate the spatial variations of multiple off-axial targets for a single isocenter stereotactic radiosurgery (SRS) treatment plan in ExacTrac 6D robotic couch system (BrainLab AG). Methods: Five metallic ball bearing (BB) markers were placed sparsely in 3D off-axial locations (non-coplanar) inside a skull phantom as the representatives of multiple targets mimicking multiple brain metastases. The locations of the BB markers were carefully chosen to minimize overlapping of each other in a port imaging detector plane. The skull phantom was immobilized by a frameless mask and CT scanned with a BrainLab Head and Neck Localizer using a GE Optimamore » MDCT scanner. The CT images were exported to iPlan software (BrainLab AG) and a multiple target PTV was drawn by combining all the contours of the BBs. The margin of the MLC opening was selected as 3 mm expansion outward. Two coplanar arc beams were placed to generate a single isocenter SRS plan to treat the PTV. The arc beams were delivered using Novalis Tx system with portal imaging acquisition mode per 10% temporal resolution. The locations of the BBs were visualized and analyzed with respect to the MLC aperture in the treatment plan similar to the Winston-Lutz test. Results: All the BBs were clearly identified inside the MLC openings. The positional errors for the BBs were overall less than 1 mm along the rotational path of the two arcs. Conclusion: This study verified that the spatial deviations of multiple off-axial targets for a single isocenter SRS treatment plan is within sub-millimeter range in ExacTrac 6D robotic couch system. Accompanied with the Winston-Lutz test, this test will quality-assure the spatial accuracies of the isocenter as well as the positions of multiple off-axial targets for the SRS treatment using a single isocenter multiple target treatment plan.« less
Multicore Hardware Experiments in Software Producibility
2009-06-01
processors. 15. SUBJECT TERMS Multi-core, Real - time Systems , Testing, Software Modernization 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF... real ‐ time systems . The inputs to the dgclocalnav component are the path plan (received from highlevelplanner, discussed next), the drivable grid... time systems , robotics, and software. As frequently observed in cyber‐physical systems, the system designers may need experience in multiple
Lunar Contour Crafting: A Novel Technique for ISRU-Based Habitat Development
NASA Technical Reports Server (NTRS)
Khoshnevis, Behrokh; Bodiford, Melanie P.; Burks, Kevin H.; Ethridge, Ed; Tucker, Dennis; Kim, Won; Toutanji, Houssam; Fiske, Michael R.
2005-01-01
1. Habitat Structures at MSFC is one element of the In-Situ Fabrication and Repair (ISFR) Program: ISFR develops technologies for fabrication, repair and recycling of tools, parts, and habitats/structures using in-situ resources. ISRU - based habitat structures are considered Class III. 2. Habitat Structure Purpose: Develop Lunar and/or Martian habitat structures for manned missions that maximize the use of in-situ resources to address the following agency topics: bioastronautics critical path roadmap; strategic technical challenges defined in H&RT formulation plan: margins and redundancy; modularity, robotic network, space resource utilization; autonomy, affordable logistics pre-positioning.
Agricultural robot designed for seeding mechanism
NASA Astrophysics Data System (ADS)
Sunitha, K. A., Dr.; Suraj, G. S. G. S.; Sowrya, CH P. N.; Atchyut Sriram, G.; Shreyas, D.; Srinivas, T.
2017-05-01
In the field of agriculture, plantation begins with ploughing the land and sowing seeds. The old traditional method plough attached to an OX and tractors needs human involvement to carry the process. The driving force behind this work is to reduce the human interference in the field of agriculture and to make it cost effective. In this work, apart of the land is taken into consideration and the robot introduced localizes the path and can navigate itself without human action. For ploughing, this robot is provided with tentacles attached with saw blades. The sowing mechanism initiates with long toothed gears actuated with motors. The complete body is divided into two parts the tail part acts as a container for seeds. The successor holds on all the electronics used for automating and actuation. The locomotion is provided with wheels covered under conveyor belts. Gears at the back of the robot rotate in equal speed with respect to each other with the saw blades. For each rotation every tooth on gear will take seeds and will drop them on field. Camera at the front end tracks the path for every fixed distance and at the minimum distance it takes the path pre-programmed.
2018-04-01
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...2006. Since that time , SS-RICS has been the integration platform for many robotics algorithms using a variety of different disciplines from cognitive...voice recognition. Each noise level was run 10 times per gender, yielding 60 total runs. Two paths were chosen for testing (Paths A and B) of
A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots
Pan, Shaowu; Shi, Liwei; Guo, Shuxiang
2015-01-01
A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system. PMID:25856331
A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.
Pan, Shaowu; Shi, Liwei; Guo, Shuxiang
2015-04-08
A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.
Intelligent systems for urban search and rescue: challenges and lessons learned
NASA Astrophysics Data System (ADS)
Jacoff, Adam; Messina, Elena; Weiss, Brian A.
2003-09-01
Urban search and rescue (USAR) is one of the most dangerous and time-critical non-wartime activities. Researchers have been developing hardware and software to enable robots to perform some search and rescue functions so as to minimize the exposure of human rescue personnel to danger and maximize the survival of victims. Significant progress has been achieved, but much work remains. USAR demands a blending of numerous specialized technologies. An effective USAR robot must be endowed with key competencies, such as being able to negotiate collapsed structures, find victims and assess their condition, identify potential hazards, generate maps of the structure and victim locations, and communicate with rescue personnel. These competencies bring to bear work in numerous sub-disciplines of intelligent systems (or artificial intelligence) such as sensory processing, world modeling, behavior generation, path planning, and human-robot interaction, in addition to work in communications, mechanism design and advanced sensors. In an attempt to stimulate progress in the field, reference USAR challenges are being developed and propagated worldwide. In order to make efficient use of finite research resources, the robotic USAR community must share a common understanding of what is required, technologically, to attain each competency, and have a rigorous measure of the current level of effectiveness of various technologies. NIST is working with partner organizations to measure the performance of robotic USAR competencies and technologies. In this paper, we describe the reference test arenas for USAR robots, assess the current challenges within the field, and discuss experiences thus far in the testing effort.
Execution monitoring for a mobile robot system
NASA Technical Reports Server (NTRS)
Miller, David P.
1990-01-01
Due to sensor errors, uncertainty, incomplete knowledge, and a dynamic world, robot plans will not always be executed exactly as planned. This paper describes an implemented robot planning system that enhances the traditional sense-think-act cycle in ways that allow the robot system monitor its behavior and react in emergencies in real-time. A proposal on how robot systems can completely break away from the traditional three-step cycle is also made.
Agent independent task planning
NASA Technical Reports Server (NTRS)
Davis, William S.
1990-01-01
Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.
Dynamic whole-body robotic manipulation
NASA Astrophysics Data System (ADS)
Abe, Yeuhi; Stephens, Benjamin; Murphy, Michael P.; Rizzi, Alfred A.
2013-05-01
The creation of dynamic manipulation behaviors for high degree of freedom, mobile robots will allow them to accomplish increasingly difficult tasks in the field. We are investigating how the coordinated use of the body, legs, and integrated manipulator, on a mobile robot, can improve the strength, velocity, and workspace when handling heavy objects. We envision that such a capability would aid in a search and rescue scenario when clearing obstacles from a path or searching a rubble pile quickly. Manipulating heavy objects is especially challenging because the dynamic forces are high and a legged system must coordinate all its degrees of freedom to accomplish tasks while maintaining balance. To accomplish these types of manipulation tasks, we use trajectory optimization techniques to generate feasible open-loop behaviors for our 28 dof quadruped robot (BigDog) by planning trajectories in a 13 dimensional space. We apply the Covariance Matrix Adaptation (CMA) algorithm to solve for trajectories that optimize task performance while also obeying important constraints such as torque and velocity limits, kinematic limits, and center of pressure location. These open-loop behaviors are then used to generate desired feed-forward body forces and foot step locations, which enable tracking on the robot. Some hardware results for cinderblock throwing are demonstrated on the BigDog quadruped platform augmented with a human-arm-like manipulator. The results are analogous to how a human athlete maximizes distance in the discus event by performing a precise sequence of choreographed steps.
Computer hardware and software for robotic control
NASA Technical Reports Server (NTRS)
Davis, Virgil Leon
1987-01-01
The KSC has implemented an integrated system that coordinates state-of-the-art robotic subsystems. It is a sensor based real-time robotic control system performing operations beyond the capability of an off-the-shelf robot. The integrated system provides real-time closed loop adaptive path control of position and orientation of all six axes of a large robot; enables the implementation of a highly configurable, expandable testbed for sensor system development; and makes several smart distributed control subsystems (robot arm controller, process controller, graphics display, and vision tracking) appear as intelligent peripherals to a supervisory computer coordinating the overall systems.
Integrated Planning for Telepresence with Time Delays
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Rabe, Kenneth J.
2006-01-01
Integrated planning and execution of teleoperations in space with time delays is shown. The topics include: 1) The Problem; 2) Future Robot Surgery? 3) Approach Overview; 4) Robonaut; 5) Normal Planning and Execution; 6) Planner Context; 7) Implementation; 8) Use of JSHOP2; 9) Monitoring and Testing GUI; 10) Normal sequence: first the supervisor acts; 11) then the robot; 12) Robot might be late; 13) Supervisor can work ahead; 14) Deviations from Plan; 15) Robot State Change Example; 16) Accomplished goals skipped in replan; 17) Planning continuity; 18) Supervisor Deviation From Plan; 19) Intentional Deviation; and 20) Infeasible states.
Using neural networks and Dyna algorithm for integrated planning, reacting and learning in systems
NASA Technical Reports Server (NTRS)
Lima, Pedro; Beard, Randal
1992-01-01
The traditional AI answer to the decision making problem for a robot is planning. However, planning is usually CPU-time consuming, depending on the availability and accuracy of a world model. The Dyna system generally described in earlier work, uses trial and error to learn a world model which is simultaneously used to plan reactions resulting in optimal action sequences. It is an attempt to integrate planning, reactive, and learning systems. The architecture of Dyna is presented. The different blocks are described. There are three main components of the system. The first is the world model used by the robot for internal world representation. The input of the world model is the current state and the action taken in the current state. The output is the corresponding reward and resulting state. The second module in the system is the policy. The policy observes the current state and outputs the action to be executed by the robot. At the beginning of program execution, the policy is stochastic and through learning progressively becomes deterministic. The policy decides upon an action according to the output of an evaluation function, which is the third module of the system. The evaluation function takes the following as input: the current state of the system, the action taken in that state, the resulting state, and a reward generated by the world which is proportional to the current distance from the goal state. Originally, the work proposed was as follows: (1) to implement a simple 2-D world where a 'robot' is navigating around obstacles, to learn the path to a goal, by using lookup tables; (2) to substitute the world model and Q estimate function Q by neural networks; and (3) to apply the algorithm to a more complex world where the use of a neural network would be fully justified. In this paper, the system design and achieved results will be described. First we implement the world model with a neural network and leave Q implemented as a look up table. Next, we use a lookup table for the world model and implement the Q function with a neural net. Time limitations prevented the combination of these two approaches. The final section discusses the results and gives clues for future work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This plan covers robotics Research, Development, Demonstration, Testing and Evaluation activities in the Program for the next five years. These activities range from bench-scale R D to full-scale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development Program (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management (ER WM) operations at DOE sites to be safer,more » faster and cheaper. Five priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. In July 1990 a forum was held announcing the robotics program. Over 60 organizations (industrial, university, and federal laboratory) made presentations on their robotics capabilities. To stimulate early interactions with the ER WM activities at DOE sites, as well as with the robotics community, the RTDP sponsored four technology demonstrations related to ER WM needs. These demonstrations integrated commercial technology with robotics technology developed by DOE in support of areas such as nuclear reactor maintenance and the civilian reactor waste program. 2 figs.« less
Quantum robots plus environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, P.
1998-07-23
A quantum robot is a mobile quantum system, including an on board quantum computer and needed ancillary systems, that interacts with an environment of quantum systems. Quantum robots carry out tasks whose goals include making specified changes in the state of the environment or carrying out measurements on the environment. The environments considered so far, oracles, data bases, and quantum registers, are seen to be special cases of environments considered here. It is also seen that a quantum robot should include a quantum computer and cannot be simply a multistate head. A model of quantum robots and their interactions ismore » discussed in which each task, as a sequence of alternating computation and action phases,is described by a unitary single time step operator T {approx} T{sub a} + T{sub c} (discrete space and time are assumed). The overall system dynamics is described as a sum over paths of completed computation (T{sub c}) and action (T{sub a}) phases. A simple example of a task, measuring the distance between the quantum robot and a particle on a 1D lattice with quantum phase path dispersion present, is analyzed. A decision diagram for the task is presented and analyzed.« less
NASA Astrophysics Data System (ADS)
Stenzel, Roland; Lin, Ralph; Cheng, Peng; Kronreif, Gernot; Kornfeld, Martin; Lindisch, David; Wood, Bradford J.; Viswanathan, Anand; Cleary, Kevin
2007-03-01
Minimally invasive procedures are increasingly attractive to patients and medical personnel because they can reduce operative trauma, recovery times, and overall costs. However, during these procedures, the physician has a very limited view of the interventional field and the exact position of surgical instruments. We present an image-guided platform for precision placement of surgical instruments based upon a small four degree-of-freedom robot (B-RobII; ARC Seibersdorf Research GmbH, Vienna, Austria). This platform includes a custom instrument guide with an integrated spiral fiducial pattern as the robot's end-effector, and it uses intra-operative computed tomography (CT) to register the robot to the patient directly before the intervention. The physician can then use a graphical user interface (GUI) to select a path for percutaneous access, and the robot will automatically align the instrument guide along this path. Potential anatomical targets include the liver, kidney, prostate, and spine. This paper describes the robotic platform, workflow, software, and algorithms used by the system. To demonstrate the algorithmic accuracy and suitability of the custom instrument guide, we also present results from experiments as well as estimates of the maximum error between target and instrument tip.
A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots.
Sherwin, Tyrone; Easte, Mikala; Chen, Andrew Tzer-Yeu; Wang, Kevin I-Kai; Dai, Wenbin
2018-02-14
Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and proposes a novel approach of dynamic target localisation using a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate towards and reach a target. Through the use of multiple directional antennae, Received Signal Strength (RSS) is compared to determine the most probable direction of the targeted emitter, which is combined with the distance estimates to improve the localisation performance. The accuracy of the position estimate is further improved using a particle filter to mitigate the fluctuating nature of real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using Simultaneous Localisation and Mapping (SLAM) and A* path planning to enable navigation through unknown complex environments. A number of navigation scenarios were developed in the context of factory automation applications to demonstrate and evaluate the functionality and performance of the proposed system.
A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots
Sherwin, Tyrone; Easte, Mikala; Wang, Kevin I-Kai; Dai, Wenbin
2018-01-01
Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and proposes a novel approach of dynamic target localisation using a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate towards and reach a target. Through the use of multiple directional antennae, Received Signal Strength (RSS) is compared to determine the most probable direction of the targeted emitter, which is combined with the distance estimates to improve the localisation performance. The accuracy of the position estimate is further improved using a particle filter to mitigate the fluctuating nature of real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using Simultaneous Localisation and Mapping (SLAM) and A* path planning to enable navigation through unknown complex environments. A number of navigation scenarios were developed in the context of factory automation applications to demonstrate and evaluate the functionality and performance of the proposed system. PMID:29443906
Heuristic control of the Utah/MIT dextrous robot hand
NASA Technical Reports Server (NTRS)
Bass, Andrew H., Jr.
1987-01-01
Basic hand grips and sensor interactions that a dextrous robot hand will need as part of the operation of an EVA Retriever are analyzed. What is to be done with a dextrous robot hand is examined along with how such a complex machine might be controlled. It was assumed throughout that an anthropomorphic robot hand should perform tasks just as a human would; i.e., the most efficient approach to developing control strategies for the hand would be to model actual hand actions and do the same tasks in the same ways. Therefore, basic hand grips that human hands perform, as well as hand grip action were analyzed. It was also important to examine what is termed sensor fusion. This is the integration of various disparate sensor feedback paths. These feedback paths can be spatially and temporally separated, as well as, of different sensor types. Neural networks are seen as a means of integrating these varied sensor inputs and types. Basic heuristics of hand actions and grips were developed. These heuristics offer promise of control dextrous robot hands in a more natural and efficient way.
On computing the global time-optimal motions of robotic manipulators in the presence of obstacles
NASA Technical Reports Server (NTRS)
Shiller, Zvi; Dubowsky, Steven
1991-01-01
A method for computing the time-optimal motions of robotic manipulators is presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem is reduced to a search for the time-optimal path in the n-dimensional position space. A small set of near-optimal paths is first efficiently selected from a grid, using a branch and bound search and a series of lower bound estimates on the traveling time along a given path. These paths are further optimized with a local path optimization to yield the global optimal solution. Obstacles are considered by eliminating the collision points from the tessellated space and by adding a penalty function to the motion time in the local optimization. The computational efficiency of the method stems from the reduced dimensionality of the searched spaced and from combining the grid search with a local optimization. The method is demonstrated in several examples for two- and six-degree-of-freedom manipulators with obstacles.
Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor
NASA Technical Reports Server (NTRS)
Prinz, F. B. S.; Mahalingam, S.
1992-01-01
A capacitance based proximity sensor, the 'Capaciflector' (Vranish 92), has been developed at the Goddard Space Flight Center of NASA. We had investigated the use of this sensor for avoiding and maneuvering around unexpected objects (Mahalingam 92). The approach developed there would help in executing collision-free gross motions. Another important aspect of robot motion planning is fine motion planning. Let us classify manipulator robot motion planning into two groups at the task level: gross motion planning and fine motion planning. We use the term 'gross planning' where the major degrees of freedom of the robot execute large motions, for example, the motion of a robot in a pick and place type operation. We use the term 'fine motion' to indicate motions of the robot where the large dofs do not move much, and move far less than the mirror dofs, such as in inserting a peg in a hole. In this report we describe our experiments and experiences in this area.
Configuration Synthesis and Efficient Motion Programming of Robot Manipulators
1991-03-15
Gupta and Ma 90- Robotica 8:81-84]. When a set of discrete stations are specified along a robot task path, it becomes necessary to find a related...velocity Jacobian relations for the manipulator [Singh 87-MS Thesis][Gupta and Singh 89- Robotica 7:159-1641 and [Cheng 89-PhD Thesis][Cheng and Gupta...1987; Robotica 7:159-164, 1989 (revised). K. C. Gupta, "Kinematics of a Robot with Continuous Roll Wrist," IEEE J. Robotics and Automation 4(4):440-443
Dealing with the time-varying parameter problem of robot manipulators performing path tracking tasks
NASA Technical Reports Server (NTRS)
Song, Y. D.; Middleton, R. H.
1992-01-01
Many robotic applications involve time-varying payloads during the operation of the robot. It is therefore of interest to consider control schemes that deal with time-varying parameters. Using the properties of the element by element (or Hadarmad) product of matrices, we obtain the robot dynamics in parameter-isolated form, from which a new control scheme is developed. The controller proposed yields zero asymptotic tracking errors when applied to robotic systems with time-varying parameters by using a switching type control law. The results obtained are global in the initial state of the robot, and can be applied to rapidly varying systems.
Research on robot mobile obstacle avoidance control based on visual information
NASA Astrophysics Data System (ADS)
Jin, Jiang
2018-03-01
Robots to detect obstacles and control robots to avoid obstacles has been a key research topic of robot control. In this paper, a scheme of visual information acquisition is proposed. By judging visual information, the visual information is transformed into the information source of path processing. In accordance with the established route, in the process of encountering obstacles, the algorithm real-time adjustment trajectory to meet the purpose of intelligent control of mobile robots. Simulation results show that, through the integration of visual sensing information, the obstacle information is fully obtained, while the real-time and accuracy of the robot movement control is guaranteed.
Embedded mobile farm robot for identification of diseased plants
NASA Astrophysics Data System (ADS)
Sadistap, S. S.; Botre, B. A.; Pandit, Harshavardhan; Chandrasekhar; Rao, Adesh
2013-07-01
This paper presents the development of a mobile robot used in farms for identification of diseased plants. It puts forth two of the major aspects of robotics namely automated navigation and image processing. The robot navigates on the basis of the GPS (Global Positioning System) location and data obtained from IR (Infrared) sensors to avoid any obstacles in its path. It uses an image processing algorithm to differentiate between diseased and non-diseased plants. A robotic platform consisting of an ARM9 processor, motor drivers, robot mechanical assembly, camera and infrared sensors has been used. Mini2440 microcontroller has been used wherein Embedded linux OS (Operating System) is implemented.
Situationally driven local navigation for mobile robots. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Slack, Marc Glenn
1990-01-01
For mobile robots to autonomously accommodate dynamically changing navigation tasks in a goal-directed fashion, they must employ navigation plans. Any such plan must provide for the robot's immediate and continuous need for guidance while remaining highly flexible in order to avoid costly computation each time the robot's perception of the world changes. Due to the world's uncertainties, creation and maintenance of navigation plans cannot involve arbitrarily complex processes, as the robot's perception of the world will be in constant flux, requiring modifications to be made quickly if they are to be of any use. This work introduces navigation templates (NaT's) which are building blocks for the construction and maintenance of rough navigation plans which capture the relationship that objects in the world have to the current navigation task. By encoding only the critical relationship between the objects in the world and the navigation task, a NaT-based navigation plan is highly flexible; allowing new constraints to be quickly incorporated into the plan and existing constraints to be updated or deleted from the plan. To satisfy the robot's need for immediate local guidance, the NaT's forming the current navigation plan are passed to a transformation function. The transformation function analyzes the plan with respect to the robot's current location to quickly determine (a few times a second) the locally preferred direction of travel. This dissertation presents NaT's and the transformation function as well as the needed support systems to demonstrate the usefulness of the technique for controlling the actions of a mobile robot operating in an uncertain world.
A New Technique for Compensating Joint Limits in a Robot Manipulator
NASA Technical Reports Server (NTRS)
Litt, Jonathan; Hickman, Andre; Guo, Ten-Huei
1996-01-01
A new robust, optimal, adaptive technique for compensating rate and position limits in the joints of a six degree-of-freedom elbow manipulator is presented. In this new algorithm, the unmet demand as a result of actuator saturation is redistributed among the remaining unsaturated joints. The scheme is used to compensate for inadequate path planning, problems such as joint limiting, joint freezing, or even obstacle avoidance, where a desired position and orientation are not attainable due to an unrealizable joint command. Once a joint encounters a limit, supplemental commands are sent to other joints to best track, according to a selected criterion, the desired trajectory.
Shared control of a medical robot with haptic guidance.
Xiong, Linfei; Chng, Chin Boon; Chui, Chee Kong; Yu, Peiwu; Li, Yao
2017-01-01
Tele-operation of robotic surgery reduces the radiation exposure during the interventional radiological operations. However, endoscope vision without force feedback on the surgical tool increases the difficulty for precise manipulation and the risk of tissue damage. The shared control of vision and force provides a novel approach of enhanced control with haptic guidance, which could lead to subtle dexterity and better maneuvrability during MIS surgery. The paper provides an innovative shared control method for robotic minimally invasive surgery system, in which vision and haptic feedback are incorporated to provide guidance cues to the clinician during surgery. The incremental potential field (IPF) method is utilized to generate a guidance path based on the anatomy of tissue and surgical tool interaction. Haptic guidance is provided at the master end to assist the clinician during tele-operative surgical robotic task. The approach has been validated with path following and virtual tumor targeting experiments. The experiment results demonstrate that comparing with vision only guidance, the shared control with vision and haptics improved the accuracy and efficiency of surgical robotic manipulation, where the tool-position error distance and execution time are reduced. The validation experiment demonstrates that the shared control approach could help the surgical robot system provide stable assistance and precise performance to execute the designated surgical task. The methodology could also be implemented with other surgical robot with different surgical tools and applications.
Structure-guided Protein Transition Modeling with a Probabilistic Roadmap Algorithm.
Maximova, Tatiana; Plaku, Erion; Shehu, Amarda
2016-07-07
Proteins are macromolecules in perpetual motion, switching between structural states to modulate their function. A detailed characterization of the precise yet complex relationship between protein structure, dynamics, and function requires elucidating transitions between functionally-relevant states. Doing so challenges both wet and dry laboratories, as protein dynamics involves disparate temporal scales. In this paper we present a novel, sampling-based algorithm to compute transition paths. The algorithm exploits two main ideas. First, it leverages known structures to initialize its search and define a reduced conformation space for rapid sampling. This is key to address the insufficient sampling issue suffered by sampling-based algorithms. Second, the algorithm embeds samples in a nearest-neighbor graph where transition paths can be efficiently computed via queries. The algorithm adapts the probabilistic roadmap framework that is popular in robot motion planning. In addition to efficiently computing lowest-cost paths between any given structures, the algorithm allows investigating hypotheses regarding the order of experimentally-known structures in a transition event. This novel contribution is likely to open up new venues of research. Detailed analysis is presented on multiple-basin proteins of relevance to human disease. Multiscaling and the AMBER ff14SB force field are used to obtain energetically-credible paths at atomistic detail.
ReACT!: An Interactive Educational Tool for AI Planning for Robotics
ERIC Educational Resources Information Center
Dogmus, Zeynep; Erdem, Esra; Patogulu, Volkan
2015-01-01
This paper presents ReAct!, an interactive educational tool for artificial intelligence (AI) planning for robotics. ReAct! enables students to describe robots' actions and change in dynamic domains without first having to know about the syntactic and semantic details of the underlying formalism, and to solve planning problems using…
Robot computer problem solving system
NASA Technical Reports Server (NTRS)
Merriam, E. W.; Becker, J. D.
1973-01-01
A robot computer problem solving system which represents a robot exploration vehicle in a simulated Mars environment is described. The model exhibits changes and improvements made on a previously designed robot in a city environment. The Martian environment is modeled in Cartesian coordinates; objects are scattered about a plane; arbitrary restrictions on the robot's vision have been removed; and the robot's path contains arbitrary curves. New environmental features, particularly the visual occlusion of objects by other objects, were added to the model. Two different algorithms were developed for computing occlusion. Movement and vision capabilities of the robot were established in the Mars environment, using LISP/FORTRAN interface for computational efficiency. The graphical display program was redesigned to reflect the change to the Mars-like environment.
Direct target NOTES: prospective applications for next generation robotic platforms.
Atallah, S; Hodges, A; Larach, S W
2018-05-01
A new era in surgical robotics has centered on alternative access to anatomic targets and next generation designs include flexible, single-port systems which follow circuitous rather than straight pathways. Such systems maintain a small footprint and could be utilized for specialized operations based on direct organ target natural orifice transluminal endoscopic surgery (NOTES), of which transanal total mesorectal excision (taTME) is an important derivative. During two sessions, four direct target NOTES operations were conducted on a cadaveric model using a flexible robotic system to demonstrate proof-of-concept of the application of a next generation robotic system to specific types of NOTES operations, all of which required removal of a direct target organ through natural orifice access. These four operations were (a) robotic taTME, (b) robotic transvaginal hysterectomy in conjunction with (c) robotic transvaginal salpingo-oophorectomy, and in an ex vivo model, (d) trans-cecal appendectomy. Feasibility was demonstrated in all cases using the Flex ® Robotic System with Colorectal Drive. During taTME, the platform excursion was 17 cm along a non-linear path; operative time was 57 min for the transanal portion of the dissection. Robotic transvaginal hysterectomy was successfully completed in 78 min with transvaginal extraction of the uterus, although laparoscopic assistance was required. Robotic transvaginal unilateral salpingo-oophorectomy with transvaginal extraction of the ovary and fallopian tube was performed without laparoscopic assistance in 13.5 min. In an ex vivo model, a robotic trans-cecal appendectomy was also successfully performed for the purpose of demonstrating proof-of-concept only; this was completed in 24 min. A flexible robotic system has the potential to access anatomy along circuitous paths, making it a suitable platform for direct target NOTES. The conceptual operations posed could be considered suitable for next generation robotics once the technology is optimized, and after further preclinical validation.
Integration of Visual and Joint Information to Enable Linear Reaching Motions
NASA Astrophysics Data System (ADS)
Eberle, Henry; Nasuto, Slawomir J.; Hayashi, Yoshikatsu
2017-01-01
A new dynamics-driven control law was developed for a robot arm, based on the feedback control law which uses the linear transformation directly from work space to joint space. This was validated using a simulation of a two-joint planar robot arm and an optimisation algorithm was used to find the optimum matrix to generate straight trajectories of the end-effector in the work space. We found that this linear matrix can be decomposed into the rotation matrix representing the orientation of the goal direction and the joint relation matrix (MJRM) representing the joint response to errors in the Cartesian work space. The decomposition of the linear matrix indicates the separation of path planning in terms of the direction of the reaching motion and the synergies of joint coordination. Once the MJRM is numerically obtained, the feedfoward planning of reaching direction allows us to provide asymptotically stable, linear trajectories in the entire work space through rotational transformation, completely avoiding the use of inverse kinematics. Our dynamics-driven control law suggests an interesting framework for interpreting human reaching motion control alternative to the dominant inverse method based explanations, avoiding expensive computation of the inverse kinematics and the point-to-point control along the desired trajectories.
Robot Service and Repair. Teacher's Guide.
ERIC Educational Resources Information Center
Pittsburg State Univ., KS. Kansas Vocational Curriculum Dissemination Center.
This document is a teacher's guide for teaching a course on robot service and repair. The guide is organized in four units covering the following topics: introduction to robots, power supply, robot control systems, and service and repair. Each unit contains several lesson plans on the unit topic. Lesson plans consist of objectives, tools and…
Robot Service and Repair. Student Guide.
ERIC Educational Resources Information Center
Pittsburg State Univ., KS. Kansas Vocational Curriculum Dissemination Center.
This document is a student guide for a course on robot service and repair. It is organized in four units covering the following topics: introduction to robots, power supply, robot control systems, and service and repair. Each unit contains several lesson plans on the unit topic. Lesson plans consist of lesson objectives, lists of teaching aids and…
The evolution of robotic urologic surgery.
Nguyen, Mike Minh; Das, Sakti
2004-11-01
The incorporation of robotics into surgical technology is a relatively recent development. Robotic surgical systems can be classified as master-slave systems, precise-path systems, or intern-replacement systems. Master-slave systems, the most familiar type, were developed from initial experiments in "telepresence" surgery funded by the US Department of Defense. Urology has embraced the use of commercial robotic surgical systems in a growing number of clinical applications. Although drawbacks and limitations exist for the use of surgical robotics, the systems are developing rapidly and an expanded role for this technology in the future of urology is inevitable. This article reviews the history of the use of robotics in surgery, focusing on its specific application to urology.
Next-generation robotic surgery--from the aspect of surgical robots developed by industry.
Nakadate, Ryu; Arata, Jumpei; Hashizume, Makoto
2015-02-01
At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.
Funnel Libraries for Real-Time Robust Feedback Motion Planning
2016-07-21
motion plans for a robot that are guaranteed to suc- ceed despite uncertainty in the environment, parametric model uncertainty, and disturbances...resulting funnel library is then used to sequentially compose motion plans at runtime while ensuring the safety of the robot . A major advantage of...the work presented here is that by explicitly taking into account the effect of uncertainty, the robot can evaluate motion plans based on how vulnerable
Determining robot actions for tasks requiring sensor interaction
NASA Technical Reports Server (NTRS)
Budenske, John; Gini, Maria
1989-01-01
The performance of non-trivial tasks by a mobile robot has been a long term objective of robotic research. One of the major stumbling blocks to this goal is the conversion of the high-level planning goals and commands into the actuator and sensor processing controls. In order for a mobile robot to accomplish a non-trivial task, the task must be described in terms of primitive actions of the robot's actuators. Most non-trivial tasks require the robot to interact with its environment; thus necessitating coordination of sensor processing and actuator control to accomplish the task. The main contention is that the transformation from the high level description of the task to the primitive actions should be performed primarily at execution time, when knowledge about the environment can be obtained through sensors. It is proposed to produce the detailed plan of primitive actions by using a collection of low-level planning components that contain domain specific knowledge and knowledge about the available sensors, actuators, and sensor/actuator processing. This collection will perform signal and control processing as well as serve as a control interface between an actual mobile robot and a high-level planning system. Previous research has shown the usefulness of high-level planning systems to plan the coordination of activities such to achieve a goal, but none have been fully applied to actual mobile robots due to the complexity of interacting with sensors and actuators. This control interface is currently being implemented on a LABMATE mobile robot connected to a SUN workstation and will be developed such to enable the LABMATE to perform non-trivial, sensor-intensive tasks as specified by a planning system.
NASA Technical Reports Server (NTRS)
Woodbury, R. F.; Oppenheim, I. J.
1987-01-01
Cognitive robot systems are ones in which sensing and representation occur, from which task plans and tactics are determined. Such a robot system accomplishes a task after being told what to do, but determines for itself how to do it. Cognition is required when the work environment is uncontrolled, when contingencies are prevalent, or when task complexity is large; it is useful in any robotic mission. A number of distinguishing features can be associated with cognitive robotics, and one emphasized here is the role of artificial intelligence in knowledge representation and in planning. While space telerobotics may elude some of the problems driving cognitive robotics, it shares many of the same demands, and it can be assumed that capabilities developed for cognitive robotics can be employed advantageously for telerobotics in general. The top level problem is task planning, and it is appropriate to introduce a hierarchical view of control. Presented with certain mission objectives, the system must generate plans (typically) at the strategic, tactical, and reflexive levels. The structure by which knowledge is used to construct and update these plans endows the system with its cognitive attributes, and with the ability to deal with contingencies, changes, unknowns, and so on. Issues of representation and reasoning which are absolutely fundamental to robot manipulation, decisions based upon geometry, are discussed here, not AI task planning per se.
Multi-Modal Active Perception for Autonomously Selecting Landing Sites on Icy Moons
NASA Technical Reports Server (NTRS)
Arora, A.; Furlong, P. M.; Wong, U.; Fong, T.; Sukkarieh, S.
2017-01-01
Selecting suitable landing sites is fundamental to achieving many mission objectives in planetary robotic lander missions. However, due to sensing limitations, landing sites which are both safe and scientifically valuable often cannot be determined reliably from orbit, particularly, in icy moon missions where orbital sensing data is noisy and incomplete. This paper presents an active perception approach to Entry Descent and Landing (EDL) which enables the lander to autonomously plan informative descent trajectories, acquire high quality sensing data during descent and exploit this additional information to select higher utility landing sites. Our approach consists of two components: probabilistic modeling of landing site features and approximate trajectory planning using a sampling based planner. The proposed framework allows the lander to plan long horizons paths and remain robust to noisy data. Results in simulated environments show large performance improvements over alternative approaches and show promise that our approach has strong potential to improve science return of not only icy moon missions but EDL systems in general.
Autonomous bone reposition around anatomical landmark for robot-assisted orthognathic surgery.
Woo, Sang-Yoon; Lee, Sang-Jeong; Yoo, Ji-Yong; Han, Jung-Joon; Hwang, Soon-Jung; Huh, Kyung-Hoe; Lee, Sam-Sun; Heo, Min-Suk; Choi, Soon-Chul; Yi, Won-Jin
2017-12-01
The purpose of this study was to develop a new method for enabling a robot to assist a surgeon in repositioning a bone segment to accurately transfer a preoperative virtual plan into the intraoperative phase in orthognathic surgery. We developed a robot system consisting of an arm with six degrees of freedom, a robot motion-controller, and a PC. An end-effector at the end of the robot arm transferred the movements of the robot arm to the patient's jawbone. The registration between the robot and CT image spaces was performed completely preoperatively, and the intraoperative registration could be finished using only position changes of the tracking tools at the robot end-effector and the patient's splint. The phantom's maxillomandibular complex (MMC) connected to the robot's end-effector was repositioned autonomously by the robot movements around an anatomical landmark of interest based on the tool center point (TCP) principle. The robot repositioned the MMC around the TCP of the incisor of the maxilla and the pogonion of the mandible following plans for real orthognathic patients. The accuracy of the robot's repositioning increased when an anatomical landmark for the TCP was close to the registration fiducials. In spite of this influence, we could increase the repositioning accuracy at the landmark by using the landmark itself as the TCP. With its ability to incorporate virtual planning using a CT image and autonomously execute the plan around an anatomical landmark of interest, the robot could help surgeons reposition bones more accurately and dexterously. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints.
López-Nicolás, Gonzalo; Gans, Nicholas R; Bhattacharya, Sourabh; Sagüés, Carlos; Guerrero, Josechu J; Hutchinson, Seth
2010-08-01
In this paper, we present a visual servo controller that effects optimal paths for a nonholonomic differential drive robot with field-of-view constraints imposed by the vision system. The control scheme relies on the computation of homographies between current and goal images, but unlike previous homography-based methods, it does not use the homography to compute estimates of pose parameters. Instead, the control laws are directly expressed in terms of individual entries in the homography matrix. In particular, we develop individual control laws for the three path classes that define the language of optimal paths: rotations, straight-line segments, and logarithmic spirals. These control laws, as well as the switching conditions that define how to sequence path segments, are defined in terms of the entries of homography matrices. The selection of the corresponding control law requires the homography decomposition before starting the navigation. We provide a controllability and stability analysis for our system and give experimental results.
String tightening as a self-organizing phenomenon.
Banerjee, Bonny
2007-09-01
The phenomenon of self-organization has been of special interest to the neural network community throughout the last couple of decades. In this paper, we study a variant of the self-organizing map (SOM) that models the phenomenon of self-organization of the particles forming a string when the string is tightened from one or both of its ends. The proposed variant, called the string tightening self-organizing neural network (STON), can be used to solve certain practical problems, such as computation of shortest homotopic paths, smoothing paths to avoid sharp turns, computation of convex hull, etc. These problems are of considerable interest in computational geometry, robotics path-planning, artificial intelligence (AI) (diagrammatic reasoning), very large scale integration (VLSI) routing, and geographical information systems. Given a set of obstacles and a string with two fixed terminal points in a 2-D space, the STON model continuously tightens the given string until the unique shortest configuration in terms of the Euclidean metric is reached. The STON minimizes the total length of a string on convergence by dynamically creating and selecting feature vectors in a competitive manner. Proof of correctness of this anytime algorithm and experimental results obtained by its deployment have been presented in the paper.
Autonomous Shepherding Behaviors of Multiple Target Steering Robots.
Lee, Wonki; Kim, DaeEun
2017-11-25
This paper presents a distributed coordination methodology for multi-robot systems, based on nearest-neighbor interactions. Among many interesting tasks that may be performed using swarm robots, we propose a biologically-inspired control law for a shepherding task, whereby a group of external agents drives another group of agents to a desired location. First, we generated sheep-like robots that act like a flock. We assume that each agent is capable of measuring the relative location and velocity to each of its neighbors within a limited sensing area. Then, we designed a control strategy for shepherd-like robots that have information regarding where to go and a steering ability to control the flock, according to the robots' position relative to the flock. We define several independent behavior rules; each agent calculates to what extent it will move by summarizing each rule. The flocking sheep agents detect the steering agents and try to avoid them; this tendency leads to movement of the flock. Each steering agent only needs to focus on guiding the nearest flocking agent to the desired location. Without centralized coordination, multiple steering agents produce an arc formation to control the flock effectively. In addition, we propose a new rule for collecting behavior, whereby a scattered flock or multiple flocks are consolidated. From simulation results with multiple robots, we show that each robot performs actions for the shepherding behavior, and only a few steering agents are needed to control the whole flock. The results are displayed in maps that trace the paths of the flock and steering robots. Performance is evaluated via time cost and path accuracy to demonstrate the effectiveness of this approach.
Campbell, Paul T; Kruse, Kevin R; Kroll, Christopher R; Patterson, Janet Y; Esposito, Michele J
2015-09-01
Coronary stent deployment outcomes can be negatively impacted by inaccurate lesion measurement and inappropriate stent length selection (SLS). We compared visual estimate of these parameters to those provided by the CorPath 200® Robotic PCI System. Sixty consecutive patients who underwent coronary stent placement utilizing the CorPath System were evaluated. The treating physician assessed orthogonal images and provided visual estimates of lesion length and SLS. The robotic system was then used for the same measures. SLS was considered to be accurate when visual estimate and robotic measures were in agreement. Visual estimate SLSs were considered to be "short" or "long" if they were below or above the robotic-selected stents, respectively. Only 35% (21/60) of visually estimated lesions resulted in accurate SLS, whereas 33% (20/60) and 32% (19/60) of the visually estimated SLSs were long and short, respectively. In 5 cases (8.3%), 1 less stent was placed based on the robotic lesion measurement being shorter than the visual estimate. Visual estimate assessment of lesion length and SLS is highly variable with 65% of the cases being inaccurately measured when compared to objective measures obtained from the robotic system. The 32% of the cases where lesions were visually estimated to be short represents cases that often require the use of extra stents after the full lesion is not covered by 1 stent [longitudinal geographic miss (LGM)]. Further, these data showed that the use of the robotic system prevented the use of extra stents in 8.3% of the cases. Measurement of lesions with robotic PCI may reduce measurement errors, need for extra stents, and LGM. Copyright © 2015 Elsevier Inc. All rights reserved.
Integrating deliberative planning in a robot architecture
NASA Technical Reports Server (NTRS)
Elsaesser, Chris; Slack, Marc G.
1994-01-01
The role of planning and reactive control in an architecture for autonomous agents is discussed. The postulated architecture seperates the general robot intelligence problem into three interacting pieces: (1) robot reactive skills, i.e., grasping, object tracking, etc.; (2) a sequencing capability to differentially ativate the reactive skills; and (3) a delibrative planning capability to reason in depth about goals, preconditions, resources, and timing constraints. Within the sequencing module, caching techniques are used for handling routine activities. The planning system then builds on these cached solutions to routine tasks to build larger grain sized primitives. This eliminates large numbers of essentially linear planning problems. The architecture will be used in the future to incorporate in robots cognitive capabilites normally associated with intelligent behavior.
Telerobotic management system: coordinating multiple human operators with multiple robots
NASA Astrophysics Data System (ADS)
King, Jamie W.; Pretty, Raymond; Brothers, Brendan; Gosine, Raymond G.
2003-09-01
This paper describes an application called the Tele-robotic management system (TMS) for coordinating multiple operators with multiple robots for applications such as underground mining. TMS utilizes several graphical interfaces to allow the user to define a partially ordered plan for multiple robots. This plan is then converted to a Petri net for execution and monitoring. TMS uses a distributed framework to allow robots and operators to easily integrate with the applications. This framework allows robots and operators to join the network and advertise their capabilities through services. TMS then decides whether tasks should be dispatched to a robot or a remote operator based on the services offered by the robots and operators.
Assessment of Navigation Using a Hybrid Cognitive/Metric World Model
2015-01-01
The robot failed to avoid the stairs of the church. Table A-26 Assessment of vignette 1, path 6b, by researcher TBS Navigate left of the...NOTES 14. ABSTRACT One goal of the US Army Research Laboratory’s Robotic Collaborative Technology Alliance is to develop a cognitive architecture...that would allow a robot to operate on both the semantic and metric levels. As such, both symbolic and metric information would be interpreted within
Path planning on satellite images for unmanned surface vehicles
NASA Astrophysics Data System (ADS)
Yang, Joe-Ming; Tseng, Chien-Ming; Tseng, P. S.
2015-01-01
In recent years, the development of autonomous surface vehicles has been a field of increasing research interest. There are two major areas in this field: control theory and path planning. This study focuses on path planning, and two objectives are discussed: path planning for Unmanned Surface Vehicles (USVs) and implementation of path planning in a real map. In this paper, satellite thermal images are converted into binary images which are used as the maps for the Finite Angle A* algorithm (FAA*), an advanced A* algorithm that is used to determine safer and suboptimal paths for USVs. To plan a collision-free path, the algorithm proposed in this article considers the dimensions of surface vehicles. Furthermore, the turning ability of a surface vehicle is also considered, and a constraint condition is introduced to improve the quality of the path planning algorithm, which makes the traveled path smoother. This study also shows a path planning experiment performed on a real satellite thermal image, and the path planning results can be used by an USV.
Towards the robotic characterization of the constitutive response of composite materials
John G. Michopoulos; John C. Hermanson; Tomonari Furukawa
2008-01-01
A historical and technical overview of a paradigm for automating research procedures on the area of constitutive identification of composite materials is presented. Computationally controlled robotic, multiple degree-of-freedom mechatronic systems are used to accelerate the rate of performing data-collecting experiments along loading paths defined in multidimensional...
Yi, Jinhua; Yu, Hongliu; Zhang, Ying; Hu, Xin; Shi, Ping
2015-12-01
The present paper proposed a central-driven structure of upper limb rehabilitation robot in order to reduce the volume of the robotic arm in the structure, and also to reduce the influence of motor noise, radiation and other adverse factors on upper limb dysfunction patient. The forward and inverse kinematics equations have been obtained with using the Denavit-Hartenberg (D-H) parameter method. The motion simulation has been done to obtain the angle-time curve of each joint and the position-time curve of handle under setting rehabilitation path by using Solid Works software. Experimental results showed that the rationality with the central-driven structure design had been verified by the fact that the handle could move under setting rehabilitation path. The effectiveness of kinematics equations had been proved, and the error was less than 3° by comparing the angle-time curves obtained from calculation with those from motion simulation.
NASA Technical Reports Server (NTRS)
Sarkar, Nilanjan; Yun, Xiaoping; Kumar, Vijay
1994-01-01
There are many examples of mechanical systems that require rolling contacts between two or more rigid bodies. Rolling contacts engender nonholonomic constraints in an otherwise holonomic system. In this article, we develop a unified approach to the control of mechanical systems subject to both holonomic and nonholonomic constraints. We first present a state space realization of a constrained system. We then discuss the input-output linearization and zero dynamics of the system. This approach is applied to the dynamic control of mobile robots. Two types of control algorithms for mobile robots are investigated: trajectory tracking and path following. In each case, a smooth nonlinear feedback is obtained to achieve asymptotic input-output stability and Lagrange stability of the overall system. Simulation results are presented to demonstrate the effectiveness of the control algorithms and to compare the performane of trajectory-tracking and path-following algorithms.
Surgical robot setup simulation with consistent kinematics and haptics for abdominal surgery.
Hayashibe, Mitsuhiro; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Konishi, Kozo; Kakeji, Yoshihiro; Hashizume, Makoto
2005-01-01
Preoperative simulation and planning of surgical robot setup should accompany advanced robotic surgery if their advantages are to be further pursued. Feedback from the planning system will plays an essential role in computer-aided robotic surgery in addition to preoperative detailed geometric information from patient CT/MRI images. Surgical robot setup simulation systems for appropriate trocar site placement have been developed especially for abdominal surgery. The motion of the surgical robot can be simulated and rehearsed with kinematic constraints at the trocar site, and the inverse-kinematics of the robot. Results from simulation using clinical patient data verify the effectiveness of the proposed system.
Co-development of manner and path concepts in language, action, and eye-gaze behavior.
Lohan, Katrin S; Griffiths, Sascha S; Sciutti, Alessandra; Partmann, Tim C; Rohlfing, Katharina J
2014-07-01
In order for artificial intelligent systems to interact naturally with human users, they need to be able to learn from human instructions when actions should be imitated. Human tutoring will typically consist of action demonstrations accompanied by speech. In the following, the characteristics of human tutoring during action demonstration will be examined. A special focus will be put on the distinction between two kinds of motion events: path-oriented actions and manner-oriented actions. Such a distinction is inspired by the literature pertaining to cognitive linguistics, which indicates that the human conceptual system can distinguish these two distinct types of motion. These two kinds of actions are described in language by more path-oriented or more manner-oriented utterances. In path-oriented utterances, the source, trajectory, or goal is emphasized, whereas in manner-oriented utterances the medium, velocity, or means of motion are highlighted. We examined a video corpus of adult-child interactions comprised of three age groups of children-pre-lexical, early lexical, and lexical-and two different tasks, one emphasizing manner more strongly and one emphasizing path more strongly. We analyzed the language and motion of the caregiver and the gazing behavior of the child to highlight the differences between the tutoring and the acquisition of the manner and path concepts. The results suggest that age is an important factor in the development of these action categories. The analysis of this corpus has also been exploited to develop an intelligent robotic behavior-the tutoring spotter system-able to emulate children's behaviors in a tutoring situation, with the aim of evoking in human subjects a natural and effective behavior in teaching to a robot. The findings related to the development of manner and path concepts have been used to implement new effective feedback strategies in the tutoring spotter system, which should provide improvements in human-robot interaction. Copyright © 2014 Cognitive Science Society, Inc.
A strategy planner for NASA robotics applications
NASA Technical Reports Server (NTRS)
Brodd, S. S.
1985-01-01
Automatic strategy or task planning is an important element of robotics systems. A strategy planner under development at Goddard Space Flight Center automatically produces robot plans for assembly, disassembly, or repair of NASA spacecraft from computer aided design descriptions of the individual parts of the spacecraft.
Manufacturing implementation of off-line programming for the Space Shuttle Main Engines
NASA Technical Reports Server (NTRS)
Sliwinski, K. E.; Pierson, B. L.; Anderson, R. R.; Guthmiller, W. A.
1989-01-01
An account is given of the efforts made to implement an off-line programming (OLP) system for a gas tungsten arc welding robot in actual manufacturing operations, namely those involved in the manufacture of the SSMEs. In conjunction with a real-time sensor control system, the OLP constitutes the Advanced Robotic Welding System, or 'AROWS'. OLP's task is to develop a robot-motion path without the initial use of the robot to 'teach' the characteristics of such motion; actual process parameters are recorded by OLP and correlated with the position along the weld.
Robot calibration with a photogrammetric on-line system using reseau scanning cameras
NASA Astrophysics Data System (ADS)
Diewald, Bernd; Godding, Robert; Henrich, Andreas
1994-03-01
The possibility for testing and calibration of industrial robots becomes more and more important for manufacturers and users of such systems. Exacting applications in connection with the off-line programming techniques or the use of robots as measuring machines are impossible without a preceding robot calibration. At the LPA an efficient calibration technique has been developed. Instead of modeling the kinematic behavior of a robot, the new method describes the pose deviations within a user-defined section of the robot's working space. High- precision determination of 3D coordinates of defined path positions is necessary for calibration and can be done by digital photogrammetric systems. For the calibration of a robot at the LPA a digital photogrammetric system with three Rollei Reseau Scanning Cameras was used. This system allows an automatic measurement of a large number of robot poses with high accuracy.
Envisioning Cognitive Robots for Future Space Exploration
NASA Technical Reports Server (NTRS)
Huntsberger, Terry; Stoica, Adrian
2010-01-01
Cognitive robots in the context of space exploration are envisioned with advanced capabilities of model building, continuous planning/re-planning, self-diagnosis, as well as the ability to exhibit a level of 'understanding' of new situations. An overview of some JPL components (e.g. CASPER, CAMPOUT) and a description of the architecture CARACaS (Control Architecture for Robotic Agent Command and Sensing) that combines these in the context of a cognitive robotic system operating in a various scenarios are presented. Finally, two examples of typical scenarios of a multi-robot construction mission and a human-robot mission, involving direct collaboration with humans is given.
De Momi, E; Ferrigno, G
2010-01-01
The robot and sensors integration for computer-assisted surgery and therapy (ROBOCAST) project (FP7-ICT-2007-215190) is co-funded by the European Union within the Seventh Framework Programme in the field of information and communication technologies. The ROBOCAST project focuses on robot- and artificial-intelligence-assisted keyhole neurosurgery (tumour biopsy and local drug delivery along straight or turning paths). The goal of this project is to assist surgeons with a robotic system controlled by an intelligent high-level controller (HLC) able to gather and integrate information from the surgeon, from diagnostic images, and from an array of on-field sensors. The HLC integrates pre-operative and intra-operative diagnostics data and measurements, intelligence augmentation, multiple-robot dexterity, and multiple sensory inputs in a closed-loop cooperating scheme including a smart interface for improved haptic immersion and integration. This paper, after the overall architecture description, focuses on the intelligent trajectory planner based on risk estimation and human criticism. The current status of development is reported, and first tests on the planner are shown by using a real image stack and risk descriptor phantom. The advantages of using a fuzzy risk description are given by the possibility of upgrading the knowledge on-field without the intervention of a knowledge engineer.
Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach.
Silva, Pedro; Matos, Vitor; Santos, Cristina P
2014-02-01
There is an increasing interest in conceiving robotic systems that are able to move and act in an unstructured and not predefined environment, for which autonomy and adaptability are crucial features. In nature, animals are autonomous biological systems, which often serve as bio-inspiration models, not only for their physical and mechanical properties, but also their control structures that enable adaptability and autonomy-for which learning is (at least) partially responsible. This work proposes a system which seeks to enable a quadruped robot to online learn to detect and to avoid stumbling on an obstacle in its path. The detection relies in a forward internal model that estimates the robot's perceptive information by exploring the locomotion repetitive nature. The system adapts the locomotion in order to place the robot optimally before attempting to step over the obstacle, avoiding any stumbling. Locomotion adaptation is achieved by changing control parameters of a central pattern generator (CPG)-based locomotion controller. The mechanism learns the necessary alterations to the stride length in order to adapt the locomotion by changing the required CPG parameter. Both learning tasks occur online and together define a sensorimotor map, which enables the robot to learn to step over the obstacle in its path. Simulation results show the feasibility of the proposed approach.
Horizon Scan of Emerging Technologies and Trends for ADF Combat Service Support 2016
2016-12-01
Autonomous Robot (SMART) for stitching [315], Flex Robotic System and Flex arm for operating through non-linear winding paths (like the throat) [314...knows-about-customers-habits.html?referer=&_r=0. 15. Singer, P. W. (2009) Wired for War. The Robotics Revolution and Conflict in the 21st Century...spotlight/spotid=40493.php. 61. Chandler, D. L. (2015) Tiny wires could provide a big energy boost. MIT via Nanowerk News, 7 July 2015 [Last accessed 16
Autonomous Shepherding Behaviors of Multiple Target Steering Robots
Lee, Wonki; Kim, DaeEun
2017-01-01
This paper presents a distributed coordination methodology for multi-robot systems, based on nearest-neighbor interactions. Among many interesting tasks that may be performed using swarm robots, we propose a biologically-inspired control law for a shepherding task, whereby a group of external agents drives another group of agents to a desired location. First, we generated sheep-like robots that act like a flock. We assume that each agent is capable of measuring the relative location and velocity to each of its neighbors within a limited sensing area. Then, we designed a control strategy for shepherd-like robots that have information regarding where to go and a steering ability to control the flock, according to the robots’ position relative to the flock. We define several independent behavior rules; each agent calculates to what extent it will move by summarizing each rule. The flocking sheep agents detect the steering agents and try to avoid them; this tendency leads to movement of the flock. Each steering agent only needs to focus on guiding the nearest flocking agent to the desired location. Without centralized coordination, multiple steering agents produce an arc formation to control the flock effectively. In addition, we propose a new rule for collecting behavior, whereby a scattered flock or multiple flocks are consolidated. From simulation results with multiple robots, we show that each robot performs actions for the shepherding behavior, and only a few steering agents are needed to control the whole flock. The results are displayed in maps that trace the paths of the flock and steering robots. Performance is evaluated via time cost and path accuracy to demonstrate the effectiveness of this approach. PMID:29186836
An iterative learning control method with application for CNC machine tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D.I.; Kim, S.
1996-01-01
A proportional, integral, and derivative (PID) type iterative learning controller is proposed for precise tracking control of industrial robots and computer numerical controller (CNC) machine tools performing repetitive tasks. The convergence of the output error by the proposed learning controller is guaranteed under a certain condition even when the system parameters are not known exactly and unknown external disturbances exist. As the proposed learning controller is repeatedly applied to the industrial robot or the CNC machine tool with the path-dependent repetitive task, the distance difference between the desired path and the actual tracked or machined path, which is one ofmore » the most significant factors in the evaluation of control performance, is progressively reduced. The experimental results demonstrate that the proposed learning controller can improve machining accuracy when the CNC machine tool performs repetitive machining tasks.« less
NASA Technical Reports Server (NTRS)
Stanboli, Alice
2013-01-01
Phxtelemproc is a C/C++ based telemetry processing program that processes SFDU telemetry packets from the Telemetry Data System (TDS). It generates Experiment Data Records (EDRs) for several instruments including surface stereo imager (SSI); robotic arm camera (RAC); robotic arm (RA); microscopy, electrochemistry, and conductivity analyzer (MECA); and the optical microscope (OM). It processes both uncompressed and compressed telemetry, and incorporates unique subroutines for the following compression algorithms: JPEG Arithmetic, JPEG Huffman, Rice, LUT3, RA, and SX4. This program was in the critical path for the daily command cycle of the Phoenix mission. The products generated by this program were part of the RA commanding process, as well as the SSI, RAC, OM, and MECA image and science analysis process. Its output products were used to advance science of the near polar regions of Mars, and were used to prove that water is found in abundance there. Phxtelemproc is part of the MIPL (Multi-mission Image Processing Laboratory) system. This software produced Level 1 products used to analyze images returned by in situ spacecraft. It ultimately assisted in operations, planning, commanding, science, and outreach.
Development of a compact continuum tubular robotic system for nasopharyngeal biopsy.
Wu, Liao; Song, Shuang; Wu, Keyu; Lim, Chwee Ming; Ren, Hongliang
2017-03-01
Traditional posterior nasopharyngeal biopsy using a flexible nasal endoscope has the risks of abrasion and injury to the nasal mucosa and thus causing trauma to the patient. Recently, a new class of robots known as continuum tubular robots (CTRs) provide a novel solution to the challenge with miniaturized size, curvilinear maneuverability, and capability of avoiding collision within the nasal environment. This paper presents a compact CTR which is 35 cm in total length, 10 cm in diameter, 2.15 kg in weight, and easy to be integrated with a robotic arm to perform more complicated operations. Structural design, end-effector design, and workspace analysis are described in detail. In addition, teleoperation of the CTR using a haptic input device is developed for position control in 3D space. Moreover, by integrating the robot with three electromagnetic tracking sensors, a navigation system together with a shape reconstruction algorithm is developed. Comprehensive experiments are conducted to test the functionality of the proposed prototype; experiment results show that under teleoperation, the system has an accuracy of 2.20 mm in following a linear path, an accuracy of 2.01 mm in following a circular path, and a latency time of 0.1 s. It is also found that the proposed shape reconstruction algorithm has a mean error of around 1 mm along the length of the tubes. Besides, the feasibility and effectiveness of the proposed robotic system being applied to posterior nasopharyngeal biopsy are demonstrated by a cadaver experiment. The proposed robotic system holds promise to enhance clinical operation in transnasal procedures.
Optimal motion planning for collision avoidance of mobile robots in non-stationary environments
NASA Technical Reports Server (NTRS)
Kyriakopoulos, K. J.; Saridis, G. N.
1992-01-01
An optimal control formulation of the problem of collision avoidance of mobile robots moving in general terrains containing moving obstacles is presented. A dynamic model of the mobile robot and the dynamic constraints are derived. Collision avoidance is guaranteed if the minimum distance between the robot and the object is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. Time consistency with the nominal plan is desirable. A numerical solution of the optimization problem is obtained. A perturbation control type of approach is used to update the optimal plan. Simulation results verify the value of the proposed strategy.
Turini, Giuseppe; Moglia, Andrea; Ferrari, Vincenzo; Ferrari, Mauro; Mosca, Franco
2012-01-01
The trend of surgical robotics is to follow the evolution of laparoscopy, which is now moving towards single-incision laparoscopic surgery. The main drawback of this approach is the limited maneuverability of the surgical tools. Promising solutions to improve the surgeon's dexterity are based on bimanual robots. However, since both robot arms are completely inserted into the patient's body, issues related to possible unwanted collisions with structures adjacent to the target organ may arise. This paper presents a simulator based on patient-specific data for the positioning and workspace evaluation of bimanual surgical robots in the pre-operative planning of single-incision laparoscopic surgery. The simulator, designed for the pre-operative planning of robotic laparoscopic interventions, was tested by five expert surgeons who evaluated its main functionalities and provided an overall rating for the system. The proposed system demonstrated good performance and usability, and was designed to integrate both present and future bimanual surgical robots.
Spatial Coverage Planning and Optimization for Planetary Exploration
NASA Technical Reports Server (NTRS)
Gaines, Daniel M.; Estlin, Tara; Chouinard, Caroline
2008-01-01
We are developing onboard planning and scheduling technology to enable in situ robotic explorers, such as rovers and aerobots, to more effectively assist scientists in planetary exploration. In our current work, we are focusing on situations in which the robot is exploring large geographical features such as craters, channels or regional boundaries. In to develop valid and high quality plans, the robot must take into account a range of scientific and engineering constraints and preferences. We have developed a system that incorporates multiobjective optimization and planning allowing the robot to generate high quality mission operations plans that respect resource limitations and mission constraints while attempting to maximize science and engineering objectives. An important scientific objective for the exploration of geological features is selecting observations that spatially cover an area of interest. We have developed a metric to enable an in situ explorer to reason about and track the spatial coverage quality of a plan. We describe this technique and show how it is combined in the overall multiobjective optimization and planning algorithm.
Ortiz Oshiro, Elena; Ramos Carrasco, Angel; Moreno Sierra, Jesús; Pardo Martínez, Cristina; Galante Romo, Isabel; Bullón Sopelana, Fernando; Coronado Martín, Pluvio; Mansilla García, Iván; Escudero Mate, María; Vidart Aragón, José A; Silmi Moyano, Angel; Alvarez Fernández-Represa, Jesús
2010-02-01
Da Vinci system (Intuitive Surgical) is a surgical telemanipulator providing many technical advantages over conventional laparoscopic approach (3-D vision, ergonomics, highly precise movements, endowrist instrumentation...) and it is currently applied to several specialties throughout the world since 2000. The first Spanish public hospital incorporating this robotic technology was Hospital Clinico San Carlos (HCSC) in Madrid, in July 2006. We present the multidisciplinary organization and clinical, research and training outcomes of the Robotic Surgery Plan developed in the HCSC. Starting from joint management and joint scrub nurses team, General and Digestive Surgery, Urology and Gynaecology Departments were progressively incorporated into the Robotic Surgery Plan, with several procedures increasing in complexity. A number of intra and extra-hospital teaching and information activities were planned to report on the Robotic Surgery Plan. Between July 2006 and July 2008, 306 patients were operated on: 169 by General Surgery, 107 by Urology and 30 by Gynaecology teams. The outcomes showed feasibility and a short learning curve. The educational plan included residents and staff interested in robotic technology application. The structured and gradual incorporation of robotic surgery throughout the PCR-HCSC has made it easier to learn, to share designed infrastructure, to coordinate information activities and multidisciplinary collaboration. This preliminary experience has shown the efficiency of an adequate organization and motivated team. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.
Surgeon Design Interface for Patient-Specific Concentric Tube Robots
Morimoto, Tania K.; Greer, Joseph D.; Hsieh, Michael H.; Okamura, Allison M.
2017-01-01
Concentric tube robots have potential for use in a wide variety of surgical procedures due to their small size, dexterity, and ability to move in highly curved paths. Unlike most existing clinical robots, the design of these robots can be developed and manufactured on a patient- and procedure-specific basis. The design of concentric tube robots typically requires significant computation and optimization, and it remains unclear how the surgeon should be involved. We propose to use a virtual reality-based design environment for surgeons to easily and intuitively visualize and design a set of concentric tube robots for a specific patient and procedure. In this paper, we describe a novel patient-specific design process in the context of the virtual reality interface. We also show a resulting concentric tube robot design, created by a pediatric urologist to access a kidney stone in a pediatric patient. PMID:28656124
NASA Astrophysics Data System (ADS)
Nagata, Fusaomi; Okada, Yudai; Sakamoto, Tatsuhiko; Kusano, Takamasa; Habib, Maki K.; Watanabe, Keigo
2017-06-01
The authors have developed earlier an industrial machining robotic system for foamed polystyrene materials. The developed robotic CAM system provided a simple and effective interface without the need to use any robot language between operators and the machining robot. In this paper, a preprocessor for generating Cutter Location Source data (CLS data) from Stereolithography (STL data) is first proposed for robotic machining. The preprocessor enables to control the machining robot directly using STL data without using any commercially provided CAM system. The STL deals with a triangular representation for a curved surface geometry. The preprocessor allows machining robots to be controlled through a zigzag or spiral path directly calculated from STL data. Then, a smart spline interpolation method is proposed and implemented for smoothing coarse CLS data. The effectiveness and potential of the developed approaches are demonstrated through experiments on actual machining and interpolation.
Surgeon Design Interface for Patient-Specific Concentric Tube Robots.
Morimoto, Tania K; Greer, Joseph D; Hsieh, Michael H; Okamura, Allison M
2016-06-01
Concentric tube robots have potential for use in a wide variety of surgical procedures due to their small size, dexterity, and ability to move in highly curved paths. Unlike most existing clinical robots, the design of these robots can be developed and manufactured on a patient- and procedure-specific basis. The design of concentric tube robots typically requires significant computation and optimization, and it remains unclear how the surgeon should be involved. We propose to use a virtual reality-based design environment for surgeons to easily and intuitively visualize and design a set of concentric tube robots for a specific patient and procedure. In this paper, we describe a novel patient-specific design process in the context of the virtual reality interface. We also show a resulting concentric tube robot design, created by a pediatric urologist to access a kidney stone in a pediatric patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Lenhart, S.M.
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less
Development of a task-level robot programming and simulation system
NASA Technical Reports Server (NTRS)
Liu, H.; Kawamura, K.; Narayanan, S.; Zhang, G.; Franke, H.; Ozkan, M.; Arima, H.; Liu, H.
1987-01-01
An ongoing project in developing a Task-Level Robot Programming and Simulation System (TARPS) is discussed. The objective of this approach is to design a generic TARPS that can be used in a variety of applications. Many robotic applications require off-line programming, and a TARPS is very useful in such applications. Task level programming is object centered in that the user specifies tasks to be performed instead of robot paths. Graphics simulation provides greater flexibility and also avoids costly machine setup and possible damage. A TARPS has three major modules: world model, task planner and task simulator. The system architecture, design issues and some preliminary results are given.
Lattice Independent Component Analysis for Mobile Robot Localization
NASA Astrophysics Data System (ADS)
Villaverde, Ivan; Fernandez-Gauna, Borja; Zulueta, Ekaitz
This paper introduces an approach to appearance based mobile robot localization using Lattice Independent Component Analysis (LICA). The Endmember Induction Heuristic Algorithm (EIHA) is used to select a set of Strong Lattice Independent (SLI) vectors, which can be assumed to be Affine Independent, and therefore candidates to be the endmembers of the data. Selected endmembers are used to compute the linear unmixing of the robot's acquired images. The resulting mixing coefficients are used as feature vectors for view recognition through classification. We show on a sample path experiment that our approach can recognise the localization of the robot and we compare the results with the Independent Component Analysis (ICA).
On-Line Allocation Of Robot Resources To Task Plans
NASA Astrophysics Data System (ADS)
Lyons, Damian M.
1989-02-01
In this paper, I present an approach to representing plans that make on-line decisions about resource allocation. An on-line decision is the evaluation of a conditional expression involving sensory information as the plan is being executed. I use a plan representation called 7ZS10'1 1,12that has been especially designed for the domain of robot programming, and in particular, for the problem of on-line decisions. The resource allocation example is based on the robot assembly cell architecture outlined by Venkataraman and Lyons16. I begin by setting forth a definition of on-line decision making and some arguments as to why this form of decision making is important and useful. To set the context for the resource allocation example, I take some care in categorizing the types of on-line decision making and the approaches adopted by other workers so far. In particular, I justify a plan-based approach to the study of on-line decision making. From that, the focus shifts to one type of decision making: on-line allocation of robot resources to task plans. Robot resources are the physical manipulators (grippers, wrists, arms, feeders, etc) that are available to carry out the task. I formulate the assembly cell architecture of Venkataraman and Lyons16 as an R.S plan schema, and show how the on-line allocation specified in that architecture can be implemented. Finally, I show how considering the on-line allocation of logical resources, that is a physical resource plus some model information, can be used as a non-traditional approach to some problems in robot task planning.
Task planning with uncertainty for robotic systems. Thesis
NASA Technical Reports Server (NTRS)
Cao, Tiehua
1993-01-01
In a practical robotic system, it is important to represent and plan sequences of operations and to be able to choose an efficient sequence from them for a specific task. During the generation and execution of task plans, different kinds of uncertainty may occur and erroneous states need to be handled to ensure the efficiency and reliability of the system. An approach to task representation, planning, and error recovery for robotic systems is demonstrated. Our approach to task planning is based on an AND/OR net representation, which is then mapped to a Petri net representation of all feasible geometric states and associated feasibility criteria for net transitions. Task decomposition of robotic assembly plans based on this representation is performed on the Petri net for robotic assembly tasks, and the inheritance of properties of liveness, safeness, and reversibility at all levels of decomposition are explored. This approach provides a framework for robust execution of tasks through the properties of traceability and viability. Uncertainty in robotic systems are modeled by local fuzzy variables, fuzzy marking variables, and global fuzzy variables which are incorporated in fuzzy Petri nets. Analysis of properties and reasoning about uncertainty are investigated using fuzzy reasoning structures built into the net. Two applications of fuzzy Petri nets, robot task sequence planning and sensor-based error recovery, are explored. In the first application, the search space for feasible and complete task sequences with correct precedence relationships is reduced via the use of global fuzzy variables in reasoning about subgoals. In the second application, sensory verification operations are modeled by mutually exclusive transitions to reason about local and global fuzzy variables on-line and automatically select a retry or an alternative error recovery sequence when errors occur. Task sequencing and task execution with error recovery capability for one and multiple soft components in robotic systems are investigated.
Research on Robot Pose Control Technology Based on Kinematics Analysis Model
NASA Astrophysics Data System (ADS)
Liu, Dalong; Xu, Lijuan
2018-01-01
In order to improve the attitude stability of the robot, proposes an attitude control method of robot based on kinematics analysis model, solve the robot walking posture transformation, grasping and controlling the motion planning problem of robot kinematics. In Cartesian space analytical model, using three axis accelerometer, magnetometer and the three axis gyroscope for the combination of attitude measurement, the gyroscope data from Calman filter, using the four element method for robot attitude angle, according to the centroid of the moving parts of the robot corresponding to obtain stability inertia parameters, using random sampling RRT motion planning method, accurate operation to any position control of space robot, to ensure the end effector along a prescribed trajectory the implementation of attitude control. The accurate positioning of the experiment is taken using MT-R robot as the research object, the test robot. The simulation results show that the proposed method has better robustness, and higher positioning accuracy, and it improves the reliability and safety of robot operation.
Chiang, Mao-Hsiung; Lin, Hao-Ting
2011-01-01
This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to verify the feasibility of the proposed parallel mechanism robot driven by three vertical pneumatic servo actuators, a full-scale test rig of the proposed parallel mechanism pneumatic robot is set up. Thus, simulations and experiments for different complex 3D motion profiles of the robot end-effector can be successfully achieved. The desired, the actual and the calculated 3D position of the end-effector can be compared in the complex 3D motion control.
NASA Astrophysics Data System (ADS)
Gandhi, Neeraj; Kim, Sungmin; Kazanzides, Peter; Lediju Bell, Muyinatu A.
2017-03-01
Minimally invasive surgery carries the deadly risk of rupturing major blood vessels, such as the internal carotid arteries hidden by bone in endonasal transsphenoidal surgery. We propose a novel approach to surgical guidance that relies on photoacoustic-based vessel separation measurements to assess the extent of safety zones during these type of surgical procedures. This approach can be implemented with or without a robot or navigation system. To determine the accuracy of this approach, a custom phantom was designed and manufactured for modular placement of two 3.18-mm diameter vessel-mimicking targets separated by 10-20 mm. Photoacoustic images were acquired as the optical fiber was swept across the vessels in the absence and presence of teleoperation with a research da Vinci Surgical System. When the da Vinci was used, vessel positions were recorded based on the fiber position (calculated from the robot kinematics) that corresponded to an observed photoacoustic signal. In all cases, compounded photoacoustic data from a single sweep displayed the four vessel boundaries in one image. Amplitude- and coherence-based photoacoustic images were used to estimate vessel separations, resulting in 0.52-0.56 mm mean absolute errors, 0.66-0.71 mm root mean square errors, and 65-68% more accuracy compared to fiber position measurements obtained through the da Vinci robot kinematics. Results indicate that with further development, photoacoustic image-based measurements of anatomical landmarks could be a viable method for real-time path planning in multiple interventional photoacoustic applications.
Design and implementation of a compliant robot with force feedback and strategy planning software
NASA Technical Reports Server (NTRS)
Premack, T.; Strempek, F. M.; Solis, L. A.; Brodd, S. S.; Cutler, E. P.; Purves, L. R.
1984-01-01
Force-feedback robotics techniques are being developed for automated precision assembly and servicing of NASA space flight equipment. Design and implementation of a prototype robot which provides compliance and monitors forces is in progress. Computer software to specify assembly steps and makes force feedback adjustments during assembly are coded and tested for three generically different precision mating problems. A model program demonstrates that a suitably autonomous robot can plan its own strategy.
Time optimal paths for high speed maneuvering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less
Cache-Aware Asymptotically-Optimal Sampling-Based Motion Planning.
Ichnowski, Jeffrey; Prins, Jan F; Alterovitz, Ron
2014-05-01
We present CARRT* (Cache-Aware Rapidly Exploring Random Tree*), an asymptotically optimal sampling-based motion planner that significantly reduces motion planning computation time by effectively utilizing the cache memory hierarchy of modern central processing units (CPUs). CARRT* can account for the CPU's cache size in a manner that keeps its working dataset in the cache. The motion planner progressively subdivides the robot's configuration space into smaller regions as the number of configuration samples rises. By focusing configuration exploration in a region for periods of time, nearest neighbor searching is accelerated since the working dataset is small enough to fit in the cache. CARRT* also rewires the motion planning graph in a manner that complements the cache-aware subdivision strategy to more quickly refine the motion planning graph toward optimality. We demonstrate the performance benefit of our cache-aware motion planning approach for scenarios involving a point robot as well as the Rethink Robotics Baxter robot.
Virtual local target method for avoiding local minimum in potential field based robot navigation.
Zou, Xi-Yong; Zhu, Jing
2003-01-01
A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation. Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.
An Adaptive Web-Based Support to e-Education in Robotics and Automation
NASA Astrophysics Data System (ADS)
di Giamberardino, Paolo; Temperini, Marco
The paper presents the hardware and software architecture of a remote laboratory, with robotics and automation applications, devised to support e-teaching and e-learning activities, at an undergraduate level in computer engineering. The hardware is composed by modular structures, based on the Lego Mindstorms components: they are reasonably sophisticated in terms of functions, pretty easy to use, and sufficiently affordable in terms of cost. Moreover, being the robots intrinsically modular, wrt the number and distribution of sensors and actuators, they are easily and quickly reconfigurable. A web application makes the laboratory and its robots available via internet. The software framework allows the teacher to define, for the course under her/his responsibility, a learning path made of different and differently complex exercises, graduated in terms of the "difficulty" they require to meet and of the "competence" that the solver is supposed to have shown. The learning path of exercises is adapted to the individual learner's progressively growing competence: at any moment, only a subset of the exercises is available (depending on how close their levels of competence and difficulty are to those of the exercises already solved by the learner).
Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images †
Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao
2017-01-01
Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications. PMID:28604624
Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images.
Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao
2017-06-12
Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the "navigation via classification" task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.
NASA Astrophysics Data System (ADS)
Celik, Koray
This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors.
Photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot
NASA Astrophysics Data System (ADS)
Gandhi, Neeraj; Allard, Margaret; Kim, Sungmin; Kazanzides, Peter; Lediju Bell, Muyinatu A.
2017-12-01
Death and paralysis are significant risks of modern surgeries, caused by injury to blood vessels and nerves hidden by bone and other tissue. We propose an approach to surgical guidance that relies on photoacoustic (PA) imaging to determine the separation between these critical anatomical features and to assess the extent of safety zones during surgical procedures. Images were acquired as an optical fiber was swept across vessel-mimicking targets, in the absence and presence of teleoperation with a research da Vinci Surgical System. Vessel separation distances were measured directly from PA images. Vessel positions were additionally recorded based on the fiber position (calculated from the da Vinci robot kinematics) that corresponded to an observed PA signal, and these recordings were used to indirectly measure vessel separation distances. Amplitude- and coherence-based beamforming were used to estimate vessel separations, resulting in 0.52- to 0.56-mm mean absolute errors, 0.66- to 0.71-mm root-mean-square errors, and 65% to 68% more accuracy compared to fiber position measurements obtained through the da Vinci robot kinematics. Similar accuracy was achieved in the presence of up to 4.5-mm-thick ex vivo tissue. Results indicate that PA image-based measurements of the separation among anatomical landmarks could be a viable method for real-time path planning in multiple interventional PA applications.
STS-110 Crew Interviews: Ellen Ochoa
NASA Technical Reports Server (NTRS)
2002-01-01
STS-110 Mission Specialist Ellen Ochoa is seen during this preflight interview, where she gives a quick overview of the mission before answering questions about her inspiration to become an astronaut and her career path. Ochoa outlines her role in the mission in general, and specifically her use of the robotic arm during the extravehicular activities (EVAs). She describes the payload (S0 Truss and Mobile Transporter) and the dry run installation of the S0 truss that will take place the day before the EVA for the actual installation. Ochoa discusses the planned EVAs in detail and outlines what supplies will be left for the resident crew of the International Space Station (ISS). She ends with thoughts on the most valuable aspect of the ISS.
STS-111 Crew Interviews: Paul Lockhart, Pilot
NASA Technical Reports Server (NTRS)
2002-01-01
STS-111 Pilot Paul Lockhart is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He discusses the following mission goals: the crew transfer activities (the Expedition 5 crew is replacing the Expedition 4 crew on the International Space Station (ISS)), the delivery of the payloads which includes the Mobile Remote Servicer Base System (MBS), and the planned extravehicular activities (EVAs) which include attaching the MBS to the ISS and repairing the station's robot arm. He describes in-flight procedures for launch, reentry and docking with the ISS. He ends with his thoughts on the role of international cooperation in building and maintaining ISS.
Stilwell, Daniel J; Bishop, Bradley E; Sylvester, Caleb A
2005-08-01
An approach to real-time trajectory generation for platoons of autonomous vehicles is developed from well-known control techniques for redundant robotic manipulators. The partially decentralized structure of this approach permits each vehicle to independently compute its trajectory in real-time using only locally generated information and low-bandwidth feedback generated by a system exogenous to the platoon. Our work is motivated by applications for which communications bandwidth is severely limited, such for platoons of autonomous underwater vehicles. The communication requirements for our trajectory generation approach are independent of the number of vehicles in the platoon, enabling platoons composed of a large number of vehicles to be coordinated despite limited communication bandwidth.
Staubli TX-90XL robot qualification at the LLIHE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covert, Timothy Todd
The Light Initiated High Explosive (LIHE) Facility uses a robotic arm to spray explosive material onto test items for impulse tests. In 2007, the decision was made to replace the existing PUMA 760 robot with the Staubli TX-90XL. A qualification plan was developed and implemented to verify the safe operating conditions and failure modes of the new system. The robot satisfied the safety requirements established in the qualification plan. A performance issue described in this report remains unresolved at the time of this publication. The final readiness review concluded the qualification of this robot at the LIHE facility.
Accurate multi-robot targeting for keyhole neurosurgery based on external sensor monitoring.
Comparetti, Mirko Daniele; Vaccarella, Alberto; Dyagilev, Ilya; Shoham, Moshe; Ferrigno, Giancarlo; De Momi, Elena
2012-05-01
Robotics has recently been introduced in surgery to improve intervention accuracy, to reduce invasiveness and to allow new surgical procedures. In this framework, the ROBOCAST system is an optically surveyed multi-robot chain aimed at enhancing the accuracy of surgical probe insertion during keyhole neurosurgery procedures. The system encompasses three robots, connected as a multiple kinematic chain (serial and parallel), totalling 13 degrees of freedom, and it is used to automatically align the probe onto a desired planned trajectory. The probe is then inserted in the brain, towards the planned target, by means of a haptic interface. This paper presents a new iterative targeting approach to be used in surgical robotic navigation, where the multi-robot chain is used to align the surgical probe to the planned pose, and an external sensor is used to decrease the alignment errors. The iterative targeting was tested in an operating room environment using a skull phantom, and the targets were selected on magnetic resonance images. The proposed targeting procedure allows about 0.3 mm to be obtained as the residual median Euclidean distance between the planned and the desired targets, thus satisfying the surgical accuracy requirements (1 mm), due to the resolution of the diffused medical images. The performances proved to be independent of the robot optical sensor calibration accuracy.
NASA Astrophysics Data System (ADS)
Tamura, Sho; Maeyama, Shoichi
Rescue robots have been actively developed since Hanshin-Awaji (Kobe) Earthquake. Recently, the rescue robot to reduce the risk of the secondary disaster on NBC terror and critical accident is also developed. For such a background, the development project of mobile RT system in the collapsed is started. This research also participates in this project. It is useful to use the image pointing for the control interface of the rescue robot because it can control the robot by the simple operation. However, the conventional method cannot work on a rough terrain. In this research, we propose the system which controls the robot to arrive the target position on the rough terrain. It is constructed the methods which put the destination into the vector, and control the 3D localizated robot to follow the vector. Finally, the proposed system is evaluated through experiments by remote control of a mobile robot in slope and cofirmed the feasibility.
Raven surgical robot training in preparation for da vinci.
Glassman, Deanna; White, Lee; Lewis, Andrew; King, Hawkeye; Clarke, Alicia; Glassman, Thomas; Comstock, Bryan; Hannaford, Blake; Lendvay, Thomas S
2014-01-01
The rapid adoption of robotic assisted surgery challenges the pace at which adequate robotic training can occur due to access limitations to the da Vinci robot. Thirty medical students completed a randomized controlled trial evaluating whether the Raven robot could be used as an alternative training tool for the Fundamentals of Laparoscopic Surgery (FLS) block transfer task on the da Vinci robot. Two groups, one trained on the da Vinci and one trained on the Raven, were tested on a criterion FLS block transfer task on the da Vinci. After robotic FLS block transfer proficiency training there was no statistically significant difference between path length (p=0.39) and economy of motion scores (p=0.06) between the two groups, but those trained on the da Vinci did have faster task times (p=0.01). These results provide evidence for the value of using the Raven robot for training prior to using the da Vinci surgical system for similar tasks.
Concurrent planning and execution for a walking robot
NASA Astrophysics Data System (ADS)
Simmons, Reid
1990-07-01
The Planetary Rover project is developing the Ambler, a novel legged robot, and an autonomous software system for walking the Ambler over rough terrain. As part of the project, we have developed a system that integrates perception, planning, and real-time control to navigate a single leg of the robot through complex obstacle courses. The system is integrated using the Task Control Architecture (TCA), a general-purpose set of utilities for building and controlling distributed mobile robot systems. The walking system, as originally implemented, utilized a sequential sense-plan-act control cycle. This report describes efforts to improve the performance of the system by concurrently planning and executing steps. Concurrency was achieved by modifying the existing sequential system to utilize TCA features such as resource management, monitors, temporal constraints, and hierarchical task trees. Performance was increased in excess of 30 percent with only a relatively modest effort to convert and test the system. The results lend support to the utility of using TCA to develop complex mobile robot systems.
ISS Expedition 18 Sandra Magnus at Robotics Work Station (RWS)
2008-12-05
ISS018-E-010555 (5 Dec. 2008) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, operates the Canadarm2 from the robotics work station in the Destiny laboratory of the International Space Station. Using the station's robotic arm, Magnus and astronaut Michael Fincke (out of frame), commander, relocated the ESP-3 from the Mobile Base System back to the Cargo Carrier Attachment System on the P3 truss. The ESP-3 spare parts platform was temporarily parked on the MBS to clear the path for the spacewalks during STS-126.
ISS Expedition 18 Robotics Work Station (RWS) in the US Laboratory
2008-12-05
ISS018-E-010564 (5 Dec. 2008) --- Astronaut Michael Fincke, Expedition 18 commander, uses a computer at the robotics work station in the Destiny laboratory of the International Space Station. Using the station's robotic arm, Fincke and astronaut Sandra Magnus (out of frame), flight engineer, relocated the ESP-3 from the Mobile Base System back to the Cargo Carrier Attachment System on the P3 truss. The ESP-3 spare parts platform was temporarily parked on the MBS to clear the path for the spacewalks during STS-126.
Motion coordination and programmable teleoperation between two industrial robots
NASA Technical Reports Server (NTRS)
Luh, J. Y. S.; Zheng, Y. F.
1987-01-01
Tasks for two coordinated industrial robots always bring the robots in contact with a same object. The motion coordination among the robots and the object must be maintained all the time. To plan the coordinated tasks, only one robot's motion is planned according to the required motion of the object. The motion of the second robot is to follow the first one as specified by a set of holonomic equality constraints at every time instant. If any modification of the object's motion is needed in real-time, only the first robot's motion has to be modified accordingly in real-time. The modification for the second robot is done implicitly through the constraint conditions. Thus the operation is simplified. If the object is physically removed, the second robot still continually follows the first one through the constraint conditions. If the first robot is maneuvered through either the teach pendant or the keyboard, the second one moves accordingly to form the teleoperation which is linked through the software programming. Obviously, the second robot does not need to duplicate the first robot's motion. The programming of the constraints specifies their relative motions.
A neural network-based exploratory learning and motor planning system for co-robots
Galbraith, Byron V.; Guenther, Frank H.; Versace, Massimiliano
2015-01-01
Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or “learning by doing,” an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object. PMID:26257640
A neural network-based exploratory learning and motor planning system for co-robots.
Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano
2015-01-01
Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.
Development and Deployment of Robonaut 2 to the International Space Station
NASA Technical Reports Server (NTRS)
Ambrose, Robert O.
2011-01-01
The development of the Robonaut 2 (R2) system was a joint endeavor with NASA and General Motors, producing robots strong enough to do work, yet safe enough to be trusted to work near humans. To date two R2 units have been produced, designated as R2A and R2B. This follows more than a decade of work on the Robonaut 1 units that produced advances in dexterity, tele-presence, remote supervision across time delay, combining mobility with manipulation, human-robot interaction, force control and autonomous grasping. Design challenges for the R2 included higher speed, smaller packaging, more dexterous fingers, more sensitive perception, soft drivetrain design, and the overall implementation of a system software approach for human safety, At the time of this writing the R2B unit was poised for launch to the International Space Station (ISS) aboard STS-133. R2 will be the first humanoid robot in space, and is arguably the most sophisticated robot in the world, bringing NASA into the 21st century as the world's leader in this field. Joining the other robots already on ISS, the station is now an exciting lab for robot experiments and utilization. A particular challenge for this project has been the design and certification of the robot and its software for work near humans. The 3 layer software systems will be described, and the path to ISS certification will be reviewed. R2 will go through a series of ISS checkout tests during 2011. A taskboard was shipped with the robot that will be used to compare R2B's dexterous manipulation in zero gravity with the ground robot s ability to handle similar objects in Earth s gravity. R2's taskboard has panels with increasingly difficult tasks, starting with switches, progressing to connectors and eventually handling softgoods. The taskboard is modular, and new interfaces and experiments will be built up using equipment already on ISS. Since the objective is to test R2 performing tasks with human interfaces, hardware abounds on ISS and the crew will be involved to help select tasks that are dull, dirty or dangerous. Future plans for R2 include a series of upgrades, evolving from static IVA (Intravehicular Activity) operations, to mobile IVA, then EVA (Extravehicular Activity).
Ubiquitous Robotic Technology for Smart Manufacturing System.
Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin
2016-01-01
As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.
Ubiquitous Robotic Technology for Smart Manufacturing System
Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin
2016-01-01
As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206
Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S
2008-04-11
A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker-Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes.
Obstacle-avoiding robot with IR and PIR motion sensors
NASA Astrophysics Data System (ADS)
Ismail, R.; Omar, Z.; Suaibun, S.
2016-10-01
Obstacle avoiding robot was designed, constructed and programmed which may be potentially used for educational and research purposes. The developed robot will move in a particular direction once the infrared (IR) and the PIR passive infrared (PIR) sensors sense a signal while avoiding the obstacles in its path. The robot can also perform desired tasks in unstructured environments without continuous human guidance. The hardware was integrated in one application board as embedded system design. The software was developed using C++ and compiled by Arduino IDE 1.6.5. The main objective of this project is to provide simple guidelines to the polytechnic students and beginners who are interested in this type of research. It is hoped that this robot could benefit students who wish to carry out research on IR and PIR sensors.
Model identification and controller design of a fish-like robot
NASA Astrophysics Data System (ADS)
Ariyanto, Irfan; Kang, Taesam; Chan, Wai Leung; Lee, Youngjae
2007-04-01
Robotic fish is an interesting and prospective subject to develop. The simplest fish swimming mode to be mimicked for fish robots is the ostraciiform mode which only requires caudal fin flapping. An almost submerged ostraciiform fish robot was constructed to study its swimming characteristics. The swimming direction can be controlled by changing the mean angle of caudal fin oscillation. Experiments were conducted to study the behavior of the fish robot and in particular, the transfer function between swimming path angular rate and mean angle of the caudal fin oscillation were identified. Error to signal ratio quantity was used to determine how well the model fits with the experimental data. This identification model was used to design a 2-degree-of-freedom PID controller that meets some specific requirements to improve the steering performance.
Extensibility in local sensor based planning for hyper-redundant manipulators (robot snakes)
NASA Technical Reports Server (NTRS)
Choset, Howie; Burdick, Joel
1994-01-01
Partial Shape Modification (PSM) is a local sensor feedback method used for hyper-redundant robot manipulators, in which the redundancy is very large or infinite such as that of a robot snake. This aspect of redundancy enables local obstacle avoidance and end-effector placement in real time. Due to the large number of joints or actuators in a hyper-redundant manipulator, small displacement errors of such easily accumulate to large errors in the position of the tip relative to the base. The accuracy could be improved by a local sensor based planning method in which sensors are distributed along the length of the hyper-redundant robot. This paper extends the local sensor based planning strategy beyond the limitations of the fixed length of such a manipulator when its joint limits are met. This is achieved with an algorithm where the length of the deforming part of the robot is variable. Thus , the robot's local avoidance of obstacles is improved through the enhancement of its extensibility.
Planning to fail: mission design for modular repairable robot teams
NASA Technical Reports Server (NTRS)
Stancliff, Stephen B.; Dolan, John B.; Trebi-Ollennu, Ashitey
2005-01-01
This paper presents a method using stochastic simulation to evaluate the reliability of robot teams consisting of modular robots. For an example planetary exploration mission we use this method to compare the performance of a repairable robot team with spare modules versus nonrepairable robot teams.
Planning in subsumption architectures
NASA Technical Reports Server (NTRS)
Chalfant, Eugene C.
1994-01-01
A subsumption planner using a parallel distributed computational paradigm based on the subsumption architecture for control of real-world capable robots is described. Virtual sensor state space is used as a planning tool to visualize the robot's anticipated effect on its environment. Decision sequences are generated based on the environmental situation expected at the time the robot must commit to a decision. Between decision points, the robot performs in a preprogrammed manner. A rudimentary, domain-specific partial world model contains enough information to extrapolate the end results of the rote behavior between decision points. A collective network of predictors operates in parallel with the reactive network forming a recurrrent network which generates plans as a hierarchy. Details of a plan segment are generated only when its execution is imminent. The use of the subsumption planner is demonstrated by a simple maze navigation problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quintana, John P.
This paper reports on the progress toward creating semi-autonomous motion control platforms for beamline applications using the iRobot Create registered platform. The goal is to create beamline research instrumentation where the motion paths are based on the local environment rather than position commanded from a control system, have low integration costs and also be scalable and easily maintainable.
Integrated mobile robot control
NASA Technical Reports Server (NTRS)
Amidi, Omead; Thorpe, Charles
1991-01-01
This paper describes the structure, implementation, and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation, path specification and tracking, human interfaces, fast communication, and multiple client support. The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Navlab autonomous vehicle. In addition, performance results from positioning and tracking systems are reported and analyzed.
Integrated mobile robot control
NASA Astrophysics Data System (ADS)
Amidi, Omead; Thorpe, Chuck E.
1991-03-01
This paper describes the strucwre implementation and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation path specification and hacking human interfaces fast communication and multiple client support The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Naviab autonomous vehicle. In addition performance results from positioning and tracking systems are reported and analyzed.
Toward perception-based navigation using EgoSphere
NASA Astrophysics Data System (ADS)
Kawamura, Kazuhiko; Peters, R. Alan; Wilkes, Don M.; Koku, Ahmet B.; Sekman, Ali
2002-02-01
A method for perception-based egocentric navigation of mobile robots is described. Each robot has a local short-term memory structure called the Sensory EgoSphere (SES), which is indexed by azimuth, elevation, and time. Directional sensory processing modules write information on the SES at the location corresponding to the source direction. Each robot has a partial map of its operational area that it has received a priori. The map is populated with landmarks and is not necessarily metrically accurate. Each robot is given a goal location and a route plan. The route plan is a set of via-points that are not used directly. Instead, a robot uses each point to construct a Landmark EgoSphere (LES) a circular projection of the landmarks from the map onto an EgoSphere centered at the via-point. Under normal circumstances, the LES will be mostly unaffected by slight variations in the via-point location. Thus, the route plan is transformed into a set of via-regions each described by an LES. A robot navigates by comparing the next LES in its route plan to the current contents of its SES. It heads toward the indicated landmarks until its SES matches the LES sufficiently to indicate that the robot is near the suggested via-point. The proposed method is particularly useful for enabling the exchange of robust route informa-tion between robots under low data rate communications constraints. An example of such an exchange is given.
Velocity-curvature patterns limit human-robot physical interaction
Maurice, Pauline; Huber, Meghan E.; Hogan, Neville; Sternad, Dagmar
2018-01-01
Physical human-robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human-robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and non-biological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (two-thirds power law) or non-biological velocity profiles. Participants were instructed to minimize the force applied on the robot end-effector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a non-biological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human-robot physical collaboration. PMID:29744380
Velocity-curvature patterns limit human-robot physical interaction.
Maurice, Pauline; Huber, Meghan E; Hogan, Neville; Sternad, Dagmar
2018-01-01
Physical human-robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human-robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and non-biological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (two-thirds power law) or non-biological velocity profiles. Participants were instructed to minimize the force applied on the robot end-effector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a non-biological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human-robot physical collaboration.
Brain-controlled telepresence robot by motor-disabled people.
Tonin, Luca; Carlson, Tom; Leeb, Robert; del R Millán, José
2011-01-01
In this paper we present the first results of users with disabilities in mentally controlling a telepresence robot, a rather complex task as the robot is continuously moving and the user must control it for a long period of time (over 6 minutes) to go along the whole path. These two users drove the telepresence robot from their clinic more than 100 km away. Remarkably, although the patients had never visited the location where the telepresence robot was operating, they achieve similar performances to a group of four healthy users who were familiar with the environment. In particular, the experimental results reported in this paper demonstrate the benefits of shared control for brain-controlled telepresence robots. It allows all subjects (including novel BMI subjects as our users with disabilities) to complete a complex task in similar time and with similar number of commands to those required by manual control.
JacksonBot - Design, Simulation and Optimal Control of an Action Painting Robot
NASA Astrophysics Data System (ADS)
Raschke, Michael; Mombaur, Katja; Schubert, Alexander
We present the robotics platform JacksonBot which is capable to produce paintings inspired by the Action Painting style of Jackson Pollock. A dynamically moving robot arm splashes color from a container at the end effector on the canvas. The paintings produced by this platform rely on a combination of the algorithmic generation of robot arm motions with random effects of the splashing color. The robot can be considered as a complex and powerful tool to generate art works programmed by a user. Desired end effector motions can be prescribed either by mathematical functions, by point sequences or by data glove motions. We have evaluated the effect of different shapes of input motions on the resulting painting. In order to compute the robot joint trajectories necessary to move along a desired end effector path, we use an optimal control based approach to solve the inverse kinematics problem.
Autonomous surgical robotics using 3-D ultrasound guidance: feasibility study.
Whitman, John; Fronheiser, Matthew P; Ivancevich, Nikolas M; Smith, Stephen W
2007-10-01
The goal of this study was to test the feasibility of using a real-time 3D (RT3D) ultrasound scanner with a transthoracic matrix array transducer probe to guide an autonomous surgical robot. Employing a fiducial alignment mark on the transducer to orient the robot's frame of reference and using simple thresholding algorithms to segment the 3D images, we tested the accuracy of using the scanner to automatically direct a robot arm that touched two needle tips together within a water tank. RMS measurement error was 3.8% or 1.58 mm for an average path length of 41 mm. Using these same techniques, the autonomous robot also performed simulated needle biopsies of a cyst-like lesion in a tissue phantom. This feasibility study shows the potential for 3D ultrasound guidance of an autonomous surgical robot for simple interventional tasks, including lesion biopsy and foreign body removal.
The need for artificial intelligence as an aid in controlling a manufacturing operation
NASA Astrophysics Data System (ADS)
Weyand, J.
AI applications to industrial production and planning are discussed and illustrated with diagrams and drawings. Applications examined include flexible automation of manufacturing processes (robots with open manual control, robots programmable to meet product specifications, self-regulated robots, and robots capable of learning), flexible fault detection and diagnostics, production control, and overall planning and management (product strategies, marketing, determination of development capacity, site selection, project organization, and technology investment strategies). For the case of robots, problems in the design and operation of a state-of-the-art machine-tool cell (for hole boring, milling, and joining) are analyzed in detail.
From large-eddy simulation to multi-UAVs sampling of shallow cumulus clouds
NASA Astrophysics Data System (ADS)
Lamraoui, Fayçal; Roberts, Greg; Burnet, Frédéric
2016-04-01
In-situ sampling of clouds that can provide simultaneous measurements at satisfying spatio-temporal resolutions to capture 3D small scale physical processes continues to present challenges. This project (SKYSCANNER) aims at bringing together cloud sampling strategies using a swarm of unmanned aerial vehicles (UAVs) based on Large-eddy simulation (LES). The multi-UAV-based field campaigns with a personalized sampling strategy for individual clouds and cloud fields will significantly improve the understanding of the unresolved cloud physical processes. An extensive set of LES experiments for case studies from ARM-SGP site have been performed using MesoNH model at high resolutions down to 10 m. The carried out simulations led to establishing a macroscopic model that quantifies the interrelationship between micro- and macrophysical properties of shallow convective clouds. Both the geometry and evolution of individual clouds are critical to multi-UAV cloud sampling and path planning. The preliminary findings of the current project reveal several linear relationships that associate many cloud geometric parameters to cloud related meteorological variables. In addition, the horizontal wind speed indicates a proportional impact on cloud number concentration as well as triggering and prolonging the occurrence of cumulus clouds. In the framework of the joint collaboration that involves a Multidisciplinary Team (including institutes specializing in aviation, robotics and atmospheric science), this model will be a reference point for multi-UAVs sampling strategies and path planning.
Automated Cartography by an Autonomous Mobile Robot Using Ultrasonic Range Finders
1993-09-01
loco.c Temporal Type: Sequential Function (xd, yd, td, 0) dirctix vehicle fou TP S~obstacle IP EP Figure A.24 - The para function Move to a... tp (type POINT), and type (type int). In the case of an fline func- tion, the path element returned is a cubic spiral or an sline depending on the...geu~nst-> tp )) I --no_o...paths; currentsroboLpath.pc = get inst->c; currentLrobot...path.type = getLinst->class; readjinsto; )*end if * if (skipjflag
Communication assisted Localization and Navigation for Networked Robots
2005-09-01
developments such as the Mica Mote [23, 24] and the single chip called “Spec” [1] along the path to the ultimate goal of smart dust. Other technologies...path or a path defining a grid , broadcasting GPS coordinates. The sensors incrementally pro- cess all broadcasts they receive to refine their estimated...RAM, 4K EEPROM), a 916 MHz RF transceiver (50Kbits/sec, nominal 30m range), a UART and a 4Mbit serial flash. A Mote runs for approximately one month on
NASA Technical Reports Server (NTRS)
Barker, L. Keith
1998-01-01
The primary purpose of this publication is to develop a mathematical model to describe smooth paths along any combination of circles and tangent lines. Two consecutive circles in a path are either tangent (externally or internally) or they appear on the same (lateral) or opposite (transverse) sides of a connecting tangent line. A path may start or end on either a segment or circle. The approach is to use mathematics common to robotics to design the path as a multilink manipulator. This approach allows a hierarchical view of the problem and keeps the notation manageable. A user simply specifies a few parameters to configure a path. Necessary and sufficient conditions automatically ensure the consistency of the inputs for a smooth path. Two example runway exit paths are given, and an angle to go assists in knowing when to switch from one path element to the next.
Lendvay, Thomas S; Brand, Timothy C; White, Lee; Kowalewski, Timothy; Jonnadula, Saikiran; Mercer, Laina D; Khorsand, Derek; Andros, Justin; Hannaford, Blake; Satava, Richard M
2013-06-01
Preoperative simulation warm-up has been shown to improve performance and reduce errors in novice and experienced surgeons, yet existing studies have only investigated conventional laparoscopy. We hypothesized that a brief virtual reality (VR) robotic warm-up would enhance robotic task performance and reduce errors. In a 2-center randomized trial, 51 residents and experienced minimally invasive surgery faculty in General Surgery, Urology, and Gynecology underwent a validated robotic surgery proficiency curriculum on a VR robotic simulator and on the da Vinci surgical robot (Intuitive Surgical Inc). Once they successfully achieved performance benchmarks, surgeons were randomized to either receive a 3- to 5-minute VR simulator warm-up or read a leisure book for 10 minutes before performing similar and dissimilar (intracorporeal suturing) robotic surgery tasks. The primary outcomes compared were task time, tool path length, economy of motion, technical, and cognitive errors. Task time (-29.29 seconds, p = 0.001; 95% CI, -47.03 to -11.56), path length (-79.87 mm; p = 0.014; 95% CI, -144.48 to -15.25), and cognitive errors were reduced in the warm-up group compared with the control group for similar tasks. Global technical errors in intracorporeal suturing (0.32; p = 0.020; 95% CI, 0.06-0.59) were reduced after the dissimilar VR task. When surgeons were stratified by earlier robotic and laparoscopic clinical experience, the more experienced surgeons (n = 17) demonstrated significant improvements from warm-up in task time (-53.5 seconds; p = 0.001; 95% CI, -83.9 to -23.0) and economy of motion (0.63 mm/s; p = 0.007; 95% CI, 0.18-1.09), and improvement in these metrics was not statistically significantly appreciated in the less-experienced cohort (n = 34). We observed significant performance improvement and error reduction rates among surgeons of varying experience after VR warm-up for basic robotic surgery tasks. In addition, the VR warm-up reduced errors on a more complex task (robotic suturing), suggesting the generalizability of the warm-up. Copyright © 2013 American College of Surgeons. All rights reserved.
Lendvay, Thomas S.; Brand, Timothy C.; White, Lee; Kowalewski, Timothy; Jonnadula, Saikiran; Mercer, Laina; Khorsand, Derek; Andros, Justin; Hannaford, Blake; Satava, Richard M.
2014-01-01
Background Pre-operative simulation “warm-up” has been shown to improve performance and reduce errors in novice and experienced surgeons, yet existing studies have only investigated conventional laparoscopy. We hypothesized a brief virtual reality (VR) robotic warm-up would enhance robotic task performance and reduce errors. Study Design In a two-center randomized trial, fifty-one residents and experienced minimally invasive surgery faculty in General Surgery, Urology, and Gynecology underwent a validated robotic surgery proficiency curriculum on a VR robotic simulator and on the da Vinci surgical robot. Once successfully achieving performance benchmarks, surgeons were randomized to either receive a 3-5 minute VR simulator warm-up or read a leisure book for 10 minutes prior to performing similar and dissimilar (intracorporeal suturing) robotic surgery tasks. The primary outcomes compared were task time, tool path length, economy of motion, technical and cognitive errors. Results Task time (-29.29sec, p=0.001, 95%CI-47.03,-11.56), path length (-79.87mm, p=0.014, 95%CI -144.48,-15.25), and cognitive errors were reduced in the warm-up group compared to the control group for similar tasks. Global technical errors in intracorporeal suturing (0.32, p=0.020, 95%CI 0.06,0.59) were reduced after the dissimilar VR task. When surgeons were stratified by prior robotic and laparoscopic clinical experience, the more experienced surgeons(n=17) demonstrated significant improvements from warm-up in task time (-53.5sec, p=0.001, 95%CI -83.9,-23.0) and economy of motion (0.63mm/sec, p=0.007, 95%CI 0.18,1.09), whereas improvement in these metrics was not statistically significantly appreciated in the less experienced cohort(n=34). Conclusions We observed a significant performance improvement and error reduction rate among surgeons of varying experience after VR warm-up for basic robotic surgery tasks. In addition, the VR warm-up reduced errors on a more complex task (robotic suturing) suggesting the generalizability of the warm-up. PMID:23583618
Chiang, Mao-Hsiung; Lin, Hao-Ting
2011-01-01
This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot’s end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H∞ tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to verify the feasibility of the proposed parallel mechanism robot driven by three vertical pneumatic servo actuators, a full-scale test rig of the proposed parallel mechanism pneumatic robot is set up. Thus, simulations and experiments for different complex 3D motion profiles of the robot end-effector can be successfully achieved. The desired, the actual and the calculated 3D position of the end-effector can be compared in the complex 3D motion control. PMID:22247676
Reactive navigation for autonomous guided vehicle using neuro-fuzzy techniques
NASA Astrophysics Data System (ADS)
Cao, Jin; Liao, Xiaoqun; Hall, Ernest L.
1999-08-01
A Neuro-fuzzy control method for navigation of an Autonomous Guided Vehicle robot is described. Robot navigation is defined as the guiding of a mobile robot to a desired destination or along a desired path in an environment characterized by as terrain and a set of distinct objects, such as obstacles and landmarks. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Neural network and fuzzy logic control techniques can improve real-time control performance for mobile robot due to its high robustness and error-tolerance ability. For a mobile robot to navigate automatically and rapidly, an important factor is to identify and classify mobile robots' currently perceptual environment. In this paper, a new approach of the current perceptual environment feature identification and classification, which are based on the analysis of the classifying neural network and the Neuro- fuzzy algorithm, is presented. The significance of this work lies in the development of a new method for mobile robot navigation.
A Demonstrator Intelligent Scheduler For Sensor-Based Robots
NASA Astrophysics Data System (ADS)
Perrotta, Gabriella; Allen, Charles R.; Shepherd, Andrew J.
1987-10-01
The development of an execution module capable of functioning as as on-line supervisor for a robot equipped with a vision sensor and tactile sensing gripper system is described. The on-line module is supported by two off-line software modules which provide a procedural based assembly constraints language to allow the assembly task to be defined. This input is then converted into a normalised and minimised form. The host Robot programming language permits high level motions to be issued at the to level, hence allowing a low programming overhead to the designer, who must describe the assembly sequence. Components are selected for pick and place robot movement, based on information derived from two cameras, one static and the other mounted on the end effector of the robot. The approach taken is multi-path scheduling as described by Fox pi. The system is seen to permit robot assembly in a less constrained parts presentation environment making full use of the sensory detail available on the robot.
Terrain discovery and navigation of a multi-articulated linear robot using map-seeking circuits
NASA Astrophysics Data System (ADS)
Snider, Ross K.; Arathorn, David W.
2006-05-01
A significant challenge in robotics is providing a robot with the ability to sense its environment and then autonomously move while accommodating obstacles. The DARPA Grand Challenge, one of the most visible examples, set the goal of driving a vehicle autonomously for over a hundred miles avoiding obstacles along a predetermined path. Map-Seeking Circuits have shown their biomimetic capability in both vision and inverse kinematics and here we demonstrate their potential usefulness for intelligent exploration of unknown terrain using a multi-articulated linear robot. A robot that could handle any degree of terrain complexity would be useful for exploring inaccessible crowded spaces such as rubble piles in emergency situations, patrolling/intelligence gathering in tough terrain, tunnel exploration, and possibly even planetary exploration. Here we simulate autonomous exploratory navigation by an interaction of terrain discovery using the multi-articulated linear robot to build a local terrain map and exploitation of that growing terrain map to solve the propulsion problem of the robot.
Planning actions in robot automated operations
NASA Technical Reports Server (NTRS)
Das, A.
1988-01-01
Action planning in robot automated operations requires intelligent task level programming. Invoking intelligence necessiates a typical blackboard based architecture, where, a plan is a vector between the start frame and the goal frame. This vector is composed of partially ordered bases. A partial ordering of bases presents good and bad sides in action planning. Partial ordering demands the use of a temporal data base management system.
ROBOSIM: An intelligent simulator for robotic systems
NASA Technical Reports Server (NTRS)
Fernandez, Kenneth R.; Cook, George E.; Biegl, Csaba; Springfield, James F.
1993-01-01
The purpose of this paper is to present an update of an intelligent robotics simulator package, ROBOSIM, first introduced at Technology 2000 in 1990. ROBOSIM is used for three-dimensional geometrical modeling of robot manipulators and various objects in their workspace, and for the simulation of action sequences performed by the manipulators. Geometric modeling of robot manipulators has an expanding area of interest because it can aid the design and usage of robots in a number of ways, including: design and testing of manipulators, robot action planning, on-line control of robot manipulators, telerobotic user interface, and training and education. NASA developed ROBOSIM between 1985-88 to facilitate the development of robotics, and used the package to develop robotics for welding, coating, and space operations. ROBOSIM has been further developed for academic use by its co-developer Vanderbilt University, and has been in both classroom and laboratory environments for teaching complex robotic concepts. Plans are being formulated to make ROBOSIM available to all U.S. engineering/engineering technology schools (over three hundred total with an estimated 10,000+ users per year).
Human-tracking strategies for a six-legged rescue robot based on distance and view
NASA Astrophysics Data System (ADS)
Pan, Yang; Gao, Feng; Qi, Chenkun; Chai, Xun
2016-03-01
Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mobile/tracked robots, but few of them can be used for legged robots. Two novel human-tracking strategies, view priority strategy and distance priority strategy, are proposed specially for legged robots, which enable them to track humans in various complex terrains. View priority strategy focuses on keeping humans in its view angle arrange with priority, while its counterpart, distance priority strategy, focuses on keeping human at a reasonable distance with priority. To evaluate these strategies, two indexes(average and minimum tracking capability) are defined. With the help of these indexes, the view priority strategy shows advantages compared with distance priority strategy. The optimization is done in terms of these indexes, which let the robot has maximum tracking capability. The simulation results show that the robot can track humans with different curves like square, circular, sine and screw paths. Two novel control strategies are proposed which specially concerning legged robot characteristics to solve human tracking problems more efficiently in rescue circumstances.
NASA Astrophysics Data System (ADS)
Yang, Xue; Wang, Hongbo; Sun, Li; Yu, Hongnian
2015-03-01
To develop a robot system for minimally invasive surgery is significant, however the existing minimally invasive surgery robots are not applicable in practical operations, due to their limited functioning and weaker perception. A novel wire feeder is proposed for minimally invasive vascular interventional surgery. It is used for assisting surgeons in delivering a guide wire, balloon and stenting into a specific lesion location. By contrasting those existing wire feeders, the motion methods for delivering and rotating the guide wire in blood vessel are described, and their mechanical realization is presented. A new resistant force detecting method is given in details. The change of the resistance force can help the operator feel the block or embolism existing in front of the guide wire. The driving torque for rotating the guide wire is developed at different positions. Using the CT reconstruction image and extracted vessel paths, the path equation of the blood vessel is obtained. Combining the shapes of the guide wire outside the blood vessel, the whole bending equation of the guide wire is obtained. That is a risk criterion in the delivering process. This process can make operations safer and man-machine interaction more reliable. A novel surgery robot for feeding guide wire is designed, and a risk criterion for the system is given.
NASA Technical Reports Server (NTRS)
Balabanovic, Marko; Becker, Craig; Morse, Sarah K.; Nourbakhsh, Illah R.
1994-01-01
The success of every mobile robot application hinges on the ability to navigate robustly in the real world. The problem of robust navigation is separable from the challenges faced by any particular robot application. We offer the Real-World Navigator as a solution architecture that includes a path planner, a map-based localizer, and a motion control loop that combines reactive avoidance modules with deliberate goal-based motion. Our architecture achieves a high degree of reliability by maintaining and reasoning about an explicit description of positional uncertainty. We provide two implementations of real-world robot systems that incorporate the Real-World Navigator. The Vagabond Project culminated in a robot that successfully navigated a portion of the Stanford University campus. The Scimmer project developed successful entries for the AIAA 1993 Robotics Competition, placing first in one of the two contests entered.
Reactive, Safe Navigation for Lunar and Planetary Robots
NASA Technical Reports Server (NTRS)
Utz, Hans; Ruland, Thomas
2008-01-01
When humans return to the moon, Astronauts will be accompanied by robotic helpers. Enabling robots to safely operate near astronauts on the lunar surface has the potential to significantly improve the efficiency of crew surface operations. Safely operating robots in close proximity to astronauts on the lunar surface requires reactive obstacle avoidance capabilities not available on existing planetary robots. In this paper we present work on safe, reactive navigation using a stereo based high-speed terrain analysis and obstacle avoidance system. Advances in the design of the algorithms allow it to run terrain analysis and obstacle avoidance algorithms at full frame rate (30Hz) on off the shelf hardware. The results of this analysis are fed into a fast, reactive path selection module, enforcing the safety of the chosen actions. The key components of the system are discussed and test results are presented.
Projective invariant biplanar registration of a compact modular orthopaedic robot.
Luan, Sheng; Sun, Lei; Hu, Lei; Hao, Aimin; Li, Changsheng; Tang, Peifu; Zhang, Lihai; Du, Hailong
2014-01-01
This paper presents a compact orthopedic robot designed with modular concept. The layout of the modular configuration is adaptive to various conditions such as surgical workspace and targeting path. A biplanar algorithm is adopted for the mapping from the fluoroscopic image to the robot, while the former affine based method is satisfactory only when the projection rays are basically perpendicular to the reference coordinate planes. This paper introduces the area cross-ratio as a projective invariant to improve the registration accuracy for non-orthogonal orientations, so that the robotic system could be applied to more orthopedic procedures under various C-Arm orientation conditions. The system configurations for femoral neck screw and sacroiliac screw fixation are presented. The accuracy of the robotic system and its efficacy for the two typical applications are validated by experiments.
Lunar surface operations. Volume 3: Robotic arm for lunar surface vehicle
NASA Technical Reports Server (NTRS)
Shields, William; Feteih, Salah; Hollis, Patrick
1993-01-01
A robotic arm for a lunar surface vehicle that can help in handling cargo and equipment, and remove obstacles from the path of the vehicle is defined as a support to NASA's intention to establish a lunar based colony by the year 2010. Its mission would include, but not limited to the following: exploration, lunar sampling, replace and remove equipment, and setup equipment (e.g. microwave repeater stations). Performance objectives for the robotic arm include a reach of 3 m, accuracy of 1 cm, arm mass of 100 kg, and lifting capability of 50 kg. The end effectors must grip various sizes and shapes of cargo; push, pull, turn, lift, or lower various types of equipment; and clear a path on the lunar surface by shoveling, sweeping aside, or gripping the obstacle present in the desired path. The arm can safely complete a task within a reasonable amount of time; the actual time is dependent upon the task to be performed. The positioning of the arm includes a manual backup system such that the arm can be safely stored in case of failure. Remote viewing and proximity and positioning sensors are incorporated in the design of the arm. The following specific topic are addressed in this report: mission and requirements, system design and integration, mechanical structure, modified wrist, structure-to-end-effector interface, end-effectors, and system controls.
Tip-over prevention through heuristic reactive behaviors for unmanned ground vehicles
NASA Astrophysics Data System (ADS)
Talke, Kurt; Kelley, Leah; Longhini, Patrick; Catron, Garret
2014-06-01
Skid-steer teleoperated robots are commonly used by military and civilian crews to perform high-risk, dangerous and critical tasks such as bomb disposal. Their missions are often performed in unstructured environments with irregular terrain, such as inside collapsed buildings or on rough terrain covered with a variety of media, such as sand, brush, mud, rocks and debris. During such missions, it is often impractical if not impossible to send another robot or a human operator to right a toppled robot. As a consequence, a robot tip-over event usually results in mission failure. To make matters more complicated, such robots are often equipped with heavy payloads that raise their centers of mass and hence increase their instability. Should the robot be equipped with a manipulator arm or flippers, it may have a way to self-right. The majority of manipulator arms are not designed for and are likely to be damaged during self-righting procedures, however, which typically have a low success rate. Furthermore, those robots not equipped with manipulator arms or flippers have no self-righting capabilities. Additionally, due to the on-board camera frame of reference, the video feed may cause the robot to appear to be on at level ground, when it actually may be on a slope nearing tip-over. Finally, robot operators are often so focused on the mission at hand they are oblivious to their surroundings, similar to a kid playing a video game. While this may not be an issue in the living room, it is not a good scenario to experience on the battlefield. Our research seeks to remove tip-over monitoring from the already large list of tasks an operator must perform. An autonomous tip-over prevention behavior for a mobile robot with a static payload has been developed, implemented and experimentally validated on two different teleoperated robotic platforms. Suitable for use with both teleoperated and autonomous robots, the prevention behavior uses the force-angle stability measure, previously experimentally validated, to predict the likelihood of robot tip-over and trigger prevention behaviors. A unique heuristic approach to tip-over avoidance was investigated, wherein a set of evasive maneuvers that an expert teleoperator might take are activated when the tip-over-likelihood estimate passes a critical threshold. This control approach was validated on an iRobot Packbot as well as on a Segway RMP 440. The heuristic laws demonstrated the advantage of alerting operators to a tip-over scenario and gave them more time to correct the situation, as well as the ability to automatically initiate recovery on the y". This research shows promise in preventing dangerous scenarios that could damage a robot and/or compromise its mission, thus saving lives. It further provides a good foundation for follow-on development involving the expansion and integration of the prevention-control algorithms, to include movable payloads, environment manipulation, 2D or 3D look-ahead laser sensing and mapping, and adaptive path planning.
Human-Robot Interaction: A Survey
2007-01-01
breaks with the monolithic sense- plan -act loop of a centralized system, and instead uses distributed sense-response loops to generate appropriate...one of the first modern robots, cour- tesy of SRI International, Menlo Park, CA [279]; Kismet — an anthropomorphic robot with exaggerated emotion...linguis- tics. A common autonomy approach is sometimes referred to as the sense- plan -act model of decision-making [196]. This model has been a target
Dillon, Neal P.; Siebold, Michael A.; Mitchell, Jason E.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Webster, Robert J.
2017-01-01
Safe and effective planning for robotic surgery that involves cutting or ablation of tissue must consider all potential sources of error when determining how close the tool may come to vital anatomy. A pre-operative plan that does not adequately consider potential deviations from ideal system behavior may lead to patient injury. Conversely, a plan that is overly conservative may result in ineffective or incomplete performance of the task. Thus, enforcing simple, uniform-thickness safety margins around vital anatomy is insufficient in the presence of spatially varying, anisotropic error. Prior work has used registration error to determine a variable-thickness safety margin around vital structures that must be approached during mastoidectomy but ultimately preserved. In this paper, these methods are extended to incorporate image distortion and physical robot errors, including kinematic errors and deflections of the robot. These additional sources of error are discussed and stochastic models for a bone-attached robot for otologic surgery are developed. An algorithm for generating appropriate safety margins based on a desired probability of preserving the underlying anatomical structure is presented. Simulations are performed on a CT scan of a cadaver head and safety margins are calculated around several critical structures for planning of a robotic mastoidectomy. PMID:29200595
NASA Astrophysics Data System (ADS)
Dillon, Neal P.; Siebold, Michael A.; Mitchell, Jason E.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Webster, Robert J.
2016-03-01
Safe and effective planning for robotic surgery that involves cutting or ablation of tissue must consider all potential sources of error when determining how close the tool may come to vital anatomy. A pre-operative plan that does not adequately consider potential deviations from ideal system behavior may lead to patient injury. Conversely, a plan that is overly conservative may result in ineffective or incomplete performance of the task. Thus, enforcing simple, uniform-thickness safety margins around vital anatomy is insufficient in the presence of spatially varying, anisotropic error. Prior work has used registration error to determine a variable-thickness safety margin around vital structures that must be approached during mastoidectomy but ultimately preserved. In this paper, these methods are extended to incorporate image distortion and physical robot errors, including kinematic errors and deflections of the robot. These additional sources of error are discussed and stochastic models for a bone-attached robot for otologic surgery are developed. An algorithm for generating appropriate safety margins based on a desired probability of preserving the underlying anatomical structure is presented. Simulations are performed on a CT scan of a cadaver head and safety margins are calculated around several critical structures for planning of a robotic mastoidectomy.
Gait planning for a quadruped robot with one faulty actuator
NASA Astrophysics Data System (ADS)
Chen, Xianbao; Gao, Feng; Qi, Chenkun; Tian, Xinghua
2015-01-01
Fault tolerance is essential for quadruped robots when they work in remote areas or hazardous environments. Many fault-tolerant gaits planning method proposed in the past decade constrained more degrees of freedom(DOFs) of a robot than necessary. Thus a novel method to realize the fault-tolerant walking is proposed. The mobility of the robot is analyzed first by using the screw theory. The result shows that the translation of the center of body(CoB) can be kept with one faulty actuator if the rotations of the body are controlled. Thus the DOFs of the robot body are divided into two parts: the translation of the CoB and the rotation of the body. The kinematic model of the whole robot is built, the algorithm is developed to actively control the body orientations at the velocity level so that the planned CoB trajectory can be realized in spite of the constraint of the faulty actuator. This gait has a similar generation sequence with the normal gait and can be applied to the robot at any position. Simulations and experiments of the fault-tolerant gait with one faulty actuator are carried out. The CoB errors and the body rotation angles are measured. Comparing to the traditional fault-tolerant gait they can be reduced by at least 50%. A fault-tolerant gait planning algorithm is presented, which not only realizes the walking of a quadruped robot with a faulty actuator, but also efficiently improves the walking performances by taking full advantage of the remaining operational actuators according to the results of the simulations and experiments.
Object Segmentation Methods for Online Model Acquisition to Guide Robotic Grasping
NASA Astrophysics Data System (ADS)
Ignakov, Dmitri
A vision system is an integral component of many autonomous robots. It enables the robot to perform essential tasks such as mapping, localization, or path planning. A vision system also assists with guiding the robot's grasping and manipulation tasks. As an increased demand is placed on service robots to operate in uncontrolled environments, advanced vision systems must be created that can function effectively in visually complex and cluttered settings. This thesis presents the development of segmentation algorithms to assist in online model acquisition for guiding robotic manipulation tasks. Specifically, the focus is placed on localizing door handles to assist in robotic door opening, and on acquiring partial object models to guide robotic grasping. First, a method for localizing a door handle of unknown geometry based on a proposed 3D segmentation method is presented. Following segmentation, localization is performed by fitting a simple box model to the segmented handle. The proposed method functions without requiring assumptions about the appearance of the handle or the door, and without a geometric model of the handle. Next, an object segmentation algorithm is developed, which combines multiple appearance (intensity and texture) and geometric (depth and curvature) cues. The algorithm is able to segment objects without utilizing any a priori appearance or geometric information in visually complex and cluttered environments. The segmentation method is based on the Conditional Random Fields (CRF) framework, and the graph cuts energy minimization technique. A simple and efficient method for initializing the proposed algorithm which overcomes graph cuts' reliance on user interaction is also developed. Finally, an improved segmentation algorithm is developed which incorporates a distance metric learning (DML) step as a means of weighing various appearance and geometric segmentation cues, allowing the method to better adapt to the available data. The improved method also models the distribution of 3D points in space as a distribution of algebraic distances from an ellipsoid fitted to the object, improving the method's ability to predict which points are likely to belong to the object or the background. Experimental validation of all methods is performed. Each method is evaluated in a realistic setting, utilizing scenarios of various complexities. Experimental results have demonstrated the effectiveness of the handle localization method, and the object segmentation methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, T; Rella, J; Yang, J
Purpose: Recent development of an MLC for robotic external beam radiotherapy has the potential of new clinical application in conventionally fractionated radiation therapy. This study offers a dosimetric comparison of IMRT plans using Cyberknife with MLC versus conventional linac plans. Methods: Ten prostate cancer patients treated on a traditional linac with IMRT to 7920cGy at 180cGy/fraction were randomly selected. GTVs were defined as prostate plus proximal seminal vesicles. PTVs were defined as GTV+8mm in all directions except 5mm posteriorly. Conventional IMRT planning was performed on Philips Pinnacle and delivered on a standard linac with CBCT and 10mm collimator leaf width.more » For each case a Cyberknife plan was created using Accuray Multiplan with same CT data set, contours, and dose constraints. All dosimetric data was transferred to third party software for independent computation of contour volumes and DVH. Delivery efficiency was evaluated using total MU, treatment time, number of beams, and number of segments. Results: Evaluation criteria including percent target coverage, homogeneity index, and conformity index were found to be comparable. All dose constraints from QUANTEC were found to be statistically similar except rectum V50Gy and bladder V65Gy. Average rectum V50Gy was lower for robotic IMRT (30.07%±6.57) versus traditional (34.73%±3.62, p=0.0130). Average bladder V65Gy was lower for robotic (17.87%±12.74) versus traditional (21.03%±11.93, p=0.0405). Linac plans utilized 9 coplanar beams, 48.9±3.8 segments, and 19381±2399MU. Robotic plans utilized 38.4±9.0 non-coplanar beams, 85.5±21.0 segments and 42554.71±16381.54 MU. The average treatment was 15.02±0.60 minutes for traditional versus 20.90±2.51 for robotic. Conclusion: The robotic IMRT plans were comparable to the traditional IMRT plans in meeting the target volume dose objectives. Critical structure dose constraints were largely comparable although statistically significant differences were found in favor of the robotic platform in terms of rectum V50Gy and bladder V65Gy at a cost of 25% longer treatment time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Erika; Otto, Karl; Hoppe, Richard
Purpose: To develop and test the feasibility of a table-top implementation for total body irradiation (TBI) via robotic couch motion and coordinated monitor unit modulation on a standard C-arm linac geometry. Methods: To allow for collision free delivery and to maximize the effective field size, the couch was rotated to 270° IEC and dropped to 150 cm from the vertical radiation source. The robotic delivery was programmed using the TrueBeam STx Developer Mode using custom XML scripting. To assess the dosimetry of a sliding 30×20 cm{sup 2} field, irradiation on a solid water phantom of varying thickness was analyzed usingmore » EDR2 radiographic film and OSLDs. Beam modulation was achieved by dividing the couch path into multiple segments of varying dose rates and couch speeds in order to deliver 120 cGy to the midline. Results: The programmed irradiation in conjunction with coordinated couch motion was successfully delivered on a TrueBeam linac. When no beam modulation was employed, the dose difference between two different phantom sections was 17.0%. With simple beam modulation via changing dose rates and couch speeds, the desired prescription dose can be achieved at the centre of each phantom section within 1.9%. However, dose deviation at the junction was 9.2% due to the nonphysical change in the phantom thickness. Conclusions: The feasibility of robotic table-top TBI on a C-arm linac geometry was experimentally demonstrated. To achieve a more uniform dose distribution, inverse-planning allowing for a combination of dose rate modulation, jaw tracking and MLC motion is under investigation.« less
An Efficient and Versatile Means for Assembling and Manufacturing Systems in Space
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Doggett, William R.; Hafley, Robert A.; Komendera, Erik; Correll, Nikolaus; King, Bruce
2012-01-01
Within NASA Space Science, Exploration and the Office of Chief Technologist, there are Grand Challenges and advanced future exploration, science and commercial mission applications that could benefit significantly from large-span and large-area structural systems. Of particular and persistent interest to the Space Science community is the desire for large (in the 10- 50 meter range for main aperture diameter) space telescopes that would revolutionize space astronomy. Achieving these systems will likely require on-orbit assembly, but previous approaches for assembling large-scale telescope truss structures and systems in space have been perceived as very costly because they require high precision and custom components. These components rely on a large number of mechanical connections and supporting infrastructure that are unique to each application. In this paper, a new assembly paradigm that mitigates these concerns is proposed and described. A new assembly approach, developed to implement the paradigm, is developed incorporating: Intelligent Precision Jigging Robots, Electron-Beam welding, robotic handling/manipulation, operations assembly sequence and path planning, and low precision weldable structural elements. Key advantages of the new assembly paradigm, as well as concept descriptions and ongoing research and technology development efforts for each of the major elements are summarized.
Computational path planner for product assembly in complex environments
NASA Astrophysics Data System (ADS)
Shang, Wei; Liu, Jianhua; Ning, Ruxin; Liu, Mi
2013-03-01
Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.
Emergent of Burden Sharing of Robots with Emotion Model
NASA Astrophysics Data System (ADS)
Kusano, Takuya; Nozawa, Akio; Ide, Hideto
Cooperated multi robots system has much dominance in comparison with single robot system. Multi robots system is able to adapt to various circumstances and has a flexibility for variation of tasks. Robots are necessary that build a cooperative relations and acts as an organization to attain a purpose in multi robots system. Then, group behavior of insects which doesn't have advanced ability is observed. For example, ants called a sociality insect emerge systematic activities by the interaction with using a very simple way. Though ants make a communication with chemical matter, a human plans a communication by words and gestures. In this paper, we paid attention to the interaction based on psychological viewpoint. And a human's emotion model was used for the parameter which became a base of the motion planning of robots. These robots were made to do both-way action in test field with obstacle. As a result, a burden sharing like guide or carrier was seen even though those had a simple setup.
Tauscher, Sebastian; Fuchs, Alexander; Baier, Fabian; Kahrs, Lüder A; Ortmaier, Tobias
2017-10-01
Assistance of robotic systems in the operating room promises higher accuracy and, hence, demanding surgical interventions become realisable (e.g. the direct cochlear access). Additionally, an intuitive user interface is crucial for the use of robots in surgery. Torque sensors in the joints can be employed for intuitive interaction concepts. Regarding the accuracy, they lead to a lower structural stiffness and, thus, to an additional error source. The aim of this contribution is to examine, if an accuracy needed for demanding interventions can be achieved by such a system or not. Feasible accuracy results of the robot-assisted process depend on each work-flow step. This work focuses on the determination of the tool coordinate frame. A method for drill axis definition is implemented and analysed. Furthermore, a concept of admittance feed control is developed. This allows the user to control feeding along the planned path by applying a force to the robots structure. The accuracy is researched by drilling experiments with a PMMA phantom and artificial bone blocks. The described drill axis estimation process results in a high angular repeatability ([Formula: see text]). In the first set of drilling results, an accuracy of [Formula: see text] at entrance and [Formula: see text] at target point excluding imaging was achieved. With admittance feed control an accuracy of [Formula: see text] at target point was realised. In a third set twelve holes were drilled in artificial temporal bone phantoms including imaging. In this set-up an error of [Formula: see text] and [Formula: see text] was achieved. The results of conducted experiments show that accuracy requirements for demanding procedures such as the direct cochlear access can be fulfilled with compliant systems. Furthermore, it was shown that with the presented admittance feed control an accuracy of less then [Formula: see text] is achievable.
Artificial intelligence planning applications for space exploration and space robotics
NASA Technical Reports Server (NTRS)
Rokey, Mark; Grenander, Sven
1986-01-01
Mission sequencing involves the plan for actuation of the experiments to be conducted aboard a spacecraft; automation is under study by NASA as a means to reduce time and manpower costs in mission planning and in robotic implementation. The development of a mission sequence is conditioned by the limited duration of advantageous spacecraft encounters with objects of study, more research requests than can be satisfied, and requested changes in objectives. Autonomous robot development is hampered by the absence of task-level programming languages, the existence of anomalies in real-world interactions, and a lack of required capabilities in current sensor technology.
Cooperative organic mine avoidance path planning
NASA Astrophysics Data System (ADS)
McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David
2005-06-01
The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.
Development and Field Testing of the FootFall Planning System for the ATHLETE Robots
NASA Technical Reports Server (NTRS)
SunSpiral, Vytas; Wheeler, D. W.; Chavez-Clementa, Daniel; Mittman, David
2011-01-01
The FootFall Planning System is a ground-based planning and decision support system designed to facilitate the control of walking activities for the ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer) family of robots. ATHLETE was developed at NASA's Jet Propulsion Laboratory (JPL) and is a large six-legged robot designed to serve multiple roles during manned and unmanned missions to the Moon; its roles include transportation, construction and exploration. Over the four years from 2006 through 2010 the FootFall Planning System was developed and adapted to two generations of the ATHLETE robots and tested at two analog field sites (the Human Robotic Systems Project's Integrated Field Test at Moses Lake, Washington, June 2008, and the Desert Research and Technology Studies (D-RATS), held at Black Point Lava Flow in Arizona, September 2010). Having 42 degrees of kinematic freedom, standing to a maximum height of just over 4 meters, and having a payload capacity of 450 kg in Earth gravity, the current version of the ATHLETE robot is a uniquely complex system. A central challenge to this work was the compliance of the high-DOF (Degree Of Freedom) robot, especially the compliance of the wheels, which affected many aspects of statically-stable walking. This paper will review the history of the development of the FootFall system, sharing design decisions, field test experiences, and the lessons learned concerning compliance and self-awareness.
Integration of task level planning and diagnosis for an intelligent robot
NASA Technical Reports Server (NTRS)
Gerstenfeld, Arthur
1988-01-01
The use of robots in the future must go beyond present applications and will depend on the ability of a robot to adapt to a changing environment and to deal with unexpected scenarios (i.e., picking up parts that are not exactly where they were expected to be). The objective of this research is to demonstrate the feasibility of incorporating high level planning into a robot enabling it to deal with anomalous situations in order to minimize the need for constant human instruction. The heuristics can be used by a robot to apply information about previous actions towards accomplishing future objectives more efficiently. The system uses a decision network that represents the plan for accomplishing a task. This enables the robot to modify its plan based on results of previous actions. The system serves as a method for minimizing the need for constant human instruction in telerobotics. This paper describes the integration of expert systems and simulation as a valuable tool that goes far beyond this project. Simulation can be expected to be used increasingly as both hardware and software improve. Similarly, the ability to merge an expert system with simulation means that we can add intelligence to the system. A malfunctioning space satellite is described. The expert system uses a series of heuristics in order to guide the robot to the proper location. This is part of task level planning. The final part of the paper suggests directions for future research. Having shown the feasibility of an expert system embedded in a simulation, the paper then discusses how the system can be integrated with the MSFC graphics system.
NASA Astrophysics Data System (ADS)
Hanford, Scott D.
Most unmanned vehicles used for civilian and military applications are remotely operated or are designed for specific applications. As these vehicles are used to perform more difficult missions or a larger number of missions in remote environments, there will be a great need for these vehicles to behave intelligently and autonomously. Cognitive architectures, computer programs that define mechanisms that are important for modeling and generating domain-independent intelligent behavior, have the potential for generating intelligent and autonomous behavior in unmanned vehicles. The research described in this presentation explored the use of the Soar cognitive architecture for cognitive robotics. The Cognitive Robotic System (CRS) has been developed to integrate software systems for motor control and sensor processing with Soar for unmanned vehicle control. The CRS has been tested using two mobile robot missions: outdoor navigation and search in an indoor environment. The use of the CRS for the outdoor navigation mission demonstrated that a Soar agent could autonomously navigate to a specified location while avoiding obstacles, including cul-de-sacs, with only a minimal amount of knowledge about the environment. While most systems use information from maps or long-range perceptual capabilities to avoid cul-de-sacs, a Soar agent in the CRS was able to recognize when a simple approach to avoiding obstacles was unsuccessful and switch to a different strategy for avoiding complex obstacles. During the indoor search mission, the CRS autonomously and intelligently searches a building for an object of interest and common intersection types. While searching the building, the Soar agent builds a topological map of the environment using information about the intersections the CRS detects. The agent uses this topological model (along with Soar's reasoning, planning, and learning mechanisms) to make intelligent decisions about how to effectively search the building. Once the object of interest has been detected, the Soar agent uses the topological map to make decisions about how to efficiently return to the location where the mission began. Additionally, the CRS can send an email containing step-by-step directions using the intersections in the environment as landmarks that describe a direct path from the mission's start location to the object of interest. The CRS has displayed several characteristics of intelligent behavior, including reasoning, planning, learning, and communication of learned knowledge, while autonomously performing two missions. The CRS has also demonstrated how Soar can be integrated with common robotic motor and perceptual systems that complement the strengths of Soar for unmanned vehicles and is one of the few systems that use perceptual systems such as occupancy grid, computer vision, and fuzzy logic algorithms with cognitive architectures for robotics. The use of these perceptual systems to generate symbolic information about the environment during the indoor search mission allowed the CRS to use Soar's planning and learning mechanisms, which have rarely been used by agents to control mobile robots in real environments. Additionally, the system developed for the indoor search mission represents the first known use of a topological map with a cognitive architecture on a mobile robot. The ability to learn both a topological map and production rules allowed the Soar agent used during the indoor search mission to make intelligent decisions and behave more efficiently as it learned about its environment. While the CRS has been applied to two different missions, it has been developed with the intention that it be extended in the future so it can be used as a general system for mobile robot control. The CRS can be expanded through the addition of new sensors and sensor processing algorithms, development of Soar agents with more production rules, and the use of new architectural mechanisms in Soar.
Akce, Abdullah; Johnson, Miles; Dantsker, Or; Bretl, Timothy
2013-03-01
This paper presents an interface for navigating a mobile robot that moves at a fixed speed in a planar workspace, with noisy binary inputs that are obtained asynchronously at low bit-rates from a human user through an electroencephalograph (EEG). The approach is to construct an ordered symbolic language for smooth planar curves and to use these curves as desired paths for a mobile robot. The underlying problem is then to design a communication protocol by which the user can, with vanishing error probability, specify a string in this language using a sequence of inputs. Such a protocol, provided by tools from information theory, relies on a human user's ability to compare smooth curves, just like they can compare strings of text. We demonstrate our interface by performing experiments in which twenty subjects fly a simulated aircraft at a fixed speed and altitude with input only from EEG. Experimental results show that the majority of subjects are able to specify desired paths despite a wide range of errors made in decoding EEG signals.
Optimal sensor fusion for land vehicle navigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, J.D.
1990-10-01
Position location is a fundamental requirement in autonomous mobile robots which record and subsequently follow x,y paths. The Dept. of Energy, Office of Safeguards and Security, Robotic Security Vehicle (RSV) program involves the development of an autonomous mobile robot for patrolling a structured exterior environment. A straight-forward method for autonomous path-following has been adopted and requires digitizing'' the desired road network by storing x,y coordinates every 2m along the roads. The position location system used to define the locations consists of a radio beacon system which triangulates position off two known transponders, and dead reckoning with compass and odometer. Thismore » paper addresses the problem of combining these two measurements to arrive at a best estimate of position. Two algorithms are proposed: the optimal'' algorithm treats the measurements as random variables and minimizes the estimate variance, while the average error'' algorithm considers the bias in dead reckoning and attempts to guarantee an average error. Data collected on the algorithms indicate that both work well in practice. 2 refs., 7 figs.« less
Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators.
Bieze, Thor Morales; Largilliere, Frederick; Kruszewski, Alexandre; Zhang, Zhongkai; Merzouki, Rochdi; Duriez, Christian
2018-06-01
This article presents a modeling methodology and experimental validation for soft manipulators to obtain forward kinematic model (FKM) and inverse kinematic model (IKM) under quasi-static conditions (in the literature, these manipulators are usually classified as continuum robots. However, their main characteristic of interest in this article is that they create motion by deformation, as opposed to the classical use of articulations). It offers a way to obtain the kinematic characteristics of this type of soft robots that is suitable for offline path planning and position control. The modeling methodology presented relies on continuum mechanics, which does not provide analytic solutions in the general case. Our approach proposes a real-time numerical integration strategy based on finite element method with a numerical optimization based on Lagrange multipliers to obtain FKM and IKM. To reduce the dimension of the problem, at each step, a projection of the model to the constraint space (gathering actuators, sensors, and end-effector) is performed to obtain the smallest number possible of mathematical equations to be solved. This methodology is applied to obtain the kinematics of two different manipulators with complex structural geometry. An experimental comparison is also performed in one of the robots, between two other geometric approaches and the approach that is showcased in this article. A closed-loop controller based on a state estimator is proposed. The controller is experimentally validated and its robustness is evaluated using Lypunov stability method.
Study of robot landmark recognition with complex background
NASA Astrophysics Data System (ADS)
Huang, Yuqing; Yang, Jia
2007-12-01
It's of great importance for assisting robot in path planning, position navigating and task performing by perceiving and recognising environment characteristic. To solve the problem of monocular-vision-oriented landmark recognition for mobile intelligent robot marching with complex background, a kind of nested region growing algorithm which fused with transcendental color information and based on current maximum convergence center is proposed, allowing invariance localization to changes in position, scale, rotation, jitters and weather conditions. Firstly, a novel experiment threshold based on RGB vision model is used for the first image segmentation, which allowing some objects and partial scenes with similar color to landmarks also are detected with landmarks together. Secondly, with current maximum convergence center on segmented image as each growing seed point, the above region growing algorithm accordingly starts to establish several Regions of Interest (ROI) orderly. According to shape characteristics, a quick and effectual contour analysis based on primitive element is applied in deciding whether current ROI could be reserved or deleted after each region growing, then each ROI is judged initially and positioned. When the position information as feedback is conveyed to the gray image, the whole landmarks are extracted accurately with the second segmentation on the local image that exclusive to landmark area. Finally, landmarks are recognised by Hopfield neural network. Results issued from experiments on a great number of images with both campus and urban district as background show the effectiveness of the proposed algorithm.
Trajectory planning and optimal tracking for an industrial mobile robot
NASA Astrophysics Data System (ADS)
Hu, Huosheng; Brady, J. Michael; Probert, Penelope J.
1994-02-01
This paper introduces a unified approach to trajectory planning and tracking for an industrial mobile robot subject to non-holonomic constraints. We show (1) how a smooth trajectory is generated that takes into account the constraints from the dynamic environment and the robot kinematics; and (2) how a general predictive controller works to provide optimal tracking capability for nonlinear systems. The tracking performance of the proposed guidance system is analyzed by simulation.
Planning Robot-Control Parameters With Qualitative Reasoning
NASA Technical Reports Server (NTRS)
Peters, Stephen F.
1993-01-01
Qualitative-reasoning planning algorithm helps to determine quantitative parameters controlling motion of robot. Algorithm regarded as performing search in multidimensional space of control parameters from starting point to goal region in which desired result of robotic manipulation achieved. Makes use of directed graph representing qualitative physical equations describing task, and interacts, at each sampling period, with history of quantitative control parameters and sensory data, to narrow search for reliable values of quantitative control parameters.
Robot-assisted home hazard assessment for fall prevention: a feasibility study.
Sadasivam, Rajani S; Luger, Tana M; Coley, Heather L; Taylor, Benjamin B; Padir, Taskin; Ritchie, Christine S; Houston, Thomas K
2014-01-01
We examined the feasibility of using a remotely manoeuverable robot to make home hazard assessments for fall prevention. We employed use-case simulations to compare robot assessments with in-person assessments. We screened the homes of nine elderly patients (aged 65 years or more) for fall risks using the HEROS screening assessment. We also assessed the participants' perspectives of the remotely-operated robot in a survey. The nine patients had a median Short Blessed Test score of 8 (interquartile range, IQR 2-20) and a median Life-Space Assessment score of 46 (IQR 27-75). Compared to the in-person assessment (mean = 4.2 hazards identified per participant), significantly more home hazards were perceived in the robot video assessment (mean = 7.0). Only two checklist items (adequate bedroom lighting and a clear path from bed to bathroom) had more than 60% agreement between in-person and robot video assessment. Participants were enthusiastic about the robot and did not think it violated their privacy. The study found little agreement between the in-person and robot video hazard assessments. However, it identified several research questions about how to best use remotely-operated robots.
Monitored execution of robot plans produced by STRIPS.
NASA Technical Reports Server (NTRS)
Fikes, R. E.
1972-01-01
We describe PLANEX1, a plan executor for the Stanford Research Institute robot system. The problem-solving program STRIPS creates a plan consisting of a sequence of actions, and PLANEX1 program carries out the plan by executing the actions. PLANEX1 is designed so that it executes only that portion of the plan necessary for completing the task, reexecutes any portion of the plan that has failed to achieve the desired results, and initiates replanning in situations where the plan can no longer be effective in completing the task. The scenario for an example plan execution is given.
Evaluation of the ROSA™ Spine robot for minimally invasive surgical procedures.
Lefranc, M; Peltier, J
2016-10-01
The ROSA® robot (Medtech, Montpellier, France) is a new medical device designed to assist the surgeon during minimally invasive spine procedures. The device comprises a patient-side cart (bearing the robotic arm and a workstation) and an optical navigation camera. The ROSA® Spine robot enables accurate pedicle screw placement. Thanks to its robotic arm and navigation abilities, the robot monitors movements of the spine throughout the entire surgical procedure and thus enables accurate, safe arthrodesis for the treatment of degenerative lumbar disc diseases, exactly as planned by the surgeon. Development perspectives include (i) assistance at all levels of the spine, (ii) improved planning abilities (virtualization of the entire surgical procedure) and (iii) use for almost any percutaneous spinal procedures not limited in screw positioning such as percutaneous endoscopic lumbar discectomy, intracorporeal implant positioning, over te top laminectomy or radiofrequency ablation.
Status of DoD Robotic Programs
1985-03-01
planning or adhere to previously planned routes. 0 Control. Controls are micro electronics based which provide means of autonomous action directly...KEY No: I 11 1181 1431 OROJECT Titloi ISMART TERRAIN ANALYSIS FOR ROBOTIC SYSTEMS (STARS) PROJECT Not I I CLASSIFICATION: IUCI TASK Titles IAUTOMATIC
Robotic Billiards: Understanding Humans in Order to Counter Them.
Nierhoff, Thomas; Leibrandt, Konrad; Lorenz, Tamara; Hirche, Sandra
2016-08-01
Ongoing technological advances in the areas of computation, sensing, and mechatronics enable robotic-based systems to interact with humans in the real world. To succeed against a human in a competitive scenario, a robot must anticipate the human behavior and include it in its own planning framework. Then it can predict the next human move and counter it accordingly, thus not only achieving overall better performance but also systematically exploiting the opponent's weak spots. Pool is used as a representative scenario to derive a model-based planning and control framework where not only the physics of the environment but also a model of the opponent is considered. By representing the game of pool as a Markov decision process and incorporating a model of the human decision-making based on studies, an optimized policy is derived. This enables the robot to include the opponent's typical game style into its tactical considerations when planning a stroke. The results are validated in simulations and real-life experiments with an anthropomorphic robot playing pool against a human.
A representation for error detection and recovery in robot task plans
NASA Technical Reports Server (NTRS)
Lyons, D. M.; Vijaykumar, R.; Venkataraman, S. T.
1990-01-01
A general definition is given of the problem of error detection and recovery in robot assembly systems, and a general representation is developed for dealing with the problem. This invariant representation involves a monitoring process which is concurrent, with one monitor per task plan. A plan hierarchy is discussed, showing how diagnosis and recovery can be handled using the representation.
Feasible Path Generation Using Bezier Curves for Car-Like Vehicle
NASA Astrophysics Data System (ADS)
Latip, Nor Badariyah Abdul; Omar, Rosli
2017-08-01
When planning a collision-free path for an autonomous vehicle, the main criteria that have to be considered are the shortest distance, lower computation time and completeness, i.e. a path can be found if one exists. Besides that, a feasible path for the autonomous vehicle is also crucial to guarantee that the vehicle can reach the target destination considering its kinematic constraints such as non-holonomic and minimum turning radius. In order to address these constraints, Bezier curves is applied. In this paper, Bezier curves are modeled and simulated using Matlab software and the feasibility of the resulting path is analyzed. Bezier curve is derived from a piece-wise linear pre-planned path. It is found that the Bezier curves has the capability of making the planned path feasible and could be embedded in a path planning algorithm for an autonomous vehicle with kinematic constraints. It is concluded that the length of segments of the pre-planned path have to be greater than a nominal value, derived from the vehicle wheelbase, maximum steering angle and maximum speed to ensure the path for the autonomous car is feasible.
Implementation of robotic force control with position accommodation
NASA Technical Reports Server (NTRS)
Ryan, Michael J.
1992-01-01
As the need for robotic manipulation in fields such as manufacturing and telerobotics increases, so does the need for effective methods of controlling the interaction forces between the manipulators and their environment. Position Accommodation (PA) is a form of robotic force control where the nominal path of the manipulator is modified in response to forces and torques sensed at the tool-tip of the manipulator. The response is tailored such that the manipulator emulates a mechanical impedance to its environment. PA falls under the category of position-based robotic force control, and may be viewed as a form of Impedance Control. The practical implementations are explored of PA into an 18 degree-of-freedom robotic testbed consisting of two PUMA 560 arms mounted on two 3 DOF positioning platforms. Single and dual-arm architectures for PA are presented along with some experimental results. Characteristics of position-based force control are discussed, along with some of the limitations of PA.
Gao, Liqiang; Sun, Chao; Zhang, Chen; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang
2013-01-01
Traditional automatic navigation methods for bio-robots are constrained to configured environments and thus can't be applied to tasks in unknown environments. With no consideration of bio-robot's own innate living ability and treating bio-robots in the same way as mechanical robots, those methods neglect the intelligence behavior of animals. This paper proposes a novel ratbot automatic navigation method in unknown environments using only reward stimulation and distance measurement. By utilizing rat's habit of thigmotaxis and its reward-seeking behavior, this method is able to incorporate rat's intrinsic intelligence of obstacle avoidance and path searching into navigation. Experiment results show that this method works robustly and can successfully navigate the ratbot to a target in the unknown environment. This work might put a solid base for application of ratbots and also has significant implication of automatic navigation for other bio-robots as well.
Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures.
Cruces, R A Castillo; Wahrburg, J
2007-12-01
This paper presents the ongoing results of an effort to achieve the integration of a navigated cooperative robotic arm into computer-assisted orthopaedic surgery. A seamless integration requires the system acting in direct cooperation with the surgeon instead of replacing him. Two technical issues are discussed to improve the haptic operating modes for interactive robot guidance. The concept of virtual fixtures is used to restrict the range of motion of the robot according to pre-operatively defined constraints, and methodologies to assure a robust and accurate motion through singular arm configurations are investigated. A new method for handling singularities is proposed, which is superior to the commonly used damped-least-squares method. It produces no deviations of the end-effector in relation to the virtually constrained path. A solution to assure a good performance of a hands-on robotic arm at singularity configurations is proposed. (c) 2007 John Wiley & Sons, Ltd.